
RTI Connext

Core Libraries and Utilities

User’s Manual

Version 4.5

© 2012 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
March 2012.

Trademarks
Real-Time Innovations, RTI, DataBus, and Connext are trademarks or registered trademarks of Real-Time
Innovations, Inc. All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license
agreement.

Third-Party Copyright Notices
Note: In this section, "the Software" refers to third-party software, portions of which are used in Connext; "the
Software" does not refer to Connext.
This product implements the DCPS layer of the Data Distribution Service (DDS) specification version 1.2 and
the DDS Interoperability Wire Protocol specification version 2.1, both of which are owned by the Object
Management, Inc. Copyright 1997-2007 Object Management Group, Inc. The publication of these
specifications can be found at the Catalog of OMG Data Distribution Service (DDS) Specifications. This
documentation uses material from the OMG specification for the Data Distribution Service, section 7.
Reprinted with permission. Object Management, Inc. © OMG. 2005.
Portions of this product were developed using ANTLR (www.ANTLR.org). This product includes software
developed by the University of California, Berkeley and its contributors.
Portions of this product were developed using AspectJ, which is distributed per the CPL license. AspectJ
source code may be obtained from Eclipse. This product includes software developed by the University of
California, Berkeley and its contributors.
Portions of this product were developed using MD5 from Aladdin Enterprises.
Portions of this product include software derived from Fnmatch, (c) 1989, 1993, 1994 The Regents of the
University of California. All rights reserved. The Regents and contributors provide this software "as is"
without warranty.
Portions of this product were developed using EXPAT from Thai Open Source Software Center Ltd and Clark
Cooper Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper Copyright (c)
2001, 2002 Expat maintainers. Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions: The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

http://www.ANTLR.org
http://www.eclipse.org/aspectj
http://www.eclipse.org/legal/cpl-v10.html
https://support.rti.com/

Available Documentation

To get you up and running as quickly as possible, we have divided the RTI® Connext™
(formerly, RTI Data Distribution Service) documentation into several parts.

❏ Getting Started Guide (RTI_Connext_GettingStarted.pdf)—This document
describes how to install Connext. It also lays out the core value and concepts
behind the product and takes you step-by-step through the creation of a simple
example application. Developers should read this document first.

❏ If you are using Connext on an embedded platform or with a database, you will
find additional documents that specifically address these configurations:

• Addendum for Embedded Systems
(RTI_Connext_GettingStarted_EmbeddedSystemsAddendum.pdf)

• Addendum for Database Setup
(RTI_Connext_GettingStarted_DatabaseAddendum.pdf).

❏ What’s New (RTI_Connext_WhatsNew.pdf)—This document describes changes
and enhancements in the current version of Connext. Those upgrading from a
previous version should read this document first.

❏ Release Notes and Platform Notes (RTI_Connext_ReleaseNotes.pdf and
RTI_Connext_PlatformNotes.pdf)—These documents provide system require-
ments, compatibility, and other platform-specific information about the product,
including specific information required to build your applications using RTI,
such as compiler flags and libraries.

❏ Core Libraries and Utilities User’s Manual (RTI_Connext_UsersManual.pdf)—
This document describes the features of the product and how to use them. It is
organized around the structure of the Connext APIs and certain common high-
level tasks.

❏ API Documentation (ReadMe.html, RTI_Connext_ApiReference<Lan-
guage>.pdf)—This extensively cross-referenced documentation, available both in
HTML and printable PDF formats, is your in-depth reference to every operation
and configuration parameter in the middleware. Even experienced Connext
developers will often consult this information.

The Programming How To's (available from the main page) provide example
code. These are hyperlinked code snippets to the full API documentation, and
provide a good place to begin learning the APIs. Start by reviewing the Publi-
cation Example and Subscription Example, which provide step-by step exam-
ples of how to send and receive data with Connext.

Many readers will also want to look at additional documentation available online. In
particular, RTI recommends the following:

❏ Public Knowledge Base—Accessible from https://support.rti.com/. The
Knowledge Base provides sample code, general information on Connext, perfor-
mance information, troubleshooting tips, and other technical details.

❏ Support Portal—Accessible from https://support.rti.com/. The portal provides
a superset of the solutions that are available in the Public Knowledge Base. Select
the Find Solution link to see sample code, general information on Connext, per-
formance information, troubleshooting tips, and other technical details. You
must have a user name and password to access the portal; these are included in
the letter confirming your purchase. If you do not have this letter, please contact
license@rti.com.

❏ Example Performance Test—This example application includes code and con-
figuration files for testing and optimizing the performance of a simple Connext
application on your system. The program will test both throughput and latency
under a wide variety of middleware configurations. It also includes documenta-
tion on tuning the middleware and the underlying operating system.

You can download the Example Performance Test from the Performance cate-
gory of the RTI Knowledge Base, accessible from https://support.rti.com/.

You can also review the data from several performance benchmarks here: http:/
/www.rti.com/products/dds/benchmarks-cpp-linux.html.

❏ Whitepapers and other articles—These documents are available from http://
www.rti.com/resources/.

http://www.rti.com/resources/
http://www.rti.com/resources/
http://www.rti.com/products/dds/benchmarks-cpp-linux.html
http://www.rti.com/products/dds/benchmarks-cpp-linux.html
https://support.rti.com
https://support.rti.com
https://support.rti.com

Contents

Available Documentation... iii

Welcome to RTI Connext ...xxi
Conventions ...xxi

Extensions to the DDS Standard..xxi
Environment Variables...xxii
Names of Supported Platforms ..xxii

Additional Resources...xxii

Part 1: Introduction

1 Overview.. 1-1
1.1 What is Connext? ...1-1

1.2 What is Middleware?...1-2

1.3 Network Communications Models ...1-3

1.4 Features of Connext ...1-5

2 Data-Centric Publish-Subscribe Communications.............. 2-1
2.1 What is DCPS?..2-1

2.1.1 DCPS for Real-Time Requirements ..2-2

2.2 Data Types, Topics, Keys, Instances, and Samples..2-4
2.2.1 Data Topics — What is the Data Called?...2-4
2.2.2 Samples, Instances, and Keys ...2-5

2.3 DataWriters/Publishers and DataReaders/Subscribers ..2-7

2.4 Domains and DomainParticipants ..2-10

2.5 Quality of Service (QoS)..2-10
2.5.1 Controlling Behavior with Quality of Service (QoS) Policies.............................2-11

2.6 Application Discovery...2-12
v

Part 2: Core Concepts

3 Data Types and Data Samples...3-1
3.1 Introduction to the Type System ... 3-4

3.1.1 Sequences .. 3-5
3.1.2 Strings and Wide Strings .. 3-6
3.1.3 Introduction to TypeCode... 3-6

3.2 Built-in Data Types.. 3-7
3.2.1 Registering Built-in Types .. 3-8
3.2.2 Creating Topics for Built-in Types ... 3-8
3.2.3 Creating ContentFilteredTopics for Built-in Types ... 3-10
3.2.4 String Built-in Type.. 3-12
3.2.5 KeyedString Built-in Type .. 3-17
3.2.6 Octets Built-in Type ... 3-25
3.2.7 KeyedOctets Built-in Type.. 3-32
3.2.8 Managing Memory for Built-in Types .. 3-41
3.2.9 Type Codes for Built-in Types.. 3-46

3.3 Creating User Data Types with IDL ... 3-48
3.3.1 Variable-Length Types... 3-49
3.3.2 Value Types ... 3-51
3.3.3 TypeCode and rtiddsgen .. 3-52
3.3.4 rtiddsgen Translations for IDL Types ... 3-52
3.3.5 Escaped Identifiers .. 3-72
3.3.6 Referring to Other IDL Files... 3-72
3.3.7 Preprocessor Directives... 3-73
3.3.8 Using Custom Directives .. 3-73

3.4 Creating User Data Types with Extensible Markup Language (XML).......................... 3-80

3.5 Creating User Data Types with XML Schemas (XSD).. 3-88
3.5.1 Primitive Types .. 3-104

3.6 Using rtiddsgen ... 3-104
3.6.1 rtiddsgen Command-Line Arguments ... 3-107

3.7 Using Generated Types without Connext (Standalone) ...3-113
3.7.1 Using Standalone Types in C ..3-113
3.7.2 Using Standalone Types in C++..3-114
3.7.3 Standalone Types in Java ...3-114
vi

3.8 Interacting Dynamically with User Data Types...3-115
3.8.1 Introduction to TypeCode ...3-115
3.8.2 Defining New Types...3-116
3.8.3 Sending Only a Few Fields..3-118
3.8.4 Type Extension and Versioning ..3-120
3.8.5 Sending Type Codes on the Network ..3-120

3.9 Working with Data Samples ...3-123
3.9.1 Objects of Concrete Types..3-123
3.9.2 Objects of Dynamically Defined Types ...3-124

4 Entities .. 4-1
4.1 Common Operations for All Entities ..4-2

4.1.1 Creating and Deleting Entities..4-2
4.1.2 Enabling Entities ...4-3
4.1.3 Getting an Entity’s Instance Handle ..4-6
4.1.4 Getting Status and Status Changes ..4-6
4.1.5 Getting and Setting Listeners..4-6
4.1.6 Getting the StatusCondition..4-7
4.1.7 Getting and Setting QosPolicies ...4-7

4.2 QosPolicies ..4-12
4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property4-16
4.2.2 Special QosPolicy Handling Considerations for C..4-17

4.3 Statuses ..4-18
4.3.1 Types of Communication Status...4-19
4.3.2 Special Status-Handling Considerations for C...4-23

4.4 Listeners...4-25
4.4.1 Types of Listeners ...4-26
4.4.2 Creating and Deleting Listeners ...4-28
4.4.3 Special Considerations for Listeners in C ...4-28
4.4.4 Hierarchical Processing of Listeners ..4-29
4.4.5 Operations Allowed within Listener Callbacks ...4-31

4.5 Exclusive Areas (EAs)..4-31
4.5.1 Restricted Operations in Listener Callbacks...4-34

4.6 Conditions and WaitSets ...4-36
4.6.1 Creating and Deleting WaitSets..4-37
4.6.2 WaitSet Operations ...4-39
vii

4.6.3 Waiting for Conditions.. 4-39
4.6.4 Processing Triggered Conditions—What to do when Wait() Returns 4-41
4.6.5 Conditions and WaitSet Example .. 4-42
4.6.6 GuardConditions ... 4-44
4.6.7 ReadConditions and QueryConditions .. 4-45
4.6.8 StatusConditions.. 4-48
4.6.9 Using Both Listeners and WaitSets.. 4-49

5 Topics ..5-1
5.1 Topics... 5-2

5.1.1 Creating Topics... 5-4
5.1.2 Deleting Topics ... 5-5
5.1.3 Setting Topic QosPolicies.. 5-6
5.1.4 Copying QoS From a Topic to a DataWriter or DataReader.............................. 5-10
5.1.5 Setting Up TopicListeners... 5-10
5.1.6 Navigating Relationships Among Entities..5-11

5.2 Topic QosPolicies..5-11
5.2.1 TOPIC_DATA QosPolicy .. 5-12

5.3 Status Indicator for Topics ... 5-14
5.3.1 INCONSISTENT_TOPIC Status .. 5-14

5.4 ContentFilteredTopics... 5-15
5.4.1 Overview... 5-15
5.4.2 Where Filtering is Applied—Publishing vs. Subscribing Side.......................... 5-16
5.4.3 Creating ContentFilteredTopics... 5-17
5.4.4 Deleting ContentFilteredTopics ... 5-19
5.4.5 Using a ContentFilteredTopic .. 5-20
5.4.6 SQL Filter Expression Notation ... 5-23
5.4.7 STRINGMATCH Filter Expression Notation... 5-32
5.4.8 Custom Content Filters ... 5-33

6 Sending Data ...6-1
6.1 Preview: Steps to Sending Data .. 6-1

6.2 Publishers ... 6-3
6.2.1 Creating Publishers Explicitly vs. Implicitly ... 6-6
6.2.2 Creating Publishers ... 6-7
6.2.3 Deleting Publishers.. 6-9
6.2.4 Setting Publisher QosPolicies... 6-9
viii

6.2.5 Setting Up PublisherListeners ..6-16
6.2.6 Finding a Publisher’s Related Entities...6-19
6.2.7 Waiting for Acknowledgments...6-19
6.2.8 Statuses for Publishers ...6-20
6.2.9 Suspending and Resuming Publications...6-20

6.3 DataWriters ...6-20
6.3.1 Creating DataWriters..6-24
6.3.2 Getting All DataWriters ...6-26
6.3.3 Deleting DataWriters..6-26
6.3.4 Setting Up DataWriterListeners..6-27
6.3.5 Checking DataWriter Status..6-29
6.3.6 Statuses for DataWriters ..6-30
6.3.7 Using a Type-Specific DataWriter (FooDataWriter) ..6-41
6.3.8 Writing Data ..6-42
6.3.9 Flushing Batches of Data Samples ...6-45
6.3.10 Writing Coherent Sets of Data Samples...6-46
6.3.11 Waiting for Acknowledgments...6-47
6.3.12 Managing Data Instances (Working with Keyed Data Types)6-47
6.3.13 Setting DataWriter QosPolicies...6-51
6.3.14 Navigating Relationships Among Entities ...6-61
6.3.15 Asserting Liveliness ...6-62

6.4 Publisher/Subscriber QosPolicies ...6-62
6.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension).........................6-63
6.4.2 ENTITYFACTORY QosPolicy...6-65
6.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension) ..6-68
6.4.4 GROUP_DATA QosPolicy...6-71
6.4.5 PARTITION QosPolicy ..6-74
6.4.6 PRESENTATION QosPolicy..6-81

6.5 DataWriter QosPolicies ...6-87
6.5.1 BATCH QosPolicy (DDS Extension) ..6-88
6.5.2 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)...............................6-94
6.5.3 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)6-108
6.5.4 DEADLINE QosPolicy... 6-111
6.5.5 DESTINATION_ORDER QosPolicy ..6-114
6.5.6 DURABILITY QosPolicy ...6-117
6.5.7 DURABILITY SERVICE QosPolicy ..6-120
6.5.8 ENTITYNAME QosPolicy (DDS Extension) ..6-122
ix

6.5.9 HISTORY QosPolicy.. 6-124
6.5.10 LATENCYBUDGET QoS Policy .. 6-128
6.5.11 LIFESPAN QoS Policy ... 6-129
6.5.12 LIVELINESS QosPolicy .. 6-130
6.5.13 MULTI_CHANNEL QosPolicy (DDS Extension) ... 6-135
6.5.14 OWNERSHIP QosPolicy... 6-137
6.5.15 OWNERSHIP_STRENGTH QosPolicy... 6-141
6.5.16 PROPERTY QosPolicy (DDS Extension) .. 6-142
6.5.17 PUBLISH_MODE QosPolicy (DDS Extension) ... 6-145
6.5.18 RELIABILITY QosPolicy... 6-147
6.5.19 RESOURCE_LIMITS QosPolicy .. 6-152
6.5.20 TRANSPORT_PRIORITY QosPolicy .. 6-156
6.5.21 TRANSPORT_SELECTION QosPolicy (DDS Extension) 6-157
6.5.22 TRANSPORT_UNICAST QosPolicy (DDS Extension)..................................... 6-159
6.5.23 TYPESUPPORT QosPolicy (DDS Extension)... 6-162
6.5.24 USER_DATA QosPolicy.. 6-163
6.5.25 WRITER_DATA_LIFECYCLE QoS Policy.. 6-166

6.6 FlowControllers (DDS Extension)... 6-168
6.6.1 Flow Controller Scheduling Policies ... 6-170
6.6.2 Managing Fast DataWriters When Using a FlowController............................ 6-172
6.6.3 Token Bucket Properties ... 6-172
6.6.4 Prioritized Samples.. 6-174
6.6.5 Creating and Configuring Custom FlowControllers with Property QoS...... 6-178
6.6.6 Creating and Deleting FlowControllers ... 6-180
6.6.7 Getting/Setting Default FlowController Properties ... 6-181
6.6.8 Getting/Setting Properties for a Specific FlowController 6-182
6.6.9 Adding an External Trigger.. 6-182
6.6.10 Other FlowController Operations ... 6-183

7 Receiving Data ..7-1
7.1 Preview: Steps to Receiving Data.. 7-1

7.2 Subscribers ... 7-4
7.2.1 Creating Subscribers Explicitly vs. Implicitly.. 7-5
7.2.2 Creating Subscribers.. 7-9
7.2.3 Deleting Subscribers.. 7-10
7.2.4 Setting Subscriber QosPolicies..7-11
7.2.5 Beginning and Ending Group-Ordered Access... 7-18
x

7.2.6 Setting Up SubscriberListeners...7-18
7.2.7 Getting DataReaders with Specific Samples...7-21
7.2.8 Finding a Subscriber’s Related Entities...7-22
7.2.9 Statuses for Subscribers ...7-23

7.3 DataReaders ..7-24
7.3.1 Creating DataReaders ..7-28
7.3.2 Getting All DataReaders..7-30
7.3.3 Deleting DataReaders ..7-30
7.3.4 Setting Up DataReaderListeners ..7-31
7.3.5 Checking DataReader Status and StatusConditions ...7-32
7.3.6 Waiting for Historical Data ...7-34
7.3.7 Statuses for DataReaders ...7-35
7.3.8 Setting DataReader QosPolicies ...7-46
7.3.9 Navigating Relationships Among Entities ...7-53

7.4 Using DataReaders to Access Data (Read & Take)..7-55
7.4.1 Using a Type-Specific DataReader (FooDataReader) ..7-55
7.4.2 Loaning and Returning Data and SampleInfo Sequences7-55
7.4.3 Accessing Data Samples with Read or Take ...7-57
7.4.4 The Sequence Data Structure ..7-65
7.4.5 The SampleInfo Structure..7-66

7.5 Subscriber QosPolicies ..7-72

7.6 DataReader QosPolicies ..7-72
7.6.1 AVAILABILITY QosPolicy (DDS Extension) ..7-73
7.6.2 DATA_READER_PROTOCOL QosPolicy (DDS Extension)7-76
7.6.3 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)7-82
7.6.4 READER_DATA_LIFECYCLE QoS Policy ...7-89
7.6.5 TIME_BASED_FILTER QosPolicy..7-91
7.6.6 TRANSPORT_MULTICAST QosPolicy (DDS Extension)7-94

8 Working with Domains .. 8-1
8.1 Fundamentals of Domains and DomainParticipants..8-1

8.2 DomainParticipantFactory..8-4
8.2.1 Setting DomainParticipantFactory QosPolicies ...8-7
8.2.2 Getting and Setting Default QoS for DomainParticipants....................................8-8
8.2.3 Freeing Resources Used by the DomainParticipantFactory.................................8-9
8.2.4 Looking Up a DomainParticipant ..8-9
8.2.5 Getting QoS Values from a QoS Profile ...8-9
xi

8.3 DomainParticipants .. 8-10
8.3.1 Creating a DomainParticipant ... 8-15
8.3.2 Deleting DomainParticipants... 8-17
8.3.3 Deleting Contained Entities ... 8-18
8.3.4 Choosing a Domain ID and Creating Multiple Domains 8-18
8.3.5 Setting Up DomainParticipantListeners... 8-19
8.3.6 Setting DomainParticipant QosPolicies.. 8-20
8.3.7 Looking up Topic Descriptions.. 8-28
8.3.8 Finding a Topic... 8-29
8.3.9 Getting the Implicit Publisher or Subscriber ... 8-29
8.3.10 Asserting Liveliness... 8-31
8.3.11 Learning about Discovered DomainParticipants.. 8-31
8.3.12 Learning about Discovered Topics .. 8-32
8.3.13 Other DomainParticipant Operations... 8-32

8.4 DomainParticipantFactory QosPolicies ... 8-33
8.4.1 LOGGING QosPolicy (DDS Extension).. 8-33
8.4.2 PROFILE QosPolicy (DDS Extension) ... 8-34
8.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension) 8-36

8.5 DomainParticipant QosPolicies... 8-38
8.5.1 DATABASE QosPolicy (DDS Extension).. 8-38
8.5.2 DISCOVERY QosPolicy (DDS Extension) .. 8-42
8.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension) .. 8-47
8.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS

Extension).. 8-55
8.5.5 EVENT QosPolicy (DDS Extension) ... 8-62
8.5.6 RECEIVER_POOL QosPolicy (DDS Extension) .. 8-64
8.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension)... 8-66
8.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension) 8-67
8.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension) .. 8-70

8.6 Clock Selection... 8-78
8.6.1 Available Clocks... 8-78
8.6.2 Clock Selection Strategy.. 8-79

9 Building Applications ..9-1
9.1 Running on a Computer Not Connected to a Network .. 9-2

9.2 Connext Header Files — All Architectures ... 9-2

9.3 UNIX-based Platforms.. 9-3
xii

9.3.1 Required Libraries ..9-4
9.3.2 Compiler Flags ..9-4

9.4 Windows Platforms ...9-4
9.4.1 Using Microsoft Visual C++ 6.0 ..9-5
9.4.2 Using Visual Studio .NET, Visual Studio .NET 2003, or Visual Studio 2005......9-6

9.5 Java Platforms...9-8
9.5.1 Java Libraries...9-8
9.5.2 Native Libraries ..9-8

Part 3: Advanced Concepts

10 Reliable Communications.. 10-1
10.1 Sending Data Reliably ...10-1

10.1.1 Best-effort Delivery Model ..10-2
10.1.2 Reliable Delivery Model ..10-2

10.2 Overview of the Reliable Protocol ...10-3

10.3 Using QosPolicies to Tune the Reliable Protocol...10-8
10.3.1 Enabling Reliability ..10-10
10.3.2 Tuning Queue Sizes and Other Resource Limits ...10-10
10.3.3 Controlling Queue Depth with the History QosPolicy.....................................10-18
10.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy10-18
10.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicy10-26
10.3.6 Resending Samples to Late-Joiners with the Durability QosPolicy10-27
10.3.7 Use Cases ...10-27

11 Mechanisms for Achieving Information Durability and
Persistence .. 11-1

11.1 Introduction ..11-1
11.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer

History) ..11-2
11.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable

Reader State)..11-3
11.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable

Data) ...11-4

11.2 Durability and Persistence Based on Virtual GUIDs ..11-5
xiii

11.3 Durable Writer History..11-7
11.3.1 Durable Writer History Use Case ...11-8
11.3.2 How To Configure Durable Writer History ..11-9

11.4 Durable Reader State ...11-13
11.4.1 Durable Reader State Use Case...11-15
11.4.2 How To Configure a DataReader for Durable Reader State.............................11-16

11.5 Data Durability ...11-18
11.5.1 RTI Persistence Service...11-18

12 Discovery..12-1
12.1 What is Discovery?.. 12-2

12.1.1 Simple Participant Discovery... 12-2
12.1.2 Simple Endpoint Discovery.. 12-3

12.2 Configuring the Peers List Used in Discovery.. 12-4
12.2.1 Peer Descriptor Format ... 12-6
12.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format 12-8
12.2.3 NDDS_DISCOVERY_PEERS File Format .. 12-9

12.3 Discovery Implementation..12-11
12.3.1 Participant Discovery ...12-11
12.3.2 Endpoint Discovery... 12-20
12.3.3 Discovery Traffic Summary .. 12-25
12.3.4 Discovery-Related QoS ... 12-26

12.4 Debugging Discovery ... 12-27

12.5 Ports Used for Discovery ... 12-30
12.5.1 Inbound Ports for Meta-Traffic .. 12-31
12.5.2 Inbound Ports for User Traffic ... 12-32
12.5.3 Automatic Selection of participant_id and Port Reservation.......................... 12-32
12.5.4 Tuning domain_id_gain and participant_id_gain .. 12-33

13 Transport Plugins ..13-1
13.1 Builtin Transport Plugins ... 13-2

13.2 Extension Transport Plugins.. 13-3

13.3 The NDDSTransportSupport Class... 13-4

13.4 Explicitly Creating Builtin Transport Plugin Instances ... 13-4
xiv

13.5 Setting Builtin Transport Properties of the Default Transport Instance
—get/set_builtin_transport_properties() ...13-5

13.6 Setting Builtin Transport Properties with the PropertyQosPolicy..................................13-7
13.6.1 Notes Regarding Loopback and Shared Memory..13-26
13.6.2 Setting the Maximum Gather-Send Buffer Count for UDPv4 and UDPv6....13-26
13.6.3 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists13-27

13.7 Installing Additional Builtin Transport Plugins with register_transport()..................13-28
13.7.1 Transport Lifecycles..13-29
13.7.2 Transport Aliases ..13-30
13.7.3 Transport Network Addresses..13-30

13.8 Installing Additional Builtin Transport Plugins with PropertyQosPolicy13-31

13.9 Other Transport Support Operations ...13-33
13.9.1 Adding a Send Route ...13-33
13.9.2 Adding a Receive Route ..13-34
13.9.3 Looking Up a Transport Plugin ..13-35

14 Built-In Topics... 14-1
14.1 Listeners for Built-in Entities..14-1

14.2 Built-in DataReaders..14-2
14.2.1 LOCATOR_FILTER QoS Policy (DDS Extension)..14-10

14.3 Accessing the Built-in Subscriber ..14-11

14.4 Restricting Communication—Ignoring Entities ..14-12
14.4.1 Ignoring Specific Remote DomainParticipants ..14-13
14.4.2 Ignoring Publications and Subscriptions ..14-13
14.4.3 Ignoring Topics ...14-15

15 Configuring QoS with XML.. 15-1
15.1 Example XML File..15-2

15.2 How to Load XML-Specified QoS Settings ..15-3
15.2.1 Loading, Reloading and Unloading Profiles ..15-4

15.3 How to Use XML-Specified QoS Settings...15-5

15.4 XML File Syntax ...15-7

15.5 XML String Syntax ...15-8

15.6 How the XML is Validated..15-9
15.6.1 Validation at Run-Time..15-9
xv

15.6.2 XML File Validation During Editing... 15-10

15.7 Configuring QoS with XML..15-11
15.7.1 QosPolicies.. 15-12
15.7.2 Sequences .. 15-13
15.7.3 Arrays .. 15-15
15.7.4 Enumeration Values .. 15-15
15.7.5 Time Values (Durations) ... 15-16
15.7.6 Transport Properties .. 15-16
15.7.7 Thread Settings... 15-17

15.8 QoS Profiles .. 15-17
15.8.1 QoS Profiles with a Single QoS .. 15-19
15.8.2 QoS-Profile Inheritance... 15-19
15.8.3 Topic Filters... 15-22
15.8.4 Overwriting Default QoS Values ... 15-25
15.8.5 Get Qos Profiles.. 15-26

15.9 QoS Libraries.. 15-27
15.9.1 Get Qos Profile Libraries... 15-28

15.10 URL Groups ... 15-28

15.11 Configuring Logging Via XML.. 15-29

16 Multi-channel DataWriters ..16-1
16.1 What is a Multi-channel DataWriter? ... 16-3

16.2 How to Configure a Multi-channel DataWriter .. 16-5
16.2.1 Limitations .. 16-5

16.3 Multi-channel Configuration on the Reader Side... 16-7

16.4 Where Does the Filtering Occur? .. 16-9
16.4.1 Filtering at the DataWriter.. 16-9
16.4.2 Filtering at the DataReader .. 16-9
16.4.3 Filtering on the Network Hardware ... 16-10

16.5 Fault Tolerance and Redundancy ... 16-10

16.6 Reliability with Multi-Channel DataWriters ... 16-10
16.6.1 Reliable Delivery.. 16-10
16.6.2 Reliable Protocol Considerations... 16-12

16.7 Performance Considerations ... 16-13
16.7.1 Network-Switch Filtering ... 16-13
xvi

16.7.2 DataWriter and DataReader Filtering..16-13

17 Connext Threading Model ... 17-1
17.1 Database Thread...17-1

17.2 Event Thread...17-3

17.3 Receive Threads..17-4

17.4 Exclusive Areas, Connext Threads and User Listeners ..17-6

17.5 Controlling CPU Core Affinity for RTI Threads..17-6

18 Troubleshooting... 18-1
18.1 What Version am I Running?..18-1

18.1.1 Finding Version Information in Revision Files...18-1
18.1.2 Finding Version Information Programmatically..18-2

18.2 Controlling Messages from Connext...18-3
18.2.1 Format of Logged Messages ...18-5
18.2.2 Configuring Logging via XML ...18-8

Part 4: RTI Secure WAN Transport

19 Secure WAN Transport .. 19-1
19.1 WAN Traversal via UDP Hole-punching ...19-3

19.1.1 Protocol Details ...19-4

19.2 WAN Locators ..19-8

19.3 Datagram Transport-Layer Security (DTLS) ..19-9
19.3.1 Security Model ..19-9
19.3.2 Liveliness Mechanism..19-10

19.4 Certificate Support ...19-10

19.5 License Issues..19-11

20 Configuring RTI Secure WAN Transport 20-1
20.1 Example Applications ...20-1

20.2 Setting Up a Transport with the Property QoS ..20-2

20.3 WAN Transport Properties ...20-4
xvii

20.4 Secure Transport Properties ... 20-12

20.5 Explicitly Instantiating a WAN or Secure Transport Plugin ... 20-16
20.5.1 Additional Header Files and Include Directories ... 20-17
20.5.2 Additional Libraries .. 20-17
20.5.3 Compiler Flags ... 20-17

Part 5: RTI Persistence Service

21 Introduction to RTI Persistence Service................................21-1

22 Configuring Persistence Service ..22-1
22.1 How to Load the XML Configuration.. 22-2

22.2 XML Configuration File ... 22-3
22.2.1 Configuration File Syntax... 22-4
22.2.2 XML Validation .. 22-5

22.3 QoS Configuration .. 22-7

22.4 Configuring the Persistence Service Application ... 22-8

22.5 Configuring Remote Administration ... 22-10

22.6 Configuring the Persistent Storage..22-11

22.7 Configuring Participants .. 22-14

22.8 Creating Persistence Groups.. 22-15
22.8.1 QoSs ... 22-19
22.8.2 DurabilityService QoS Policy ... 22-20
22.8.3 Sharing a Publisher/Subscriber... 22-20
22.8.4 Sharing a Database Connection ... 22-21
22.8.5 Memory Management... 22-21

22.9 Using RTI Monitoring Library with Persistence Service ... 22-23

23 Running RTI Persistence Service...23-1
23.1 Starting Persistence Service ... 23-1

23.2 Stopping Persistence Service ... 23-3
xviii

24 Administering Persistence Service from a Remote
Location.. 24-1

24.1 Enabling Remote Administration..24-1

24.2 Remote Commands..24-2
24.2.1 start ...24-2
24.2.2 stop..24-2
24.2.3 shutdown ...24-3
24.2.4 status...24-3

24.3 Accessing Persistence Service from a Connext Application ..24-3

Part 6: RTI CORBA Compatibility Kit

25 Introduction to RTI CORBA Compatibility Kit 25-1

26 Generating CORBA-Compatible Code with rtiddsgen..... 26-1
26.1 Generating C++ Code..26-2

26.2 Generating Java Code..26-3

27 Supported IDL Types ... 27-1

Part 7: RTI RTSJ Extension Kit

28 Introduction to RTI RTSJ Extension Kit................................... 28-1

29 Using RTI RTSJ Extension Kit... 29-1

Part 8: RTI TCP Transport

30 Configuring the RTI TCP Transport .. 30-1
30.1 TCP Communication Scenarios ...30-1

30.1.1 Communication Within a Single LAN...30-1
30.1.2 Symmetric Communication Across NATs ..30-2
xix

30.1.3 Asymmetric Communication Across NATs... 30-3

30.2 Configuring the TCP Transport... 30-6
30.2.1 Choosing a Transport Mode... 30-6
30.2.2 Explicitly Instantiating the TCP Transport Plugin.. 30-7
30.2.3 Configuring the TCP Transport with the Property QosPolicy 30-9
30.2.4 Setting the Initial Peers ..30-11
30.2.5 TCP/TLS Transport Properties ...30-11
xx

Welcome to RTI Connext

RTI Connext solutions provide a flexible data distribution infrastructure for integrating
data sources of all types. At its core is the world's leading ultra-high performance, dis-
tributed networking DataBus™. It connects data within applications as well as across
devices, systems and networks. Connext also delivers large data sets with microsecond
performance and granular quality-of-service control. Connext is a standards-based, open
architecture that connects devices from deeply embedded real-time platforms to enter-
prise servers across a variety of networks.

Conventions
The terminology and example code in this manual assume you are using C++ without
namespace support.

C, C++/CLI, C#, and Java APIs are also available; they are fully described in the online
(HTML) documentation.

Namespace support in C++, C++/CLI, and C# is also available; see the online documen-
tation (from the Modules page, select Using DDS:: Namespace) for details.

Extensions to the DDS Standard

Connext implements the DDS Standard published by the OMG. It also includes features
that are extensions to DDS. These include additional Quality of Service parameters,
function calls, structure fields, etc.

Extensions also include product-specific APIs that complement the DDS API. These
include APIs to create and use transport plug-ins, and APIs to control the verbosity and
xxi

logging capabilities. These APIs are prefixed with NDDS, such as NDDSTransportSup-
port::register_transport().

Environment Variables

Connext documentation refers to pathnames that have been customized during installa-
tion. NDDSHOME refers to the installation directory of Connext.

Names of Supported Platforms

Connext runs on several different target platforms. To support this vast array of plat-
forms, Connext separates the executable, library, and object files for each platform into
individual directories.

Each platform name has four parts: hardware architecture, operating system, operating
system version and compiler. For example, i86Linux2.4gcc3.2 is the directory that con-
tains files specific to Linux® version 2.4 for the Intel processor, compiled with gcc ver-
sion 3.2.

For a full list of supported platforms, see the Platform Notes.

Additional Resources
The details of each API (such as function parameters, return values, etc.) and examples
are in the online documentation. In case of discrepancies between the information in
this document and the online documentation, the latter should be considered more up-
to-date.
xxii

Part 1: Introduction

This introduces the general concepts behind data-centric publish-subscribe communica-
tions and provides a brief tour of Connext.

❏ Chapter 1: Overview

❏ Chapter 2: Data-Centric Publish-Subscribe Communications

1. O
ve

rview
Chapter 1 Overview

RTI Connext (formerly, RTI Data Distribution Service) is network middleware for distrib-
uted real-time applications. Connext simplifies application development, deployment
and maintenance and provides fast, predictable distribution of time-critical data over a
variety of transport networks.

With Connext, you can:

❏ Perform complex one-to-many and many-to-many network communications.

❏ Customize application operation to meet various real-time, reliability, and qual-
ity-of-service goals.

❏ Provide application-transparent fault tolerance and application robustness.

❏ Use a variety of transports.

This chapter introduces basic concepts of middleware and common communication
models, and describes how Connext’s feature-set addresses the needs of real-time sys-
tems.

1.1 What is Connext?
Connext is network middleware for real-time distributed applications. It provides the
communications service programmers need to distribute time-critical data between
embedded and/or enterprise devices or nodes. Connext uses the publish-subscribe com-
munications model to make data distribution efficient and robust.

Connext implements the Data-Centric Publish-Subscribe (DCPS) API within the OMG’s
Data Distribution Service (DDS) for Real-Time Systems. DDS is the first standard devel-
1-1

Overview
oped for the needs of real-time systems. DCPS provides an efficient way to transfer data
in a distributed system.

With Connext, systems designers and programmers start with a fault-tolerant and flexi-
ble communications infrastructure that will work over a wide variety of computer hard-
ware, operating systems, languages, and networking transport protocols. Connext is
highly configurable so programmers can adapt it to meet the application’s specific com-
munication requirements.

1.2 What is Middleware?
Middleware is a software layer between an application and the operating system. Net-
work middleware isolates the application from the details of the underlying computer
architecture, operating system and network stack (see Figure 1.1). Network middleware
simplifies the development of distributed systems by allowing applications to send and
receive information without having to program using lower-level protocols such as
sockets and TCP or UDP/IP.

Publish-subscribe middleware Connext is based on a publish-subscribe communica-
tions model. Publish-subscribe (PS) middleware provides a simple and intuitive way to
distribute data. It decouples the software that creates and sends data—the data publish-
ers—from the software that receives and uses the data—the data subscribers. Publishers

Figure 1.1 Network Middleware

Connext is middleware that insulates applications from the raw operating-system
network stack.
1-2

Network Communications Models
1. O

ve
rview
simply declare their intent to send and then publish the data. Subscribers declare their
intent to receive, then the data is automatically delivered by the middleware.

Despite the simplicity of the model, PS middleware can handle complex patterns of
information flow. The use of PS middleware results in simpler, more modular distrib-
uted applications. Perhaps most importantly, PS middleware can automatically handle
all network chores, including connections, failures, and network changes, eliminating
the need for user applications to program of all those special cases. What experienced
network middleware developers know is that handling special cases accounts for over
80% of the effort and code.

1.3 Network Communications Models
The communications model underlying the network middleware is the most important
factor in how applications communicate. The communications model impacts the per-
formance, the ease to accomplish different communication transactions, the nature of
detecting errors, and the robustness to different error conditions. Unfortunately, there is
no “one size fits all” approach to distributed applications. Different communications
models are better suited to handle different classes of application domains.

This section describes three main types of network communications models:

❏ Point-to-point

❏ Client-server

❏ Publish-subscribe

Point-to-point model Point-to-point is the simplest form of communication, as illus-
trated in Figure 1.2. The telephone is an example of an everyday point-to-point commu-
nications device. To use a telephone, you must know the address (phone number) of the
other party. Once a connection is established, you can have a reasonably high-band-
width conversation. However, the telephone does not work as well if you have to talk to
many people at the same time. The telephone is essentially one-to-one communication.

TCP is a point-to-point network protocol designed in the 1970s. While it provides reli-
able, high-bandwidth communication, TCP is cumbersome for systems with many com-
municating nodes.

Client-server model To address the scalability issues of the Point-to-Point model,
developers turned to the Client-Server model. Client-server networks designate one
special server node that connects simultaneously to many client nodes, as illustrated in
1-3

Overview
Figure 1.3. Client-server is a "many-to-one" architecture. Ordering pizza over the phone
is an example of client-server communication. Clients must know the phone number of
the pizza parlor to place an order. The parlor can handle many orders without knowing
ahead of time where people (clients) are located. After the order (request), the parlor
asks the client where the response (pizza) should be sent. In the client-server model,
each response is tied to a prior request. As a result, the response can be tailored to each
request. In other words, each client makes a request (order) and each reply (pizza) is
made for one specific client in mind.

The client-server network architecture works best when information is centralized, such
as in databases, transaction processing systems, and file servers. However, if informa-
tion is being generated at multiple nodes, a client-server architecture requires that all
information are sent to the server for later redistribution to the clients. This approach is
inefficient and precludes deterministic communications, since the client does not know
when new information is available. The time between when the information is available
on the server, and when the client asks and receives it adds a variable latency to the sys-
tem.

Publish-subscribe model In the publish-subscribe communications model, computer
applications (nodes) “subscribe” to data they need and “publish” data they want to
share. Messages pass directly between the publisher and the subscribers, rather than
moving into and out of a centralized server. Most time-sensitive information intended
to reach many people is sent by a publish-subscribe system. Examples of publish-sub-
scribe systems in everyday life include television, magazines, and newspapers.

A
B

Point-to-point is one-to-one communications.

Figure 1.2 Point-to-Point

Client

Client-server is many-to-one communications.

Server

Client

Client

Client

request

Figure 1.3 Client-Server

reply
1-4

Features of Connext
1. O

ve
rview
Publish-subscribe communication architectures are good for distributing large quanti-
ties of time-sensitive information efficiently, even in the presence of unreliable delivery
mechanisms. This direct and simultaneous communication among a variety of nodes
makes publish-subscribe network architecture the best choice for systems with complex
time-critical data flows.

While the publish-subscribe model provides system architects with many advantages, it
may not be the best choice for all types of communications, including:

❏ File-based transfers (alternate solution: FTP)

❏ Remote Method Invocation (alternate solutions: CORBA, COM, SOAP)

❏ Connection-based architectures (alternate solution: TCP/IP)

❏ Synchronous transfers (alternate solution: CORBA)

1.4 Features of Connext
Connext supports mechanisms that go beyond the basic publish-subscribe model. The
key benefit is that applications that use Connext for their communications are entirely
decoupled. Very little of their design time has to be spent on how to handle their mutual
interactions. In particular, the applications never need information about the other par-
ticipating applications, including their existence or locations. Connext automatically
handles all aspects of message delivery, without requiring any intervention from the
user applications, including:

❏ determining who should receive the messages,

❏ where recipients are located,

Publish-subscribe is many-to-many communications.

Figure 1.4 Publish-Subscribe Subscriber
Publisher

Publisher

Subscriber

Subscriber
1-5

Overview
❏ what happens if messages cannot be delivered.

This is made possible by how Connext allows the user to specify Quality of Service (QoS)
parameters as a way to configure automatic-discovery mechanisms and specify the
behavior used when sending and receiving messages. The mechanisms are configured
up-front and require no further effort on the user's part. By exchanging messages in a
completely anonymous manner, Connext greatly simplifies distributed application
design and encourages modular, well-structured programs.

Furthermore, Connext includes the following features, which are designed to meet the
needs of distributed real-time applications:

❏ Data-centric publish-subscribe communications Simplifies distributed applica-
tion programming and provides time-critical data flow with minimal latency.

• Clear semantics for managing multiple sources of the same data.

• Efficient data transfer, customizable Quality of Service, and error notification.

• Guaranteed periodic samples, with maximum rate set by subscriptions.

• Notification by a callback routine on data arrival to minimize latency.

• Notification when data does not arrive by an expected deadline.

• Ability to send the same message to multiple computers efficiently.

❏ User-definable data types Enables you to tailor the format of the information
being sent to each application.

❏ Reliable messaging Enables subscribing applications to specify reliable deliv-
ery of samples.

❏ Multiple Communication Networks Multiple independent communication net-
works (domains) each using Connext can be used over the same physical network.
Applications are only able to participate in the domains to which they belong.
Individual applications can be configured to participate in multiple domains.

❏ Symmetric architecture Makes your application robust:

• No central server or privileged nodes, so the system is robust to node failures.

• Subscriptions and publications can be dynamically added and removed from
the system at any time.

❏ Pluggable Transports Framework Includes the ability to define new transport
plug-ins and run over them. Connext comes with a standard UDP/IP pluggable
transport and a shared memory transport. It can be configured to operate over a
variety of transport mechanisms, including backplanes, switched fabrics, and
new networking technologies.
1-6

Features of Connext
1. O

ve
rview
❏ Multiple Built-in Transports Includes UDP/IP and shared memory transports.

❏ Multi-language support Includes APIs for the C, C++, C++/CLI, C#, and Java™
programming languages.

❏ Multi-platform support Includes support for flavors of UNIX® (Linux® and
Solaris™), real-time operating systems (INTEGRITY®, VxWorks®, QNX®, and
LynxOS®), and Windows® (2000, 2003, CE, Vista, and XP). (Consult the Platform
Notes to see which platforms are supported in this release.)

❏ Compliance with Standards

• API complies with the DCPS layer of the OMG’s DDS specification.

• Data types comply with OMG Interface Definition Language™ (IDL).

• Data packet format complies with the International Engineering Consor-
tium’s (IEC’s) publicly available specification for the RTPS wire protocol.
1-7

Overview
1-8

2. D
C

PS
Chapter 2 Data-Centric Publish-Subscribe
Communications

This chapter describes the formal communications model used by Connext: the Data-
Centric Publish-Subscribe (DCPS) standard. DCPS is a formalization (through a stan-
dardized API) and extension of the publish-subscribe communications model presented
in Section 1.3.

This chapter includes the following sections:

❏ What is DCPS? (Section 2.1)

❏ Data Types, Topics, Keys, Instances, and Samples (Section 2.2)

❏ DataWriters/Publishers and DataReaders/Subscribers (Section 2.3)

❏ Domains and DomainParticipants (Section 2.4)

❏ Quality of Service (QoS) (Section 2.5)

❏ Application Discovery (Section 2.6)

2.1 What is DCPS?
DCPS is the portion of the OMG DDS (Data Distribution Service) Standard that
addresses data-centric publish-subscribe communications. The DDS standard defines a
language-independent model of publish-subscribe communications that has standard-
ized mappings into various implementation languages. Connext offers C, C++, C++/
CLI, C#, and Java versions of the DCPS API.
2-1

Data-Centric Publish-Subscribe Communications
The publish-subscribe approach to distributed communications is a generic mechanism
that can be employed by many different types of applications. The DCPS model
described in this chapter extends the publish-subscribe model to address the specific
needs of real-time, data-critical applications. As you’ll see, it provides several mecha-
nisms that allow application developers to control how communications works and
how the middleware handles resource limitations and error conditions.

The “data-centric” portion of the term DCPS describes the fundamental concept sup-
ported by the design of the API. In data-centric communications, the focus is on the dis-
tribution of data between communicating applications. A data-centric system is
comprised of data publishers and data subscribers. The communications are based on
passing data of known types in named streams from publishers to subscribers.

In contrast, in object-centric communications the fundamental concept is the interface
between the applications. An interface is comprised of a set of methods of known types
(number and types of method arguments). An object-centric system is comprised of
interface servers and interface clients, and communications are based on clients invok-
ing methods on named interfaces that are serviced by the corresponding server.

Data and object-centric communications are complementary paradigms in a distributed
system. Applications may require both. However, real-time communications often fit a
data-centric model more naturally.

2.1.1 DCPS for Real-Time Requirements

DCPS, and specifically the Connext implementation, is well suited for real-time applica-
tions. For instance, real-time applications often require the following features:

Efficiency Real-time systems require efficient data collection and delivery. Only mini-
mal delays should be introduced into the critical data-transfer path. Publish-sub-
scribe is more efficient than client-server in both latency and bandwidth for
periodic data exchange.
Publish-subscribe greatly reduces the overhead required to send data over the
network compared to a client-server architecture. Occasional subscription
requests, at low bandwidth, replace numerous high-bandwidth client requests.
Latency is also reduced, since the outgoing request message time is eliminated. As
soon as a new publication data sample becomes available, it is sent to the corre-
sponding subscriptions.

Determinism Real-time applications often care about the determinism of delivering
periodic data as well as the latency of delivering event data. Once buffers are
introduced into a data stream to support reliable connections, new data may be
held undelivered for a unpredictable amount of time while waiting for confirma-
2-2

What is DCPS?
2. D

C
PS
tion that old data was received.
Since publish-subscribe does not inherently require reliable connections, imple-
mentations, like Connext, can provide configurable trade-offs between the deter-
ministic delivery of new data and the reliable delivery of all data.

Flexible delivery bandwidth Typical real-time systems include both real-time and non-
real-time nodes. The bandwidth requirements for these nodes—even for the same
data—are quite different. For example, an application may be sending data sam-
ples faster than a non-real-time application is capable of handling. However, a
real-time application may want the same data as fast as it is produced.
DCPS allows subscribers to the same data to set individual limits on how fast data
should be delivered each subscriber. This is similar to how some people get a
newspaper every day while others can subscribe to only the Sunday paper.

Thread awareness Real-time communications must work without slowing the thread
that sends data samples. On the receiving side, some data streams should have
higher priority so that new data for those streams are processed before lower pri-
ority streams.
Connext provides user-level configuration of its internal threads that process
incoming data. Users may configure Connext so that different threads are created
with different priorities to process received data of different data streams.

Fault-tolerant operation Real-time applications are often in control of systems that are
required to run in the presence of component failures. Often, those systems are
safety critical or carry financial penalties for loss of service. The applications run-
ning those systems are usually designed to be fault-tolerant using redundant
hardware and software. Backup applications are often “hot” and interconnected
to primary systems so that they can take over as soon as a failure is detected.
Publish-subscribe is capable of supporting many-to-many connectivity with
redundant DataWriters and DataReaders. This feature is ideal for constructing
fault-tolerant or high-availability applications with redundant nodes and robust
fault detection and handling services.

DCPS, and thus Connext, was designed and implemented specifically to address the
requirements above through configuration parameters known as QosPolicies defined
by the DCPS standard (see QosPolicies (Section 4.2)). The following section introduces
basic DCPS terminology and concepts.
2-3

Data-Centric Publish-Subscribe Communications
2.2 Data Types, Topics, Keys, Instances, and Samples
In data-centric communications, the applications participating in the communication
need to share a common view of the types of data being passed around.

Within different programming languages there are several ‘primitive’ data types that all
users of that language naturally share (integers, floating point numbers, characters,
booleans, etc.). However, in any non-trivial software system, specialized data types are
constructed out of the language primitives. So the data to be shared between applica-
tions in the communication system could be structurally simple, using the primitive lan-
guage types mentioned above, or it could be more complicated, using, for example, C
and C++ structs, like this:

struct Time {
long year;
short day;
short hour;
short minute;
short second;

};

struct StockPrice {
float price;
Time timeStamp;

};

Within a set of applications using DCPS, the different applications do not automatically
know the structure of the data being sent, nor do they necessarily interpret it in the same
way (if, for instance, they use different operating systems, were written with different
languages, or were compiled with different compilers). There must be a way to share
not only the data, but also information about how the data is structured.

In DCPS, data definitions are shared among applications using OMG IDL, a language-
independent means of describing data. For more information on data types and IDL, see
Chapter 3.

2.2.1 Data Topics — What is the Data Called?

Shared knowledge of the data types is a requirement for different applications to com-
municate with DCPS. The applications must also share a way to identify which data is
to be shared. Data (of any data type) is uniquely distinguished by using a name called a
2-4

Data Types, Topics, Keys, Instances, and Samples
2. D

C
PS
Topic. By definition, a Topic corresponds to a single data type. However, several Topics
may refer to the same data type.

Topics interconnect DataWriters and DataReaders. A DataWriter is an object in an applica-
tion that tells Connext (and indirectly, other applications) that it has some values of a cer-
tain Topic. A corresponding DataReader is an object in an application that tells Connext
that it wants to receive values for the same Topic. And the data that is passed from the
DataWriter to the DataReader is of the data type associated with the Topic. DataWriters
and DataReaders are described more in Section 2.3.

For a concrete example, consider a system that distributes stock quotes between applica-
tions. The applications could use a data type called StockPrice. There could be multiple
Topics of the StockPrice data type, one for each company’s stock, such as IBM, MSFT,
GE, etc. Each Topic uses the same data type.

Data Type: StockPrice

struct StockPrice {
float price;

 Time timeStamp;
};

Topic: “IBM”

Topic: “MSFT”

Topic: “GE”

Now, an application that keeps track of the current value of a client’s portfolio would
subscribe to all of the topics of the stocks owned by the client. As the value of each stock
changes, the new price for the corresponding topic is published and sent to the applica-
tion.

2.2.2 Samples, Instances, and Keys

The value of data associated with a Topic can change over time. The different values of
the Topic passed between applications are called samples. In our stock-price example,
samples show the price of a stock at a certain point in time. So each sample may show a
different price.

For a data type, you can select one or more fields within the data type to form a key. A
key is something that can be used to uniquely identify one instance of a Topic from
another instance of the same Topic. Think of a key as a way to sub-categorize or group
related data values for the same Topic. Note that not all data types are defined to have
keys, and thus, not all topics have keys. For topics without keys, there is only a single
instance of that topic.
2-5

Data-Centric Publish-Subscribe Communications
However, for topics with keys, a unique value for the key identifies a unique instance of
the topic. Samples are then updates to particular instances of a topic. Applications can
subscribe to a topic and receive samples for many different instances. Applications can
publish samples of one, all, or any number of instances of a topic. Many quality of ser-
vice parameters actually apply on a per instance basis. Keys are also useful for subscrib-
ing to a group of related data streams (instances) without pre-knowledge of which data
streams (instances) exist at runtime.

For example, let’s change the StockPrice data type to include the symbol of the stock.
Then instead of having a Topic for every stock, which would result in hundreds or thou-
sands of topics and related DataWriters and DataReaders, each application would only
have to publish or subscribe to a single Topic, say “StockPrices.” Successive values of a
stock would be presented as successive samples of an instance of “StockPrices”, with
each instance corresponding to a single stock symbol.

Data Type: StockPrice

struct StockPrice {
float price;
Time timeStamp;
char *symbol; //@key

};

Instance 1 = (Topic: “StockPrices”) + (Key: “MSFT”)

sample a, price = $28.00

sample b, price = $27.88

Instance 2 = (Topic: “StockPrices”) + (Key: “IBM”)

sample a, price = $74.02

sample b, price = $73.50

Etc.

Just by subscribing to “StockPrices,” an application can get values for all of the stocks
through a single topic. In addition, the application does not have to subscribe explicitly
to any particular stock, so that if a new stock is added, the application will immediately
start receiving values for that stock as well.

To summarize, the unique values of data being passed using DCPS are called samples. A
sample is a combination of a Topic (distinguished by a Topic name), an instance (distinguished
by a key), and the actual user data of a certain data type. As seen in Figure 2.1 on page 2-7, a
Topic identifies data of a single type, ranging from one single instance to a whole collec-
tion of instances of that given topic for keyed data types. For more information, see
Chapter 3: Data Types and Data Samples and Chapter 5: Topics.
2-6

DataWriters/Publishers and DataReaders/Subscribers
2. D

C
PS
2.3 DataWriters/Publishers and DataReaders/Subscribers
In DCPS, applications must use APIs to create entities (objects) in order to establish pub-
lish-subscribe communications between each other. The entities and terminology associ-
ated with the data itself have been discussed already—Topics, keys, instances, samples.
This section will introduce the DCPS entities that user code must create to send and
receive the data. Note that Entity is actually a basic DCPS concept. In object-oriented
terms, Entity is the base class from which other DCPS classes—Topic, DataWriter,
DataReader, Publisher, Subscriber, DomainParticipants—derive. For general information on
Entities, see Chapter 4: Entities.

The sending side uses objects called Publishers and DataWriters. The receiving side uses
objects called Subscribers and DataReaders. Figure 2.2 illustrates the relationship of these
objects.

❏ An application uses DataWriters to send data. A DataWriter is associated with a
single Topic. You can have multiple DataWriters and Topics in a single application.
In addition, you can have more than one DataWriter for a particular Topic in a sin-
gle application.

❏ A Publisher is the DCPS object responsible for the actual sending of data. Publish-
ers own and manage DataWriters. A DataWriter can only be owned by a single
Publisher while a Publisher can own many DataWriters. Thus the same Publisher

By using keys, a Topic can identify a collection of data-object instances.

Figure 2.1 Relationship of Topics, Keys, and Instances

Key = ...

Type:a_type Key = key1

a_type:instance1

Key = key2

a_type:instance2

Key = key3

a_type:instance3

Topic:a_topic
2-7

Data-Centric Publish-Subscribe Communications
may be sending data for many different Topics of different data types. When user
code calls the write() method on a DataWriter, the data sample is passed to the
Publisher object which does the actual dissemination of data on the network. For
more information, see Chapter 6: Sending Data.

❏ The association between a DataWriter and a Publisher is often referred to as a pub-
lication although you never create a DCPS object known as a publication.

❏ An application uses DataReaders to access data received over DCPS. A
DataReader is associated with a single Topic. You can have multiple DataReaders
and Topics in a single application. In addition, you can have more than one
DataReader for a particular Topic in a single application.

❏ A Subscriber is the DCPS object responsible for the actual receipt of published
data. Subscribers own and manage DataReaders. A DataReader can only be owned
by a single Subscriber while a Subscriber can own many DataReaders. Thus the

Figure 2.2 Overview
2-8

DataWriters/Publishers and DataReaders/Subscribers
2. D

C
PS
same Subscriber may receive data for many different Topics of different data
types. When data is sent to an application, it is first processed by a Subscriber; the
data sample is then stored in the appropriate DataReader. User code can either
register a listener to be called when new data arrives or actively poll the
DataReader for new data using its read() and take() methods. For more informa-
tion, see Chapter 7: Receiving Data.

❏ The association between a DataReader and a Subscriber is often referred to as a
subscription although you never create a DCPS object known as a subscription.

Example: The publish-subscribe communications model is analogous to that of maga-
zine publications and subscriptions. Think of a publication as a weekly periodical such
as Newsweek®. The Topic is the name of the periodical (in this case the string "News-
week"). The type specifies the format of the information, e.g., a printed magazine. The
user data is the contents (text and graphics) of each sample (weekly issue). The middle-
ware is the distribution service (usually the US Postal service) that delivers the maga-
zine from where it is created (a printing house) to the individual subscribers (people’s
homes). This analogy is illustrated in Figure 2.3. Note that by subscribing to a publica-
tion, subscribers are requesting current and future samples of that publication (such as
once a week in the case of Newsweek), so that as new samples are published, they are
delivered without having to submit another request for data.

By default, each data sample is propagated individually, independently, and uncorre-
lated with other samples. However, an application may request that several samples be
sent as a coherent set, so that they may be interpreted as such on the receiving side.

Publisher

 Topic = "Newsweek"

Subscriber

The publish-subscribe model is analogous to publishing magazines. The Publisher sends
samples of a particular Topic to all Subscribers of that Topic. With Newsweek® magazine,
the Topic would be "Newsweek." The sample consists of the data (articles and pictures) sent
to all Subscribers every week. The middleware (Connext) is the distribution channel: all of
the planes, trucks, and people who distribute the weekly issues to the Subscribers.

Figure 2.3 An Example of Publish-Subscribe

Send Receive

Sample

Issue for Feb. 15

 Topic = "Newsweek"

Delivery Service
2-9

Data-Centric Publish-Subscribe Communications
2.4 Domains and DomainParticipants
You may have several independent DCPS applications all running on the same set of
computers. You may want to isolate one (or more) of those applications so that it isn’t
affected by the others. To address this issue, DCPS has a concept called Domains.

Domains represent logical, isolated, communication networks. Multiple applications
running on the same set of hosts on different Domains are completely isolated from each
other (even if they are on the same machine). DataWriters and DataReaders belonging to
different domains will never exchange data.

Applications that want to exchange data using DCPS must belong to the same Domain.
To belong to a Domain, DCPS APIs are used to configure and create a DomainParticipant
with a specific Domain Index. Domains are differentiated by the Domain Index (an integer
value). Applications that have created DomainParticipants with the same Domain Index
belong to the same Domain. DomainParticipants own Topics, Publishers and Subscribers
which in turn owns DataWriters and DataReaders. Thus all DCPS Entities belong to a spe-
cific domain.

An application may belong to multiple domains simultaneously by creating multiple
DomainParticipants with different domain indices. However, Publishers/DataWriters and
Subscribers/DataReaders only belong to the domain in which they were created.

As mentioned before, multiple domains may be used for application isolation which is
useful when users are testing their applications using computers on the same network
or even the same computers. By assigning each user different domains, one can guaran-
tee that the data produced by one user’s application won’t accidentally be received by
another. In addition, domains may be a way to scale and construct larger systems that
are composed of multi-node subsystems. Each subsystem would use an internal domain
for intra-system communications and an external domain to connect to other subsys-
tems.

For more information, see Chapter 8: Working with Domains.

2.5 Quality of Service (QoS)
The publish-subscribe approach to distributed communications is a generic mechanism
that can be employed by many different types of systems. The DCPS model described
here extends the publish-subscribe model to address the needs of real-time, data-critical
2-10

Quality of Service (QoS)
2. D

C
PS
applications. It provides standardized mechanisms, known as Quality of Service Poli-
cies, that allow application developers to configure how communications occur, to limit
resources used by the middleware, to detect system incompatibilities and setup error
handling routines.

2.5.1 Controlling Behavior with Quality of Service (QoS) Policies

QosPolicies control many aspects of how and when data is distributed between applica-
tions. The overall QoS of the DCPS system is made up of the individual QosPolicies for
each DCPS Entity. There are QosPolicies for Topics, DataWriters, Publishers, DataReaders,
Subscribers, and DomainParticipants.

On the publishing side, the QoS of each Topic, the Topic’s DataWriter, and the DataW-
riter’s Publisher all play a part in controlling how and when data samples are sent to the
middleware. Similarly, the QoS of the Topic, the Topic’s DataReader, and the DataReader’s
Subscriber control behavior on the subscribing side.

Users will employ QosPolicies to control a variety of behaviors. For example, the
DEADLINE policy sets up expectations of how often a DataReader expects to see sam-
ples. The OWNERSHIP and OWNERSHIP_STRENGTH policy are used together to con-
figure and arbitrate whose data is passed to the DataReader when there are multiple
DataWriters for the same instance of a Topic. The HISTORY policy specifies whether a
DataWriter should save old data to send to new subscriptions that join the network later.
Many other policies exist and they are presented in QosPolicies (Section 4.2).

Some QosPolicies represent “contracts” between publications and subscriptions. For
communications to take place properly, the QosPolicies set on the DataWriter side must
be compatible with corresponding policies set on the DataReader side.

For example, the RELIABILITY policy is set by the DataWriter to state whether it is con-
figured to send data reliably to DataReaders. Because it takes additional resources to
send data reliably, some DataWriters may only support a best-effort level of reliability.
This implies that for those DataWriters, Connext will not spend additional effort to make
sure that the data sent is received by DataReaders or resend any lost data. However, for
certain applications, it could be imperative that their DataReaders receive every piece of
data with total reliability. Running a system where the DataWriters have not been con-
figured to support the DataReaders could lead to erratic failures.

To address this issue, and yet keep the publications and subscriptions as decoupled as
possible, DCPS provides a way to detect and notify when QosPolicies set by DataWriters
and DataReaders are incompatible. DCPS employs a pattern known as RxO (Requested
versus Offered). The DataReader sets a “requested” value for a particular QosPolicy. The
DataWriter sets an “offered” value for that QosPolicy. When Connext matches a
2-11

Data-Centric Publish-Subscribe Communications
DataReader to a DataWriter, QosPolicies are checked to make sure that all requested val-
ues can be supported by the offered values.

Note that not all QosPolicies are constrained by the RxO pattern. For example, it does
not make sense to compare policies that affect only the DataWriter but not the
DataReader or vice versa.

If the DataWriter can not satisfy the requested QosPolicies of a DataReader, Connext will
not connect the two entities and will notify the applications on each side of the incom-
patibility if so configured.

For example, a DataReader sets its DEADLINE QoS to 4 seconds—that is, the DataReader
is requesting that it receive new data at least every 4 seconds.

In one application, the DataWriter sets its DEADLINE QoS to 2 seconds—that is, the
DataWriter is committing to sending data at least every 2 seconds. This writer can satisfy
the request of the reader, and thus, Connext will pass the data sent from the writer to the
reader.

In another application, the DataWriter sets its DEADLINE QoS to 5 seconds. It only com-
mits to sending data at 5 second intervals. This will not satisfy the request of the
DataReader. Connext will flag this incompatibility by calling user-installed listeners in
both DataWriter and DataReader applications and not pass data from the writer to the
reader.

For a summary of the QosPolicies supported by Connext, see QosPolicies (Section 4.2).

2.6 Application Discovery
The DCPS model provides anonymous, transparent, many-to-many communications.
Each time an application sends a sample of a particular Topic, the middleware distrib-
utes the sample to all the applications that want that Topic. The publishing application
does not need to specify how many applications receive the Topic, nor where those
applications are located. Similarly, subscribing applications do not specify the location of
the publications. In addition, new publications and subscriptions of the Topic can appear
at any time, and the middleware will automatically interconnect them.

So how is this all done? Ultimately, in each application for each publication, Connext
must keep a list of applications that have subscribed to the same Topic, nodes on which
they are located, and some additional QoS parameters that control how the data is sent.
Also, Connext must keep a list of applications and publications for each of the Topics to
which the application has subscribed.
2-12

Application Discovery
2. D

C
PS
This propagation of this information (the existence of publications and subscriptions
and associated QoS) between applications by Connext is known as the discovery process.
While the DDS (DCPS) standard does not specify how discovery occurs, Connext uses a
standard protocol RTPS for both discovery and formatting on-the-wire packets.

When a DomainParticipant is created, Connext sends out packets on the network to
announce its existence. When an application finds out that another application belongs
to the same domain, then it will exchange information about its existing publications
and subscriptions and associated QoS with the other application. As new DataWriters
and DataReaders are created, this information is sent to known applications.

The Discovery process is entirely configurable by the user and is discussed extensively in
Chapter 12: Discovery.
2-13

Data-Centric Publish-Subscribe Communications
2-14

Part 2: Core Concepts

This section includes the following chapters:

❏ Chapter 3: Data Types and Data Samples

❏ Chapter 4: Entities

❏ Chapter 5: Topics

❏ Chapter 6: Sending Data

❏ Chapter 7: Receiving Data

❏ Chapter 8: Working with Domains

❏ Chapter 9: Building Applications

3. U
se

r D
a

ta
 Typ

e
s

Chapter 3 Data Types and Data Samples

How data is stored or laid out in memory can vary from language to language, compiler
to compiler, operating system to operating system, and processor to processor. This
combination of language/compiler/operating system/processor is called a platform.
Any modern middleware must be able to take data from one specific platform (say C/
gcc.3.2.2/Solaris/Sparc) and transparently deliver it to another (for example, Java/JDK
1.6/Windows XP/Pentium). This process is commonly called serialization/deserializa-
tion, or marshalling/demarshalling.

Messaging products have typically taken one of two approaches to this problem:

1. Do nothing. Messages consist only of opaque streams of bytes. The JMS Bytes-
Message is an example of this approach.

2. Send everything, every time. Self-describing messages are at the opposite
extreme, embedding full reflective information, including data types and field
names, with each message. The JMS MapMessage and the messages in TIBCO
Rendezvous are examples of this approach.

The “do nothing” approach is lightweight on its surface but forces you, the user of the
middleware API, to consider all data encoding, alignment, and padding issues. The
“send everything” alternative results in large amounts of redundant information being
sent with every packet, impacting performance.

Connext takes an intermediate approach. Just as objects in your application program
belong to some data type, data samples sent on the same Connext topic share a data
type. This type defines the fields that exist in the data samples and what their constitu-
ent types are. The middleware stores and propagates this meta-information separately
from the individual data samples, allowing it to propagate samples efficiently while
handling byte ordering and alignment issues for you.

To publish and/or subscribe to data with Connext, you will carry out the following
steps:
3-1

Data Types and Data Samples
1. Select a type to describe your data.

You have a number of choices. You can choose one of these options, or you can
mix and match them.

• Use a built-in type provided by the middleware.

This option may be sufficient if your data typing needs are very simple. If
your data is highly structured, or you need to be able to examine fields within
that data for filtering or other purposes, this option may not be appropriate.
The built-in types are described in Built-in Data Types (Section 3.2).

• Use the RTI code generator, rtiddsgen, to define a type at compile-time using a
language-independent description language.

Code generation offers two strong benefits not available with dynamic type
definition: (1) it allows you to share type definitions across programming lan-
guages, and (2) because the structure of the type is known at compile time, it
provides rigorous static type safety.

The code generator accepts input in a number of formats to make it easy to
integrate Connext with your development processes and IT infrastructure:

• OMG IDL. This format is a standard component of both the DDS and
CORBA specifications. It describes data types with a C++-like syntax. This
format is described in Creating User Data Types with IDL (Section 3.3).

• XML schema (XSD), either independent or embedded in a WSDL file.
XSD should be the format of choice for those using Connext alongside or
connected to a web-services infrastructure. This format is described in
Creating User Data Types with XML Schemas (XSD) (Section 3.5).

• XML in a DDS-specific format. This XML format is terser, and therefore
easier to read and write by hand, than an XSD file. It offers the general
benefits of XML-extensibility and ease of integration, while fully support-
ing DDS-specific data types and concepts. This format is described in Cre-
ating User Data Types with Extensible Markup Language (XML) (Section
3.4).

• Define a type programmatically at run time.

This method may be appropriate for applications with dynamic data descrip-
tion needs: applications for which types change frequently or cannot be
known ahead of time. It is described in Defining New Types (Section 3.8.2).

2. Register your type with a logical name.

If you've chosen to use a built-in type instead of defining your own, you can
omit this step; the middleware pre-registers the built-in types for you.
3-2

3. U
se

r D
a

ta
 Typ

e
s

This step is described in the Defining New Types (Section 3.8.2).

3. Create a Topic using the type name you previously registered.

If you've chosen to use a built-in type instead of defining your own, you will use
the API constant corresponding to that type's name.

Creating and working with Topics is discussed in Chapter 5: Topics.

4. Create one or more DataWriters to publish your data and one or more DataRead-
ers to subscribe to it.

The concrete types of these objects depend on the concrete data type you've
selected, in order to provide you with a measure of type safety.

Creating and working with DataWriters and DataReaders are described in
Chapter 6: Sending Data and Chapter 7: Receiving Data, respectively.

Whether publishing or subscribing to data, you will need to know how to create and
delete data samples and how to get and set their fields. These tasks are described in
Working with Data Samples (Section 3.9).

This chapter describes:

❏ Introduction to the Type System (Section 3.1 on Page 3-4)

❏ Built-in Data Types (Section 3.2 on Page 3-7)

❏ Creating User Data Types with IDL (Section 3.3 on Page 3-48)

❏ Creating User Data Types with Extensible Markup Language (XML) (Section 3.4
on Page 3-80)

❏ Creating User Data Types with XML Schemas (XSD) (Section 3.5 on Page 3-88)

❏ Using rtiddsgen (Section 3.6 on Page 3-104)

❏ Using Generated Types without Connext (Standalone) (Section 3.7 on Page 3-
113)

❏ Interacting Dynamically with User Data Types (Section 3.8 on Page 3-115)

❏ Working with Data Samples (Section 3.9 on Page 3-123)
3-3

Data Types and Data Samples
3.1 Introduction to the Type System
A user data type is any custom type that your application defines for use with Connext. It
may be a structure, a union, a value type, an enumeration, or a typedef (or language
equivalents).

Your application can have any number of user data types. They can be composed of any
of the primitive data types listed below or of other user data types.

Only structures, unions, and value types may be read and written directly by Connext;
enums, typedefs, and primitive types must be contained within a structure, union, or
value type. In order for a DataReader and DataWriter to communicate with each other,
the data types associated with their respective Topic definitions must be identical.

❏ octet, char, wchar

❏ short, unsigned short

❏ long, unsigned long

❏ long long, unsigned long long

❏ float

❏ double, long double

❏ boolean

❏ enum (with or without explicit values)

❏ bounded and unbounded string and wstring

The following type-building constructs are also supported:

❏ module (also called a package or namespace)

❏ pointer

❏ array of primitive or user type elements

❏ bounded/unbounded sequence of elements1—a sequence is a variable-length
ordered collection, such as a vector or list

❏ typedef

❏ bitfield2

1. Sequences of sequences are not supported directly. To work around this constraint, typedef the inner
sequence and form a sequence of that new type.

2. Data types containing bitfield members are not supported by DynamicData.
3-4

Introduction to the Type System
3. U

se
r D

a
ta

 Typ
e

s

❏ union

❏ struct

❏ value type, a complex type that supports inheritance and other object-oriented
features

To use a data type with Connext, you must define that type in a way the middleware
understands and then register the type with the middleware. These steps allow Connext
to serialize, deserialize, and otherwise operate on specific types. They will be described
in detail in the following sections.

3.1.1 Sequences

A sequence contains an ordered collection of elements that are all of the same type. The
operations supported in the sequence are documented in the Sequence Support section
under the Infrastructure Module in the online API documentation.

Java sequences implement the java.util.List interface from the standard Collections
framework.

C++ users will find sequences conceptually similar to the deque class in the Standard
Template Library (STL).

Elements in a sequence are accessed with their index, just like elements in an array. Indi-
ces start from zero. Unlike arrays, however, sequences can grow in size. A sequence has
two sizes associated with it: a physical size (the "maximum") and a logical size (the
"length"). The physical size indicates how many elements are currently allocated by the
sequence to hold; the logical size indicates how many valid elements the sequence actu-
ally holds. The length can vary from zero up to the maximum. Elements cannot be
accessed at indices beyond the current length.

A sequence may be declared as bounded or unbounded. A sequence's "bound" is the
greatest value its maximum may take. The bound is very important because it allows
Connext to preallocate buffers to hold serialized and deserialized samples of your types;
these buffers are used when communicating with other nodes in your distributed sys-
tem. If a sequence had no bound, Connext would not know how large to allocate its buf-
fers and would therefore have to allocate them on the fly as individual samples were
read and written—severely impacting the latency and determinism of your application.
Therefore, Connext supports only bounded sequences; any unbounded sequences found
in an IDL file will be given a default bound of 100 elements (see rtiddsgen Command-
Line Arguments (Section 3.6.1)).
3-5

Data Types and Data Samples
3.1.2 Strings and Wide Strings

Connext supports both strings consisting of single-byte characters (the IDL string type)
and strings consisting of wide characters (IDL wstring). The wide characters supported
by Connext are four bytes long, large enough to store not only two-byte Unicode/UTF16
characters but also UTF32 characters.

Like sequences, strings may be bounded or unbounded. A string's "bound" is its maxi-
mum length (not counting the trailing NULL character in C and C++).

3.1.3 Introduction to TypeCode

Type schemas—the names and definitions of a type and its fields—are represented by
TypeCode objects. A type code value consists of a type code kind (see the TCKind enu-
meration below) and a list of members. For compound types like structs and arrays, this
list will recursively include one or more type code values.

enum TCKind {
 TK_NULL,
 TK_SHORT,
 TK_LONG,
 TK_USHORT,
 TK_ULONG,
 TK_FLOAT,
 TK_DOUBLE,
 TK_BOOLEAN,
 TK_CHAR,
 TK_OCTET,
 TK_STRUCT,
 TK_UNION,
 TK_ENUM,
 TK_STRING,
 TK_SEQUENCE,
 TK_ARRAY,
 TK_ALIAS,
 TK_LONGLONG,
 TK_ULONGLONG,
 TK_LONGDOUBLE,
 TK_WCHAR,
 TK_WSTRING,
 TK_VALUE,
 TK_SPARSE
}

3-6

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

Type codes unambiguously match type representations and provide a more reliable test
than comparing the string type names.

The TypeCode class, modeled after the corresponding CORBA API, provides access to
type-code information. For details on the available operations for the TypeCode class,
see the online documentation (select Modules, Topic Module, Type Code Support).

3.1.3.1 Sending TypeCodes on the Network

In addition to being used locally, serialized type codes are typically published automat-
ically during discovery as part of the built-in topics for publications and subscriptions.
See Built-in DataReaders (Section 14.2). This allows applications to publish or subscribe
to topics of arbitrary types. This functionality is useful for generic system monitoring
tools like the rtiddsspy debug tool (in the online documentation, select Modules, Pro-
gramming Tools).

Note: Type codes are not cached by Connext upon receipt and are therefore not available
from the built-in data returned by the DataWriter's get_matched_subscription_data()
operation or the DataReader's get_matched_publication_data() operation.

If your data type has an especially complex type code, you may need to increase the
value of the type_code_max_serialized_length field in the DomainParticipant's
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4). Or, to prevent the propagation of type codes altogether, you can set this value to
zero (0). Be aware that some features of monitoring tools, as well as some features of the
middleware itself (such as ContentFilteredTopics) will not work correctly if you disable
TypeCode propagation.

3.2 Built-in Data Types
Connext provides a set of standard types that are built into the middleware. These types
can be used immediately; they do not require writing IDL, invoking the rtiddsgen utility
(see Section 3.6), or using the dynamic type API (see Section 3.2.8).

The supported built-in types are String, KeyedString, Octets, and KeyedOctets. (The
latter two types are called Bytes and KeyedBytes, respectively, on Java and .Net plat-
forms.)

The built-in type API is located under the DDS namespace in C++ and .Net. For Java,
the API is contained inside the package com.rti.dds.type.builtin.

Built-in data types are discussed in following sections:
3-7

Data Types and Data Samples
❏ Registering Built-in Types (Section 3.2.1)

❏ Creating Topics for Built-in Types (Section 3.2.2)

❏ Creating ContentFilteredTopics for Built-in Types (Section 3.2.3)

❏ String Built-in Type (Section 3.2.4)

❏ KeyedString Built-in Type (Section 3.2.5)

❏ Octets Built-in Type (Section 3.2.6)

❏ KeyedOctets Built-in Type (Section 3.2.7)

❏ Type Codes for Built-in Types (Section 3.2.9)

3.2.1 Registering Built-in Types

By default, the built-in types are automatically registered when a DomainParticipant is
created. You can change this behavior by setting the DomainParticipant’s
dds.builtin_type.auto_register property to 0 (false) using the PROPERTY QosPolicy
(DDS Extension) (Section 6.5.16).

3.2.2 Creating Topics for Built-in Types

To create a topic for a built-in type, just use the standard DomainParticipant operations,
create_topic() or create_topic_with_profile() (see Creating Topics (Section 5.1.1)); for
the type_name parameter, use the value returned by the get_type_name() operation,
listed below for each API.

Note: In the following examples, you will see the sentinel "<BuiltinType>."
For C and C++: <BuiltinType> = String, KeyedString, Octets or KeyedOctets
For Java and .Net: <BuiltinType> = String, KeyedString, Bytes or KeyedBytes

C API:

const char* DDS_<BuiltinType>TypeSupport_get_type_name();

C++ API with namespace:

const char* DDS::<BuiltinType>TypeSupport::get_type_name();

C++ API without namespace:

const char* DDS<BuiltinType>TypeSupport::get_type_name();
3-8

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

C++/CLI API:

System::String^ DDS:<BuiltinType>TypeSupport::get_type_name();

C# API:

System.String DDS.<BuiltinType>TypeSupport.get_type_name();

Java API:

String
com.rti.dds.type.builtin.<BuiltinType>TypeSupport.get_type_name();

3.2.2.1 Topic Creation Examples

For simplicity, error handling is not shown in the following examples.

C Example:

DDS_Topic * topic = NULL;

/* Create a builtin type Topic */
topic = DDS_DomainParticipant_create_topic(

 participant, "StringTopic",
 DDS_StringTypeSupport_get_type_name(),
 &DDS_TOPIC_QOS_DEFAULT,
 NULL, DDS_STATUS_MASK_NONE);

C++ Example with Namespaces:

using namespace DDS;
...

/* Create a String builtin type Topic */
Topic * topic = participant->create_topic(

"StringTopic", StringTypeSupport::get_type_name(),
DDS_TOPIC_QOS_DEFAULT,
NULL, DDS_STATUS_MASK_NONE);

C++/CLI Example:

using namespace DDS;
...

/* Create a builtin type Topic */
Topic^ topic = participant->create_topic(

"StringTopic", StringTypeSupport::get_type_name(),
 DomainParticipant::TOPIC_QOS_DEFAULT,
 nullptr, StatusMask::STATUS_MASK_NONE);
3-9

Data Types and Data Samples
C# Example:

using namespace DDS;
...

/* Create a builtin type Topic */
Topic topic = participant.create_topic(

"StringTopic", StringTypeSupport.get_type_name(),
 DomainParticipant.TOPIC_QOS_DEFAULT,
 null, StatusMask.STATUS_MASK_NONE);

Java Example:

import com.rti.dds.type.builtin.*;
...

/* Create a builtin type Topic */
Topic topic = participant.create_topic(

"StringTopic", StringTypeSupport.get_type_name(),
 DomainParticipant.TOPIC_QOS_DEFAULT,
 null, StatusKind.STATUS_MASK_NONE);

3.2.3 Creating ContentFilteredTopics for Built-in Types

To create a ContentFilteredTopic for a built-in type, just use the standard DomainPartici-
pant operations, create_contentfilteredtopic() or
create_contentfilteredtopic_with_filter (see Section 5.4.3).

The field names used in the filter expressions for the built-in SQL (see Section 5.4.6) and
StringMatch filters (see Section 5.4.7) must correspond to the names provided in the IDL
description of the built-in types (see Section 3.2.4).

3.2.3.1 ContentFilteredTopic Creation Examples

For simplicity, error handling is not shown in the following examples.

C Example:

DDS_Topic * topic = NULL;
DDS_ContentFilteredTopic * contentFilteredTopic = NULL;
struct DDS_StringSeq parameters = DDS_SEQUENCE_INITIALIZER;

/* Create a string ContentFilteredTopic */
topic = DDS_DomainParticipant_create_topic(

participant, "StringTopic",
DDS_StringTypeSupport_get_type_name(),
&DDS_TOPIC_QOS_DEFAULT,NULL, DDS_STATUS_MASK_NONE);
3-10

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

contentFilteredTopic =
DDS_DomainParticipant_create_contentfilteredtopic(
participant, "StringContentFilteredTopic",
topic, "value = 'Hello World!'",
¶meters);

C++ Example with Namespaces:

using namespace DDS;
...

/* Create a String ContentFilteredTopic */
Topic * topic = participant->create_topic(

"StringTopic", StringTypeSupport::get_type_name(),
TOPIC_QOS_DEFAULT,
NULL, STATUS_MASK_NONE);

StringSeq parameters;

ContentFilteredTopic * contentFilteredTopic =
participant->create_contentfilteredtopic(

"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

C++/CLI Example:

using namespace DDS;
...

/* Create a String ContentFilteredTopic */
Topic^ topic = participant->create_topic(

"StringTopic", StringTypeSupport::get_type_name(),
 DomainParticipant::TOPIC_QOS_DEFAULT,
 nullptr, StatusMask::STATUS_MASK_NONE);

StringSeq^ parameters = gcnew StringSeq();

ContentFilteredTopic^ contentFilteredTopic =
participant->create_contentfilteredtopic(

"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

C# Example:

using namespace DDS;
...
3-11

Data Types and Data Samples
/* Create a String ContentFilteredTopic */
Topic topic = participant.create_topic(

"StringTopic", StringTypeSupport.get_type_name(),
 DomainParticipant.TOPIC_QOS_DEFAULT,
 null, StatusMask.STATUS_MASK_NONE);

StringSeq parameters = new StringSeq();

ContentFilteredTopic contentFilteredTopic =
participant.create_contentfilteredtopic(

"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

Java Example:

import com.rti.dds.type.builtin.*;
...

/* Create a String ContentFilteredTopic */
Topic topic = participant.create_topic(

"StringTopic", StringTypeSupport.get_type_name(),
 DomainParticipant.TOPIC_QOS_DEFAULT,
 null, StatusKind.STATUS_MASK_NONE);

StringSeq parameters = new StringSeq();

ContentFilteredTopic contentFilteredTopic =
participant.create_contentfilteredtopic(

"StringContentFilteredTopic", topic,
"value = 'Hello World!'", parameters);

3.2.4 String Built-in Type

The String built-in type is represented by a NULL-terminated character array (char *) in
C and C++ and an immutable String object in Java and .Net. This type can be used to
publish and subscribe to a single string.

3.2.4.1 Creating and Deleting Strings

In C and C++, Connext provides a set of operations to create (DDS::String_alloc()),
destroy (DDS::String_free()), and clone strings (DDS::String_dup()). Select Modules,
DDS API Reference, Infrastructure Module, String support in the online documenta-
tion for more details.
3-12

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

Memory Considerations in Copy Operations:

When the read/take operations that take a sequence of strings as a parameter are
used in copy mode, Connext allocates the memory for the string elements in the
sequence if they are initialized to NULL.

If the elements are not initialized to NULL, the behavior depends on the lan-
guage:

• In Java and .NET, the memory associated with the elements is reallocated
with every sample, because strings are immutable objects.

• In C and C++, the memory associated with the elements must be large
enough to hold the received data. Insufficient memory may result in crashes.

When take_next_sample() and read_next_sample() are called in C and C++, you
must make sure that the input string has enough memory to hold the received
data. Insufficient memory may result in crashes.

3.2.4.2 String DataWriter

The string DataWriter API matches the standard DataWriter API (see Using a Type-Spe-
cific DataWriter (FooDataWriter) (Section 6.3.7)). There are no extensions.

The following examples show how to write simple strings with a string built-in type
DataWriter. For simplicity, error handling is not shown.

C Example:

DDS_StringDataWriter * stringWriter = ... ;
DDS_ReturnCode_t retCode;
char * str = NULL;

/* Write some data */
retCode = DDS_StringDataWriter_write(

 stringWriter, "Hello World!", &DDS_HANDLE_NIL);

str = DDS_String_dup("Hello World!");
retCode = DDS_StringDataWriter_write(stringWriter, str,

 &DDS_HANDLE_NIL);
DDS_String_free(str);

C++ Example with Namespaces:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

StringDataWriter * stringWriter = ... ;

/* Write some data */
3-13

Data Types and Data Samples
ReturnCode_t retCode = stringWriter->write(
"Hello World!", HANDLE_NIL);

char * str = DDS::String_dup("Hello World!");
retCode = stringWriter->write(str, HANDLE_NIL);

DDS::String_free(str);

C++/CLI Example:

using namespace System;
using namespace DDS;
...

StringDataWriter^ stringWriter = ... ;

/* Write some data */
stringWriter->write("Hello World!", InstanceHandle_t::HANDLE_NIL);
String^ str = "Hello World!";
stringWriter->write(str, InstanceHandle_t::HANDLE_NIL);

C# Example:

using System;
using DDS;
...

StringDataWriter stringWriter = ... ;

/* Write some data */
stringWriter.write("Hello World!", InstanceHandle_t.HANDLE_NIL);
String str = "Hello World!";
stringWriter.write(str, InstanceHandle_t.HANDLE_NIL);

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...
StringDataWriter stringWriter = ... ;

/* Write some data */
stringWriter.write("Hello World!", InstanceHandle_t.HANDLE_NIL);

String str = "Hello World!";
stringWriter.write(str, InstanceHandle_t.HANDLE_NIL);

3.2.4.3 String DataReader

The string DataReader API matches the standard DataReader API (see Using a Type-Spe-
cific DataReader (FooDataReader) (Section 7.4.1)). There are no extensions.
3-14

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

The following examples show how to read simple strings with a string built-in type
DataReader. For simplicity, error handling is not shown.

C Example:

struct DDS_StringSeq dataSeq = DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq = DDS_SEQUENCE_INITIALIZER;
DDS_StringDataReader * stringReader = ... ;
DDS_ReturnCode_t retCode;
int i;

/* Take and print the data */
retCode = DDS_StringDataReader_take(stringReader, &dataSeq,

 &infoSeq, DDS_LENGTH_UNLIMITED,
 DDS_ANY_SAMPLE_STATE,
 DDS_ANY_VIEW_STATE,
 DDS_ANY_INSTANCE_STATE);

for (i = 0; i < DDS_StringSeq_get_length(&data_seq); ++i) {
 if (DDS_SampleInfoSeq_get_reference(&info_seq, i)->valid_data) {
 DDS_StringTypeSupport_print_data(

 DDS_StringSeq_get(&data_seq, i));
 }
}
/* Return loan */
retCode = DDS_StringDataReader_return_loan(stringReader,

 &data_seq, &info_seq);

C++ Example with Namespaces:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

StringSeq dataSeq;
SampleInfoSeq infoSeq;
StringDataReader * stringReader = ... ;

/* Take a print the data */
ReturnCode_t retCode = stringReader->take(dataSeq, infoSeq,

 LENGTH_UNLIMITED,
 ANY_SAMPLE_STATE,

 ANY_VIEW_STATE,
 ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq[i].valid_data) {
 StringTypeSupport::print_data(dataSeq[i]);
 }
}

3-15

Data Types and Data Samples
/* Return loan */
retCode = stringReader->return_loan(dataSeq, infoSeq);

C++/CLI Example:

using namespace System;
using namespace DDS;
...

StringSeq^ dataSeq = gcnew StringSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();
StringDataReader^ stringReader = ... ;

/* Take and print the data */
stringReader->take(dataSeq, infoSeq,

 ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
 SampleStateKind::ANY_SAMPLE_STATE,
 ViewStateKind::ANY_VIEW_STATE,
 InstanceStateKind::ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq->get_at(i)->valid_data) {
 StringTypeSupport::print_data(dataSeq->get_at(i));
 }
}
/* Return loan */
stringReader->return_loan(dataSeq, infoSeq);

C# Example:

using System;
using DDS;
...

StringSeq dataSeq = new StringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
StringDataReader stringReader = ... ;

/* Take and print the data */
stringReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq.get_at(i)).valid_data) {
 StringTypeSupport.print_data(dataSeq.get_at(i));
 }
}
/* Return loan */
3-16

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

stringReader.return_loan(dataSeq, infoSeq);

Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...

StringSeq dataSeq = new StringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
StringDataReader stringReader = ... ;

/* Take and print the data */
stringReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (((SampleInfo)infoSeq.get(i)).valid_data) {
 System.out.println((String)dataSeq.get(i));
 }
}
/* Return loan */
stringReader.return_loan(dataSeq, infoSeq);

3.2.5 KeyedString Built-in Type

The Keyed String built-in type is represented by a (key, value) pair, where key and value
are strings. This type can be used to publish and subscribe to keyed strings. The lan-
guage specific representations of the type are as follows:

C/C++ Representation (without namespaces):

struct DDS_KeyedString {
 char * key;
 char * value;
};

C++/CLI Representation:

namespace DDS {
public ref struct KeyedString: {

 public:
 System::String^ key;
 System::String^ value;
 ...

};
3-17

Data Types and Data Samples
};

C# Representation:

namespace DDS {
public class KeyedString {

 public System.String key;
 public System.String value;
 };
};

Java Representation:

package com.rti.dds.type.builtin;
class KeyedString {
 public String key;
 public String value;
 ...
}

3.2.5.1 Creating and Deleting Keyed Strings

Connext provides a set of constructors/destructors to create/destroy Keyed Strings.
Select Modules, DDS API Reference, Topic Module, Built-in Types in online docu-
mentation for details.

If you want to manipulate the memory of the fields 'value' and 'key' in the KeyedString
struct in C/C++, use the operations DDS::String_alloc(), DDS::String_dup(), and
DDS::String_free(), as described in the online documentation (select Modules, DDS
API Reference, Infrastructure Module, String Support).

3.2.5.2 Keyed String DataWriter

The keyed string DataWriter API is extended with the following methods (in addition to
the standard methods described in Using a Type-Specific DataWriter (FooDataWriter)
(Section 6.3.7)):

DDS::ReturnCode_t DDS::KeyedStringDataWriter::dispose(
const char* key,

 const DDS::InstanceHandle_t* instance_handle);

DDS::ReturnCode_t DDS::KeyedStringDataWriter::dispose_w_timestamp(
const char* key,
const DDS::InstanceHandle_t* instance_handle,
const struct DDS::Time_t* source_timestamp);

DDS::ReturnCode_t DDS::KeyedStringDataWriter::get_key_value(
char * key,
const DDS::InstanceHandle_t* handle);
3-18

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

DDS::InstanceHandle_t DDS::KeyedStringDataWriter::lookup_instance(
const char * key);

DDS::InstanceHandle_t DDS::KeyedStringDataWriter::register_instance(
const char* key);

DDS::InstanceHandle_t
DDS_KeyedStringDataWriter::register_instance_w_timestamp(

const char * key,
const struct DDS_Time_t* source_timestamp);

DDS::ReturnCode_t
DDS::KeyedStringDataWriter::unregister_instance(

const char * key,
const DDS::InstanceHandle_t* handle);

DDS::ReturnCode_t
DDS::KeyedStringDataWriter::unregister_instance_w_timestamp(

const char* key,
const DDS::InstanceHandle_t* handle,
const struct DDS::Time_t* source_timestamp);

DDS::ReturnCode_t DDS::KeyedStringDataWriter::write (
const char * key,
const char * str,
const DDS::InstanceHandle_t* handle);

DDS::ReturnCode_t DDS::KeyedStringDataWriter::write_w_timestamp(
const char * key,
const char * str,
const DDS::InstanceHandle_t* handle,
const struct DDS::Time_t* source_timestamp);

These operations are introduced to provide maximum flexibility in the format of the
input parameters for the write and instance management operations. For additional
information and a complete description of the operations in all supported languages,
see the online documentation.

The following examples show how to write keyed strings using a keyed string built-in
type DataWriter and some of the extended APIs. For simplicity, error handling is not
shown.

C Example:

DDS_KeyedStringDataWriter * stringWriter = ... ;
DDS_ReturnCode_t retCode;
struct DDS_KeyedString * keyedStr = NULL;
char * str = NULL;
3-19

Data Types and Data Samples
/* Write some data using the KeyedString structure */
keyedStr = DDS_KeyedString_new(255, 255);
strcpy(keyedStr->key, "Key 1");
strcpy(keyedStr->value, "Value 1");

retCode = DDS_KeyedStringDataWriter_write_string_w_key(
 stringWriter, keyedStr,
 &DDS_HANDLE_NIL);

DDS_KeyedString_delete(keyedStr);

/* Write some data using individual strings */
retCode = DDS_KeyedStringDataWriter_write_string_w_key(

stringWriter, "Key 1",
"Value 1", &DDS_HANDLE_NIL);

str = DDS_String_dup("Value 2");

retCode = DDS_KeyedStringDataWriter_write_string_w_key(
stringWriter, "Key 1",
str, &DDS_HANDLE_NIL);

DDS_String_free(str);

C++ Example with Namespaces:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

KeyedStringDataWriter * stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString * keyedStr = new KeyedString(255, 255);
strcpy(keyedStr->key, "Key 1");
strcpy(keyedStr->value, "Value 1");

ReturnCode_t retCode = stringWriter->write(keyedStr, HANDLE_NIL);

delete keyedStr;

/* Write some data using individual strings */
retCode = stringWriter->write("Key 1", "Value 1", HANDLE_NIL);

char * str = String_dup("Value 2");

retCode = stringWriter->write("Key 1", str, HANDLE_NIL);

String_free(str);

C++/CLI Example:

using namespace System;
using namespace DDS;
3-20

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

...

KeyedStringDataWriter^ stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString^ keyedStr = gcnew KeyedString();
keyedStr->key = "Key 1";
keyedStr->value = "Value 1";

stringWriter->write(keyedStr, InstanceHandle_t::HANDLE_NIL);

/* Write some data using individual strings */
stringWriter->write("Key 1","Value 1",InstanceHandle_t::HANDLE_NIL);

String^ str = "Value 2";
stringWriter->write("Key 1", str, InstanceHandle_t::HANDLE_NIL);

C# Example

using System;
using DDS;
...

KeyedStringDataWriter stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString keyedStr = new KeyedString();
keyedStr.key = "Key 1";
keyedStr.value = "Value 1";

stringWriter.write(keyedStr, InstanceHandle_t.HANDLE_NIL);

/* Write some data using individual strings */
stringWriter.write("Key 1", "Value 1", InstanceHandle_t.HANDLE_NIL);

String str = "Value 2";
stringWriter.write("Key 1", str, InstanceHandle_t.HANDLE_NIL);

Java Example :

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...

KeyedStringDataWriter stringWriter = ... ;

/* Write some data using the KeyedString */
KeyedString keyedStr = new KeyedString();
keyedStr.key = "Key 1";
keyedStr.value = "Value 1";
3-21

Data Types and Data Samples
stringWriter.write(keyedStr, InstanceHandle_t.HANDLE_NIL);

/* Write some data using individual strings */
stringWriter.write("Key 1", "Value 1", InstanceHandle_t.HANDLE_NIL);

String str = "Value 2";

stringWriter.write("Key 1", str, InstanceHandle_t.HANDLE_NIL);

3.2.5.3 Keyed String DataReader

The KeyedString DataReader API is extended with the following operations (in addition
to the standard methods described in Using a Type-Specific DataReader (FooData-
Reader) (Section 7.4.1)):

DDS::ReturnCode_t DDS::KeyedStringDataReader::get_key_value(
char * key,
const DDS::InstanceHandle_t* handle);

DDS::InstanceHandle_t DDS::KeyedStringDataReader::lookup_instance(
const char * key);

For additional information and a complete description of these operations in all sup-
ported languages, see the online documentation.

Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next_sample() and
take_next_sample(), Connext allocates memory for the fields 'value' and 'key' if
they are initialized to NULL.

If the fields are not initialized to NULL, the behavior depends on the language:

• In Java and .NET, the memory associated to the fields 'value' and 'key' will be
reallocated with every sample.

• In C and C++, the memory associated with the fields 'value' and 'key' must be
large enough to hold the received data. Insufficient memory may result in
crashes.

The following examples show how to read keyed strings with a keyed string built-in
type DataReader. For simplicity, error handling is not shown.

C Example:

struct DDS_KeyedStringSeq dataSeq = DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq = DDS_SEQUENCE_INITIALIZER;
DDS_KeyedKeyedStringDataReader * stringReader = ... ;
3-22

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

DDS_ReturnCode_t retCode;
int i;

/* Take and print the data */
retCode = DDS_KeyedStringDataReader_take(stringReader, &dataSeq,

 &infoSeq,
 DDS_LENGTH_UNLIMITED,
 DDS_ANY_SAMPLE_STATE,
 DDS_ANY_VIEW_STATE,
 DDS_ANY_INSTANCE_STATE);

for (i = 0; i < DDS_KeyedStringSeq_get_length(&data_seq); ++i) {
 if (DDS_SampleInfoSeq_get_reference(&info_seq, i)->valid_data) {
 DDS_KeyedStringTypeSupport_print_data(

 DDS_KeyedStringSeq_get_reference(&data_seq, i));
 }
}
/* Return loan */
retCode = DDS_KeyedStringDataReader_return_loan(

stringReader, &data_seq, &info_seq);

C++ Example with Namespaces:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

KeyedStringSeq dataSeq;
SampleInfoSeq infoSeq;
KeyedStringDataReader * stringReader = ... ;

/* Take a print the data */
ReturnCode_t retCode = stringReader->take(dataSeq, infoSeq,

 LENGTH_UNLIMITED,
 ANY_SAMPLE_STATE,

 ANY_VIEW_STATE,
 ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq[i].valid_data) {
 KeyedStringTypeSupport::print_data(&dataSeq[i]);
 }
}
/* Return loan */
retCode = stringReader->return_loan(dataSeq, infoSeq);
3-23

Data Types and Data Samples
C++/CLI Example:

using namespace System;
using namespace DDS;
...

KeyedStringSeq^ dataSeq = gcnew KeyedStringSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();
KeyedStringDataReader^ stringReader = ... ;

/* Take and print the data */
stringReader->take(dataSeq, infoSeq,

 ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
 SampleStateKind::ANY_SAMPLE_STATE,
 ViewStateKind::ANY_VIEW_STATE,
 InstanceStateKind::ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq->get_at(i)->valid_data) {
 KeyedStringTypeSupport::print_data(dataSeq->get_at(i));
 }
}
/* Return loan */
stringReader->return_loan(dataSeq, infoSeq);

C# Example:

using System;
using DDS;
...

KeyedStringSeq dataSeq = new KeyedStringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedStringDataReader stringReader = ... ;

/* Take and print the data */
stringReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq.get_at(i)).valid_data) {
 KeyedStringTypeSupport.print_data(dataSeq.get_at(i));
 }
}
/* Return loan */
stringReader.return_loan(dataSeq, infoSeq);
3-24

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...

KeyedStringSeq dataSeq = new KeyedStringSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedStringDataReader stringReader = ... ;

/* Take and print the data */
stringReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (((SampleInfo)infoSeq.get(i)).valid_data) {
 System.out.println((

(KeyedString)dataSeq.get(i)).toString());
 }
}
/* Return loan */
stringReader.return_loan(dataSeq, infoSeq);

3.2.6 Octets Built-in Type

The octets built-in type is used to send sequences of octets. The language-specific repre-
sentations are as follows:

C/C++ Representation (without Namespaces):

struct DDS_Octets {
 int length;
 unsigned char * value;
};

C++/CLI Representation:

namespace DDS {
 public ref struct Bytes: {
 public:
 System::Int32 length;
 System::Int32 offset;
 array<System::Byte>^ value;
 ...
 };
};
3-25

Data Types and Data Samples
C# Representation:

namespace DDS {
public class Bytes {

 public System.Int32 length;
 public System.Int32 offset;
 public System.Byte[] value;

 ...
 };
};

Java Representation:

package com.rti.dds.type.builtin;

public class Bytes implements Copyable {
 public int length;
 public int offset;
 public byte[] value;
 ...
};

3.2.6.1 Creating and Deleting Octets

Connext provides a set of constructors/destructors to create and destroy Octet objects.
For details, select Modules, DDS API Reference, Topic Module, Built-in Types in the
online documentation.

If you want to manipulate the memory of the value field inside the Octets struct in C/
C++, use the operations DDS::OctetBuffer_alloc(), DDS::OctetBuffer_dup(), and
DDS::OctetBuffer_free(), described in the online documentation (select Modules,
DDS API Reference, Infrastructure Module, Octet Buffer Support).

3.2.6.2 Octets DataWriter

In addition to the standard methods (see Using a Type-Specific DataWriter (FooDataW-
riter) (Section 6.3.7)), the octets DataWriter API is extended with the following methods:

DDS::ReturnCode_t DDS::OctetsDataWriter::write(
 const DDS::OctetSeq & octets,
 const DDS::InstanceHandle_t & handle);

DDS::ReturnCode_t DDS::OctetsDataWriter::write(
 const unsigned char * octets,
 int length,
 const DDS::InstanceHandle_t& handle);

DDS::ReturnCode_t DDS::OctetsDataWriter::write_w_timestamp(
 const DDS::OctetSeq & octets,
3-26

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

 const DDS::InstanceHandle_t & handle,
 const DDS::Time_t & source_timestamp);

DDS::ReturnCode_t DDS::OctetsDataWriter::write_w_timestamp(
 const unsigned char * octets,
 int length,
 const DDS::InstanceHandle_t& handle,
 const DDS::Time_t& source_timestamp);

These methods are introduced to provide maximum flexibility in the format of the input
parameters for the write operations. For additional information and a complete descrip-
tion of these operations in all supported languages, see the online documentation.

The following examples show how to write an array of octets using an octets built-in
type DataWriter and some of the extended APIs. For simplicity, error handling is not
shown.

C Example:

DDS_OctetsDataWriter * octetsWriter = ... ;
DDS_ReturnCode_t retCode;
struct DDS_Octets * octets = NULL;
char * octetArray = NULL;

/* Write some data using the Octets structure */
octets = DDS_Octets_new_w_size(1024);
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;

retCode = DDS_OctetsDataWriter_write(octetsWriter, octets, &DDS_HANDLE_NIL);
DDS_Octets_delete(octets);

/* Write some data using an octets array */
octetArray = (unsigned char *)malloc(1024);
octetArray[0] = 46;
octetArray[1] = 47;

retCode = DDS_OctetsDataWriter_write_octets (octetsWriter, octetArray, 2,
 &DDS_HANDLE_NIL);

free(octetArray);

C++ Example with Namespaces:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

OctetsDataWriter * octetsWriter = ... ;
3-27

Data Types and Data Samples
/* Write some data using the Octets structure */
Octets * octets = new Octets(1024);
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;

ReturnCode_t retCode = octetsWriter->write(octets, HANDLE_NIL);

delete octets;

/* Write some data using an octet array */
unsigned char * octetArray = new unsigned char[1024];
octetArray[0] = 46;
octetArray[1] = 47;
retCode = octetsWriter->write(octetArray, 2, HANDLE_NIL);

delete []octetArray;

C++/CLI Example:

using namespace System;
using namespace DDS;
...

BytesDataWriter^ octetsWriter = ...;

/* Write some data using Bytes */
Bytes^ octets = gcnew Bytes(1024);
octets->value[0] =46;
octets->value[1] =47;
octets.length = 2;
octets.offset = 0;

octetWriter->write(octets, InstanceHandle_t::HANDLE_NIL);

/* Write some data using individual strings */
array<Byte>^ octetAray = gcnew array<Byte>(1024);
octetArray[0] = 46;
octetArray[1] = 47;
octetsWriter->write(octetArray, 0, 2, InstanceHandle_t::HANDLE_NIL);

C# Example:

using System;
using DDS;
...

BytesDataWriter stringWriter = ...;

/* Write some data using the Bytes */
Bytes octets = new Bytes(1024);
3-28

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

octets.value[0] = 46;
octets.value[1] = 47;
octets.length = 2;
octets.offset = 0;

octetWriter.write(octets, InstanceHandle_t.HANDLE_NIL);

/* Write some data using individual strings */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[1] = 47;
octetsWriter.write(octetArray, 0, 2, InstanceHandle_t.HANDLE_NIL);

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...

BytesDataWriter octetsWriter = ... ;

/* Write some data using the Bytes class*/
Bytes octets = new Bytes(1024);
octets.length = 2;
octets.offset = 0;
octets.value[0] = 46;
octets.value[1] = 47;

octetsWriter.write(octets, InstanceHandle_t.HANDLE_NIL);

/* Write some data using a byte array */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[1] = 47;

octetsWriter.write(octetArray, 0, 2, InstanceHandle_t.HANDLE_NIL);

3.2.6.3 Octets DataReader

The octets DataReader API matches the standard DataReader API (see Using a Type-Spe-
cific DataReader (FooDataReader) (Section 7.4.1)). There are no extensions.

Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next_sample() and
take_next_sample(), Connext allocates memory for the field 'value' if it is initial-
ized to NULL.
3-29

Data Types and Data Samples
If the field 'value' is not initialized to NULL, the behavior depends on the lan-
guage:

• In Java and .NET, the memory for the field 'value' will be reallocated if the
current size is not large enough to hold the received data.

• In C and C++, the memory associated with the field 'value' must be big
enough to hold the received data. Insufficient memory may result in crashes.

The following examples show how to read octets with an octets built-in type DataReader.
For simplicity, error handling is not shown.

C Example:

struct DDS_OctetsSeq dataSeq = DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq = DDS_SEQUENCE_INITIALIZER;
DDS_OctetsDataReader * octetsReader = ... ;
DDS_ReturnCode_t retCode;
int i;

/* Take and print the data */
retCode = DDS_OctetsDataReader_take(octetsReader, &dataSeq,

 &infoSeq, DDS_LENGTH_UNLIMITED,
 DDS_ANY_SAMPLE_STATE,
 DDS_ANY_VIEW_STATE,
 DDS_ANY_INSTANCE_STATE);

for (i = 0; i < DDS_OctetsSeq_get_length(&dataSeq); ++i) {
 if (DDS_SampleInfoSeq_get_reference(&infoSeq, i)->valid_data) {
 DDS_OctetsTypeSupport_print_data(

 DDS_OctetsSeq_get_reference(&dataSeq, i));
 }
}
/* Return loan */
retCode = DDS_OctetsDataReader_return_loan(octetsReader, &dataSeq,

 &infoSeq);

C++ Example with Namespaces:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
OctetsSeq dataSeq;
SampleInfoSeq infoSeq;
OctetsDataReader * octetsReader = ... ;

/* Take a print the data */
ReturnCode_t retCode = octetsReader->take(dataSeq, infoSeq,

LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
ANY_VIEW_STATE, ANY_INSTANCE_STATE);
3-30

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq[i].valid_data) {
 OctetsTypeSupport::print_data(&dataSeq[i]);
 }
}
/* Return loan */
retCode = octetsReader->return_loan(dataSeq, infoSeq);

C++/CLI Example:

using namespace System;
using namespace DDS;
...

BytesSeq^ dataSeq = gcnew BytesSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();
BytesDataReader^ octetsReader = ... ;

/* Take and print the data */
octetsReader->take(dataSeq, infoSeq,

 ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
 SampleStateKind::ANY_SAMPLE_STATE,
 ViewStateKind::ANY_VIEW_STATE,
 InstanceStateKind::ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq->get_at(i)->valid_data) {
 BytesTypeSupport::print_data(dataSeq->get_at(i));
 }
}
/* Return loan */
octetsReader->return_loan(dataSeq, infoSeq);

C# Example:

using System;
using DDS;
...
BytesSeq dataSeq = new BytesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
BytesDataReader octetsReader = ... ;

/* Take and print the data */
octetsReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);
3-31

Data Types and Data Samples
for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq.get_at(i)).valid_data) {
 BytesTypeSupport.print_data(dataSeq.get_at(i));
 }
}
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);

Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...
BytesSeq dataSeq = new BytesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
BytesDataReader octetsReader = ... ;

/* Take and print the data */
octetsReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (((SampleInfo)infoSeq.get(i)).valid_data) {
 System.out.println(((Bytes)dataSeq.get(i)).toString());
 }
}
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);

3.2.7 KeyedOctets Built-in Type

The keyed octets built-in type is used to send sequences of octets with a key. The lan-
guage-specific representations of the type are as follows:

C/C++ Representation (without Namespaces):

struct DDS_KeyedOctets {
 char * key;
 int length;
 unsigned char * value;
};
3-32

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

C++/CLI Representation:

namespace DDS {
 public ref struct KeyedBytes {
 public:
 System::String^ key;
 System::Int32 length;
 System::Int32 offset;
 array<System::Byte>^ value;
 ...
 };
};

C# Representation:

namespace DDS {
 public class KeyedBytes {
 public System.String key;
 public System.Int32 length;
 public System.Int32 offset;
 public System.Byte[] value;
 …
 };
};

Java Representation:

package com.rti.dds.type.builtin;
public class KeyedBytes {
 public String key;
 public int length;
 public int offset;
 public byte[] value;
 ...
};

3.2.7.1 Creating and Deleting KeyedOctets

Connext provides a set of constructors/destructors to create/destroy KeyedOctets
objects. For details, see the online documentation (select Modules, DDS API Reference,
Topic Module, Built-in Types).

To manipulate the memory of the value field in the KeyedOctets struct in C/C++: use
DDS::OctetBuffer_alloc(), DDS::OctetBuffer_dup(), and DDS::OctetBuffer_free(),
described in the online documentation (select Modules, DDS API Reference, Infra-
structure Module, Octet Buffer Support).

To manipulate the memory of the key field in the KeyedOctets struct in C/C++: use
DDS::String_alloc(), DDS::String_dup(), and DDS::String_free(), described in the
3-33

Data Types and Data Samples
online documentation (select Modules, DDS API Reference, Infrastructure Module,
String Support).

3.2.7.2 Keyed Octets DataWriter

In addition to the standard methods (see Using a Type-Specific DataWriter (FooDataW-
riter) (Section 6.3.7)), the keyed octets DataWriter API is extended with the following
methods:

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::dispose(
const char* key,
const DDS::InstanceHandle_t & instance_handle);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::dispose_w_timestamp(
const char* key,
const DDS::InstanceHandle_t & instance_handle,
const DDS::Time_t & source_timestamp);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::get_key_value(
char * key,
const DDS::InstanceHandle_t& handle);

DDS::InstanceHandle_t DDS::KeyedOctetsDataWriter::lookup_instance(
const char * key);

DDS::InstanceHandle_t DDS::KeyedOctetsDataWriter::register_instance(
const char* key);

DDS::InstanceHandle_t
DDS::KeyedOctetsDataWriter::register_instance_w_timestamp(

const char * key,
const DDS::Time_t & source_timestamp);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::unregister_instance(
const char * key,
const DDS::InstanceHandle_t & handle);

DDS::ReturnCode_t
DDS::KeyedOctetsDataWriter::unregister_instance_w_timestamp(

const char* key,
const DDS::InstanceHandle_t & handle,
const DDS::Time_t & source_timestamp);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::write(
const char * key,
const unsigned char * octets,
int length,
const DDS::InstanceHandle_t& handle);
3-34

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::write(
const char * key,
const DDS::OctetSeq & octets,
const DDS::InstanceHandle_t & handle);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::write_w_timestamp(
const char * key,
const unsigned char * octets,
int length,
const DDS::InstanceHandle_t& handle,
const DDS::Time_t& source_timestamp);

DDS::ReturnCode_t DDS::KeyedOctetsDataWriter::write_w_timestamp(
const char * key,
const DDS::OctetSeq & octets,
const DDS::InstanceHandle_t & handle,
const DDS::Time_t & source_timestamp);

These methods are introduced to provide maximum flexibility in the format of the input
parameters for the write and instance management operations. For more information
and a complete description of these operations in all supported languages, see the
online documentation.

The following examples show how to write keyed octets using a keyed octets built-in
type DataWriter and some of the extended APIs. For simplicity, error handling is not
shown.

C Example:

DDS_KeyedOctetsDataWriter * octetsWriter = ... ;
DDS_ReturnCode_t retCode;
struct DDS_KeyedOctets * octets = NULL;
char * octetArray = NULL;

/* Write some data using the KeyedOctets structure */
octets = DDS_KeyedOctets_new(128,1024);
strcpy(octets->key, "Key 1");
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;

retCode = DDS_KeyedOctetsDataWriter_write(
 octetsWriter, octets, &DDS_HANDLE_NIL);

DDS_KeyedOctets_delete(octets);

/* Write some data using an octets array */
octetArray = (unsigned char *)malloc(1024);
octetArray[0] = 46;
3-35

Data Types and Data Samples
octetArray[1] = 47;

retCode = DDS_KeyedOctetsDataWriter_write_octets_w_key (
octetsWriter, "Key 1", octetArray, 2, &DDS_HANDLE_NIL);

free(octetArray);

C++ Example with Namespaces:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

KeyedOctetsDataWriter * octetsWriter = ... ;

/* Write some data using the KeyedOctets structure */
KeyedOctets * octets = new KeyedOctets(128,1024);
strcpy(octets->key, "Key 1");
octets->length = 2;
octets->value[0] = 46;
octets->value[1] = 47;

ReturnCode_t retCode = octetsWriter->write(octets, HANDLE_NIL);

delete octets;

/* Write some data using an octet array */
unsigned char * octetArray = new unsigned char[1024];
octetArray[0] = 46;
octetArray[1] = 47;

retCode = octetsWriter->write("Key 1", octetArray, 2, HANDLE_NIL);

delete []octetArray;

C++/CLI Example:

using namespace System;
using namespace DDS;
...

KeyedOctetsDataWriter^ octetsWriter = ... ;

/* Write some data using KeyedBytes */
KeyedBytes^ octets = gcnew KeyedBytes(1024);
octets->key = "Key 1";
octets->value[0] =46;
octets->value[1] =47;
octets.length = 2;
octets.offset = 0;
3-36

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

octetWriter->write(octets, InstanceHandle_t::HANDLE_NIL);

/* Write some data using individual strings */
array<Byte>^ octetAray = gcnew array<Byte>(1024);
octetArray[0] = 46;
octetArray[1] = 47;

octetsWriter->write(
"Key 1", octetArray, 0, 2, InstanceHandle_t::HANDLE_NIL);

C# Example:

using System;
using DDS;
...

KeyedBytesDataWriter stringWriter = ... ;

/* Write some data using the KeyedBytes */
KeyedBytes octets = new KeyedBytes(1024);
octets.key = "Key 1";
octets.value[0] = 46;
octets.value[1] = 47;
octets.length = 2;
octets.offset = 0;

octetWriter.write(octets, InstanceHandle_t.HANDLE_NIL);

/* Write some data using individual strings */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[1] = 47;

octetsWriter.write(
"Key 1", octetArray, 0, 2, InstanceHandle_t.HANDLE_NIL);

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...

KeyedBytesDataWriter octetsWriter = ... ;

/* Write some data using the KeyedBytes class*/
KeyedBytes octets = new KeyedBytes(1024);
octets.key = "Key 1";
octets.length = 2;
octets.offset = 0;
octets.value[0] = 46;
3-37

Data Types and Data Samples
octets.value[1] = 47;
octetsWriter.write(octets, InstanceHandle_t.HANDLE_NIL);

/* Write some data using a byte array */
byte[] octetArray = new byte[1024];
octetArray[0] = 46;
octetArray[1] = 47;
octetsWriter.write(

"Key 1", octetArray, 0, 2, InstanceHandle_t.HANDLE_NIL);

3.2.7.3 Keyed Octets DataReader

The KeyedOctets DataReader API is extended with the following methods (in addition to
the standard methods described in Using a Type-Specific DataReader (FooDataReader)
(Section 7.4.1)):

DDS::ReturnCode_t DDS::KeyedOctetsDataReader::get_key_value(
char * key,
const DDS::InstanceHandle_t* handle);

DDS::InstanceHandle_t DDS::KeyedOctetsDataReader::lookup_instance(
const char * key);

For more information and a complete description of these operations in all supported
languages, see the online documentation.

Memory considerations in copy operations:

For read/take operations with copy semantics, such as read_next_sample() and
take_next_sample(), Connext allocates memory for the fields 'value' and 'key' if
they are initialized to NULL.

If the fields are not initialized to NULL, the behavior depends on the language:

• In Java and .NET, the memory of the field 'value' will be reallocated if the cur-
rent size is not large enough to hold the received data. The memory associ-
ated with the field 'key' will be reallocated with every sample (the key is an
immutable object).

• In C and C++, the memory associated with the fields 'value' and 'key' must be
large enough to hold the received data. Insufficient memory may result in
crashes.

The following examples show how to read keyed octets with a keyed octets built-in type
DataReader. For simplicity, error handling is not shown.
3-38

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

C Example:

struct DDS_KeyedOctetsSeq dataSeq = DDS_SEQUENCE_INITIALIZER;
struct DDS_SampleInfoSeq infoSeq = DDS_SEQUENCE_INITIALIZER;
DDS_KeyedOctetsDataReader * octetsReader = ... ;
DDS_ReturnCode_t retCode;
int i;

/* Take and print the data */
retCode = DDS_KeyedOctetsDataReader_take(

octetsReader,
&dataSeq, &infoSeq, DDS_LENGTH_UNLIMITED,
DDS_ANY_SAMPLE_STATE, DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

for (i = 0; i < DDS_KeyedOctetsSeq_get_length(&data_seq); ++i) {
 if (DDS_SampleInfoSeq_get_reference(&info_seq, i)->valid_data) {
 DDS_KeyedOctetsTypeSupport_print_data(
 DDS_KeyedOctetsSeq_get_reference(&data_seq, i));
 }
}
/* Return loan */
retCode = DDS_KeyedOctetsDataReader_return_loan(

octetsReader, &data_seq, &info_seq);

C++ Example with Namespaces:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...
KeyedOctetsSeq dataSeq;
SampleInfoSeq infoSeq;
KeyedOctetsDataReader * octetsReader = ... ;

/* Take a print the data */
ReturnCode_t retCode = octetsReader->take(

dataSeq, infoSeq, LENGTH_UNLIMITED,
ANY_SAMPLE_STATE, ANY_VIEW_STATE, ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq[i].valid_data) {
 KeyedOctetsTypeSupport::print_data(&dataSeq[i]);
 }
}
/* Return loan */
retCode = octetsReader->return_loan(dataSeq, infoSeq);
3-39

Data Types and Data Samples
C++/CLI Example:

using namespace System;
using namespace DDS;
...
KeyedBytesSeq^ dataSeq = gcnew KeyedBytesSeq();
SampleInfoSeq^ infoSeq = gcnew SampleInfoSeq();
KeyedBytesDataReader^ octetsReader = ... ;

/* Take and print the data */
octetsReader->take(dataSeq, infoSeq,

 ResourceLimitsQosPolicy::LENGTH_UNLIMITED,
 SampleStateKind::ANY_SAMPLE_STATE,
 ViewStateKind::ANY_VIEW_STATE,
 InstanceStateKind::ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq->get_at(i)->valid_data) {
 KeyedBytesTypeSupport::print_data(dataSeq->get_at(i));
 }
}
/* Return loan */
octetsReader->return_loan(dataSeq, infoSeq);

C# Example:

using System;
using DDS;
...
KeyedBytesSeq dataSeq = new KeyedButesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedBytesDataReader octetsReader = ... ;

/* Take and print the data */
octetsReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (infoSeq.get_at(i)).valid_data) {
 KeyedBytesTypeSupport.print_data(dataSeq.get_at(i));
 }
}
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);
3-40

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

Java Example:

import com.rti.dds.infrastructure.*;
import com.rti.dds.subscription.*;
import com.rti.dds.type.builtin.*;
...
KeyedBytesSeq dataSeq = new KeyedBytesSeq();
SampleInfoSeq infoSeq = new SampleInfoSeq();
KeyedBytesDataReader octetsReader = ... ;

/* Take and print the data */
octetsReader.take(dataSeq, infoSeq,

ResourceLimitsQosPolicy.LENGTH_UNLIMITED,
SampleStateKind.ANY_SAMPLE_STATE,
ViewStateKind.ANY_VIEW_STATE,
InstanceStateKind.ANY_INSTANCE_STATE);

for (int i = 0; i < data_seq.length(); ++i) {
 if (((SampleInfo)infoSeq.get(i)).valid_data) {
 System.out.println(((KeyedBytes)dataSeq.get(i)).toString());
 }
}
/* Return loan */
octetsReader.return_loan(dataSeq, infoSeq);

3.2.8 Managing Memory for Built-in Types

When a sample is written, the DataWriter serializes it and stores the result in a buffer
obtained from a pool of preallocated buffers. In the same way, when a sample is
received, the DataReader deserializes it and stores the result in a sample coming from a
pool of preallocated samples.

For data types generated by rtiddsgen, the size of the buffers and samples in both pools
is known based on the IDL or XML description of the type.

For example:

struct MyString {
 string<128> value;
};

This IDL-defined type has a maximum serialized size of 133 bytes (4 bytes for length +
128 characters + 1 NULL terminating character). So the serialization buffers will have a
size of 133 bytes. It can hold samples with 128 characters strings. Consequently, the pre-
allocated samples will be sized to keep this length.

However, for built-in types, the maximum size of the buffers/samples is unknown and
depends on the nature of the application using the built-in type.
3-41

Data Types and Data Samples
For example, a video surveillance application that is using the keyed octets built-in type
to publish a stream of images will require bigger buffers than a market-data application
that uses the same built-in type to publish market-data values.

To accommodate both kinds of applications and optimize memory usage, you can con-
figure the maximum size of the built-in types on a per-DataWriter or per-Datareader basis
using the PROPERTY QosPolicy (DDS Extension) (Section 6.5.16). Table 3.1 on page 3-43
lists the supported built-in type properties. When the properties are defined in the
DomainParticipant, they are applicable to all DataWriters and DataReaders belonging to
the DomainParticipant, unless they are overwritten in the DataWriters and DataReaders.

Note: These properties must be set consistently with respect to the corresponding
*.max_size properties in the DomainParticipant (see Table 3.14 on page 3-122). The value
of the alloc_size property must be less than or equal to the max_size property with the
same name prefix in the DomainParticipant.

Section 3.2.8.1 includes examples of how to set the maximum size of a string built-in
type for a DataWriter programmatically, for each API. You can also set the maximum
size of the built-in types using XML QoS Profiles. For example, the following XML
shows how to set the maximum size of a string built-in type for a DataWriter.

<dds>
 <qos_library name="BuiltinExampleLibrary">
 <qos_profile name="BuiltinExampleProfile">
 <datawriter_qos>
 <property>
 <value>
 <element>
 <name>dds.builtin_type.string.alloc_size</name>
 <value>2048</value>
 </element>
 </value>
 </property>
 </datawriter_qos>
 <datareader_qos>
 <property>
 <value>
 <element>
 <name>dds.builtin_type.string.alloc_size</name>
 <value>2048</value>
 </element>
 </value>
 </property>
 </datareader_qos>
 </qos_profile>
 </qos_library>
</dds>
3-42

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

Table 3.1 Properties for Allocating Size of Built-in Types, per DataWriter and DataReader

Built-
in

Type
Property Description

string dds.builtin_type.string.alloc_size

Maximum size of the strings published by the
DataWriter or received by the DataReader (includes
the NULL-terminated character).
Default: dds.builtin_type.string.max_size if defined
(see Table 3.14 on page 3-122). Otherwise, 1024.

keyed-
string

dds.builtin_type.keyed_string.
alloc_key_size

Maximum size of the keys used by the DataWriter or
DataReader (includes the NULL-terminated charac-
ter).
Default: dds.builtin_type.keyed_string.max_key_size
if defined (see Table 3.14 on page 3-122). Otherwise,
1024.

dds.builtin_type.keyed_string.
alloc_size

Maximum size of the strings published by the
DataWriter or received by the DataReader (includes
the NULL-terminated character).
Default: dds.builtin_type.keyed_string.max_size if
defined (see Table 3.14 on page 3-122). Otherwise,
1024.

octets dds.builtin_type.octets.alloc_size

Maximum size of the octet sequences published by
the DataWriter or DataReader.
Default: dds.builtin_type.octets.max_size if defined
(see Table 3.14 on page 3-122). Otherwise, 2048.

keyed-
octets

dds.builtin_type.keyed_octets.
alloc_key_size

Maximum size of the key published by the DataW-
riter or received by the DataReader (includes the
NULL-terminated character).
Default: dds.builtin_type.keyed_octets.max_key_size
if defined (see Table 3.14 on page 3-122). Otherwise,
1024.

dds.builtin_type.keyed_octets.
alloc_size

Maximum size of the octet sequences published by
the DataWriter or DataReader.
Default: dds.builtin_type.keyed_octets.max_size if
defined (see Table 3.14 on page 3-122). Otherwise,
2048.
3-43

Data Types and Data Samples
3.2.8.1 Examples—Setting the Maximum Size for a String Programmatically

For simplicity, error handling is not shown in the following examples.

C Example:

DDS_DataWriter * writer = NULL;
DDS_StringDataWriter * stringWriter = NULL;
DDS_Publisher * publisher = ... ;
DDS_Topic * stringTopic = ... ;
struct DDS_DataWriterQos writerQos = DDS_DataWriterQos_INITIALIZER;
DDS_ReturnCode_t retCode;

retCode = DDS_DomainParticipant_get_default_datawriter_qos (
 participant, &writerQos);

retCode = DDS_PropertyQosPolicyHelper_add_property (
 &writerQos.property,
 "dds.builtin_type.string.alloc_size", "1000",

 DDS_BOOLEAN_FALSE);

writer = DDS_Publisher_create_datawriter(
 publisher, stringTopic, &writerQos,
 NULL, DDS_STATUS_MASK_NONE);

stringWriter = DDS_StringDataWriter_narrow(writer);
DDS_DataWriterQos_finalize(&writerQos);

C++ Example with Namespaces:

#include "ndds/ndds_namespace_cpp.h"
using namespace DDS;
...

Publisher * publisher = ... ;
Topic * stringTopic = ... ;
DataWriterQos writerQos;

ReturnCode_t retCode =
 participant->get_default_datawriter_qos(writerQos);

retCode = PropertyQosPolicyHelper::add_property (
 &writerQos.property,
 "dds.builtin_type.string.alloc_size", "1000",
 BOOLEAN_FALSE);

DataWriter * writer = publisher->create_datawriter(
 stringTopic, writerQos,

NULL, STATUS_MASK_NONE);
StringDataWriter * stringWriter = StringDataWriter::narrow(writer);
3-44

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

C++/CLI Example:

using namespace DDS;
...

Topic^ stringTopic = ... ;
Publisher^ publisher = ... ;
DataWriterQos^ writerQos = gcnew DataWriterQos();

participant->get_default_datawriter_qos(writerQos);

PropertyQosPolicyHelper::add_property(
 writerQos->property_qos,
 "dds.builtin_type.string.alloc_size", "1000",
 false);

DataWriter^ writer = publisher->create_datawriter(
stringTopic, writerQos,
nullptr, StatusMask::STATUS_MASK_NONE);

StringDataWriter^ stringWriter = safe_cast<StringDataWriter^>(writer);

C# Example:

using DDS;
...

Topic stringTopic = ... ;
Publisher publisher = ... ;
DataWriterQos writerQos = new DataWriterQos();

participant.get_default_datawriter_qos(writerQos);

PropertyQosPolicyHelper.add_property (
 writerQos.property_qos,
 "dds.builtin_type.string.alloc_size", "1000",
 false);

StringDataWriter stringWriter =
(StringDataWriter) publisher.create_datawriter(

 stringTopic, writerQos, null,
 StatusMask.STATUS_MASK_NONE);

Java Example:

import com.rti.dds.publication.*;
import com.rti.dds.type.builtin.*;
import com.rti.dds.infrastructure.*;
...

Topic stringTopic = ... ;
3-45

Data Types and Data Samples
Publisher publisher = ... ;
DataWriterQos writerQos = new DataWriterQos();

participant.get_default_datawriter_qos(writerQos);

PropertyQosPolicyHelper.add_property (
 writerQos.property,
 "dds.builtin_type.string.alloc_size", "1000",
 false);

StringDataWriter stringWriter =
(StringDataWriter) publisher.create_datawriter(

stringTopic, writerQos,
null, StatusKind.STATUS_MASK_NONE);

3.2.9 Type Codes for Built-in Types

The type codes associated with the built-in types are generated from the following IDL
type definitions:

module DDS {
/* String */
struct String {

string<max_size> value;
};
/* KeyedString */
struct KeyedString {

string<max_size> key; //@key
string<max_size> value;

};
/* Octets */
struct Octets {

sequence<octet, max_size> value;
};
/* KeyedOctets */
struct KeyedOctets {

string<max_size> key; //@key
sequence<octet, max_size> value;

};
};

The maximum size (max_size) of the strings and sequences that will be included in the
type code definitions can be configured on a per-DomainParticipant-basis by using the
properties in Table 3.2.
3-46

Built-in Data Types
3. U

se
r D

a
ta

 Typ
e

s

Table 3.2 Properties for Allocating Size of Built-in Types, per DomainParticipant

Built-
in

Type
Property Description

String dds.builtin_type.string.max_size

Maximum size of the strings published by the
DataWriters and received by the DataReaders belong-
ing to a DomainParticipant (includes the NULL-ter-
minated character).
Default: 1024

Keyed-
String

dds.builtin_type.keyed_string.
max_key_size

Maximum size of the keys used by the DataWriters
and DataReaders belonging to a DomainParticipant
(includes the NULL-terminated character).
Default: 1024

dds.builtin_type.keyed_string.
max_size

Maximum size of the strings published by the
DataWriters and received by the DataReaders belong-
ing to a DomainParticipant using the built-in type
(includes the NULL-terminated character).
Default: 1024

Octets dds.builtin_type.octets.max_size

Maximum size of the octet sequences published by
the DataWriters and DataReaders belonging to a
DomainParticipant.
Default: 2048

Keyed-
Octets

dds.builtin_type.keyed_octets.
max_key_size

Maximum size of the key published by the DataW-
riter and received by the DataReaders belonging to
the DomainParticipant (includes the NULL-termi-
nated character).
Default:1024.

dds.builtin_type.keyed_octets.
max_size

Maximum size of the octet sequences published by
the DataWriters and DataReaders belonging to a
DomainParticipant.
Default: 2048
3-47

Data Types and Data Samples
3.3 Creating User Data Types with IDL
You can create user data types in a text file using IDL (Interface Description Language).
IDL is programming-language independent, so the same file can be used to generate
code in C, C++, C++/CLI, and Java (the languages supported by rtiddsgen). The rtidds-
gen utility parses the IDL file and automatically generates all the necessary routines and
wrapper functions to bind the types for use by Connext at run time. You will end up
with a set of required routines and structures that your application and Connext will use
to manipulate the data.

Connext only uses a subset of the IDL syntax. IDL was originally defined by the OMG
for the use of CORBA client/server applications in an enterprise setting. Not all of the
constructs that can be described by the language are as useful in the context of high-per-
formance data-centric embedded applications. These include the constructs that define
method and function prototypes like “interface.”

The rtiddsgen utility will parse any file that follows version 3.0.3 of the IDL specification.
It will quietly ignore all syntax that is not recognized by Connext. In addition, even
though “anonymous sequences” (sequences of sequences with no intervening typedef)
are currently legal in IDL, they have been deprecated by the specification, and thus rtid-
dsgen does not support them.

Certain keywords are considered reserved by the IDL specification; see Table 3.3.

Table 3.3 Reserved IDL Keywords

abstract emits local pseudo typeid

alias enum long public typename

any eventtype mirrorport publishes typeprefix

attribute exception module raises union

boolean factory multiple readonly unsigned

case FALSE native sequence uses

char finder object setraises valuebase

component fixed octet short valuetype

connector float oneway string void

const getraises out struct wchar

consumes home port supports wstring

context import porttype switch

custom in primarykey TRUE
3-48

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

The IDL constructs supported by rtiddsgen are described in Table 3.5, “Specifying Data
Types in IDL for C and C++,” on page 3-53 and Table 3.7, “Specifying Data Types in IDL
for Java,” on page 3-62. Use these tables to map primitive types to their equivalent IDL
syntax, and vice versa.

For C and C++, rtiddsgen uses typedefs instead of the language keywords for primitive
types. For example, DDS_Long instead of long or DDS_Double instead of double.
This ensures that the types are of the same size regardless of the platform.1

The remainder of this section includes:

❏ Variable-Length Types (Section 3.3.1)

❏ Value Types (Section 3.3.2)

❏ TypeCode and rtiddsgen (Section 3.3.3)

❏ rtiddsgen Translations for IDL Types (Section 3.3.4)

❏ Escaped Identifiers (Section 3.3.5)

❏ Referring to Other IDL Files (Section 3.3.6)

❏ Preprocessor Directives (Section 3.3.7)

❏ Using Custom Directives (Section 3.3.8)

3.3.1 Variable-Length Types

When rtiddsgen generates code for data structures with variable-length types—strings
and sequences—it includes functions that create, initialize and finalize (destroy) those
objects. These support functions will properly initialize pointers and allocate and deal-
locate the memory used for variable-length types. All Connext APIs assume that the data
structures passed to them are properly initialized.

For variable-length types, the actual length (instead of the maximum length) of data is
transmitted on the wire when the sample is written (regardless of whether the type has
hard-coded bounds).

default inout private truncatable

double interface provides typedef

Table 3.3 Reserved IDL Keywords

1. The number of bytes sent on the wire for each data type is determined by the Common Data Represen-
tation (CDR) standard. For details on CDR, please see the Common Object Request Broker Architecture
(CORBA) Specification, Version 3.1, Part 2: CORBA Interoperability, Section 9.3, CDR Transfer Syntax (http://
www.omg.org/technology/documents/corba_spec_catalog.htm).
3-49

http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.omg.org/technology/documents/corba_spec_catalog.htm

Data Types and Data Samples
3.3.1.1 Sequences

C, C++, C++/CLI, and C# users can allocate memory from a number of sources: from
the heap, the stack, or from a custom allocator of some kind. In those languages,
sequences provide the concept of memory "ownership." A sequence may own the mem-
ory allocated to it or be loaned memory from another source. If a sequence owns its
memory, it will manage its underlying memory storage buffer itself. When a sequence's
maximum size is changed, the sequence will free and reallocate its buffer as needed.
However, if a sequence was created with loaned memory by user code, then its memory
is not its own to free or reallocate. Therefore, you cannot set the maximum size of a
sequence whose memory is loaned. See the online API documentation on Sequence Sup-
port in the Infrastructure Module for more information about how to loan and unloan
memory for sequence.

In IDL, as described above, a sequence may be declared as bounded or unbounded. A
sequence's "bound" is the greatest value its maximum may take. If you use the initializer
functions rtiddsgen provides for your types, all sequences will have their maximums set
to their declared bounds. However, the amount of data transmitted on the wire when
the sample is written will vary.

3.3.1.2 Strings and Wide Strings

The initialization functions that rtiddsgen provides for your types will allocate all of the
memory for strings in a type to their declared bounds. Take care—if you assign a string
pointer (char *) in a data structure allocated or initialized by a Connext-generated func-
tion, you should release (free) the memory originally allocated for the string, otherwise
the memory will be leaked.

To Java and .NET users, an IDL string is a String object: it is immutable and knows its
own length. C and C++ users must take care, however, as there is no way to determine
how much memory is allocated to a character pointer "string"; all that can be deter-
mined is the string's current logical length. In some cases, Connext may need to copy a
string into a structure that user code has provided. Connext does not free the memory of
the string provided to it, as it cannot know from where that memory was allocated.

In the C and C++ APIs, Connext therefore uses the following conventions:

❏ A string's memory is "owned" by the structure that contains that string. Calling
the finalization function provided for a type will free all recursively contained
strings. If you have allocated a contained string in a special way, you must be
careful to clean up your own memory and assign the pointer to NULL before call-
ing the type’s finalize() method, so that Connext will skip over that string.
3-50

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

❏ You must provide a non-NULL string pointer for Connext to copy into. Other-
wise, Connext will log an error.

❏ When you provide a non-NULL string pointer in your data structure, Connext
will copy into the provided memory without performing any additional mem-
ory allocations. Be careful—if you provide Connext with an uninitialized pointer
or allocate a string that is too short, you may corrupt the memory or cause a pro-
gram crash. Connext will never try to copy a string that is longer than the bound
of the destination string. However, your application must insure that any string
that it allocates is long enough.

Connext provides a small set of C functions for dealing with strings. These functions
simplify common tasks, avoid some platform-specific issues (such as the lack of a
strdup() function on some platforms), and provide facilities for dealing with wide
strings, for which no standard C library exists. Connext always uses these functions
internally for managing string memory; you are recommended—but not required—to
use them as well. See the online API documentation on String Support in the Infrastruc-
ture Module for more information about strings.

3.3.2 Value Types

A value type is like a structure, but with support for additional object-oriented features
such as inheritance. It is similar to what is sometimes referred to in Java as a POJO—a
Plain Old Java Object.

Readers familiar with value types in the context of CORBA should consult Table 3.4 to
see which value type-related IDL keywords are supported and what their behavior is in
the context of Connext.

Table 3.4 Value Type Support

Aspect Level of Support in rtiddsgen

Inheritance Single inheritance from other value types

Public state members Supported

Private state members Become public when code is generated

Custom keyword
Ignored (the value type is parsed without the keyword and code is
generated to work with it)

Abstract value types
No code generated (the value type is parsed, but no code is gener-
ated)
3-51

Data Types and Data Samples
3.3.3 TypeCode and rtiddsgen

Type codes are enabled by default when you run rtiddsgen. The -notypecode option dis-
ables generation of type code information. Type-code support does increase the amount
of memory used, so if you need to save on memory, you may consider disabling type
codes. (The -notypecode option is described in rtiddsgen Command-Line Arguments
(Section 3.6.1)

Locally, your application can access the type code for a generated type "Foo" by calling
the Foo::get_typecode() operation in the code for the type generated by rtiddsgen (unless
type-code support is disabled with the -notypecode option).

Note: Type-code support must be enabled if you are going to use ContentFilteredTopics
(Section 5.4) with the default SQL filter. You may disable type codes and use a custom
filter, as described in Creating ContentFilteredTopics (Section 5.4.3).

3.3.4 rtiddsgen Translations for IDL Types

This section describes how to specify your data types in an IDL file. The rtiddsgen utility
supports all the types listed in the following tables:

❏ Table 3.5, “Specifying Data Types in IDL for C and C++,” on page 3-53

❏ Table 3.6, “Specifying Data Types in IDL for C++/CLI,” on page 3-59

❏ Table 3.7, “Specifying Data Types in IDL for Java,” on page 3-62

Operations
No code generated (the value type is parsed, but no code is gener-
ated)

Truncatable keyword
Ignored (the value type is parsed without the keyword and code is
generated to work with it)

Table 3.4 Value Type Support

Aspect Level of Support in rtiddsgen
3-52

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

In each table, the middle column shows the syntax for an IDL data type in the IDL file.
The rightmost column shows the corresponding language mapping created by rtidds-
gen.

Table 3.5 Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen

char
(see Note 1
below)

struct PrimitiveStruct {
char char_member;

};

typedef struct PrimitiveStruct
{

DDS_Char char_member;
} PrimitiveStruct;

wchar
struct PrimitiveStruct {

wchar wchar_member;
};

typedef struct PrimitiveStruct
{

DDS_Wchar wchar_member;
} PrimitiveStruct;

octet
struct PrimitiveStruct {
 octet octet_member;
};

typedef struct PrimitiveStruct
{
 DDS_Octet boolean_member;
} PrimitiveStruct;

short
struct PrimitiveStruct {

short short_member;
};

typedef struct PrimitiveStruct
{
 DDS_Short short_member;
} PrimitiveStruct;

unsigned
short

struct PrimitiveStruct {
unsigned short

 unsigned_short_member;
};

typedef struct PrimitiveStruct
{
 DDS_UnsignedShort
 unsigned_short_member;
} PrimitiveStruct;

long
struct PrimitiveStruct {

long long_member;
};

typedef struct PrimitiveStruct
{

DDS_Long long_member;
} PrimitiveStruct;

unsigned
long

struct PrimitiveStruct {
unsigned long

 unsigned_long_member;
};

typedef struct PrimitiveStruct
{

DDS_UnsignedLong
unsigned_long_member;

} PrimitiveStruct;

long long
struct PrimitiveStruct {

long long long_long_member;
};

typedef struct PrimitiveStruct
{
 DDS_LongLong long_long_member;
} PrimitiveStruct;
3-53

Data Types and Data Samples
unsigned
long long

struct PrimitiveStruct {
unsigned long long

 unsigned_long_long_member;
};

typedef struct PrimitiveStruct
{

DDS_UnsignedLongLong
 unsigned_long_long_member;
} PrimitiveStruct;

float
struct PrimitiveStruct {

float float_member;
};

typedef struct PrimitiveStruct
{
 DDS_Float float_member;
} PrimitiveStruct;

double
struct PrimitiveStruct {

double double_member;
};

typedef struct PrimitiveStruct
{

DDS_Double double_member;
} PrimitiveStruct;

long double
(see Note 2
below)

struct PrimitiveStruct {
long double long_double_member;

};

typedef struct PrimitiveStruct
{
 DDS_LongDouble long_double_member;
} PrimitiveStruct;

pointer
(see Note 9
below)

struct MyStruct {
 long * member;
};

typedef struct MyStruct {
 DDS_Long * member;
} MyStruct;

boolean
struct PrimitiveStruct {

boolean boolean_member;
};

typedef struct PrimitiveStruct
{

DDS_Boolean boolean_member;
} PrimitiveStruct;

enum

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};

typedef enum PrimitiveEnum
{
 ENUM1,
 ENUM2,
 ENUM3
} PrimitiveEnum;

typedef enum PrimitiveEnum
{
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
} PrimitiveEnum;

constant const short SIZE = 5;
C: #define SIZE 5
C++: static const DDS_Short size = 5;

Table 3.5 Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-54

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

bitfield

(see Note 12
below)

struct BitfieldType {
short myShort_1 : 1;
unsigned short myUnsignedShort_1:
1;
long myLong_1: 1;
unsigned long myUnsignedLong_1 :1;
char myChar_1 : 1;
wchar myWChar_1 : 1;
octet myOctet_1 : 1;
short : 0;
long myLong_5 : 5;
long myLong_30 : 30;
short myShort_6 : 6;
short myShort_3and4 : 3+4;
short myShort;
short myShort_8 : 8;
long myLong_32: 32;

};

typedef struct BitfieldType
{

DDS_Short myShort_1 : 1;
DDS_UnsignedShort myUnsignedShort_1
: 1;
DDS_Long myLong_1 : 1;
DDS_UnsignedLong myUnsignedLong_1 :
1;
DDS_Char myChar_1 : 1;
DDS_Wchar myWChar_1 : 1;
DDS_Octet myOctet_1 : 1;
DDS_Short : 0;
DDS_Long myLong_5 : 5;
DDS_Long myLong_30 : 30;
DDS_Short myShort_6 : 6;
DDS_Short myShort_3and4 : 3+4;
DDS_Short myShort;
DDS_Short myShort_8 : 8;
DDS_Long myLong_32 : 32;

} BitfieldType;

struct

(see Note 10
below)

struct PrimitiveStruct {
 char char_member;
};

typedef struct PrimitiveStruct

{

 char char_member;

} PrimitiveStruct;

union

(see Note 3
and Note
10 below)

union PrimitiveUnion switch (long){
 case 1:
 short short_member;
 default:
 long long_member;
};

typedef struct PrimitiveUnion
{
 DDS_Long _d;
 struct {
 DDS_Short short_member;
 DDS_Long long_member;
 } _u;
} PrimitiveUnion;

typedef typedef short TypedefShort; typedef DDS_Short TypedefShort;

Table 3.5 Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-55

Data Types and Data Samples
array of
above types

struct OneDArrayStruct {
short short_array[2];

};

struct TwoDArrayStruct {
short short_array[1][2];

};

typedef struct OneDArrayStruct
{
 DDS_Short short_array[2];
} OneDArrayStruct;

typedef struct TwoDArrayStruct
{
 DDS_Short short_array[1][2];
} TwoDArrayStruct;

bounded
sequence of
above types

(see Note 11
below)

struct SequenceStruct {
 sequence<short,4> short_sequence;
};

typedef struct SequenceStruct
{
 DDSShortSeq short_sequence;
} SequenceStruct;

Note: Sequences of primitive types have been
predefined by Connext.

unbounded
sequence of
above types

(see Note 11
below)

struct SequenceStruct {
 sequence<short> short_sequence;
};

typedef struct SequenceStruct
{
 DDSShortSeq short_sequence;
} SequenceStruct;

Note: rtiddsgen will supply a default bound.
You can specify that bound with the “-sequenc-
eSize” command-line option; see Section 3.6.1.

array of
sequences

struct ArraysOfSequences{
 sequence<short,4>
 sequences_array[2];
};

typedef struct ArraysOfSequences
{
 DDS_ShortSeq sequences_array[2];
} ArraysOfSequences;

sequence of
arrays

(see Note 11
below)

typedef short ShortArray[2];

struct SequenceofArrays {
 sequence<ShortArray,2>
 arrays_sequence;
};

typedef DDS_Short ShortArray[2];

DDS_SEQUENCE_NO_GET(ShortArraySeq,
 ShortArray);

typedef struct SequenceOfArrays
{
 ShortArraySeq arrays_sequence;
} SequenceOfArrays;

DDS_SEQUENCE_NO_GET is a Connext macro
that defines a new sequence type for a user data
type. In this case, the user data type is ShortAr-
ray.

Table 3.5 Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-56

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

sequence of
sequences

(see Note 4
and Note 11
below)

typedef sequence<short,4>
 ShortSequence;

struct SequencesOfSequences{
 sequence<ShortSequence,2>
 sequences_sequence;
};

typedef DDS_ShortSeq ShortSequence;

DDS_SEQUENCE(ShortSequenceSeq,
 ShortSequence);

typedef struct SequencesOfSequences{
 ShortSequenceSeq

sequences_sequence;
} SequencesOfSequences;

bounded
string

struct PrimitiveStruct {
string<20> string_member;

};

typedef struct PrimitiveStruct {
char* string_member;

 /* maximum length = (20) */
} PrimitiveStruct;

unbounded
string

struct PrimitiveStruct {
string string_member;

};

typedef struct PrimitiveStruct {
char* string_member;

 /* maximum length = (255) */
} PrimitiveStruct;

Note: rtiddsgen will supply a default bound.
You can specify that bound with the -stringSize
command-line option, see Section 3.6.1.

bounded
wstring

struct PrimitiveStruct {
wstring<20> wstring_member;

};

typedef struct PrimitiveStruct {
 DDS_Wchar * wstring_member;
 /* maximum length = (20)

*/
} PrimitiveStruct;

unbounded
wstring

struct PrimitiveStruct {
 wstring wstring_member;
};

typedef struct PrimitiveStruct {

 DDS_Wchar * wstring_member;

 /* maximum length = (255) */

} PrimitiveStruct;

Note: rtiddsgen will supply a default bound.

Table 3.5 Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-57

Data Types and Data Samples
module

module PackageName {
 struct Foo {
 long field;
 };
};

With the -namespace option (only available for
C++):

namespace PackageName{
 typedef struct Foo {

DDS_Long field;
 } Foo;
};

Without the -namespace option:
typedef struct PackageName_Foo {
 DDS_Long field;
} PackageName_Foo;

valuetype

(see Note 9
and Note 10
below)

valuetype MyValueType {
 public MyValueType2 * member;
};

valuetype MyValueType {
 public MyValueType2 member;
};

valuetype MyValueType: MyBaseValueType
{

 public MyValueType2 * member;
};

C++: class MyValueType {
public:
 MyValueType2 * member;
};

class MyValueType {
public:
 MyValueType2 member;
};

class MyValueType : public MyBa-
seValueType
{
public:
 MyValueType2 * member;
};

C: typedef struct MyValueType {
 MyValueType2 * member;
} MyValueType;

typedef struct MyValueType {
 MyValueType2 member;
} MyValueType;

typedef struct MyValueType
{
 MyBaseValueType parent;
 MyValueType2 * member;
} MyValueType;

Table 3.5 Specifying Data Types in IDL for C and C++

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-58

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

Table 3.6 Specifying Data Types in IDL for C++/CLI

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen

char
(see Note 1
below)

struct PrimitiveStruct {
char char_member;

};

public ref class PrimitiveStruct {
System::Char char_member;

};

wchar
struct PrimitiveStruct {

wchar wchar_member;
};

public ref class PrimitiveStruct {
System::Char wchar_member;

};

octet
struct PrimitiveStruct {
 octet octet_member;
};

public ref class PrimitiveStruct {
 System::Byte octet_member;
};

short
struct PrimitiveStruct {

short short_member;
};

public ref class PrimitiveStruct {
 System::Int16 short_member;
};

unsigned
short

struct PrimitiveStruct {
unsigned short

 unsigned_short_member;
};

public ref class PrimitiveStruct {
 System::UInt16 unsigned_short_member;
};

long
struct PrimitiveStruct {

long long_member;
};

public ref class PrimitiveStruct {
 System::Int32 long_member;
};

unsigned
long

struct PrimitiveStruct {
 unsigned long unsigned_long_member;
};

public ref class PrimitiveStruct {
 System::UInt32 unsigned_long_member;
};

long long
struct PrimitiveStruct {

long long long_long_member;
};

public ref class PrimitiveStruct {
 System::Int64 long_long_member;
};

unsigned
long long

struct PrimitiveStruct {
unsigned long long

unsigned_long_long_member;
};

public ref class PrimitiveStruct {
System::UInt64

 unsigned_long_long_member;
};

float
struct PrimitiveStruct {

float float_member;
};

public ref class PrimitiveStruct {
 System::Single float_member;
};

double
struct PrimitiveStruct {

double double_member;
};

public ref class PrimitiveStruct {
System::Double double_member;

} PrimitiveStruct;

long double
(see Note 2
below)

struct PrimitiveStruct {
long double long_double_member;

};

public ref class PrimitiveStruct {
 DDS::LongDouble long_double_member;
} PrimitiveStruct;
3-59

Data Types and Data Samples
boolean
struct PrimitiveStruct {

boolean boolean_member;
};

public ref class PrimitiveStruct {
System::Boolean boolean_member;

};

enum

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};

public enum class
PrimitiveEnum : System::Int32 {
 ENUM1,
 ENUM2,
 ENUM3
};

public enum class
PrimitiveEnum : System::Int32 {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
};

constant const short SIZE = 5;

public ref class SIZE {
 public:
 static System::Int16 VALUE = 5;
};

struct

(see Note 10
below)

struct PrimitiveStruct {
 char char_member;
};

public ref class PrimitiveStruct {

 System::Char char_member;

};

union

(see Note 3
and Note 10
below)

union PrimitiveUnion switch (long){
 case 1:
 short short_member;
 default:
 long long_member;
};

public ref class PrimitiveUnion
{
 System::Int32 _d;
 struct PrimitiveUnion_u {
 System::Int16 short_member;
 System::Int32 long_member;
 } _u;
};

array of
above types

struct OneDArrayStruct {
short short_array[2];

};

public ref class OneDArrayStruct {
array<System::Int16>^ short_array;
/*length == 2*/

};

Table 3.6 Specifying Data Types in IDL for C++/CLI

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-60

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

bounded
sequence of
above types

(see Note 11
below)

struct SequenceStruct {
 sequence<short,4> short_sequence;
};

public ref class SequenceStruct {
ShortSeq^ short_sequence;

 /*max = 4*/
};

Note: Sequences of primitive types have been
predefined by Connext.

unbounded
sequence of
above types

(see Note 11
below)

struct SequenceStruct {
 sequence<short> short_sequence;
};

public ref class SequenceStruct {
ShortSeq^ short_sequence;

 /*max = <default bound>*/
};

Note: rtiddsgen will supply a default bound.
You can specify that bound with the
-sequenceSize command-line option; see
Section 3.6.1.

array of
sequences

struct ArraysOfSequences{
 sequence<short,4>
 sequences_array[2];
};

public ref class ArraysOfSequences
{
 array<DDS::ShortSeq^>^

sequences_array;
 // maximum length = (2)
};

bounded
string

struct PrimitiveStruct {
string<20> string_member;

};

public ref class PrimitiveStruct {
 System::String^ string_member;
 // maximum length = (20)
};

unbounded
string

struct PrimitiveStruct {
string string_member;

};

public ref class PrimitiveStruct {
 System::String^ string_member;
 // maximum length = (255)
};

Note: rtiddsgen will supply a default bound.
You can specify that bound with the -stringSize
command-line option, see Section 3.6.1.

bounded
wstring

struct PrimitiveStruct {
wstring<20> wstring_member;

};

public ref class PrimitiveStruct {
 System::String^ string_member;
 // maximum length = (20)
};

Table 3.6 Specifying Data Types in IDL for C++/CLI

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-61

Data Types and Data Samples
unbounded
wstring

struct PrimitiveStruct {
 wstring wstring_member;
};

public ref class PrimitiveStruct {
 System::String^ string_member; //

maximum length = (255)
};

Note: rtiddsgen will supply a default bound.
You can specify that bound with the -stringSize
command-line option, see Section 3.6.1.

module

module PackageName {
 struct Foo {
 long field;
 };
};

namespace PackageName {
 public ref class Foo {
 System::Int32 field;
 };
};

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen

char

(see Note 5
below)

struct PrimitiveStruct {
 char char_member;
};

public class PrimitiveStruct
{
 public char char_member;
 ...
}

wchar

(see Note 5
below)

struct PrimitiveStruct {
 wchar wchar_member;
};

public class PrimitiveStruct
{
 public char wchar_member;
 ...
}

octet
struct PrimitiveStruct {
 octet octet_member;
};

public class PrimitiveStruct
{
 public byte byte_member;
 ...
}

short
struct PrimitiveStruct {
 short short_member;
};

public class PrimitiveStruct
{
 public short short_member;
 ...
}

Table 3.6 Specifying Data Types in IDL for C++/CLI

IDL Type Sample Entry in IDL File Sample Output Generated by rtiddsgen
3-62

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

unsigned
short

(see Note 6
below)

struct PrimitiveStruct {
 unsigned short
 unsigned_short_member;
};

public class PrimitiveStruct
{
 public short unsigned_short_member;
 ...
}

long
struct PrimitiveStruct {
 long long_member;
};

public class PrimitiveStruct
{
 public int long_member;
 ...
}

unsigned
long

(see Note 6
below)

struct PrimitiveStruct {
 unsigned long
 unsigned_long_member;
};

public class PrimitiveStruct
{
 public int unsigned_long_member;
 ...
}

long long
struct PrimitiveStruct {
 long long long_long_member;
};

public class PrimitiveStruct
{
 public long long_long_member;
 ...
}

unsigned
long long

(see Note 7
below)

struct PrimitiveStruct {
 unsigned long long
 unsigned_long_long_member;
};

public class PrimitiveStruct
{
 public long
 unsigned_long_long_member;
 ...
}

float
struct PrimitiveStruct {
 float float_member;
};

public class PrimitiveStruct
{
 public float float_member;
 ...
}

double
struct PrimitiveStruct {
 double double_member;
};

public class PrimitiveStruct
{
 public double double_member;
 ...
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-63

Data Types and Data Samples
long dou-
ble

(see Note 7
below)

struct PrimitiveStruct {
 long double long_double_member;
};

public class PrimitiveStruct
{
 public double long_double_member;
 ...
}

pointer
(see Note 9
below)

struct MyStruct {
 long * member;
};

public class MyStruct {
 public int member;
 ...
};

boolean
struct PrimitiveStruct {
 boolean boolean_member;
};

public class PrimitiveStruct
{
 public boolean boolean_member;
 ...
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-64

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s
enum

enum PrimitiveEnum {
 ENUM1,
 ENUM2,
 ENUM3
};

public class PrimitiveEnum extends Enum
{
 public static PrimitiveEnum ENUM1 =

new PrimitiveEnum ("ENUM1", 0);

 public static PrimitiveEnum ENUM2 =

new PrimitiveEnum ("ENUM2", 1);

 public static PrimitiveEnum ENUM3 =

new PrimitiveEnum ("ENUM3", 2);

 public static PrimitiveEnum
valueOf(int ordinal);

 ...
}

enum PrimitiveEnum {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
};

public class PrimitiveEnum extends Enum
{
 public static PrimitiveEnum ENUM1 =

new PrimitiveEnum ("ENUM1", 10);

 public static PrimitiveEnum ENUM2 =

new PrimitiveEnum ("ENUM2", 10);

 public static PrimitiveEnum ENUM3 =

new PrimitiveEnum ("ENUM3", 20);

 public static PrimitiveEnum
valueOf(int ordinal);

 ...
}

constant const short SIZE = 5;
public class SIZE {
 public static final short VALUE = 5;
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-65

Data Types and Data Samples
bitfield

(see Note
12 below)

struct BitfieldType {
 short myShort_1 : 1;
 long myLong_1: 1;
 char myChar_1 : 1;
 wchar myWChar_1 : 1;
 octet myOctet_1 : 1;
 short : 0;
 long myLong_5 : 5;
 long myLong_30 : 30;
 short myShort_6 : 6;
 short myShort_3and4 : 3+4;
 short myShort;
 short myShort_8 : 8;
 long myLong_32: 32;
};

public class BitfieldType
{
 public short myShort_1;
 public int myLong_1;
 public byte myChar_1;
 public char myWChar_1;
 public byte myOctet_1;
 public int myLong_5;
 public int myLong_30;
 public short myShort_6;
 public short myShort_3and4;
 public short myShort;
 public short myShort_8;
 public int myLong_32;
 ...
}

struct

(see Note
10 below)

struct PrimitiveStruct {
 char char_member;
};

public class PrimitiveStruct

{

 public char char_member;

}

union

(see Note
10 below)

union PrimitiveUnion switch (long){
 case 1:
 short short_member;
 default:
 long long_member;
};

public class PrimitiveUnion {
 public int _d;
 public short short_member;
 public int long_member;
 ...
}

typedef of
primi-
tives,
enums,
strings

(see Note 8
below)

typedef short ShortType;

struct PrimitiveStruct {
 ShortType short_member;
};

/* typedefs are unwounded to the original
 type when used */
public class PrimitiveStruct
{
 public short short_member;
 ...
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-66

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

typedef of
sequences
or arrays

(see Note 8
below)

typedef short ShortArray[2];

/* Wrapper class */
public class ShortArray
{
 public short[] userData = new
 short[2];
 ...
}

array

struct OneDArrayStruct {
 short short_array[2];
};

public class OneDArrayStruct
{
 public short[] short_array = new
 short[2];
 ...
}

struct TwoDArrayStruct {
 short short_array[1][2];
};

public class TwoDArrayStruct
{
 public short[][] short_array = new
 short[1][2];
 ...
}

bounded
sequence

(see Note
11 below)

struct SequenceStruct {
 sequence<short,4>
 short_sequence;
};

public class SequenceStruct
{
 public ShortSeq short_sequence = new
 ShortSeq((4));
 ...
}

Note: Sequences of primitive types have been pre-
defined by Connext.

unbounde
d
sequence

(see Note
11 below)

struct SequenceStruct {
 sequence<short> short_sequence;
};

public class SequenceStruct
{
 public ShortSeq short_sequence = new
 ShortSeq((100));
 ...
}

Note: rtiddsgen will supply a default bound. You
can specify that bound with the “-sequenceSize”
command-line option; see Section 3.6.1.

array of
sequences

struct ArraysOfSequences{
 sequence<short,4>
 sequences_array[2];
};

public class ArraysOfSequences
{
 public ShortSeq[] sequences_array =
 new ShortSeq[2];
 ...
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-67

Data Types and Data Samples
sequence
of arrays

(see Note
11 below)

typedef short ShortArray[2];

struct SequenceOfArrays{
 sequence<ShortArray,2>
 arrays_sequence;
};

/* Wrapper class */
public class ShortArray
{
 public short[] userData = new
 short[2];
 ...
}

/* Sequence of wrapper class objects */
public final class ShortArraySeq
 extends ArraySequence
{
 ...
}

public class SequenceOfArrays
{
 public ShortArraySeq arrays_sequence
 = new ShortArraySeq((2));
 ...
}

sequence
of
sequences

(see Note 4
and Note
11 below)

typedef sequence<short,4>
 ShortSequence;

struct SequencesOfSequences{
 sequence<ShortSequence,2>
 sequences_sequence;
};

/* Wrapper class */
public class ShortSequence
{
 public ShortSeq userData = new
 ShortSeq((4));
 ...
}

/* Sequence of wrapper class objects */
public final class ShortSequenceSeq
 extends ArraySequence
{
 ...
}

public class SequencesOfSequences
{
 public ShortSequenceSeq
 sequences_sequence = new
 ShortSequenceSeq((2));
 ...
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-68

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

bounded
string

struct PrimitiveStruct {
 string<20> string_member;
};

public class PrimitiveStruct
{
 public String string_member = new
 String();
 /* maximum length = (20) */
 ...
}

unbounde
d string

struct PrimitiveStruct {
 string string_member;
};

public class PrimitiveStruct
{
 public String string_member = new
 String();

 /* maximum length = (255) */
 ...
}

Note: rtiddsgen will supply a default bound. You
can specify that bound with the -stringSize com-
mand-line option, see Section 3.6.1.

bounded
wstring

struct PrimitiveStruct {
 wstring<20> wstring_member;
};

public class PrimitiveStruct
{
 public String wstring_member = new
 String();
 /* maximum length = (20) */
 ...
}

unbounde
d wstring

struct PrimitiveStruct {
 wstring wstring_member;
};

public class PrimitiveStruct
{
 public String wstring_member = new
 String();
 /* maximum length = (255) */
 ...
}

Note: rtiddsgen will supply a default bound.

module

module PackageName {
 struct Foo {
 long field;
 };
};

package PackageName;

public class Foo
{
 public int field;
 …
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-69

Data Types and Data Samples
Notes for Table 3.5 through Table 3.7:

1. Note that in C and C++, primitive types are not represented as native language
types (e.g. long, char, etc.) but as custom types in the DDS namespace
(DDS_Long, DDS_Char, etc.). These typedefs are used to ensure that a field’s
size is the same across platforms.

2. Some platforms do not support long double or have different sizes for that type
than defined by IDL (16 bytes). On such platforms, DDS_LongDouble (as well
as the unsigned version) is mapped to a character array that matches the
expected size of that type by default. If you are using a platform whose native
mapping has exactly the expected size, you can instruct Connext to use the native
type instead. That is, if sizeof(long double) == 16, you can tell Connext to map
DDS_LongDouble to long double by defining the following macro either in
code or on the compile line:

-DRTI_CDR_SIZEOF_LONG_DOUBLE=16

3. Unions in IDL are mapped to structs in C and C++, so that Connext will not have
to dynamically allocate memory for unions containing variable-length fields
such as strings or sequences. To be efficient, the entire struct (or class in C++/
CLI) is not sent when the union is published. Instead, Connext uses the discrimi-
nator field of the struct to decide what field in the struct is actually sent on the
wire.

valuetype

(see Note 9
and Note
10 below)

valuetype MyValueType {
 public MyValueType2 * member;
};

valuetype MyValueType {
 public MyValueType2 member;
};

valuetype MyValueType:
MyBaseValueType {

 public MyValueType2 * member;
};

public class MyValueType {
 public MyValueType2 member;
 ….
};

public class MyValueType {
 public MyValueType2 member;
 ….
};

public class MyValueType extends
MyBaseValueType

{
 public MyValueType2 member;
 ….
}

Table 3.7 Specifying Data Types in IDL for Java

IDL Type Sample Entry in IDL file Sample Java Output Generated by
rtiddsgen
3-70

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

4. So-called "anonymous sequences" —sequences of sequences in which the
sequence element has no type name of its own—are not supported. Such
sequences are deprecated in CORBA and may be removed from future versions
of IDL. For example, this is not supported:

Not
Supported—>

sequence<sequence<short,4>,4> MySequence;

Sequences of typedef’ed types, where the typedef is really a sequence, are sup-
ported. For example, this is supported:

Supported—> typedef sequence<short,4> MyShortSequence;
 sequence<MyShortSequence,4> MySequence;

5. IDL wchar and char are mapped to Java char, 16-bit unsigned quantities repre-
senting Unicode characters as specified in the standard OMG IDL to Java map-
ping. In C++/CLI, char and wchar are mapped to System::Char.

6. There are no unsigned types in Java. The unsigned version for integer types is
mapped to its signed version as specified in the standard OMG IDL to Java map-
ping.

7. There is no current support in Java for the IDL long double type. This type is
mapped to double as specified in the standard OMG IDL to Java mapping.

8. Java does not have a typedef construct, nor does C++/CLI. Typedefs for types
that are neither arrays nor sequences (struct, unions, strings, wstrings, primitive
types and enums) are "unwound" to their original type until a simple IDL type or
user-defined IDL type (of the non-typedef variety) is encountered. For typedefs
of sequences or arrays, rtiddsgen will generate wrapper classes.

9. In C and C++, all the members in a value type, structure or union that are
declared with the pointer symbol (‘*’) will be mapped to references (pointers). In
C++/CLI and Java, the pointer symbol is ignored because the members are
always mapped as references.

10. In-line nested types are not supported inside structures, unions or valuetypes.
For example, this is not supported:

Not
Supported—>

struct Outer {
 short outer_short;

 struct Inner {
 char inner_char;
 short inner_short;
 } outer_nested_inner;
 };
3-71

Data Types and Data Samples
11. The sequence <Type>Seq is implicitly declared in the IDL file and therefore it
cannot be declared explicitly by the user. For example, this is not supported:

Not
Supported—> typedef sequence<Foo> FooSeq; //error

12. Data types containing bitfield members are not supported by DynamicData
(Section 3.8).

3.3.5 Escaped Identifiers

To use an IDL keyword as an identifier, the keyword must be “escaped” by prepending
an underscore, ‘_’. In addition, you must run rtiddsgen with the -enableEscapeChar
option. For example:

struct MyStruct {
 octet _octet; // octet is a keyword. To use the type

// as a member name we add ‘_’
};

The use of ‘_’ is a purely lexical convention that turns off keyword checking. The gener-
ated code will not contain ‘_’. For example, the mapping to C would be as follows:

struct MyStruct {
 unsigned char octet;
};

Note: If you generate code from an IDL file to a language ‘X’ (for example, C++), the
keywords of this language cannot be used as IDL identifiers, even if they are escaped.
For example:

struct MyStruct {
 long int; // error
 long _int; // error
};

3.3.6 Referring to Other IDL Files

IDL files may refer to other IDL files using a syntax borrowed from C, C++, and C++/
CLI preprocessors:

#include “Bar.idl”

If such a statement is encountered by rtiddsgen and you are generating code for C, C++,
and C++/CLI, rtiddsgen will assume that code has been generated for Bar.idl with corre-
sponding header files, Bar.h and BarPlugin.h.

The generated code will automatically have:
3-72

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

#include “Bar.h”
#include “BarPlugin.h”

added where needed to compile correctly.

Because Java types do not refer to one another in the same way, it is not possible for rtid-
dsgen to automatically generate Java import statements based on an IDL #include state-
ment. Any #include statements will be ignored when Java code is generated. To add
imports to your generated Java code, you should use the //@copy directive (see
Section 3.3.8.2).

3.3.7 Preprocessor Directives

rtiddsgen supports the standard preprocessor directives defined by the IDL specification,
such as #if, #endif, #include, and #define.

To support these directives, rtiddsgen calls an external C preprocessor before parsing the
IDL file. On Windows systems, the preprocessor is ‘cl.exe.’ On other architectures, the
preprocessor is ‘cpp.’ You can change the default preprocessor with the –ppPath option.
If you do not want to run the preprocessor, use the –ppDisable option. See rtiddsgen
Command-Line Arguments (Section 3.6.1).

3.3.8 Using Custom Directives

The following rtiddsgen-specific directives can be used in your IDL file:

//@key (see Section 3.3.8.1)

//@copy (see Section 3.3.8.2)
//@copy-c
//@copy-cppcli
//@copy-java
//@copy-java-begin

//@copy-declaration
//@copy-c-declaration
//@copy-cppcli-declaration
//@copy-java-declaration

//@copy-java-declaration-begin

//@resolve-name [true | false] (see Section 3.3.8.3)

//@top-level [true | false] (see Section 3.3.8.4)
3-73

Data Types and Data Samples
Custom directives start with “//@”. Note: Do not put a space between the slashes and
the @, or the directive will not be recognized by rtiddsgen.

The directives are also case-sensitive. For instance, you must use //@key (not //@Key).

3.3.8.1 The @key Directive

To declare a key for your data type, insert the @key directive in the IDL file after one or
more fields of the data type.

With each key, Connext associates an internal 16-byte representation, called a key-hash.

If the maximum size of the serialized key is greater than 16 bytes, to generate the key-
hash, Connext computes the MD5 key-hash of the serialized key in network-byte order.
Otherwise (if the maximum size of the serialized key is <= 16 bytes), the key-hash is the
serialized key in network-byte order.

Only struct definitions in IDL may have key fields. When rtiddsgen encounters //@key, it
considers the previously declared field in the enclosing structure to be part of the key.
Table 3.8 on page 3-74 shows some examples of keys.

Table 3.8 Example Keys

Type Key Fields
struct NoKey {
 long member1;
 long member2;
}

struct SimpleKey {
 long member1; //@key
 long member2;
}

member1

struct NestedNoKey {
 SimpleKey member1;
 long member2;
}

struct NestedKey {
 SimpleKey member1; //@key
 long member2;
}

member1.member1

struct NestedKey2 {
 NoKey member1; //@key
 long member2;
}

member1.member1
member1.member2
3-74

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

3.3.8.2 The @copy and Related Directives

To copy a line of text verbatim into the generated code files, use the @copy directive in
the IDL file. This feature is particularly useful when you want your generated code to
contain text that is valid in the target programming language but is not valid IDL. It is
often used to add user comments or headers or preprocessor commands into the gener-
ated code.

//@copy // Modification History
//@copy // --------------------
//@copy // 17Jul05aaa, Created.
//@copy
//@copy // #include “MyTypes.h”

These variations allow you to use the same IDL file for multiple languages:

For example, to add import statements to generated Java code:

//@copy-java import java.util.*;

The above line would be ignored if the same IDL file was used to generate non-Java
code.

valuetype BaseValueKey {
 public long member1; //@key
}

member1

valuetype DerivedValueKey :BaseValueKey {
 public long member2; //@key
}

member1
member2

valuetype DerivedValue : BaseValueKey {
 public long member2;
}

member1

struct ArrayKey {
 long member1[3]; //@key
}

member1[0]
member1[1]
member1[2]

Table 3.8 Example Keys

Type Key Fields

@copy-c Copies code if the language is C or C++

@copy-cppcli Copies code if the language is C++/CLI

@copy-java Copies code if the language is Java.

@copy-ada Copies code if the language is Ada.
3-75

Data Types and Data Samples
In C, C++, and C++/CLI, the lines are copied into all of the “foo*.[h, c, cxx, cpp]” files
generated from “foo.idl”. For Java, the lines are copied into all of the “*.java” files that
were generated from the original “.idl” file. The lines will not be copied into any addi-
tional files that are generated using the “-example” command line option.

@copy-java-begin copies a line of text at the beginning of all the Java files generated for
a type. The directive only applies to the first type that is immediately below in the IDL
file. A similar directive for Ada files is also available, @copy-ada-begin.

If you want rtiddsgen to copy lines only into the files that declare the data types—
”foo.h” for C, C++, and C++/CLI, “foo.java” for Java—use the “//@copy*declaration”
forms of this directive.

Note that the first whitespace character to follow “//@copy” is considered a delimiter
and will not be copied into generated files. All subsequent text found on the line,
including any leading whitespaces will be copied.

3.3.8.3 The @resolve-name Directive

In IDL, the “module” keyword is used to create namespaces for the declaration of types
and classes defined within the file. Here is an example IDL definition:

module PackageName {
 struct Foo {
 long field;
 };
};

For C++ and C++/CLI, you may use the -namespace command-line option, which
causes rtiddsgen to generate a namespace, such as the following:

namespace PackageName{
typedef struct Foo {

//@copy-declaration
Copies the text into the file where the type is declared (<type>.h
for C and C++, or <type>.java for Java)

//@copy-c-declaration Same as //@copy-declaration, but for C and C++ code

//@copy-cppcli-declaration Same as //@copy-declaration, but for C++/CLI code

//@copy-java-declaration Same as //@copy-declaration, but for Java-only code

//@copy-ada-declaration Same as //@copy-declaration, but for Ada-only code

//@copy-java-declaration-
begin

Same as //@copy-java-declaration, but only copies the text into
the file where the type is declared

//@copy-ada-declaration-
begin

Same as //@copy-java-declaration-begin, but only Ada-only code
3-76

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

DDS_Long field;
} Foo;

} PackageName;

When generating C++/CLI, the -namespace option is considered to always be passed.
Module names are never prepended to class names.

For C, or if you do not use the -namespace command-line option for C++ or C++/CLI,
the name of the module is concatenated with the name of the structure to create the
namespace. The resulting code looks like this:

typedef struct PackageName_Foo {
 DDS_Long field;
} PackageName_Foo;

In Java, a Foo.java file will be created in a directory called PackageName to use the
equivalent concept as defined by Java. The file PackageName/Foo.java will contain a
declaration of Foo class:

public class Foo {
 public int field;
 ...
};

In a more complicated example, consider the following IDL definition:

module PackageName {
 struct Bar {
 long field;
 };
 struct Foo {
 Bar barField;
 };
};

When rtiddsgen generates code for the above definition, it will resolve the “Bar” type to
be within the scope of the PackageName module and automatically generate fully-qual-
ified type names.

In C or C++, if you do not use -namespace, the resulting code will be:

typedef struct PackageName_Bar {
 DDS_Long field;
} PackageName_Foo;

typedef struct PackageName_Foo {
 PackageName_Bar barField;
} PackageName_Foo;
3-77

Data Types and Data Samples
In C++, if you use -namespace, the resulting code will be:

namespace PackageName {
 typedef struct Bar {
 DDS_Long field;
 } Bar;

 typedef struct Foo
 {
 PackageName::Bar barField;
 } Foo;
}

And in Java, PackageName/Bar.java and PackageName/Foo.java would be created
with the following code respectively:

public class Bar {
 public int field;
 ...
};

and

public class Foo {
 public PackageName.Bar barField = PackageName.Bar.create();
 ...
};

However, sometimes you may not want rtiddsgen to resolve the types of variables when
modules are used. In the example above, instead of referring to the Bar as defined by the
same package, you may want the barField in Foo to use Bar directly without prepend-
ing a module name. To specify that rtiddsgen should not resolve the scope of a type, use
the ‘//@resolve-name false’ directive.

For example:

module PackageName {
 struct Bar {
 long field;
 };

 struct Foo {
 Bar barField; //@resolve-name false
 };
};
3-78

Creating User Data Types with IDL
3. U

se
r D

a
ta

 Typ
e

s

When this directive is used, then for the field preceding the directive, rtiddsgen respects
the resolution of its type name indicated in the IDL file. It will use the type unmodified
in the generated code. In C and C++:

typedef struct PackageName_Bar {
 DDS_Long field;
} PackageName_Foo;

typedef struct PackageName_Foo {
 Bar barField;
} PackageName_Foo;

And in Java, in PackageName/Bar.java and PackageName/Foo.java respectively:

public class Bar {
 public int field;
 ...
};

and

public class Foo {
 public Bar barField = Bar.create();
 ...
};

It is up to you to include the correct header files (or if using Java, to import the correct
packages) so that the compiler resolves the ‘Bar’ type correctly.

When used at the end of the declaration of a structure in IDL, then the directive applies
to all types within the structure.

struct MyStructure {
 Foo member1;

Bar member2;
}; //@resolve-name false

By default, without using the directive, rtiddsgen will try to resolve the type of a field
and to use the fully qualified name in the generated code. If the type is not found to be
defined within the same scope as the structure in which it is used or in a parent scope,
then rtiddsgen will generate code with just the type name itself, assuming that the name
will be resolved by the compiler through other means available to the user (header files
or import statements). A type is in the same scope as the structure if both the type and
the structure in which it is used are defined within the same module.
3-79

Data Types and Data Samples
3.3.8.4 The @top-level Directive

By default, rtiddsgen generates user-level type-specific methods for all structures/
unions found in an IDL file. These methods include the methods used by DataWriters
and DataReaders to send and receive data of a given type. General methods for writing
and reading that take a void pointer are not offered by Connext because they are not
type safe. Instead, type-specific methods must be created to support a particular data
type.

We use the term ‘top-level type’ to refer to the data type for which you intend to create a
DCPS Topic that can be published or subscribed to. For top-level types, rtiddsgen must
create all of the type-specific methods previously described in addition to the code to
serialize/deserialize those types. However, some of structures/unions defined in the
IDL file are only embedded within higher-level structures and are not meant to be pub-
lished or subscribed to individually. For non-top-level types, the DataWriters and
DataReaders methods to send or receive data of those types are superfluous and do not
need to be created. Although the existence of these methods is not a problem in and of
itself, code space can be saved if these methods are not generated in the first place.

You can mark non-top-level types in an IDL file with the directive ‘//@top-level false’ to
tell rtiddsgen not to generate type-specific methods. Code will still be generated to serial-
ize and deserialize those types, since they may be embedded in top-level types.

In this example, rtiddsgen will generate DataWriter/DataReader code for TopLevelStruct
only:

struct EmbeddedStruct{
 short member;
}; //@top-level false

struct TopLevelStruct{
 EmbeddedStruct member;
};

3.4 Creating User Data Types with Extensible Markup
Language (XML)
You can describe user data types with Extensible Markup Language (XML) notation.
Connext provides DTD and XSD files that describe the XML format; see
<NDDSHOME>/resource/qos_profiles_4.5x/rtiddsgen/schema/
rti_dds_topic_types.dtd and <NDDSHOME>/resource/qos_profiles_4.5x/rtiddsgen/
3-80

Creating User Data Types with Extensible Markup Language (XML)
3. U

se
r D

a
ta

 Typ
e

s

schema/rti_dds_topic_types.xsd, respectively (in 4.5x, the x stands for the version letter
of the current release).

The XML validation performed by rtiddsgen always uses the DTD definition. If the
<!DOCTYPE> tag is not in the XML file, rtiddsgen will look for the default DTD docu-
ment in <NDDSHOME>/resource/rtiddsgen/schema. Otherwise, it will use the loca-
tion specified in <!DOCTYPE>.

We recommend including a reference to the XSD/DTD files in the XML documents.
This provides helpful features in code editors such as Visual Studio® and Eclipse™,
including validation and auto-completion while you are editing the XML. We recom-
mend including the reference to the XSD document in the XML files because it provides
stricter validation and better auto-completion than the DTD document.

To include a reference to the XSD document in your XML file, use the attribute
xsi:noNamespaceSchemaLocation in the <types> tag. For example1:

<?xml version="1.0" encoding="UTF-8"?>
<types xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation=
"<same as NDDSHOME>/resource/rtiddsgen/schema/
rti_dds_topic_types.xsd">
 ...

</types>

To include a reference to the DTD document in your XML file, use the <!DOCTYPE>
tag. For example1:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE types SYSTEM

"<same as NDDSHOME>/resource/rtiddsgen/schema/
rti_dds_topic_types.dtd">

<types>
 ...
</types>

Table 3.9 shows how to map the type system constructs into XML.

1. Replace <same as NDDSHOME> with the full path to the Connext installation directory.
3-81

Data Types and Data Samples

ch

wc

oc

sh

un
sh

lon

un
lon

lon

un
lon

flo
Table 3.9 Mapping Type System Constructs to XML

Type/Construct Example

IDL XML IDL XML

ar char
struct PrimitiveStruct {

char char_member;
};

<struct name="PrimitiveStruct">
<member name="char_member"
 type="char"/>

</struct>

har wchar
struct PrimitiveStruct {

wchar wchar_member;
};

<struct name="PrimitiveStruct">
<member name="wchar_member"
 type="wchar"/>

</struct>

tet octet
struct PrimitiveStruct {

octet octet_member;
};

<struct name="PrimitiveStruct">
<member name="octet_member"
 type="octet"/>

</struct>

ort short
struct PrimitiveStruct {

short short_member;
};

<struct name="PrimitiveStruct">
<member name="short_member"
 type="short"/>

</struct>

signed
ort

unsignedShort

struct PrimitiveStruct {
unsigned short
 unsigned_short_member;

};

<struct name="PrimitiveStruct">
 <member name="unsigned_short_member"

type="unsignedShort"/>
</struct>

g long
struct PrimitiveStruct {

long long_member;
};

<struct name="PrimitiveStruct">
<member name="long_member"type="long"/>

</struct>

signed
g

unsignedLong

struct PrimitiveStruct {
unsigned long

unsigned_long_member;
};

<struct name="PrimitiveStruct">
 <member name= "unsigned_long_member"

 type="unsignedLong"/>
</struct>

g long longLong

struct PrimitiveStruct {
 long long
 long_long_member;
};

<struct name="PrimitiveStruct">
<member name="long_long_member"
 type="longLong"/>

</struct>

signed
g long

unsigned-
LongLong

struct PrimitiveStruct {
 unsigned long long
unsigned_long_long_member;
};

<struct name="PrimitiveStruct">
<member name="unsigned_long_long_member"
 type="unsignedLongLong"/>

</struct>

at float
struct PrimitiveStruct {

float float_member;
};

<struct name="PrimitiveStruct">
<member name="float_member"
 type="float"/>

</struct>
3-82

Creating User Data Types with Extensible Markup Language (XML)
3. U

se
r D

a
ta

 Typ
e

s

do

lon
ble

bo

un
d s

bo
str

un
d w

bo
ws
uble double
struct PrimitiveStruct {

double double_member;
};

<struct name="PrimitiveStruct">
<member name="double_member"
 type="double"/>

</struct>

g dou-
longDouble

struct PrimitiveStruct {
long double

long_double_member;
};

<struct name="PrimitiveStruct">
<member name= "long_double_member"
 type="longDouble"/>

</struct>

olean boolean
struct PrimitiveStruct {

boolean boolean_member;
};

<struct name="PrimitiveStruct">
<member name="boolean_member"
 type="boolean"/>

</struct>

bounde
tring

string without
stringMaxLength
attribute or with
stringMaxLength
set to -1

struct PrimitiveStruct {
string string_member;

};

<struct name="PrimitiveStruct">
<member name="string_member"
 type="string"/>

</struct>

or
<struct name="PrimitiveStruct">

<member name="string_member"
 type="string" stringMaxLength="-1"/>

</struct>

unded
ing

string with string-
MaxLength attri-
bute

struct PrimitiveStruct {
string<20> string_member;

};

<struct name="PrimitiveStruct">
<member name="string_member"
type="string" stringMaxLength="20"/>

</struct>

bounde
string

wstring without
stringMaxLength
attribute or with
stringMaxLength
set to -1

struct PrimitiveStruct {
wstring wstring_member;

};

<struct name="PrimitiveStruct">
<member name="wstring_member"
 type="wstring"/>

</struct>

or
<struct name="PrimitiveStruct">

<member name="wstring_member"
 type="wstring" stringMaxLength="-1"/>

</struct>

unded
tring

wstring with
stringMaxLength
attribute

struct PrimitiveStruct {
wstring<20>

 wstring_member;
};

<struct name="PrimitiveStruct">
<member name="wstring_member"

 type="wstring" stringMaxLength="20"/>
</struct>

Table 3.9 Mapping Type System Constructs to XML

Type/Construct Example

IDL XML IDL XML
3-83

Data Types and Data Samples

po

bit

ke
tiv

res
na
dir

top
dir
inter

pointer attribute
with values
true,false,0 or 1
 Default (if not
present): 0

struct PrimitiveStruct {
long * long_member;

};

<struct name="PointerStruct">
<member name="long_member" type="long"
 pointer="true"/>

</struct>

fielda
bitfield attribute
with the bitfield
length

struct BitfieldStruct {
short short_member: 1;
unsigned short
unsignedShort_member: 1;
short short_nmember_2: 0;
long long_member : 5;

};

<struct name="BitFieldStruct">
 <member name="short_member"
 type="short" bitField="1"/>
 <member name="unsignedShort_member"
 type="unsignedShort" bitField="1"/>
 <member type="short" bitField="0"/>
 <member name="long_member"
 type="long" bitField="5"/>
</struct>

y direc-
e b

key attribute with
values true, false,
0 or 1

Default (if not
present): 0

struct KeyedPrimitiveStruct
{
 short short_member; //@key
};

<struct name="KeyedPrimitiveStruct">
<member name="short_member"
 type="short" key="true"/>

</struct>

olve-
me
ective b

resolveName
attribute with val-
ues true, false, 0 or
1

Default (if not
present): 1

struct
UnresolvedPrimitiveStruct {

PrimitiveStruct
primitive_member;
//@resolve-name false

};

<struct name=
"UnresolvedPrimitiveStruct">
<member name="primitive_member"
 type="PrimitiveStruct"
 resolveName="false"/>

</struct>

-level
ective b

topLevel
attribute with val-
ues true, false, 0 or
1

Default (if not
present): 1

struct
TopLevelPrimitiveStruct {
 short short_member;
}; //@top-level false

<struct name="TopLevelPrimitiveStruct"
 topLevel="false">
 <member name="short_member"
 type="short"/>
</struct>

Table 3.9 Mapping Type System Constructs to XML

Type/Construct Example

IDL XML IDL XML
3-84

Creating User Data Types with Extensible Markup Language (XML)
3. U

se
r D

a
ta

 Typ
e

s

Ot
dir
b

en

co

str

un
her
ectives directive tag

//@copy This text will be
copied in the generated
files

<directive kind="copy">
This text will be copied in the
generated files

</directive>

um enum tag

enum PrimitiveEnum {
ENUM1,
ENUM2,
ENUM3

};

<enum name="PrimitiveEnum">
<enumerator name="ENUM1"/>
<enumerator name="ENUM2"/>
<enumerator name="ENUM3"/>

</enum>

enum PrimitiveEnum {
ENUM1 = 10,
ENUM2 = 20,
ENUM3 = 30

};

<enum name="PrimitiveEnum">
<enumerator name="ENUM1" value="10"/>
<enumerator name="ENUM2" value="20"/>
<enumerator name="ENUM3" value="30"/>

</enum>

nstant const tag const double PI = 3.1415;
<const name="PI" type="double"
 value="3.1415"/>

uct struct tag
struct PrimitiveStruct {
 short short_member;
};

<struct name="PrimitiveStruct">
 <member name="short_member"
 type="short"/>
</struct>

ion union tag

union PrimitiveUnion switch
(long) {

case 1:
 short short_member;

case 2:
 case 3:
 float float_member;
 default:
 long long_member;
};

<union name="PrimitiveUnion">
 <discriminator type="long"/>
 <case>
 <caseDiscriminator value="1"/>
 <member name="short_member"
 type="short"/>
 </case>
 <case>
 <caseDiscriminator value="2"/>
 <caseDiscriminator value="3"/>
 <member name="float_member"
 type="float"/>
 </case>
 <case>
 <caseDiscriminator value="default"/>
 <member name="long_member"
 type="long"/>
 </case>
</union>

Table 3.9 Mapping Type System Constructs to XML

Type/Construct Example

IDL XML IDL XML
3-85

Data Types and Data Samples

va

typ

arr

bo
seq

un
d
seq
luetype valuetype tag

valuetype BaseValueType {
 public long long_member;
};

valuetype DerivedValueType:
BaseValueType {
 public long
 long_member_2;
};

<valuetype name="BaseValueType">
 <member name="long_member"
 type="long" visibility="public"/>
</valuetype>

<valuetype name="DerivedValueType"
 baseClass="BaseValueType">
 <member name="long_member_2"
 type="long" visibility="public"/>
</valuetype>

edef typedef tag

typedef short ShortType; <typedef name="ShortType" type="short"/>

struct PrimitiveStruct {
short short_member;

};
typedef PrimitiveStruct

PrimitiveStructType;

<struct name="PrimitiveStruct">
 <member name="short_member"
 type="short"/>
</struct>

<typedef name="PrimitiveStructType"
 type="nonBasic"
 nonBasicTypeName="PrimitiveStruct"/>

ays
Attribute
arrayDimensions

struct OneArrayStruct {
short short_array[2];

};

<struct name="OneArrayStruct">
<member name="short_array"
type="short" arrayDimensions="2"/>

</struct>

struct TwoArrayStruct {
short short_array[1][2];

};

<struct name="TwoArrayStruct">
<member name="short_array"
type="short" arrayDimensions="1,2"/>

</struct>

unded
uence

Attribute
sequence-
MaxLength > 0

struct SequenceStruct {
sequence<short,4>

short_sequence;
};

<struct name="SequenceStruct">
<member name="short_sequence"
 type="short"

 sequenceMaxLength="4"/>
</struct>

bounde

uence

Attribute
sequence-
MaxLength set to -
1

struct SequenceStruct {
sequence<short>

short_sequence;
};

<struct name="SequenceStruct">
<member name="short_sequence"
 type="short" sequenceMaxLength="-1"/>

</struct>

Table 3.9 Mapping Type System Constructs to XML

Type/Construct Example

IDL XML IDL XML
3-86

Creating User Data Types with Extensible Markup Language (XML)
3. U

se
r D

a
ta

 Typ
e

s

arr
seq

seq
of

seq
of
seq

mo

inc
ay of
uences

Attributes
sequence-
MaxLength
And arrayDimen-
sions

struct
ArrayOfSequencesStruct {
 sequence<short,4>
 short_sequence_array[2];
};

<struct name= "ArrayOfSequenceStruct">
 <member name= "short_sequence_array"
 type="short" arrayDimensions="2"
 sequenceMaxLength="4"/>
</struct>

uence
arrays

Must be imple-
mented with a
typedef tag

typedef short
 ShortArray[2];

struct
SequenceOfArraysStruct {

sequence<ShortArray,2>
short_array_sequence;

};

<typedef name="ShortArray"
 type="short" dimensions="2"/>

<struct name=
"SequenceOfArrayStruct">

 <member name= "short_array_sequence"
 type="nonBasic"
 nonBasicTypeName="ShortSequence"
 sequenceMaxLength="2"/>
</struct>

uence

uences

Must be imple-
mented with a
typedef tag

typedef sequence<short,4>
ShortSequence;

struct
SequenceOfSequencesStruct
{
 sequence<ShortSequence,2>
 short_sequence_sequence;
};

<typedef name="ShortSequence"
 type="short"sequenceMaxLength="4"/>
<struct name="SequenceofSequencesStruct">
 <member name="short_sequence_sequence"
 type="nonBasic"
 nonBasicTypeName="ShortSequence"
 sequenceMax-Length="2"/>
</struct>

dule module tag

module PackageName {
struct PrimitiveStruct {

long long_member;
};

};

<module name="PackageName">
<struct name="PrimitiveStruct">
<member name="long_member" type="long"/>
</struct>

</module>

lude include tag #include
 "PrimitiveTypes.idl"

<include file="PrimitiveTypes.xml"/>

a. Data types containing bitfield members are not supported by DynamicData (Section 3.8).
b. Directives are RTI extensions to the standard IDL grammar. For additional information about directives see Using Custom
Directives (Section 3.3.8).

Table 3.9 Mapping Type System Constructs to XML

Type/Construct Example

IDL XML IDL XML
3-87

Data Types and Data Samples
3.5 Creating User Data Types with XML Schemas (XSD)
You can describe data types with XML schemas (XSD), either independent or embedded
in a Web Services Description Language (WSDL) file. The format is based on the stan-
dard IDL-to-WSDL mapping described in the OMG document "CORBA to WSDL/
SOAP Interworking Specification." Defining a mapping between IDL and WSDL types
enables integration between Connext and Web Services Technologies using WSDL.

Example Header for XSD:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dds="http://www.omg.org/dds"
 xmlns:tns="http://www.omg.org/IDL-Mapped/"
 targetNamespace="http://www.omg.org/IDL-Mapped/">
<xsd:import namespace="http://www.omg.org/dds"
 schemaLocation="rti_dds_topic_types_common.xsd"/>

……

</xsd:schema>

Example Header for WSDL:

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:dds="http://www.omg.org/dds"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.omg.org/IDL-Mapped/"
 targetNamespace="http://www.omg.org/IDL-Mapped/">
 <types>
 <xsd:schema targetNamespace="http://www.omg.org/IDL-Mapped/">
 <xsd:import namespace="http://www.omg.org/dds"
 schemaLocation="rti_dds_topic_types_common.xsd"/>
……

 </xsd:schema>
 </types>
</definitions>

Table 3.10 describes how to map IDL types to XSD. The Connext code generator, rtidds-
gen, will only accept XSD or WSDL files that follow this mapping.
3-88

Creating User Data Types with XML Schemas (XSD)
3. U

se
r D

a
ta

 Typ
e

s

Ty

IDL

char

wchar

octet

short

unsigned
short

long
Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD

dds:chara
struct PrimitiveStruct {
 char char_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="char_member"
 minOccurs="1" maxOccurs="1"

 type="dds:char">
</xsd:sequence>

</xsd:complexType>

dds:wchara
struct PrimitiveStruct {
 wchar wchar_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="wchar_member"
 minOccurs="1" maxOccurs="1"
 type="dds:wchar">

</xsd:sequence>
</xsd:complexType>

xsd:unsignedByte
struct PrimitiveStruct {
 octet octet_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="octet_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:unsignedByte">

</xsd:sequence>
</xsd:complexType>

xsd:short
struct PrimitiveStruct {
 short short_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"

 type="xsd:short"/>
</xsd:sequence>

</xsd:complexType>

xsd:unsignedShort

struct PrimitiveStruct {
 unsigned short
unsigned_short_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
<xsd:element name="unsigned_short_member"

 minOccurs="1" maxOccurs="1"
 type="xsd:unsignedShort"/>
</xsd:sequence>

</xsd:complexType>

xsd:int
struct PrimitiveStruct {
 long long_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>
3-89

Data Types and Data Samples

unsigned
long

long long

unsigned
long long

float

double

Ty

IDL
xsd:unsignedInt

struct PrimitiveStruct {
 unsigned long
unsigned_long_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name= "unsigned_long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:unsignedInt"/>

</xsd:sequence>
</xsd:complexType>

xsd:long

struct PrimitiveStruct {
 long long
long_long_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:elementname= "long_long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:long"/>

</xsd:sequence>
</xsd:complexType>

xsd:unsignedLong

struct PrimitiveStruct {
 unsigned long long
unsigned_long_long_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name=
 "unsigned_long_long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:unsignedLong"/>

</xsd:sequence>
</xsd:complexType>

xsd:float
struct PrimitiveStruct {
 float float_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="float_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:float"/>

</xsd:sequence>
</xsd:complexType>

xsd:double
struct PrimitiveStruct {
 double double_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="double_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:double"/>

</xsd:sequence>
</xsd:complexType>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-90

Creating User Data Types with XML Schemas (XSD)
3. U

se
r D

a
ta

 Typ
e

s

long
double

boolean

unbound
string

bounded
string

unbound
wstring

Ty

IDL
dds:longDoublea

struct PrimitiveStruct {
 long double
long_double_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="long_double_member"
 minOccurs="1" maxOccurs="1"
 type="dds:longDouble"/>

</xsd:sequence>
</xsd:complexType>

xsd:boolean

struct PrimitiveStruct {
 boolean
boolean_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="boolean_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:boolean"/>

</xsd:sequence>
</xsd:complexType>

ed
xsd:string

struct PrimitiveStruct {
 string string_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>
<xsd:element name="string_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

xsd:string with
restriction to spec-
ify the maximum
length

struct PrimitiveStruct {
 string<20> string_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="string_member"
 minOccurs="1" maxOccurs="1">
 <xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"
 fixed="true"/>

</xsd:restriction>
 </xsd:simpleType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

ed
dds:wstringa

struct PrimitiveStruct {
 wstring wstring_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="wstring_member"
 minOccurs="1" maxOccurs="1"
 type="dds:wstring"/>

</xsd:sequence>
</xsd:complexType>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-91

Data Types and Data Samples

bounded
wstring

pointer

bitfieldb

Ty

IDL
xsd:wstring with
restriction to spec-
ify the maximum
length

struct PrimitiveStruct {
 wstring<20>
 wstring_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="wstring_member"
 minOccurs="1" maxOccurs="1">

<xsd:simpleType>
<xsd:restriction base=

 "dds:wstring">
<xsd:maxLength value="20"
 fixed="true"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

<!-- @pointer
<true|false|1|0>
-->
Default (if not
specified): false

struct PrimitiveStruct {
 long * long_member;
};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:int"/>
<!-- @pointer true -->

</xsd:sequence>
</xsd:complexType>

<!-- @bitField
 <bitfield length>
-->

struct BitfieldStruct {
 short short_member: 1;
 unsigned short
 unsignedShort_member: 1;
 short: 0;
 long long_member: 5;
};

<xsd:complexType name="BitfieldStruct">
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:short"/>
<!-- @bitField 1 -->
<xsd:element name=‘unsignedShort_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:unsignedShort"/>
<!-- @bitField 1 -->
<xsd:element name="_ANONYMOUS_3"

 minOccurs="1" maxOccurs="1"
 type="xsd:short"/>
<!-- @bitField 0 -->
<xsd:element name="long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:int"/>
<!-- @bitField 5 -->

</xsd:sequence>
</xsd:complexType>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-92

Creating User Data Types with XML Schemas (XSD)
3. U

se
r D

a
ta

 Typ
e

s

key
directivec

resolve-
name di
tivec

top-level
directivec

other
directives

Ty

IDL

<!-- @key

<true|false|1|0>
-->

Default (if not
specified): false

struct
KeyedPrimitiveStruct {
 long long_member; //@key
};

<xsd:complexType name="KeyedPrimitiveStruct">
<xsd:sequence>

<xsd:element name="long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:int"/>
<!-- @key true -->

</xsd:sequence>
</xsd:complexType>

rec-

<!-- @resolve-
Name
 <true|false|1|0>
-->

Default (if not
specified): true

struct
UnresolvedPrimitiveStruct
{
PrimitiveStruct

primitive_member;
//@resolve-name false

};

<xsd:complexType name=
 "UnresolvedPrimitiveStruct">
<xsd:sequence>

<xsd:element name="primitive_member"
 minOccurs="1" maxOccurs="1"
 type="PrimitiveStruct"/>
<!-- @resolveName false -->

</xsd:sequence>
</xsd:complexType>

<!-- @topLevel
<true|false|1|0>
-->

Default (if not
specified): true

struct
TopLevelPrimitiveStruct {
short short_member;

}; //@top-level false

<xsd:complexType
 name="TopLevelPrimitiveStruct">
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:short"/>

</xsd:sequence>
</xsd:complexType>
<!-- @topLevel false -->

c

<!--
 @<directive
kind>
 <value>
-->

//@copy This text will be
copied in the generated
files

<!--@copy This text will be copied in the
 generated files -->

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-93

Data Types and Data Samples

enum

constant

struct

Ty

IDL
xsd:simpleType
with enumeration

enum PrimitiveEnum {
 ENUM1,
 ENUM2,
 ENUM3
};

enum PrimitiveEnum {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
};

<xsd:simpleType name="PrimitiveEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ENUM1"/>
 <xsd:enumeration value="ENUM2"/>
 <xsd:enumeration value="ENUM3"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="PrimitiveEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ENUM1">
 <xsd:annotation>
 <xsd:appinfo>
 <ordinal>10</ordinal>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="ENUM2">
 <xsd:annotation>
 <xsd:appinfo>
 <ordinal>20</ordinal>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="ENUM3">
 <xsd:annotation>
 <xsd:appinfo>
 <ordinal>30</ordinal>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
</xsd:simpleType>

IDL constants are mapped by substituting their value directly in the generated file

xsd:complexType
with xsd:sequence

struct PrimitiveStruct {
short short_member;

};

<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"

 type="xsd:short"/>
</xsd:sequence>

</xsd:complexType>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-94

Creating User Data Types with XML Schemas (XSD)
3. U

se
r D

a
ta

 Typ
e

s

union

Ty

IDL
xsd:complexType
with xsd:choice

union PrimitiveUnion
switch (long) {
case 1:
 short short_member;
default:
 long long_member;

};

<xsd:complexType name="PrimitiveUnion">
 <xsd:sequence>
 <xsd:element name="discriminator"
 type="xsd:int"/>
 <xsd:choice>
 <!-- case 1 -->d

 <xsd:element name="short_member"
 minOccurs="0" maxOccurs="1"
 type="xsd:short">
 <xsd:annotation>
 <xsd:appinfo>
 <case>1</case>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <!-- case default -->
 <xsd:element name="long_member"
 minOccurs="0" maxOccurs="1"
 type="xsd:int">
 <xsd:annotation>
 <xsd:appinfo>
 <case>default</case>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </xsd:choice>
 </xsd:sequence>
</xsd:complexType>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-95

Data Types and Data Samples

valuetype

Ty

IDL
xsd:complexType
with @valuetype
directive

valuetype BaseValueType {
public long

long_member;
};

valuetype
DerivedValueType:
BaseValueType {
public long

long_member2;
public long

long_member3;
};

<xsd:complexType name="BaseValueType">
<xsd:sequence>

<xsd:element name=”long_member"
 maxOccurs="1" minOccurs="1"
 type="xs:int"/>
 <!-- @visibility public -->

</xsd:sequence>
</xs:complexType>
<!-- @valuetype true -->

<xs:complexType name="DerivedValueType">
<xs:complexContent>

<xs:extension base="BaseValueType">
<xs:sequence>

<xs:element name= "long_member2"
 maxOccurs="1" minOccurs="1"
 type="xs:int"/>
<!-- @visibility public -->
<xs:element name= "long_member3"

 maxOccurs="1" minOccurs="1"
 type="xs:int"/>
<!-- @visibility public -->

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<!-- @valuetype true -->

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-96

Creating User Data Types with XML Schemas (XSD)
3. U

se
r D

a
ta

 Typ
e

s

typedef

Ty

IDL
Type definitions
are mapped to
XML schema type
restrictions

typedef short ShortType;

struct PrimitiveStruct {
 short short_member;
};

typedef PrimitiveType
PrimitiveStructType;

<xsd:simpleType name="ShortType">
<xsd:restriction base="xsd:short"/>

</xsd:simpleType>

<!—- Struct definition -->
<xsd:complexType name="PrimitiveStruct">
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:short"/>

</xsd:sequence>
</xsd:complexType>

<!—- Typedef definition -->
<xsd:complexType
 name="PrimitiveTypeStructType">
<xsd:complexContent>

<xsd:restriction base=”PrimitiveStruct”>
<xsd:sequence>

<xsd:element name="short_member"
 minOccurs="1" maxOccurs="1"

 type="xsd:short"/>
</xsd:sequence>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-97

Data Types and Data Samples

arrays

Ty

IDL
n xsd:complex-
Type with
sequence contain-
ing one element
with min & max
occurs

There is one
xsd:complexType
per array dimen-
sion

struct OneArrayStruct {
 short short_array[2];
};

<!-- Array type -->
<xsd:complexType name=
 "OneArrayStruct_short_array_ArrayOfShort">
<xsd:sequence>
<xsd:element name="item" minOccurs="2"
 maxOccurs="2" type="xsd:short">
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<!-- Struct w unidimensional array member -->
<xsd:complexType name="OneArrayStruct">
<xsd:sequence>
<xsd:element name="short_array"
 minOccurs="1" maxOccurs="1"
 type=
 "OneArrayStruct_short_array_ArrayOfShort"/>
</xsd:sequence>
</xsd:complexType>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-98

Creating User Data Types with XML Schemas (XSD)
3. U

se
r D

a
ta

 Typ
e

sarrays
(cont’d)

">

/>

Ty

IDL
n xsd:complex-
Type with
sequence contain-
ing one element
with min & max
occurs

There is one
xsd:complexType
per array dimen-
sion

struct TwoArrayStruct {
 short short_array[2][1];
};

<!--Second dimension array type -->
<xsd:complexType name=
 "TwoArrayStruct_short_array_ArrayOfShort">

<xsd:sequence>
<xsd:element name="item" minOccurs="2"
 maxOccurs="2" type="xsd:short">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

<!-- First dimension array type -->
<xsd:complexType name=
 "TwoArrayStruct_short_array_ArrayOfArrayOfShort

<xsd:sequence>
<xsd:element name="item"
 minOccurs="1" maxOccurs="1"

 type=
 "TwoArrayStruct_short_array_ArrayOfShort">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!--Struct containing a bidimensional array
 member -->
<xsd:complexType name="TwoArrayStruct">

<xsd:sequence>
<xsd:element name="short_array"
 minOccurs="1" maxOccurs="1"

 type=
"TwoArrayStruct_short_array_ArrayOfArrayOfShort"

</xsd:sequence>
</xsd:complexType>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-99

Data Types and Data Samples

bounded
sequence

>

/>

unbound
sequence

>

/>

Ty

IDL
xsd:complexType
with sequence
containing one ele-
ment with min &
max occurs

struct SequenceStruct {
sequence<short,4>
 short_sequence;

};

<!-- Sequence type -->
<xsd:complexType name=
"SequenceStruct_short_sequence_SequenceOfShort"
<xsd:sequence>

<xsd:element name="item" minOccurs="0"
 maxOccurs="4" type="xsd:short">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

<!-- Struct containing a bounded sequence
 member -->
<xsd:complexType name="SequenceStruct">
<xsd:sequence>

<xsd:element name="short_sequence"
 minOccurs="1" maxOccurs="1"
 type=

"SequenceStruct_short_sequence_SequenceOfShort"
</xsd:sequence>

</xsd:complexType>

-ed

xsd:complexType
with sequence
containing one ele-
ment with min &
max occurs

struct SequenceStruct {
sequence<short>
 short_sequence;

};

<!-- Sequence type -->
<xsd:complexType name=
"SequenceStruct_short_sequence_SequenceOfShort"
<xsd:sequence>
 <xsd:element name="item"

 minOccurs="0" maxOccurs="unbounded"
 type="xsd:short"/>
</xsd:sequence>

</xsd:complexType>

<!-- Struct containing an unbounded sequence
 member -->
<xsd:complexType name="SequenceStruct">
<xsd:sequence>

<xsd:element name="short_sequence"
 minOccurs="1" maxOccurs="1"

 type=
"SequenceStruct_short_sequence_SequenceOfShort"
</xsd:sequence>

</xsd:complexType>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-100

Creating User Data Types with XML Schemas (XSD)
3. U

se
r D

a
ta

 Typ
e

s

array
sequence

Of

Of

Ty

IDL
of
s

n + 1 xsd:complex-
Type with
sequence contain-
ing one element
with min & max
occurs

There is one
xsd:complexType
per array dimen-
sion and one
xsd:complexType
for the sequence

struct
ArrayOfSequencesStruct {
sequence<short,4>

 sequence_sequence[2];
};

<!-- Sequence declaration -->
<xsd:complexType
 name=
"ArrayOfSequencesStruct_sequence_array_Sequence
Short">
 <xsd:sequence>
 <xsd:element name="item"
 minOccurs="0" maxOccurs="4"
 type="xsd:short">
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<!-- Array declaration -->
<xsd:complexType
 name=
"ArrayOfSequencesStruct_sequence_array_ArrayOf
SequenceOfShort">
 <xsd:sequence>
 <xsd:element name="item"
 minOccurs="2" maxOccurs="2"
 type=
"ArrayOfSequencesStruct_sequence_array_Sequence
Short">
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<!-- Structure containing a member that is an
 array of sequences -->
<xsd:complexType name="ArrayOfSequencesStruct">
 <xsd:sequence>
 <xsd:element name="sequence_array"
 minOccurs="1" maxOccurs="1"
 type=
"ArrayOfSequencesStruct_sequence_array_ArrayOf
SequenceOfShort"/>
 </xsd:sequence>
</xsd:complexType>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-101

Data Types and Data Samples

sequence
arrays

eO

ce

Ty

IDL
 of

Sequences of
arrays must be
implemented
using an explicit
type definition
(typedef) for the
array

typedef short
ShortArray[2];

struct
SequenceOfArraysStruct {
sequence<ShortArray,2>

 arrays_sequence;
};

<!-- Array declaration -->
<xsd:complexType name="ShortArray">
<xsd:sequence>

<xsd:element name="item"
 minOccurs="2" maxOccurs="2"
 type="xsd:short">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Sequence declaration -->
<xsd:complexType name=
"SequencesOfArraysStruct_array_sequence_Sequenc
fShortArray">
<xsd:sequence>

<xsd:element name="item"
 minOccurs="0" maxOccurs="2"
 type="ShortArray">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Struct containing a sequence of arrays -->
<xsd:complexType name="SequenceOfArraysStruct">
<xsd:sequence>

<xsd:element name="arrays_sequence"
 minOccurs="1" maxOccurs="1"

 type=
"SequencesOfArraysStruct_arrays_sequence_Sequen
OfShortArray"/>
</xsd:sequence>

</xsd:complexType>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-102

Creating User Data Types with XML Schemas (XSD)
3. U

se
r D

a
ta

 Typ
e

ssequence
sequence

ce

->

/>

module

include

Ty

IDL
 of
s

Sequences of
sequences must be
implemented
using an explicit
type definition
(typedef) for the
second sequence

typedef sequence<short,4>
ShortSequence;

struct
SequenceOfSequences {
sequence<ShortSequence, 2>

sequences_sequence;
};

<!-- Internal sequence declaration -->
<xsd:complexType name="ShortSequence">
<xsd:sequence>

<xsd:element name="item"
 minOccurs="0" maxOccurs="4"
 type="xsd:short">
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<!-- External sequence declaration -->
<xsd:complexType name=
"SequencesOfSequences_sequences_sequence_Sequen
OfShortSequence">
 <xsd:sequence>
 <xsd:element name="item"
 minOccurs="0" maxOccurs="2"
 type="ShortSequence">
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<!--Struct containing a sequence of sequences -
<xsd:complexType name="SequenceOfSequences">
 <xsd:sequence>
 <xsd:element name="sequences_sequence"
 minOccurs="1" maxOccurs="1"
 type="SequencesOfSequences_
 sequences_sequence_SequenceOfShortSequence"
 </xsd:sequence>
</xsd:complexType>

Modules are
mapped adding
the name of the
module before the
name of each type
inside the module

module PackageName {
 struct PrimitiveStruct {

long long_member;
};

};

<xsd:complexType name=
 "PackageName.PrimitiveStruct">
 <xsd:sequence>
 <xsd:element name="long_member"
 minOccurs="1" maxOccurs="1"
 type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>

xsd:include #include
"PrimitiveType.idl"

<xsd:include schemaLocation=
 "PrimitiveType.xsd"/>

Table 3.10 Mapping Type System Constructs to XSD

pe/Construct Example

XSD IDL XSD
3-103

Data Types and Data Samples

a. All fil tive
Types (S
b. Data
c. Direc Sec-
tion 3.3
d. The g
annotat
3.5.1 Primitive Types

The primitive types char, wchar, long double, and wstring are not supported natively in
XSD. Connext provides definitions for these types in the file <NDDSHOME>/resource/
rtiddsgen/schema/rti_dds_topic_types_common.xsd. All files that use the primitive types
char, wchar, long double and wstring must reference rti_dds_topic_types_common.xsd.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dds="http://www.omg.org/dds">

<xsd:import namespace="http://www.omg.org/dds"
 schemaLocation="rti_dds_topic_types_common.xsd"/>
<xsd:complexType name="Foo">

<xsd:sequence>
<xsd:element name="myChar" minOccurs="1"
 maxOccurs="1" type="dds:char"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

3.6 Using rtiddsgen
The rtiddsgen utility provided by Connext creates the code needed to define and register
a user data type with Connext. Using this tool is optional if:

❏ You are using dynamic types (see Managing Memory for Built-in Types (Section
3.2.8))

❏ You are using one of the built-in types (see Built-in Data Types (Section 3.2))

To use rtiddsgen, you must supply a description of the type in an IDL, XML, XSD, or
WSDL file. The supported syntax for each one of the notations is described in

es that use the primitive types char, wchar, long double and wstring must reference rti_dds_topic_types_common.xsd. See Primi
ection 3.5.1).

types containing bitfield members are not supported by DynamicData (Section 3.8).
tives are RTI extensions to the standard IDL grammar. For additional information about directives see Using Custom Directives (
.8).
discriminant values can be described using comments (as specified by the standard) or xsd:annotation tags. We recommend usin
ions because comments may be removed by XSD/XML parsers.
3-104

Using rtiddsgen
3. U

se
r D

a
ta

 Typ
e

s

Section 3.8.5.1 (IDL), Section 3.4 (XML) and Section 3.5 (XSD and WSDL). You can
define multiple data types in the same type-definition file.

Table 3.11 on page 3-105 (for C, C++, and C++/CLI and C#) and Table 3.12 on page 3-
106 (for Java) show the files that rtiddsgen creates for an example IDL file called
Hello.idl. (The file extension will depend on the chosen language: .c for C, .cxx for
C++, .cpp for C++/CLI, .cs for C#.)

On Windows systems: Before running rtiddsgen, run VCVARS32.BAT in the same com-
mand prompt that you will use to run rtiddsgen.

Table 3.11 Files Created by rtiddsgen for C, C++, C++/CLI, C# for Example “Hello.idl”

Generated Files Description

Required files for the user data type. The source files should be compiled and linked with the user applica-
tion. The header files are required to use the data type in source.
You should not modify these files unless you intend to customize the generated code supporting your type.

Hello.[c,cxx, cpp]
HelloSupport.[c, cxx, cpp]
HelloPlugin.[c,cxx, cpp]

Generated code for the data types. These files contain the implementa-
tion for your data types.

Hello.h
HelloSupport.h
HelloPlugin.h

Header files that contain declarations used in the implementation of
your data types.

Optional files generated when you use the “-example <arch>” command-line option.
You may modify and use these files as a way to create simple applications that publish or subscribe to the
user data type.

Hello_publisher.[c, cxx, cpp, cs]

Example code for an application that publishes the user data type. This
example shows the basic steps to create all of the Connext objects needed
to send data.
You will need to modify the code to set and change the values being sent
in the data structure. Otherwise, just compile and run.

Hello_subscriber.[c, cxx, cpp,cs]

Example code for an application that subscribes to the user data type.
This example shows the basic steps to create all of the Connext objects
needed to receive data using a “listener” function.
No modification of this file is required. It is ready for you to compile and
run.

Hello.dsw or Hello.sln,
Hello_publisher.dsp or
Hello_publisher.vcproj,
Hello_subscriber.dsp or
Hello_subscriber.vcproj

Microsoft Visual C++ or Visual Studio .NET Project workspace and proj-
ect files, generated only for “i86Win32” architectures. To compile the
generated source code, open the workspace file and build the two proj-
ects.
3-105

Data Types and Data Samples
makefile_Hello_<architecture>
Makefile for non-Windows-based architectures. An example <architec-
ture> would be linux2.4gcc3.2.2.

Table 3.12 Files Created by rtiddsgen for Java for Example “Hello.idl”

Data Type Generated Files Description

Since the Java language requires individual files to be created for each class, rtiddsgen will generate a
source file for every IDL construct that translates into a class in Java.

Constants <Name>.java Class associated with the constant

Enums <Name>.java Class associated with enum type

Structures/
Unions

<Name>.java
<Name>Seq.java
<Name>DataReader.java
<Name>DataWriter.java
<Name>TypeSupport.java

Structure/Union class
Sequence class
Connext DataReader and DataWriter classes
Support (serialize, deserialize, etc.) class

Typedef of
sequences
or arrays

<Name>.java
<Name>Seq.java
<Name>TypeSupport.java

Wrapper class
Sequence class
Support (serialize, deserialize, etc.) class

Optional files generated when you use the “-example <arch>” command-line option. You may modify and
use these files as a way to create simple applications that publish or subscribe to the user data type.

Structures/
Unions

<Name>Publisher.java
<Name>Subscriber.java

Example code for applications that publish or subscribe to
the user data type. You should modify the code in the pub-
lisher application to set and change the value of the pub-
lished data. Otherwise, both files should be ready to
compile and run.

makefile_Hello_<architecture>
Makefile for non-Windows-based architectures. An exam-
ple <architecture> is linux2.4gcc3.2.2.

Structures/
Unions/
Typedefs/
Enums

<Name>TypeCode.java
(Note: this is not generated if
you use -notypecode)

Type code class associated with the IDL type given by
<Name>.

Table 3.11 Files Created by rtiddsgen for C, C++, C++/CLI, C# for Example “Hello.idl”

Generated Files Description
3-106

Using rtiddsgen
3. U

se
r D

a
ta

 Typ
e

s

NOTE: Before using an rtiddsgen-generated makefile to compile an application, make
sure the ${NDDSHOME} environment variable is set as described in the Getting Started
Guide. For INTEGRITY architectures, ${NDDSHOME} must be set when generating the
project files.

3.6.1 rtiddsgen Command-Line Arguments

There are several command-line options you can pass to rtiddsgen:

rtiddsgen [-d <outdir>]
 [-language <C|C++|Java|C++/CLI|C#|Ada>]
 [-namespace] (C++ only)
 [-package <packagePrefix>] (Java only)
 [-example <arch>]
 [-replace]
 [-debug]

Note: CORBA
support requires
the RTI CORBA
Compatibility
Kit

 [-corba [client header file]] [-orb \<CORBA ORB\>]]
 [-optimization <level of optimization>]
 [-stringSize <Unbounded strings size>]
 [-sequenceSize <Unbounded sequences size>]
 [-notypecode]
 [-ppDisable]
 [-ppPath <preprocessor executable>]
 [-ppOption <option>]
 [-D <name>[=<value>]]
 [-U <name>]
 [-I <directory>]
 [-noCopyable]
 [-use42eAlignment]
 [-enableEscapeChar]
 [-typeSequenceSuffix <Suffix>]
 [-dataReaderSuffix <Suffix>]

 [-dataWriterSuffix <Suffix>]
 [-convertToXml |
 -convertToXsd |
 -convertToWsdl |
 -convertToIdl]
 [-convertToCcl]
 [-convertToCcs]
 [-expandOctetSeq]
 [-expandCharSeq]
 [-version]
 [-help]

 [-verbosity [1-3]]
3-107

Data Types and Data Samples
 [[-inputIdl] <IDLInputFile.idl> |
 [-inputXml] <XMLInputFile.xml> |
 [-inputXsd] <XSDInputFile.xsd> |
 [-inputWsdl] <WSDLInputFile.wsdl>]

Table 3.13 describes the options (in alphabetical order).

Table 3.13 Options for rtiddsgen

Option Description

-convertToCcl
Converts the input type description file into CCL format. This option creates a
new file with the same name as the input file and a .ccl extension.

-convertToCcs
Converts the input type description file into CCs format. This option creates a
new file with the same name as the input file and a .ccs extension.

-convertToIdl
Converts the input type description file into IDL format. This option creates a
new file with the same name as the input file and a .idl extension.

-convertToWsdl
Converts the input type description file into WSDL format. This option creates
a new file with the same name as the input file and a .wsdl extension.

-convertToXml
Converts the input type description file into XML format. This option creates a
new file with the same name as the input file and a .xml extension.

-convertToXsd
Converts the input type description file into XSD format. This option creates a
new file with the same name as the input file and a .xsd extension.

-corba
This option is only available when using the RTI CORBA Compatibility Kit for
Connext (available for purchase as a separate product). Please see Part 6: RTI
CORBA Compatibility Kit.

-D <name>[=<value>]
Defines preprocessor macros.
Note: On Windows systems, enclose the argument in quotation marks:
-D "<name>[=<value>]"

-d
Generates the output in the specified directory. By default, rtiddsgen will gener-
ate files in the directory where the input type-definition file is found.

-dataReaderSuffix <suffix>
Assigns a suffix to the name of a DataReader interface. Only applies if -corba is
also specified. By default, the suffix is 'DataReader'. Therefore, given the type
'Foo' the name of the DataReader interface will be 'FooDataReader'.

-dataWriterSuffix <suffix>
Assigns a suffix to the name of a DataWriter interface. Only applies if -corba is
also specified. By default, the suffix is 'DataWriter'. Therefore, given the type
'Foo' the name of the DataWriter interface will be 'FooDataWriter'.

-debug
Creates XML files for debugging rtiddsgen only. Use this option only at the
direction of RTI support; it is unlikely to be useful to you otherwise.
3-108

Using rtiddsgen
3. U

se
r D

a
ta

 Typ
e

s

-enableEscapeChar
Enables use of the escape character '_' in IDL identifiers. When -corba is used,
this option is always enabled.

-example <arch>

 Generates example application code and makefiles (for UNIX-based systems)
or workspace and project files (for Windows systems) based on the type-defi-
nition file. The parameter specifies the architecture for the example makefiles.
Valid options for <arch> are listed in the Platform Notes.

-expandOctetSeq
 When converting to CCS or CCL files, expand octet sequences. The default is
to use a blob type.

-expandCharSeq
When converting to CCS or CCL files, expand char sequences. The default is to
use a string type.

-I <directory>
Adds to the list of directories to be searched for type-definition files (IDL,
XML, XSD or WSDL files). Note: A type-definition file in one format cannot
include a file in another format.

-inputIdl Indicates that the input file is an IDL file, regardless of the file extension.

-inputWsdl Indicates that the input file is a WSDL file, regardless of the file extension.

-inputXml Indicates that the input file is a XML file, regardless of the file extension.

-inputXsd Indicates that the input file is a XSD file, regardless of the file extension.

IDLInputFile.idl
File containing IDL descriptions of your data types. If -inputIdl is not used,
the file must have a ‘.idl’ extension.

-help Prints out the command line options for rtiddsgen.

-language
Specifies the language to use for the generated files. The default language is
C++; you can also choose C, C++/CLI, C#, Java, or Ada.

-metp
Generates code for the Multi-Encapsulation Type Support (METP) library.
The METP library requires a special version of Connext; please contact sup-
port@rti.com for more information.

-namespace
Specifies the use of C++ namespace. (For C++ only. For C++/CLI and C#, it is
implied-namespaces are always used.)

-noCopyable

Forces rtiddsgen to put ‘copy’ logic into the corresponding TypeSupport class
rather than the type itself. This option is only used for Java code generation.
This option is not compatible with the use of ndds_standalone_type.jar (see
Section 3.7). Note that when generating code for Java, the -corba option
implies the -noCopyable option (whether or not you specify -noCopyable).a

Table 3.13 Options for rtiddsgen

Option Description
3-109

Data Types and Data Samples
-notypecode

Disables type-code support. By using this option, you can generate code that
can be used in a standalone manner—see Using Generated Types without
Connext (Standalone) (Section 3.7).
Note: If you are using a large data type (more than 64 K) and type code sup-
port, you will see a warning when type code information is sent. Connext has a
type code size limit of 64K. To avoid the warning when working with data
types with type codes larger than 64K, turn off type code support by using -
notypecode.

-replace
Allows rtiddsgen to overwrite any existing generated files. If it is not present
and existing files are found, rtiddsgen will print a warning but will not over-
write them.

-optimization See Optimizing Typedefs (-optimization) (Section 3.6.1.1 on Page 3-111)

-orb

Specifies the CORBA ORB. The majority of code generated is independent of
the ORB. However, for some IDL features the code generated depends on the
ORB. rtiddsgen generates code compatible with ACE-TAO or JacORB. To select
an ACE_TAO version use the -orb parameter. The default is ACE_TAO1.6.
This option can only be used with the -corba option.

-package
Specifies the root package into which generated classes will be placed. It
applies to Java only. If the type-definition file contains module declarations,
those modules will be considered subpackages of the package specified here.

-ppDisable Disables the preprocessor.

-ppOption <option>
Specifies a preprocessor option. This parameter can be used multiple times to
provide the command-line options for the specified preprocessor. See -ppPath.

-ppPath
 <preprocessor
 executable>

Specifies the preprocessor. If you only specify the name of an executable (not a
complete path to that executable), the executable must be found in your Path.
The default value is "cpp" for non-Windows architectures and "cl.exe" for Win-
dows architectures.If you use -ppPath to provide the full path and filename for
cl.exe or the cpp preprocessor, you must also use -ppOption (described below)
to set the following preprocessor options:
If you use a non-default path for cl.exe, you also need to set:
 -ppOption /nologo -ppOption /C -ppOption /E -ppOption /X

If you use a non-default path for cpp, you also need to set:
 -ppOption -C

-sequenceSize
Sets the size assigned to unbounded sequences. The default value is 100 ele-
ments.

Table 3.13 Options for rtiddsgen

Option Description
3-110

Using rtiddsgen
3. U

se
r D

a
ta

 Typ
e

s

3.6.1.1 Optimizing Typedefs (-optimization)

The -optimization option specifies how support for typedefs is generated in C and C++
code. This option is only useful when there are typedefs defined in the IDL file. This
option only applies to C and C++ because the Java language does not contain the
typedef construct. In other words, rtiddsgen always resolves typedef’ed names to their
most basic types when generating Java code (except for typedefs of arrays and
sequences which are converted to wrapper classes—see Note 8 on Page 3-71). Effec-
tively, Java code is always generated with an equivalent optimization level of 2. Choices
are:

-stringSize
Sets the size assigned to unbounded strings, not counting a terminating NULL
character. The default value is 255 bytes.

-typeSequenceSuffix <suf-
fix>

Assigns a suffix to the names of the implicit sequences defined for IDL types.
Only applies if -corba is also specified. By default, the suffix is 'Seq'. Therefore,
given the type 'Foo' the name of the implicit sequence will be 'FooSeq'.

-U <name> Cancels any previous definition of <name>.

-use42eAlignment

Makes the generated code compatible with RTI Data Distribution Service 4.2e.
This option should be used when compatibility with 4.2e is required and the
topic data types contain double, long long, unsigned long long, or long double
members.

-verbosity [1-3]

rtiddsgen verbosity:
 1: exceptions
 2: exceptions and warnings
 3: exceptions, warnings and information (Default)

-version
Displays the version of rtiddsgen being used, such as 4.5x. (Note: To see ‘patch’
revision information (such as 4.5x rev. n), see What Version am I Running?
(Section 18.1).

WSDLInputFile.wsdl
WSDL file containing XSD descriptions of your data types. If -inputWsdl is
not used, the file must have an .wsdl extension.

XMLInputFile.idl
File containing XML descriptions of your data types. If -inputXml is not used,
the file must have an .xml extension.

XSDInputFile.xsd
File containing XSD descriptions of your data types. If -inputXsd is not used,
the file must have an .xsd extension.

a. CORBA support is only available when using the RTI CORBA Compatibility Kit (available for purchase as a separate
product). See Part 6: RTI CORBA Compatibility Kit.

Table 3.13 Options for rtiddsgen

Option Description
3-111

Data Types and Data Samples
❏ 0 (default): No optimization. Typedef’ed types are treated as full types and type-
plugin and support code is generated and invoked when the typedefs are used
in other structures.

❏ 1: The compiler generates type-plugin and support code for typedefs but opti-
mizes its use. If a type is a typedef that can be resolved either to a primitive type
(char, short, long, etc.) or to another type that is defined in the same IDL file, then
when the typedef is used in the definition of another structure, rtiddsgen will
generate code that invokes the plugin and support code of the most basic type to
which the typedef can be resolved.

This will save at least one function call for serialization, deserialization, and
other manipulation of the parent structure. This optimization level is always safe
to use unless the user intends to modify the generated type-plugin and support
code. In that case, we recommend using the default of no optimization of
typedefs.

❏ 2: Same as level 1 with the addition that the type-plugin and support code for
typedefs are not generated (since they would not be used by the code for data
types defined in the same IDL file that uses the typedefs).

This typedef optimization level is only recommend if you only have a single IDL
file that contains the definitions of all of the user data types passed by Connext on
the network. If you have multiple IDL files, and types defined in one file use
typedefs that are defined in another, then rtiddsgen will generate code assuming
that the type-plugin and support code were generated for the typedef’ed types.
If level 2 optimization was used when generating the code for the IDL file that
contained the typedefs, then the plugin and support code for the typedefs would
not have been generated, and compilation and linking errors will result.

For example, consider this declaration:

typedef short MyShort

struct MyStructure {
 MyShort member;
};

With optimization 0: The type-plugin and support code for MyStructure will use the
generated code for MyShort to serialize, deserialize, or otherwise manipulate the mem-
ber field of MyStructure.

With optimization 1: The type plug-in and support code for MyStructure will directly
serialize, deserialize or otherwise manipulate the member field of MyStructure as a
short—saving a function call. However, plugin and support code for MyShort is still
3-112

Using Generated Types without Connext (Standalone)
3. U

se
r D

a
ta

 Typ
e

s

generated because it would be used by the code generated from another IDL file that
refers to MyShort.

With optimization 2: The type-plugin and support code for MyStructure will directly
serialize, deserialize or otherwise manipulate the member field of MyStructure as a
short–saving a function call. In addition, no plugin or support code for MyShort is gen-
erated.

3.7 Using Generated Types without Connext (Standalone)
You can use the generated type-specific source and header files without linking the Con-
next libraries or even including the Connext header files. That is, the generated files for
your data types can be used standalone.

The directory <NDDSHOME>/resource/rtiddsgen/standalone contains the required
helper files:

❏ include: header and templates files for C and C++.

❏ src: source files for C and C++.

❏ class: Java jar file.

Note: You must use rtiddsgen’s -notypecode option to generate code for standalone use.

3.7.1 Using Standalone Types in C

The generated files that can be used standalone are:

❏ <idl file name>.c: Types source file

❏ <idl file name>.h: Types header file

The type plug-in code (<idl file>Plugin.[c,h]) and type-support code (<idl file>Sup-
port.[c,h]) cannot be used standalone.

To use the rtiddsgen-generated types in a standalone manner:

1. Make sure you use rtiddsgen’s -notypecode option to generate the code.

2. Include the directory <NDDSHOME>/resource/rtiddsgen/standalone/include
in the list of directories to be searched for header files.
3-113

Data Types and Data Samples
3. Add the source files, ndds_standalone_type.c and <idl file name>.c, to your
project.

4. Include the file <idl file name>.h in the source files that will use the generated
types in a standalone manner.

5. Compile the project using the following two preprocessor definitions:

a. NDDS_STANDALONE_TYPE

b. The definition for your platform (RTI_VXWORKS, RTI_QNX, RTI_WIN32,
RTI_INTY, RTI_LYNX or RTI_UNIX)

3.7.2 Using Standalone Types in C++

The generated files that can be used standalone are:

❏ <idl file name>.cxx: Types source file

❏ <idl file name>.h: Types header file

The type-plugin code (<idl file>Plugin.[cxx,h]) and type-support code (<idl file>Sup-
port.[cxx,h]) cannot be used standalone.

To use the generated types in a standalone manner:

1. Make sure you use rtiddsgen’s -notypecode option to generate the code.

2. Include the directory <NDDSHOME>/resource/rtiddsgen/standalone/include
in the list of directories to be searched for header files.

3. Add the source files, ndds_standalone_type.cxx and <idl file name>.cxx, to
your project.

4. Include the file <idl file name>.h in the source files that will use the rtiddsgen
types in a standalone manner.

5. Compile the project using the following two preprocessor definitions:

a. NDDS_STANDALONE_TYPE

b. The definition for your platform (such as RTI_VXWORKS, RTI_QNX,
RTI_WIN32, RTI_INTY, RTI_LYNX or RTI_UNIX)

3.7.3 Standalone Types in Java

The generated files that can be used standalone are:
3-114

Interacting Dynamically with User Data Types
3. U

se
r D

a
ta

 Typ
e

s

❏ <idl type>.java

❏ <idl type>Seq.java

The type code (<idl file>TypeCode.java), type-support code (<idl type>TypeSup-
port.java), DataReader code (<idl file>DataReader.java) and DataWriter code (<idl
file>DataWriter.java) cannot be used standalone.

To use the generated types in a standalone manner:

1. Make sure you use rtiddsgen’s -notypecode option to generate the code.

2. Include the file ndds_standalone_type.jar in the classpath of your project.

3. Compile the project using the standalone types files (<idl type>.java and <idl
type>Seq.java).

3.8 Interacting Dynamically with User Data Types

3.8.1 Introduction to TypeCode

Type schemas—the names and definitions of a type and its fields—are represented by
TypeCode objects. A type code value consists of a type code kind (see the TCKind enu-
meration below) and a list of members. For compound types like structs and arrays, this
list will recursively include one or more type code values.

enum TCKind {
 TK_NULL,
 TK_SHORT,
 TK_LONG,
 TK_USHORT,
 TK_ULONG,
 TK_FLOAT,
 TK_DOUBLE,
 TK_BOOLEAN,
 TK_CHAR,
 TK_OCTET,
 TK_STRUCT,
 TK_UNION,
 TK_ENUM,
 TK_STRING,
 TK_SEQUENCE,
3-115

Data Types and Data Samples
 TK_ARRAY,
 TK_ALIAS,
 TK_LONGLONG,
 TK_ULONGLONG,
 TK_LONGDOUBLE,
 TK_WCHAR,
 TK_WSTRING,
 TK_VALUE,
 TK_SPARSE
}

Type codes unambiguously match type representations and provide a more reliable test
than comparing the string type names.

The TypeCode class, modeled after the corresponding CORBA API, provides access to
type-code information. For details on the available operations for the TypeCode class,
see the online documentation (select Modules, Topic Module, Type Code Support).

Type codes are enabled by default when you run rtiddsgen. The -notypecode option dis-
ables generation of type code information. Type-code support does increase the amount
of memory used, so if you need to save on memory, you may consider disabling type
codes. See rtiddsgen Command-Line Arguments (Section 3.6.1).

Note: Type-code support must be enabled if you are going to use ContentFilteredTopics
(Section 5.4) with the default SQL filter. You may disable type codes and use a custom
filter, as described in Creating ContentFilteredTopics (Section 5.4.3).

3.8.2 Defining New Types

Note: This section does not apply when using the separate add-on product, Ada 2005
Language Support, which does not support Dynamic Types.

Locally, your application can access the type code for a generated type "Foo" by calling
the Foo_get_typecode() operation in the code for the type generated by rtiddsgen (unless
type-code support is disabled with the -notypecode option). But you can also create
TypeCodes at run time without any code generation.

Creating a TypeCode is parallel to the way you would define the type statically: you
define the type itself with some name, then you add members to it, each with its own
name and type.

For example, consider the following statically defined type. It might be in C, C++, or
IDL; the syntax is largely the same.

struct MyType {
 long my_integer;
3-116

Interacting Dynamically with User Data Types
3. U

se
r D

a
ta

 Typ
e

s

 float my_float;
 bool my_bool;

 string<128> my_string; // @key
};

This is how you would define the same type at run time in C++:

DDS_ExceptionCode_t ex = DDS_NO_EXCEPTION_CODE;
DDS_StructMemberSeq structMembers; // ignore for now
DDS_TypeCodeFactory* factory = DDS_TypeCodeFactory::get_instance();
DDS_TypeCode* structTc = factory->create_struct_tc(

"MyType", structMembers, ex);

// If structTc is NULL, check 'ex' for more information.
structTc->add_member("my_integer",
DDS_TYPECODE_MEMBER_ID_INVALID,

 factory->get_primitive_tc(DDS_TK_LONG),
 DDS_TYPECODE_NONKEY_MEMBER, ex);

structTc->add_member("my_float", DDS_TYPECODE_MEMBER_ID_INVALID,
 factory->get_primitive_tc(DDS_TK_FLOAT),
 DDS_TYPECODE_NONKEY_MEMBER, ex);

structTc->add_member("my_bool", DDS_TYPECODE_MEMBER_ID_INVALID,
 factory->get_primitive_tc(DDS_TK_BOOLEAN),
 DDS_TYPECODE_NONKEY_MEMBER, ex);

structTc->add_member("my_string", DDS_TYPECODE_MEMBER_ID_INVALID,
 factory->create_string_tc(128),

 DDS_TYPECODE_KEY_MEMBER, ex);

More detailed documentation for the methods and constants you see above, including
example code, can be found in the Connext online documentation, which is available in
HTML and PDF formats for all supported programming languages.

If, as in the example above, you know all of the fields that will exist in the type at the
time of its construction, you can use the StructMemberSeq to simplify the code:

DDS_StructMemberSeq structMembers;
structMembers.ensure_length(4, 4);
DDS_TypeCodeFactory* factory = DDS_TypeCodeFactory::get_instance();

structMembers[0].name = DDS_String_dup("my_integer");
structMembers[0].type = factory->get_primitive_tc(DDS_TK_LONG);

structMembers[1].name = DDS_String_dup("my_float");
structMembers[1].type = factory->get_primitive_tc(DDS_TK_FLOAT);
3-117

Data Types and Data Samples
structMembers[2].name = DDS_String_dup("my_bool");
structMembers[2].type = factory->get_primitive_tc(DDS_TK_BOOLEAN);

structMembers[3].name = DDS_String_dup("my_string");
structMembers[3].type = factory->create_string_tc(128);
structMembers[3].is_key = DDS_BOOLEAN_TRUE;

DDS_ExceptionCode_t ex = DDS_NO_EXCEPTION_CODE;
DDS_TypeCode* structTc = factory->create_struct_tc(

"MyType", structMembers, ex);

After you have defined the TypeCode, you will register it with a DomainParticipant
using a logical name. You will use this logical name later when you create a Topic.

DDSDynamicDataTypeSupport* type_support =
 new DDSDynamicDataTypeSupport(structTc,

DDS_DYNAMIC_DATA_TYPE_PROPERTY_DEFAULT);

DDS_ReturnCode_t retcode = type_support->register_type(participant,
 "My Logical Type Name");

Now that you have created a type, you will need to know how to interact with objects of
that type. Continue reading Section 3.8.3 below for more information.

3.8.3 Sending Only a Few Fields

In some cases, your data model may contain a large number of potential fields, but it
may not be desirable or appropriate to include a value for every one of them with every
data sample.

❏ It may use too much bandwidth. You may have a very large data structure,
parts of which are updated very frequently. Rather than resending the entire data
structure with every change, you may wish to send only those fields that have
changed and rely on the recipients to reassemble the complete state themselves.

❏ It may not make sense. Some fields may only have meaning in the presence of
other fields. For example, you may have an event stream in which certain fields
are only relevant for certain kinds of events.

To support these and similar cases, Connext supports sparse value types. A sample of
such a type only contains the field values that were explicitly set by the sender. A recip-
3-118

Interacting Dynamically with User Data Types
3. U

se
r D

a
ta

 Typ
e

s

ient of that sample will receive an error when trying to look up the value of any other
field.

An endpoint (DataWriter or DataReader) using a sparse value type will not communicate
with another endpoint using a non-sparse value type or structure type, even if the two
types contain similar member definitions, because these kinds of types have different
semantics. A structure or non-sparse value type is a commitment to provide exactly the
data described by the type's members and in a certain order. In contrast, a sparse value
type is a commitment to provide some subset of those data values in no particular order.

Because direct programming language representations of data types typically have no
way to express the concept of sparse fields (there is no way, for example, for a C struc-
ture to omit some of its fields), using sparse types requires use of the dynamic type API
described in Defining New Types (Section 3.8.2). You will use the Dynamic Data API to
work with sparse samples, just as you would with samples of any other dynamically
defined type. For more information about working with sparse samples, see Objects of
Dynamically Defined Types (Section 3.9.2) or the online (HTML) documentation.

A sparse version of the "MyType" type described above would be defined like this:

DDS_ExceptionCode_t ex = DDS_NO_EXCEPTION_CODE;
DDS_TypeCodeFactory* factory = DDS_TypeCodeFactory::get_instance();
DDS_TypeCode* sparseTc = factory->create_sparse_tc(
 "MySparseType", DDS_VM_NONE, NULL, ex);

// add members
sparseTc->add_member("my_integer", ID_MY_INTEGER,

factory->get_primitive_tc(DDS_TK_LONG),
DDS_TYPECODE_NONKEY_MEMBER, ex);

sparseTc->add_member("my_float", ID_MY_FLOAT,
factory->get_primitive_tc(DDS_TK_FLOAT),
DDS_TYPECODE_NONKEY_MEMBER, ex);

sparseTc->add_member("my_bool", ID_MY_BOOL,
factory->get_primitive_tc(DDS_TK_BOOLEAN),
DDS_TYPECODE_NONKEY_MEMBER, ex);

sparseTc->add_member("my_string", ID_MY_STRING,
factory->create_string_tc(128),
DDS_TYPECODE_KEY_MEMBER, ex);

Detailed descriptions of the methods and constants you see above can be found in the
Connext online (HTML) documentation.

Integral to the definition of a sparse type are the member IDs of its fields. An ID is a two-
byte integer that uniquely identifies a field within its parent type; these IDs are chosen
by the type's designer. (In the code example above, ID_MY_INTEGER, ID_MY_FLOAT,
3-119

Data Types and Data Samples
and ID_MY_BOOL are examples of user-defined symbolic constants representing mem-
ber ID values.) When a sparse sample is serialized, the middleware will embed the IDs
of the fields that are present, so that recipients will know how to deserialize it.

Although member IDs are a relatively efficient way to describe a sample's contents, they
do use network bandwidth. This can be an important issue if you are considering using
sparse types to decrease the size of your data samples on the network. Although the rel-
ative cost of adding member IDs to your packets will vary depending on the sizes and
layout of your fields, the following is a good rule of thumb: if you expect a given data sam-
ple to contain less than half of the fields that are legal for its type, sparse types will prob-
ably save you on bandwidth. If, on the other hand, most samples contain most fields,
you will probably be better off using a plain structure type and simply ignoring irrele-
vant fields on the receiving side.

3.8.4 Type Extension and Versioning

As your system evolves, you may find that your data types need to change. And unless
your system is relatively small, you may not be able to bring it all down at once in order
to modify them. Instead, you may need to upgrade your types one component at a
time—or even on the fly, without bringing any part of the system down.

You can use the sparse types described above to efficiently version types—and not just
at the level of entire types, but at the level of individual fields.

❏ You can add new fields to a type at any time. Because the type is sparse, existing
publishers of the type that have not been updated will simply omit the new field
in any data samples they send. If you anticipate changing your types in future
versions of your system, make sure that you ignore fields that you do not recog-
nize, so that your application will be robust to future type changes.

sparseTc->add_member("myNewInteger", ID_MY_NEW_INTEGER,
DDS_TheTypeCodeFactory->get_primitive_tc(TK_LONG),
DDS_TYPECODE_NONKEY_MEMBER, ex);

❏ You cannot remove fields from an existing type. Doing so would break older
applications and invalidate historical samples that might already be in the caches
of upgraded applications. Instead, simply stop sending values for the fields you
wish to deprecate.

3.8.5 Sending Type Codes on the Network

In addition to being used locally, serialized type codes are typically published automat-
ically during discovery as part of the built-in topics for publications and subscriptions.
3-120

Interacting Dynamically with User Data Types
3. U

se
r D

a
ta

 Typ
e

s

See Built-in DataReaders (Section 14.2). This allows applications to publish or subscribe
to topics of arbitrary types. This functionality is useful for generic system monitoring
tools like the rtiddsspy debug tool (in the online documentation, select Modules, Pro-
gramming Tools).

Note: Type codes are not cached by Connext upon receipt and are therefore not available
from the built-in data returned by the DataWriter's get_matched_subscription_data()
operation or the DataReader's get_matched_publication_data() operation.

If your data type has an especially complex type code, you may need to increase the
value of the type_code_max_serialized_length field in the DomainParticipant's
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4). Or, to prevent the propagation of type codes altogether, you can set this value to
zero (0). Be aware that some features of monitoring tools, as well as some features of the
middleware itself (such as ContentFilteredTopics) will not work correctly if you disable
TypeCode propagation.

3.8.5.1 Type Codes for Built-in Types

The type codes associated with the built-in types are generated from the following IDL
type definitions:

module DDS {
/* String */
struct String {

string<max_size> value;
};
/* KeyedString */
struct KeyedString {

string<max_size> key; //@key
string<max_size> value;

};
/* Octets */
struct Octets {

sequence<octet, max_size> value;
};
/* KeyedOctets */
struct KeyedOctets {

string<max_size> key; //@key
sequence<octet, max_size> value;

};
};

The maximum size (max_size) of the strings and sequences that will be included in the
type code definitions can be configured on a per-DomainParticipant-basis by using the
3-121

Data Types and Data Samples
properties in Table 3.14.

Table 3.14 Properties for Allocating Size of Built-in Types, per DomainParticipant

Built-
in

Type
Property Description

String dds.builtin_type.string.max_size

Maximum size of the strings published by the
DataWriters and received by the DataReaders
belonging to a DomainParticipant (includes the
NULL-terminated character).
Default: 1024

Keyed-
String

dds.builtin_type.keyed_string.
max_key_size

Maximum size of the keys used by the DataWriters
and DataReaders belonging to a DomainParticipant
(includes the NULL-terminated character).
Default: 1024

dds.builtin_type.keyed_string.
max_size

Maximum size of the strings published by the
DataWriters and received by the DataReaders
belonging to a DomainParticipant using the built-in
type (includes the NULL-terminated character).
Default: 1024

Octets dds.builtin_type.octets.max_size

Maximum size of the octet sequences published by
the DataWriters and DataReaders belonging to a
DomainParticipant.
Default: 2048

Keyed-
Octets

dds.builtin_type.keyed_octets.
max_key_size

Maximum size of the key published by the DataW-
riter and received by the DataReaders belonging to
the DomainParticipant (includes the NULL-termi-
nated character).
Default:1024.

dds.builtin_type.keyed_octets.
max_size

Maximum size of the octet sequences published by
the DataWriters and DataReaders belonging to a
DomainParticipant.
Default: 2048
3-122

Working with Data Samples
3. U

se
r D

a
ta

 Typ
e

s

3.9 Working with Data Samples
You should now understand how to define and work with data types, whether you're
using the simple data types built into the middleware (see Built-in Data Types (Section
3.2)), dynamically defined types (see Managing Memory for Built-in Types (Section
3.2.8)), or code generated from IDL, XML, XSD, or WSDL files (see Sections 3.3 through
3.5).

Now that you have chosen one or more data types to work with, this section will help
you understand how to create and manipulate objects of those types.

3.9.1 Objects of Concrete Types

If you use one of the built-in types, or decide to generate custom types from an IDL or
XML file, your Connext data type is like any other data type in your application: a class
or structure with fields, methods, and other members that you interact with directly.

In C and C++, you create and delete your own objects from factories, just as you create
Connext objects from factories. In the case of user data types, the factory is a singleton
object called the type support. Objects allocated from these factories are deeply allo-
cated and fully initialized.

/* In the generated header file: */
struct MyData {

char* myString;
};

/* In your code: */
MyData* sample = MyDataTypeSupport_create_data();
char* str = sample->myString; /*empty, non-NULL string*/

/* ... */

MyDataTypeSupport_delete_data(sample);

In C++, as in C, you create and delete objects using the TypeSupport factories.

MyData* sample = MyDataTypeSupport::create_data();
char* str = sample->myString; // empty, non-NULL string
// ...
MyDataTypeSupport::delete_data(sample);

In C# and C++/CLI, you can use a no-argument constructor to allocate objects. Those
objects will be deallocated by the garbage collector as appropriate.
3-123

Data Types and Data Samples
// In the generated code (C++/CLI):
public ref struct MyData {

public:
System::String^ myString;

};

// In your code, if you are using C#:
MyData sample = new MyData();
System.String str = sample.myString; // empty, non-null string

// In your code, if you are using C++/CLI:
MyData^ sample = gcnew MyData();
System::String^ str = sample->myString; // empty, non-nullptr string

In Java, you can use a no-argument constructor to allocate objects. Those objects will be
deallocated by the garbage collector as appropriate.

// In the generated code:
public class MyData {

public String myString = "";
}

// In your code:
MyData sample = new MyData();
String str = sample->myString; // empty, non-null string

3.9.2 Objects of Dynamically Defined Types

If you are working with a data type that was discovered or defined at run time, you will
use the reflective API provided by the DynamicData class to get and set the fields of
your object.

Consider the following type definition:

struct MyData {
long myInteger;

};

As with a statically defined type, you will create objects from a TypeSupport factory.
How to create or otherwise obtain a TypeCode, and how to subsequently create from it a
DynamicDataTypeSupport, is described in Defining New Types (Section 3.8.2).

For more information about the DynamicData and DynamicDataTypeSupport classes,
consult the online (HTML) documentation.
3-124

Working with Data Samples
3. U

se
r D

a
ta

 Typ
e

s

In C:

DDS_DynamicDataTypeSupport* support = ...;
DDS_DynamicData* sample =
DDS_DynamicDataTypeSupport_create_data(support);
DDS_Long theInteger = 0;
DDS_ReturnCode_t success = DDS_DynamicData_set_long(sample,

"myInteger", DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, 5);
/* Error handling omitted. */
success = DDS_DynamicData_get_long(sample, &theInteger,

"myInteger", DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
/* Error handling omitted. "theInteger" now contains the value 5
 if no error occurred.
 */

In C++:

DDSDynamicDataTypeSupport* support = ...;
DDS_DynamicData* sample = support->create_data();
DDS_ReturnCode_t success = sample->set_long("myInteger",

 DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, 5);
// Error handling omitted.
DDS_Long theInteger = 0;
success = sample->get_long(&theInteger, "myInteger",

 DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
// Error handling omitted.
// "theInteger" now contains the value 5 if no error occurred.

In C++/CLI:

using DDS;
DynamicDataTypeSupport^ support = ...;
DynamicData^ sample = support->create_data();
sample->set_long("myInteger",

DynamicData::MEMBER_ID_UNSPECIFIED, 5);

int theInteger = sample->get_long("myInteger",
 0 /*redundant w/ field name*/);

/* Exception handling omitted.
 * "theInteger" now contains the value 5 if no error occurred.
 */

In C#:

using namespace DDS;
DynamicDataTypeSupport support = ...;
DynamicData sample = support.create_data();
sample.set_long("myInteger", DynamicData.MEMBER_ID_UNSPECIFIED, 5);
3-125

Data Types and Data Samples
int theInteger = sample.get_long("myInteger",
DynamicData.MEMBER_ID_UNSPECIFIED);

/* Exception handling omitted.
 * "theInteger" now contains the value 5 if no error occurred.
 */

In Java:

import com.rti.dds.dynamicdata.*;
DynamicDataTypeSupport support = ...;
DynamicData sample = (DynamicData) support.create_data();
sample.set_long("myInteger", DynamicData.MEMBER_ID_UNSPECIFIED, 5);

int theInteger = sample.get_long("myInteger",
DynamicData.MEMBER_ID_UNSPECIFIED);

/* Exception handling omitted.
 * "theInteger" now contains the value 5 if no error occurred.
 */
3-126

4. D
D

S Entitie
s

Chapter 4 Entities

The main classes extend an abstract base class called an Entity. Every Entity has a set of
associated events known as statuses and a set of associated Quality of Service Policies
(QosPolicies). In addition, a Listener may be registered with the Entity to be called when
status changes occur. Entities may also have attached Conditions, which provide a way to
wait for status changes.

This chapter describes the common operations and general designed patterns shared by
all Entities including DomainParticipants, Topics, Publishers, DataWriters, Subscribers, and
DataReaders. In subsequent chapters, the specific statuses, Listeners, Conditions, and
QosPolicies for each class will be discussed in detail.
4-1

Entities
4.1 Common Operations for All Entities
All Entities (DomainParticipants, Topics, Publishers, DataWriters, Subscribers, and
DataReaders) provide operations for:

❏ Creating and Deleting Entities (Section 4.1.1)

❏ Enabling Entities (Section 4.1.2)

❏ Getting an Entity’s Instance Handle (Section 4.1.3)

❏ Getting Status and Status Changes (Section 4.1.4)

❏ Getting and Setting Listeners (Section 4.1.5)

❏ Getting the StatusCondition (Section 4.1.6)

❏ Getting and Setting QosPolicies (Section 4.1.7)

4.1.1 Creating and Deleting Entities

The factory design pattern is used in creating and deleting Entities. Instead of declaring
and constructing or destructing Entities directly, a factory object is used to create an
Entity. Almost all entity factories are objects that are also entities. The only exception is
the factory for a DomainParticipant. See Table 4.1.

Table 4.1 Entity Factories

Entity Created by

DomainParticipant
DomainParticipantFactory
(a static singleton object provided by Connext)

Topic

DomainParticipant

Publisher

Subscriber

DataWritera

DataReadera

DataWritera Publisher

DataReadera Subscriber

a. DataWriters may be created by a DomainParticipant or a Publisher. Similarly, DataReaders may be created
by a DomainParticipant or a Subscriber.
4-2

Common Operations for All Entities
4. D

D
S Entitie

s

All entities that are factories have:

❏ Operations to create and delete child entities. For example:

DDSPublisher::create_datawriter,
DDSDomainParticipant::delete_topic

❏ Operations to get and set the default QoS values used when creating child enti-
ties. For example:

DDSSubscriber::get_default_datareader_qos,
DDSDomainParticipantFactory::set_default_participant_qos

❏ An ENTITYFACTORY QosPolicy (Section 6.4.2) to specify whether or not the
newly created child entity should be automatically enabled upon creation.

An entity that is a factory cannot be deleted until all the child entities created by it have
been deleted.

Each Entity obtained through create_<entity>() must eventually be deleted by calling
delete_<entity>, or by calling delete_contained_entities().

4.1.2 Enabling Entities

The enable() operation changes an Entity from a non-operational to an operational state.
Entity objects can be created disabled or enabled. This is controlled by the value of the
ENTITYFACTORY QosPolicy (Section 6.4.2) on the corresponding factory for the Entity
(not on the Entity itself).

By default, all Entities are automatically created in the enabled state. This means that as
soon as the Entity is created, it is ready to be used. In some cases, you may want to cre-
ate the Entity in a ‘disabled’ state. For example, by default, as soon as you create a
DataReader, the DataReader will start receiving new samples for its Topic if they are being
sent. However, your application may still be initializing other components and may not
be ready to process the data at that time. In that case, you can tell the Subscriber to create
the DataReader in a disabled state. After all of the other parts of the application have
been created and initialized, then the DataReader can be enabled to actually receive mes-
sages.

To create a particular entity in a disabled state, modify the EntityFactory QosPolicy of its
corresponding factory entity before calling create_<entity>(). For example, to create a
disabled DataReader, modify the Subscriber’s QoS as follows:

DDS_SubscriberQos subscriber_qos;

subscriber->get_qos(subscriber_qos);
4-3

Entities
subscriber_qos.entity_factory.autoenable_created_entities =
 DDS_BOOLEAN_FALSE;

subscriber->set_qos(subscriber_qos);

DDSDataReader* datareader = subscriber->create_datareader(
topic, DDS_DATAREADER_QOS_DEFAULT, listener);

When the application is ready to process received data, it can enable the DataReader:

datareader->enable();

4.1.2.1 Rules for Calling enable()

In the following, a ‘Factory’ refers to a DomainParticipant, Publisher, or Subscriber; a
‘child’ refers to an entity created by the factory:

❏ If the factory is disabled, its children are always created disabled, regardless of
the setting in the factory's EntityFactoryQoS.

❏ If the factory is enabled, its children will be created either enabled or disabled,
according to the setting in the factory's EntityFactory Qos.

❏ Calling enable() on a child whose factory object is still disabled will fail and
return DDS_RECODE_RECONDITION_NOT_MET.

❏ Calling enable() on a factory with EntityFactoryQoS set to
DDS_BOOLEAN_TRUE will recursively enable all of the factory’s children. If
the factory’s EntityFactoryQoS is set to DDS_BOOLEAN_FALSE, only the fac-
tory itself will be enabled.

❏ Calling enable() on an entity that is already enabled returns
DDS_RETCODE_OK and has no effect.

❏ There is no complementary “disable” operation. You cannot disable an entity
after it is enabled. Disabled entities must have been created in that state.

❏ An entity’s Listener will only be invoked if the entity is enabled.

❏ The existence of an entity is not propagated to other DomainParticipants until the
entity is enabled (see Chapter 12: Discovery).

❏ If a DataWriter/DataReader is to be created in an enabled state, then the associ-
ated Topic must already be enabled. The enabled state of the Topic does not mat-
ter, if the Publisher/Subscriber has its EntityFactory QosPolicy to create children
in a disabled state.

❏ When calling enable() for a DataWriter/DataReader, both the Publisher/Subscriber
and the Topic must be enabled, or the operation will fail and return
DDS_RETCODE_PRECONDITION_NOT_MET.
4-4

Common Operations for All Entities
4. D

D
S Entitie

s

The following operations may be invoked on disabled Entities:

❏ get_qos() and set_qos() Some DDS-specified QosPolicies are immutable—they
cannot be changed after an Entity is enabled. This means that for those policies, if
the entity was created in the disabled state, get/set_qos() can be used to change
the values of those policies until enabled() is called on the Entity. After the Entity
is enabled, changing the values of those policies will not affect the Entity. How-
ever, there are mutable QosPolicies whose values can be changed at anytime–
even after the Entity has been enabled.

Finally, there are extended QosPolicies that are not a part of the DDS specifica-
tion but offered by Connext to control extended features for an Entity. Some of
those extended QosPolicies cannot be changed after the Entity has been cre-
ated—regardless of whether the Entity is enabled or disabled.

Into which exact categories a QosPolicy falls—mutable at any time, immutable
after enable, immutable after creation—is described in the documentation for the
specific policy.

❏ get_status_changes() and get_*_status() The status of an Entity can be
retrieved at any time (but the status of a disabled Entity never changes).

❏ get_statuscondition() An Entity’s StatusCondition can be checked at any time
(although the status of a disabled Entity never changes).

❏ get_listener() and set_listener() An Entity’s Listener can be changed at any
time.

❏ create_*() and delete_*() A factory Entity can still be used to create or delete
any child Entity that it can produce. Note: following the rules discussed previ-
ously, a disabled Entity will always create its children in a disabled state, no mat-
ter what the value of the EntityFactory QosPolicy is.

❏ lookup_*() An Entity can always look up children it has previously created.

Most other operations are not allowed on disabled Entities. Executing one of those oper-
ations when an Entity is disabled will result in a return code of
DDS_RETCODE_NOT_ENABLED. The documentation for a particular operation will
explicitly state if it is not allowed to be used if the Entity is disabled.

Note: The builtin transports are implicitly registered when (a) the DomainParticipant is
enabled, (b) the first DataWriter/DataReader is created, or (c) you look up a builtin data
reader, whichever happens first. Any changes to the builtin transport properties that are
made after the builtin transports have been registered will have no affect on any DataW-
riters/DataReaders.
4-5

Entities
4.1.3 Getting an Entity’s Instance Handle

The Entity class provides an operation to retrieve an instance handle for the object. The
operation is simply:

InstanceHandle_t get_instance_handle()

An instance handle is a global ID for the entity that can be used in methods that allow
user applications to determine if the entity was locally created, if an entity is owned
(created) by another entity, etc.

4.1.4 Getting Status and Status Changes

The get_status_changes() operation retrieves the set of events, also known in DDS ter-
minology as communication statuses, in the Entity that have changed since the last time
get_status_changes() was called. This method actually returns a value that must be bit-
wise AND’ed with an enumerated bit mask to test whether or not a specific status has
changed. The operation can be used in a polling mechanism to see if any statuses related
to the Entity have changed. If an entity is disabled, all communication statuses are in the
“unchanged” state so the list returned by the get_status_changes() operation will be
empty.

A set of statuses is defined for each class of Entities. For each status, there is a corre-
sponding operation, get_<status-name>_status(), that can be used to get its current
value. For example, a DataWriter has a DDS_OFFERED_DEADLINE_MISSED status;
it also has a get_offered_deadline_missed_status() operation:

DDS_StatusMask statuses;
DDS_OfferedDeadlineMissedStatus deadline_stat;

statuses = datawriter->get_status_changes();

if (statuses & DDS_OFFERED_DEADLINE_MISSED_STATUS) {
datawriter->get_offered_deadline_missed_status(&deadline_stat);
printf(“Deadline missed %d times.\n”,

deadline_stat.total_count);
}

See Section 4.3 for more information about statuses.

4.1.5 Getting and Setting Listeners

Each type of Entity has an associated Listener, see Listeners (Section 4.4). A Listener rep-
resents a set of functions that users may install to be called asynchronously when the
state of communication statuses change.
4-6

Common Operations for All Entities
4. D

D
S Entitie

s

The get_listener() operation returns the current Listener attached to the Entity.

The set_listener() operation installs a Listener on an Entity. The Listener will only be
invoked on the changes of statuses specified by the accompanying mask. Only one lis-
tener can be attached to each Entity. If a Listener was already attached, set_listener() will
replace it with the new one.

The get_listener() and set_listener() operations are directly provided by the DomainPar-
ticipant, Topic, Publisher, DataWriter, Subscriber, and DataReader classes so that listeners
and masks used in the argument list are specific to each Entity.

Note: The set_listener() operation is not synchronized with the listener callbacks, so it is
possible to set a new listener on an participant while the old listener is in a callback.
Therefore you should be careful not to delete any listener that has been set on an
enabled participant unless some application-specific means are available of ensuring
that the old listener cannot still be in use.

See Section 4.4 for more information about Listeners.

4.1.6 Getting the StatusCondition

Each type of Entity may have an attached StatusCondition, which can be accessed
through the get_statuscondition() operation. You can attach the StatusCondition to a
WaitSet, to cause your application to wait for specific status changes that affect the
Entity.

See Section 4.6 for more information about StatusConditions and WaitSets.

4.1.7 Getting and Setting QosPolicies

Each type of Entity has an associated set of QosPolicies (see Section 4.2). QosPolicies
allow you to configure and set properties for the Entity.

While most QosPolicies are defined by the DDS specification, some are offered by Con-
next as extensions to control parameters specific to the implementation.

There are two ways to specify a QoS policy:

❏ Programmatically, as described in this section.

❏ QosPolicies can also be configured from XML resources (files, strings)—with this
approach, you can change the QoS without recompiling the application. The QoS
settings are automatically loaded by the DomainParticipantFactory when the
first DomainParticipant is created. See Chapter 15: Configuring QoS with XML.
4-7

Entities
The get_qos() operation retrieves the current values for the set of QosPolicies defined
for the Entity.

QosPolicies can be set programmatically when an Entity is created, or modified with the
Entity's set_qos() operation.

The set_qos() operation sets the QosPolicies of the entity. Note: not all QosPolicy
changes will take effect instantaneously; there may be a delay since some QosPolicies
set for one entity, for example, a DataReader, may actually affect the operation of a
matched entity in another application, for example, a DataWriter.

The get_qos() and set_qos() operations are passed QoS structures that are specific to
each derived entity class, since the set of QosPolicies that effect each class of entities is
different.

Each QosPolicy has default values (listed in the online documentation). If you want to
use custom values, there are three ways to change QosPolicy settings:

❏ Before Entity creation (if custom values should be used for multiple Entities). See
Section 4.1.7.1.

❏ During Entity creation (if custom values are only needed for a particular Entity).
See Section 4.1.7.2.

❏ After Entity creation (if the values initially specified for a particular Entity are no
longer appropriate). See Section 4.1.7.3.

Regardless of when or how you make QoS changes, there are some rules to follow:

❏ Some QosPolicies interact with each other and thus must be set in a consistent
manner. For instance, the maximum value of the HISTORY QosPolicy’s depth
parameter is limited by values set in the RESOURCE_LIMITS QosPolicy. If the
values within a QosPolicy structure are inconsistent, then set_qos() will return
the error INCONSISTENT_POLICY, and the operation will have no effect.

❏ Some policies can only be set when the Entity is created, or before the Entity is
enabled. Others can be changed at any time. In general, all standard DDS
QosPolicies can be changed before the Entity is enabled. A subset can be changed
after the Entity is enabled. Connext-specific QosPolicies either cannot be changed
after creation or can be changed at any time. The changeability of each QosPolicy
is documented in the online documentation as well as in Table 4.2. If you attempt
to change a policy after it cannot be changed, set_qos() will fail with a return
IMMUTABLE_POLICY.
4-8

Common Operations for All Entities
4. D

D
S Entitie

s

4.1.7.1 Changing the QoS Defaults Used to Create Entities: set_default_*_qos()

Each parent factory has a set of default QoS settings that are used when the child entity
is created. The DomainParticipantFactory has default QoS values for creating DomainPar-
ticipants. A DomainParticipant has a set of default QoS for each type of entity that can be
created from the DomainParticipant (Topic, Publisher, Subscriber, DataWriter, and
DataReader). Likewise, a Publisher has a set of default QoS values used when creating
DataWriters, and a Subscriber has a set of default QoS values used when creating
DataReaders.

An entity’s QoS are set when it is created. Once an entity is created, all of its QoS—for
itself and its child entities—are fixed unless you call set_qos() or set_qos_with_profile()
on that entity. Calling set_default_<entity>_qos() on a parent entity will have no effect
on child entities that have already been created.

You can change these default values so that they are automatically applied when new
child entities are created. For example, suppose you want all DataWriters for a particular
Publisher to have their RELIABILITY QosPolicy set to RELIABLE. Instead of making this
change for each DataWriter when it is created, you can change the default used when
any DataWriter is created from the Publisher by using the Publisher’s
set_default_datawriter_qos() operation.

DDS_DataWriterQos default_datawriter_qos;

// get the current default values
publisher->get_default_datawriter_qos(default_datawriter_qos);

// change to desired default values
default_datawriter_qos.reliability.kind =

DDS_RELIABLE_RELIABILITY_QOS;

// set the new default values
publisher->set_default_datawriter_qos(default_datawriter_qos);

// created datawriters will use new default values
datawriter = publisher->create_datawriter(topic, NULL, NULL, NULL);

Note: It is not safe to get or set the default QoS values for an entity while another thread
may be simultaneously calling get_default_<entity>_qos(),
set_default_<entity>_qos(), or create_<entity>() with
DDS_<ENTITY>_QOS_DEFAULT as the qos parameter (for the same entity).

Another way to make QoS changes is by using XML resources (files, strings). For more
information, see Chapter 15: Configuring QoS with XML.
4-9

Entities
4.1.7.2 Setting QoS During Entity Creation

If you only want to change a QosPolicy for a particular entity, you can pass in the
desired QosPolicies for an entity in its creation routine.

To customize an entity's QoS before creating it:

1. (C API Only) Initialize a QoS object with the appropriate INITIALIZER construc-
tor.

2. Call the relevant get_<entity>_default_qos() method.

3. Modify the QoS values as desired.

4. Create the entity.

For example, to change the RELIABLE QosPolicy for a DataWriter before creating it:

// Initialize the QoS object
DDS_DataWriterQos datawriter_qos;

// Get the default values
publisher->get_default_datawriter_qos(datawriter_qos);

// Modify the QoS values as desired
datawriter_qos.reliability.kind = DDS_BEST_EFFORT_RELIABILITY_QOS;

// Create the DataWriter with new values
datawriter =

publisher->create_datawriter(topic, datawriter_qos, NULL, NULL);

Another way to set QoS during entity creation is by using a QoS profile. For more infor-
mation, see Chapter 15: Configuring QoS with XML.

4.1.7.3 Changing the QoS for an Existing Entity

Some policies can also be changed after the entity has been created. To change such a
policy after the entity has been created, use the entity’s set_qos() operation.

For example, suppose you want to tweak the DEADLINE QoS for an existing DataW-
riter:

DDS_DataWriterQos datawriter_qos;

// get the current values
datawriter->get_qos(datawriter_qos);

// make desired changes
datawriter_qos.deadline.period.sec = 3;
4-10

Common Operations for All Entities
4. D

D
S Entitie

s

datawriter_qos.deadline.period.nanosec = 0;

// set new values
datawriter->set_qos(datawriter_qos);

Another way to make QoS changes is by using a QoS profile. For more information, see
Chapter 15: Configuring QoS with XML.

Note: In the code examples presented in this section, we are not testing for the return
code for the set_qos(), set_default_*_qos() functions. If the values used in the QosPolicy
structures are inconsistent then the functions will fail and return
INCONSISTENT_POLICY. In addition, set_qos() may return IMMUTABLE_POLICY
if you try to change a QosPolicy on an Entity after that policy has become immutable.
User code should test for and address those anomalous conditions.

4.1.7.4 Default Values

Connext provides special constants for each Entity type that can be used in set_qos() and
set_default_*_qos() to reset the QosPolicy values to the original DDS default values:

❏ DDS_PARTICIPANT_QOS_DEFAULT

❏ DDS_PUBLISHER_QOS_DEFAULT

❏ DDS_SUBSCRIBER_QOS_DEFAULT

❏ DDS_DATAWRITER_QOS_DEFAULT

❏ DDS_DATAREADER_QOS_DEFAULT

❏ DDS_TOPIC_QOS_DEFAULT

For example, if you want to set a DataWriter’s QoS back to their DDS-specified default
values:

datawriter->set_qos(DDS_DATAWRITER_QOS_DEFAULT);

Or if you want to reset the default QosPolicies used by a Publisher to create DataWriters
back to their DDS-specified default values:

publisher->set_default_datawriter_qos(DDS_DATAWRITER_QOS_DEFAULT);

Note: These defaults cannot be used to initialize a QoS structure for an entity. For exam-
ple, the following is NOT allowed:

Not Allowed—> DataWriterQos dataWriterQos = DATAWRITER_QOS_DEFAULT;
// modify QoS...
create_datawriter(dataWriterQos);
4-11

Entities
4.2 QosPolicies
Connext’s behavior is controlled by the Quality of Service (QoS) policies of the data com-
munication entities (DomainParticipant, Topic, Publisher, Subscriber, DataWriter, and
DataReader) used in your applications. This section summarizes each of the QosPolicies
that you can set for the various entities.

The QosPolicy class is the abstract base class for all the QosPolicies. It provides the basic
mechanism for an application to specify quality of service parameters. Table 4.2 on
page 4-13 lists each supported QosPolicy (in alphabetical order), provides a summary,
and points to a section in the manual that provides further details.

The detailed description of a QosPolicy that applies to multiple Entities is provided in
the first chapter that discusses an Entity whose behavior the QoS affects. Otherwise, the
discussion of a QosPolicy can be found in the chapter of the particular Entity to which
the policy applies. As you will see in the detailed description sections, all QosPolicies
have one or more parameters that are used to configure the policy. The how’s and why’s
of tuning the parameters are also discussed in those sections.

As first discussed in Controlling Behavior with Quality of Service (QoS) Policies (Sec-
tion 2.5.1), QosPolicies may interact with each other, and certain values of QosPolicies
can be incompatible with the values set for other policies.

The set_qos() operation will fail if you attempt to specify a set of values would result in
an inconsistent set of policies. To indicate a failure, set_qos() will return
INCONSISTENT_POLICY. Section 4.2.1 provides further information on QoS compati-
bility within an Entity as well as across matching Entities, as does the discussion/refer-
ence section for each QosPolicy listed in Table 4.2 on page 4-13.

The values of some QosPolicies cannot be changed after the Entity is created or after the
Entity is enabled. Others may be changed at any time. The detailed section on each
QosPolicy states when each policy can be changed. If you attempt to change a QosPolicy
after it becomes immutable (because the associated Entity has been created or enabled,
depending on the policy), set_qos() will fail with a return code of
IMMUTABLE_POLICY.
4-12

QosPolicies
4. D

D
S Entitie

s

Q

Asynch
Publish

1.

Availab

Batch
 to
d

Databa
ee

DataRe

DataRe
Resour

al

DataWr

DataWr
Limits

ls
he

Deadlin
en

Destina
et

Discov
te

Discov
f-

Domain
esource

r-

Durabi
w

Durabi
 a

EntityF

EntityN

Event
Table 4.2 QosPolicies

osPolicy Summary

ronous-
er

Configures the mechanism that sends user data in an external middleware thread. See Section 6.4.

ility Configures Collaborative DataWriters and Durable Subscriptions. See Section 7.6.1.

Specifies and configures the mechanism that allows Connext to collect multiple user data samples
be sent in a single network packet, to take advantage of the efficiency of sending larger packets an
thus increase effective throughput. See Section 6.5.1.

se
Various settings and resource limits used by Connext to control its internal database. S
Section 8.5.1.

aderProtocol This QosPolicy configures the Connext on-the-network protocol, RTPS. See Section 7.6.2.

ader-
ceLimits

Various settings that configure how DataReaders allocate and use physical memory for intern
resources. See Section 7.6.3.

iterProtocol This QosPolicy configures the Connext on-the-network protocol, RTPS. See Section 6.5.2.

iterResource
Controls how many threads can concurrently block on a write() call of this DataWriter. Also contro
the number of batches managed by the DataWriter and the instance-replacement kind used by t
DataWriter. See Section 6.5.3.

e

For a DataReader, specifies the maximum expected elapsed time between arriving data samples.
For a DataWriter, specifies a commitment to publish samples with no greater elapsed time betwe
them.
See Section 6.5.4.

tionOrder
Controls how Connext will deal with data sent by multiple DataWriters for the same topic. Can be s
to "by reception timestamp" or to "by source timestamp". See Section 6.5.5.

ery
Configures the mechanism used by Connext to automatically discover and connect with new remo
applications. See Section 8.5.2.

eryConfig
Controls the amount of delay in discovering entities in the system and the amount of discovery tra
fic in the network. See Section 8.5.3.

ParticipantR
Limits

Various settings that configure how DomainParticipants allocate and use physical memory for inte
nal resources, including the maximum sizes of various properties. See Section 8.5.4.

lity
Specifies whether or not Connext will store and deliver data that were previously published to ne
DataReaders. See Section 6.5.6.

lityService
Various settings to configure the external Persistence Service used by Connext for DataWriters with
Durability QoS setting of Persistent Durability. See Section 6.5.7.

actory Controls whether or not child entities are created in the enabled state. See Section 6.4.2.

ame Assigns a name to a DomainParticipant. See Section 8.5.5.

Configures the DomainParticipant’s internal thread that handles timed events. See Section 8.5.5.
4-13

Entities

Exclusi

GroupD
4),

History
cy
on

Latency

Lifespa
ee

Livelin
e

Loggin

MultiC
he

Owner
le

Owner
ip

Partitio
ic.

Present
ee

Profile
ee

Propert
re
e-

Publish
er
n-

Reader
Cycle

Receive
P

Reliabi

Q

veArea Configures multi-thread concurrency and deadlock prevention capabilities. See Section 6.4.3.

ata
Along with TOPIC_DATA QosPolicy (Section 5.2.1) and USER_DATA QosPolicy (Section 6.5.2
this QosPolicy is used to attach a buffer of bytes to Connext's discovery meta-data. See 6.4.4.

Specifies how much data must to stored by Connextfor the DataWriter or DataReader. This QosPoli
affects the RELIABILITY QosPolicy (Section 6.5.18) as well as the DURABILITY QosPolicy (Secti
6.5.6). See Section 6.5.9.

Budget Suggestion to Connext on how much time is allowed to deliver data. See Section 6.5.10.

n
Specifies how long Connext should consider data sent by an user application to be valid. S
Section 6.5.11.

ess
Specifies and configures the mechanism that allows DataReaders to detect when DataWriters becom
disconnected or "dead." See Section 6.5.12.

g Configures the properties associated with Connext logging. See Section 8.4.1.

hannel
Configures a DataWriter’s ability to send data on different multicast groups (addresses) based on t
value of the data. See Section 6.5.13.

ship
Along with Ownership Strength, specifies if DataReaders for a topic can receive data from multip
DataWriters at the same time. See Section 6.5.14.

shipStrength
Used to arbitrate among multiple DataWriters of the same instance of a Topic when Ownersh
QoSPolicy is EXLUSIVE. See Section 6.5.15.

n
Adds string identifiers that are used for matching DataReaders and DataWriters for the same Top
See Section 6.4.5.

ation
Controls how Connext presents data received by an application to the DataReaders of the data. S
Section 6.4.6.

Configures the way that XML documents containing QoS profiles are loaded by RTI. S
Section 8.4.2.

y
Stores name/value(string) pairs that can be used to configure certain parameters of Connext that a
not exposed through formal QoS policies. It can also be used to store and propagate application-sp
cific name/value pairs, which can be retrieved by user code during discovery. See Section 6.5.16.

Mode
Specifies how Connext sends application data on the network. By default, data is sent in the us
thread that calls the DataWriter’s write() operation. However, this QosPolicy can be used to tell Co
next to use its own thread to send the data. See Section 6.5.17.

DataLife- Controls how a DataReader manages the lifecycle of the data that it has received. See Section 7.6.4.

rPool
Configures threads used by Connext to receive and process data from transports (for example, UD
sockets). See Section 8.5.6.

lity Specifies whether or not Connext will deliver data reliably. See Section 6.5.18.

Table 4.2 QosPolicies

osPolicy Summary
4-14

QosPolicies
4. D

D
S Entitie

s

Resour
d,

cs.

System
Limits

he
e).

TimeBa
ee

TopicD
n-

Transpo

Transpo
rt
ee

Transpo
Mappin

an

Transpo
ee

Transpo
ve

Transpo
ee

TypeSu
 to

UserDa
n-

WirePr .

WriterD
is-

Q

ceLimits
Controls the amount of physical memory allocated for entities, if dynamic allocations are allowe
and how they occur. Also controls memory usage among different instance values for keyed topi
See Section 6.5.19.

Resource-
Configures DomainParticipant-independent resources used by Connext. Mainly used to change t
maximum number of DomainParticipants that can be created within a single process (address spac
See Section 8.4.3.

sedFilter
Set by a DataReader to limit the number of new data values received over a period of time. S
Section 7.6.5.

ata
Along with Group Data QosPolicy and User Data QosPolicy, used to attach a buffer of bytes to Co
next's discovery meta-data. See Section 5.2.1.

rtBuiltin Specifies which built-in transport plugins are used. See Section 8.5.7.

rtMulticast
Specifies the multicast address on which a DataReader wants to receive its data. Can specify a po
number as well as a subset of the available transports with which to receive the multicast data. S
Section 7.6.6.

rtMulticast
g

Specifies the automatic mapping between a list of topic expressions and multicast address that c
be used by a DataReader to receive data for a specific topic. See Section 8.5.8.

rtPriority
Set by a DataWriter to tell Connext that the data being sent is a different "priority" than other data. S
Section 6.5.20.

rtSelection
Allows you to select which physical transports a DataWriter or DataReader may use to send or recei
its data. See Section 6.5.21.

rtUnicast
Specifies a subset of transports and port number that can be used by an Entity to receive data. S
Section 6.5.22.

pport
Used to attach application-specific value(s) to a DataWriter or DataReader. These values are passed
the serialization or deserialization routine of the associated data type. See Section 6.5.23.

ta
Along with Topic Data QosPolicy and Group Data QosPolicy, used to attach a buffer of bytes to Co
next's discovery meta-data. See Section 6.5.24.

otocol Specifies IDs used by the RTPS wire protocol to create globally unique identifiers. See Section 8.5.9

ataLifeCycle
Controls how a DataWriter handles the lifecycle of the instances (keys) that the DataWriter is reg
tered to manage. See Section 6.5.25.

Table 4.2 QosPolicies

osPolicy Summary
4-15

Entities
4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property

Some QosPolicies that apply to entities on the sending and receiving sides must have
their values set in a compatible manner. This is known as the policy’s ‘requested vs.
offered’ (RxO) property. Entities on the publishing side ‘offer’ to provide a certain
behavior. Entities on the subscribing side ‘request’ certain behavior. For Connext to con-
nect the sending entity to the receiving entity, the offered behavior must satisfy the
requested behavior.

For some QosPolicies, the allowed values may be graduated in a way that the offered
value will satisfy the requested value if the offered value is either greater than or less
than the requested value. For example, if a DataWriter’s DEADLINE QosPolicy specifies
a duration less than or equal to a DataReader’s DEADLINE QosPolicy, then the DataW-
riter is promising to publish data at least as fast or faster than the DataReader requires
new data to be received. This is a compatible situation (see Section 6.5.4).

Other QosPolicies require the values on the sending side and the subscribing side to be
exactly equal for compatibility to be met. For example, if a DataWriter’s OWNERSHIP
QosPolicy is set to SHARED, and the matching DataReader’s value is set to EXCLUSIVE,
then this is an incompatible situation since the DataReader and DataWriter have different
expectations of what will happen if more than one DataWriter publishes an instance of
the Topic (see OWNERSHIP QosPolicy (Section 6.5.14)).

Finally there are QosPolicies that do not require compatibility between the sending
entity and the receiving entity, or that only apply to one side or the other. Whether or
not related entities on the publishing and subscribing sides must use compatible set-
tings for a QosPolicy is indicated in the policy’s RxO property, which is provided in the
detailed section on each QosPolicy.

RxO = YESThe policy is set at both the publishing and subscribing ends and the values
must be set in a compatible manner. What it means to be compatible is defined by
the QosPolicy.

RxO = NOThe policy is set only on one end or at both the publishing and subscribing
ends, but the two settings are independent. There the requested vs. offered
semantics are not used for these QosPolicies.

For those QosPolicies that follow the RxO semantics, Connext will compare the values of
those policies for compatibility. If they are compatible, then Connext will connect the
sending entity to the receiving entity allowing data to be sent between them. If they are
found to be incompatible, then Connext will not interconnect the entities preventing data
to be sent between them.

In addition, Connext will record this event by changing the associated communication
status in both the sending and receiving applications, see Types of Communication Sta-
4-16

QosPolicies
4. D

D
S Entitie

s

tus (Section 4.3.1). Also, if you have installed Listeners on the associated Entities, then
Connext will invoke the associated callback functions to notify user code that an incom-
patible QoS combination has been found, see Types of Listeners (Section 4.4.1).

For Publishers and DataWriters, the status corresponding to this situation is
OFFERED_INCOMPATIBLE_QOS_STATUS. For Subscribers and DataReaders, the cor-
responding status is REQUESTED_INCOMPATIBLE_QOS_STATUS. The question of
why a DataReader is not receiving data sent from a matching DataWriter can often be
answered if you have instrumented the application with Listeners for the statuses noted
previously.

4.2.2 Special QosPolicy Handling Considerations for C

Many QosPolicy structures contain variable-length sequences to store their parameters.
In the C++, C++/CLI, C# and Java languages, the memory allocation related to
sequences are handled automatically through constructors/destructors and overloaded
operators. However, the C language is limited in what it provides to automatically han-
dle memory management. Thus, Connext provides functions and macros in C to initial-
ize, copy, and finalize (free) QosPolicy structures defined for Entities.

In the C language, it is not safe to use an Entity’s QosPolicy structure declared in user
code unless it has been initialized first. In addition, user code should always finalize an
Entity’s QosPolicy structure to release any memory allocated for the sequences–even if
the Entity’s QosPolicy structure was declared as a local, stack variable.

Thus, for a general Entity’s QosPolicy, Connext will provide:

❏ DDS_<Entity>Qos_INITIALIZER This is a macro that should be used when a
DDS_<Entity>Qos structure is declared in a C application.

struct DDS_<Entity>Qos qos = DDS_<Entity>Qos_INITIALIZER;

❏ DDS_<Entity>Qos_initialize() This is a function that can be used to initialize a
DDS_<Entity>Qos structure instead of the macro above.

struct DDS_<Entity>Qos qos;
DDS_<Entity>QOS_initialize(&qos);

❏ DDS_<Entity>Qos_finalize() This is a function that should be used to finalize a
DDS_<Entity>Qos structure when the structure is no longer needed. It will free
any memory allocated for sequences contained in the structure.

struct DDS_<Entity>Qos qos = DDS_<Entity>Qos_INITIALIZER;
...
<use qos>
4-17

Entities
...
// now done with qos
DDS_<Entity>QoS_finalize(&qos);

❏ DDS<Entity>Qos_copy() This is a function that can be used to copy one
DDS_<Entity>Qos structure to another. It will copy the sequences contained in
the source structure and allocate memory for sequence elements if needed. In the
code below, both dstQos and srcQos must have been initialized at some point
earlier in the code.

DDS_<Entity>QOS_copy(&dstQos, &srcQos);

4.3 Statuses
This section describes the different statuses that exist for an entity. A status represents a
state or an event regarding the entity. For instance, maybe Connext found a matching
DataReader for a DataWriter, or new data has arrived for a DataReader.

Your application can retrieve an Entity’s status by:

❏ explicitly checking for any status changes with get_status_changes().

❏ explicitly checking a specific status with get_<statusname>_status().

❏ using a Listener, which provides asynchronous notification when a status
changes.

❏ using StatusConditions and WaitSets, which provide a way to wait for status
changes.

If you want your application to be notified of status changes asynchronously: create and
install a Listener for the Entity. Then internal Connext threads will call the listener meth-
ods when the status changes. See Listeners (Section 4.4).

If you want your application to wait for status changes: set up StatusConditions to indi-
cate the statuses of interest, attach the StatusConditions to a WaitSet, and then call the
WaitSet’s wait() operation. The call to wait() will block until statuses in the attached
Conditions changes (or until a timeout period expires). See Conditions and WaitSets (Sec-
tion 4.6).

This section includes the following:

❏ Types of Communication Status (Section 4.3.1)

❏ Special Status-Handling Considerations for C (Section 4.3.2)
4-18

Statuses
4. D

D
S Entitie

s

4.3.1 Types of Communication Status

Each Entity is associated with a set of Status objects representing the “communication
status” of that Entity. The list of statuses actively monitored by Connext is provided in
Table 4.3 on page 4-20. A status structure contains values that give you more informa-
tion about the status; for example, how many times the event has occurred since the last
time the user checked the status, or how many time the event has occurred in total.

Changes to status values cause activation of corresponding StatusCondition objects and
trigger invocation of the corresponding Listener functions to asynchronously inform the
application that the status has changed. For example, a change in a Topic’s
INCONSISTENT_TOPIC_STATUS may trigger the TopicListener’s
on_inconsistent_topic() callback routine (if such a Listener is installed).

Statuses can be grouped into two categories:

❏ Plain communication status: In addition to a flag that indicates whether or not a
status has changed, a plain communication status also contains state and thus has
a corresponding structure to hold its current value.

❏ Read communication status: A read communication status is more like an event
and has no state other than whether or not it has occurred. Only two statuses
listed in Table 4.3 are read communications statuses: DATA_AVAILABLE and
DATA_ON_READERS.

As mentioned in Section 4.1.4, all entities have a get_status_changes() operation that
can be used to explicitly poll for changes in any status related to the entity. For plain sta-
tuses, each entry has operations to get the current value of the status; for example, the
Topic class has a get_inconsistent_topic_status() operation. For read statuses, your appli-
cation should use the take() operation on the DataReader to retrieve the newly arrived
data that is indicated by DATA_AVAILABLE and DATA_ON_READER.

Note that the two read communication statuses do not change independently. If data
arrives for a DataReader, then its DATA_AVAILABLE status changes. At the same time,
the DATA_ON_READERS status changes for the DataReader’s Subscriber.

Both types of status have a StatusChangedFlag. This flag indicates whether that particu-
lar communication status has changed since the last time the status was read by the
application. The way the StatusChangedFlag is maintained is slightly different for the
plain communication status and the read communication status, as described in the fol-
lowing sections:

❏ Changes in Plain Communication Status (Section 4.3.1.1)

❏ Changes in Read Communication Status (Section 4.3.1.2)
4-19

Entities
Table 4.3 Communication Statuses

Related
Entity Status (DDS_*_STATUS) Description Reference

Topic INCONSISTENT_TOPIC
Another Topic exists with the same name but
different characteristics–for example a differ-
ent type.

Section 5.3.1

Data-
Writer

DATA_WRITER_CACHE
The status of the DataWriter’s cache.
This status does not have a Listener.

Section 6.3.6.1

DATA_WRITER_PROTOCOL

The status of a DataWriter’s internal protocol
related metrics (such as the number of sam-
ples pushed, pulled, filtered) and the status
of wire protocol traffic.
This status does not have a Listener.

Section 6.3.6.2

LIVELINESS_LOST

The liveliness that the DataWriter has com-
mitted to (through its Liveliness QosPolicy)
was not respected (assert_liveliness() or
write() not called in time), thus DataReader
entities may consider the DataWriter as no
longer active.

Section 6.3.6.3

OFFERED_DEADLINE_
MISSED

The deadline that the DataWriter has com-
mitted through its Deadline QosPolicy was
not respected for a specific instance of the
Topic.

Section 6.3.6.4

OFFERED_INCOMPATIBLE_
QOS

An offered QosPolicy value was incompati-
ble with what was requested by a DataReader
of the same Topic.

Section 6.3.6.5

PUBLICATION_MATCHED

The DataWriter found a DataReader that
matches the Topic, has compatible QoSs and
a common partition, or a previously matched
DataReader has been deleted.

Section 6.3.6.6

RELIABLE_WRITER_
CACHE_CHANGED

The number of unacknowledged samples in
a reliable DataWriter's cache has reached one
of the predefined trigger points.

Section 6.3.6.7

RELIABLE_READER_
ACTIVITY_CHANGED

One or more reliable DataReaders has either
been discovered, deleted, or changed
between active and inactive state as specified
by the LivelinessQosPolicy of the DataReader.

Section 6.3.6.8
4-20

Statuses
4. D

D
S Entitie

s

4.3.1.1 Changes in Plain Communication Status

As seen in Figure 4.1 on page 4-22, for the plain communication status, the Status-
ChangedFlag flag is initially set to FALSE. It becomes TRUE whenever the plain com-
munication status changes and is reset to FALSE each time the application accesses the

Subscriber DATA_ON_READERS
New data is available for any of the readers
that were created from the Subscriber.

Section 7.2.9

Data-
Reader

DATA_AVAILABLE
New data (one or more samples) are avail-
able for the specific DataReader.

Section 7.3.7.1

DATA_READER_CACHE
The status of the reader's cache.
This status does not have a Listener.

Section 7.3.7.2

DATA_READER_PROTOCOL

The status of a DataReader’s internal protocol
related metrics (such as the number of sam-
ples received, filtered, rejected) and the sta-
tus of wire protocol traffic.
This status does not have a Listener.

Section 7.3.7.3

LIVELINESS_CHANGED

The liveliness of one or more DataWriters
that were writing instances read by the
DataReader has either been discovered,
deleted, or changed between active and inac-
tive state as specified by the LivelinessQo-
sPolicy of the DataWriter.

Section 7.3.7.4

REQUESTED_DEADLINE_
MISSED

New data was not received for an instance of
the Topic within the time period set by the
DataReader’s Deadline QosPolicy.

Section 7.3.7.5

REQUESTED_
INCOMPATIBLE_QOS

A requested QosPolicy value was incompati-
ble with what was offered by a DataWriter of
the same Topic.

Section 7.3.7.6

SAMPLE_LOST
A sample sent by Connext has been lost
(never received).

Section 7.3.7.7

SAMPLE_REJECTED
A received sample has been rejected due to a
resource limit (buffers filled).

Section 7.3.7.8

SUBSCRIPTION_MATCHED

The DataReader has found a DataWriter that
matches the Topic, has compatible QoSs and
a common partition, or an existing matched
DataWriter has been deleted.

Section 7.3.7.9

Table 4.3 Communication Statuses

Related
Entity Status (DDS_*_STATUS) Description Reference
4-21

Entities
plain communication status via the proper get_<plain communication status>() opera-
tion.

The communication status is also reset to FALSE whenever the associated listener oper-
ation is called, as the listener implicitly accesses the status which is passed as a parame-
ter to the operation.

The fact that the status is reset prior to calling the listener means that if the application
calls the get_<plain communication status>() operation from inside the listener, it will
see the status already reset.

An exception to this rule is when the associated listener is the 'nil' listener. The 'nil' lis-
tener is treated as a NO-OP and the act of calling the 'nil' listener does not reset the com-
munication status. (See Types of Listeners (Section 4.4.1).)

For example, the value of the StatusChangedFlag associated with the
REQUESTED_DEADLINE_MISSED status will become TRUE each time new deadline
occurs (which increases the RequestedDeadlineMissed status’ total_count field). The
value changes to FALSE when the application accesses the status via the corresponding
get_requested_deadline_missed_status() operation on the proper Entity.

4.3.1.2 Changes in Read Communication Status

As seen in Figure 4.2 on page 4-24, for the read communication status, the Status-
ChangedFlag flag is initially set to FALSE. The StatusChangedFlag becomes TRUE
when either a data sample arrives or else the ViewStateKind, SampleStateKind, or
InstanceStateKind of any existing sample changes for any reason other than a call to one
of the read/take operations. Specifically, any of the following events will cause the Sta-
tusChangedFlag to become TRUE:

❏ The arrival of new data.

Figure 4.1 Status Changes for Plain Communication Status

StatusChangedFlag = FALSE StatusChangedFlag = TRUE

status changes

User calls get_*_status(), or
after listener is invoked
4-22

Statuses
4. D

D
S Entitie

s

❏ A change in the InstanceStateKind of a contained instance. This can be caused by
either:

• Notification that an instance has been disposed by:

• the DataWriter that owns it, if OWNERSHIP = EXCLUSIVE

• or by any DataWriter, if OWNERSHIP = SHARED

• The loss of liveliness of the DataWriter of an instance for which there is no
other DataWriter.

• The arrival of the notification that an instance has been unregistered by the
only DataWriter that is known to be writing the instance.

Depending on the kind of StatusChangedFlag, the flag transitions to FALSE again as
follows:

❏ The DATA_AVAILABLE StatusChangedFlag becomes FALSE when either
on_data_available() is called or the read/take operation (or their variants) is
called on the associated DataReader.

❏ The DATA_ON_READERS StatusChangedFlag becomes FALSE when any of
the following occurs:

• on_data_on_readers() is called.

• on_data_available() is called on any DataReader belonging to the Subscriber.

• One of the read/take operations (or their variants) is called on any DataReader
belonging to the Subscriber.

4.3.2 Special Status-Handling Considerations for C

Some status structures contain variable-length sequences to store their values. In the
C++, C++/CLI, C# and Java languages, the memory allocation related to sequences are
handled automatically through constructors/destructors and overloaded operators.
However, the C language is limited in what it provides to automatically handle memory
management. Thus, Connext provides functions and macros in C to initialize, copy, and
finalize (free) status structures.

In the C language, it is not safe to use a status structure that has internal sequences
declared in user code unless it has been initialized first. In addition, user code should
always finalize a status structure to release any memory allocated for the sequences–
even if the status structure was declared as a local, stack variable.

Thus, for a general status structure, Connext will provide:
4-23

Entities
Figure 4.2 Status Changes for Read Communication Status
4-24

Listeners
4. D

D
S Entitie

s

❏ DDS_<STATUS>STATUS_INITIALIZER This is a macro that should be used
when a DDS_<Status>Status structure is declared in a C application.

struct DDS_<Status>Status status =
DDS_<Status>Status_INITIALIZER;

❏ DDS_<Status>Status_initialize() This is a function that can be used to initialize
a DDS_<Status>Status structure instead of the macro above.

struct DDS_<Status>Status status;
DDS_<Status>Status_initialize(&Status);

❏ DDS_<Status>Status_finalize() This is a function that should be used to finalize
a DDS_<Status>Status structure when the structure is no longer needed. It will
free any memory allocated for sequences contained in the structure.

struct DDS_<Status>Status status =
DDS_<Status>Status_INITIALIZER;

...
<use status>
...
// now done with Status
DDS_<Status>Status_finalize(&status);

❏ DDS<Status>Status_copy() This is a function that can be used to copy one
DDS_<Status>Status structure to another. It will copy the sequences contained
in the source structure and allocate memory for sequence elements if needed. In
the code below, both dstStatus and srcStatus must have been initialized at some
point earlier in the code.

DDS_<Status>Status_copy(&dstStatus, &srcStatus);

Note that many status structures do not have sequences internally. For those structures,
you do not need to use the macro and methods provided above. However, they have
still been created for your convenience.

4.4 Listeners
This section describes Listeners and how to use them:

❏ Types of Listeners (Section 4.4.1)

❏ Creating and Deleting Listeners (Section 4.4.2)
4-25

Entities
❏ Special Considerations for Listeners in C (Section 4.4.3)

❏ Hierarchical Processing of Listeners (Section 4.4.4)

❏ Operations Allowed within Listener Callbacks (Section 4.4.5)

Listeners are triggered by changes in an entity’s status. For instance, maybe Connext
found a matching DataReader for a DataWriter, or new data has arrived for a DataReader.

4.4.1 Types of Listeners

The Listener class is the abstract base class for all listeners. Each entity class (DomainPar-
ticipant, Topic, Publisher, DataWriter, Subscriber, and DataReader) has its own derived Lis-
tener class that add methods for handling entity-specific statuses. The hierarchy of
Listener classes is presented in Figure 4.3. The methods are called by an internal Connext
thread when the corresponding status for the Entity changes value.

You can choose which changes in status will trigger a callback by installing a listener
with a bit-mask. Bits in the mask correspond to different statuses. The bits that are true
indicate that the listener will be called back when there are changes in the correspond-
ing status.

You can specify a listener and set its bit-mask before or after you create an Entity:

DDSListener

DDSDataReaderListener DDSDataWriterListener DDSTopicListener

DDSDomainParticipantListener

DDSSubscriberListener DDSPublisherListener

Figure 4.3 Listener Class Hierarchy
4-26

Listeners
4. D

D
S Entitie

s

During Entity creation:

DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |
 DDS_DATA_AVAILABLE_STATUS;

datareader = subscriber->create_datareader(topic,
 DDS_DATAREADER_QOS_DEFAULT,
 listener, mask);

or afterwards:

DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |
 DDS_DATA_AVAILABLE_STATUS;

datareader->set_listener(listener, mask);

As you can see in the above examples, there are two components involved when setting
up listeners: the listener itself and the mask. Both of these can be null. Table 4.4
describes what happens when a status change occurs. See Hierarchical Processing of
Listeners (Section 4.4.4) for more information.

Table 4.4 Effect of Different Combinations of Listeners and Status Bit Masks

No Bits Set in Mask Some/All Bits Set in Mask

Listener is
Specified

Connext finds the next most relevant
listener for the changed status.

For the statuses that are enabled in
the mask, the most relevant listener
will be called.
The 'statusChangedFlag' for the rele-
vant status is reset.

Listener is
NULL

Connext behaves as if the listener is
not installed and finds the next most
relevant listener for that status.

Connext behaves as if the listener call-
back is installed, but the callback is
doing nothing. This is called a ‘nil’ lis-
tener.
4-27

Entities
4.4.2 Creating and Deleting Listeners

There is no factory for creating or deleting a Listener; use the natural means in each lan-
guage binding (for example, “new” or “delete” in C++ or Java). For example:

class HelloWorldListener : public DDSDataReaderListener {
 virtual void on_data_available(DDSDataReader* reader);
};
void HelloWorldListener::on_data_available(DDSDataReader* reader)
{
 printf("received data\n");
}
// Create a Listener
HelloWorldListener *reader_listener = NULL;
reader_listener = new HelloWorldListener();

// Delete a Listener
delete reader_listener;

A listener cannot be deleted until the entity it is attached to has been deleted. For exam-
ple, you must delete the DataReader before deleting the DataReader’s listener.

Note: Due to a thread-safety issue, the destruction of a DomainParticipantListener from
an enabled DomainParticipant should be avoided—even if the DomainParticipantListener
has been removed from the DomainParticipant. (This limitation does not affect the Java
API.)

4.4.3 Special Considerations for Listeners in C

In C, a Listener is a structure with function pointers to the user callback routines. Often,
you may only be interested in a subset of the statuses that can be monitored with the Lis-
tener. In those cases, you may not set all of the functions pointers in a listener structure
to a valid function. In that situation, we recommend that the unused, callback-function
pointers are set to NULL. While setting the DDS_StatusMask to enable only the call-
backs for the statuses in which you are interested (and thus only enabling callbacks on
the functions that actually exist) is safe, we still recommend that you clear all of the
unused callback pointers in the Listener structure.

To help, in the C language, we provide a macro that can be used to initialize a Listener
structure so that all of its callback pointers are set to NULL. For example

DDS_<Entity>Listener listener = DDS_<Entity>Listener_INITIALIZER;
// now only need to set the listener callback pointers for statuses
// to be monitored

There is no need to do this in languages other than C.
4-28

Listeners
4. D

D
S Entitie

s

4.4.4 Hierarchical Processing of Listeners

As seen in Figure 4.3 on page 4-26, Listeners for some entities derive from the Connext Lis-
teners for related entities. This means that the derived Listener has all of the methods of
its parent class. You can install Listeners at all levels of the object hierarchy. At the top is
the DomainParticipantListener; only one can be installed in a DomainParticipant. Then
every Subscriber and Publisher can have their own Listener. Finally, each Topic, DataReader
and DataWriter can have their own listeners. All are optional.

Suppose, however, that an Entity does not install a Listener, or installs a Listener that does
not have particular communication status selected in the bitmask. In this case, if/when
that particular status changes for that Entity, the corresponding Listener for that Entity’s
parent is called. Status changes are “propagated” from child Entity to parent Entity until
a Listener is found that is registered for that status. Connext will give up and drop the
status-change event only if no Listeners have been installed in the object hierarchy to be
called back for the specific status. This is true for plain communication statuses. Read
communication statuses are handle somewhat differently, see Processing Read Commu-
nication Statuses (Section 4.4.4.1).

For example, suppose that Connext finds a matching DataWriter for a local DataReader.
This event will change the SUBSCRIPTION_MATCHED status. So the local DataReader
object is checked to see if the application has installed a listener that handles the
SUBSCRIPTION_MATCH status. If not, the Subscriber that created the DataReader is
checked to see if it has a listener installed that handles the same event. If not, the
DomainParticipant is checked. The DomainParticipantListener methods are called only if
none of the descendent entities of the DomainParticipant have listeners that handle the
particular status that has changed. Again, all listeners are optional. Your application
does not have to handle any communication statuses.

Table 4.5 lists the callback functions that are available for each Entity’s status listener.
4-29

Entities
4.4.4.1 Processing Read Communication Statuses

The processing of the DATA_ON_READERS and DATA_AVAILABLE read communi-
cation statuses are handled slightly differently since, when new data arrives for a
DataReader, both statuses change simultaneously. However, only one, if any, Listener will
be called to handle the event.

If there is a Listener installed to handle the DATA_ON_READERS status in the
DataReader’s Subscriber or in the DomainParticipant, then that Listener’s
on_data_on_readers() function will be called back. The DataReaderListener’s
on_data_available() function is called only if the DATA_ON_READERS status is not
handle by any relevant listeners.

This can be useful if you have generic processing to do whenever new data arrives for
any DataReader. You can execute the generic code in the on_data_on_readers() method,
and then dispatch the processing of the actual data to the specific DataReaderListener’s
on_data_available() function by calling the notify_datareaders() method on the Sub-
scriber.

Table 4.5 Listener Callback Functions

Entity Listener for: Callback Functions

DomainParticipants

Topics on_inconsistent_topic()

Publishers and DataWriters

on_liveliness_lost()

on_offered_deadline_missed()

on_offered_incompatible_qos()

on_publication_matched()

on_reliable_reader_activity_changed()

on_reliable_writer_cache_changed()

Subscribers on_data_on_readers()

Subscribers and DataReaders

on_data_available

on_liveliness_changed()

on_requested_deadline_missed()

on_requested_incompatible_qos()

on_sample_lost()

on_sample_rejected()

on_subscription_matched()
4-30

Exclusive Areas (EAs)
4. D

D
S Entitie

s

For example:

void on_data_on_readers (DDSSubscriber *subscriber)
{
 // Do some general processing that needs to be done
 // whenever new data arrives, but is independent of
 // any particular DataReader

 < generic processing code here >

 // Now dispatch the actual processing of the data
 // to the specific DataReader for which the data
 // was received

 subscriber->notify_datareaders();
}

4.4.5 Operations Allowed within Listener Callbacks

Due to the potential for deadlock, some Connext APIs should not be invoked within the
functions of listener callbacks. Exactly which Connext APIs are restricted depends on the
Entity upon which the Listener is installed, as well as the configuration of ‘Exclusive
Areas,’ as discussed in Section 4.5.

Please read and understand Exclusive Areas (EAs) (Section 4.5) and Restricted Opera-
tions in Listener Callbacks (Section 4.5.1) to ensure that the calls made from your Listen-
ers are allowed and will not cause potential deadlock situations.

4.5 Exclusive Areas (EAs)
Listener callbacks are invoked by internal Connext threads. To prevent undesirable,
multi-threaded interaction, the internal threads may take and hold semaphores
(mutexes) used for mutual exclusion. In your listener callbacks, you may want to invoke
functions provided by the Connext API. Internally, those Connext functions also may
take mutexes to prevent errors due to multi-threaded access to critical data or opera-
tions.
4-31

Entities
Once there are multiple mutexes to protect different critical regions, the possibility for
deadlock exists. Consider Figure 4.4’s scenario, in which there are two threads and two
mutexes.

While the probability of entering the deadlock situation in Figure 4.4 depends on execu-
tion timing, when there are multiple threads and multiple mutexes, care must be taken
in writing code to prevent those situations from existing in the first place. Connext has
been carefully created and analyzed so that we know our threads internally are safe
from deadlock interactions.

However, when Connext threads that are holding mutexes call user code in listeners, it is
possible for user code to inadvertently cause the threads to deadlock if Connext APIs
that try to take other mutexes are invoked. To help you avoid this situation, RTI has
defined a concept known as Exclusive Areas, some restrictions regarding the use of Con-
next APIs within user callback code, and a QoS policy that allows you to configure
Exclusive Areas.

Connext uses Exclusive Areas (EAs) to encapsulate mutexes and critical regions. Only one
thread at a time can be executing code within an EA. The formal definition of EAs and
their implementation ensures safety from deadlock and efficient entering and exiting of
EAs. While every Entity created by Connext has an associated EA, EAs may be shared
among several entities. A thread is automatically in the entity's EA when it is calling the
entity’s listener.

Thread1 Thread2

take(MutexA)

take(MutexB)

take(MutexB)

take(MutexA)

Deadlock!

XX

Figure 4.4 Multiple Mutexes Leading to a Deadlock Condition

Thread1 takes MutexA while simultaneously Thread2 takes MutexB. Then, Thread1
takes MutexB and simultaneously Thread2 takes MutexA. Now both threads are
blocked since they hold a mutex that the other thread is trying to take. This is a deadlock
condition.
4-32

Exclusive Areas (EAs)
4. D

D
S Entitie

s

Connext allows you to configure all the Entities within an application in a single domain
to share a single Exclusive Area. This would greatly restrict the concurrency of thread
execution within Connext’s multi-threaded core. However, doing so would release all
restrictions on using Connext APIs within your callback code.

You may also have the best of both worlds by configuring a set of Entities to share a
global EA and others to have their own. For the Entities that have their own EAs, the
types of Connext operations that you can call from the Entity’s callback are restricted.

To understand why the general EA framework limits the operations that can be called in
an EA, consider a modification to the example previously presented in Figure 4.4. Sup-
pose we create a rule that is followed when we write our code. “For all situations in
which a thread has to take multiple mutexes, we write our code so that the mutexes are
always taken in the same order.” Following the rule will ensure us that the code we
write cannot enter a deadlock situation due to the taking of the mutexes, see Figure 4.5.

Connext defines an ordering of the mutexes it creates. Generally speaking, there are
three ordered levels of Exclusive Areas:

Thread1 Thread2

take(MutexA)

take(MutexB)

take(MutexA)

take(MutexB)

X

give(MutexB)

give(MutexA)

Figure 4.5 Taking Multiple Mutexes in a Specific Order to Eliminate Deadlock

By creating an order in which multiple mutexes are taken, you can guarantee that no
deadlock situation will arise. In this case, if a thread must take both MutexA and
MutexB, we write our code so that in those cases MutexA is always taken before
MutexB.
4-33

Entities
❏ ParticipantEA There is only one ParticipantEA per participant. The creation and
deletion of all Entities (create_xxx(), delete_xxx()) take the ParticipantEA. In
addition, the enable() method for an Entity and the setting of the Entity’s QoS,
set_qos(), also take the ParticipantEA

❏ SubscriberEA This EA is created on a per-Subscriber basis by default. You can
assume that the methods of a Subscriber will take the SubscriberEA. In addition,
the DataReaders created by a Subscriber share the EA of its parent. This means that
the methods of a DataReader (including take() and read()) will take the EA of its
Subscriber. Therefore, operations on DataReaders of the same Subscriber, will be
serialized, even when invoked from multiple concurrent application threads. As
mentioned, the enable() and set_qos() methods of both Subscribers and
DataReaders will take the ParticipantEA. The same is true for the
create_datareader() and delete_datareader() methods of the Subscriber.

❏ PublisherEA This EA is created on a per-Publisher basis by default. You can
assume that the methods of a Publisher will take the PublisherEA. In addition,
the DataWriters created by a Publisher share the EA of its parent. This means that
the methods of a DataWriter including write() will take the EA of its Publisher.
Therefore, operations on DataWriters of the same Publisher will be serialized,
even when invoked from multiple concurrent application threads. As men-
tioned, the enable() and set_qos() methods of both Publishers and DataWriters
will take the ParticipantEA, as well as the create_datawriter() and
delete_datawriter() methods of the Publisher.

In addition, you should also be aware that:

❏ The three EA levels are ordered in the following manner:
ParticipantEA < SubscriberEA < PublisherEA

❏ When executing user code in a listener callback of an Entity, the internal Connext
thread is already in the EA of that Entity or used by that Entity.

❏ If a thread is in an EA, it can call methods associated with either a higher EA
level or that share the same EA. It cannot call methods associated with a lower
EA level nor ones that use a different EA at the same level.

4.5.1 Restricted Operations in Listener Callbacks

Based on the background and rules provided in Exclusive Areas (EAs) (Section 4.5), this
section describes how EAs restrict you from using various Connext APIs from within the
Listener callbacks of different Entities.

Note: these restrictions do not apply to builtin topic listener callbacks.
4-34

Exclusive Areas (EAs)
4. D

D
S Entitie

s

By default, each Publisher and Subscriber creates and uses its own EA, and shares it with
its children DataWriters and DataReaders, respectively. In that case:

Within a DataWriter/DataReader’s Listener callback, do not:

❏ create any entities

❏ delete any entities

❏ enable any entities

❏ set QoS’s on any entities

Within a Subscriber/DataReader’s Listener callback, do not call any operations on:

❏ Other Subscribers

❏ DataReaders that belong to other Subscribers

❏ Publishers/DataWriters that have been configured to use the ParticipantEA (see
below)

Within a Publisher/DataWriter Listener callback, do not call any operations on:

❏ Other Publishers

❏ DataWriters that belong to other Publishers

❏ Any Subscribers

❏ Any DataReaders

Connext will enforce the rules to avoid deadlock, and any attempt to call an illegal
method from within a Listener callback will return
DDS_RETCODE_ILLEGAL_OPERATION.

However, as previously mentioned, if you are willing to trade-off concurrency for flexi-
bility, you may configure individual Publishers and Subscribers (and thus their DataWrit-
ers and DataReaders) to share the EA of their participant. In the limit, only a single
ParticipantEA is shared among all Entities. When doing so, the restrictions above are
lifted at a cost of greatly reduced concurrency. You may create/delete/enable/set_qos’s
and generally call all of the methods of any other entity in the Listener callbacks of Enti-
ties that share the ParticipantEA.

Use the EXCLUSIVE_AREA QosPolicy (DDS Extension) (Section 6.4.3) of the Publisher
or Subscriber to set whether or not to use a shared exclusive area. By default, Publishers
and Subscribers will create and use their own individual EAs. You can configure a subset
of the Publishers and Subscribers to share the ParticipantEA if you need the Listeners
4-35

Entities
associated with those entities or children entities to be able to call any of the restricted
methods listed above.

Regardless of how the EXCLUSIVE_AREA QosPolicy is set, the following operations
are never allowed in any Listener callback:

❏ Destruction of the entity to which the Listener is attached. For instance, a DataW-
riter/DataReader Listener callback must not destroy its DataWriter/DataReader.

❏ Within the TopicListener callback, you cannot call any operations on DataReaders,
DataWriters, Publishers, Subscribers or DomainParticipants.

4.6 Conditions and WaitSets
Conditions and WaitSets provide another way for Connext to communicate status
changes (including the arrival of data) to your application. While a Listener is used to
provide a callback for asynchronous access, Conditions and WaitSets provide synchro-
nous data access. In other words, Listeners are notification-based and Conditions are
wait-based.

A WaitSet allows an application to wait until one or more attached Conditions becomes
true (or else until a timeout expires).

Briefly, your application can create a WaitSet, attach one or more Conditions to it, then
call the WaitSet’s wait() operation. The wait() blocks until one or more of the WaitSet’s
attached Conditions becomes TRUE.

A Condition has a trigger_value that can be TRUE or FALSE. You can retrieve the current
value by calling the Condition’s only operation, get_trigger_value().

There are three kinds of Conditions. A Condition is a root class for all the conditions that
may be attached to a WaitSet. This basic class is specialized in three classes:

❏ GuardConditions (Section 4.6.6) are created by your application. Each GuardCon-
dition has a single, user-settable, boolean trigger_value. Your application can
manually trigger the GuardCondition by calling set_trigger_value(). Connext does
not trigger or clear this type of condition—it is completely controlled by your
application.
4-36

Conditions and WaitSets
4. D

D
S Entitie

s

❏ ReadConditions and QueryConditions (Section 4.6.7) are created by your appli-
cation, but triggered by Connext. ReadConditions provide a way for you to specify
the data samples that you want to wait for, by indicating the desired sample-
states, view-states, and instance-states1.

❏ StatusConditions (Section 4.6.8) are created automatically by Connext, one for
each Entity. A StatusCondition is triggered by Connext when there is a change to
any of that Entity’s enabled statuses.

Figure 4.6 on page 4-38 shows the relationship between these objects and other Entities
in the system.

A WaitSet can be associated with more than one Entity (including multiple DomainPar-
ticipants). It can be used to wait on Conditions associated with different DomainPartici-
pants. A WaitSet can only be in use by one application thread at a time.

4.6.1 Creating and Deleting WaitSets

There is no factory for creating or deleting a WaitSet; use the natural means in each lan-
guage binding (for example, “new” or “delete” in C++ or Java).

For example, to delete a WaitSet:

delete waitset;

There are two ways to create a WaitSet—with or without specifying WaitSet properties
(DDS_WaitSetProperty_t, described in Table 4.6).

1. These states are described in The SampleInfo Structure (Section 7.4.5).

Table 4.6 WaitSet Properties (DDS_WaitSet_Property_t)

Type Field Name Description

long max_event_count
Maximum number of trigger events to cause a WaitSet
to wake up.

DDS_Duration_t max_event_delay

Maximum delay from occurrence of first trigger event
to cause a WaitSet to wake up.
This value should reflect the maximum acceptable
latency increase (time delay from occurrence of the
event to waking up the waitset) incurred as a result of
waiting for additional events before waking up the
waitset.
4-37

Entities
Figure 4.6 Conditions and WaitSets
4-38

Conditions and WaitSets
4. D

D
S Entitie

s

❏ If properties are not specified when the WaitSet is created, the WaitSet will wake
up as soon as a trigger event occurs (that is, when an attached Condition is
becomes true). This is the default behavior if properties are not specified.

This ‘immediate wake-up’ behavior is optimal if you want to minimize latency
(to wake up and process the data or event as soon as possible). However, "wak-
ing up" involves a context switch—the operating system must signal and sched-
ule the thread that is waiting on the WaitSet. A context switch consumes
significant CPU and therefore waking up on each data update is not optimal in
situations where the application needs to maximize throughput (the number of
messages processed per second). This is especially true if the receiver is CPU lim-
ited.

To create a WaitSet with default behavior:

 WaitSet* waitset = new WaitSet();

❏ If properties are specified when the WaitSet is created, the WaitSet will wait for
either (a) up to max_event_count trigger events to occur, (b) up to
max_event_delay time from the occurrence of the first trigger event, or (c) up to
the timeout maximum wait duration specified in the call to wait().

To create a WaitSet with properties:

DDS_WaitSetProperty_t prop;
Prop.max_event_count = 5;
DDSWaitSet* waitset = new DDSWaitSet(prop);

4.6.2 WaitSet Operations

WaitSets have only a few operations, as listed in Table 4.7 on page 4-40. For details, see
the online documentation.

4.6.3 Waiting for Conditions

The WaitSet’s wait() operation allows an application thread to wait for any of the
attached Conditions to trigger (become TRUE).

If any of the attached Conditions are already TRUE when wait() is called, it returns
immediately. If none of the attached Conditions are TRUE, wait() blocks—suspending
the calling thread. The wait() call will return when either (a) one or more of the attached
Conditions becomes TRUE or (b) a user-specified timeout period expires.

Note: The resolution of the timeout period is constrained by the resolution of the system
clock.
4-39

Entities
You can also configure the properties of the WaitSet so that it will wait for up to
max_event_count trigger events to occur before returning, or for up to
max_event_delay time from the occurrence of the first trigger event before returning.
See Creating and Deleting WaitSets (Section 4.6.1).

If wait() does not timeout, it returns a list of the attached Conditions that became TRUE
and therefore unblocked the wait.

If wait() does timeout, it returns TIMEOUT and an empty list of Conditions.

Only one application thread can be waiting on the same WaitSet. If wait() is called on a
WaitSet that already has a thread blocking on it, the operation will immediately return
PRECONDITION_NOT_MET.

Note: If you detach a Condition from a Waitset that is currently in a wait state (that is, you
are waiting on it), wait() may return OK and an empty sequence of conditions.

Table 4.7 WaitSet Operations

Operation Description

attach_condition

Attaches a Condition to this WaitSet.

You may attach a Condition to a WaitSet that is currently being
waited upon (via the wait() operation). In this case, if the Condition
has a trigger_value of TRUE, then attaching the Condition will
unblock the WaitSet.

Adding a Condition that is already attached to the WaitSet has no
effect. If the Condition cannot be attached, Connext will return an
OUT_OF_RESOURCES error code.

detach_condition
Detaches a Condition from the WaitSet. Attempting to detach a Condition
that is not to attached the WaitSet will result in a
PRECONDITION_NOT_MET error code.

wait
Blocks execution of the thread until one or more attached Conditions
becomes true, or until a user-specified timeout expires. See Section 4.6.3.

get_conditions Retrieves a list of attached Conditions.

get_property Retrieves the DDS_WaitSetProperty_t structure of the associated WaitSet.

set_property
Sets the DDS_WaitSetProperty_t structure, to configure the associated Wait-
Set to return after one or more trigger events have occurred.
4-40

Conditions and WaitSets
4. D

D
S Entitie

s

4.6.3.1 How WaitSets Block

The blocking behavior of the WaitSet is illustrated in Figure 4.7. The result of a wait()
operation depends on the state of the WaitSet, which in turn depends on whether at least
one attached Condition has a trigger_value of TRUE.

If the wait() operation is called on a WaitSet with state BLOCKED, it will block the call-
ing thread. If wait() is called on a WaitSet with state UNBLOCKED, it will return imme-
diately.

When the WaitSet transitions from BLOCKED to UNBLOCKED, it wakes up the thread
(if there is one) that had called wait() on it. There is no implied “event queuing” in the
awakening of a WaitSet. That is, if several Conditions attached to the WaitSet have their
trigger_value transition to true in sequence, Connext will only unblock the WaitSet once.

4.6.4 Processing Triggered Conditions—What to do when Wait() Returns

When wait() returns, it provides a list of the attached Condition objects that have a
trigger_value of true. Your application can use this list to do the following for each Con-
dition in the returned list:

❏ If it is a StatusCondition:

• First, call get_status_changes() to see what status changed.

• If the status changes refer to plain communication status: call
get_<communication_status>() on the relevant Entity.

• If the status changes refer to DATA_ON_READERS1: call get_datareaders()
on the relevant Subscriber.

Figure 4.7 WaitSet Blocking Behavior
4-41

Entities
• If the status changes refer to DATA_AVAILABLE: call read() or take() on the
relevant DataReader.

❏ If it is a ReadCondition or a QueryCondition: You may want to call
read_w_condition() or take_w_condition() on the DataReader, with the ReadCon-
dition as a parameter (see read_w_condition and take_w_condition (Section 7.4.3.6)).

Note that this is just a suggestion, you do not have to use the “w_condition”
operations (or any read/take operations, for that matter) simply because you
used a WaitSet. The “w_condition” operations are just a convenient way to use
the same status masks that were set on the ReadCondition or QueryCondition.

❏ If it is a GuardCondition: check to see which GuardCondition changed, then react
accordingly. Recall that GuardConditions are completely controlled by your appli-
cation.

See Conditions and WaitSet Example (Section 4.6.5) to see how to determine which of
the attached Conditions is in the returned list.

4.6.5 Conditions and WaitSet Example

This example creates a WaitSet and then waits for one or more attached Conditions to
become true.

// Create a WaitSet
WaitSet* waitset = new WaitSet();

// Attach Conditions
DDSCondition* cond1 = ...;
DDSCondition* cond2 = entity->get_statuscondition();
DDSCondition* cond3 = reader->create_readcondition(

DDS_NOT_READ_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

DDSCondition* cond4 = new DDSGuardCondition();

DDSCondition* cond5 = ...;
DDS_ReturnCode_t retcode;

retcode = waitset->attach_condition(cond1);
if (retcode != DDS_RETCODE_OK) {
 // ... error
}

1. And then read/take on the returned DataReader objects.
4-42

Conditions and WaitSets
4. D

D
S Entitie

s

retcode = waitset->attach_condition(cond2);
if (retcode != DDS_RETCODE_OK) {
 // ... error
}
retcode = waitset->attach_condition(cond3);
if (retcode != DDS_RETCODE_OK) {
 // ... error
}
retcode = waitset->attach_condition(cond4);
if (retcode != DDS_RETCODE_OK) {
 // ... error
}
retcode = waitset->attach_condition(cond5);
if (retcode != DDS_RETCODE_OK) {
 // ... error
}

// Wait for a condition to trigger or timeout

DDS_Duration_t timeout = { 0, 1000000 }; // 1ms
DDSConditionSeq active_conditions; // holder for active conditions
bool is_cond1_triggered = false;
bool is_cond2_triggered = false;
DDS_ReturnCode_t retcode;

retcode = waitset->wait(active_conditions, timeout);

if (retcode == DDS_RETCODE_TIMEOUT) {
 // handle timeout
 printf("Wait timed out. No conditions were triggered.\n");
 }
else if (retcode != DDS_RETCODE_OK) {
 // ... check for cause of failure
} else {
 // success

 if (active_conditions.length() == 0) {
 printf("Wait timed out!! No conditions triggered.\n");
 } else
 // check if "cond1" or "cond2" are triggered:
 for(i = 0; i < active_conditions.length(); ++i) {
 if (active_conditions[i] == cond1) {
 printf("Cond1 was triggered!");
 is_cond1_triggered = true;
 }
4-43

Entities

 if (active_conditions[i] == cond2) {
 printf("Cond2 was triggered!");
 is_cond2_triggered = true;
 }

 if (is_cond1_triggered && is_cond2_triggered) {
 break;
 }
 }
 }
}

if (is_cond1_triggered) {
 // ... do something because "cond1" was triggered ...
}

if (is_cond2_triggered) {
 // ... do something because "cond2" was triggered ...
}

// Delete the waitset
delete waitset;
waitset = NULL;

4.6.6 GuardConditions

GuardConditions are created by your application. GuardConditions provide a way for
your application to manually awaken a WaitSet. Like all Conditions, it has a single bool-
ean trigger_value. Your application can manually trigger the GuardCondition by calling
set_trigger_value().

Connext does not trigger or clear this type of condition—it is completely controlled by
your application.

A GuardCondition has no factory. It is created as an object directly by the natural means
in each language binding (e.g., using “new” in C++ or Java). For example:

// Create a Guard Condition
Condition* my_guard_condition = new GuardCondition();

// Delete a Guard Condition
delete my_guard_condition;

When first created, the trigger_value is FALSE.
4-44

Conditions and WaitSets
4. D

D
S Entitie

s

A GuardCondition has only two operations, get_trigger_value() and
set_trigger_value().

When your application calls set_trigger_value(DDS_BOOLEAN_TRUE), Connext will
awaken any WaitSet to which the GuardCondition is attached.

4.6.7 ReadConditions and QueryConditions

ReadConditions are created by your application, but triggered by Connext. ReadConditions
provide a way for you to specify the data samples that you want to wait for, by indicat-
ing the desired sample-states, view-states, and instance-states1. Then Connext will trig-
ger the ReadCondition when suitable samples are available.

A QueryCondition is a special ReadCondition that allows you to specify a query expres-
sion and parameters, so you can filter on the locally available (already received) data.
QueryConditions use the same SQL-based filtering syntax as ContentFilteredTopics for
query expressions, parameters, etc. Unlike ContentFilteredTopics, QueryConditions are
applied to data already received, so they do not affect the reception of data.

Multiple mask combinations to be associated with a single content filter. This is impor-
tant because the maximum number of content filters that may be created per DataReader
is 32, but more than 32 QueryConditions may be created per DataReader, if they are differ-
ent mask-combinations of the same content filter.

ReadConditions and QueryConditions are created by using the DataReader’s
create_readcondition() and create_querycondition() operations. For example:

DDSReadCondition* my_read_condition = reader->create_readcondition(
DDS_NOT_READ_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE);

DDSQueryCondition* my_query_condition = reader-
>create_querycondition(

DDS_NOT_READ_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE
query_expression,
query_parameters);

Note: If you are using a ReadCondition to simply detect the presence of new data, con-
sider using a StatusCondition (Section 4.6.8) with the DATA_AVAILABLE_STATUS
instead, which will perform better in this situation.

1. These states are described in The SampleInfo Structure (Section 7.4.5).
4-45

Entities
A DataReader can have multiple attached ReadConditions and QueryConditions. A Read-
Condition or QueryCondition may only be attached to one DataReader.

To delete a ReadCondition or QueryCondition, use the DataReader’s
delete_readcondition() operation:

DDS_ReturnCode_t delete_readcondition (DDSReadCondition *condition)

After a ReadCondition is triggered, use the FooDataReader’s read/take “with condition”
operations (see Section 7.4.3.6) to access the samples.

Table 4.8 lists the operations available on ReadConditions.

4.6.7.1 How ReadConditions are Triggered

A ReadCondition has a trigger_value that determines whether the attached WaitSet is
BLOCKED or UNBLOCKED. Unlike the StatusCondition, the trigger_value of the Read-
Condition is tied to the presence of at least one sample with a sample-state, view-state,
and instance-state that matches those set in the ReadCondition. Furthermore, for the Que-
ryCondition to have a trigger_value==TRUE, the data associated with the sample must
be such that the query_expression evaluates to TRUE.

The trigger_value of a ReadCondition depends on the presence of samples on the associ-
ated DataReader. This implies that a single ‘take’ operation can potentially change the
trigger_value of several ReadConditions or QueryConditions. For example, if all samples
are taken, any ReadConditions and QueryConditions associated with the DataReader that
had trigger_value==TRUE before will see the trigger_value change to FALSE. Note that

Table 4.8 ReadCondition and QueryCondition Operations

Operation Description

get_datareader
Returns the DataReader to which the ReadCondition or QueryCondition
is attached.

get_instance_state_mask

Returns the instance states that were specified when the ReadCondi-
tion or QueryCondition was created. These are the sample’s instance
states that Connext checks to determine whether or not to trigger the
ReadCondition or QueryCondition .

get_sample_state_mask

Returns the sample-states that were specified when the ReadCondition
or QueryCondition was created. These are the sample states that Con-
next checks to determine whether or not to trigger the ReadCondition
or QueryCondition.

get_view_state_mask

Returns the view-states that were specified when the ReadCondition
or QueryCondition was created. These are the view states that Connext
checks to determine whether or not to trigger the ReadCondition or
QueryCondition.
4-46

Conditions and WaitSets
4. D

D
S Entitie

s

this does not guarantee that WaitSet objects that were separately attached to those con-
ditions will not be awakened. Once we have trigger_value==TRUE on a condition, it
may wake up the attached WaitSet, the condition transitioning to
trigger_value==FALSE does not necessarily 'unwakeup' the WaitSet, since 'unwaken-
ing' may not be possible. The consequence is that an application blocked on a WaitSet
may return from wait() with a list of conditions, some of which are no longer “active.”
This is unavoidable if multiple threads are concurrently waiting on separate WaitSet
objects and taking data associated with the same DataReader.

Consider the following example: A ReadCondition that has a sample_state_mask =
{NOT_READ} will have a trigger_value of TRUE whenever a new sample arrives and
will transition to FALSE as soon as all the newly arrived samples are either read (so their
status changes to READ) or taken (so they are no longer managed by Connext). How-
ever, if the same ReadCondition had a sample_state_mask = {READ, NOT_READ}, then
the trigger_value would only become FALSE once all the newly arrived samples are
taken (it is not sufficient to just read them, since that would only change the SampleState
to READ), which overlaps the mask on the ReadCondition.

4.6.7.2 QueryConditions

A QueryCondition is a special ReadCondition that allows your application to also specify
a filter on the locally available data.

The query expression is similar to a SQL WHERE clause and can be parameterized by
arguments that are dynamically changeable by the set_query_parameters() operation.

QueryConditions are triggered in the same manner as ReadConditions, with the additional
requirement that the sample must also satisfy the conditions of the content filter associ-
ated with the QueryCondition.

Table 4.9 QueryCondition Operations

Operation Description

get_query_expression
Returns the query expression specified when the QueryCondition was
created.

get_query_parameters

Returns the query parameters associated with the QueryCondition. That
is, the parameters specified on the last successful call to
set_query_parameters(), or if set_query_parameters() was never called,
the arguments specified when the QueryCondition was created.

set_query_parameters Changes the query parameters associated with the QueryCondition.
4-47

Entities
4.6.8 StatusConditions

StatusConditions are created automatically by Connext, one for each Entity. Connext will
trigger the StatusCondition when there is a change to any of that Entity’s enabled sta-
tuses.

By default, when Connext creates a StatusCondition, all status bits are turned on, which
means it will check for all statuses to determine when to trigger the StatusCondition. If
you only want Connext to check for specific statuses, you can use the StatusCondition’s
set_enabled_statuses() operation and set just the desired status bits.

The trigger_value of the StatusCondition depends on the communication status of the
Entity (e.g., arrival of data, loss of information, etc.), ‘filtered’ by the set of enabled sta-
tuses on the StatusCondition.

The set of enabled statuses and its relation to Listeners and WaitSets is detailed in How
StatusConditions are Triggered (Section 4.6.8.1).

Table 4.10 lists the operations available on StatusConditions.

Unlike other types of Conditions, StatusConditions are created by Connext, not by your
application. To access an Entity’s StatusCondition, use the Entity’s get_statuscondition()
operation. For example:

Condition* my_status_condition = entity->get_statuscondition();

Table 4.10 StatusCondition Operations

Operation Description

set_enabled_statuses

Defines the list of communication statuses that are taken into account to
determine the trigger_value of the StatusCondition. This operation may
change the trigger_value of the StatusCondition.
WaitSets behavior depend on the changes of the trigger_value of their
attached conditions. Therefore, any WaitSet to which the StatusCondition
is attached is potentially affected by this operation.
If this function is not invoked, the default list of enabled statuses
includes all the statuses.

get_enabled_statuses

Retrieves the list of communication statuses that are taken into account
to determine the trigger_value of the StatusCondition. This operation
returns the statuses that were explicitly set on the last call to
set_enabled_statuses() or, if set_enabled_statuses() was never called, the
default list

get_entity
Returns the Entity associated with the StatusCondition. Note that there is
exactly one Entity associated with each StatusCondition.
4-48

Conditions and WaitSets
4. D

D
S Entitie

s

After a StatusCondition is triggered, call the Entity’s get_status_changes() operation to
see which status(es) changed.

4.6.8.1 How StatusConditions are Triggered

The trigger_value of a StatusCondition is the boolean OR of the ChangedStatusFlag of
all the communication statuses to which it is sensitive. That is, trigger_value==FALSE
only if all the values of the ChangedStatusFlags are FALSE.

The sensitivity of the StatusCondition to a particular communication status is controlled
by the list of enabled_statuses set on the Condition by means of the
set_enabled_statuses() operation.

4.6.9 Using Both Listeners and WaitSets

You can use Listeners and WaitSets in the same application. For example, you may want
to use WaitSets and Conditions to access the data, and Listeners to be warned asynchro-
nously of erroneous communication statuses.

We recommend that you choose one or the other mechanism for each particular commu-
nication status (not both). However, it both are enabled, then the Listener mechanism is
used first, then the WaitSet objects are signalled.
4-49

Entities
4-50

5. To
p

ic
s

Chapter 5 Topics

For a DataWriter and DataReader to communicate, they need to use the same Topic. A
Topic includes a name and an association with a user data type that has been registered
with Connext. Topic names are how different parts of the communication system find
each other. Topics are named streams of data of the same data type. DataWriters publish
samples into the stream; DataReaders subscribe to data from the stream. More than one
Topic can use the same user data type, but each Topic needs a unique name.

Topics, DataWriters, and DataReaders relate to each other as follows:

❏ Multiple Topics (each with a unique name) can use the same user data type.

❏ Applications may have multiple DataWriters for each Topic.

❏ Applications may have multiple DataReaders for each Topic.

❏ DataWriters and DataReaders must be associated with the same Topic in order for
them to be connected.

❏ Topics are created and deleted by a DomainParticipant, and as such, are owned by
that DomainParticipant. When two applications (DomainParticipants) want to use
the same Topic, they must both create the Topic (even if the applications are on the
same node).

This chapter includes the following sections:

❏ Topics (Section 5.1)

❏ Topic QosPolicies (Section 5.2)

❏ Status Indicator for Topics (Section 5.3)

❏ ContentFilteredTopics (Section 5.4)

Builtin Topics: Connext uses ‘Builtin Topics’ to discover and keep track of remote entities,
such as new participants in the domain. Builtin Topics are discussed in Chapter 14.
5-1

Topics
5.1 Topics
Before you can create a Topic, you need a user data type (see Chapter 3) and a Domain-
Participant (Section 8.3). The user data type must be registered with the DomainPartici-
pant (as we saw in the User Data Types chapter in Section 3.8.5.1).

Once you have created a Topic, what do you do with it? Topics are primarily used as
parameters in other Entities’ operations. For instance, a Topic is required when a Pub-
lisher or Subscriber creates a DataWriter or DataReader, respectively. Topics do have a few
operations of their own, as listed in Table 5.1. For details on using these operations, see
the reference section or the online documentation.

Figure 5.1 Topic Module

Note: MultiTopics are not
5-2

Topics
5. To

p
ic

s

Table 5.1 Topic Operations

Purpose Operation Description Reference

Configuring
the Topic

enable Enables the Topic. Section 4.1.2

get_qos
Gets the Topic’s current QosPolicy set-
tings. This is most often used in prepara-
tion for calling set_qos().

Section 5.1.3
set_qos

Sets the Topic’s QoS. You can use this oper-
ation to change the values for the Topic’s
QosPolicies. Note, however, that not all
QosPolicies can be changed after the Topic
has been created.

set_qos_with_
profile

Sets the Topic’s QoS based on a specified
QoS profile.

get_listener Gets the currently installed Listener.

Section 5.1.5
set_listener

Sets the Topic’s Listener. If you create the
Topic without a Listener, you can use this
operation to add one later. Setting the lis-
tener to NULL will remove the listener
from the Topic.

narrow
A type-safe way to cast a pointer. This
takes a DDSTopicDescription pointer and
‘narrows’ it to a DDSTopic pointer.

Section 6.3.7

Checking
Status

get_inconsistent_
topic_status

Allows an application to retrieve a Topic’s
INCONSISTENT_TOPIC_STATUS status.

Section 5.3.1

get_status_changes
Gets a list of statuses that have changed
since the last time the application read the
status or the listeners were called.

Section 4.1.4

Navigating
Relation-
ships

get_name
Gets the topic_name string used to create
the Topic.

Section 5.1.1
get_type_name

Gets the type_name used to create the
Topic.

get_participant
Gets the DomainParticipant to which this
Topic belongs.

Section 5.1.6.1
5-3

Topics
5.1.1 Creating Topics

Topics are created using the DomainParticipant’s create_topic() or
create_topic_with_profile() operation:

DDSTopic * create_topic (const char *topic_name,
 const char *type_name,
 const DDS_TopicQos &qos,
 DDSTopicListener *listener,
 DDS_StatusMask mask)

DDSTopic * create_topic_with_profile (
const char *topic_name,
const char *type_name,
const char *library_name,
const char *profile_name,
DDSTopicListener *listener,
DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach,
you can change QoS settings without recompiling the application. For details, see
Chapter 15: Configuring QoS with XML.

topic_name Name for the new Topic, must not exceed 255 characters.

type_name Name for the user data type, must not exceed 255 characters. It must be
the same name that was used to register the type, and the type must be registered
with the same DomainParticipant used to create this Topic. See Section 3.6.

qos If you want to use the default QoS settings (described in the online documenta-
tion), use DDS_TOPIC_QOS_DEFAULT for this parameter (see Figure 5.2). If
you want to customize any of the QosPolicies, supply a QoS structure (see
Section 5.1.3).

If you use DDS_TOPIC_QOS_DEFAULT, it is not safe to create the topic while
another thread may be simultaneously calling the DomainParticipant’s
set_default_topic_qos() operation.

listener Listeners are callback routines. Connext uses them to notify your application of
specific events (status changes) that may occur with respect to the Topic. The lis-
tener parameter may be set to NULL if you do not want to install a Listener. If you
use NULL, the Listener of the DomainParticipant to which the Topic belongs will be
used instead (if it is set). For more information on TopicListeners, see Section 5.1.5.
5-4

Topics
5. To

p
ic

s

mask This bit-mask indicates which status changes will cause the Listener to be
invoked. The bits in the mask that are set must have corresponding callbacks
implemented in the Listener. If you use NULL for the Listener, use
DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all
callbacks, use DDS_STATUS_MASK_ALL. For information on statuses, see Lis-
teners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section
15.9). If NULL is used for library_name, the DomainParticipant’s default library is
assumed.

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS
Profiles (Section 15.8). If NULL is used for profile_name, the DomainParticipant’s
default profile is assumed and library_name is ignored.

Note: It is not safe to create a topic while another thread is calling
lookup_topicdescription() for that same topic (see Section 8.3.7).

For more examples, see Configuring QoS Settings when the Topic is Created (Section
5.1.3.1).

5.1.2 Deleting Topics

To delete a Topic, use the DomainParticipant’s delete_topic() operation:

DDS_ReturnCode_t delete_topic (DDSTopic * topic)

const char *type_name = NULL;

// register the type
type_name = FooTypeSupport::get_type_name();
retcode = FooTypeSupport::register_type(participant, type_name);
if (retcode != DDS_RETCODE_OK) {

// handle error
}

// create the topic
DDSTopic* topic = participant->create_topic("Example Foo",

type_name, DDS_TOPIC_QOS_DEFAULT,
NULL, DDS_STATUS_MASK_NONE);

if (topic == NULL) {
// process error here

};

Figure 5.2 Creating a Topic with Default QosPolicies
5-5

Topics
Note, however, that you cannot delete a Topic if there are any existing DataReaders or
DataWriters (belonging to the same DomainParticipant) that are still using it. All
DataReaders and DataWriters associated with the Topic must be deleted first.

5.1.3 Setting Topic QosPolicies

A Topic’s QosPolicies control its behavior, or more specifically, the behavior of the
DataWriters and DataReaders of the Topic. You can think of the policies as the ‘properties’
for the Topic. The DDS_TopicQos structure has the following format:

DDS_TopicQos struct {
DDS_TopicDataQosPolicy topic_data;
DDS_DurabilityQosPolicy durability;
DDS_DurabilityServiceQosPolicy durability_service;
DDS_DeadlineQosPolicy deadline;
DDS_LatencyBudgetQosPolicy latency_budget;
DDS_LivelinessQosPolicy liveliness;
DDS_ReliabilityQosPolicy reliability;
DDS_DestinationOrderQosPolicydestination_order;
DDS_HistoryQosPolicy history;
DDS_ResourceLimitsQosPolicy resource_limits;
DDS_TransportPriorityQosPolicytransport_priority;
DDS_LifespanQosPolicy lifespan;
DDS_OwnershipQosPolicy ownership;

} DDS_TopicQos;

Table 5.2 summarizes the meaning of each policy (arranged alphabetically). For infor-
mation on why you would want to change a particular QosPolicy, see the section noted
in the Reference column. For defaults and valid ranges, please refer to the online docu-
mentation for each policy.

Table 5.2 Topic QosPolicies

QosPolicy Description

Deadline

For a DataReader, specifies the maximum expected elapsed time between
arriving data samples.
For a DataWriter, specifies a commitment to publish samples with no greater
elapsed time between them.
See Section 6.5.4.

DestinationOrde
r

Controls how Connext will deal with data sent by multiple DataWriters for
the same topic. Can be set to "by reception timestamp" or to "by source time-
stamp". See Section 6.5.5.
5-6

Topics
5. To

p
ic

s

5.1.3.1 Configuring QoS Settings when the Topic is Created

As described in Creating Topics (Section 5.1.1), there are different ways to create a Topic,
depending on how you want to specify its QoS (with or without a QoS profile).

❏ In Figure 5.2 on page 5-5, we saw an example of how to create a Topic with
default QosPolicies by using the special constant,
DDS_TOPIC_QOS_DEFAULT, which indicates that the default QoS values for
a Topic should be used. The default Topic QoS values are configured in the
DomainParticipant; you can change them with the DomainParticipant’s
set_default_topic_qos() or set_default_topic_qos_with_profile() operations

Durability
Specifies whether or not Connext will store and deliver data that were previ-
ously published to new DataReaders. See Section 6.5.6.

DurabilityServic
e

Various settings to configure the external Persistence Service used by Con-
next for DataWriters with a Durability QoS setting of Persistent Durability.
See Section 6.5.7.

History

Specifies how much data must to stored by Connext for the DataWriter or
DataReader. This QosPolicy affects the RELIABILITY QosPolicy (Section
6.5.18) as well as the DURABILITY QosPolicy (Section 6.5.6). See
Section 6.5.9.

LatencyBudget
Suggestion to Connext on how much time is allowed to deliver data. See
Section 6.5.10.

Lifespan
Specifies how long Connext should consider data sent by an user application
to be valid. See Section 6.5.11.

Liveliness
Specifies and configures the mechanism that allows DataReaders to detect
when DataWriters become disconnected or "dead." See Section 6.5.12.

Ownership
Along with Ownership Strength, specifies if DataReaders for a topic can
receive data from multiple DataWriters at the same time. See Section 6.5.14.

Reliability Specifies whether or not Connext will deliver data reliably. See Section 6.5.18.

ResourceLimits
Controls the amount of physical memory allocated for entities, if dynamic
allocations are allowed, and how they occur. Also controls memory usage
among different instance values for keyed topics. See Section 6.5.19.

TopicData
Along with Group Data QosPolicy and User Data QosPolicy, used to attach a
buffer of bytes to Connext's discovery meta-data. See Section 5.2.1.

TransportPriority
Set by a DataWriter to tell Connext that the data being sent is a different "prior-
ity" than other data. See Section 6.5.20.

Table 5.2 Topic QosPolicies

QosPolicy Description
5-7

Topics
(see Section 8.3.6.4).

❏ To create a Topic with non-default QoS values, without using a QoS profile, use the
DomainParticipant’s get_default_topic_qos() method to initialize a
DDS_TopicQos structure. Then change the policies from their default values
before passing the QoS structure to create_topic().

❏ You can also create a Topic and specify its QoS settings via a QoS profile. To do so,
call create_topic_with_profile().

❏ If you want to use a QoS profile, but then make some changes to the QoS before
creating the Topic, call get_topic_qos_from_profile(), modify the QoS and use
the modified QoS when calling create_topic().
5-8

Topics
5. To

p
ic

s

5.1.3.2 Changing QoS Settings After the Topic Has Been Created

There are 2 ways to change an existing Topic’s QoS after it is has been created—again
depending on whether or not you are using a QoS Profile.

❏ To change QoS programmatically (that is, without using a QoS Profile), see the
example code in Figure 5.3 on page 5-9. It retrieves the current values by calling
the Topic’s get_qos() operation. Then it modifies the value and calls set_qos() to
apply the new value. Note, however, that some QosPolicies cannot be changed
after the Topic has been enabled—this restriction is noted in the descriptions of
the individual QosPolicies.

❏ You can also change a Topic’s (and all other Entities’) QoS by using a QoS Profile.
For an example, see Figure 5.4 on page 5-9. For more information, see
Chapter 15: Configuring QoS with XML.

DDS_TopicQos topic_qos;1

// Get current QoS. topic points to an existing DDSTopic.
if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {

// handle error
}

// Next, make changes.
// New ownership kind will be Exclusive
topic_qos.ownership.kind = DDS_EXCLUSIVE_OWNERSHIP_QOS;

// Set the new QoS
if (topic->set_qos(topic_qos) != DDS_RETCODE_OK) {
 // handle error
}

1. For the C API, you need to use DDS_TopicQos_INITIALIZER or DDS_TopicQos_initialize(). See Spe-
cial QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 5.3 Changing the QoS of an Existing Topic (without a QoS Profile)

retcode = topic->set_qos_with_profile(
“FooProfileLibrary”,”FooProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

Figure 5.4 Changing the QoS of an Existing Topic with a QoS Profile
5-9

Topics
5.1.4 Copying QoS From a Topic to a DataWriter or DataReader

Only the TOPIC_DATA QosPolicy strictly applies to Topics—it is described in this chap-
ter, while the others are described in the sections noted in the Reference column of
Table 5.2. The rest of the QosPolicies for a Topic can also be set on the corresponding
DataWriters and/or DataReaders. Actually, the values that Connext uses for those policies
are taken directly from those set on the DataWriters and DataReaders. The values for
those policies are stored only for reference in the DDS_TopicQos structure.

Because many QosPolicies affect the behavior of matching DataWriters and DataReaders,
the DDS_TopicQos structure is provided as a convenient way to set the values for those
policies in a single place in the application. Otherwise, you would have to modify the
individual QosPolicies within separate DataWriter and DataReader QoS structures. And
because some QosPolicies are compared between DataReaders and DataWriters, you will
need to make certain that the individual values that you set are compatible (see
Section 4.2.1).

The use of the DDS_TopicQos structure to set the values of any QosPolicy except
TOPIC_DATA—which only applies to Topics—is really a way to share a single set of val-
ues with the associated DataWriters and DataReaders, as well as to avoid creating those
entities with inconsistent QosPolicies.

To cause a DataWriter to use its Topic’s QoS settings, either:

❏ Pass DDS_DATAWRITER_QOS_USE_TOPIC_QOS to create_datawriter(), or

❏ Call the Publisher’s copy_from_topic_qos() operation

To cause a DataReader to use its Topic’s QoS settings, either:

❏ Pass DDS_DATAREADER_QOS_USE_TOPIC_QOS to create_datareader(), or

❏ Call the Subscriber’s copy_from_topic_qos() operation

Please refer to the online documentation for the Publisher’s create_datawriter() and Sub-
scriber’s create_datareader() methods for more information about using values from the
Topic QosPolicies when creating DataWriters and DataReaders.

5.1.5 Setting Up TopicListeners

When you create a Topic, you have the option of giving it a Listener. A TopicListener
includes just one callback routine, on_inconsistent_topic(). If you create a TopicListener
(either as part of the Topic creation call, or later with the set_listener() operation), Con-
next will invoke the TopicListener’s on_inconsistent_topic() method whenever it detects
that another application has created a Topic with same name but associated with a differ-
ent user data type. For more information, see INCONSISTENT_TOPIC Status (Section
5-10

Topic QosPolicies
5. To

p
ic

s

5.3.1).

Note: Some operations cannot be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).

If a Topic’s Listener has not been set and Connext detects an inconsistent Topic, the
DomainParticipantListener (if it exists) will be notified instead (see Section 8.3.5). So you
only need to set up a TopicListener if you need to perform specific actions when there is
an error on that particular Topic. In most cases, you can set the TopicListener to NULL
and process inconsistent-topic errors in the DomainParticipantListener instead.

5.1.6 Navigating Relationships Among Entities

5.1.6.1 Finding a Topic’s DomainParticipant

To retrieve a handle to the Topic’s DomainParticipant, use the get_participant() operation:

DDSDomainParticipant*DDSTopicDescription::get_participant()

Notice that this method belongs to the DDSTopicDescription class, which is the base
class for DDSTopic.

5.1.6.2 Retrieving a Topic’s Name or Type Name

If you want to retrieve the topic_name or type_name used in the create_topic() operation,
use these methods:

const char* DDSTopicDescription::get_type_name();
const char* DDSTopicDescription::get_name();

Notice that these methods belong to the DDSTopicDescription class, which is the base
class for DDSTopic.

5.2 Topic QosPolicies
This section describes the only QosPolicy that strictly applies to Topics (and no other
types of Entities)—the TOPIC_DATA QosPolicy. For a complete list of the QosPolicies
that can be set for Topics, see Table 5.2 on page 5-6.

Most of the QosPolicies that can be set on a Topic can also be set on the corresponding
DataWriter and/or DataReader. The Topic’s QosPolicy is essentially just a place to store
QoS settings that you plan to share with multiple entities that use that Topic (see how in
5-11

Topics
Section 5.1.3); they are not used otherwise and are not propagated on the wire.

5.2.1 TOPIC_DATA QosPolicy

This QosPolicy provides an area where your application can store additional informa-
tion related to the Topic. This information is passed between applications during discov-
ery (see Chapter 12: Discovery) using builtin-topics (see Chapter 14: Built-In Topics).
How this information is used will be up to user code. Connext does not do anything with
the information stored as TOPIC_DATA except to pass it to other applications. Use cases
are usually application-to-application identification, authentication, authorization, and
encryption purposes.

The value of the TOPIC_DATA QosPolicy is sent to remote applications when they are
first discovered, as well as when the Topic’s set_qos() method is called after changing
the value of the TOPIC_DATA. User code can set listeners on the builtin DataReaders of
the builtin Topics used by Connext to propagate discovery information. Methods in the
builtin topic listeners will be called whenever new applications, DataReaders, and
DataWriters are found. Within the user callback, you will have access to the
TOPIC_DATA that was set for the associated Topic.

Currently, TOPIC_DATA of the associated Topic is only propagated with the information
that declares a DataWriter or DataReader. Thus, you will need to access the value of
TOPIC_DATA through DDS_PublicationBuiltinTopicData or
DDS_SubscriptionBuiltinTopicData (see Chapter 14: Built-In Topics).

The structure for the TOPIC_DATA QosPolicy includes just one field, as seen in
Table 5.3. The field is a sequence of octets that translates to a contiguous buffer of bytes
whose contents and length is set by the user. The maximum size for the data are set in
the DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Sec-
tion 8.5.4).

This policy is similar to the GROUP_DATA (Section 6.4.4) and USER_DATA
(Section 6.5.24) policies that apply to other types of Entities.

5.2.1.1 Example

One possible use of TOPIC_DATA is to send an associated XML schema that can be
used to process the data stored in the associated user data structure of the Topic. The

Table 5.3 DDS_TopicDataQosPolicy

Type Field Name Description

DDS_OctetSeq value default: empty
5-12

Topic QosPolicies
5. To

p
ic

s

schema, which can be passed as a long sequence of characters, could be used by an XML
parser to take samples of the data received for a Topic and convert them for updating
some graphical user interface, web application or database.

5.2.1.2 Properties

This QosPolicy can be modified at any time. A change in the QosPolicy will cause Con-
next to send packets containing the new TOPIC_DATA to all of the other applications in
the domain.

Because Topics are created independently by the applications that use the Topic, there
may be different instances of the same Topic (same topic name and data type) in differ-
ent applications. The TOPIC_DATA for different instances of the same Topic may be set
differently by different applications.

5.2.1.3 Related QosPolicies

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ USER_DATA QosPolicy (Section 6.5.24)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 8.5.4)

5.2.1.4 Applicable Entities

❏ Topics (Section 5.1)

5.2.1.5 System Resource Considerations

As mentioned earlier, the maximum size of the TOPIC_DATA is set in the
topic_data_max_length field of the DOMAIN_PARTICIPANT_RESOURCE_LIMITS
QosPolicy (DDS Extension) (Section 8.5.4). Because Connext will allocate memory based
on this value, you should only increase this value if you need to. If your system does not
use TOPIC_DATA, then you can set this value to 0 to save memory. Setting the value of
the TOPIC_DATA QosPolicy to hold data longer than the value set in the
topic_data_max_length field will result in failure and an
INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of TOPIC_DATA, you must
make certain that all applications in the domain have changed the value of
topic_data_max_length to be the same. If two applications have different limits on the
size of TOPIC_DATA, and one application sets the TOPIC_DATA QosPolicy to hold
data that is greater than the maximum size set by another application, then the DataW-
5-13

Topics
riters and DataReaders of that Topic between the two applications will not connect. This is
also true for the GROUP_DATA (Section 6.4.4) and USER_DATA (Section 6.5.24)
QosPolicies.

5.3 Status Indicator for Topics
There is only one communication status defined for a Topic,
ON_INCONSISTENT_TOPIC. You can use the get_inconsistent_topic_status() opera-
tion to access the current value of the status or use a TopicListener to catch the change in
the status as it occurs. See Section 4.4 for a general discussion on Listeners and Statuses.

5.3.1 INCONSISTENT_TOPIC Status

In order for two applications to communicate with the same Topic, it has to be created
with the same name and data type. This status indicates that another DomainParticipant
has created a Topic using the same name as the local Topic, but with a different data type.

The status is a structure of type DDS_InconsistentTopicStatus, see Table 5.4. The
total_count keeps track of the total number of times that an inconsistent topic was
found. The TopicListener’s on_inconsistent_topic() operation is invoked when this status
changes (an inconsistent topic is found). You can also retrieve the current value by call-
ing the Topic’s get_inconsistent_topic_status() operation.

The value of total_count_change reflects the number of inconsistent topics that were
found since the last time get_inconsistent_topic_status() was called by user code or
on_inconsistent_topic() was invoked by Connext.

Table 5.4 DDS_InconsistentTopicStatus Structure

Type Field Name Description

DDS_Long total_count
Total number of Topics discovered whose name matches the
Topic to which this status is attached but whose type is
inconsistent.

DDS_Long total_count_change
The change in total_count since the last time this status was
read.
5-14

ContentFilteredTopics
5. To

p
ic

s

5.4 ContentFilteredTopics
A ContentFilteredTopic is a Topic with filtering properties. It makes it possible to sub-
scribe to topics and at the same time specify that you are only interested in a subset of
the topic’s data.

For example, suppose you have a topic that contains a temperature reading for a boiler,
but you are only interested in temperatures outside the normal operating range. A Con-
tentFilteredTopic can be used to limit the number of data samples a DataReader has to
process and may also reduce the amount of data sent over the network.

This section includes the following:

❏ Overview (Section 5.4.1)

❏ Where Filtering is Applied—Publishing vs. Subscribing Side (Section 5.4.2)

❏ Creating ContentFilteredTopics (Section 5.4.3)

❏ Deleting ContentFilteredTopics (Section 5.4.4)

❏ Using a ContentFilteredTopic (Section 5.4.5)

❏ SQL Filter Expression Notation (Section 5.4.6)

❏ Example SQL Filter Expressions (Section 5.4.6.11)

❏ Custom Content Filters (Section 5.4.8)

5.4.1 Overview

A ContentFilteredTopic creates a relationship between a Topic, also called the related
topic, and user-specified filtering properties. The filtering properties consist of an
expression and a set of parameters.

❏ The filter expression evaluates a logical expression on the Topic content. The fil-
ter expression is similar to the WHERE clause in a SQL expression.

❏ The parameters are strings that give values to the 'parameters' in the filter
expression. There must be one parameter string for each parameter in the filter
expression.

A ContentFilteredTopic is a type of topic description, and can be used to create
DataReaders. However, a ContentFilteredTopic is not an entity—it does not have QosPol-
icies or Listeners.

A ContentFilteredTopic relates to other entities in Connext as follows:
5-15

Topics
❏ ContentFilteredTopics are used when creating DataReaders, not DataWriters.

❏ Multiple DataReaders can be created with the same ContentFilteredTopic.

❏ A ContentFilteredTopic belongs to (is created/deleted by) a DomainParticipant.

❏ A ContentFilteredTopic and Topic must be in the same DomainParticipant.

❏ A ContentFilteredTopic can only be related to a single Topic.

❏ A Topic can be related to multiple ContentFilteredTopics.

❏ A ContentFilteredTopic can have the same name as a Topic, but ContentFiltered-
Topics must have unique names within the same DomainParticipant.

❏ A DataReader created with a ContentFilteredTopic will use the related Topic's
QoS and Listeners.

❏ Changing filter parameters on a ContentFilteredTopic causes all DataReaders
using the same ContentFilteredTopic to see the change.

❏ A Topic cannot be deleted as long as at least one ContentFilteredTopic that has
been created with it exists.

❏ A ContentFilteredTopic cannot be deleted as long as at least one DataReader that
has been created with the ContentFilteredTopic exists.

5.4.2 Where Filtering is Applied—Publishing vs. Subscribing Side

Filtering may be performed on either side of the distributed application. (The DataW-
riter obtains the filter expression and parameters from the DataReader during discovery.)

Connext also supports network-switch filtering for multi-channel DataWriters (see
Chapter 16: Multi-channel DataWriters).

A DataWriter will automatically filter data samples for a DataReader if all of the follow-
ing are true; otherwise filtering is performed by the DataReader.

1. The DataWriter is filtering for no more than
writer_resource_limits.max_remote_reader_filters DataReaders at the same
time.

• There is a resource-limit on the DataWriter called
writer_resource_limits.max_remote_reader_filters (see
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
6.5.3)). This value can be from 0-32. 0 means do not filter any DataReader and
32 (default value) means filter up to 32 DataReaders.
5-16

ContentFilteredTopics
5. To

p
ic

s

• If a DataWriter is filtering max_remote_reader_filters DataReaders at the same
time and a new filtered DataReader is created, then the newly created
DataReader (max_remote_reader_filters + 1) is not filtered. Even if one of the
first (max_remote_reader_filters) DataReaders is deleted, that already created
DataReader (max_remote_reader_filters + 1) will still not be filtered. How-
ever, any subsequently created DataReaders will be filtered as long as the
number of DataReaders currently being filtered is not more than
writer_resource_limits.max_remote_reader_filters.

2. The DataReader is not subscribing to data using multicast.

3. There are no more than 4 matching DataReaders in the same locator (see Peer
Descriptor Format (Section 12.2.1)).

4. The DataWriter has infinite liveliness. (See LIVELINESS QosPolicy (Section
6.5.12).)

5. The DataWriter is not using an Asynchronous Publisher. (That is, the DataWriter’s
PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.17) kind is set to
DDS_SYNCHRONOUS_PUBLISHER_MODE_QOS.)

6. If you are using a custom filter (not the default one), it must be registered in the
DomainParticipant of the DataWriter and the DataReader.

7. The type-code information is sent on the wire (see Using Generated Types without
Connext (Standalone) (Section 3.7)).

Note: In addition to filtering new samples, a DataWriter can also be configured to filter
previously written samples stored in the DataWriter’s queue for newly discovered
DataReaders. To do so, use the refilter field in the DataWriter’s HISTORY QosPolicy (Sec-
tion 6.5.9).

5.4.3 Creating ContentFilteredTopics

To create a ContentFilteredTopic that uses the default SQL filter, use the DomainPartici-
pant’s create_contentfilteredtopic() operation:

DDS_ContentFilteredTopic *create_contentfilteredtopic
(const char * name,
 const DDS_Topic * related_topic,
 const char * filter_expression,
 const DDS_StringSeq &

expression_parameters)

Or, to use a custom filter or the builtin STRINGMATCH filter (see Section 5.4.7), use the
create_contentfilteredtopic_with_filter() variation:
5-17

Topics
DDS_ContentFilteredTopic *create_contentfilteredtopic_with_filter
(const char * name,
 DDSTopic * related_topic,
 const char * filter_expression,
 const DDS_StringSeq &

expression_parameters,
 const char * filter_name =

 DDS_SQLFILTER_NAME)

name Name of the ContentFilteredTopic. Note that it is legal for a ContentFiltered-
Topic to have the same name as a Topic in the same DomainParticipant, but a Con-
tentFilteredTopic cannot have the same name as another ContentFilteredTopic in
the same DomainParticipant. This parameter cannot be NULL.

related_topic The related Topic to be filtered. The related topic must be in the same
DomainParticipant as the ContentFilteredTopic. This parameter cannot be NULL.
The same related topic can be used in many different ContentFilteredTopics.

filter_expression A logical expression on the contents on the Topic. If the expression
evaluates to TRUE, a sample is received; otherwise it is discarded. This parameter
cannot be NULL. Once a ContentFilteredTopic is created, its filter_expression
cannot be changed. The notation for this expression depends on the filter that you
are using (specified by the filter_name parameter). See SQL Filter Expression
Notation (Section 5.4.6) and STRINGMATCH Filter Expression Notation (Section
5.4.7).

expression_parameters A string sequence of filter expression parameters. Each param-
eter corresponds to a positional argument in the filter expression: element 0 corre-
sponds to positional argument 0, element 1 to positional argument 1, and so forth.

The expression_parameters can be changed with set_expression_parameters()
(Section 5.4.5.2), append_to_expression_parameter() (Section 5.4.5.3) and
remove_from_expression_parameter() (Section 5.4.5.4).

filter_name Name of the content filter to use for filtering. The filter must have been
previously registered with the DomainParticipant (see Registering a Custom Filter
(Section 5.4.8.1)). There are two builtin filters, DDS_SQLFILTER_NAME1 (the
default filter) and DDS_STRINGMATCHFILTER_NAME1—these are automati-
cally registered.

To use the STRINGMATCH filter, call create_contentfilteredtopic_with_filter()
with "DDS_STRINGMATCHFILTER_NAME" as the filter_name.

1. In the Java and C# APIs, you can access the names of the builtin filters by using
DomainParticipant.SQLFILTER_NAME and DomainParticipant.STRINGMATCHFILTER_NAME.
5-18

ContentFilteredTopics
5. To

p
ic

s

STRINGMATCH filter expressions have the syntax:
<field name> MATCH <string pattern> (see Section 5.4.7).

.If you run rtiddsgen with -notypecode, then you must use the "with_filter" version with
a custom filter instead—do not use the builtin SQL filter or the STRINGMATCH filter
with the -notypecode option because they require type-codes. See rtiddsgen Command-
Line Arguments (Section 3.6.1).

To summarize:

❏ To use the builtin default SQL filter:

• Do not use -notypecode when running rtiddsgen

• Call create_contentfilteredtopic()

• See SQL Filter Expression Notation (Section 5.4.6)

❏ To use the builtin STRINGMATCH filter:

• Do not use -notypecode when running rtiddsgen

• Call create_contentfilteredtopic_with_filter(), setting the filter_name to
DDS_STRINGMATCHFILTER_NAME

• See STRINGMATCH Filter Expression Notation (Section 5.4.7)

❏ To use a custom filter:

• call create_contentfilteredtopic_with_filter(), setting the filter_name to a
registered custom filter

❏ To use rtiddsgen with -notypecode:

• call create_contentfilteredtopic_with_filter(), setting the filter_name to a
registered custom filter

Note: Be careful with memory management of the string sequence in some of the Con-
tentFilteredTopic APIs. See the String Support section in the online documentation
(within the Infrastructure module) for details on sequences.

5.4.4 Deleting ContentFilteredTopics

To delete a ContentFilteredTopic, use the DomainParticipant’s
delete_contentfilteredtopic() operation:

1. Make sure no DataReaders are using the ContentFilteredTopic. (If this is not true,
the operation returns PRECONDITION_NOT_MET.)
5-19

Topics
2. Delete the ContentFilteredTopic by using the DomainParticipant’s
delete_contentfilteredtopic() operation.

DDS_ReturnCode_t delete_contentfilteredtopic
 (DDSContentFilteredTopic * a_contentfilteredtopic)

5.4.5 Using a ContentFilteredTopic

Once you’ve created a ContentFilteredTopic, you can use the operations listed in
Table 5.5.

5.4.5.1 Getting the Current Expression Parameters

To get the expression parameters, use the ContentFilteredTopic’s
get_expression_parameters() operation:

DDS_ReturnCode_t get_expression_parameters
(struct DDS_StringSeq & parameters)

parameters The filter expression parameters.

The memory for the strings in this sequence is managed as described in the String
Support section of the online documentation (within the Infrastructure module).
In particular, be careful to avoid a situation in which Connext allocates a string on
your behalf and you then reuse that string in such a way that Connext believes it
to have more memory allocated to it than it actually does. This parameter cannot
be NULL.

Table 5.5 ContentFilteredTopic Operations

Operation Description Reference

append_to_expression_param
eter

Concatenates a string value to the input expres-
sion parameter

Section 5.4.5.3

get_expression_parameters Gets the expression parameters. Section 5.4.5.1

get_filter_expression Gets the expression. Section 5.4.5.5

get_related_topic Gets the related Topic. Section 5.4.5.6

narrow Casts a DDS_TopicDescription pointer to a Con-
tentFilteredTopic pointer.

Section 5.4.5.7

remove_from_expression_
parameter

Removes a string value from the input expres-
sion parameter

Section 5.4.5.4

set_expression_parameters Changes the expression parameters. Section 5.4.5.2
5-20

ContentFilteredTopics
5. To

p
ic

s

This operation gives you the expression parameters that were specified on the last suc-
cessful call to set_expression_parameters() or, if that was never called, the parameters
specified when the ContentFilteredTopic was created.

5.4.5.2 Setting Expression Parameters

To change the expression parameters associated with a ContentFilteredTopic:

DDS_ReturnCode_t set_expression_parameters
(const struct DDS_StringSeq & parameters)

parameters The filter expression parameters. Each element in the parameter sequence
corresponds to a positional parameter in the filter expression. When using the
default DDS_SQLFILTER_NAME, parameter strings are automatically converted
to the member type. For example, "4" is converted to the integer 4. This parameter
cannot be NULL.

Note: The ContentFilteredTopic’s operations do not manage the sequences; you must
ensure that the parameter sequences are valid. Please refer to the String Support section
in the online documentation (within the Infrastructure module) for details on
sequences.

5.4.5.3 Appending a String to an Expression Parameter

To concatenate a string to an expression parameter, use the ContentFilteredTopic's
append_to_expression_parameter() operation:

DDS_ReturnCode_t append_to_expression_parameter(
 const DDS_Long index,

const char* value);

When using the STRINGMATCH filter, index must be 0.

This function is only intended to be used with the builtin SQL and STRINGMATCH fil-
ters. This function can be used in expression parameters associated with MATCH oper-
ators (see SQL Extension: Regular Expression Matching (Section 5.4.6.4)) to add a
pattern to the match pattern list. For example, if filter_expression is:

symbol MATCH 'IBM'

Then append_to_expression_parameter(0, "MSFT") would generate the expression:

symbol MATCH 'IBM,MSFT'
5-21

Topics
5.4.5.4 Removing a String from an Expression Parameter

To remove a string from an expression parameter use the ContentFilteredTopic's
remove_from_expression_parameter() operation:

DDS_ReturnCode_t remove_from_expression_parameter(
 const DDS_Long index,
 const char* value)

When using the STRINGMATCH filter, index must be 0.

This function is only intended to be used with the builtin SQL and STRINGMATCH fil-
ters. It can be used in expression parameters associated with MATCH operators (see
SQL Extension: Regular Expression Matching (Section 5.4.6.4)) to remove a pattern from
the match pattern list. For example, if filter_expression is:

symbol MATCH 'IBM,MSFT'

Then remove_from_expression_parameter(0, "IBM") would generate the expression:

symbol MATCH 'MSFT'

5.4.5.5 Getting the Filter Expression

To get the filter expression that was specified when the ContentFilteredTopic was cre-
ated:

const char* get_filter_expression ()

There is no corresponding set operation. The filter expression can only be set when the
ContentFilteredTopic is created.

5.4.5.6 Getting the Related Topic

To get the related topic that was specified when the ContentFilteredTopic was created:

DDS_Topic * get_related_topic ()

5.4.5.7 ‘Narrowing’ a ContentFilteredTopic to a TopicDescription

To safely cast a DDS_TopicDescription pointer to a ContentFilteredTopic pointer, use the
ContentFilteredTopic’s narrow() operation:

DDS_TopicDescription* narrow ()
5-22

ContentFilteredTopics
5. To

p
ic

s

5.4.6 SQL Filter Expression Notation

A SQL filter expression is similar to the WHERE clause in SQL. The SQL expression for-
mat provided by Connext also supports the MATCH operator as an extended operator
(see Section 5.4.6.4).

The following sections provide more information:

❏ SQL Grammar (Section 5.4.6.1)

❏ Token Expressions (Section 5.4.6.2)

❏ Type Compatibility in the Predicate (Section 5.4.6.3)

❏ SQL Extension: Regular Expression Matching (Section 5.4.6.4)

❏ Composite Members (Section 5.4.6.5)

❏ Strings (Section 5.4.6.6)

❏ Enumerations (Section 5.4.6.7)

❏ Pointers (Section 5.4.6.8)

❏ Arrays (Section 5.4.6.9)

❏ Sequences (Section 5.4.6.10)

5.4.6.1 SQL Grammar

This section describes the subset of SQL syntax, in Backus–Naur Form (BNF), that you
can use to form filter expressions.

The following notational conventions are used:

❏ NonTerminals are typeset in italics.

❏ 'Terminals' are quoted and typeset in a fixed width font. They are written in
upper case in most cases in the BNF-grammar below, but should be case insensi-
tive.

❏ TOKENS are typeset in bold.

❏ The notation (element // ',') represents a non-empty, comma-separated
list of elements.

Expression ::= FilterExpression
 | TopicExpression
 | QueryExpression
 .
FilterExpression ::= Condition
TopicExpression ::= SelectFrom { Where } ';'
5-23

Topics
QueryExpression ::= { Condition }{ 'ORDER BY' (FIELDNAME // ',') }
 .

SelectFrom ::= 'SELECT' Aggregation 'FROM' Selection
 .
Aggregation ::= '*'
 | (SubjectFieldSpec // ',')
 .
SubjectFieldSpec ::= FIELDNAME
 | FIELDNAME 'AS' IDENTIFIER
 | FIELDNAME IDENTIFIER
 .
Selection ::= TOPICNAME
 | TOPICNAME NaturalJoin JoinItem
 .
JoinItem ::= TOPICNAME
 | TOPICNAME NaturalJoin JoinItem
 | '(' TOPICNAME NaturalJoin JoinItem ')'
 .
NaturalJoin ::= 'INNER JOIN'
 | 'INNER NATURAL JOIN'
 | 'NATURAL JOIN'
 | 'NATURAL INNER JOIN'
 .
Where ::= 'WHERE' Condition
 .
Condition ::= Predicate
 | Condition 'AND' Condition
 | Condition 'OR' Condition
 | 'NOT' Condition
 | '(' Condition ')'
 .
Predicate ::= ComparisonPredicate
 | BetweenPredicate
 .
ComparisonPredicate ::= ComparisonTerm RelOp ComparisonTerm
 .
ComparisonTerm ::= FieldIdentifier
 | Parameter
 .
BetweenPredicate ::= FieldIdentifier 'BETWEEN' Range
 | FieldIdentifier 'NOT BETWEEN' Range
 .
FieldIdentifier ::= FIELDNAME
 | IDENTIFIER
5-24

ContentFilteredTopics
5. To

p
ic

s

 .
RelOp ::= '=' | '>' | '>=' | '<' | '<=' | '<>' | 'LIKE' |
'MATCH'
 .
Range ::= Parameter 'AND' Parameter
 .
Parameter ::= INTEGERVALUE
 | CHARVALUE
 | FLOATVALUE
 | STRING
 | ENUMERATEDVALUE
 | BOOLEANVALUE
 | PARAMETER
 .

Note: INNER JOIN, INNER NATURAL JOIN, NATURAL JOIN, and NATURAL INNER
JOIN are all aliases, in the sense that they have the same semantics. They are all
supported because they all are part of the SQL standard.

5.4.6.2 Token Expressions

The syntax and meaning of the tokens used in SQL grammar is described as follows:

IDENTIFIER—An identifier for a FIELDNAME, defined as any series of characters 'a',
..., 'z', 'A', ..., 'Z', '0', ..., '9', '_' but may not start with a digit.

 IDENTIFIER: LETTER (PART_LETTER)*
 where LETTER: ["A"-"Z","_","a"-"z"]
 PART_LETTER: ["A"-"Z","_","a"-"z","0"-"9"]

FIELDNAME—A reference to a field in the data structure. A dot '.' is used to navigate
through nested structures. The number of dots that may be used in a FIELD-
NAME is unlimited. The FIELDNAME can refer to fields at any depth in the data
structure. The names of the field are those specified in the IDL definition of the
corresponding structure, which may or may not match the fieldnames that appear
on the language-specific (e.g., C/C++, Java) mapping of the structure. To refer-
ence the n+1 element in an array or sequence, use the notation '[n]', where n is a
natural number (zero included). FIELDNAME must resolve to a primitive IDL
type; that is either boolean, octet, (unsigned) short, (unsigned) long, (unsigned)
long long, float double, char, wchar, string, wstring, or enum.

 FIELDNAME: FieldNamePart ("." FieldNamePart)*
 where FieldNamePart : IDENTIFIER ("[" Index "]")*
 Index> : (["0"-"9"])+
 | ["0x","0X"](["0"-"9", "A"-"F", "a"-"f"])+
5-25

Topics

Primitive IDL types referenced by FIELDNAME are treated as different types in
Predicate according to the following table:

TOPICNAME—An identifier for a topic, and is defined as any series of characters 'a',
..., 'z', 'A', ..., 'Z', '0', ..., '9', '_' but may not start with a
digit.

TOPICNAME : IDENTIFIER

INTEGERVALUE—Any series of digits, optionally preceded by a plus or minus sign, repre-
senting a decimal integer value within the range of the system. A hexadecimal
number is preceded by 0x and must be a valid hexadecimal expression.

 INTEGERVALUE : (["+","-"])? (["0"-"9"])+ [("L","l")]?
 | (["+","-"])? ["0x","0X"](["0"-"9",

"A"-"F", "a"-"f"])+ [("L","l")]?

CHARVALUE—A single character enclosed between single quotes.

CHARVALUE : "'" (~["'"])? "'"

FLOATVALUE—Any series of digits, optionally preceded by a plus or minus sign and
optionally including a floating point ('.'). A power-of-ten expression may be
postfixed, which has the syntax en or En, where n is a number, optionally pre-
ceded by a plus or minus sign.

FLOATVALUE : (["+","-"])? (["0"-"9"])* (".")? (["0"-"9"])+
(EXPONENT)?

 where EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+

STRING—Any series of characters encapsulated in single quotes, except the single quote
itself.

STRING : "'" (~["'"])* "'"

Predicate Data Type IDL Type

BOOLEANVALUE boolean

INTEGERVALUE octet, (unsigned) short, (unsigned) long, (unsigned) long long

FLOATVALUE float, double

CHARVALUE char, wchar

STRING string, wstring

ENUMERATEDVALUE enum
5-26

ContentFilteredTopics
5. To

p
ic

s

ENUMERATEDVALUE—A reference to a value declared within an enumeration. Enumer-

ated values consist of the name of the enumeration label enclosed in single
quotes. The name used for the enumeration label must correspond to the label
names specified in the IDL definition of the enumeration.

ENUMERATEDVALUE : "'" ["A" - "Z", "a" - "z"]
["A" - "Z", "a" - "z", "_", "0" - "9"]* "'"

BOOLEANVALUE—Can either be 'TRUE' or 'FALSE', and is case insensitive.

 BOOLEANVALUE : ["TRUE","FALSE"]

PARAMETER—Takes the form %n, where n represents a natural number (zero included)
smaller than 100. It refers to the (n + 1)th argument in the given context. This
argument can only be in primitive type value format. It cannot be a FIELDNAME.

PARAMETER : "%" (["0"-"9"])+

5.4.6.3 Type Compatibility in the Predicate

As seen in Table 5.6, only certain combinations of type comparisons are valid in the
Predicate.

Table 5.6 Valid Type Comparisons

BOOLEA
N

VALUE

INTEGE
R

VALUE

FLOAT
VALUE

CHAR
VALUE STRING

ENUMERATE
D

VALUE

BOOLEAN YES

INTEGERVAL
UE

YES YES

FLOATVALUE YES YES

CHARVALUE YES YES YES

STRING YES YES a YES

ENUMERATE
D

VALUE

YES YES b YES b YES c

a. See Section 5.4.6.4.
5-27

Topics
5.4.6.4 SQL Extension: Regular Expression Matching

The relational operator MATCH may only be used with string fields. The right-hand
operator is a string pattern. A string pattern specifies a template that the left-hand field
must match.

MATCH is case-sensitive. These characters have special meaning: ,/?*[]-^!\%

The pattern allows limited "wild card" matching under the rules in Table 5.7 on page 5-
28.

The syntax is similar to the POSIX® fnmatch syntax1. The MATCH syntax is also similar
to the 'subject' strings of TIBCO Rendezvous®. Some example expressions include:

"symbol MATCH 'NASDAQ/[A-G]*'"
"symbol MATCH 'NASDAQ/GOOG,NASDAQ/MSFT'"

b. Because of the formal notation of the Enumeration values, they are compatible with string and char liter-
als, but they are not compatible with string or char variables, i.e., "MyEnum='EnumValue'" is correct, but
"MyEnum=MyString" is not allowed.
c. Only for same-type Enums.

1. See http://www.opengroup.org/onlinepubs/000095399/functions/fnmatch.html.

Table 5.7 Wild Card Matching

Character Meaning

,
A , separates a list of alternate patterns. The field string is matched if it
matches one or more of the patterns.

/
A / in the pattern string matches a / in the field string. It separates a
sequence of mandatory substrings.

?
A ? in the pattern string matches any single non-special characters in the
field string.

*
A * in the pattern string matches 0 or more non-special characters in
field string.

% This special character is used to designate filter expression parameters.

\ (Not supported) Escape character for special characters.

[charlist] Matches any one of the characters in charlist.

[!charlist] or
[^charlist]

(Not supported) Matches any one of the characters not in charlist.

[s-e] Matches any character from s to e, inclusive.

[!s-e] or [^s-e] (Not supported) Matches any character not in the interval s to e.
5-28

http://www.opengroup.org/onlinepubs/000095399/functions/fnmatch.html

ContentFilteredTopics
5. To

p
ic

s

5.4.6.5 Composite Members

Any member can be used in the filter expression, with the following exceptions:

❏ 128-bit floating point numbers (long doubles) are not supported

❏ bitfields are not supported

❏ LIKE is not supported

Composite members are accessed using the familiar dot notation, such as "x.y.z > 5".
For unions, the notation is special due to the nature of the IDL union type.

On the publishing side, you can access the union discriminator with myunion._d and
the actual member with myunion._u.mymember. If you want to use a ContentFiltered-
Topic on the subscriber side and filter a sample with a top-level union, you can access
the union discriminator directly with _d and the actual member with mymember in the
filter expression.

5.4.6.6 Strings

The filter expression and parameters can use IDL strings. String constants must appear
between single quotation marks (').

For example:

" fish = 'salmon' "

Strings used as parameter values must contain the enclosing quotation marks (') within
the parameter value; do not place the quotation marks within the expression statement.
For example, the expression " symbol MATCH %0 " with parameter 0 set to " 'IBM' " is
legal, whereas the expression " symbol MATCH '%0' " with parameter 0 set to " IBM "
will not compile.

5.4.6.7 Enumerations

A filter expression can use enumeration values, such as GREEN, instead of the numeri-
cal value. For example, if x is an enumeration of GREEN, YELLOW and RED, the fol-
lowing expressions are valid:

"x = 'GREEN'"
"X < 'RED'"

5.4.6.8 Pointers

Pointers can be used in filter expressions and are automatically dereferenced to the cor-
rect value.

For example:
5-29

Topics
struct Point {
 long x;
 long y;
};

struct Rectangle {
 Point *u_l;
 Point *l_r;
};

The following expression is valid on a Topic of type Rectangle:

"u_l.x > l_r.x"

5.4.6.9 Arrays

Arrays are accessed with the familiar [] notation.

For example:

struct ArrayType {
 long value[255][5];
};

The following expression is valid on a Topic of type ArrayType:

"value[244][2] = 5"

5.4.6.10 Sequences

Sequence elements can be accessed using the () or [] notation.

For example:

struct SequenceType {
 sequence<long> s;
};

The following expressions are valid on a Topic of type SequenceType:

"s(1) = 5"
"s[1] = 5"

5.4.6.11 Example SQL Filter Expressions

Assume that you have a Topic with two floats, X and Y, which are the coordinates of an
object moving inside a rectangle measuring 200 x 200 units. This object moves quite a
bit, generating lots of samples that you are not interested in. Instead you only want to
5-30

ContentFilteredTopics
5. To

p
ic

s

receive samples outside the middle of the rectangle, as seen in Figure 5.5. That is, you
want to filter out data points in the gray box.

The filter expression would look like this (remember the expression is written so that
samples that we do want will pass):

"(X < 50 or X > 150) and (Y < 50 or Y > 150)"

While this filter works, it cannot be changed after the ContentFilteredTopic has been cre-
ated. Suppose you would like the ability to adjust the coordinates that are considered
outside the acceptable range (changing the size of the gray box). You can achieve this by
using filter parameters. An more flexible way to write the expression is this:

"(X < %0 or X > %1) and (Y < %2 or Y > %3)"

Recall that when you create a ContentFilteredTopic (see Section 5.4.3), you pass a
expression_parameters string sequence as one of the parameters. Each element in the
string sequence corresponds to one argument.

See the String and Sequence Support sections of the online documentation (from the
Modules page, select Infrastructure).

In C++, the filter parameters could be assigned like this:

FilterParameter[0] = "50";

Figure 5.5 Filtering Example
5-31

Topics
FilterParameter[1] = "150";
FilterParameter[2] = "50";
FilterParameter[3] = "150";

With these parameters, the filter expression is identical to the first approach. However, it
is now possible to change the parameters by calling set_expression_parameters(). For
example, perhaps you decide that you only want to see data points where X < 10 or X >
190. To make this change:

FilterParameter[0] = 10
FilterParameter[1] = 190
set_expression_parameters(....)

Note: The new filter parameters will affect all DataReaders that have been created with
this ContentFilteredTopic.

5.4.7 STRINGMATCH Filter Expression Notation

The STRINGMATCH Filter is a subset of the SQL filter; it only supports the MATCH
relational operator on a single string field. It is introduced mainly for the use case of
partitioning data according to channels in the DataWriter's MULTI_CHANNEL QosPol-
icy (DDS Extension) (Section 6.5.13) in Market Data applications.

A STRINGMATCH filter expression has the following syntax:

<field name> MATCH <string pattern>

The relational operator MATCH may only be used with string fields. The right-hand
operator is a constant string pattern or the filter parameter %0. A string pattern specifies
a template that the left-hand string (subject string) must match. See Section 5.4.6.4 for a
description of the string pattern format.

5.4.7.1 Example STRINGMATCH Filter Expressions

❏ This expression evaluates to TRUE if the value of symbol is equal to NASDAQ/
MSFT:

 symbol MATCH 'NASDAQ/MSFT'

❏ This expression evaluates to TRUE if the value of symbol is equal to NASDAQ/
IBM or NASDAQ/MSFT:

symbol MATCH 'NASDAQ/IBM,NASDAQ/MSFT'

❏ This expression evaluates to TRUE if the value of symbol corresponds to NAS-
DAQ and starts with a letter between M and Y:
5-32

ContentFilteredTopics
5. To

p
ic

s

symbol MATCH 'NASDAQ/[M-Y]*'

5.4.7.2 STRINGMATCH Filter Expression Parameters

Filter expression parameters are provided to the ContentFilteredTopic as a string
sequence (see Section 5.4.3 and Section 5.4.5).

Each parameter corresponds to a positional argument in the filter expression: element 0
corresponds to positional argument 0, element 1 to positional argument 1, and so forth.

In the builtin SQL filter, parameters have the syntax %<parameter index> and must be
specified explicitly. For example:

position.x < %0 and position.y > %1

In the builtin STRINGMATCH filter, there is always a parameter, the parameter 0. The
parameter can be specified explicitly using the same syntax of the SQL filter or implic-
itly using a constant string pattern. For example:

symbol MATCH %0 (Explicit parameter)
symbol MATCH ‘IBM’ (Implicit parameter initialized to IBM)

Strings used as parameter values must contain the enclosing quotation marks (') within
the parameter value; do not place the quotation marks within the expression statement.
For example, the expression " symbol MATCH %0 " with parameter 0 set to " 'IBM' " is
legal, whereas the expression " symbol MATCH '%0' " with parameter 0 set to " IBM "
will not compile.

5.4.8 Custom Content Filters

By default, a ContentFilteredTopic will use a SQL-like content filter,
DDS_SQLFILTER_NAME (see SQL Filter Expression Notation (Section 5.4.6)), which
implements a superset of the content filter. There is another builtin filter,
DDS_STRINGMATCHFILTER_NAME (see STRINGMATCH Filter Expression Nota-
tion (Section 5.4.7)). Both of these are automatically registered.

If you want to use a different filter, you must register it first, then create the ContentFil-
teredTopic using create_contentfilteredtopic_with_filter() (see Creating ContentFil-
teredTopics (Section 5.4.3)).

One reason to use a custom filter is that the default filter can only filter based on rela-
tional operations between topic members, not on a computation involving topic mem-
bers. For example, if you want to filter based on the sum of the members, you must
create your own filter.

Notes:
5-33

Topics
❏ The API for using a custom content filter is subject to change in a future release.

❏ Custom content filters are not supported when using the .Net APIs.

5.4.8.1 Registering a Custom Filter

To use a custom filter, it must be registered in the following places:

❏ Register the custom filter in any subscribing application in which the filter is
used to create a ContentFilteredTopic and corresponding DataReader.

❏ In each publishing application, you only need to register the custom filter if you
want to perform writer-side filtering. A DataWriter created with an associated fil-
ter will use that filter if it discovers a matched DataReader that uses the same fil-
ter.

For example, suppose Application A on the subscription side creates a Topic named X
and a ContentFilteredTopic named filteredX (and a corresponding DataReader), using a
previously registered content filter, myFilter. With only that, you will have filtering at
the subscription side. If you also want to perform filtering in any application that pub-
lishes Topic X, then you also need to register the same definition of the ContentFilter
myFilter in that application.

To register a new filter, use the DomainParticipant’s register_contentfilter() operation1:

DDS_ReturnCode_t register_contentfilter(const char * filter_name,
 const DDSContentFilter * contentfilter)

)
filter_name The name of the filter. The name must be unique within the DomainPartici-

pant. The filter_name cannot have a length of 0. The same filtering functions and
handle can be registered under different names.

content_filter This class specifies the functions that will be used to process the filter.
You must derive from the DDSContentFilter base class and implement the virtual
compile, evaluate and finalize functions described below. An instance of the
derived class is then used as an argument when calling register_contentfilter().

❏ compile The function that will be used to compile a filter expression and
parameters. Connext will call this function when a ContentFilteredTopic is cre-
ated and when the filter parameters are changed. This parameter cannot be
NULL. See Section 5.4.8.4 for details.

❏ evaluate The function that will be called by Connext each time a sample is
received. Its purpose is to evaluate the sample based on the filter. This parameter
cannot be NULL. See Section 5.4.8.5 for details.

1. This operation is an extension to the DDS standard.
5-34

ContentFilteredTopics
5. To

p
ic

s

❏ finalize The function that will be called by Connext when an instance of the cus-
tom content filter is no longer needed. This parameter may be NULL. See
Section 5.4.8.6 for details.

5.4.8.2 Unregistering a Custom Filter

To unregister a filter, use the DomainParticipant’s unregister_contentfilter() operation1,
which is useful if you want to reuse a particular filter name. (Note: You do not have to
unregister the filter before deleting the parent DomainParticipant. If you do not need to
reuse the filter name to register another filter, there is no reason to unregister the filter.)

DDS_ReturnCode_t unregister_contentfilter(const char * filter_name)

filter_name The name of the previously registered filter. The name must be unique
within the DomainParticipant. The filter_name cannot have a length of 0.

If you attempt to unregister a filter that is still being used by a ContentFiltered-
Topic, unregister_contentfilter() will return PRECONDITION_NOT_MET.

If there are still existing discovered DataReaders with the same filter_name and
the filter's compile() method has previously been called on the discovered
DataReaders, the filter’s finalize() method will be called on those discovered
DataReaders before the content filter is unregistered. This means filtering will be
performed on the application that is creating the DataReader.

5.4.8.3 Retrieving a ContentFilter

If you know the name of a ContentFilter, you can get a pointer to its structure. If the
ContentFilter has not already been registered, this operation will return NULL.

DDS_ContentFilter *lookup_contentfilter (const char * filter_name)

5.4.8.4 Compile Function

The compile function specified in the ContentFilter will be used to compile a filter
expression and parameters. Please note that the term ‘compile’ is intentionally defined
very broadly. It is entirely up to you, as the user, to decide what this function should do.
The only requirement is that the error_code parameter passed to the compile function
must return OK on successful execution. For example:

DDS_ReturnCode_t sample_compile_function(
 void ** new_compile_data,

const char * expression,

1. This operation is an extension to the DDS standard.
5-35

Topics
 const DDS_StringSeq & parameters,
const DDS_TypeCode * type_code,

 const char * type_class_name,
 void * old_compile_data)
{
 new_compile_data = (void)DDS_String_dup(parameters[0]);
 return DDS_RETCODE_OK;
}

new_compile_data A user-specified opaque pointer of this instance of the content fil-
ter. This value is passed to evaluate() and finalize().

expression An ASCIIZ string with the filter expression the ContentFilteredTopic was
created with. Note that the memory used by the parameter pointer is owned by
Connext. If you want to manipulate this string, you must make a copy of it first. Do
not free the memory for this string.

parameters A string sequence of expression parameters used to create the ContentFil-
teredTopic. The string sequence is equal (but not identical) to the string sequence
passed to create_contentfilteredtopic() (see expression_parameters in
Section 5.4.3).

Important: The sequence passed to the compile function is owned by Connext and
must not be referred to outside the compile() function.

type_code A pointer to the type code of the related Topic. A type code is a description
of the topic members, such as their type (long, octet, etc.), but does not contain
any information with respect to the memory layout of the structures. The type
code can be used to write filters that can be used with any type. See Using Gener-
ated Types without Connext (Standalone) (Section 3.7). [Note: if you are using the
Java API, this parameter will always be NULL.]

type_class_name Fully qualified class name of the related Topic.

old_compile_data The new_compile_data value from a previous call to this instance of
a content filter. If compile() is called more than once for an instance of a Content-
FilteredTopic (such as if the expression parameters are changed), then the
new_compile_data value returned by the previous invocation is passed in the
old_compile_data parameter (which can be NULL). If this is a new instance of the
filter, NULL is passed. This parameter is useful for freeing or reusing previously
allocated resources.
5-36

ContentFilteredTopics
5. To

p
ic

s

5.4.8.5 Evaluate Function

The evaluate function specified in the ContentFilter will be called each time a sample is
received. This function’s purpose is to determine if a sample should be filtered out (not
put in the receive queue).

For example:

DDS_Boolean sample_evaluate_function(
void* compile_data, const void* sample) {

 char *parameter = (char*)compile_data;
 DDS_Long x;

 Foo *foo_sample = (Foo*)sample;
 sscanf(parameter,"%d",&x);

 return (foo_sample->x > x ? DDS_BOOLEAN_FALSE :
 DDS_BOOLEAN_TRUE);

}

The function may use the following parameters:

compile_data The last return value from the compile function for this instance of the
content filter. Can be NULL.

sample A pointer to a C structure with the data to filter. Note that the evaluate func-
tion always receives deserialized data.

5.4.8.6 Finalize Function

The finalize function specified in the ContentFilter will be called when an instance of the
custom content filter is no longer needed. When this function is called, it is safe to free
all resources used by this particular instance of the custom content filter.

For example:

void sample_finalize_function (void* compile_data) {

 /* free parameter string from compile function */
 DDS_String_free((char *)compile_data);
}

The function may use the following optional parameters:

system_key See Section 5.4.8.4.

handle This is the opaque returned by the last call to the compile function.
5-37

Topics
5-38

6. Se
nd

ing
 D

a
ta
Chapter 6 Sending Data

This chapter discusses how to create, configure, and use Publishers and DataWriters to
send data. It describes how these entities interact, as well as the types of operations that
are available for them.

This chapter includes the following sections:

❏ Preview: Steps to Sending Data (Section 6.1)

❏ Publishers (Section 6.2)

❏ DataWriters (Section 6.3)

❏ Publisher/Subscriber QosPolicies (Section 6.4)

❏ DataWriter QosPolicies (Section 6.5)

❏ FlowControllers (DDS Extension) (Section 6.6)

The goal of this chapter is to help you become familiar with the Entities you need for
sending data. For up-to-date details such as formal parameters and return codes on any
mentioned operations, please see the online documentation.

6.1 Preview: Steps to Sending Data
To send samples of a data instance:

1. Create and configure the required Entities:

a. Create a DomainParticipant (see Section 8.3.1).
6-1

Sending Data
b. Register user data types1 with the DomainParticipant. For example, the ‘Foo-
DataType’.

c. Use the DomainParticipant to create a Topic with the registered data type.

d. Optionally2, use the DomainParticipant to create a Publisher.

e. Use the Publisher or DomainParticipant to create a DataWriter for the Topic.

f. Use a type-safe method to cast the generic DataWriter created by the Publisher
to a type-specific DataWriter. For example, ‘FooDataWriter’.

g. Optionally, register data instances with the DataWriter. If the Topic’s user data
type contain key fields, then registering a data instance (data with a specific
key value) will improve performance when repeatedly sending data with the
same key. You may register many different data instances; each registration
will return an instance handle corresponding to the specific key value. For non-
keyed data types, instance registration has no effect. See Section 2.2.2 for
more information on keyed data types and instances.

2. Every time there is changed data to be published:

a. Store the data in a variable of the correct data type (for instance, variable ‘Foo’
of the type ‘FooDataType’).

b. Call the FooDataWriter’s write() operation, passing it a reference to the vari-
able ‘Foo’. For non-keyed data types or for non-registered instances, also pass
in DDS_HANDLE_NIL.

For keyed data types, you should pass in the instance handle corresponding
to the instance stored in ‘Foo’, if you have registered the instance previously.
This means that the data stored in ‘Foo’ has the same key value that was used
to create instance handle.

c. The write() function will take a snapshot of the contents of ‘Foo’ and store it
in Connext internal buffers from where the data sample is sent under the crite-
ria set by the Publisher’s and DataWriter’s QosPolicies. If there are matched
DataReaders, then the data sample will have been passed to the physical trans-
port plug-in/device driver by the time that write() returns.

1. Type registration is not required for built-in types (see Section 3.2.1).
2. You are not required to explicitly create a Publisher; instead, you can use the 'implicit Publisher' created

from the DomainParticipant. See Creating Publishers Explicitly vs. Implicitly (Section 6.2.1).
6-2

Publishers
6. Se

nd
ing

 D
a

ta
6.2 Publishers
An application that intends to publish information needs the following Entities:
DomainParticipant, Topic, Publisher, and DataWriter. All Entities have a corresponding
specialized Listener and a set of QosPolicies. A Listener is how Connext notifies your
application of status changes relevant to the Entity. The QosPolicies allow your applica-
tion to configure the behavior and resources of the Entity.

❏ A DomainParticipant defines the domain in which the information will be made
available.

❏ A Topic defines the name under which the data will be published, as well as the
type (format) of the data itself.

❏ An application writes data using a DataWriter. The DataWriter is bound at cre-
ation time to a Topic, thus specifying the name under which the DataWriter will
publish the data and the type associated with the data. The application uses the
DataWriter’s write() operation to indicate that a new value of the data is avail-
able for dissemination.

❏ A Publisher manages the activities of several DataWriters. The Publisher deter-
mines when the data is actually sent to other applications. Depending on the set-
tings of various QosPolicies of the Publisher and DataWriter, data may be
buffered to be sent with the data of other DataWriters or not sent at all. By
default, the data is sent as soon as the DataWriter’s write() function is called.

You may have multiple Publishers, each managing a different set of DataWriters,
or you may choose to use one Publisher for all your DataWriters.

For more information, see Creating Publishers Explicitly vs. Implicitly (Section
6.2.1).

Figure 6.1 on page 6-4 shows how these Entities are related, as well as the methods
defined for each Entity.

Publishers are used to perform the operations listed in Table 6.1 on page 6-5. You can
find more information about the operations by looking in the section listed under the
Reference column. For details such as formal parameters and return codes, please see
the online documentation.

Note: Some operations cannot be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).
6-3

Sending Data
Figure 6.1 Publication Module
6-4

Publishers
6. Se

nd
ing

 D
a

ta
Table 6.1 Publisher Operations

Working
with ... Operation Description Reference

DataWriters

begin_coherent_
changes

Indicates that the application will begin a
coherent set of modifications.

Section 6.3.10

create_datawriter
Creates a DataWriter that will belong to the
Publisher.

Section 6.3.1
create_datawriter_
with_profile

Sets the DataWriter’s QoS based on a speci-
fied QoS profile.

copy_from_topic_qos
Copies relevant QosPolicies from a Topic
into a DataWriterQoS structure.

Section 6.2.4.5

delete_contained_
entities

Deletes all of the DataWriters that were cre-
ated by the Publisher.

Section 6.2.3.1

delete_datawriter
Deletes a DataWriter that belongs to the
Publisher.

Section 6.3.3

end_coherent_changes
Ends the coherent set initiated by
begin_coherent_changes().

Section 6.3.10

get_all_datawriters
Retrieves all the DataWriters created from
this Publisher.

Section 6.3.2

get_default_
datawriter_qos

Copies the Publisher’s default DataWriter-
QoS values into a DataWriterQos structure.

Section 6.3.13

get_status_changes
Will always return 0 since there are no Sta-
tuses currently defined for Publishers.

Section 4.1.4

lookup_datawriter
Retrieves a DataWriter previously created
for a specific Topic.

Section 6.2.6

set_default_datawriter_
qos

Sets or changes the default DataWriterQos
values.

Section 6.2.4.4
set_default_datawriter_
qos_with_profile

Sets or changes the default DataWriterQos
values based on a QoS profile.

Libraries
and Profiles

get_default_library
Gets the Publisher’s default QoS profile
library.

Section 6.2.4.3

get_default_profile Gets the Publisher’s default QoS profile.

get_default_profile_
library

Gets the library that contains the Publisher’s
default QoS profile.

set_default_library Sets the default library for a Publisher.

set_default_profile Sets the default profile for a Publisher.
6-5

Sending Data
6.2.1 Creating Publishers Explicitly vs. Implicitly

To send data, your application must have a Publisher. However, you are not required to
explicitly create one. If you do not create one, the middleware will implicitly create a
Publisher the first time you create a DataWriter using the DomainParticipant’s operations.
It will be created with default QoS (DDS_PUBLISHER_QOS_DEFAULT) and no Lis-
tener.

A Publisher (implicit or explicit) gets its own default QoS and the default QoS for its
child DataWriters from the DomainParticipant. These default QoS are set when the Pub-
lisher is created. (This is true for Subscribers and DataReaders, too.)

Participants get_participant
Gets the DomainParticipant that was used to
create the Publisher.

Section 6.2.6

Publishers

enable Enables the Publisher. Section 4.1.2

get_qos
Gets the Publisher’s current QosPolicy set-
tings. This is most often used in prepara-
tion for calling set_qos().

Section 6.2.4
set_qos

Sets the Publisher’s QoS. You can use this
operation to change the values for the Pub-
lisher’s QosPolicies. Note, however, that not
all QosPolicies can be changed after the
Publisher has been created.

set_qos_with_profile
Sets the Publisher’s QoS based on a speci-
fied QoS profile.

get_listener Gets the currently installed Listener.

Section 6.2.5
set_listener

Sets the Publisher’s Listener. If you created
the Publisher without a Listener, you can
use this operation to add one later.

suspend_publications

Provides a hint that multiple data-objects
within the Publisher are about to be writ-
ten. Connext does not currently use this
hint. Section 6.2.9

resume_publications
Reverses the action of
suspend_publications().

Table 6.1 Publisher Operations

Working
with ... Operation Description Reference
6-6

Publishers
6. Se

nd
ing

 D
a

ta
The 'implicit Publisher' can be accessed using the DomainParticipant’s
get_implicit_publisher() operation (see Section 8.3.9). You can use this ‘implicit Pub-
lisher’ just like any other Publisher (it has the same operations, QosPolicies, etc.). So you
can change the mutable QoS and set a Listener if desired.

DataWriters are created by calling create_datawriter() or
create_datawriter_with_profile()—these operations exist for DomainParticipants and
Publishers. If you use the DomainParticipant to create a DataWriter, it will belong to the
implicit Publisher. If you use a Publisher to create a DataWriter, it will belong to that Pub-
lisher.

The middleware will use the same implicit Publisher for all DataWriters that are created
using the DomainParticipant’s operations.

Having the middleware implicitly create a Publisher allows you to skip the step of creat-
ing a Publisher. However, having all your DataWriters belong to the same Publisher can
reduce the concurrency of the system because all the write operations will be serialized.

6.2.2 Creating Publishers

Before you can explicitly create a Publisher, you need a DomainParticipant (see
Section 8.3). To create a Publisher, use the DomainParticipant’s create_publisher() or
create_publisher_with_profile() operations:

DDSPublisher * create_publisher (const DDS_PublisherQos &qos,
 DDSPublisherListener *listener,
 DDS_StatusMask mask)

DDSPublisher * create_publisher_with_profile (
const char *library_name,
const char *profile_name,
DDSPublisherListener *listener,
DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach,
you can change QoS settings without recompiling the application. For details, see
Chapter 15: Configuring QoS with XML.

qos If you want the default QoS settings (described in the online documentation), use
DDS_PUBLISHER_QOS_DEFAULT for this parameter (see Figure 6.2). If you
want to customize any of the QosPolicies, supply a QoS structure (see Figure 6.3).
The QoS structure for a Publisher is described in Section 6.4.
6-7

Sending Data
Note: If you use DDS_PUBLISHER_QOS_DEFAULT, it is not safe to create the
Publisher while another thread may be simultaneously calling
set_default_publisher_qos().

listener Listeners are callback routines. Connext uses them to notify your application
when specific events (status changes) occur with respect to the Publisher or the
DataWriters created by the Publisher. The listener parameter may be set to NULL if
you do not want to install a Listener. If you use NULL, the Listener of the Domain-
Participant to which the Publisher belongs will be used instead (if it is set). For
more information on PublisherListeners, see Section 6.2.5.

mask This bit-mask indicates which status changes will cause the Publisher’s Listener
to be invoked. The bits set in the mask must have corresponding callbacks imple-
mented in the Listener. If you use NULL for the Listener, use
DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all
callbacks, use DDS_STATUS_MASK_ALL. For information on statuses, see Lis-
teners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section
15.9). If NULL is used for library_name, the DomainParticipant’s default library is
assumed (see Section 6.2.4.3).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS
Profiles (Section 15.8). If NULL is used for profile_name, the DomainParticipant’s
default profile is assumed and library_name is ignored.

For more examples, see Configuring QoS Settings when the Publisher is Created (Sec-
tion 6.2.4.1).

After you create a Publisher, the next step is to use the Publisher to create a DataWriter for
each Topic, see Section 6.3.1. For a list of operations you can perform with a Publisher, see
Table 6.1 on page 6-5.

Figure 6.2 Creating a Publisher with Default QosPolicies

// create the publisher
DDSPublisher* publisher =

participant->create_publisher(DDS_PUBLISHER_QOS_DEFAULT,
 NULL,
 DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
 // handle error
};
6-8

Publishers
6. Se

nd
ing

 D
a

ta
6.2.3 Deleting Publishers

This section applies to both implicitly and explicitly created Publishers.

To delete a Publisher:

1. You must first delete all DataWriters that were created with the Publisher. Use the
Publisher’s delete_datawriter() operation to delete them one at a time, or use the
delete_contained_entities() operation (Section 6.2.3.1) to delete them all at the
same time.

DDS_ReturnCode_t delete_datawriter (DDSDataWriter *a_datawriter)

2. Delete the Publisher by using the DomainParticipant’s delete_publisher() opera-
tion.

DDS_ReturnCode_t delete_publisher (DDSPublisher *p)

Note: A Publisher cannot be deleted within a Listener callback, see Restricted Operations
in Listener Callbacks (Section 4.5.1).

6.2.3.1 Deleting Contained DataWriters

The Publisher’s delete_contained_entities() operation deletes all the DataWriters that
were created by the Publisher.

DDS_ReturnCode_t delete_contained_entities ()

After this operation returns successfully, the application may delete the Publisher (see
Section 6.2.3).

6.2.4 Setting Publisher QosPolicies

A Publisher’s QosPolicies control its behavior. Think of the policies as the configuration
and behavior ‘properties’ of the Publisher. The DDS_PublisherQos structure has the fol-
lowing format:

DDS_PublisherQos struct {
DDS_PresentationQosPolicy presentation;
DDS_PartitionQosPolicy partition;
DDS_GroupDataQosPolicy group_data;
DDS_EntityFactoryQosPolicy entity_factory;
DDS_AsynchronousPublisherQosPolicy asynchronous_publisher;
DDS_ExclusiveAreaQosPolicy exclusive_area;

} DDS_PublisherQos;
6-9

Sending Data
Note: set_qos() cannot always be used in a listener callback; see Restricted Operations in
Listener Callbacks (Section 4.5.1).

Table 6.2 summarizes the meaning of each policy. (They appear alphabetically in the
table.) For information on why you would want to change a particular QosPolicy, see the
referenced section. For defaults and valid ranges, please refer to the online documenta-
tion for each policy.

6.2.4.1 Configuring QoS Settings when the Publisher is Created

As described in Creating Publishers (Section 6.2.2), there are different ways to create a
Publisher, depending on how you want to specify its QoS (with or without a QoS Pro-
file).

❏ In Figure 6.2 on page 6-8 we saw an example of how to explicitly create a Pub-
lisher with default QosPolicies. It used the special constant,
DDS_PUBLISHER_QOS_DEFAULT, which indicates that the default QoS val-
ues for a Publisher should be used. Default Publisher QosPolicies are configured
in the DomainParticipant; you can change them with the DomainParticipant’s
set_default_publisher_qos() or set_default_publisher_qos_with_profile()
operation (see Section 8.3.6.4).

Table 6.2 Publisher QosPolicies

QosPolicy Description

ASYNCHRONOUS_PUBLISHER
QosPolicy (DDS Extension) (Sec-
tion 6.4.1)

Configures the mechanism that sends user data in an exter-
nal middleware thread.

ENTITYFACTORY QosPolicy
(Section 6.4.2)

Controls whether or not child entities are created in the
enabled state.

EXCLUSIVE_AREA QosPolicy
(DDS Extension) (Section 6.4.3)

Configures multi-thread concurrency and deadlock preven-
tion capabilities.

GROUP_DATA QosPolicy (Sec-
tion 6.4.4)

Along with TOPIC_DATA QosPolicy (Section 5.2.1) and
USER_DATA QosPolicy (Section 6.5.24), this QosPolicy is
used to attach a buffer of bytes to Connext's discovery meta-
data.

PARTITION QosPolicy (Section
6.4.5)

Adds string identifiers that are used for matching DataRead-
ers and DataWriters for the same Topic.

PRESENTATION QosPolicy (Sec-
tion 6.4.6)

Controls how Connext presents data received by an applica-
tion to the DataReaders of the data.
6-10

Publishers
6. Se

nd
ing

 D
a

ta
❏ To create a Publisher with non-default QoS settings, without using a QoS profile,
see Figure 6.3 on page 6-11. It uses the DomainParticipant’s
get_default_publisher_qos() method to initialize a DDS_PublisherQos struc-
ture. Then the policies are modified from their default values before the QoS
structure is passed to create_publisher().

❏ You can also create a Publisher and specify its QoS settings via a QoS Profile. To
do so, call create_publisher_with_profile(), as seen in Figure 6.4 on page 6-12.

❏ If you want to use a QoS profile, but then make some changes to the QoS before
creating the Publisher, call the DomainParticipantFactory’s
get_publisher_qos_from_profile(), modify the QoS and use the modified QoS
structure when calling create_publisher(), as seen in Figure 6.5 on page 6-12.

For more information, see Creating Publishers (Section 6.2.2) and Chapter 15: Configur-
ing QoS with XML.

DDS_PublisherQos publisher_qos;1

// get defaults
if (participant->get_default_publisher_qos(publisher_qos) !=

DDS_RETCODE_OK){
// handle error

}
// make QoS changes here
// for example, this changes the ENTITY_FACTORY QoS
publisher_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_FALSE;
// create the publisher
DDSPublisher* publisher =

participant->create_publisher(publisher_qos,
NULL,
DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
// handle error

}

1. For the C API, you need to use DDS_PublisherQos_INITIALIZER or
DDS_PublisherQos_initialize(). See Section 4.2.2

Figure 6.3 Creating a Publisher with Non-default QosPolicies (not from a profile)
6-11

Sending Data
// create the publisher with QoS profile
DDSPublisher* publisher =

participant->create_publisher_with_profile(
“MyPublisherLibary”,
“MyPublisherProfile”,
NULL, DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
// handle error

}

Figure 6.4 Creating a Publisher with a QoS Profile

DDS_PublisherQos publisher_qos;1

// Get publisher QoS from profile
retcode = factory->get_publisher_qos_from_profile(publisher_qos,

“PublisherLibrary”,
“PublisherProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}
// Makes QoS changes here
// New entity_factory autoenable_created_entities will be true
publisher_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_TRUE;
// create the publisher with modified QoS
DDSPublisher* publisher = participant->create_publisher(

“Example Foo”,
type_name,
publisher_qos,
NULL, DDS_STATUS_MASK_NONE);

if (publisher == NULL) {
// handle error

}

1. For the C API, you need to use DDS_PublisherQos_INITIALIZER or DDS_PublisherQos_initialize().
See Section 4.2.2

Figure 6.5 Getting QoS Values from a Profile, Changing QoS Values, Creating a Publisher with
Modified QoS Values
6-12

Publishers
6. Se

nd
ing

 D
a

ta
6.2.4.2 Changing QoS Settings After the Publisher Has Been Created

There are 2 ways to change an existing Publisher’s QoS after it is has been created—again
depending on whether or not you are using a QoS Profile.

❏ To change an existing Publisher’s QoS programmatically (that is, without using a
QoS profile): get_qos() and set_qos(). See the example code in Figure 6.6. It
retrieves the current values by calling the Publisher’s get_qos() operation. Then it
modify the value and call set_qos() to apply the new value. Note, however, that
some QosPolicies cannot be changed after the Publisher has been enabled—this
restriction is noted in the descriptions of the individual QosPolicies.

❏ You can also change a Publisher’s (and all other Entities’) QoS by using a QoS
Profile and calling set_qos_with_profile(). For an example, see Figure 6.7. For
more information, see Chapter 15: Configuring QoS with XML.

DDS_PublisherQos publisher_qos;1

// Get current QoS. publisher points to an existing DDSPublisher.
if (publisher->get_qos(publisher_qos) != DDS_RETCODE_OK) {

// handle error
}
// make changes
// New entity_factory autoenable_created_entities will be true
publisher_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_TRUE;
// Set the new QoS
if (publisher->set_qos(publisher_qos) != DDS_RETCODE_OK) {
 // handle error
}

1. For the C API, you need to use DDS_PublisherQos_INITIALIZER or
DDS_PublisherQos_Initialize(). See Section 4.2.2

Figure 6.6 Changing the Qos of an Existing Publisher

retcode = publisher->set_qos_with_profile(
“PublisherProfileLibrary”,”PublisherProfile”);

if (retcode != DDS_RETCODE_OK) {
 // handle error
}

Figure 6.7 Changing the QoS of an Existing Publisher with a QoS Profile
6-13

Sending Data
6.2.4.3 Getting and Setting the Publisher’s Default QoS Profile and Library

You can retrieve the default QoS profile used to create Publishers with the
get_default_profile() operation.

You can also get the default library for Publishers, as well as the library that contains the
Publisher’s default profile (these are not necessarily the same library); these operations
are called get_default_library() and get_default_library_profile(), respectively. These
operations are for informational purposes only (that is, you do not need to use them as a
precursor to setting a library or profile.) For more information, see Chapter 15: Config-
uring QoS with XML.

virtual const char * get_default_library ()
const char * get_default_profile ()
const char * get_default_profile_library ()

There are also operations for setting the Publisher’s default library and profile:

DDS_ReturnCode_t set_default_library (const char * library_name)
DDS_ReturnCode_t set_default_profile (const char * library_name,

 const char * profile_name)

These operations only affect which library/profile will be used as the default the next
time a default Publisher library/profile is needed during a call to one of this Publisher’s
operations.

When calling a Publisher operation that requires a profile_name parameter, you can use
NULL to refer to the default profile. (This same information applies to setting a default
library.) If the default library/profile is not set, the Publisher inherits the default from the
DomainParticipant.

set_default_profile() does not set the default QoS for DataWriters created by the Pub-
lisher; for this functionality, use the Publisher’s
set_default_datawriter_qos_with_profile(), see Section 6.2.4.4 (you may pass in NULL
after having called the Publisher’s set_default_profile()).

set_default_profile() does not set the default QoS for newly created Publishers; for this
functionality, use the DomainParticipant’s set_default_publisher_qos_with_profile()
operation, see Section 8.3.6.4.

6.2.4.4 Getting and Setting Default QoS for DataWriters

These operations set the default QoS that will be used for new DataWriters if
create_datawriter() is called with DDS_DATAWRITER_QOS_DEFAULT as the ‘qos’
parameter:
6-14

Publishers
6. Se

nd
ing

 D
a

ta
DDS_ReturnCode_t set_default_datawriter_qos (
const DDS_DataWriterQos &qos)

DDS_ReturnCode_t set_default_datawriter_qos_with_profile (
const char *library_name,
const char *profile_name)

The above operations may potentially allocate memory, depending on the sequences
contained in some QoS policies.

To get the default QoS that will be used for creating DataWriters if create_datawriter() is
called with DDS_PARTICIPANT_QOS_DEFAULT as the ‘qos’ parameter:

DDS_ReturnCode_t get_default_datawriter_qos (
 DDS_DataWriterQos & qos)

This operation gets the QoS settings that were specified on the last successful call to
set_default_datawriter_qos() or set_default_datawriter_qos_with_profile(), or else, if
the call was never made, the default values listed in DDS_DataWriterQos.

Note: It is not safe to set the default DataWriter QoS values while another thread may be
simultaneously calling get_default_datawriter_qos(), set_default_datawriter_qos(), or
create_datawriter() with DDS_DATAWRITER_QOS_DEFAULT as the qos parameter. It
is also not safe to get the default DataWriter QoS values while another thread may be
simultaneously calling set_default_datawriter_qos(),

6.2.4.5 Other Publisher QoS-Related Operations

❏ Copying a Topic’s QoS into a DataWriter’s QoS This method is provided as a con-
venience for setting the values in a DataWriterQos structure before using that
structure to create a DataWriter. As explained in Section 5.1.3, most of the policies
in a TopicQos structure do not apply directly to the Topic itself, but to the associ-
ated DataWriters and DataReaders of that Topic. The TopicQos serves as a single
container where the values of QosPolicies that must be set compatibly across
matching DataWriters and DataReaders can be stored.

Thus instead of setting the values of the individual QosPolicies that make up a
DataWriterQos structure every time you need to create a DataWriter for a Topic,
you can use the Publisher’s copy_from_topic_qos() operation to “import” the
Topic’s QosPolicies into a DataWriterQos structure. This operation copies the rele-
vant policies in the TopicQos to the corresponding policies in the DataWriterQos.

This copy operation will often be used in combination with the Publisher’s
get_default_datawriter_qos() and the Topic’s get_qos() operations. The Topic’s
QoS values are merged on top of the Publisher’s default DataWriter QosPolicies
6-15

Sending Data
with the result used to create a new DataWriter, or to set the QoS of an existing
one (see Section 6.3.13).

❏ Copying a Publisher’s QoS C API users should use the
DDS_PublisherQos_copy() operation rather than using structure assignment
when copying between two QoS structures. The copy() operation will perform a
deep copy so that policies that allocate heap memory such as sequences are cop-
ied correctly. In C++, C++/CLI, C# and Java, a copy constructor is provided to
take care of sequences automatically.

❏ Clearing QoS-Related Memory Some QosPolicies contain sequences that allo-
cate memory dynamically as they grow or shrink. The C API’s
DDS_PublisherQos_finalize() operation frees the memory used by sequences
but otherwise leaves the QoS unchanged. C API users should call finalize() on
all DDS_PublisherQos objects before they are freed, or for QoS structures allo-
cated on the stack, before they go out of scope. In C++, C++/CLI, C# and Java,
the memory used by sequences is freed in the destructor.

6.2.5 Setting Up PublisherListeners

Like all Entities, Publishers may optionally have Listeners. Listeners are user-defined
objects that implement a DDS-defined interface (i.e. a pre-defined set of callback func-
tions). Listeners provide the means for Connext to notify applications of any changes in
Statuses (events) that may be relevant to it. By writing the callback functions in the Lis-
tener and installing the Listener into the Publisher, applications can be notified to handle
the events of interest. For more general information on Listeners and Statuses, see
Section 4.4.

Note: Some operations cannot be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).

As illustrated in Figure 6.1 on page 6-4, the PublisherListener interface extends the
DataWriterListener interface. In other words, the PublisherListener interface contains all
the functions in the DataWriterListener interface. There are no Publisher-specific statuses,
and thus there are no Publisher-specific functions.

Instead, the methods of a PublisherListener will be called back for changes in the Statuses
of any of the DataWriters that the Publisher has created. This is only true if the DataWriter
itself does not have a DataWriterListener installed, see Section 6.3.4. If a DataWriterLis-
tener has been installed and has been enabled to handle a Status change for the DataW-
riter, then Connext will call the method of the DataWriterListener instead.

If you want a Publisher to handle status events for its DataWriters, you can set up a Pub-
lisherListener during the Publisher’s creation or use the set_listener() method after the
6-16

Publishers
6. Se

nd
ing

 D
a

ta
Publisher is created. The last parameter is a bit-mask with which you should set which
Status events that the PublisherListener will handle. For example,

DDS_StatusMask mask = DDS_OFFERED_DEADLINE_MISSED_STATUS |
 DDS_OFFERED_INCOMPATIBLE_QOS_STATUS;

publisher = participant->create_publisher(DDS_PUBLISHER_QOS_DEFAULT,
 listener, mask);

or

DDS_StatusMask mask = DDS_OFFERED_DEADLINE_MISSED_STATUS |
 DDS_OFFERED_INCOMPATIBLE_QOS_STATUS;

publisher->set_listener(listener, mask);

As previously mentioned, the callbacks in the PublisherListener act as ‘default’ callbacks
for all the DataWriters contained within. When Connext wants to notify a DataWriter of a
relevant Status change (for example, PUBLICATION_MATCHED), it first checks to see
if the DataWriter has the corresponding DataWriterListener callback enabled (such as the
on_publication_matched() operation). If so, Connext dispatches the event to the DataW-
riterListener callback. Otherwise, Connext dispatches the event to the corresponding Pub-
lisherListener callback.

A particular callback in a DataWriter is not enabled if either:

❏ The application installed a NULL DataWriterListener (meaning there are no call-
backs for the DataWriter at all).

❏ The application has disabled the callback for a DataWriterListener. This is done by
turning off the associated status bit in the mask parameter passed to the
set_listener() or create_datawriter() call when installing the DataWriterListener
on the DataWriter. For more information on DataWriterListeners, see Section 6.3.4.

Similarly, the callbacks in the DomainParticipantListener act as ‘default’ callbacks for all
the Publishers that belong to it. For more information on DomainParticipantListeners, see
Section 8.3.5.

For example, Figure 6.8 shows how to create a Publisher with a Listener that simply
prints the events it receives.
6-17

Sending Data
Figure 6.8 Example Code to Create a Publisher with a Simple Listener

class MyPublisherListener : public DDSPublisherListener {
 public:
 virtual void on_offered_deadline_missed(DDSDataWriter* writer,
 const DDS_OfferedDeadlineMissedStatus& status);

 virtual void on_liveliness_lost(DDSDataWriter* writer,
 const DDS_LivelinessLostStatus& status);

 virtual void on_offered_incompatible_qos(DDSDataWriter* writer,
 const DDS_OfferedIncompatibleQosStatus& status);

 virtual void on_publication_matched(DDSDataWriter* writer,
 const DDS_PublicationMatchedStatus& status);

 virtual void
on_reliable_writer_cache_changed(DDSDataWriter* writer,

 const DDS_ReliableWriterCacheChangedStatus& status);

virtual void on_reliable_reader_activity_changed
(DDSDataWriter* writer,

 const DDS_ReliableReaderActivityChangedStatus& status);
};

void MyPublisherListener::on_offered_deadline_missed(
DDSDataWriter* writer,

 const DDS_OfferedDeadlineMissedStatus& status)
{
 printf(“on_offered_deadline_missed\n”);
}

// ...Implement all remaining listeners in a similar manner...

DDSPublisherListener *myPubListener = new MyPublisherListener();

DDSPublisher* publisher = participant->create_publisher(
 DDS_PUBLISHER_QOS_DEFAULT,

myPubListener, DDS_STATUS_MASK_ALL);
6-18

Publishers
6. Se

nd
ing

 D
a

ta
6.2.6 Finding a Publisher’s Related Entities

These Publisher operations are useful for obtaining a handle to related entities:

❏ get_participant(): Gets the DomainParticipant with which a Publisher was created.

❏ lookup_datawriter(): Finds a DataWriter created by the Publisher with a Topic of a
particular name. Note that in the event that multiple DataWriters were created by
the same Publisher with the same Topic, any one of them may be returned by this
method.

❏ DDS_Publisher_as_Entity(): This method is provided for C applications and is
necessary when invoking the parent class Entity methods on Publishers. For
example, to call the Entity method get_status_changes() on a Publisher, my_pub,
do the following:

DDS_Entity_get_status_changes(DDS_Publisher_as_Entity(my_pub))

DDS_Publisher_as_Entity() is not provided in the C++, C++/CLI, C# and Java
APIs because the object-oriented features of those languages make it unneces-
sary.

6.2.7 Waiting for Acknowledgments

The Publisher’s wait_for_acknowledgments() operation blocks the calling thread until
either all data written by the Publisher’s reliable DataWriters is acknowledged by all
matched reliable DataReaders, or else the duration specified by the max_wait parameter
elapses, whichever happens first.

DDS_ReturnCode_t wait_for_acknowledgments
(const DDS_Duration_t & max_wait)

This operation returns DDS_RETCODE_OK if all the samples were acknowledged, or
DDS_RETCODE_TIMEOUT if the max_wait duration expired first.

There is a similar operation available for individual DataWriters, see Section 6.3.11.

The reliability protocol used by Connext is discussed in Chapter 10: Reliable Communi-
cations.
6-19

Sending Data
6.2.8 Statuses for Publishers

There are no statuses specific to the Publisher itself. The following statuses can be moni-
tored by the PublisherListener for the Publisher’s DataWriters.

❏ OFFERED_DEADLINE_MISSED Status (Section 6.3.6.4)

❏ LIVELINESS_LOST Status (Section 6.3.6.3)

❏ OFFERED_INCOMPATIBLE_QOS Status (Section 6.3.6.5)

❏ PUBLICATION_MATCHED Status (Section 6.3.6.6)

❏ RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section
6.3.6.7)

❏ RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension) (Section
6.3.6.8)

6.2.9 Suspending and Resuming Publications

The operations suspend_publications() and resume_publications() provide a hint to
Connext that multiple data-objects within the Publisher are about to be written. Connext
does not currently use this hint.

6.3 DataWriters
To create a DataWriter, you need a DomainParticipant and a Topic.

You need a DataWriter for each Topic that you want to publish. Once you have a DataW-
riter, you can use it to perform the operations listed in Table 6.3. The most important
operation is write(), described in Section 6.3.8. For more details on all operations, see the
online documentation.

DataWriters are created by using operations on a DomainParticipant or a Publisher, as
described in Section 6.3.1. If you use the DomainParticipant’s operations, the DataWriter
will belong to an implicit Publisher that is automatically created by the middleware. If
you use a Publisher’s operations, the DataWriter will belong to that Publisher. So either
way, the DataWriter belongs to a Publisher.

Note: Some operations cannot be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).
6-20

DataWriters
6. Se

nd
ing

 D
a

ta
Table 6.3 DataWriter Operations

Working with
... Operation Description Reference

DataWriters

assert_liveliness
Manually asserts the liveliness of the DataW-
riter.

Section 6.3.15

enable Enables the DataWriter. Section 4.1.2

get_qos Gets the QoS. Section 6.3.13

lookup_instance
Gets a handle, given an instance. (Useful for
keyed data types only.)

Section 6.3.12.3

set_qos Modifies the QoS. Section 6.3.13

set_qos_with_profile Modifies the QoS based on a QoS profile. Section 6.3.13

get_listener Gets the currently installed Listener.
Section 6.3.4

set_listener Replaces the Listener.
6-21

Sending Data
FooData-
Writer
(See

Section 6.3.7)

dispose
States that the instance no longer exists. (Use-
ful for keyed data types only.)

Section 6.3.12.2
dispose_w_timestamp

Same as dispose, but allows the application to
override the automatic source_timestamp.
(Useful for keyed data types only.)

flush
Makes the batch available to be sent on the
network.

Section 6.3.9

get_key_value
Maps an instance_handle to the correspond-
ing key.

Section 6.3.12.4

narrow

A type-safe way to cast a pointer. This takes a
DDSDataWriter pointer and ‘narrows’ it to a
‘FooDataWriter’ where ‘Foo’ is the related
data type.

Section 6.3.7

register_instance

States the intent of the DataWriter to write val-
ues of the data-instance that matches a speci-
fied key. Improves the performance of
subsequent writes to the instance. (Useful for
keyed data types only.)

Section 6.3.12.1

register_instance_w_
timestamp

Like register_instance, but allows the applica-
tion to override the automatic
source_timestamp. (Useful for keyed data
types only.)

unregister_instance
Reverses register_instance. Relinquishes the
ownership of the instance. (Useful for keyed
data types only.)

unregister_instance_w_
timestamp

Like unregister_instance, but allows the
application to override the automatic
source_timestamp. (Useful for keyed data
types only.)

write Writes a new value for a data-instance.
Section 6.3.8

write_w_timestamp
Same as write, but allows the application to
override the automatic source_timestamp.

Table 6.3 DataWriter Operations

Working with
... Operation Description Reference
6-22

DataWriters
6. Se

nd
ing

 D
a

ta
FooData-
Writer
(See

Section 6.3.7)

write_w_params
Same as write, but allows the application to
specify parameters such as source timestamp,
instance handle, and cookie.

Section 6.3.8

dispose_w_params
Same as dispose, but allows the application to
specify parameters such as source timestamp,
instance handle, and cookie

Section 6.3.12.2

register_w_params
Same as register, but allows the application to
specify parameters such as source timestamp,
instance handle, and cookie

Section 6.3.12.1

unregister_w_params
Same as unregister, but allows the application
to specify parameters such as source time-
stamp, instance handle, and cookie

Matched
Subscriptions

get_matched_
subscriptions

Gets a list of subscriptions that have a match-
ing Topic and compatible QoS. These are the
subscriptions currently associated with the
DataWriter.

Section 6.3.14.1
get_matched_
subscription_data

Gets information on a subscription with a
matching Topic and compatible QoS.

get_matched_
subscription_locators

Gets a list of locators for subscriptions that
have a matching Topic and compatible QoS.
These are the subscriptions currently associ-
ated with the DataWriter.

Other

get_publisher
Gets the Publisher to which the DataWriter
belongs. Section 6.3.14.2

get_topic Get the Topic associated with the DataWriter.

wait_for_
acknowledgements

Blocks the calling thread until either all data
written by the DataWriter is acknowledged by
all matched Reliable DataReaders, or until the
a specified timeout duration, max_wait,
elapses.

Section 6.3.11

Table 6.3 DataWriter Operations

Working with
... Operation Description Reference
6-23

Sending Data
6.3.1 Creating DataWriters

Before you can create a DataWriter, you need a DomainParticipant, a Topic, and optionally,
a Publisher.

DataWriters are created by calling create_datawriter() or
create_datawriter_with_profile()—these operations exist for DomainParticipants and
Publishers. If you use the DomainParticipant to create a DataWriter, it will belong to the

Status

get_status_changes
Gets a list of statuses that have changed since
the last time the application read the status or
the listeners were called.

Section 4.1.4

get_liveliness_lost_statu
s

Gets LIVELINESS_LOST status.

Section 6.3.6

get_offered_deadline_
missed_status

Gets OFFERED_DEADLINE_MISSED status.

get_offered_
incompatible_qos_status

Gets OFFERED_INCOMPATIBLE_QOS sta-
tus.

get_publication_match_
status

Gets PUBLICATION_MATCHED_QOS sta-
tus.

get_reliable_writer_
cache_changed_status

Gets
RELIABLE_WRITER_CACHE_CHANGED
status

get_reliable_reader_
activity_changed_status

Gets
RELIABLE_READER_ACTIVITY_CHANGE
D status

get_datawriter_cache_
status

Gets DATA_WRITER_CACHE_status

get_datawriter_protocol
_status

Gets DATA_WRITER_PROTOCOL status

Status (cont’d)

get_matched_
subscription_datawriter
_protocol_status

Gets DATA_WRITER_PROTOCOL status for
this DataWriter, per matched subscription
identified by the subscription_handle.

Section 6.3.6get_matched_
subscription_datawriter
_protocol_status_
by_locator

Gets DATA_WRITER_PROTOCOL status for
this DataWriter, per matched subscription as
identified by a locator.

Table 6.3 DataWriter Operations

Working with
... Operation Description Reference
6-24

DataWriters
6. Se

nd
ing

 D
a

ta
implicit Publisher described in Section 6.2.1. If you use a Publisher’s operations to create a
DataWriter, it will belong to that Publisher.

DDSDataWriter* create_datawriter (DDSTopic *topic,
 const DDS_DataWriterQos &qos,
 DDSDataWriterListener *listener,
 DDS_StatusMask mask)

DDSDataWriter * create_datawriter_with_profile (
 DDSTopic * topic,
 const char * library_name,
 const char * profile_name,
 DDSDataWriterListener * listener,
 DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach,
you can change QoS settings without recompiling the application. For details, see
Chapter 15: Configuring QoS with XML.

topic The Topic that the DataWriter will publish. This must have been previously created
by the same DomainParticipant.

qos If you want the default QoS settings (described in the online documentation), use
the constant DDS_DATAWRITER_QOS_DEFAULT for this parameter (see
Figure 6.9). If you want to customize any of the QosPolicies, supply a QoS struc-
ture (see Section 6.3.13).

Note: If you use DDS_DATAWRITER_QOS_DEFAULT for the qos parameter, it
is not safe to create the DataWriter while another thread may be simultaneously
calling the Publisher’s set_default_datawriter_qos() operation.

listener Listeners are callback routines. Connext uses them to notify your application of
specific events (status changes) that may occur with respect to the DataWriter. The
listener parameter may be set to NULL; in this case, the PublisherListener (or if that
is NULL, the DomainParticipantListener) will be used instead. For more informa-
tion, see Section 6.3.4.

mask This bit-mask indicates which status changes will cause the Listener to be
invoked. The bits set in the mask must have corresponding callbacks imple-
mented in the Listener. If you use NULL for the Listener, use
DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all
callbacks, use DDS_STATUS_MASK_ALL. For information on statuses, see Lis-
teners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section
15.9).
6-25

Sending Data
profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS
Profiles (Section 15.8).

For more examples on how to create a DataWriter, see Configuring QoS Settings when
the DataWriter is Created (Section 6.3.13.1)

After you create a DataWriter, you can use it to write data. See Section 6.3.8.

Note: When a DataWriter is created, only those transports already registered are avail-
able to the DataWriter. The built-in transports are implicitly registered when (a) the
DomainParticipant is enabled, (b) the first DataWriter is created, or (c) you look up a
built-in data reader, whichever happens first.

6.3.2 Getting All DataWriters

To retrieve all the DataWriters created by the Publisher, use the Publisher’s
get_all_datawriters() operation:

DDS_ReturnCode_t get_all_datawriters(
DDS_Publisher* self,
struct DDS_DataWriterSeq* writers);

6.3.3 Deleting DataWriters

To delete a single DataWriter, use the Publisher’s delete_datawriter() operation:

DDS_ReturnCode_t delete_datawriter (DDSDataWriter *a_datawriter)

// MyWriterListener is user defined, extends DDSDataWriterListener
DDSDataWriterListener* writer_listener = new MyWriterListener();

DDSDataWriter* writer = publisher->create_datawriter(
topic,
DDS_DATAWRITER_QOS_DEFAULT,
writer_listener,
DDS_STATUS_MASK_ALL);

if (writer == NULL) {
 // ... error
};

// narrow it for your specific data type
FooDataWriter* foo_writer = FooDataWriter::narrow(writer);

Figure 6.9 Creating a DataWriter with Default QosPolicies and a Listener
6-26

DataWriters
6. Se

nd
ing

 D
a

ta
Note: A DataWriter cannot be deleted within its own writer listener callback, see
Restricted Operations in Listener Callbacks (Section 4.5.1)

To delete all of a Publisher’s DataWriters, use the Publisher’s delete_contained_entities()
operation (see Section 6.2.3.1).

6.3.4 Setting Up DataWriterListeners

DataWriters may optionally have Listeners. Listeners are essentially callback routines and
provide the means for Connext to notify your application of the occurrence of events
(status changes) relevant to the DataWriter. For more general information on Listeners,
see Listeners (Section 4.4).

Note: Some operations cannot be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).

If you do not implement a DataWriterListener, the associated PublisherListener is used
instead. If that Publisher also does not have a Listener, then the DomainParticipant’s Lis-
tener is used if one exists (see Section 6.2.5 and Section 8.3.5).

Special instructions for deleting DataWriters if you are using the ‘Timestamp’
APIs and BY_SOURCE_TIMESTAMP Destination Order:

This note only applies when the DataWriter’s DestinationOrderQosPolicy’s
kind is BY_SOURCE_TIMESTAMP.

Calls to delete_datawriter() may fail if your application has previously
used the “with timestamp” APIs (write_w_timestamp(),
register_instance_w_timestamp(), unregister_instance_w_timestamp(), or
dispose_w_timestamp()) with a timestamp that is larger than the time at
which delete_datawriter() is called.

To prevent delete_datawriter() from failing in this situation, either:

❏ Change the WriterDataLifeCycle QoS Policy so that Connext will not
auto-dispose unregistered instances:

writer_qos.writer_data_lifecycle.
autodispose_unregistered_instances =

DDS_BOOLEAN_FALSE;
or

❏ Explicitly call unregister_instance_w_timestamp() for all instances
6-27

Sending Data
Listeners are typically set up when the DataWriter is created (see Section 6.2). You can
also set one up after creation by using the set_listener() operation. Connext will invoke a
DataWriter’s Listener to report the status changes listed in Table 6.4 (if the Listener is set
up to handle the particular status, see Section 6.3.4).

Table 6.4 DataWriterListener Callbacks

This DataWriterListener
callback... ... is triggered by ...

on_instance_replaced()
A replacement of an existing instance by a new instance;
see Configuring DataWriter Instance Replacement (Sec-
tion 6.5.19.2)

on_liveliness_lost A change to LIVELINESS_LOST Status (Section 6.3.6.3)

on_offered_deadline_missed
A change to OFFERED_DEADLINE_MISSED Status
(Section 6.3.6.4)

on_offered_incompatible_qos
A change to OFFERED_INCOMPATIBLE_QOS Status
(Section 6.3.6.5)

on_publication_matched
A change to PUBLICATION_MATCHED Status (Section
6.3.6.6)

on_reliable_writer_cache_changed
A change to RELIABLE_WRITER_CACHE_CHANGED
Status (DDS Extension) (Section 6.3.6.7)

on_reliable_reader_activity_changed
A change to
RELIABLE_READER_ACTIVITY_CHANGED Status
(DDS Extension) (Section 6.3.6.8)

on_sample_removed A change to SAMPLE_REMOVED Status

on_data_request

The DataWriter does not have the data available for a
sample it needs to serialize. The callback returns the data
associated with the DataWriter and a cookie, which is
passed as a parameter to TypePlugin serialize functions.a

on_data_return
When the reference (data) returned by on_data_request()
is no longer required.a

on_sample_removed When a sample is removed from the DataWriter’s queue.a

a. on_data_request(), on_data_return(), and on_sample_removed() are not called when there is no cookie
(i.e., byte sequence of length zero) associated with the sample).
6-28

DataWriters
6. Se

nd
ing

 D
a

ta
6.3.5 Checking DataWriter Status

You can access an individual communication status for a DataWriter with the operations
shown in Table 6.5.

These methods are useful in the event that no Listener callback is set to receive notifica-
tions of status changes. If a Listener is used, the callback will contain the new status
information, in which case calling these methods is unlikely to be necessary.

The get_status_changes() operation provides a list of statuses that have changed since
the last time the status changes were ‘reset.’ A status change is reset each time the appli-
cation calls the corresponding get_*_status(), as well as each time Connext returns from
calling the Listener callback associated with that status.

For more on status, see Setting Up DataWriterListeners (Section 6.3.4), Statuses for
DataWriters (Section 6.3.6), and Listeners (Section 4.4).

Table 6.5 DataWriter Status Operations

Use this operation... ...to retrieve this status:

get_datawriter_cache_status
DATA_WRITER_CACHE_STATUS (Section
6.3.6.1)

get_datawriter_protocol_status

DATA_WRITER_PROTOCOL_STATUS (Sec-
tion 6.3.6.2)

get_matched_subscription_datawriter_
protocol_status

get_matched_subscription_datawriter_
protocol_status_by_locator

get_liveliness_lost_status LIVELINESS_LOST Status (Section 6.3.6.3)

get_offered_deadline_missed_status
OFFERED_DEADLINE_MISSED Status (Section
6.3.6.4)

get_offered_incompatible_qos_status
OFFERED_INCOMPATIBLE_QOS Status (Sec-
tion 6.3.6.5)

get_publication_match_status PUBLICATION_MATCHED Status (Section
6.3.6.6)

get_reliable_writer_cache_changed_status RELIABLE_WRITER_CACHE_CHANGED Sta-
tus (DDS Extension) (Section 6.3.6.7)

get_reliable_reader_activity_changed_status RELIABLE_READER_ACTIVITY_CHANGED
Status (DDS Extension) (Section 6.3.6.8)

get_status_changes A list of what changed in all of the above.
6-29

Sending Data
6.3.6 Statuses for DataWriters

There are several types of statuses available for a DataWriter. You can use the
get_*_status() operations (Section 6.3.13) to access them, or use a DataWriterListener
(Section 6.3.4) to listen for changes in their values. Each status has an associated data
structure and is described in more detail in the following sections.

❏ DATA_WRITER_CACHE_STATUS (Section 6.3.6.1)

❏ DATA_WRITER_PROTOCOL_STATUS (Section 6.3.6.2)

❏ LIVELINESS_LOST Status (Section 6.3.6.3)

❏ OFFERED_DEADLINE_MISSED Status (Section 6.3.6.4)

❏ OFFERED_INCOMPATIBLE_QOS Status (Section 6.3.6.5)

❏ PUBLICATION_MATCHED Status (Section 6.3.6.6)

❏ RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section
6.3.6.7)

❏ RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension) (Section
6.3.6.8)

6.3.6.1 DATA_WRITER_CACHE_STATUS

This status keeps track of the number of samples in the DataWriter’s queue.

This status does not have an associated Listener. You can access this status by calling the
DataWriter’s get_datawriter_cache_status() operation, which will return the status
structure described in Table 6.6.

Table 6.6 DDS_DataWriterCacheStatus

Type Field Name Description

DDS_Long sample_count_peak
Highest number of samples in the DataWriter’s queue
over the lifetime of the DataWriter.

DDS_Long sample_count Current number of samples in the DataWriter’s queue.
6-30

DataWriters
6. Se

nd
ing

 D
a

ta
6.3.6.2 DATA_WRITER_PROTOCOL_STATUS

This status includes internal protocol related metrics (such as the number of samples
pushed, pulled, filtered) and the status of wire-protocol traffic.

❏ Pulled samples are samples sent for repairs (that is, samples that had to be
resent), for late joiners, and all samples sent by the local DataWriter when
push_on_write (in DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)
(Section 6.5.2)) is DDS_BOOLEAN_FALSE.

❏ Pushed samples are samples sent on write() when push_on_write is
DDS_BOOLEAN_TRUE.

❏ Filtered samples are samples that are not sent due to DataWriter filtering (time-
based filtering and ContentFilteredTopics).

This status does not have an associated Listener. You can access this status by calling the
following operations on the DataWriter (all of which return the status structure
described in Table 6.7 on page 6-32):

❏ get_datawriter_protocol_status() returns the sum of the protocol status for all
the matched subscriptions for the DataWriter.

❏ get_matched_subscription_datawriter_protocol_status() returns the protocol
status of a particular matched subscription, identified by a subscription_handle .

❏ get_matched_subscription_datawriter_protocol_status_by_locator() returns
the protocol status of a particular matched subscription, identified by a locator.
(See Locator Format (Section 12.2.1.1).)

Note: Status for a remote entity is only kept while the entity is alive. Once a remote
entity is no longer alive, its status is deleted. If you try to get the matched subscription
status for a remote entity that is no longer alive, the ‘get status’ call will return an error.
6-31

Sending Data
Table 6.7 DDS_DataWriterProtocolStatus

Type Field Name Description

DDS_LongLong

pushed_sample_count
The number of user samples pushed
on write from a local DataWriter to a
matching remote DataReader.

pushed_sample_count_change

The incremental change in the num-
ber of user samples pushed on write
from a local DataWriter to a match-
ing remote DataReader since the last
time the status was read.

pushed_sample_bytes

The number of bytes of user samples
pushed on write from a local DataW-
riter to a matching remote
DataReader.

pushed_sample_bytes_change

The incremental change in the num-
ber of bytes of user samples pushed
on write from a local DataWriter to a
matching remote DataReader since
the last time the status was read.

DDS_LongLong

filtered_sample_count
The number of user samples pre-
emptively filtered by a local DataW-
riter due to Content-Filtered Topics.

filtered_sample_count_change

The incremental change in the num-
ber of user samples preemptively fil-
tered by a local DataWriter due to
ContentFilteredTopics since the last
time the status was read.

filtered_sample_bytes
The number of user samples pre-
emptively filtered by a local DataW-
riter due to ContentFilteredTopics.

filtered_sample_bytes_change

The incremental change in the num-
ber of user samples preemptively fil-
tered by a local DataWriter due to
ContentFilteredTopics since the last
time the status was read.
6-32

DataWriters
6. Se

nd
ing

 D
a

ta
DDS_LongLong

sent_heartbeat_count
The number of Heartbeats sent
between a local DataWriter and
matching remote DataReaders.

sent_heartbeat_count_change

The incremental change in the num-
ber of Heartbeats sent between a
local DataWriter and matching
remote DataReaders since the last
time the status was read.

sent_heartbeat_bytes
The number of bytes of Heartbeats
sent between a local DataWriter and
matching remote DataReader.

sent_heartbeat_bytes_change

The incremental change in the num-
ber of bytes of Heartbeats sent
between a local DataWriter and
matching remote DataReaders since
the last time the status was read.

DDS_LongLong

pulled_sample_count
The number of user samples pulled
from local DataWriter by matching
DataReaders.

pulled_sample_count_change

The incremental change in the num-
ber of user samples pulled from
local DataWriter by matching
DataReaders since the last time the
status was read.

pulled_sample_bytes
The number of bytes of user samples
pulled from local DataWriter by
matching DataReaders.

pulled_sample_bytes_change

The incremental change in the num-
ber of bytes of user samples pulled
from local DataWriter by matching
DataReaders since the last time the
status was read.

Table 6.7 DDS_DataWriterProtocolStatus

Type Field Name Description
6-33

Sending Data
DDS_LongLong

received_ack_count
The number of ACKs from a remote
DataReader received by a local
DataWriter.

received_ack_count_change

The incremental change in the num-
ber of ACKs from a remote
DataReader received by a local
DataWriter since the last time the
status was read.

received_ack_bytes
The number of bytes of ACKs from a
remote DataReader received by a
local DataWriter.

received_ack_bytes_change

The incremental change in the num-
ber of bytes of ACKs from a remote
DataReader received by a local
DataWriter since the last time the
status was read.

DDS_LongLong

received_nack_count
The number of NACKs from a
remote DataReader received by a
local DataWriter.

received_nack_count_change

The incremental change in the num-
ber of NACKs from a remote
DataReader received by a local
DataWriter since the last time the
status was read.

received_nack_bytes
The number of bytes of NACKs
from a remote DataReader received
by a local DataWriter.

received_nack_bytes_change

The incremental change in the num-
ber of bytes of NACKs from a
remote DataReader received by a
local DataWriter since the last time
the status was read.

Table 6.7 DDS_DataWriterProtocolStatus

Type Field Name Description
6-34

DataWriters
6. Se

nd
ing

 D
a

ta
DDS_LongLong

sent_gap_count
The number of GAPs sent from local
DataWriter to matching remote
DataReaders.

sent_gap_count_change

The incremental change in the num-
ber of GAPs sent from local DataW-
riter to matching remote DataReaders
since the last time the status was
read.

sent_gap_bytes
The number of bytes of GAPs sent
from local DataWriter to matching
remote DataReaders.

sent_gap_bytes_change

The incremental change in the num-
ber of bytes of GAPs sent from local
DataWriter to matching remote
DataReaders since the last time the
status was read.

DDS_LongLong

rejected_sample_count
The number of times a sample is
rejected for unanticipated reasons in
the send path.

rejected_sample_count_change

The incremental change in the num-
ber of times a sample is rejected due
to exceptions in the send path since
the last time the status was read.

DDS_Long send_window_size
Current maximum number of out-
standing samples allowed in the
DataWriter's queue.

Table 6.7 DDS_DataWriterProtocolStatus

Type Field Name Description
6-35

Sending Data
6.3.6.3 LIVELINESS_LOST Status

A change to this status indicates that the DataWriter failed to signal its liveliness within
the time specified by the LIVELINESS QosPolicy (Section 6.5.12).

It is different than the RELIABLE_READER_ACTIVITY_CHANGED Status (DDS
Extension) (Section 6.3.6.8) status that provides information about the liveliness of a
DataWriter’s matched DataReaders; this status reflects the DataWriter’s own liveliness.

The structure for this status appears in Table 6.8 on page 6-37.

DDS_Sequence
Number_t

first_available_sample_
sequence_number

Sequence number of the first avail-
able sample in the DataWriter's reli-
ability queue.

last_available_sample_
sequence_number

Sequence number of the last avail-
able sample in the DataWriter's reli-
ability queue.

first_unacknowledged_sample_
sequence_number

Sequence number of the first unac-
knowledged sample in the DataW-
riter's reliability queue.

first_available_sample_virtual_
sequence_number

Virtual sequence number of the first
available sample in the DataWriter's
reliability queue.

last_available_sample_virtual_
sequence_number

Virtual sequence number of the last
available sample in the DataWriter's
reliability queue.

first_unacknowledged_sample_virtual_
sequence_number

Virtual sequence number of the first
unacknowledged sample in the
DataWriter's reliability queue.

first_unacknowledged_sample_
subscription_handle

Instance Handle of the matching
remote DataReader for which the
DataWriter has kept the first avail-
able sample in the reliability queue.

first_unelapsed_keep_duration_
sample_sequence_number

Sequence number of the first sample
kept in the DataWriter's queue
whose keep_duration (applied
when disable_positive_acks is set)
has not yet elapsed.

Table 6.7 DDS_DataWriterProtocolStatus

Type Field Name Description
6-36

DataWriters
6. Se

nd
ing

 D
a

ta
The DataWriterListener’s on_liveliness_lost() callback is invoked when this status
changes. You can also retrieve the value by calling the DataWriter’s
get_liveliness_lost_status() operation.

6.3.6.4 OFFERED_DEADLINE_MISSED Status

A change to this status indicates that the DataWriter failed to write data within the time
period set in its DEADLINE QosPolicy (Section 6.5.4).

The structure for this status appears in Table 6.9.

The DataWriterListener’s on_offered_deadline_missed() operation is invoked when this
status changes. You can also retrieve the value by calling the DataWriter’s
get_deadline_missed_status() operation.

6.3.6.5 OFFERED_INCOMPATIBLE_QOS Status

A change to this status indicates that the DataWriter discovered a DataReader for the
same Topic, but that DataReader had requested QoS settings incompatible with this
DataWriter’s offered QoS.

The structure for this status appears in Table 6.10.

The DataWriterListener’s on_offered_incompatible_qos() callback is invoked when this
status changes. You can also retrieve the value by calling the DataWriter’s
get_offered_incompatible_qos_status() operation.

Table 6.8 DDS_LivelinessLostStatus

Type Field Name Description

DDS_Long total_count
Cumulative number of times the DataWriter failed to explic-
itly signal its liveliness within the liveliness period.

DDS_Long total_count_change
The change in total_count since the last time the Listener
was called or the status was read.

Table 6.9 DDS_OfferedDeadlineMissedStatus

Type Field Name Description

DDS_Long total_count
Cumulative number of times the DataWriter failed to
write within its offered deadline.

DDS_Long total_count_change
The change in total_count since the last time the Lis-
tener was called or the status was read.

DDS_Instance
Handle_t

last_instance_handle
Handle to the last data-instance in the DataWriter for
which an offered deadline was missed.
6-37

Sending Data
6.3.6.6 PUBLICATION_MATCHED Status

A change to this status indicates that the DataWriter discovered a matching DataReader.

A ‘match’ occurs only if the DataReader and DataWriter have the same Topic, same data
type (implied by having the same Topic), and compatible QosPolicies. In addition, if user
code has directed Connext to ignore certain DataReaders, then those DataReaders will
never be matched. See Section 14.4.2 for more on setting up a DomainParticipant to
ignore specific DataReaders.

The structure for this status appears in Table 6.11.

The DataWriterListener’s on_publication_matched() callback is invoked when this sta-
tus changes. You can also retrieve the value by calling the DataWriter’s
get_publication_match_status() operation.

Table 6.10 DDS_OfferedIncompatibleQoSStatus

Type Field Name Description

DDS_Long total_count

Cumulative number of times the DataWriter discov-
ered a DataReader for the same Topic with a
requested QoS that is incompatible with that offered
by the DataWriter.

DDS_Long total_count_change
The change in total_count since the last time the Lis-
tener was called or the status was read.

DDS_QosPolicyId_t last_policy_id

The ID of the QosPolicy that was found to be incom-
patible the last time an incompatibility was detected.
(Note: if there are multiple incompatible policies,
only one of them is reported here.)

 DDS_
QosPolicyCountSeq

policies

A list containing—for each policy—the total number
of times that the DataWriter discovered a DataReader
for the same Topic with a requested QoS that is
incompatible with that offered by the DataWriter.
6-38

DataWriters
6. Se

nd
ing

 D
a

ta
6.3.6.7 RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension)

A change to this status indicates that the number of unacknowledged samples1 in a reli-
able DataWriter's cache has reached one of these trigger points:

❏ The cache is empty (contains no unacknowledged samples)

❏ The cache is full (the number of unacknowledged samples has reached the value
specified in DDS_ResourceLimitsQosPolicy::max_samples)

❏ The number of unacknowledged samples has reached a high or low watermark.
See the high_watermark and low_watermark fields in Table 6.31 of the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2).

For more about the reliable protocol used by Connext and specifically, what it means for
a sample to be ‘unacknowledged,’ see Chapter 10: Reliable Communications.

The structure for this status appears in Table 6.12. The supporting structure,
DDS_ReliableWriterCacheEventCount, is described in Table 6.13.

The DataWriterListener’s on_reliable_writer_cache_changed() callback is invoked when
this status changes. You can also retrieve the value by calling the DataWriter’s
get_reliable_writer_cache_changed_status() operation.

Table 6.11 DDS_PublicationMatchedStatus

Type Field Name Description

DDS_Long

total_count
Cumulative number of times the DataWriter discov-
ered a "match" with a DataReader.

total_count_change
The change in total_count since the last time the Lis-
tener was called or the status was read.

current_count
The number of DataReaders currently matched to the
DataWriter.

current_count_peak
The highest value that current_count has reached
until now.

current_count_change
The change in current_count since the last time the
listener was called or the status was read.

DDS_Instance
Handle_t

last_subscription_handle
Handle to the last DataReader that matched the
DataWriter causing the status to change.

1. If batching is enabled, this still refers to a number of samples, not batches.
6-39

Sending Data
6.3.6.8 RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension)

This status indicates that one or more reliable DataReaders has become active or inactive.

This status is the reciprocal status to the LIVELINESS_CHANGED Status (Section
7.3.7.4) on the DataReader. It is different than LIVELINESS_LOST Status (Section 6.3.6.3)
status on the DataWriter, in that the latter informs the DataWriter about its own liveliness;
this status informs the DataWriter about the liveliness of its matched DataReaders.

A reliable DataReader is considered active by a reliable DataWriter with which it is
matched if that DataReader acknowledges the samples that it has been sent in a timely
fashion. For the definition of "timely" in this context, see DATA_WRITER_PROTOCOL
QosPolicy (DDS Extension) (Section 6.5.2).

Table 6.12 DDS_ReliableWriterCacheChangedStatus

Type Field Name Description

DDS_ReliableWriter
CacheEventCount

empty_reliable_writer
_cache

How many times the reliable DataWriter's cache
of unacknowledged samples has become
empty.

full_reliable_writer
_cache

How many times the reliable DataWriter's cache
of unacknowledged samples has become full.

low_watermark
_reliable_writer_cache

How many times the reliable DataWriter's cache
of unacknowledged samples has fallen to the
low watermark.

high_watermark
_reliable_writer_cache

How many times the reliable DataWriter's cache
of unacknowledged samples has risen to the
high watermark.

DDS_Long

unacknowledged_
sample_count

The current number of unacknowledged sam-
ples in the DataWriter's cache.

unacknowledged_
sample_count_peak

The highest value that
unacknowledged_sample_count has reached
until now.

Table 6.13 DDS_ReliableWriterCacheEventCount

Type Field Name Description

DDS_Long total_count The total number of times the event has occurred.

DDS_Long total_count_change
The number of times the event has occurred since the Lis-
tener was last invoked or the status read.
6-40

DataWriters
6. Se

nd
ing

 D
a

ta
This status is only used for DataWriters whose RELIABILITY QosPolicy (Section 6.5.18)
is set to RELIABLE. For best-effort DataWriters, all counts in this status will remain at
zero.

The structure for this status appears in Table 6.14.

The DataWriterListener’s on_reliable_reader_activity_changed() callback is invoked
when this status changes. You can also retrieve the value by calling the DataWriter’s
get_reliable_reader_activity_changed_status() operation.

6.3.7 Using a Type-Specific DataWriter (FooDataWriter)

Recall that a Topic is bound to a data type that specifies the format of the data associated
with the Topic. Data types are either defined dynamically or in code generated from def-
initions in IDL or XML; see Chapter 3: Data Types and Data Samples. For each of your
application's generated data types, such as 'Foo', there will be a FooDataWriter class (or
a set of functions in C). This class allows the application to use a type-safe interface to
interact with samples of type 'Foo'. You will use the FooDataWriter's write() operation
used to send data. For dynamically defined data-types, you will use the DynamicDa-
taWriter class.

In fact, you will use the FooDataWriter any time you need to perform type-specific oper-
ations, such as registering or writing instances. Table 6.3 indicates which operations
must be called using FooDataWriter. For operations that are not type-specific, you can
call the operation using either a FooDataWriter or a DDSDataWriter object1.

Table 6.14 DDS_ReliableReaderActivityChangedStatus

Type Field Name Description

DDS_Long

active_count
The current number of reliable readers currently
matched with this reliable DataWriter.

not_active_count
The number of reliable readers that have been
dropped by this reliable DataWriter because they failed
to send acknowledgements in a timely fashion.

active_count_change
The change in the number of active reliable DataRead-
ers since the Listener was last invoked or the status
read.

inactive_count_change
The change in the number of inactive reliable
DataReaders since the Listener was last invoked or the
status read.

DDS_Instance
Handle_t

last_instance_handle
The instance handle of the last reliable DataReader to
be determined to be inactive.
6-41

Sending Data
You may notice that the Publisher’s create_datawriter() operation returns a pointer to an
object of type DDSDataWriter; this is because the create_datawriter() method is used to
create DataWriters of any data type. However, when executed, the function actually
returns a specialization (an object of a derived class) of the DataWriter that is specific for
the data type of the associated Topic. For a Topic of type ‘Foo’, the object actually
returned by create_datawriter() is a FooDataWriter.

To safely cast a generic DDSDataWriter pointer to a FooDataWriter pointer, you should
use the static narrow() method of the FooDataWriter class. The narrow() method will
return NULL if the generic DDSDataWriter pointer is not pointing at an object that is
really a FooDataWriter.

For instance, if you create a Topic bound to the type ‘Alarm’, all DataWriters created for
that Topic will be of type ‘AlarmDataWriter.’ To access the type-specific methods of
AlarmDataWriter, you must cast the generic DDSDataWriter pointer returned by
create_datawriter(). For example:

DDSDataWriter* writer = publisher->create_datawriter(topic,
writer_qos,
NULL, NULL);

AlarmDataWriter *alarm_writer = AlarmDataWriter::narrow(writer);
if (alarm_writer == NULL) {
 // ... error
};

In the C API, there is also a way to do the opposite of narrow().
FooDataWriter_as_datawriter() casts a FooDataWriter as a DDSDataWriter, and
FooDataReader_as_datareader() casts a FooDataReader as a DDSDataReader.

6.3.8 Writing Data

The write() operation informs Connext that there is a new value for a data-instance to be
published for the corresponding Topic. By default, calling write() will send the data
immediately over the network (assuming that there are matched DataReaders). How-
ever, you can configure and execute operations on the DataWriter’s Publisher to buffer
the data so that it is sent in a batch with data from other DataWriters or even to prevent
the data from being sent. Those sending “modes” are configured using the PRESENTA-
TION QosPolicy (Section 6.4.6) as well as the Publisher’s suspend/
resume_publications() operations. The actual transport-level communications may be
done by a separate, lower-priority thread when the Publisher is configured to send the
data for its DataWriters. For more information on threads, see Chapter 17: Connext

1. In the C API, the non type-specific operations must be called using a DDS_DataWriter pointer.
6-42

DataWriters
6. Se

nd
ing

 D
a

ta
Threading Model.

When you call write(), Connext automatically attaches a stamp of the current time that is
sent with the data sample to the DataReader(s). The timestamp appears in the
source_timestamp field of the DDS_SampleInfo structure that is provided along with
your data using DataReaders (see The SampleInfo Structure (Section 7.4.5)).

DDS_ReturnCode_t write (const Foo &instance_data,
const DDS_InstanceHandle_t &handle)

You can use an alternate DataWriter operation called write_w_timestamp(). This per-
forms the same action as write(), but allows the application to explicitly set the
source_timestamp. This is useful when you want the user application to set the value of
the timestamp instead of the default clock used by Connext.

DDS_ReturnCode_t write_w_timestamp (const Foo &instance_data,
const DDS_InstanceHandle_t &handle,
const DDS_Time_t &source_timestamp)

Note that, in general, the application should not mix these two ways of specifying time-
stamps. That is, for each DataWriter, the application should either always use the auto-
matic timestamping mechanism (by calling the normal operations) or always specify a
timestamp (by calling the “w_timestamp” variants of the operations). Mixing the two
methods may result in not receiving sent data.

You can also use an alternate DataWriter operation, write_w_params(), which performs
the same action as write(), but allows the application to explicitly set the fields con-
tained in the DDS_WriteParams structure.

struct DDS_WriteParams_t {
DDS_Time_t source_timestamp;
DDS_Cookie_t cookie;
DDS_InstanceHandle_t handle;
DDS_Long priority;
DDS_Boolean flush_on_write;

}

The write_w_params() operation is used when you want to write prioritized samples.
See Prioritized Samples (Section 6.6.4).

When using the C API, a newly created variable of type DDS_WriteParams_t should be
initialized by setting it to DDS_WRITEPARAMS_DEFAULT.

The source_timestamp and handle parameters are the same ones specified in
write_w_timestamp(). The cookie is a sequence of bytes that supports the retrieval of a
sample by a DataWriter when it is not available. When an unavailable sample needs to
6-43

Sending Data
be serialized outside the context of a write call, Connext will request the sample from the
application using its cookie. You can configure the maximum size of cookies via the
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.3).

The priority is a positive integer designating the relative priority of the sample, used to
determine the transmission order of pending transmissions. To use publication priori-
ties, the DataWriter’s PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.17) must
be set for asynchronous publishing and the DataWriter must use a FlowController with
a highest-priority-first scheduling_policy.

For Multi-channel DataWriters, the publication priority of a sample may be used as a fil-
ter criteria for determining channel membership.

The publication priority of each sample can be set in the DDS_WriteParams of the
write_w_params() operation.

You can also use an alternate DataWriter operation, write_w_params(), which performs
the same action as write(), but allows the application to explicitly set the fields con-
tained in the DDS_WriteParams structure:

struct DDS_WriteParams_t {
DDS_Time_t source_timestamp;
DDS_Cookie_t cookie;
DDS_InstanceHandle_t handle;

}

struct DDS_Cookie_t {
sequence<octet> value;

}

The source_timestamp and handle are the same ones specified in
write_w_timestamp(). The cookie is a sequence of bytes that supports the retrieval of a
sample by a DataWriter when it is not available. When an unavailable sample needs to
be serialized outside the context of a write call, Connext will request the sample from the
application using its cookie.

The maximum size of cookies is configurable via the
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.3).

The write() operation also asserts liveliness on the DataWriter, the associated Publisher,
and the associated DomainParticipant. It has the same effect with regards to liveliness as
an explicit call to assert_liveliness(), see Section 6.3.15 and the LIVELINESS QosPolicy
(Section 6.5.12). Maintaining liveliness is important for DataReaders to know that the
DataWriter still exists and for the proper behavior of the OWNERSHIP QosPolicy (Sec-
tion 6.5.14).
6-44

DataWriters
6. Se

nd
ing

 D
a

ta
See also: Clock Selection (Section 8.6).

6.3.8.1 Blocking During a write()

The write() operation may block if the RELIABILITY QosPolicy (Section 6.5.18) kind is
set to Reliable and the modification would cause data to be lost or cause one of the lim-
its specified in the RESOURCE_LIMITS QosPolicy (Section 6.5.19) to be exceeded. Spe-
cifically, write() may block in the following situations (note that the list may not be
exhaustive), even if its HISTORY QosPolicy (Section 6.5.9) is KEEP_LAST:

❏ If max_samples1 < max_instances, then the DataWriter may block regardless of
the depth field in the HISTORY QosPolicy (Section 6.5.9).

❏ If max_samples < (max_instances * depth), then in the situation where the
max_samples resource limit is exhausted, Connext may discard samples of some
other instance, as long as at least one sample remains for such an instance. If it is
still not possible to make space available to store the modification, the writer is
allowed to block.

❏ If min_send_window_size < max_samples), then it is possible for the
send_window_size limit to be reached before Connext is allowed to discard sam-
ples, in which case the DataWriter will block.

This operation may also block when using BEST_EFFORT Reliability (Section 6.5.19)
and ASYNCHRONOUS Publish Mode (Section 6.5.17) QoS settings. In this case, the
DataWriter will queue samples until they are sent by the asynchronous publishing
thread. The number of samples that can be stored is determined by the HISTORY
QosPolicy (Section 6.5.9). If the asynchronous thread does not send samples fast enough
(such as when using a slow FlowController (Section 6.6)), the queue may fill up. In that
case, subsequent write calls will block.

If this operation does block for any of the above reasons, the RELIABILITY
max_blocking_time configures the maximum time the write operation may block
(waiting for space to become available). If max_blocking_time elapses before the
DataWriter can store the modification without exceeding the limits, the operation will
fail and return RETCODE_TIMEOUT.

6.3.9 Flushing Batches of Data Samples

The flush() operation makes a batch of data samples available to be sent on the network.

DDS_ReturnCode_t flush ()

1. max_samples in is DDS_ResourceLimitsQosPolicy
6-45

Sending Data
If the DataWriter’s PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.17) kind is
not ASYNCHRONOUS, the batch will be sent on the network immediately in the con-
text of the calling thread.

If the DataWriter’s PublishModeQosPolicy kind is ASYNCHRONOUS, the batch will be
sent in the context of the asynchronous publishing thread.

The flush() operation may block based on the conditions described in Blocking During a
write() (Section 6.3.8.1).

If this operation does block, the max_blocking_time in the RELIABILITY QosPolicy
(Section 6.5.18) configures the maximum time the write operation may block (waiting
for space to become available). If max_blocking_time elapses before the DataWriter is
able to store the modification without exceeding the limits, the operation will fail and
return TIMEOUT.

For more information on batching, see the BATCH QosPolicy (DDS Extension) (Section
6.5.1).

6.3.10 Writing Coherent Sets of Data Samples

A publishing application can request that a set of data-sample changes be propagated in
such a way that they are interpreted at the receivers' side as a cohesive set of modifica-
tions. In this case, the receiver will only be able to access the data after all the modifica-
tions in the set are available at the subscribing end.

This is useful in cases where the values are inter-related. For example, suppose you have
two data-instances representing the ‘altitude’ and ‘velocity vector’ of the same aircraft.
If both are changed, it may be important to ensure that reader see both together (other-
wise, it may erroneously interpret that the aircraft is on a collision course).

To use this mechanism:

1. Call the Publisher’s begin_coherent_changes() operation to indicate the start a
coherent set.

2. For each sample in the coherent set: call the FooDataWriter’s write() operation.

3. Call the Publisher’s end_coherent_changes() operation to terminate the set.

Calls to begin_coherent_changes() and end_coherent_changes() can be nested.

See also: the coherent_access field in the PRESENTATION QosPolicy (Section 6.4.6).
6-46

DataWriters
6. Se

nd
ing

 D
a

ta
6.3.11 Waiting for Acknowledgments

The DataWriter’s wait_for_acknowledgments() operation blocks the calling thread until
either all data written by the reliable DataWriter is acknowledged by all matched reliable
DataReaders, or else the duration specified by the max_wait parameter elapses, which-
ever happens first.

DDS_ReturnCode_t wait_for_acknowledgments
(const DDS_Duration_t & max_wait)

This operation returns DDS_RETCODE_OK if all the samples were acknowledged, or
DDS_RETCODE_TIMEOUT if the max_wait duration expired first.

If the DataWriter does not have its RELIABILITY QosPolicy (Section 6.5.18) kind set to
RELIABLE, the operation will immediately return DDS_RETCODE_OK.

There is a similar operation available at the Publisher level, see Section 6.2.7.

The reliability protocol used by Connext is discussed in Chapter 10: Reliable Communi-
cations.

6.3.12 Managing Data Instances (Working with Keyed Data Types)

This section applies only to data types that use keys, see Samples, Instances, and Keys
(Section 2.2.2). Using the following operations for non-keyed types has no effect.

Topics come in two flavors: those whose associated data type has specified some fields as
defining the ‘key,’ and those whose associated data type has not. An example of a data-
type that specifies key fields is shown in Figure 6.10.

Figure 6.10 Data Type with a Key

typedef struct Flight {
 long flightId; //@key
 string departureAirport;
 string arrivalAirport;
 Time_t departureTime;
 Time_t estimatedArrivalTime;
 Location_t currentPosition;
};

If the data type has some fields that act as a ‘key,’ the Topic essentially defines a collec-
tion of data-instances whose values can be independently maintained. In Figure 6.10,
the flightId is the ‘key’. Different flights will have different values for the key. Each
flight is an instance of the Topic. Each write() will update the information about a single
flight. DataReaders can be informed when new flights appear or old ones disappear.
6-47

Sending Data
Since the key fields are contained within the data structure, Connext could examine the
key fields each time it needs to determine which data-instance is being modified. How-
ever, for performance and semantic reasons, it is better for your application to declare
all the data-instances it intends to modify—prior to actually writing any samples. This is
known as registration, described below in Section 6.3.12.1.

The register_instance() operation provides a handle to the instance (of type
DDS_InstanceHandle_t) that can be used later to refer to the instance.

6.3.12.1 Registering and Unregistering Instances

If your data type has a key, you may improve performance by registering an instance
(data associated with a particular value of the key) before you write data for the
instance. You can do this for any number of instances up the maximum number of
instances configured in the DataWriter’s RESOURCE_LIMITS QosPolicy (Section
6.5.19). Instance registration is completely optional.

Registration tells Connext that you are about to modify (write or dispose of) a specific
instance. This allows Connext to pre-configure itself to process that particular instance,
which can improve performance.

If you write without registering, you can pass the NIL instance handle as part of the
write() call.

If you register the instance first, Connext can look up the instance beforehand and return
a handle to that instance. Then when you pass this handle to the write() operation, Con-
next no longer needs to analyze the data to check what instance it is for. Instead, it can
directly update the instance pointed to by the instance handle.

In summary, by registering an instance, all subsequent write() calls to that instance
become more efficient. If you only plan to write once to a particular instance, registra-
tion does not ‘buy’ you much in performance, but in general, it is good practice.

To register an instance, use the DataWriter’s register_instance() operation. For best per-
formance, it should be invoked prior to calling any operation that modifies the instance,
such as write(), write_w_timestamp(), dispose(), or dispose_w_timestamp().

When you are done using that instance, you can unregister it. To unregister an instance,
use the DataWriter’s unregister_instance() operation. Unregistering tells Connext that
the DataWriter does not intend to modify that data-instance anymore, allowing Connext
to recover any resources it allocated for the instance. It does not delete the instance; that
is done with the dispose_instance() operation, see Section 6.3.12.2.
unregister_instance() should only be used on instances that have been previously regis-
tered. The use of these operations is illustrated in Figure 6.11.
6-48

DataWriters
6. Se

nd
ing

 D
a

ta
Once an instance has been unregistered, and assuming that no other DataWriters are
writing values for the instance, the matched DataReaders will eventually get an indica-
tion that the instance no longer has any DataWriters. This is communicated to the
DataReaders by means of the DDS_SampleInfo that accompanies each data-sample (see
Section 7.4.5). Once there are no DataWriters for the instance, the DataReader will see the
value of DDS_InstanceStateKind for that instance to be NOT_ALIVE_NO_WRITERS.

The unregister_instance() operation may affect the ownership of the data instance (see
the OWNERSHIP QosPolicy (Section 6.5.14)). If the DataWriter was the exclusive owner
of the instance, then calling unregister_instance() relinquishes that ownership, and
another DataWriter can become the exclusive owner of the instance.

The unregister_instance() operation indicates only that a particular DataWriter no lon-
ger has anything to say about the instance.

Flight myFlight;

// writer is a previously-created FlightDataWriter
myFlight.flightId = 265;
DDS_InstanceHandle_t fl265Handle =
 writer->register_instance(myFlight);
...

// Each time we update the flight, we can pass the handle
myFlight.departureAirport = “SJC”;
myFlight.arrivalAirport = “LAX”;
myFlight.departureTime = {120000, 0};
myFlight.estimatedArrivalTime = {130200, 0};
myFlight.currentPosition = { {37, 20}, {121, 53} };

if (writer->write(myFlight, fl265Handle) != DDS_RETCODE_OK) {
// ... handle error

}
...

// Once we are done updating the flight, it can be unregistered
if (writer->unregister_instance(myFlight, fl265Handle) !=

 DDS_RETCODE_OK) {
// ... handle error

}

Figure 6.11 Registering an Instance
6-49

Sending Data
Note that this is different than the dispose() operation discussed in the next section,
which informs DataReaders that the data-instance is no longer “alive.” The state of an
instance is stored in the DDS_SampleInfo structure that accompanies each sample of
data that is received by a DataReader. User code can access the instance state to see if an
instance is “alive”—meaning there is at least one DataWriter that is publishing samples
for the instance, see Instance States (Section 7.4.5.4).

6.3.12.2 Disposing of Data

The dispose() operation informs DataReaders that, as far as the DataWriter knows, the
data-instance no longer exists and can be considered “not alive.” When the dispose()
operation is called, the instance state stored in the DDS_SampleInfo structure, accessed
through DataReaders, will change to NOT_ALIVE_DISPOSED for that particular
instance.

autodispose_unregistered_instances in the WRITER_DATA_LIFECYCLE QoS Policy
(Section 6.5.25) controls whether instances are automatically disposed when they are
unregistered.

For example, in a flight tracking system, when a flight lands, a DataWriter may dispose
the data-instance corresponding to the flight. In that case, all DataReaders who are moni-
toring the flight will see the instance state change to NOT_ALIVE_DISPOSED, indicat-
ing that the flight has landed.

Note that this is different than unregister_instance() (Section 6.3.12.1), which indicates
only that a particular DataWriter no longer wishes to modify an instance—an important
distinction if there are multiple writers on the same instance.

If a particular instance is never disposed, its instance state will eventually change from
ALIVE to NOT_ALIVE_NO_WRITERS once all the DataWriters that were writing that
instance unregister the instance or lose their liveliness. For more information on DataW-
riter liveliness, see the LIVELINESS QosPolicy (Section 6.5.12).

See also: Propagating Serialized Keys with Disposed-Instance Notifications (Section
6.5.2.5).

6.3.12.3 Looking Up an Instance Handle

Some operations, such as write(), require an instance_handle parameter. If you need to
get such as handle, you can call the FooDataWriter’s lookup_instance() operation, which
takes an instance as a parameter and returns a handle to that instance. This is useful for
keyed data types.

DDS_InstanceHandle_t lookup_instance (const Foo & key_holder)
6-50

DataWriters
6. Se

nd
ing

 D
a

ta
The instance must have already been registered (see Section 6.3.12.1). If the instance is
not registered, this operation returns DDS_HANDLE_NIL.

6.3.12.4 Getting the Key Value for an Instance

Once you have an instance handle (using register_instance() or lookup_instance()),
you can use the DataWriter’s get_key_value() operation to retrieve the value of the key
of the corresponding instance. The key fields of the data structure passed into
get_key_value() will be filled out with the original values used to generate the instance
handle. The key fields are defined when the data type is defined, see Samples, Instances,
and Keys (Section 2.2.2) for more information.

Following our example in Figure 6.11 on page 6-49, register_instance() returns a
DDS_InstanceHandle_t (fl265Handle) that can be used in the call to the FlightDataW-
riter’s get_key_value() operation. The value of the key is returned in a structure of type
Flight with the flightId field filled in with the integer 265.

See also: Propagating Serialized Keys with Disposed-Instance Notifications (Section
6.5.2.5).

6.3.13 Setting DataWriter QosPolicies

The DataWriter’s QosPolicies control its resources and behavior.

The DDS_DataWriterQos structure has the following format:

DDS_DataWriterQos struct {
DDS_DurabilityQosPolicy durability;
DDS_DurabilityServiceQosPolicy durability_service;
DDS_DeadlineQosPolicy deadline;
DDS_LatencyBudgetQosPolicy latency_budget;
DDS_LivelinessQosPolicy liveliness;
DDS_ReliabilityQosPolicy reliability;
DDS_DestinationOrderQosPolicy destination_order;
DDS_HistoryQosPolicy history;
DDS_ResourceLimitsQosPolicy resource_limits;
DDS_TransportPriorityQosPolicy transport_priority;
DDS_LifespanQosPolicy lifespan;
DDS_UserDataQosPolicy user_data;
DDS_OwnershipQosPolicy ownership;
DDS_OwnershipStrengthQosPolicy ownership_strength;
DDS_WriterDataLifecycleQosPolicy writer_data_lifecycle;
// extensions to the DDS standard:
DDS_DataWriterResourceLimitsQosPolicy writer_resource_limits;
DDS_DataWriterProtocolQosPolicy protocol;
6-51

Sending Data
DDS_TransportSelectionQosPolicy transport_selection;
DDS_TransportUnicastQosPolicy unicast;
DDS_PublishModeQosPolicy publish_mode;
DDS_PropertyQosPolicy property;
DDS_BatchQosPolicy batch;
DDS_MultiChannelQosPolicy multi_channel;
DDS_EntityNameQosPolicy publication_name;
DDS_TypeSupportQosPolicy type_support;

} DDS_DataWriterQos;

Note: set_qos() cannot always be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).

Table 6.15 summarizes the meaning of each policy. (They appear alphabetically in the
table.) For information on why you would want to change a particular QosPolicy, see the
referenced section. For defaults and valid ranges, please refer to the online documenta-
tion.

Table 6.15 DataWriter QosPolicies

QosPolicy Description

Batch

Specifies and configures the mechanism that allows Connext to collect multiple
user data samples to be sent in a single network packet, to take advantage of
the efficiency of sending larger packets and thus increase effective throughput.
See Section 6.5.1.

DataWriterProtocol
This QosPolicy configures the Connext on-the-network protocol, RTPS. See
Section 6.5.2.

DataWriterResourceLimits
Controls how many threads can concurrently block on a write() call of this
DataWriter. See Section 6.5.3.

Deadline

• For a DataReader, it specifies the maximum expected elapsed time
between arriving data samples.

• For a DataWriter, it specifies a commitment to publish samples with no
greater elapsed time between them.

See Section 6.5.4.

DestinationOrder
Controls how Connext will deal with data sent by multiple DataWriters for the
same topic. Can be set to "by reception timestamp" or to "by source time-
stamp". See Section 6.5.5.

Durability
Specifies whether or not Connext will store and deliver data that were previ-
ously published to new DataReaders. See Section 6.5.6.

DurabilityService
Various settings to configure the external Persistence Servicea used by Connext
for DataWriters with a Durability QoS setting of Persistent Durability. See
Section 6.5.7.
6-52

DataWriters
6. Se

nd
ing

 D
a

ta
EntityName Assigns a name to a DataWriter. See Section 6.5.8.

History
Specifies how much data must to stored by Connextfor the DataWriter or
DataReader. This QosPolicy affects the RELIABILITY QosPolicy (Section 6.5.18)
as well as the DURABILITY QosPolicy (Section 6.5.6). See Section 6.5.9.

LatencyBudget
Suggestion to Connext on how much time is allowed to deliver data. See
Section 6.5.10.

Lifespan
Specifies how long Connext should consider data sent by an user application to
be valid. See Section 6.5.11.

Liveliness
Specifies and configures the mechanism that allows DataReaders to detect
when DataWriters become disconnected or "dead." See Section 6.5.12.

MultiChannel
Configures a DataWriter’s ability to send data on different multicast groups
(addresses) based on the value of the data. See Section 6.5.13.

Ownership
Along with OwnershipStrength, specifies if DataReaders for a topic can receive
data from multiple DataWriters at the same time. See Section 6.5.14.

OwnershipStrength
Used to arbitrate among multiple DataWriters of the same instance of a Topic
when Ownership QosPolicy is EXLUSIVE. See Section 6.5.15.

Partition
Adds string identifiers that are used for matching DataReaders and DataWriters
for the same Topic. See Section 6.4.5.

Property

Stores name/value (string) pairs that can be used to configure certain parame-
ters of Connext that are not exposed through formal QoS policies. It can also be
used to store and propagate application-specific name/value pairs, which can
be retrieved by user code during discovery. See Section 6.5.16.

PublishMode

Specifies how Connext sends application data on the network. By default, data
is sent in the user thread that calls the DataWriter’s write() operation. However,
this QosPolicy can be used to tell Connext to use its own thread to send the
data. See Section 6.5.17.

Reliability Specifies whether or not Connext will deliver data reliably. See Section 6.5.18.

ResourceLimits
Controls the amount of physical memory allocated for entities, if dynamic allo-
cations are allowed, and how they occur. Also controls memory usage among
different instance values for keyed topics. See Section 6.5.19.

TransportPriority
Set by a DataWriter to tell Connext that the data being sent is a different "prior-
ity" than other data. See Section 6.5.20.

TransportSelection
Allows you to select which physical transports a DataWriter or DataReader may
use to send or receive its data. See Section 6.5.21.

TransportUnicast
Specifies a subset of transports and port number that can be used by an Entity
to receive data. See Section 6.5.22.

Table 6.15 DataWriter QosPolicies

QosPolicy Description
6-53

Sending Data
Many of the DataWriter QosPolicies also apply to DataReaders (see Section 7.3). For a
DataWriter to communicate with a DataReader, their QosPolicies must be compatible.
Generally, for the QosPolicies that apply both to the DataWriter and the DataReader, the
setting in the DataWriter is considered an “offer” and the setting in the DataReader is a
“request.” Compatibility means that what is offered by the DataWriter equals or sur-
passes what is requested by the DataReader. Each policy’s description includes compati-
bility restrictions. For more information on compatibility, see QoS Requested vs. Offered
Compatibility—the RxO Property (Section 4.2.1).

Some of the policies may be changed after the DataWriter has been created. This allows
the application to modify the behavior of the DataWriter while it is in use. To modify the
QoS of an already-created DataWriter, use the get_qos() and set_qos() operations on the
DataWriter. This is a general pattern for all Entities, described in Section 4.1.7.3.

6.3.13.1 Configuring QoS Settings when the DataWriter is Created

As described in Creating DataWriters (Section 6.3.1), there are different ways to create a
DataWriter, depending on how you want to specify its QoS (with or without a QoS Pro-
file).

❏ In Figure 6.9 on page 6-26, we saw an example of how to create a DataWriter with
default QosPolicies by using the special constant,
DDS_DATAWRITER_QOS_DEFAULT, which indicates that the default QoS
values for a DataWriter should be used. The default DataWriter QoS values are
configured in the Publisher or DomainParticipant; you can change them with
set_default_datawriter_qos() or set_default_datawriter_qos_with_profile().
Then any DataWriters created with the Publisher will use the new default values.
As described in Section 4.1.7, this is a general pattern that applies to the con-
struction of all Entities.

TypeSupport
Used to attach application-specific value(s) to a DataWriter or DataReader.
These values are passed to the serialization or deserialization routine of the
associated data type. See Section 6.5.23.

UserData
Along with Topic Data QosPolicy and Group Data QosPolicy, used to attach a
buffer of bytes to Connext's discovery meta-data. See Section 6.5.24.

WriterDataLifeCycle
Controls how a DataWriter handles the lifecycle of the instances (keys) that the
DataWriter is registered to manage. See Section 6.5.25.

a. Persistence Service is included with Connext Messaging.

Table 6.15 DataWriter QosPolicies

QosPolicy Description
6-54

DataWriters
6. Se

nd
ing

 D
a

ta
❏ To create a DataWriter with non-default QoS without using a QoS Profile, see the
example code in Figure 6.12 on page 6-55. It uses the Publisher’s
get_default_writer_qos() method to initialize a DDS_DataWriterQos structure.
Then, the policies are modified from their default values before the structure is
used in the create_datawriter() method.

❏ You can also create a DataWriter and specify its QoS settings via a QoS Profile. To
do so, you will call create_datawriter_with_profile(), as seen in Figure 6.13 on
page 6-56.

❏ If you want to use a QoS profile, but then make some changes to the QoS before
creating the DataWriter, call get_datawriter_qos_from_profile() and
create_datawriter() as seen in Figure 6.14 on page 6-56.

For more information, see Creating DataWriters (Section 6.3.1) and Chapter 15: Config-
uring QoS with XML.

Figure 6.12 Creating a DataWriter with Modified QosPolicies (not from a profile)

DDS_DataWriterQos writer_qos;1

// initialize writer_qos with default values
publisher->get_default_datawriter_qos(writer_qos);

// make QoS changes
writer_qos.history.depth = 5;

// Create the writer with modified qos
DDSDataWriter * writer = publisher->create_datawriter(

topic,
writer_qos,
NULL, DDS_STATUS_MASK_NONE);

if (writer == NULL) {
// ... error

}
// narrow it for your specific data type
FooDataWriter* foo_writer = FooDataWriter::narrow(writer);

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-55

Sending Data
// Create the datawriter
DDSDataWriter * writer =

publisher->create_datawriter_with_profile(
 topic,
 “MyWriterLibrary”,
 “MyWriterProfile”,
 NULL, DDS_STATUS_MASK_NONE);

if (writer == NULL) {
 // ... error
};

// narrow it for your specific data type
FooDataWriter* foo_writer = FooDataWriter::narrow(writer);

Figure 6.13 Creating a DataWriter with a QoS Profile

DDS_DataWriterQos writer_qos;1

// Get writer QoS from profile
retcode = factory->get_datawriter_qos_from_profile(

writer_qos,
“WriterProfileLibrary”,
“WriterProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

// Makes QoS changes
writer_qos.history.depth = 5;

DDSDataWriter * writer = publisher->create_datawriter(
topic,
writer_qos,
NULL, DDS_STATUS_MASK_NONE);

if (participant == NULL) {
// handle error

}

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.

Figure 6.14 Getting QoS Values from a Profile, Changing QoS Values, Creating a DataWriter with
Modified QoS Values
6-56

DataWriters
6. Se

nd
ing

 D
a

ta
6.3.13.2 Changing QoS Settings After the DataWriter Has Been Created

There are 2 ways to change an existing DataWriter’s QoS after it is has been created—
again depending on whether or not you are using a QoS Profile.

❏ To change QoS programmatically (that is, without using a QoS Profile), use
get_qos() and set_qos(). See the example code in Figure 6.15. It retrieves the cur-
rent values by calling the DataWriter’s get_qos() operation. Then it modifies the
value and calls set_qos() to apply the new value. Note, however, that some
QosPolicies cannot be changed after the DataWriter has been enabled—this
restriction is noted in the descriptions of the individual QosPolicies.

❏ You can also change a DataWriter’s (and all other Entities’) QoS by using a QoS
Profile and calling set_qos_with_profile(). For an example, see Figure 6.16. For
more information, see Chapter 15: Configuring QoS with XML.

DDS_DataWriterQos writer_qos;1

// Get current QoS.
if (datawriter->get_qos(writer_qos) != DDS_RETCODE_OK) {

// handle error
}
// Makes QoS changes here
writer_qos.history.depth = 5;

// Set the new QoS
if (datawriter->set_qos(writer_qos) != DDS_RETCODE_OK) {

// handle error
}

1. For the C API, you need to use DDS_ParticipantQos_INITIALIZER or DDS_ParticipantQos_initialize().
See Section 4.2.2

Figure 6.15 Changing the QoS of an Existing DataWriter (without a QoS Profile)

retcode = writer->set_qos_with_profile(
“WriterProfileLibrary”,”WriterProfile”);

if (retcode != DDS_RETCODE_OK) {
 // handle error
}

Figure 6.16 Changing the QoS of an Existing DataWriter with a QoS Profile
6-57

Sending Data
6.3.13.3 Using a Topic’s QoS to Initialize a DataWriter’s QoS

Several DataWriter QosPolicies can also be found in the QosPolicies for Topics (see
Section 5.1.3). The QosPolicies set in the Topic do not directly affect the DataWriters (or
DataReaders) that use that Topic. In many ways, some QosPolicies are a Topic-level con-
cept, even though the DDS standard allows you to set different values for those policies
for different DataWriters and DataReaders of the same Topic. Thus, the policies in the
DDS_TopicQos structure exist as a way to help centralize and annotate the intended or
suggested values of those QosPolicies. Connext does not check to see if the actual poli-
cies set for a DataWriter is aligned with those set in the Topic to which it is bound.

There are many ways to use the QosPolicies’ values set in the Topic when setting the
QosPolicies’ values in a DataWriter. The most straightforward way is to get the values of
policies directly from the Topic and use them in the policies for the DataWriter, as shown
in Figure 6.17.

Figure 6.17 Copying Selected QoS from a Topic when Creating a DataWriter

DDS_DataWriterQos writer_qos;1

DDS_TopicQos topic_qos;
// topic and publisher already created

// get current QoS for the topic, default QoS for the writer
if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {

// handle error
}
if (publisher->get_default_datawriter_qos(writer_qos) !=

DDS_RETCODE_OK) {
// handle error

}

// Copy specific policies from the topic QoS to the writer QoS
writer_qos.deadline = topic_qos.deadline;
writer_qos.reliability = topic_qos.reliability;

// Create the DataWriter with the modified QoS
DDSDataWriter* writer = publisher->create_datawriter(topic,

writer_qos,
NULL, DDS_STATUS_MASK_NONE);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-58

DataWriters
6. Se

nd
ing

 D
a

ta
You can use the Publisher’s copy_from_topic_qos() operation to copy all of the common
policies from the Topic QoS to a DataWriter QoS. This is illustrated in Figure 6.18.

In another design pattern, you may want to start with the default QoS values for a
DataWriter and override them with the QoS values of the Topic. Figure 6.19 gives an
example of how to do this.

Because this is a common pattern, Connext provides a special macro,
DDS_DATAWRITER_QOS_USE_TOPIC_QOS, that can be used to indicate that the
DataWriter should be created with the set of QoS values that results from modifying the
default DataWriter QosPolicies with the QoS values specified by the Topic. Figure 6.20
shows how the macro is used.

Figure 6.18 Copying all QoS from a Topic when Creating a DataWriter

DDS_DataWriterQos writer_qos;1

DDS_TopicQos topic_qos;
// topic, publisher, writer_listener already created

if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {
// handle error

}
if (publisher->get_default_datawriter_qos(writer_qos) !=

 DDS_RETCODE_OK) {
// handle error

}
// copy relevant QosPolicies from topic’s qos into writer’s qos
publisher->copy_from_topic_qos(writer_qos, topic_qos);

// Optionally, modify policies as desired
writer_qos.deadline.duration.sec = 1;
writer_qos.deadline.duration.nanosec = 0;

// Create the DataWriter with the modified QoS
DDSDataWriter* writer = publisher->create_datawriter(topic,

writer_qos, writer_listener,
DDS_STATUS_MASK_ALL);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-59

Sending Data
The code fragments shown in Figure 6.19 and Figure 6.20 result in identical QoS settings
for the created DataWriter.

For more information on the general use and manipulation of QosPolicies, see
Section 4.1.7.

Figure 6.19 Combining Default Topic and DataWriter QoS (Option 1)

DDS_DataWriterQos writer_qos;1

DDS_TopicQos topic_qos;
// topic, publisher, writer_listener already created

if (topic->get_qos(topic_qos) != DDS_RETCODE_OK) {
// handle error

}
if (publisher->get_default_datawriter_qos(writer_qos) !=

DDS_RETCODE_OK) {
// handle error

}
if (publisher->copy_from_topic_qos(writer_qos, topic_qos) !=

DDS_RETCODE_OK) {
// handle error

}
// Create the DataWriter with the combined QoS
DDSDataWriter* writer =

publisher->create_datawriter(topic, writer_qos,
writer_listener,
DDS_STATUS_MASK_ALL);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.

Figure 6.20 Combining Default Topic and DataWriter QoS (Option 2)

// topic, publisher, writer_listener already created

DDSDataWriter* writer = publisher->create_datawriter (topic,
DDS_DATAWRITER_QOS_USE_TOPIC_QOS,
writer_listener, DDS_STATUS_MASK_ALL);
6-60

DataWriters
6. Se

nd
ing

 D
a

ta
6.3.14 Navigating Relationships Among Entities

6.3.14.1 Finding Matching Subscriptions

The following DataWriter operations can be used to get information on the DataReaders
that are currently associated with the DataWriter (that is, the DataReaders to which Con-
next will send the data written by the DataWriter).

❏ get_matched_subscriptions()

❏ get_matched_subscription_data()

❏ get_matched_subscription_locators()

get_matched_subscriptions() will return a sequence of handles to matched DataReaders.
You can use these handles in the get_matched_subscription_data() method to get infor-
mation about the DataReader such as the values of its QosPolicies.

get_matched_subscription_locators() retrieves a list of locators for subscriptions cur-
rently "associated" with the DataWriter. Matched subscription locators include locators
for all those subscriptions in the same domain that have a matching Topic, compatible
QoS, and a common partition that the DomainParticipant has not indicated should be
"ignored." These are the locators that Connext uses to communicate with matching
DataReaders. (See Locator Format (Section 12.2.1.1).)

You can also get the DATA_WRITER_PROTOCOL_STATUS for matching subscriptions
with these operations (see Section 6.3.6.2):

❏ get_matched_subscription_datawriter_protocol_status()

❏ get_matched_subscription_datawriter_protocol_status_by_locator()

Notes:

❏ Status/data for a matched subscription is only kept while the matched subscrip-
tion is alive. Once a matched subscription is no longer alive, its status is deleted.
If you try to get the status/data for a matched subscription that is no longer
alive, the 'get status' or ' get data' call will return an error.

❏ DataReaders that have been ignored using the DomainParticipant’s
ignore_subscription() operation are not considered to be matched even if the
DataReader has the same Topic and compatible QosPolicies. Thus, they will not be
included in the list of DataReaders returned by get_matched_subscriptions() or
get_matched_subscription_locators(). See Section 14.4.2 for more on
ignore_subscription().
6-61

Sending Data
❏ The get_matched_subscription_data() operation does not retrieve the following
information from built-in-topic data structures: type_code, property, and
content_filter_property. This information is available through the
on_data_available() callback (if a DataReaderListener is installed on the Sub-
scriptionBuiltinTopicDataDataReader).

6.3.14.2 Finding Related Entities

These operations are useful for obtaining a handle to various related entities:

❏ get_publisher()

❏ get_topic()

get_publisher() returns the Publisher that created the DataWriter. get_topic() returns the
Topic with which the DataWriter is associated.

6.3.15 Asserting Liveliness

The assert_liveliness() operation can be used to manually assert the liveliness of the
DataWriter without writing data. This operation is only useful if the kind of LIVELI-
NESS QosPolicy (Section 6.5.12) is MANUAL_BY_PARTICIPANT or
MANUAL_BY_TOPIC.

How DataReaders determine if DataWriters are alive is configured using the LIVELINESS
QosPolicy (Section 6.5.12). The lease_duration parameter of the LIVELINESS QosPolicy
is a contract by the DataWriter to all of its matched DataReaders that it will send a packet
within the time value of the lease_duration to state that it is still alive.

There are three ways to assert liveliness. One is to have Connext itself send liveliness
packets periodically when the kind of LIVELINESS QosPolicy is set to AUTOMATIC.
The other two ways to assert liveliness, used when liveliness is set to MANUAL, are to
call write() to send data or to call the assert_liveliness() operation without sending
data.

6.4 Publisher/Subscriber QosPolicies
This section provides detailed information on the QosPolicies associated with a Pub-
lisher. Note that Subscribers have the exact same set of policies. Table 6.2 on page 6-10
provides a quick reference. They are presented here in alphabetical order.
6-62

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
❏ ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1)

❏ ENTITYFACTORY QosPolicy (Section 6.4.2)

❏ EXCLUSIVE_AREA QosPolicy (DDS Extension) (Section 6.4.3)

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ PARTITION QosPolicy (Section 6.4.5)

❏ PRESENTATION QosPolicy (Section 6.4.6)

6.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension)

This QosPolicy is used to enable or disable asynchronous publishing and asynchronous
batch flushing for the Publisher.

This QosPolicy can be used to reduce amount of time spent in the user thread to send
data. You can use it to send large data reliably. Large in this context means that the data
cannot be sent as a single packet by a transport. For example, to send data larger than
63K reliably using UDP/IP, you must configure Connext to send the data using asyn-
chronous Publishers.

If so configured, the Publisher will spawn two threads, one for asynchronous publishing
and one for asynchronous batch flushing. The asynchronous publisher thread will be
shared by all DataWriters (belonging to this Publisher) that have their PUBLISH_MODE
QosPolicy (DDS Extension) (Section 6.5.17) kind set to ASYNCHRONOUS. The asyn-
chronous publishing thread will then handle the data transmission chores for those
DataWriters. This thread will only be spawned when the first of these DataWriters is
enabled.

The asynchronous batch flushing thread will be shared by all DataWriters (belonging to
this Publisher) that have batching enabled and max_flush_delay different than
DURATION_INFINITE in BATCH QosPolicy (DDS Extension) (Section 6.5.1). This
thread will only be spawned when the first of these DataWriters is enabled.

This QosPolicy allows you to adjust the asynchronous publishing and asynchronous
batch flushing threads independently.

Batching and asynchronous publication are independent of one another. Flushing a
batch on an asynchronous DataWriter makes it available for sending to the DataWriter's
FlowControllers (DDS Extension) (Section 6.6). From the point of view of the FlowCon-
troller, a batch is treated like one large sample.

Connext will sometimes coalesce multiple samples into a single network datagram. For
example, samples buffered by a FlowController or sent in response to a negative
acknowledgement (NACK) may be coalesced. This behavior is distinct from sample
6-63

Sending Data
batching. Data samples sent by different asynchronous DataWriters belonging to the
same Publisher to the same destination will not be coalesced into a single network
packet. Instead, two separate network packets will be sent. Only samples written by the
same DataWriter and intended for the same destination will be coalesced.

This QosPolicy includes the members in Table 6.16.

6.4.1.1 Properties

This QosPolicy cannot be modified after the Publisher is created.

Since it is only for Publishers, there are no compatibility restrictions for how it is set on
the publishing and subscribing sides.

6.4.1.2 Related QosPolicies

❏ If disable_asynchronous_write is TRUE (not the default), then any DataWriters
created from this Publisher must have their PUBLISH_MODE QosPolicy (DDS
Extension) (Section 6.5.17) kind set to SYNCHRONOUS. (Otherwise
create_datawriter() will return INCONSISTENT_QOS.)

❏ If disable_asynchronous_batch is TRUE (not the default), then any DataWriters
created from this Publisher must have max_flush_delay in BATCH QosPolicy
(DDS Extension) (Section 6.5.1) set to DURATION_INFINITE. (Otherwise
create_datawriter() will return INCONSISTENT_QOS.)

Table 6.16 DDS_AsynchronousPublisherQosPolicy

Type Field Name Description

 DDS_Boolean disable_asynchronous_write
Disables asynchronous publishing. To
write asynchronously, this field
must be FALSE (the default).

DDS_ThreadSettings_t thread
Settings for the publishing thread.
These settings are OS-dependent.

 DDS_Boolean disable_asynchronous_batch
Disables asynchronous batch flushing.
To flush asynchronously, this field
must be FALSE (the default).

DDS_ThreadSettings_t asynchronous_batch_thread
Settings for the asynchronous batch
flushing thread.
These settings are OS-dependent.
6-64

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
❏ DataWriters configured to use the MULTI_CHANNEL QosPolicy (DDS Exten-
sion) (Section 6.5.13) do not support asynchronous publishing; an error is
returned if a multi-channel DataWriter is configured for asynchronous publish-
ing.

6.4.1.3 Applicable Entities

❏ Publishers (Section 6.2)

6.4.1.4 System Resource Considerations

Two threads can potentially be created.

For asynchronous publishing, system resource usage depends on the activity of the
asynchronous thread controlled by the FlowController (see FlowControllers (DDS
Extension) (Section 6.6)).

For asynchronous batch flushing, system resource usage depends on the activity of the
asynchronous thread controlled by max_flush_delay in BATCH QosPolicy (DDS Exten-
sion) (Section 6.5.1).

6.4.2 ENTITYFACTORY QosPolicy

This QosPolicy controls whether or not child entities are created in the enabled state.

This QosPolicy applies to the DomainParticipantFactory, DomainParticipants, Publishers,
and Subscribers, which act as ‘factories’ for the creation of subordinate entities. A
DomainParticipantFactory is used to create DomainParticipants. A DomainParticipant is
used to create both Publishers and Subscribers. A Publisher is used to create DataWriters,
similarly a Subscriber is used to create DataReaders.

Entities can be created either in an ‘enabled’ or ‘disabled’ state. An enabled entity can
actively participate in communication. A disabled entity cannot be discovered or take
part in communication until it is explicitly enabled. For example, Connext will not send
data if the write() operation is called on a disabled DataWriter, nor will Connext deliver
data to a disabled DataReader. You can only enable a disabled entity. Once an entity is
enabled, you cannot disable it, see Section 4.1.2 about the enable() method.

The ENTITYFACTORY contains only one member, as illustrated in Table 6.17.

The ENTITYFACTORY QosPolicy controls whether the entities created from the factory
are automatically enabled upon creation or are left disabled. For example, if a Publisher
is configured to auto-enable created entities, then all DataWriters created from that Pub-
lisher will be automatically enabled.
6-65

Sending Data
Note: if an entity is disabled, then all of the child entities it creates are also created in a
disabled state, regardless of the setting of this QosPolicy. However, enabling a disabled
entity will enable all of its children if this QosPolicy is set to autoenable child entities.

Note: an entity can only be enabled; it cannot be disabled after its been enabled.

See Section 6.4.2.1 for an example of how to set this policy.

There are various reasons why you may want to create entities in the disabled state:

❏ To get around a “chicken and egg”-type issue. Where you need to have an entity
in order to modify it, but you don’t want the entity to be used by Connext until it
has been modified.

For example, if you create a DomainParticipant in the enabled state, it will imme-
diately start sending packets to other nodes trying to discover if other Connext
applications exist. However, you may want to configure the built-in topic reader
listener before discovery occurs. To do this, you need to create a DomainPartici-
pant in the disabled state because once enabled, discovery will occur. If you set
up the built-in topic reader listener after the DomainParticipant is enabled, you
may miss some discovery traffic.

❏ You may want to create entities without having them automatically start to
work. This especially pertains to DataReaders. If you create a DataReader in an
enabled state and you are using DataReaderListeners, Connext will immediately
search for matching DataWriters and callback the listener as soon as data is pub-
lished. This may not be what you want to happen if your application is still in
the middle of initialization when data arrives.

So typically, you would create all entities in a disabled state, and then when all
parts of the application have been initialized, one would enable all entities at the
same time using the enable() operation on the DomainParticipant, see
Section 4.1.2.

Table 6.17 DDS_EntityFactoryQosPolicy

Type Field Name Description

DDS_Boolean autoenable_created_entities

DDS_BOOLEAN_TRUE: enable entities when
they are created
DDS_BOOLEAN_FALSE: do not enable entities
when they are created
6-66

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
❏ An entity’s existence is not advertised to other participants in the network until
the entity is enabled. Instead of sending an individual declaration packet to
other applications announcing the existence of the entity, Connext can be more
efficient in bundling multiple declarations into a single packet when you enable
all entities at the same time.

See Section 4.1.2 for more information about enabled/disabled entities.

6.4.2.1 Example

The code in Figure 6.21 illustrates how to use the ENTITYFACTORY QoS.

Figure 6.21 Configuring a Publisher so that New DataWriters are Disabled

DDS_PublisherQos publisher_qos;1

// topic, publisher, writer_listener already created

if (publisher->get_qos(publisher_qos) != DDS_RETCODE_OK) {
// handle error

}
publisher_qos.entity_factory.autoenable_created_entities =

 DDS_BOOLEAN_FALSE;
if (publisher->set_qos(publisher_qos) != DDS_RETCODE_OK) {

// handle error
}

// Subsequently created DataWriters are created disabled and
// must be explicitly enabled by the user-code
DDSDataWriter* writer = publisher->create_datawriter(topic,

 DDS_DATAWRITER_QOS_DEFAULT,
 writer_listener, DDS_STATUS_MASK_ALL);

... // now do other initialization

// Now explicitly enable the DataWriter, this will allow other
// applications to discover the DataWriter and for this application
// to send data when the DataWriter’s write() method is called
writer->enable();

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-67

Sending Data
6.4.2.2 Properties

This QosPolicy can be modified at any time.

It can be set differently on the publishing and subscribing sides.

6.4.2.3 Related QosPolicies

This QosPolicy does not interact with any other policies.

6.4.2.4 Applicable Entities

❏ DomainParticipantFactory (Section 8.2)

❏ DomainParticipants (Section 8.3)

❏ Publishers (Section 6.2)

❏ Subscribers (Section 7.2)

6.4.2.5 System Resource Considerations

This QosPolicy does not significantly impact the use of system resources.

6.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension)

This QosPolicy controls the creation and use of Exclusive Areas. An exclusive area (EA)
is a mutex with built-in deadlock protection when multiple EAs are in use. It is used to
provide mutual exclusion among different threads of execution. Multiple EAs allow
greater concurrency among the internal and user threads when executing Connext code.

EAs allow Connext to be multi-threaded while preventing threads from a classical dead-
lock scenario for multi-threaded applications. EAs prevent a DomainParticipant's inter-
nal threads from deadlocking with each other when executing internal code as well as
when executing the code of user-registered listener callbacks.

Within an EA, all calls to the code protected by the EA are single threaded. Each
DomainParticipant, Publisher and Subscriber represents a separate EA. All DataWriters of
the same Publisher and all DataReaders of the same Subscriber share the EA of its parent.
This means that the DataWriters of the same Publisher and the DataReaders of the same
Subscriber are inherently single threaded.

Within an EA, there are limitations on how code protected by a different EA can be
accessed. For example, when data is being processed by user code received in the
DataReaderListener of a Subscriber EA, the user code may call the write() function of a
DataWriter that is protected by the EA of its Publisher. So you can send data in the func-
6-68

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
tion called to process received data. However, you cannot create entities or call func-
tions that are protected by the EA of the DomainParticipant. See Exclusive Areas (EAs)
(Section 4.5) for the complete documentation on Exclusive Areas.

With this QoS, you can force a Publisher or Subscriber to share the same EA as its Domain-
Participant. Using this capability, the restriction of not being to create entities in a
DataReaderListener's on_data_available() callback is lifted. However, the trade-off is
that the application has reduced concurrency through the Entities that share an EA.

Note that the restrictions on calling methods in a different EA only exists for user code
that is called in registered Listeners by internal DomainParticipant threads. User code
may call all Connext functions for any Entities from their own threads at any time.

The EXCLUSIVE_AREA includes a single member, as listed in Table 6.18. For the
default value, please refer to the online documentation.

The implications and restrictions of using a private or shared EA are discussed in
Section 4.5. The basic trade-off is concurrency versus restrictions on which methods can
be called in user, listener, callback functions. To summarize:

Behavior when the Publisher or Subscriber’s use_shared_exclusive_area is set to FALSE:

❏ The creation of the Publisher/Subscriber will create an EA that will be used only by
the Publisher/Subscriber and the DataWriters/DataReaders that belong to them.

❏ Consequences: This setting maximizes concurrency at the expense of creating a
mutex for the Publisher or Subscriber. In addition, using a separate EA may
restrict certain Connext operations (see Operations Allowed within Listener Call-
backs (Section 4.4.5)) from being called from the callbacks of Listeners attached
to those entities and the entities that they create. This limitation results from a
built-in deadlock protection mechanism.

Behavior when the Publisher or Subscriber’s use_shared_exclusive_area is set to TRUE:

❏ The creation of the Publisher/Subscriber does not create a new EA. Instead, the
Publisher/Subscriber, along with the DataWriters/DataReaders that they create, will
use a common EA shared with the DomainParticipant.

Table 6.18 DDS_ExclusiveAreaQosPolicy

Type Field Name Description

DDS_Boolean use_shared_exclusive_area

DDS_BOOLEAN_FALSE:
subordinates will not use the same EA
DDS_BOOLEAN_TRUE:
subordinates will use the same EA
6-69

Sending Data
❏ Consequences: By sharing the same EA among multiple entities, you may
decrease the amount of concurrency in the application, which can adversely
impact performance. However, this setting does use less resources and allows
you to call almost any operation on any Entity within a listener callback (see
Exclusive Areas (EAs) (Section 4.5) for full details).

6.4.3.1 Example

The code in Figure 6.22 illustrates how to change the EXCLUSIVE_AREA policy.

6.4.3.2 Properties

This QosPolicy cannot be modified after the Entity has been created.

It can be set differently on the publishing and subscribing sides.

6.4.3.3 Related QosPolicies

This QosPolicy does not interact with any other policies.

6.4.3.4 Applicable Entities

❏ Publishers (Section 6.2)

❏ Subscribers (Section 7.2)

Figure 6.22 Creating a Publisher with a Shared Exclusive Area

DDS_PublisherQos publisher_qos;1

// domain, publisher_listener have been previously created
if (participant->get_default_publisher_qos(publisher_qos) !=

DDS_RETCODE_OK) {
// handle error

}

publisher_qos.exclusive_area.use_shared_exclusive_area =
DDS_BOOLEAN_TRUE;

DDSPublisher* publisher =
participant->create_publisher(publisher_qos,

publisher_listener, DDS_STATUS_MASK_ALL);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-70

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
6.4.3.5 System Resource Considerations

This QosPolicy affects the use of operating-system mutexes. When
use_shared_exclusive_area is FALSE, the creation of a Publisher or Subscriber will create
an operating-system mutex.

6.4.4 GROUP_DATA QosPolicy

This QosPolicy provides an area where your application can store additional informa-
tion related to the Publisher and Subscriber. This information is passed between applica-
tions during discovery (see Chapter 12: Discovery) using built-in-topics (see Chapter 14:
Built-In Topics). How this information is used will be up to user code. Connext does not
do anything with the information stored as GROUP_DATA except to pass it to other
applications.

Use cases are often application-to-application identification, authentication, authoriza-
tion, and encryption purposes. For example, applications can use this QosPolicy to send
security certificates to each other for RSA-type security.

The value of the GROUP_DATA QosPolicy is sent to remote applications when they are
first discovered, as well as when the Publisher or Subscriber’s set_qos() method is called
after changing the value of the GROUP_DATA. User code can set listeners on the built-
in DataReaders of the built-in Topics used by Connext to propagate discovery information.
Methods in the built-in topic listeners will be called whenever new DomainParticipants,
DataReaders, and DataWriters are found. Within the user callback, you will have access to
the GROUP_DATA that was set for the associated Publisher or Subscriber.

Currently, GROUP_DATA of the associated Publisher or Subscriber is only propagated
with the information that declares a DataWriter or DataReader. Thus, you will need to
access the value of GROUP_DATA through DDS_PublicationBuiltinTopicData or
DDS_SubscriptionBuiltinTopicData (see Chapter 14: Built-In Topics).

The structure for the GROUP_DATA QosPolicy includes just one field, as seen in
Table 6.19. The field is a sequence of octets that translates to a contiguous buffer of bytes
whose contents and length is set by the user. The maximum size for the data are set in
the DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Sec-
tion 8.5.4).

Table 6.19 DDS_GroupDataQosPolicy

Type Field Name Description

DDS_OctetSeq value Empty by default
6-71

Sending Data
This policy is similar to the USER_DATA QosPolicy (Section 6.5.24) and TOPIC_DATA
QosPolicy (Section 5.2.1) that apply to other types of Entities.

6.4.4.1 Example

One possible use of GROUP_DATA is to pass some credential or certificate that your
subscriber application can use to accept or reject communication with the DataWriters
that belong to the Publisher (or vice versa, where the publisher application can validate
the permission of DataReaders of a Subscriber to receive its data). The value of the
GROUP_DATA of the Publisher is propagated in the ‘group_data’ field of the
DDS_PublicationBuiltinTopicData that is sent with the declaration of each DataWriter.
Similarly, the value of the GROUP_DATA of the Subscriber is propagated in the
‘group_data’ field of the DDS_SubscriptionBuiltinTopicData that is sent with the dec-
laration of each DataReader.

When Connext discovers a DataWriter/DataReader, the application can be notified of the
discovery of the new entity and retrieve information about the DataWriter/DataReader
QoS by reading the DCPSPublication or DCPSSubscription built-in topics (see
Chapter 14: Built-In Topics). Your application can then examine the GROUP_DATA
field in the built-in Topic and decide whether or not the DataWriter/DataReader should
be allowed to communicate with local DataReaders/DataWriters. If communication is not
allowed, the application can use the DomainParticipant’s ignore_publication() or
ignore_subscription() operation to reject the newly discovered remote entity as one
with which the application allows Connext to communicate. See Figure 14.2, “Ignoring
Publications,” on page 14-16 for an example of how to do this.

The code in Figure 6.23 illustrates how to change the GROUP_DATA policy.

6.4.4.2 Properties

This QosPolicy can be modified at any time.

It can be set differently on the publishing and subscribing sides.

6.4.4.3 Related QosPolicies

❏ TOPIC_DATA QosPolicy (Section 5.2.1)

❏ USER_DATA QosPolicy (Section 6.5.24)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 8.5.4)
6-72

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
6.4.4.4 Applicable Entities

❏ Publishers (Section 6.2)

❏ Subscribers (Section 7.2)

6.4.4.5 System Resource Considerations

As mentioned earlier, the maximum size of the GROUP_DATA is set in the
publisher_group_data_max_length and subscriber_group_data_max_length fields of
the DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Sec-
tion 8.5.4). Because Connext will allocate memory based on this value, you should only

Figure 6.23 Creating a Publisher with GROUP_DATA

DDS_PublisherQos publisher_qos;1

int i = 0;

// Bytes that will be used for the group data. In this case 8 bytes
// of some information that is meaningful to the user application
char myGroupData[GROUP_DATA_SIZE] =
 { 0x34, 0xaa, 0xfe, 0x31, 0x7a, 0xf2, 0x34, 0xaa};

// assume that domainparticipant and publisher_listener
// are already created
if (participant->get_default_publisher_qos(publisher_qos) !=

 DDS_RETCODE_OK) {
// handle error

}

// Must set the size of the sequence first
publisher_qos.group_data.value.maximum(GROUP_DATA_SIZE);
publisher_qos.group_data.value.length(GROUP_DATA_SIZE);

for (i = 0; i < GROUP_DATA_SIZE; i++) {
 publisher_qos.group_data.value[i] = myGroupData[i]
}

DDSPublisher* publisher = participant->create_publisher(
publisher_qos,

 publisher_listener,
DDS_STATUS_MASK_ALL);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-73

Sending Data
increase this value if you need to. If your system does not use GROUP_DATA, then you
can set this value to zero to save memory. Setting the value of the GROUP_DATA
QosPolicy to hold data longer than the value set in the [publisher/sub-
scriber]_group_data_max_length fields will result in failure and an
INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of GROUP_DATA, you must
make certain that all applications in the domain have changed the value of [publisher/
subscriber]_group_data_max_length to be the same. If two applications have different
limits on the size of GROUP DATA, and one application sets the GROUP_DATA
QosPolicy to hold data that is greater than the maximum size set by another application,
then the matching DataWriters and DataReaders of the Publisher and Subscriber between
the two applications will not connect. This is also true for the TOPIC_DATA
(Section 5.2.1) and USER_DATA (Section 6.5.24) QosPolicies.

6.4.5 PARTITION QosPolicy

The PARTITION QoS provides another way to control which DataWriters will match—
and thus communicate with—which DataReaders. It can be used to prevent DataWriters
and DataReaders that would have otherwise matched with the same Topic and compati-
ble QosPolicies from talking to each other. Much in the same way that only applications
within the same domain will communicate with each other, only DataWriters and
DataReaders that belong to the same partition can talk to each other.

The PARTITION QoS applies to Publishers and Subscribers, therefore the DataWriters and
DataReaders belong to the partitions as set on the Publishers and Subscribers that created
them. The mechanism implementing the PARTITION QoS is relatively lightweight, and
membership in a partition can be dynamically changed. Unlike the creation and
destruction of DomainParticipants, there is no spawning and killing of threads or alloca-
tion and deallocation of memory when Publishers and Subscribers add or remove them-
selves from partitions.

The PARTITION QoS consists of a set of partition names that identify the partitions of
which the Entity is a member. These names are simply strings, and DataWriters and
DataReaders are considered to be in the same partition if they have more than one parti-
tion name in common in the PARTITION QoS set on their Publishers or Subscribers.

Conceptually each partition name can be thought of as defining a “visibility plane”
within the domain. DataWriters will make their data available on all the visibility planes
that correspond to its Publisher’s partition names, and the DataReaders will see the data
that is placed on any of the visibility planes that correspond to its Subscriber’s partition
names.
6-74

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
Figure 6.24 illustrates the concept of PARTITION QoS. In this figure, all DataWriters and
DataReaders belong to the same domain and refer to the same Topic. DataWriter1 is con-
figured to belong to three partitions: partition_A, partition_B, and partition_C.
DataWriter2 belongs to partition_C and partition_D.

Similarly, DataReader1 is configured to belong to partition_A and partition_B, and
DataReader2 belongs only to partition_C. Given this topology, the data written by
DataWriter1 is visible in partitions A, B, and C. The oval tagged with the number “1”
represents one data-sample written by DataWriter1.

Similarly, the data written by DataWriter2 is visible in partitions C and D. The oval
tagged with the number “2” represents one data-sample written by DataWriter2.

The result is that the data written by DataWriter1 will be received by both DataReader1
and DataReader2, but the data written by DataWriter2 will only be visible by
DataReader2.

Publishers and Subscribers always belong to a partition. By default, Publishers and Sub-
scribers belong to a single partition whose name is the empty string, ““. If you set the
PARTITION QoS to be an empty set, Connext will assign the Publisher or Subscriber to the
default partition, ““. Thus, for the example above, without using the PARTITION QoS,
DataReaders 1 and 2 would have received all data samples written by DataWriters 1 and
2.

Figure 6.24 Controlling Visibility of Data with the PARTITION QoS

partition_A

DataWriter1

DataReader1

1

Makes its data
available on all the
specified visibility

planes

Observes data
written only on the
specified visibility

planes

partition_B

partition_C

partition_D

1

1

DataWriter2

DataReader22

2

6-75

Sending Data
6.4.5.1 Rules for PARTITION Matching

On the Publisher side, the PARTITION QosPolicy associates a set of strings (partition
names) with the Publisher. On the Subscriber side, the application also uses the PARTI-
TION QoS to associate partition names with the Subscriber.

Taking into account the PARTITION QoS, a DataWriter will communicate with a
DataReader if and only if the following conditions apply:

1. The DataWriter and DataReader belong to the same domain. That is, their respec-
tive DomainParticipants are bound to the same domain ID (see Section 8.3.1).

2. The DataWriter and DataReader have matching Topics. That is, each is associated
with a Topic with the same topic_name and data type.

3. The QoS offered by the DataWriter is compatible with the QoS requested by the
DataReader.

4. The application has not used the ignore_participant(), ignore_datareader(), or
ignore_datawriter() APIs to prevent the association (see Section 14.4).

5. The Publisher to which the DataWriter belongs and the Subscriber to which the
DataReader belongs must have at least one matching partition name.

The last condition reflects the visibility of the data introduced by the PARTITION QoS.
Matching partition names is done by string comparison, thus partition names are case
sensitive.

NOTE: Failure to match partitions is not considered an incompatible QoS and does not
trigger any listeners or change any status conditions.

6.4.5.2 Pattern Matching for PARTITION Names

You may also add strings that are regular expressions1 to the PARTITION QosPolicy. A
regular expression does not define a set of partitions to which the Publisher or Subscriber
belongs, as much as it is used in the partition matching process to see if a remote entity
has a partition name that would be matched with the regular expression. That is, the
regular expressions in the PARTITION QoS of a Publisher are never matched against
those found in the PARTITION QoS of a Subscriber. Regular expressions are always
matched against “concrete” partition names. Thus, a concrete partition name may not
contain any reserved characters that are used to define regular expressions, for example
‘*’, ‘.’, ‘+’, etc.

1. As defined by the POSIX fnmatch API (1003.2-1992 section B.6).
6-76

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
If a PARTITION QoS only contains regular expressions, then the Publisher or Subscriber
will be assigned automatically to the default partition with the empty string name (““).
Thus, do not be fooled into thinking that a PARTITION QoS that only contains the string
“*” matches another PARTITION QoS that only contains the string “*”. Yes, the Pub-
lisher will match the Subscriber, but it is because they both belong to the default ““ parti-
tion.

DataWriters and DataReaders are considered to have a partition in common if the sets of
partitions that their associated Publishers and Subscribers have defined have:

❏ at least one concrete partition name in common

❏ a regular expression in one Entity that matches a concrete partition name in
another Entity

The programmatic representation of the PARTITION QoS is shown in Table 6.20. The
QosPolicy contains the single string sequence, name. Each element in the sequence can
be a concrete name or a regular expression. The Entity will be assigned to the default ““
partition if the sequence is empty.

You can have one long partition string of 256 chars, or multiple shorter strings that add
up to 256 or less characters. For example, you can have one string of 4 chars and one
string of 252 chars.

6.4.5.3 Example

Since the set of partitions for a Publisher or Subscriber can be dynamically changed, the
Partition QosPolicy is useful to control which DataWriters can send data to which
DataReaders and vice versa—even if all of the DataWriters and DataReaders are for the
same topic. This facility is useful for creating temporary separation groups among enti-
ties that would otherwise be connected to and exchange data each other.

Note when using Partitions and Durability: If a Publisher changes partitions after
startup, it is possible for a reliable, late-joining DataReader to receive data that was writ-
ten for both the original and the new partition. For example, suppose a DataWriter with
TRANSIENT_LOCAL Durability initially writes samples with Partition A, but later
changes to Partition B. In this case, a reliable, late-joining DataReader configured for

Table 6.20 DDS_PartitionQosPolicy

Type Field Name Description

DDS_StringSeq name
Empty by default.
There can be up to 64 names, with a maximum of 256 char-
acters summed across all names.
6-77

Sending Data
Partition B will receive whatever samples have been saved for the DataWriter. These
may include samples which were written when the DataWriter was using Partition A.

The code in Figure 6.25 illustrates how to change the PARTITION policy.

The ability to dynamically control which DataWriters are matched to which DataReaders
(of the same Topic) offered by the PARTITION QoS can be used in many different ways.
Using partitions, connectivity can be controlled based on location-based partitioning,
access-control groups, purpose, or a combination of these and other application-defined
criteria. We will examine some of these options via concrete examples.

Example of location-based partitions. Assume you have a set of Topics in a traffic man-
agement system such as “TrafficAlert,” “AccidentReport,” and “CongestionStatus.” You
may want to control the visibility of these Topics based on the actual location to which
the information applies. You can do this by placing the Publisher in a partition that rep-
resents the area to which the information applies. This can be done using a string that
includes the city, state, and country, such as “USA/California/Santa Clara.” A Sub-
scriber can then choose whether it wants to see the alerts in a single city, the accidents in
a set of states, or the congestion status across the US. Some concrete examples are shown
in Table 6.21.

Figure 6.25 Setting Partition Names on a Publisher

DDS_PublisherQos publisher_qos;1

// domain, publisher_listener have been previously created

if (participant->get_default_publisher_qos(publisher_qos) !=
DDS_RETCODE_OK) {

// handle error
}

// Set the partition QoS
publisher_qos.partition.name.maximum(3);
publisher_qos.partition.name.length(3);
publisher_qos.partition.name[0] = DDS_String_dup(“partition_A”);
publisher_qos.partition.name[1] = DDS_String_dup(“partition_B”);
publisher_qos.partition.name[2] = DDS_String_dup(“partition_C”);

DDSPublisher* publisher =
participant->create_publisher(publisher_qos,

 publisher_listener, DDS_STATUS_MASK_ALL);

1. Note in C, you must initialize the QoS structures before they are used, see Section 4.2.2.
6-78

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
Example of access-control group partitions. Suppose you have an application where
access to the information must be restricted based on reader membership to access-con-
trol groups. You can map this group-controlled visibility to partitions by naming all the
groups (e.g. executives, payroll, financial, general-staff, consultants, external-people)
and assigning the Publisher to the set of partitions that represents which groups should
have access to the information. The Subscribers specify the groups to which they belong,
and the partition-matching behavior will ensure that the information is only distributed
to Subscribers belonging to the appropriate groups. Some concrete examples are shown
in Table 6.22.

Table 6.21 Example of Using Location-Based Partitions

Publisher Partitions Subscriber Partitions Result

Specify a single partition
name using the pattern:
“<country>/<state>/
<city>”

Specify multiple partition
names, one per region of inter-
est

Limits the visibility of the data to
Subscribers that express interest in
the geographical region.

“USA/California/Santa
Clara”

(Subscriber participant is irrele-
vant here.)

Send only information for Santa
Clara, California.

(Publisher partition is
irrelevant here.)

“USA/California/Santa Clara”
Receive only information for Santa
Clara, California.

“USA/California/Santa Clara”
“USA/California/Sunnyvale”

Receive information for Santa Clara
or Sunnyvale, California.

“USA/California/*”
“USA/Nevada/*”

Receive information for California
or Nevada.

“USA/California/*”
“USA/Nevada/Reno”
“USA/Nevada/Las Vegas”

Receive information for California
and two cities in Nevada.

Table 6.22 Example of Access-Control Group Partitions

Publisher Partitions Subscriber Partitions Result

Specify several partition
names, one per group
that is allowed access:

Specify multiple partition
names, one per group to which
the Subscriber belongs.

Limits the visibility of the data to
Subscribers that belong to the
access-groups specified by the Pub-
lisher.
6-79

Sending Data
A slight variation of this pattern could be used to confine the information based on
security levels.

Example of purpose-based partitions: Assume an application containing subsystems
that can be used for multiple purposes, such as training, simulation, and real use. In
some occasions it is convenient to be able to dynamically switch the subsystem from
operating in the “simulation world” to the “training world” or to the “real world.” For
supervision purposes, it may be convenient to observe multiple worlds, so that you can
compare the each one’s results. This can be accomplished by setting a partition name in
the Publisher that represents the “world” to which it belongs and a set of partition names
in the Subscriber that model the worlds that it can observe.

6.4.5.4 Properties

This QosPolicy can be modified at any time.

Strictly speaking, this QosPolicy does not have request-offered semantics, although it is
matched between DataWriters and DataReaders, and communication is established only
if there is a match between partition names.

6.4.5.5 Related QosPolicies

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 8.5.4).

6.4.5.6 Applicable Entities

❏ Publishers (Section 6.2)

❏ Subscribers (Section 7.2)

“payroll”
“financial”

(Subscriber participant is irrele-
vant here.)

Makes information available only
to Subscribers that have access to
either financial or payroll informa-
tion.

(Publisher participant is
irrelevant here.)

“executives”
“financial”

Gain access to information that is
intended for executives or people
with access to the finances.

Table 6.22 Example of Access-Control Group Partitions

Publisher Partitions Subscriber Partitions Result
6-80

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
6.4.5.7 System Resource Considerations

Partition names are propagated along with the declarations of the DataReaders and the
DataWriters and can be examined by user code through built-in topics (see Chapter 14:
Built-In Topics). Thus the sum-total length of the partition names will impact the band-
width needed to transmit those declarations, as well as the memory used to store them.

The maximum number of partitions and the maximum number of characters that can be
used for the sum-total length of all partition names are configured using the
max_partitions and max_partition_cumulative_characters fields of the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4). Setting more partitions or using longer names than allowed by those limits will
result in failure and an INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum number of partitions or maxi-
mum cumulative length of partition names, then you must make certain that all applica-
tions in the domain have changed the values of max_partitions and
max_partition_cumulative_characters to be the same. If two applications have different
values for those settings, and one application sets the PARTITION QosPolicy to hold
more partitions or longer names than set by another application, then the matching
DataWriters and DataReaders of the Publisher and Subscriber between the two applica-
tions will not connect. This similar to the restrictions for the GROUP_DATA
(Section 6.4.4), USER_DATA (Section 6.5.24), and TOPIC_DATA (Section 5.2.1) QosPoli-
cies.

6.4.6 PRESENTATION QosPolicy

Usually DataReaders will receive data in the order that it was sent by a DataWriter. In
addition, data is presented to the DataReader as soon as the application receives the next
value expected.

Sometimes, you may want a set of data for the same DataWriter to be presented to the
receiving DataReader only after ALL the elements of the set have been received, but not
before. You may also want the data to be presented in a different order than it was
received. Specifically, for keyed data, you may want Connext to present the data in
keyed or instance order.

The Presentation QosPolicy allows you to specify different scopes of presentation:
within a DataWriter, across instances of a DataWriter, and even across different DataWrit-
ers of a publisher. It also controls whether or not a set of changes within the scope must
be delivered at the same time or delivered as soon as each element is received.

There are three components to this QoS, the boolean flag coherent_access, the boolean
flag ordered_access, and an enumerated setting for the access_scope. The structure
6-81

Sending Data
used is shown in Table 6.23.

6.4.6.1 Coherent Access

A 'coherent set' is a set of data-sample modifications that must be propagated in such a
way that they are interpreted at the receiver's side as a consistent set; that is, the receiver

Table 6.23 DDS_PresentationQosPolicy

Type Field Name Description

DDS_Presentation_
QosPolicyAccessScope-
Kind

access_scope

Controls the granularity used when coherent_access and/or
ordered_access are TRUE.
If both coherent_access and ordered_access are FALSE,
access_scope’s setting has no effect.
• DDS_INSTANCE_PRESENTATION_QOS:

Queue is ordered/sorted per instance
• DDS_TOPIC_PRESENTATION_QOS:

Queue is ordered/sorted per topic (across all instances)
• DDS_GROUP_PRESENTATION_QOS:

Queue is ordered/sorted per topic across all instances
belonging to DataWriter (or DataReaders) within the same
Publisher (or Subscriber). Not supported for
coherent_access = TRUE.

• DDS_HIGHEST_OFFERED_PRESENTATION_QOS: Only
applies to Subscribers. With this setting, the Subscriber will
use the access scope specified by each remote Publisher.

DDS_Boolean coherent_access

Controls whether Connext will preserve the groupings of
changes made by the publishing application by means of
begin_coherent_changes() and end_coherent_changes().
• DDS_BOOLEAN_FALSE: Coherency is not preserved.

The value of access_scope is ignored.
• DDS_BOOLEAN_TRUE: Changes made to instances

within each DataWriter will be available to the DataReader as
a coherent set, based on the value of access_scope. Not sup-
ported for access_scope = GROUP.

DDS_Boolean ordered_access

Controls whether Connext will preserve the order of changes.
• DDS_BOOLEAN_FALSE: The order of samples is only

preserved for each instance, not across instances. The value
of access_scope is ignored.

• DDS_BOOLEAN_TRUE: The order of samples from a
DataWriter is preserved, based on the value set in
access_scope.
6-82

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
will only be able to access the data after all the modifications in the set are available at
the subscribing end.

Coherency enables a publishing application to change the value of several data-
instances and have those changes be seen atomically (as a cohesive set) by the readers.

Setting coherent_access to TRUE only behaves as described in the DDS specification
when the DataWriter and DataReader are configured for reliable delivery. Non-reliable
DataReaders will never receive samples that belong to a coherent set.

To send a coherent set of data samples, the publishing application uses the Publisher’s
begin_coherent_changes() and end_coherent_changes() operations (see Writing
Coherent Sets of Data Samples (Section 6.3.10)).

If coherent_access is TRUE, then the access_scope controls the maximum extent of the
coherent changes, as follows:

❏ If access_scope is INSTANCE, the use of begin_coherent_changes() and
end_coherent_changes() has no effect on how the subscriber can access the data.
This is because, with the scope limited to each instance, changes to separate
instances are considered independent and thus cannot be grouped by a coherent
change.

❏ If access_scope is TOPIC, then coherent changes (indicated by their enclosure
within calls to begin_coherent_changes() and end_coherent_changes()) will be
made available as such to each remote DataReader independently. That is,
changes made to instances within the each individual DataWriter will be avail-
able as a coherent set with respect to other changes to instances in that same
DataWriter, but will not be grouped with changes made to instances belonging to
a different DataWriter.

❏ If access_scope is GROUP, coherent changes made to instances through a DataW-
riter attached to a common Publisher are made available as a unit to remote sub-
scribers. Coherent access with GROUP access scope is currently not supported.

6.4.6.2 Ordered Access

If ordered_access is TRUE, then access_scope controls the scope of the order in which
samples are presented to the subscribing application, as follows:

❏ If access_scope is INSTANCE, the relative order of samples sent by a DataWriter
is only preserved on an per-instance basis. If two samples refer to the same
instance (identified by Topic and a particular value for the key) then the order in
which they are stored in the DataReader’s queue is consistent with the order in
6-83

Sending Data
which the changes occurred. However, if the two samples belong to different
instances, the order in which they are presented may or may not match the order
in which the changes occurred.

❏ If access_scope is TOPIC, the relative order of samples sent by a DataWriter is
preserved for all samples of all instances. The coherent grouping and/or order in
which samples appear in the DataReader’s queue is consistent with the group-
ing/order in which the changes occurred—even if the samples affect different
instances.

❏ If access_scope is GROUP, the scope spans all instances belonging to DataWriter
entities within the same Publisher—even if they are instances of different topics.
Changes made to instances via DataWriter entities attached to the same Publisher
are made available to Subscribers on the same order they occurred.

❏ If access_scope is HIGHEST_OFFERED, the Subscriber will use the access scope
specified by each remote Publisher.

The data stored in the DataReader is accessed by the DataReader’s read()/take() APIs.
The application does not have to access the data samples in the same order as they are
stored in the queue. How the application actually gets the data from the DataReader is
ultimately under the control of the user code, see Using DataReaders to Access Data
(Read & Take) (Section 7.4).

6.4.6.3 Example

Coherency is useful in cases where the values are inter-related (for example, if there are
two data-instances representing the altitude and velocity vector of the same aircraft and
both are changed, it may be useful to communicate those values in a way the reader can
see both together; otherwise, it may e.g., erroneously interpret that the aircraft is on a
collision course).

Ordered access is useful when you need to ensure that samples appear on the
DataReader’s queue in the order sent by one or multiple DataWriters within the same
Publisher.

To illustrate the effect of the PRESENTATION QosPolicy with TOPIC and INSTANCE
access scope, assume the following sequence of samples was written by the DataWriter:
{A1, B1, C1, A2, B2, C2}. In this example, A, B, and C represent different instances (i.e.,
different keys). Assume all of these samples have been propagated to the DataReader’s
history queue before your application invokes the read() operation. The data-sample
sequence returned depends on how the PRESENTATION QoS is set, as shown in
Table 6.24.
6-84

Publisher/Subscriber QosPolicies
6. Se

nd
ing

 D
a

ta
To illustrate the effect of a PRESENTATION QosPolicy with GROUP access_scope,
assume the following sequence of samples was written by two DataWriters, W1 and W2,
within the same Publisher: {(W1,A1), (W2,B1), (W1,C1), (W2,A2), (W1,B2), (W2,C2)}. As
in the previous example, A, B, and C represent different instances (i.e., different keys).
With access_scope set to INSTANCE or TOPIC, the middleware cannot guarantee that
the application will receive the samples in the same order they were published by W1
and W2. With access_scope set to GROUP, the middleware is able to provide the sam-
ples in order to the application as long as the read()/take() operations are invoked
within a begin_access()/end_access() block (see Section 7.2.5).

6.4.6.4 Properties

This QosPolicy cannot be modified after the Publisher or Subscriber is enabled.

This QoS must be set compatibly between the DataWriter’s Publisher and the
DataReader’s Subscriber. The compatible combinations are shown in Table 6.26 and
Table 6.27 for ordered_access and Table 6.28 for coherent_access.

Table 6.24 Effect of ordered_access for access_scope INSTANCE and TOPIC

PRESENTATION QoS
Sequence retrieved via “read()”.

Order sent was {A1, B1, C1, A2, B2, C2}
Order received was {A1, A2, B1, B2, C1, C2}

ordered_access = FALSE
access_scope = <any>

{A1, A2, B1, B2, C1, C2}

ordered_access = TRUE
access_scope = INSTANCE

{A1, A2, B1, B2, C1, C2}

ordered_access = TRUE
access_scope = TOPIC

{A1, B1, C1, A2, B2, C2}

Table 6.25 Effect of ordered_access for access_scope GROUP

PRESENTATION QoS

Sequence retrieved via “read()”.
Order sent was {(W1,A1), (W2,B1), (W1,C1), (W2,A2),

(W1,B2), (W2,C2)}

ordered_access = FALSE
or
access_scope = TOPIC or
INSTANCE

The order across DataWriters will not be preserved. Samples may
be delivered in multiple orders. For example:
{(W1,A1), (W1,C1), (W1,B2), (W2,B1), (W2,A2), (W2,C2)}
{(W1,A1), (W2,B1), (W1,B2), (W1,C1), (W2,A2), (W2,C2)}

ordered_access = TRUE
access_scope = GROUP

Samples are delivered in the same order they were published:
{(W1,A1), (W2,B1), (W1,C1), (W2,A2), (W1,B2), (W2,C2)}
6-85

Sending Data
6.4.6.5 Related QosPolicies

The DESTINATION_ORDER QosPolicy (Section 6.5.5) is closely related and also affects
the ordering of data samples on a per-instance basis when there are multiple DataWrit-
ers.

Table 6.26 Valid Combinations of ordered_access and access_scope, with Subscriber’s
ordered_access = False

{ordered_access/
access_scope}

Subscriber Requests:

False/Instance False/Topic False/Group False/Highest

Publisher
offers:

False/Instance 4 incompatible incompatible 4

False/Topic 4 4 incompatible 4

False/Group 4 4 4 4

True/Instance 4 incompatible incompatible 4

True/Topic 4 4 incompatible 4

True/Group 4 4 4 4

Table 6.27 Valid Combinations of ordered_access and access_scope, with Subscriber’s
ordered_access = True

{ordered_access/
access_scope}

Subscriber Requests:

True/Instance True/Topic True/Group True/Highest

Publisher
offers:

False/Instance incompatible incompatible incompatible incompatible

False/Topic incompatible incompatible incompatible incompatible

False/Group incompatible incompatible incompatible incompatible

True/Instance 4 incompatible incompatible 4

True/Topic 4 4 incompatible 4

True/Group 4 4 4 4

Table 6.28 Valid Combinations of Presentation Coherent Access and Access Scope

{coherent_access/
access_scope}

Subscriber requests:

False/Instance False/Topic True/Instance True/Topic

Publisher
offers:

False/Instance 4 incompatible incompatible incompatible

False/Topic 4 4 incompatible incompatible

True/Instance 4 incompatible 4 incompatible

True/Topic 4 4 4 4
6-86

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
The AVAILABILITY QosPolicy (DDS Extension) (Section 7.6.1) may be used to configure
the sample ordering process in the Subscribers configured with GROUP or
HIGHEST_OFFERED access_scope.

6.4.6.6 Applicable Entities

❏ Publishers (Section 6.2)

❏ Subscribers (Section 7.2)

6.4.6.7 System Resource Considerations

The use of this policy does not significantly impact the usage of resources.

6.5 DataWriter QosPolicies
This section provides detailed information about the QosPolicies associated with a
DataWriter. Table 6.15 on page 6-52 provides a quick reference. They are presented in
alphabetical order.

❏ BATCH QosPolicy (DDS Extension) (Section 6.5.1)

❏ DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2)

❏ DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.3)

❏ DEADLINE QosPolicy (Section 6.5.4)

❏ DESTINATION_ORDER QosPolicy (Section 6.5.5)

❏ DURABILITY QosPolicy (Section 6.5.6)

❏ DURABILITY SERVICE QosPolicy (Section 6.5.7)

❏ ENTITYNAME QosPolicy (DDS Extension) (Section 6.5.8)

❏ HISTORY QosPolicy (Section 6.5.9)

❏ LATENCYBUDGET QoS Policy (Section 6.5.10)

❏ LIFESPAN QoS Policy (Section 6.5.11)

❏ LIVELINESS QosPolicy (Section 6.5.12)

❏ MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.13)

❏ OWNERSHIP QosPolicy (Section 6.5.14)
6-87

Sending Data
❏ OWNERSHIP_STRENGTH QosPolicy (Section 6.5.15)

❏ PROPERTY QosPolicy (DDS Extension) (Section 6.5.16)

❏ PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.17)

❏ RELIABILITY QosPolicy (Section 6.5.18)

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.19)

❏ TRANSPORT_PRIORITY QosPolicy (Section 6.5.20)

❏ TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.21)

❏ TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.22)

❏ TYPESUPPORT QosPolicy (DDS Extension) (Section 6.5.23)

❏ USER_DATA QosPolicy (Section 6.5.24)

❏ WRITER_DATA_LIFECYCLE QoS Policy (Section 6.5.25)

6.5.1 BATCH QosPolicy (DDS Extension)

This QosPolicy can be used to decrease the amount of communication overhead associ-
ated with the transmission and (in the case of reliable communication) acknowledge-
ment of small samples, in order to increase throughput.

It specifies and configures the mechanism that allows Connext to collect multiple user
data samples to be sent in a single network packet, to take advantage of the efficiency of
sending larger packets and thus increase effective throughput.

This QosPolicy can be used to increase effective throughput dramatically for small data
samples. Throughput for small samples (size < 2048 bytes) is typically limited by CPU
capacity and not by network bandwidth. Batching many smaller samples to be sent in a
single large packet will increase network utilization and thus throughput in terms of
samples per second.

It contains the members listed in Table 6.29.

Table 6.29 DDS_BatchQosPolicy

Type Field Name Description

DDS_Boolean enable Enables/disables batching.
6-88

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
DDS_Long max_data_bytes

Sets the maximum cumulative length of all serial-
ized samples in a batch.
Before or when this limit is reached, the batch is
automatically flushed.
The size does not include the meta-data associated
with the batch samples.

DDS_Long max_samples
Sets the maximum number of samples in a batch.
When this limit is reached, the batch is automati-
cally flushed.

struct DDS_Duration_t max_flush_delay

Sets the maximum flush delay.
When this duration is reached, the batch is auto-
matically flushed.
The delay is measured from the time the first sam-
ple in the batch is written by the application.

struct DDS_Duration_t
source_timestamp_
resolution

Sets the batch source timestamp resolution.
The value of this field determines how the source
timestamp is associated with the samples in a
batch.
A sample written with timestamp 't' inherits the
source timestamp 't2' associated with the previous
sample, unless ('t' - 't2') is greater than
source_timestamp_resolution.
If source_timestamp_resolution is
DURATION_INFINITE, every sample in the batch
will share the source timestamp associated with
the first sample.
If source_timestamp_resolution is zero, every
sample in the batch will contain its own source
timestamp corresponding to the moment when
the sample was written.
The performance of the batching process is better
when source_timestamp_resolution is set to
DURATION_INFINITE.

Table 6.29 DDS_BatchQosPolicy

Type Field Name Description
6-89

Sending Data
If batching is enabled (not the default), samples are not immediately sent when they are
written. Instead, they get collected into a "batch." A batch always contains whole num-
ber of samples—a sample will never be fragmented into multiple batches.

A batch is sent on the network ("flushed") when one of the following things happens:

❏ User-configurable flushing conditions

• A batch size limit (max_data_bytes) is reached.

• A number of samples are in the batch (max_samples).

• A time-limit (max_flush_delay) is reached, as measured from the time the
first sample in the batch is written by the application.

• The application explicitly calls a DataWriter's flush() operation.

❏ Non-user configurable flushing conditions:

• A coherent set starts or ends.

• The number of samples in the batch is equal to max_samples in
RESOURCE_LIMITS for unkeyed topics or max_samples_per_instance in
RESOURCE_LIMITS for keyed topics.

Additional batching configuration takes place in the Publisher’s
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1).

The flush() operation is described in Flushing Batches of Data Samples (Section 6.3.9).

6.5.1.1 Synchronous and Asynchronous Flushing

Usually, a batch is flushed synchronously:

❏ When a batch reaches its application-defined size limit (max_data_bytes or
max_samples) because the application called write(), the batch is flushed imme-
diately in the context of the writing thread.

DDS_Boolean thread_safe_write

Determines whether or not the write operation is
thread-safe.
If TRUE, multiple threads can call write on the
DataWriter concurrently.
A setting of FALSE can be used to increase batch-
ing throughput for batches with many small sam-
ples.

Table 6.29 DDS_BatchQosPolicy

Type Field Name Description
6-90

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
❏ When an application manually flushes a batch, the batch is flushed immediately
in the context of the calling thread.

❏ When the first sample in a coherent set is written, the batch in progress (without
including the sample in the coherent set) is immediately flushed in the context of
the writing thread.

❏ When a coherent set ends, the batch in progress is immediately flushed in the
context of the calling thread.

❏ When the number of samples in a batch is equal to max_samples in
RESOURCE_LIMITS for unkeyed topics or max_samples_per_instance in
RESOURCE_LIMITS for keyed topics, the batch is flushed immediately in the
context of the writing thread.

However, some behavior is asynchronous:

❏ To flush batches based on a time limit (max_flush_delay), enable asynchronous
batch flushing in the ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Exten-
sion) (Section 6.4.1) of the DataWriter's Publisher. This will cause the Publisher to
create an additional thread that will be used to flush batches of that Publisher's
DataWriters. This behavior is analogous to the way asynchronous publishing
works.

❏ You may also use batching alongside asynchronous publication with FlowCon-
trollers (DDS Extension) (Section 6.6). These features are independent of one
another. Flushing a batch on an asynchronous DataWriter makes it available for
sending to the DataWriter's FlowController. From the point of view of the Flow-
Controller, a batch is treated like one large sample.

6.5.1.2 Batching vs. Coalescing

Even when batching is disabled, Connext will sometimes coalesce multiple samples into
a single network datagram. For example, samples buffered by a FlowController or sent
in response to a negative acknowledgement (NACK) may be coalesced. This behavior is
distinct from sample batching.

Samples that are sent individually (not part of a batch) are always treated as separate
samples by Connext. Each sample is accompanied by a complete RTPS header on the
network (although samples may share UDP and IP headers) and (in the case of reliable
communication) a unique physical sequence number that must be positively or nega-
tively acknowledged.

In contrast, batched samples share an RTPS header and an entire batch is acknowledged
—positively or negatively—as a unit, potentially reducing the amount of meta-traffic on
the network and the amount of processing per individual sample.
6-91

Sending Data
Batching can also improve latency relative to simply coalescing. Consider two use cases:

1. A DataWriter is configured to write asynchronously with a FlowController. Even
if the FlowController's rules would allow it to publish a new sample immedi-
ately, the send will always happen in the context of the asynchronous publishing
thread. This context switch can add latency to the send path.

2. A DataWriter is configured to write synchronously but with batching turned on.
When the batch is full, it will be sent on the wire immediately, eliminating a
thread context switch from the send path.

6.5.1.3 Batching and ContentFilteredTopics

When batching is enabled, content filtering is always done on the reader side.

6.5.1.4 Performance Considerations

The purpose of batching is to increase throughput when writing small samples at a high
rate. In such cases, throughput can be increased several-fold, approaching much more
closely the physical limitations of the underlying network transport.

However, collecting samples into a batch implies that they are not sent on the network
immediately when the application writes them; this can potentially increase latency.
However, if the application sends data faster than the network can support, an
increased proportion of the network's available bandwidth will be spent on acknowl-
edgements and sample resends. In this case, reducing that overhead by turning on
batching could decrease latency while increasing throughput.

As a general rule, to improve batching throughput:

❏ Set thread_safe_write to FALSE when the batch contains a big number of small
samples. If you do not use a thread-safe write configuration, asynchronous batch
flushing must be disabled.

❏ Set source_timestamp_resolution to DURATION_INFINITE. Note that you set
this value, every sample in the batch will share the same source timestamp.

Batching affects how often piggyback heartbeats are sent; see
heartbeats_per_max_samples in Table 6.31, “DDS_RtpsReliableWriterProtocol_t,” on
page 6-97.

6.5.1.5 Maximum Transport Datagram Size

Batches cannot be fragmented. As a result, the maximum batch size (max_data_bytes)
must be set no larger than the maximum transport datagram size. For example, a UDP
6-92

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
datagram is limited to 64 KB, so any batches sent over UDP must be less than or equal to
that size.

6.5.1.6 Properties

This QosPolicy cannot be modified after the DataWriter is enabled.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on
the publishing and subscribing sides.

All batching configuration occurs on the publishing side. A subscribing application
does not configure anything specific to receive batched samples, and in many cases, it
will be oblivious to whether the samples it processes were received individually or as
part of a batch.

Consistency rules:

❏ max_samples must be consistent with max_data_bytes: they cannot both be set
to LENGTH_UNLIMITED.

❏ If max_flush_delay is not DURATION_INFINITE,
disable_asynchronous_batch in the ASYNCHRONOUS_PUBLISHER QosPol-
icy (DDS Extension) (Section 6.4.1) must be FALSE.

❏ If thread_safe_write is FALSE, source_timestamp_resolution must be
DURATION_INFINITE.

6.5.1.7 Related QosPolicies

❏ To flush batches based on a time limit, enable batching in the
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1) of
the DataWriter's Publisher.

❏ Be careful when configuring a DataWriter's LIFESPAN QoS Policy (Section
6.5.11) with a duration shorter than the batch flush period (max_flush_delay). If
the batch does not fill up before the flush period elapses, the short duration will
cause the samples to be lost without being sent.

❏ Do not configure the DataReader’s or DataWriter’s HISTORY QosPolicy (Section
6.5.9) to be shallower than the DataWriter's maximum batch size (max_samples).
When the HISTORY QosPolicy is shallower on the DataWriter, some samples
may not be sent. When the HISTORY QosPolicy is shallower on the DataReader,
samples may be dropped before being provided to the application.

❏ The initial and maximum numbers of batches that a DataWriter will manage is
set in the DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 6.5.3).
6-93

Sending Data
❏ The maximum number of samples that a DataWriter can store is determined by
the value max_samples in the RESOURCE_LIMITS QosPolicy (Section 6.5.19)
and max_batches in the DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS
Extension) (Section 6.5.3). The limit that is reached first is applied.

❏ The amount of resources required for batching depends on the configuration of
the RESOURCE_LIMITS QosPolicy (Section 6.5.19) and the
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
6.5.3). See Section 6.5.1.9.

6.5.1.8 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.1.9 System Resource Considerations

❏ Batching requires additional resources to store the meta-data associated with the
samples in the batch.

• For unkeyed topics, the meta-data will be at least 8 bytes, with a maximum of
20 bytes.

• For keyed topics, the meta-data will be at least 8 bytes, with a maximum of 52
bytes.

❏ Other resource considerations are described in Section 6.5.1.7.

6.5.2 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)

Connext uses a standard protocol for packet (user and meta data) exchange between
applications. The DataWriterProtocol QosPolicy gives you control over configurable
portions of the protocol, including the configuration of the reliable data delivery mecha-
nism of the protocol on a per DataWriter basis.

These configuration parameters control timing and timeouts, and give you the ability to
trade off between speed of data loss detection and repair, versus network and CPU
bandwidth used to maintain reliability.

It is important to tune the reliability protocol on a per DataWriter basis to meet the
requirements of the end-user application so that data can be sent between DataWriters
and DataReaders in an efficient and optimal manner in the presence of data loss. You can
also use this QosPolicy to control how Connext responds to "slow" reliable DataReaders
or ones that disconnect or are otherwise lost.
6-94

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
This policy includes the members presented in Table 6.30,
“DDS_DataWriterProtocolQosPolicy,” on page 6-95 and Table 6.31,
“DDS_RtpsReliableWriterProtocol_t,” on page 6-97. For defaults and valid ranges,
please refer to the online documentation.

For details on the reliability protocol used by Connext, see Chapter 10: Reliable Commu-
nications. See the RELIABILITY QosPolicy (Section 6.5.18) for more information on per-
DataReader/DataWriter reliability configuration. The HISTORY QosPolicy (Section 6.5.9)
and RESOURCE_LIMITS QosPolicy (Section 6.5.19) also play important roles in the
DDS reliability protocol.

Table 6.30 DDS_DataWriterProtocolQosPolicy

Type Field Name Description

DDS_GUID_t virtual_guid

The virtual GUID (Global Unique Identifier) is used to uniquely iden-
tify the same DataWriter across multiple incarnations. In other words,
this value allows Connext to remember information about a DataW-
riter that may be deleted and then recreated.
Connext uses the virtual GUID to associate a durable writer history to
a DataWriter.
Persistence Servicea uses the virtual GUID to send samples on behalf of
the original DataWriter.
A DataReader persists its state based on the virtual GUIDs of match-
ing remote DataWriters.
For more information, see Durability and Persistence Based on Vir-
tual GUIDs (Section 11.2).
By default, Connext will assign a virtual GUID automatically. If you
want to restore the state of the durable writer history after a restart,
you can retrieve the value of the writer's virtual GUID using the
DataWriter’s get_qos() operation, and set the virtual GUID of the
restarted DataWriter to the same value.

DDS_Unsigned-
Long

rtps_object_id

Determines the DataWriter’s RTPS object ID, according to the DDS-
RTPS Interoperability Wire Protocol.
Only the last 3 bytes are used; the most significant byte is ignored.
The rtps_host_id, rtps_app_id, rtps_instance_id in the
WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9),
together with the 3 least significant bytes in rtps_object_id, and
another byte assigned by Connext to identify the entity type, forms
the BuiltinTopicKey in PublicationBuiltinTopicData.
6-95

Sending Data
DDS_Boolean push_on_write

Controls when a sample is sent after write() is called on a DataWriter.
If TRUE, the sample is sent immediately; if FALSE, the sample is put
in a queue until an ACK/NACK is received from a reliable
DataReader.

DDS_Boolean
disable_positive_
acks

Determines whether matching DataReaders send positive acknowl-
edgements (ACKs) to the DataWriter.
When TRUE, the DataWriter will keep samples in its queue for ACK-
disabled readers for a minimum keep duration (see Section 6.5.2.3).
When strict reliability is not required, setting this to TRUE reduces
overhead network traffic.

DDS_Boolean
disable_inline_
keyhash

Controls whether or not the key-hash is propagated on the wire with
samples.
This field only applies to keyed writers.
Connext associates a key-hash (an internal 16-byte representation)
with each key.
When FALSE, the key-hash is sent on the wire with every data
instance.
When TRUE, the key-hash is not sent on the wire (so the readers must
compute the value using the received data).
If the reader is CPU bound, sending the key-hash on the wire may
increase performance, because the reader does not have to get the
key-hash from the data.
If the writer is CPU bound, sending the key-hash on the wire may
decrease performance, because it requires more bandwidth (16 more
bytes per sample).

Table 6.30 DDS_DataWriterProtocolQosPolicy

Type Field Name Description

Note: push_on_write must be TRUE for Asynchronous
DataWriters. Otherwise, samples will never be sent.

Note: Setting disable_inline_keyhash to TRUE is not compatible
with using RTI Real-Time Connect or RTI Recording Service.
6-96

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
DDS_Boolean
serialize_key_
with_dispose

Controls whether or not the serialized key is propagated on the wire
with dispose notifications.
This field only applies to keyed writers.
RTI recommends setting this field to TRUE if there are DataReaders
with propagate_dispose_of_unregistered_instances (in the
DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section
7.6.2)) also set to TRUE.
Important: When this field TRUE, batching will not be compatible
with RTI Data Distribution Service 4.3e, 4.4b, or 4.4c—the DataReaders
will receive incorrect data and/or encounter deserialization errors.

DDS_RtpsReliable
WriterProtocol_t

rtps_reliable_
writer

This structure includes the fields in Table 6.31.

a. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered to subscribing
applications that join the system at a later time (see Chapter 21: Introduction to RTI Persistence Service).

Table 6.31 DDS_RtpsReliableWriterProtocol_t

Type Field Name Description

DDS_Long
low_watermark Queue levels that control when to switch between the regu-

lar and fast heartbeat rates (heartbeat_period and
fast_heartbeat_period). See Section 6.5.2.1.high_watermark

DDS_Duration_t

heartbeat_period
Rates at which to sent heartbeats to DataReaders with unac-
knowledged samples. See Section 6.5.2.2 and
Section 10.3.4.1.

fast_heartbeat_period

late_joiner_heartbeat_
period

DDS_Duration_t virtual_heartbeat_period

The rate at which a reliable DataWriter will send virtual
heartbeats. Virtual heartbeat informs the reliable DataReader
about the range of samples currently present for each virtual
GUID in the reliable writer's queue. See Section 6.5.2.6.

DDS_Long
samples_per_virtual_
heartbeat

The number of samples that a reliable DataWriter must pub-
lish before sending a virtual heartbeat. See Section 6.5.2.6.

Table 6.30 DDS_DataWriterProtocolQosPolicy

Type Field Name Description
6-97

Sending Data
DDS_Long max_heartbeat_retries

Maximum number of periodic heartbeats sent without
receiving an ACK/NACK packet before marking a
DataReader ‘inactive.’
When a DataReader has not acknowledged all the samples
the reliable DataWriter has sent to it, and
max_heartbeat_retries number of periodic heartbeats
have been sent without receiving any ACK/NACK packets
in return, the DataReader will be marked as inactive (not
alive) and be ignored until it resumes sending ACK/
NACKs.
Note that piggyback heartbeats do not count towards this
value.
See Section 10.3.4.4.

DDS_Boolean
inactivate_nonprogressing_
readers

Allows the DataWriter to treat DataReaders that send succes-
sive non-progressing NACK packets as inactive.
See Section 10.3.4.5.

Table 6.31 DDS_RtpsReliableWriterProtocol_t

Type Field Name Description
6-98

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
DDS_Long
heartbeats_per_max_
samples

For non-multichannel DataWriters:
If batching is disabled:
A piggyback heartbeat will be sent every
[max_samples/heartbeats_per_max_samples]
number of samples.
heartbeats_per_max_samples must be <=
writer_qos.resource_limits.max_samples
If batching is enabled:
A piggyback heartbeat will be sent every
[max_batches/heartbeats_per_max_samples]
number of samples.
heartbeats_per_max_samples must be <=
writer_qos.resource_limits.max_batches
For multi-channel DataWriters:
A piggyback heartbeat will be sent on a channel every
[max_samples/heartbeats_per_max_samples] number of
samples sent of that channel.
heartbeats_per_max_samples must be <=
writer_qos.resource_limits.max_samples.
See Section 16.6.2 for additional details related to the multi-
channel DataWriter reliability protocol.
If max_samples or max_batches is
DDS_LENGTH_UNLIMITED, 100 million is assumed as the
maximum value in the calculation.

DDS_Duration_t min_nack_response_delay

Minimum delay to respond to an ACK/NACK.
When a reliable DataWriter receives an ACK/NACK from a
DataReader, the DataWriter can choose to delay a while
before it sends repair samples or a heartbeat. This set the
value of the minimum delay.
See Section 10.3.4.6.

DDS_Duration_t max_nack_response_delay

Maximum delay to respond to a ACK/NACK.
This sets the value of maximum delay between receiving an
ACK/NACK and sending repair samples or a heartbeat.
A longer wait can help prevent storms of repair packets if
many DataReaders send NACKs at the same time. However,
it delays the repair, and hence increases the latency of the
communication.
See Section 10.3.4.6.

Table 6.31 DDS_RtpsReliableWriterProtocol_t

Type Field Name Description
6-99

Sending Data
DDS_Duration_t nack_suppression_duration

How long consecutive NACKs are suppressed.
When a reliable DataWriter receives consecutive NACKs
within a short duration, this may trigger the DataWriter to
send redundant repair messages. This value sets the dura-
tion during which consecutive NACKs are ignored, thus
preventing redundant repairs from being sent.

DDS_Long
max_bytes_per_nack_
response

Maximum bytes in a repair package.
When a reliable DataWriter resends samples, the total pack-
age size is limited to this value.
See Section 10.3.4.3.

DDS_Duration_t

disable_positive_acks_
min_sample_keep_
duration

Minimum duration that a sample will be kept in the DataW-
riter’s queue for ACK-disabled DataReaders.
See Section 6.5.2.3 and Section 10.3.4.7.

disable_positive_acks_
max_sample_keep_
duration

Maximum duration that a sample will be kept in the DataW-
riter’s queue for ACK-disabled readers.

DDS_Boolean
disable_positive_acks_
enable_adaptive_
sample_keep_duration

Enables automatic dynamic adjustment of the ‘keep dura-
tion’ in response to network congestion.

DDS_Long

disable_positive_acks_
increase_sample_
keep_duration_factor

When the ‘keep duration’ is dynamically controlled, the
lengthening of the ‘keep duration’ is controlled by this fac-
tor, which is expressed as a percentage.
When the adaptive algorithm determines that the keep
duration should be increased, this factor is multiplied with
the current keep duration to get the new longer keep dura-
tion. For example, if the current keep duration is 20 millisec-
onds, using the default factor of 150% would result in a new
keep duration of 30 milliseconds.

disable_positive_acks_
decrease_sample_
keep_duration_factor

When the ‘keep duration’ is dynamically controlled, the
shortening of the ‘keep duration’ is controlled by this factor,
which is expressed as a percentage.
When the adaptive algorithm determines that the keep
duration should be decreased, this factor is multiplied with
the current keep duration to get the new shorter keep dura-
tion. For example, if the current keep duration is 20 millisec-
onds, using the default factor of 95% would result in a new
keep duration of 19 milliseconds.

Table 6.31 DDS_RtpsReliableWriterProtocol_t

Type Field Name Description
6-100

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
6.5.2.1 High and Low Watermarks

When the number of unacknowledged samples in the queue of a reliable DataWriter
meets or exceeds high_watermark, the RELIABLE_WRITER_CACHE_CHANGED Sta-
tus (DDS Extension) (Section 6.3.6.7) will be changed appropriately, a listener callback
will be triggered, and the DataWriter will start heartbeating its matched DataReaders at
fast_heartbeat_rate.

When the number of samples meets or falls below low_watermark, the
RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section 6.3.6.7) will

DDS_Long
min_send_window_size Minimum and maximum size for the window of outstand-

ing samples.
See Configuring the Send Window Size (Section 6.5.2.4). max_send_window_size

DDS_Long
send_window_decrease_
factor

Scales the current send-window size down by this percent-
age to decrease the effective send-rate in response to
received negative acknowledgement.
See Configuring the Send Window Size (Section 6.5.2.4).

DDS_Boolean
enable_multicast_periodic_
heartbeat

Controls whether or not periodic heartbeat messages are
sent over multicast.
When enabled, if a reader has a multicast destination, the
writer will send its periodic HEARTBEAT messages to that
destination.
Otherwise, if not enabled or the reader does not have a mul-
ticast destination, the writer will send its periodic HEART-
BEATs over unicast.

DDS_Long multicast_resend_threshold
Sets the minimum number of requesting readers needed to
trigger a multicast resend.
See Resending Over Multicast (Section 6.5.2.7).

DDS_Long
send_window_increase_
factor

Scales the current send-window size up by this percentage
to increase the effective send-rate when a duration has
passed without any received negative acknowledgements.
See Configuring the Send Window Size (Section 6.5.2.4)

DDS_Duration
send_window_update_
period

Period in which DataWriter checks for received negative
acknowledgements and conditionally increases the send-
window size when none are received.
See Configuring the Send Window Size (Section 6.5.2.4)

Table 6.31 DDS_RtpsReliableWriterProtocol_t

Type Field Name Description
6-101

Sending Data
be changed appropriately, a listener callback will be triggered, and the heartbeat rate
will return to the "normal" rate (heartbeat_rate).

Having both high and low watermarks (instead of one) helps prevent rapid flickering
between the rates, which could happen if the number of samples hovers near the cut-off
point.

Increasing the high and low watermarks will make the DataWriters less aggressive
about seeking acknowledgments for sent data, decreasing the size of traffic spikes but
slowing performance.

Decreasing the watermarks will make the DataWriters more aggressive, increasing both
network utilization and performance.

If batching is used and the DataWriter is not a multi-channel DataWriter,
high_watermark and low_watermark refer to batches, not samples. For multi-channel
DataWriters, high_watermark and low_watermark always refer to samples (see
Section 16.6.2 for additional details related to the multi-channel DataWriter reliability
protocol).

6.5.2.2 Normal, Fast, and Late-Joiner Heartbeat Periods

The normal heartbeat_period is used until the number of samples in the reliable DataW-
riter’s queue meets or exceeds high_watermark; then fast_heartbeat_period is used.
Once the number of samples meets or drops below low_watermark, heartbeat_period
is used again.

❏ fast_heartbeat_period must be <= heartbeat_period

Increasing fast_heartbeat_period increases the speed of discovery, but results in a larger
surge of traffic when the DataWriter is waiting for acknowledgments.

Decreasing heartbeat_period decreases the steady state traffic on the wire, but may
increase latency by decreasing the speed of repairs for lost packets when the writer does
not have very many outstanding unacknowledged samples.

Having two periodic heartbeat rates, and switching between them based on water-
marks:

❏ Ensures that all DataReaders receive all their data as quickly as possible (the
sooner they receive a heartbeat, the sooner they can send a NACK, and the
sooner the DataWriter can send repair samples);

❏ Helps prevent the DataWriter from overflowing its resource limits (as its queue
starts the fill, the DataWriter sends heartbeats faster, prompting the DataReaders
to acknowledge sooner, allowing the DataWriter to purge these acknowledged
samples from its queue);
6-102

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
❏ Tunes the amount of network traffic. (Heartbeats and NACKs use up network
bandwidth like any other traffic; decreasing the heartbeat rates, or increasing the
threshold before the fast rate starts, can smooth network traffic—at the expense
of discovery performance).

The late_joiner_heartbeat_period is used when a reliable DataReader joins after a reli-
able DataWriter (with non-volatile Durability) has begun publishing samples. Once the
late-joining DataReader has received all cached samples, it will be serviced at the same
rate as other reliable DataReaders.

❏ late_joiner_heartbeat_period must be <= heartbeat_period

6.5.2.3 Disabling Positive Acknowledgements

When strict reliable communication is not required, you can configure Connext so that it
does not send positive acknowledgements (ACKs). In this case, reliability is maintained
solely based on negative acknowledgements (NACKs). The removal of ACK traffic may
improve middleware performance. For example, when sending samples over multicast,
ACK-storms that previously may have hindered DataWriters and consumed overhead
network bandwidth are now precluded.

By default, DataWriters and DataReaders are configured with positive ACKS enabled. To
disable ACKs, either:

❏ Configure the DataWriter to disable positive ACKs for all matching DataReaders
(by setting disable_positive_acks to TRUE in the DATA_WRITER_PROTOCOL
QosPolicy (DDS Extension) (Section 6.5.2)).

❏ Disable ACKs for individual DataReaders (by setting disable_positive_acks to
TRUE in the DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.2)).

If ACKs are disabled, instead of the DataWriter holding a sample in its send queue until
all of its DataReaders have ACKed it, the DataWriter will hold a sample for a configurable
duration. This “keep-duration" starts when a sample is written. When this time elapses,
the sample is logically considered as acknowledged by its ACK-disabled readers.

The length of the "keep-duration" can be static or dynamic, depending on how
rtps_reliable_writer.disable_positive_acks_enable_adaptive_sample_keep_duration
is set.

❏ When the length is static, the "keep-duration" is set to the minimum
(rtps_reliable_writer.disable_positive_acks_min_sample_keep_duration).

❏ When the length is dynamic, the "keep-duration" is dynamically adjusted
between the minimum and maximum durations
(rtps_reliable_writer.disable_positive_acks_min_sample_keep_duration and
rtps_reliable_writer.disable_positive_acks_max_sample_keep_duration).
6-103

Sending Data
Dynamic adjustment maximizes throughput and reliability in response to current net-
work conditions: when the network is congested, durations are increased to decrease
the effective send rate and relieve the congestion; when the network is not congested,
durations are decreased to increase the send rate and maximize throughput.

You should configure the minimum "keep-duration" to allow at least enough time for a
possible NACK to be received and processed. When a DataWriter has both matching
ACK-disabled and ACK-enabled DataReaders, it holds a sample in its queue until all
ACK-enabled DataReaders have ACKed it and the "keep-duration" has elapsed.

See also: Disabling Positive Acknowledgements
(disable_postive_acks_min_sample_keep_duration) (Section 10.3.4.7).

6.5.2.4 Configuring the Send Window Size

When a reliable DataWriter writes a sample, it keeps the sample in its queue until it has
received acknowledgements from all of its subscribing DataReaders. The number of
these outstanding samples is referred to as the DataWriter's "send window." Once the
number of outstanding samples has reached the send window size, subsequent writes
will block until an outstanding sample is acknowledged.

Configuration of the send window sets a minimum and maximum size, which may be
unlimited. The min and max send windows can be the same. When set differently, the
send window will dynamically change in response to detected network congestion, as
signaled by received negative acknowledgements. When NACKs are received, the
DataWriter responds to the slowed reader by decreasing the send window by the
send_window_decrease_factor to throttle down its effective send rate. The send win-
dow will not be decreased to less than the min_send_window_size. After a period
(send_window_update_period) during which no NACKs are received, indicating that
the reader is catching up, the DataWriter will increase the send window size to increase
the effective send rate by the percentage specified by send_window_increase_factor.
The send window will increase to no greater than the max_send_window_size.

6.5.2.5 Propagating Serialized Keys with Disposed-Instance Notifications

This section describes the interaction between these two fields:

❏ serialize_key_with_dispose in DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) (Section 6.5.2)

❏ propagate_dispose_of_unregistered_instances in DATA_READER_PROTOCOL
QosPolicy (DDS Extension) (Section 7.6.2)

RTI recommends setting serialize_key_with_dispose to TRUE if there are DataReaders
with propagate_dispose_of_unregistered_instances also set to TRUE. However, it is
6-104

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
permissible to set one to TRUE and the other to FALSE. The following examples will
help you understand how these fields work.

See also: Disposing of Data (Section 6.3.12.2).

Example 1

1. DataWriter’s serialize_key_with_dispose = false

2. DataReader’s propagate_dispose_of_unregistered_instances = true

3. DataWriter calls dispose() before writing any samples

4. DataReader calls take() and receives a disposed-instance notification (without a
key)

5. DataReader calls get_key_value(), which returns an error because there is no key
associated with the disposed-instance notification

Example 2

1. DataWriter’s serialize_key_with_dispose = true

2. DataReader’s propagate_dispose_of_unregistered_instances = false

3. DataWriter calls dispose() before writing any samples

4. DataReader calls take(), which does not return any samples because none were
written, and it does not receive any disposed-instance notifications because
propagate_dispose_of_unregistered_instances = false

Example 3

1. DataWriter’s serialize_key_with_dispose = true

2. DataReader’s propagate_dispose_of_unregistered_instances = true

3. DataWriter calls dispose() before writing any samples

4. DataReader calls take() and receives the disposed-instance notification

5. DataReader calls get_key_value() and receives the key for the disposed-instance
notification

Example 4

1. DataWriter’s serialize_key_with_dispose = true

2. DataReader’s propagate_dispose_of_unregistered_instances = true

3. DataWriter calls write(), which writes a sample with a key
6-105

Sending Data
4. DataWriter calls dispose(), which writes a disposed-instance notification with a
key

5. DataReader calls take() and receives a data sample and a disposed-instance notifi-
cation; both have keys

6. DataReader calls get_key_value() with no errors

6.5.2.6 Virtual Heartbeats

Virtual heartbeats announce the availability of samples with the Collaborative DataW-
riters feature described in Section 7.6.1, where multiple DataWriters publish samples
from a common logical data-source (identified by a virtual GUID).

When PRESENTATION QosPolicy (Section 6.4.6) access_scope is set to TOPIC or
INSTANCE on the Publisher, the virtual heartbeat contains information about the sam-
ples contained in the DataWriter queue.

When presentation access_scope is set to GROUP on the Publisher, the virtual heartbeat
contains information about the samples in the queues of all DataWriters that belong to
the Publisher.

6.5.2.7 Resending Over Multicast

Given DataReaders with multicast destinations, when a DataReader sends a NACK to
request for samples to be resent, the DataWriter can either resend them over unicast or
multicast. Though resending over multicast would save bandwidth and processing for
the DataWriter, the potential problem is that there could be DataReaders of the multicast
group that did not request for any resends, yet they would have to process, and drop,
the resent samples.

Thus, to make each multicast resend more efficient, the multicast_resend_threshold is
set as the minimum number of DataReaders of the same multicast group that the DataW-
riter must receive NACKs from within a single response-delay duration. This allows the
DataWriter to coalesce near-simultaneous unicast resends into a multicast resend, and it
allows a "vote" from DataReaders of a multicast group to exceed a threshold before
resending over multicast.

The multicast_resend_threshold must be set to a positive value. Note that a threshold
of 1 means that all resends will be sent over multicast. Also, note that a DataWriter with
a zero NACK response-delay (i.e., both min_nack_response_delay and
min_nackresponse_delay are zero) will resend over multicast only if the threshold is 1.
6-106

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
6.5.2.8 Example

For information on how to use the fields in Table 6.31, see Controlling Heartbeats and
Retries with DataWriterProtocol QosPolicy (Section 10.3.4).

The following describes a use case for when to change push_on_write to
DDS_BOOLEAN_FALSE. Suppose you have a system in which the data packets being
sent is very small. However, you want the data to be sent reliably, and the latency
between the time that data is sent to the time that data is received is not an issue. How-
ever, the total network bandwidth between the DataWriter and DataReader applications
is limited.

If the DataWriter sends a burst of data a a high rate, it is possible that it will overwhelm
the limited bandwidth of the network. If you allocate enough space for the DataWriter to
store the data burst being sent (see RESOURCE_LIMITS QosPolicy (Section 6.5.19)),
then you can use the push_on_write parameter of the DATA_WRITER_PROTOCOL
QosPolicy to delay sending the data until the reliable DataReader asks for it.

By setting push_on_write to DDS_BOOLEAN_FALSE, when write() is called on the
DataWriter, no data is actually sent. Instead data is stored in the DataWriter’s send
queue. Periodically, Connext will be sending heartbeats informing the DataReader about
the data that is available. So every heartbeat period, the DataReader will realize that the
DataWriter has new data, and it will send an ACK/NACK, asking for them.

When DataWriter receives the ACK/NACK packet, it will put together a package of
data, up to the size set by the parameter max_bytes_per_nack_response, to be sent to
the DataReader. This method not only self-throttles the send rate, but also uses network
bandwidth more efficiently by eliminating redundant packet headers when combining
several small packets into one larger one.

6.5.2.9 Properties

This QosPolicy cannot be modified after the DataWriter is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on
the publishing and subscribing sides.

When setting the fields in this policy, the following rules apply. If any of these are false,
Connext returns DDS_RETCODE_INCONSISTENT_POLICY:

❏ min_nack_response_delay <= max_nack_response_delay

❏ fast_heartbeat_period <= heartbeat_period

❏ late_joiner_heartbeat_period <= heartbeat_period

❏ low_watermark < high_watermark
6-107

Sending Data
❏ If batching is disabled or the DataWriter is a multi-channel DataWriter:

• heartbeats_per_max_samples <= writer_qos.resource_limits.max_samples

❏ If batching is enabled and the DataWriter is not a multi-channel DataWriter:

• heartbeats_per_max_samples <= writer_qos.resource_limits.max_batches

6.5.2.10 Related QosPolicies

❏ DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.2)

❏ HISTORY QosPolicy (Section 6.5.9)

❏ RELIABILITY QosPolicy (Section 6.5.18)

6.5.2.11 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.2.12 System Resource Considerations

A high max_bytes_per_nack_response may increase the instantaneous network band-
width required to send a single burst of traffic for resending dropped packets.

6.5.3 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)

This QosPolicy defines various settings that configure how DataWriters allocate and use
physical memory for internal resources.

It includes the members in Table 6.32. For defaults and valid ranges, please refer to the
online documentation.

DataWriters must allocate internal structures to handle the simultaneous blocking of
threads trying to call write() on the same DataWriter, for the storage used to batch small
samples, and for content-based filters specified by DataReaders.

Most of these internal structures start at an initial size and by default, will grow as
needed by dynamically allocating additional memory. You may set fixed, maximum
sizes for these internal structures if you want to bound the amount of memory that a
DataWriter can use. By setting the initial size to the maximum size, you will prevent
Connext from dynamically allocating any memory after the creation of the DataWriter.

When setting the fields in this policy, the following rule applies. If this is false, Connext
returns DDS_RETCODE_INCONSISTENT_POLICY:

❏ max_concurrent_blocking_threads >= initial_concurrent_blocking_threads
6-108

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
Table 6.32 DDS_DataWriterResourceLimitsQosPolicy

Type Field Name Description

DDS_Long

initial_concurrent_
blocking_threads

Initial number of threads that are allowed to concur-
rently block on the write() call on the same DataWriter.

max_concurrent_
blocking_threads

Maximum number of threads that are allowed to concur-
rently block on write() call on the same DataWriter.

max_remote_reader_
filters

Maximum number of remote DataReaders for which this
DataWriter will perform content-based filtering.

initial_virtual_writers
Initial number of virtual writers supported by a DataW-
riter.

max_virtual_writers

Maximum number of virtual writers supported by a
DataWriter.
Sets the maximum number of unique virtual writers
supported by a DataWriter, where virtual writers are
added when samples are written with the virtual writer
GUID.
This field is especially relevant in the configuration of
Persistence Servicea DataWriters, since they publish infor-
mation on behalf of multiple virtual writers.

initial_batches
Initial number of batches that a DataWriter will manage
if batching is enabled.

max_batches

Maximum number of batches that a DataWriter will
manage if batching is enabled.
When batching is enabled, the maximum number of
samples that a DataWriter can store is limited by this
value and max_samples in RESOURCE_LIMITS
QosPolicy (Section 6.5.19).

DDS_DataWriter
ResourceLimits
InstanceReplace-
mentKind

instance_replacement

Sets the kinds of instances allowed to be replaced when
a DataWriter reaches instance resource limits. (see Con-
figuring DataWriter Instance Replacement (Section
6.5.19.2)

DDS_Boolean
replace_empty_
instances

Whether to replace empty instances during instance
replacement.(see Configuring DataWriter Instance
Replacement (Section 6.5.19.2)
6-109

Sending Data
The initial_concurrent_blocking_threads is the used to allocate necessary system
resource initially. If necessary, it will be increased automatically up to the
max_concurrent_blocking_threads limit.

Every user thread calling write() on a DataWriter may use a semaphore that will block
the thread when the DataWriter’s send queue is full. Because user code may set a time-
out, each thread must use a different semaphore. See the max_blocking_time parameter
of the RELIABILITY QosPolicy (Section 6.5.18). This QoS is offered so that the user
application can control the dynamic allocation of system resources by Connext.

If you do not mind if Connext dynamically allocates semaphores when needed, then you
can set the max_concurrent_blocking_threads parameter to some large value like
MAX_INT. However, if you know exactly how many threads will be calling write() on
the same DataWriter, and you do not want Connext to allocate any system resources or
memory after initialization, then you should set:

max_concurrent_blocking_threads = initial_concurrent_blocking_threads = NUM

(where NUM is the number of threads that could possibly block concurrently).

Each DataWriter can perform content-based data filtering for up to
max_remote_reader_filters number of DataReaders. Setting the value to 0 will disable
filtering by the DataWriter, which means that the DataReader will have to filter the data
itself. For more information, see ContentFilteredTopics (Section 5.4).

6.5.3.1 Example

If there are multiple threads that can write on the same DataWriter, and the write() oper-
ation may block (based on reliability_qos.max_blocking_time and HISTORY settings),

DDS_Boolean autoregister_instances

Whether to register automatically instances written with
non-NIL handle that are not yet registered, which will
otherwise return an error. This can be especially useful if
the instance has been replaced.

DDS_Long cookie_max_length

Configures the maximum size of a DataWriter's cookie.
By default, this is set to unlimited (-1), meaning that Con-
next will dynamically allocate memory for each
write_w_params() with a cookie. Otherwise, Connext
will create a preallocated pool sized to
cookie_max_length for containing cookies.

a. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered to sub-
scribing applications that join the system at a later time (see Chapter 21: Introduction to RTI Persistence Service).

Table 6.32 DDS_DataWriterResourceLimitsQosPolicy

Type Field Name Description
6-110

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
you may want to set initial_concurrent_blocking_threads to the most likely number of
threads that will block on the same DataWriter at the same time, and set
max_concurrent_blocking_threads to the maximum number of threads that could
potentially block in the worst case.

6.5.3.2 Properties

This QosPolicy cannot be modified after the DataWriter is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on
the publishing and subscribing sides.

6.5.3.3 Related QosPolicies

❏ BATCH QosPolicy (DDS Extension) (Section 6.5.1)

❏ RELIABILITY QosPolicy (Section 6.5.18)

❏ HISTORY QosPolicy (Section 6.5.9)

6.5.3.4 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.3.5 System Resource Considerations

Increasing the values in this QosPolicy will cause more memory usage and more system
resource usage.

6.5.4 DEADLINE QosPolicy

On a DataWriter, this QosPolicy states the maximum period in which the application
expects to call write() on the DataWriter, thus publishing a new sample. The application
may call write() faster than the rate set by this QosPolicy.

On a DataReader, this QosPolicy states the maximum period in which the application
expects to receive new values for the Topic. The application may receive data faster than
the rate set by this QosPolicy.

The DEADLINE QosPolicy has a single member, shown in Table 6.33. For the default
and valid range, please refer to the online documentation.

You can use this QosPolicy during system integration to ensure that applications have
been coded to meet design specifications. You can also use it during run time to detect
when systems are performing outside of design specifications. Receiving applications
6-111

Sending Data
can take appropriate actions to prevent total system failure when data is not received in
time. For topics on which data is not expected to be periodic, the deadline period should
be set to an infinite value.

For keyed topics, the DEADLINE QoS applies on a per-instance basis. An application
must call write() for each known instance of the Topic within the period specified by the
DEADLINE on the DataWriter or receive a new value for each known instance within
the period specified by the DEADLINE on the DataReader. For a DataWriter, the deadline
period begins when the instance is first written or registered. For a DataReader, the dead-
line period begins when the first sample is received.

Connext will modify the DDS_OFFERED_DEADLINE_MISSED_STATUS and call the
associated method in the DataWriterListener (see OFFERED_DEADLINE_MISSED Sta-
tus (Section 6.3.6.4)) if the application fails to write() a value for an instance within the
period set by the DEADLINE QosPolicy of the DataWriter.

Similarly, Connext will modify the DDS_REQUESTED_DEADLINE_-
MISSED_STATUS and call the associated method in the DataReaderListener (see
REQUESTED_DEADLINE_MISSED Status (Section 7.3.7.5)) if the application fails to
receive a value for an instance within the period set by the DEADLINE QosPolicy of the
DataReader.

For DataReaders, the DEADLINE QosPolicy and the TIME_BASED_FILTER QosPolicy
(Section 7.6.5) may interact such that even though the DataWriter writes samples fast
enough to fulfill its commitment to its own DEADLINE QosPolicy, the DataReader may
see violations of its DEADLINE QosPolicy. This happens because Connext will drop any
packets received within the minimum_separation set by the TIME_BASED_FILTER—
packets that could satisfy the DataReader’s deadline.

To avoid triggering the DataReader’s deadline even though the matched DataWriter is
meeting its own deadline, set your QoS parameters to meet the following relationship:

reader deadline period >=
reader minimum_separation + writer deadline period

Although you can set the DEADLINE QosPolicy on Topics, its value can only be used to
initialize the DEADLINE QosPolicies of either a DataWriter or DataReader. It does not

Table 6.33 DDS_DeadlineQosPolicy

Type Field Name Description

DDS_Duration_t period

For DataWriters: maximum time between writing a new
value of an instance.
For DataReaders: maximum time between receiving new
values for an instance.
6-112

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
directly affect the operation of Connext, see Section 5.1.3.

6.5.4.1 Example

Suppose you have a time-critical piece of data that should be updated at least once
every second. You can set the DEADLINE period to 1 second on both the DataWriter
and DataReader. If there is no update within that time, the DataWriter will get an
on_offered_deadline_missed Listener callback, and the DataReader will get
on_requested_deadline_missed, so that both sides can handle the error situation prop-
erly.

Note that in practice, there will be latency and jitter in the time between when data is
send and when data is received. Thus even if the DataWriter is sending data at exactly 1
second intervals, the DataReader may not receive the data at exactly 1 second intervals.
More likely, it will DataReader will receive the data at 1 second plus a small variable
quantity of time. Thus you should accommodate this practical reality in choosing the
DEADLINE period as well as the actual update period of the DataWriter or else your
application may receive false indications of failure.

The DEADLINE QosPolicy also interacts with the OWNERSHIP QosPolicy when
OWNERSHIP is set to EXCLUSIVE. If a DataReader fails to receive data from the high-
est strength DataWriter within its requested DEADLINE, then the DataReaders can fail-
over to lower strength DataWriters, see the OWNERSHIP QosPolicy (Section 6.5.14).

6.5.4.2 Properties

This QosPolicy can be changed at any time.

The deadlines on the two sides must be compatible.

DataWriter’s DEADLINE period <= the DataReader’s DEADLINE period.

That is, the DataReader cannot expect to receive samples more often than the DataWriter
commits to sending them.

If the DataReader and DataWriter have compatible deadlines, Connext monitors this
“contract” and informs the application of any violations. If the deadlines are incompati-
ble, both sides are informed and communication does not occur. The
ON_OFFERED_INCOMPATIBLE_QOS and the
ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corre-
sponding Listeners called for the DataWriter and DataReader respectively.

6.5.4.3 Related QosPolicies

❏ LIVELINESS QosPolicy (Section 6.5.12)
6-113

Sending Data
❏ OWNERSHIP QosPolicy (Section 6.5.14)

❏ TIME_BASED_FILTER QosPolicy (Section 7.6.5)

6.5.4.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.4.5 System Resource Considerations

A Connext-internal thread will wake up at least by the DEADLINE period to check to
see if the deadline was missed. It may wake up faster if the last sample that was pub-
lished or sent was close to the last time that the deadline was checked. Therefore a short
period will use more CPU to wake and execute the thread checking the deadline.

6.5.5 DESTINATION_ORDER QosPolicy

When multiple DataWriters send data for the same topic, the order in which data from
different DataWriters are received by the applications of different DataReaders may be
different. Thus different DataReaders may not receive the same "last" value when DataW-
riters stop sending data.

This policy controls how each subscriber resolves the final value of a data instance that
is written by multiple DataWriters (which may be associated with different Publishers)
running on different nodes.

This QosPolicy can be used to create systems that have the property of "eventual consis-
tency." Thus intermediate states across multiple applications may be inconsistent, but
when DataWriters stop sending changes to the same topic, all applications will end up
having the same state.

Each data sample includes two timestamps: a source timestamp and a destination time-
stamp. The source timestamp is recorded by the DataWriter application when the data
was written. The destination timestamp is recorded by the DataReader application when
the data was received.

This QoS includes the member in Table 6.34.

Each DataReader can set this QoS to:

❏ DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS
6-114

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
Assuming the OWNERSHIP_STRENGTH allows it, the latest received value for
the instance should be the one whose value is kept. Data will be delivered by a
DataReader in the order in which it was received (which may lead to inconsistent
final values).

❏ DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

Assuming the OWNERSHIP_STRENGTH allows it, within each instance, the
source_timestamp shall be used to determine the most recent information. This
is the only setting that, in the case of concurrent same-strength DataWriters
updating the same instance, ensures all subscribers will end up with the same
final value for the instance.

Data will be delivered by a DataReader in the order in which it was sent. If data
arrives on the network with a source timestamp earlier than the source time-
stamp of the last data delivered, the new data will be dropped. This ordering
therefore works best when system clocks are relatively synchronized among
writing machines.

Not all data sent by multiple DataWriters may be delivered to a DataReader and
not all DataReaders will see the same data sent by DataWriters. However, all
DataReaders will see the same "final" data when DataWriters "stop" sending data.

• For a DataWriter with kind
DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS:
When writing a sample, its timestamp must not be less than the timestamp of
the previously written sample. However, if it is less than the timestamp of the
previously written sample but the difference is less than this tolerance, the
sample will use the previously written sample's timestamp as its timestamp.
Otherwise, if the difference is greater than this tolerance, the write will fail.

Table 6.34 DDS_DestinationOrderQosPolicy

Type Field Name Description

DDS_Destination-
OrderQosPolicyKind

kind

Can be either:
• DDS_BY_RECEPTION_TIMESTAMP_

DESTINATIONORDER_QOS

• DDS_BY_SOURCE_TIMESTAMP_
DESTINATIONORDER_QOS

DDS_Duration_t
source_timestamp_
tolerance

Allowed tolerance between source timestamps of
consecutive samples.
Only applies when kind (above) is
DDS_BY_SOURCE_TIMESTAMP_DESTINATIONO
RDER_QOS.
6-115

Sending Data
See also: Special instructions for deleting DataWriters if you are using the
‘Timestamp’ APIs and BY_SOURCE_TIMESTAMP Destination Order: on
page 6-27.

• A DataReader with kind
DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS will accept a
sample only if the difference between the sample’s source timestamp and the
reception timestamp is no greater than source_timestamp_tolerance. Other-
wise, the sample is rejected.

Although you can set the DESTINATION_ORDER QosPolicy on Topics, its value can
only be used to initialize the DESTINATION_ORDER QosPolicies of either a DataWriter
or DataReader. It does not directly affect the operation of Connext, see Section 5.1.3.

6.5.5.1 Properties

This QosPolicy cannot be modified after the Entity is enabled.

This QoS must be set compatibly between the DataWriter and the DataReader. The com-
patible combinations are shown in Table 6.35.

If this QosPolicy is set incompatibly, the ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corre-
sponding Listeners called for the DataWriter and DataReader respectively.

6.5.5.2 Related QosPolicies

❏ OWNERSHIP QosPolicy (Section 6.5.14)

❏ HISTORY QosPolicy (Section 6.5.9)

6.5.5.3 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

Table 6.35 Valid Reader/Writer Combinations of DestinationOrder

Destination Order
DataReader requests:

BY_SOURCE BY_RECEPTION

DataWriter offers:
BY_SOURCE 4 4

BY_RECEPTION incompatible 4
6-116

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
6.5.5.4 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

6.5.6 DURABILITY QosPolicy

Because the publish-subscribe paradigm is connectionless, applications can create pub-
lications and subscriptions in any way they choose. As soon as a matching pair of
DataWriters and DataReaders exist, then data published by the DataWriter will be deliv-
ered to the DataReader. However, a DataWriter may publish data before a DataReader has
been created. For example, before you subscribe to a magazine, there have been past
issues that were published.

The DURABILITY QosPolicy controls whether or not, and how, published samples are
stored by the DataWriter application for DataReaders that are found after the samples
were initially written. DataReaders use this QoS to request samples that were published
before they were created. The analogy is for a new subscriber to a magazine to ask for
issues that were published in the past. These are known as ‘historical’ data-samples.
(Reliable DataReaders may wait for these historical samples, see Section 7.3.5.)

This QosPolicy can be used to help ensure that DataReaders get all data that was sent by
DataWriters, regardless of when it was sent. This QosPolicy can increase system toler-
ance to failure conditions.

Exactly how many samples are stored by the DataWriter or requested by the DataReader
is controlled using the HISTORY QosPolicy (Section 6.5.9).

For more information, please see Chapter 11: Mechanisms for Achieving Information
Durability and Persistence.

The possible settings for this QoS are:

❏ DDS_VOLATILE_DURABILITY_QOS Connext is not required to send and will not
deliver any data samples to DataReaders that are discovered after the samples
were initially published.

❏ DDS_TRANSIENT_LOCAL_DURABILITY_QOS Connext will store and send previously
published samples for delivery to newly discovered DataReaders as long as the
DataWriter entity still exists. For this setting to be effective, you must also set the
RELIABILITY QosPolicy (Section 6.5.18) kind to Reliable (not Best Effort). The
HISTORY QosPolicy (Section 6.5.9) of the DataReaders/DataWriters used by Per-
sistence Service1 determines exactly how many samples are saved or delivered by
Persistence Service.
6-117

Sending Data
❏ DDS_TRANSIENT_DURABILITY_QOS Connext will store previously published sam-
ples in memory using Persistence Service, which will send the stored data to
newly discovered DataReaders. The HISTORY QosPolicy (Section 6.5.9) of the
DataReaders/DataWriters used by Persistence Service determines exactly how
many samples are saved or delivered Persistence Service.

❏ DDS_PERSISTENT_DURABILITY_QOS Connext will store previously published sam-
ples in permanent storage, like a disk, using Persistence Service, which will send
the stored data to newly discovered DataReaders. The HISTORY QosPolicy (Sec-
tion 6.5.9) determines exactly how many samples are saved or delivered.

This QosPolicy includes the members in Table 6.36. For default settings, please refer to
the online documentation.

6.5.6.1 Example

Suppose you have a DataWriter that sends data sporadically and its DURABILITY kind
is set to VOLATILE. If a new DataReader joins the system, it won’t see any data until the
next time that write() is called on the DataWriter. If you want the DataReader to receive
any data that is valid, old or new, both sides should set their DURABILITY kind to
TRANSIENT_LOCAL. This will ensure that the DataReader gets some of the previous
samples immediately after it is enabled.

6.5.6.2 Properties

This QosPolicy cannot be modified after the Entity has been created.

The DataWriter and DataReader must use compatible settings for this QosPolicy. To be
compatible, the DataWriter and DataReader must use one of the valid combinations
shown in Table 6.37.

If this QosPolicy is found to be incompatible, the
ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corre-
sponding Listeners called for the DataWriter and DataReader respectively.

6.5.6.3 Related QosPolicies

❏ HISTORY QosPolicy (Section 6.5.9)

❏ RELIABILITY QosPolicy (Section 6.5.18)

1. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered to
subscribing applications that join the system at a later time (see Chapter 21: Introduction to RTI Persistence
Service).
6-118

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
❏ DURABILITY SERVICE QosPolicy (Section 6.5.7)

6.5.6.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.6.5 System Resource Considerations

Using this policy with a setting other than VOLATILE will cause Connext to use CPU
and network bandwidth to send old samples to matching, newly discovered DataRead-

Table 6.36 DDS_DurabilityQosPolicy

Type Field Name Description

DDS_Durability
QosPolicyKind

kind

DDS_VOLATILE_DURABILITY_QOS:
Do not save or deliver old samples.
DDS_TRANSIENT_LOCAL_DURABILITY_QOS:
Save and deliver old samples if the DataWriter still exists.
DDS_TRANSIENT_DURABILITY_QOS:
Save and deliver old samples using a memory-based ser-
vice.
DDS_PERSISTENCE_DURABILITY_QOS:
Save and deliver old samples using disk-based service.

DDS_Boolean
direct_
communication

Whether or not a TRANSIENT or PERSISTENT DataReader
should receive samples directly from a TRANSIENT or
PERSISTENT DataWriter.
When TRUE, a TRANSIENT or PERSISTENT DataReader
will receive samples directly from the original DataWriter.
The DataReader may also receive samples from Persistence
Servicea but the duplicates will be filtered by the middle-
ware.
When FALSE, a TRANSIENT or PERSISTENT DataReader
will receive samples only from the DataWriter created by
Persistence Service. This ‘relay communication’ pattern pro-
vides a way to guarantee eventual consistency.
See RTI Persistence Service (Section 11.5.1).
This field only applies to DataReaders.

a. Persistence Service is included with Connext Messaging. See Chapter 21: Introduction to RTI Persistence
Service.
6-119

Sending Data
ers. The actual amount of resources depends on the total size of data that needs to be
sent.

6.5.7 DURABILITY SERVICE QosPolicy

This QosPolicy is only used if the DURABILITY QosPolicy (Section 6.5.6) is PERSIS-
TENT or TRANSIENT and you are using Persistence Service, which is included with Con-
next Messaging. Persistence Service is used to store and possibly forward the data sent by
the DataWriter to DataReaders who are created after the data was initially sent.

This QosPolicy configures certain parameters of Persistence Service when it operates on
the behalf of the DataWriter, such as how much data to store. Specifically, this QosPolicy
configures the HISTORY and RESOURCE_LIMITS used by the fictitious DataReader and
DataWriter used by Persistence Service.

Note however, that Persistence Service itself may be configured to ignore these values
and instead use values from its own configuration file.

For more information, please see:

❏ Chapter 11: Mechanisms for Achieving Information Durability and Persistence

❏ Chapter 21: Introduction to RTI Persistence Service

❏ Chapter 22: Configuring Persistence Service

This QosPolicy includes the members in Table 6.38. For default values, please refer to
the online documentation.

Table 6.37 Valid Combinations of Durability ‘kind’

DataReader requests:

VOLATILE TRANSIENT
_LOCAL

TRANSIEN
T

PERSISTEN
T

DataWriter
offers:

VOLATILE 4 incompatible incompatible incompatible

TRANSIENT_
LOCAL

4 4 incompatible incompatible

TRANSIENT 4 4 4 incompatible

PERSISTENT 4 4 4 4
6-120

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
The service_cleanup_delay in this QosPolicy controls when Persistence Service may
remove all information regarding a data-instances. Information on a data-instance is
maintained until all of the following conditions are met:

1. The instance has been explicitly disposed
(instance_state = NOT_ALIVE_DISPOSED).

2. While in the NOT_ALIVE_DISPOSED state, Connext detects that there are no
more 'live' DataWriters writing the instance. That is, all existing writers either
unregister the instance (call unregister) or lose their liveliness.

3. A time interval longer that DurabilityService QosPolicy’s
service_cleanup_delay has elapsed since the time that Connext detected that the
previous two conditions were met.

The service_cleanup_delay field is useful in the situation where your application dis-
poses an instance and it crashes before it has a chance to complete additional tasks
related to the disposition. Upon restart, your application may ask for initial data to
regain its state and the delay introduced by service_cleanup_delay will allow your
restarted application to receive the information about the disposed instance and com-
plete any interrupted tasks.

Although you can set the DURABILITY_SERVICE QosPolicy on a Topic, this is only use-
ful as a means to initialize the DURABILITY_SERVICE QosPolicy of a DataWriter. A
Topic’s DURABILITY_SERVICE setting does not directly affect the operation of Connext,
see Section 5.1.3.

6.5.7.1 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

Table 6.38 DDS_DurabilityServiceQosPolicy

Type Field Name Description

DDS_Duration_t service_cleanup_delay
How long to keep all information
regarding an instance.

DDS_HistoryQosPolicyKind history_kind Settings to use for the HISTORY
QosPolicy (Section 6.5.9) when
recouping durable data.DDS_Long history_depth

DDS_Long

max_samples Settings to use for the
RESOURCE_LIMITS QosPolicy
(Section 6.5.19) when feeding data
to a late joiner.

max_instances

max_samples_per_instance
6-121

Sending Data
It does not apply to DataReaders, so there is no requirement for setting it compatibly on
the sending and receiving sides.

6.5.7.2 Related QosPolicies

❏ DURABILITY QosPolicy (Section 6.5.6)

❏ HISTORY QosPolicy (Section 6.5.9)

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.19)

6.5.7.3 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

6.5.7.4 System Resource Considerations

Since this QosPolicy configures the HISTORY and RESOURCE_LIMITS used by the fic-
titious DataReader and DataWriter used by Persistence Service, it does have some impact
on resource usage.

6.5.8 ENTITYNAME QosPolicy (DDS Extension)

The ENTITYNAME QosPolicy assigns a name and role name to a DomainParticipant,
DataReader, or DataWriter.

How these names are used is strictly application-dependent.

It is useful to attach names that are meaningful to the user. These names are propagated
during discovery so that applications can use these names to identify, in a user-context,
the entities that it discovers. Also, RTI tools such as RTI Analyzer will print these names
for entities that it finds so that users can easily determine exactly which application they
are browsing with RTI Analyzer.

The role name identifies the role of the entity and is used by the Collaborative DataW-
riter feature (see Section 7.6.1.1).

This QosPolicy contains the members listed in Table 6.39.

These names will appear in the built-in topic for the entity (see the tables in Built-in
DataReaders (Section 14.2)).

Prior to get_qos(), if the name and/or role_name field in this QosPolicy is not null, Con-
next assumes the memory to be valid and big enough and may write to it. If that is not
6-122

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
desired, set name and/or role_name to NULL before calling get_qos() and Connext will
allocate adequate memory for name.

When you call the destructor of entity’s QoS structure (DomainParticipantQos,
DataReaderQos, or DataWriterQos) (in C++, C++/CLI, and C#) or
<entity>Qos_finalize() (in C), Connext will attempt to free the memory used for name
and role_name if it is not NULL. If this behavior is not desired, set name and/or
role_name to NULL before you call the destructor of entity’s QoS structure or
DomainParticipantQos_finalize().

6.5.8.1 Properties

This QosPolicy cannot be modified after the entity is enabled.

6.5.8.2 Related QosPolicies

❏ None

6.5.8.3 Applicable Entities

❏ DataReaders (Section 7.3)

❏ DataWriters (Section 6.3)

❏ DomainParticipants (Section 8.3)

6.5.8.4 System Resource Considerations

If the value of name in this QosPolicy is not NULL, some memory will be consumed in
storing the information in the database, but should not significantly impact the use of
resource.

Table 6.39 DDS_EntityNameQoSPolicy

Type Field Name Description

char * name A null terminated string, up to 255 characters in length.

char * role_name
A null terminated string, up to 255 characters in length.
For collaborative DataWriters, this name is used to specify to
which endpoint group the DataWriter belongs.
6-123

Sending Data
6.5.9 HISTORY QosPolicy

This QosPolicy configures the number of samples that Connext will store locally for
DataWriters and DataReaders. For keyed Topics, this QosPolicy applies on a per instance
basis, so that Connext will attempt to store the configured value of samples for every
instance (see Samples, Instances, and Keys (Section 2.2.2) for a discussion of keys and
instances).

It includes the members seen in Table 6.40. For defaults and valid ranges, please refer to
the online documentation.

Table 6.40 DDS_HistoryQosPolicy

Type Field
Name Description

DDS_HistoryQos-
PolicyKind

kind
DDS_KEEP_LAST_HISTORY_QOS: keep the last depth number
of samples per instance.
DDS_KEEP_ALL_HISTORY_QOS: keep all samples.a

DDS_Long depth

If kind = DDS_KEEP_LAST_HISTORY_QOS, this is how many
samples to keep per instance.b

if kind = DDS_KEEP_ALL_HISTORY_QOS, this value is
ignored.

DDS_RefilterQos-
PolicyKind

refilter

Specifies how a DataWriter should handle previously written
samples for a new DataReader.
When a new DataReader matches a DataWriter, the DataWriter can
be configured to perform content-based filtering on previously
written samples stored in the DataWriter queue for the new
DataReader.
May be:

❏ DDS_NONE_REFILTER_QOS Do not filter exist-
ing samples for a new DataReader. The DataReader
will do the filtering.

❏ DDS_ALL_REFILTER_QOS Filter all existing sam-
ples for a newly matched DataReader.

❏ DDS_ON_DEMAND_REFILTER_QOS Filter exist-
ing samples only when they are requested by the
DataReader.

(An extension to the DDS standard.)

a. Connext will store up to the value of the max_samples_per_instance parameter of the
RESOURCE_LIMITS QosPolicy (Section 6.5.19).
6-124

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
The kind determines whether or not to save a configured number of samples or all sam-
ples. It can be set to either of the following:

❏ DDS_KEEP_LAST_HISTORY_QOS Connext attempts to keep the latest values of the
data-instance and discard the oldest ones when the limit as set by the depth
parameter is reached; new data will overwrite the oldest data in the queue. Thus
the queue acts like a circular buffer of length depth.

• For a DataWriter: Connext attempts to keep the most recent depth samples of
each instance (identified by a unique key) managed by the DataWriter.

• For a DataReader: Connext attempts to keep the most recent depth samples
received for each instance (identified by a unique key) until the application
takes them via the DataReader's take() operation. See Section 7.4.3 for a discus-
sion of the difference between read() and take().

❏ DDS_KEEP_ALL_HISTORY_QOS Connext attempts to keep all of the samples of a
Topic.

• For a DataWriter: Connext attempts to keep all samples published by the
DataWriter.

• For a DataReader: Connext attempts to keep all samples received by the
DataReader for a Topic (both keyed and non-keyed) until the application takes
them via the DataReader's take() operation. See Section 7.4.3 for a discussion
of the difference between read() and take().

• The value of the depth parameter is ignored.

The above descriptions say “attempts to keep” because the actual number of samples
kept is subject to the limitations imposed by the RESOURCE_LIMITS QosPolicy (Sec-
tion 6.5.19). All of the samples of all instances of a Topic share a single physical queue
that is allocated for a DataWriter or DataReader. The size of this queue is configured by
the RESOURCE_LIMITS QosPolicy. If there are many difference instances for a Topic, it
is possible that the physical queue may run out of space before the number of samples
reaches the depth for all instances.

In the KEEP_ALL case, Connext can only keep as many samples for a Topic (independent
of instances) as the size of the allocated queue. Connext may or may not allocate more
memory when the queue is filled, depending on the settings in the RESOURCE_LIMITS
QoSPolicy of the DataWriter or DataReader.

This QosPolicy interacts with the RELIABILITY QosPolicy (Section 6.5.18) by control-
ling whether or not Connext guarantees that ALL of the data sent is received or if only

b. depth must be <= max_samples_per_instance parameter of the RESOURCE_LIMITS QosPolicy (Section
6.5.19)
6-125

Sending Data
the last N data values sent are guaranteed to be received (a reduced level of reliability
using the KEEP_LAST setting). However, the physical sizes of the send and receive
queues are not controlled by the History QosPolicy. The memory allocation for the
queues is controlled by the RESOURCE_LIMITS QosPolicy (Section 6.5.19). Also, the
amount of data that is sent to new DataReaders who have configured their DURABILITY
QosPolicy (Section 6.5.6) to receive previously published data is controlled by the His-
tory QosPolicy.

What happens when the physical queue is filled depends both on the setting for the
HISTORY QosPolicy as well as the RELIABILITY QosPolicy.

❏ DDS_KEEP_LAST_HISTORY_QOS

• If RELIABILITY is BEST_EFFORT: When the number of samples for an
instance in the queue reaches the value of depth, a new sample for the
instance will replace the oldest sample for the instance in the queue.

• If RELIABILITY is RELIABLE: When the number of samples for an instance
in the queue reaches the value of depth, a new sample for the instance will
replace the oldest sample for the instance in the queue—even if the sample
being overwritten has not been fully acknowledged as being received by all
reliable DataReaders. This implies that the discarded sample may be lost by
some reliable DataReaders. Thus, when using the KEEP_LAST setting, strict
reliability is not guaranteed. See Chapter 10: Reliable Communications for a
complete discussion on Connext’s reliable protocol.

❏ DDS_KEEP_ALL_HISTORY_QOS

• If RELIABILITY is BEST_EFFORT: If the number of samples for an instance
in the queue reaches the value of the RESOURCE_LIMITS QosPolicy (Section
6.5.19)’s max_samples_per_instance field, a new sample for the instance will
replace the oldest sample for the instance in the queue (regardless of
instance).

• If RELIABILITY is RELIABLE: When the number of samples for an instance
in the queue reaches the value of the RESOURCE_LIMITS QosPolicy (Section
6.5.19)’s max_samples_per_instance field, then:

a) for a DataWriter—a new sample for the instance will replace the oldest
sample for the instance in the sending queue—only if the sample being over-
written has been fully acknowledged as being received by all reliable
DataReaders. If the oldest sample for the instance has not been fully acknowl-
edged, the write() operation trying to enter a new sample for the instance into
the sending queue will block (for the max_blocking_time specified in the
RELIABLE QosPolicy).
6-126

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
b) for a DataReader—a new sample received by the DataReader will be dis-
carded. Because the DataReader will not acknowledge the discarded sample,
the DataWriter is forced to resend the sample. Hopefully, the next time the
sample is received, there is space for the instance in the DataReader’s queue to
store (and accept, thus acknowledge) the sample. A sample will remain in the
DataReader’s queue for one of two reasons. The more common reason is that
the user application has not removed the sample using the DataReader’s
take() method. Another reason is that the sample has been received out of
order and is not available to be taken or read by the user application until all
older samples have been received.

Although you can set the HISTORY QosPolicy on Topics, its value can only be used to
initialize the HISTORY QosPolicies of either a DataWriter or DataReader. It does not
directly affect the operation of Connext, see Section 5.1.3.

6.5.9.1 Example

To achieve strict reliability, you must (1) set the DataWriter’s and DataReader’s HISTORY
QosPolicy to KEEP_ALL, and (2) set the DataWriter’s and DataReader’s RELIABILITY
QosPolicy to RELIABLE.

See Chapter 10 for a complete discussion on Connext’s reliable protocol.

See Controlling Queue Depth with the History QosPolicy (Section 10.3.3).

6.5.9.2 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

There is no requirement that the publishing and subscribing sides use compatible val-
ues.

6.5.9.3 Related QosPolicies

❏ BATCH QosPolicy (DDS Extension) (Section 6.5.1) Do not configure the
DataReader’s depth to be shallower than the DataWriter's maximum batch size
(batch_max_data_size). Because batches are acknowledged as a group, a
DataReader that cannot process an entire batch will lose the remaining samples in
it.

❏ RELIABILITY QosPolicy (Section 6.5.18)

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.19)
6-127

Sending Data
6.5.9.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.9.5 System Resource Considerations

While this QosPolicy does not directly affect the system resources used by Connext, the
RESOURCE_LIMITS QosPolicy (Section 6.5.19) that must be used in conjunction with
the HISTORY QosPolicy (Section 6.5.9) will affect the amount of memory that Connext
will allocate for a DataWriter or DataReader.

6.5.10 LATENCYBUDGET QoS Policy

This QosPolicy can be used by a DDS implementation to change how it processes and
sends data that has low latency requirements. The DDS specification does not mandate
whether or how this parameter is used. Connext uses it to prioritize the sending of asyn-
chronously published data; see ASYNCHRONOUS_PUBLISHER QosPolicy (DDS
Extension) (Section 6.4.1).

This QosPolicy also applies to Topics. The Topic’s setting for the policy is ignored unless
you explicitly make the DataWriter use it.

It contains the single member listed in Table 6.41.

6.5.10.1 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

Table 6.41 DDS_LatencyBudgetQosPolicy

Type Field Name Description

DDS_Duration_t duration
Provides a hint as to the maximum acceptable delay
from the time the data is written to the time it is
received by the subscribing applications.
6-128

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
6.5.11 LIFESPAN QoS Policy

The purpose of this QoS is to avoid delivering stale data to the application. Each data
sample written by a DataWriter has an associated expiration time, beyond which the
data should not be delivered to any application. Once the sample expires, the data will
be removed from the DataReader caches, as well as from the transient and persistent
information caches.

The middleware attaches timestamps to all data sent and received. The expiration time
of each sample is computed by adding the duration specified by this QoS to the destina-
tion timestamp. To avoid inconsistencies, if you have multiple DataWriters of the same
instance, they should all use the same value for this QoS.

When you specify a finite Lifespan for your data, Connext will compare the current time
with those timestamps and drop data when your specified Lifespan expires.

The Lifespan QosPolicy can be used to control how much data is stored by Connext.
Even if it is configured to store "all" of the data sent or received for a topic (see the HIS-
TORY QosPolicy (Section 6.5.9)), the total amount of data it stores may be limited by the
Lifespan QosPolicy.

You may also use the Lifespan QosPolicy to ensure that applications do not receive or
act on data, commands or messages that are too old and have "expired.”

It includes the single member listed in Table 6.42. For default and valid range, please
refer to the online documentation.

Although you can set the LIFESPAN QosPolicy on Topics, its value can only be used to
initialize the LIFESPAN QosPolicies of DataWriters. The Topic’s setting for this QosPol-
icy does not directly affect the operation of Connext, see Setting Topic QosPolicies (Sec-
tion 5.1.3).

6.5.11.1 Properties

This QoS policy can be modified after the entity is enabled.

It does not apply to DataReaders, so there is no requirement that the publishing and sub-
scribing sides use compatible values.

Table 6.42 DDS_LifespanQosPolicy

Type Field Name Description

DDS_Duration_t duration Maximum duration for the data's validity.
6-129

Sending Data
6.5.11.2 Related QoS Policies

❏ BATCH QosPolicy (DDS Extension) (Section 6.5.1) Be careful when configuring
a DataWriter with a Lifespan duration shorter than the batch flush period
(batch_flush_delay). If the batch does not fill up before the flush period elapses,
the short duration will cause the samples to be lost without being sent.

❏ DURABILITY QosPolicy (Section 6.5.6)

6.5.11.3 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

6.5.11.4 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

6.5.12 LIVELINESS QosPolicy

The LIVELINESS QosPolicy specifies how Connext determines whether a DataWriter is
“alive.” A DataWriter’s liveliness is used in combination with the OWNERSHIP QosPol-
icy (Section 6.5.14) to maintain ownership of an instance (note that the DEADLINE
QosPolicy (Section 6.5.4) is also used to change ownership when a DataWriter is still
alive). That is, for a DataWriter to own an instance, the DataWriter must still be alive as
well as honoring its DEADLINE contract.

It includes the members in Table 6.43. For defaults and valid ranges, please refer to the
online documentation.

Setting a DataWriter’s kind of LIVELINESS specifies the mechanism that will be used to
assert liveliness for the DataWriter. The DataWriter’s lease_duration then specifies the
maximum period at which packets that indicate that the DataWriter is still alive are sent
to matching DataReaders.

The various mechanisms are:

❏ DDS_AUTOMATIC_LIVELINESS_QOS — The DomainParticipant is responsible for
automatically sending packets to indicate that the DataWriter is alive; this will be
done at least as often as required by the lease_duration. This setting is appropri-
ate when the primary failure mode is that the publishing application itself dies.
It does not cover the case in which the application is still alive but in an errone-
ous state–allowing the DomainParticipant to continue to assert liveliness for the
DataWriter but preventing threads from calling write() on the DataWriter.
6-130

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
As long as the internal threads spawned by Connext for a DomainParticipant are
running, then the liveliness of the DataWriter will be asserted regardless of the
state of the rest of the application.

This setting is certainly the most convenient, if the least accurate, method of
asserting liveliness for a DataWriter.

❏ DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS — Connext will assume that as
long as the user application has asserted the liveliness of at least one DataWriter
belonging to the same DomainParticipant or the liveliness of the DomainPartici-
pant itself, then this DataWriter is also alive.

This setting allows the user code to control the assertion of liveliness for an entire
group of DataWriters with a single operation on any of the DataWriters or their
DomainParticipant. Its a good balance between control and convenience.

❏ DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS — The DataWriter is considered alive
only if the user application has explicitly called operations that assert the liveli-
ness for that particular DataWriter.

This setting forces the user application to assert the liveliness for a DataWriter
which gives the user application great control over when other applications can
consider the DataWriter to be inactive, but at the cost of convenience.

With the MANUAL_BY_[TOPIC,PARTICIPANT] settings, user application code can
assert the liveliness of DataWriters either explicitly by calling the assert_liveliness()

Table 6.43 DDS_LivelinessQosPolicy

Type Field Name Description

DDS_Liveliness
QosPolicyKind

kind

DDS_AUTOMATIC_LIVELINESS_QOS:
Connext will automatically assert liveliness for the DataWriter
at least as often as the lease_duration.
DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS:
The DataWriter is assumed to be alive if any Entity within the
same DomainParticipant has asserted its liveliness.
DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS:
Your application must explicitly assert the liveliness of the
DataWriter within the lease_duration.

DDS_Duration_t lease_duration

The timeout by which liveliness must be asserted for the
DataWriter or else the DataWriter will be considered “inactive
or not alive.
Additionally, for DataReaders, the lease_duration also speci-
fies the maximum period at which Connext will check to see if
the matching DataWriter is still alive.
6-131

Sending Data
operation on the DataWriter (as well as the DomainParticipant for the
MANUAL_BY_PARTICIPANT setting) or implicitly by calling write() on the DataW-
riter. If the application does not use either of the methods mentioned at least once every
lease_duration, then the subscribing application may assume that the DataWriter is no
longer alive. Sending data MANUAL_BY_TOPIC will cause an assert message to be
sent between the DataWriter and its matched DataReaders.

Publishing applications will monitor their DataWriters to make sure that they are honor-
ing their LIVELINESS QosPolicy by asserting their liveliness at least at the period set by
the lease_duration. If Connext finds that a DataWriter has failed to have its liveliness
asserted by its lease_duration, an internal thread will modify the DataWriter’s
DDS_LIVELINESS_LOST_STATUS and trigger its on_liveliness_lost() DataWriterLis-
tener callback if a listener exists, see Listeners (Section 4.4).

Setting the DataReader’s kind of LIVELINESS requests a specific mechanism for the
publishing application to maintain the liveliness of DataWriters. The subscribing appli-
cation may want to know that the publishing application is explicitly asserting the live-
liness of the matching DataWriter rather than inferring its liveliness through the
liveliness of its DomainParticipant or its sibling DataWriters.

The DataReader’s lease_duration specifies the maximum period at which matching
DataWriters must have their liveliness asserted. In addition, in the subscribing applica-
tion Connext uses an internal thread that wakes up at the period set by the DataReader’s
lease_duration to see if the DataWriter’s lease_duration has been violated.

When a matching DataWriter is determined to be dead (inactive), Connext will modify
the DDS_LIVELINESS_CHANGED_STATUS of each matching DataReader and trigger
that DataReader’s on_liveliness_changed() DataReaderListener callback (if a listener
exists).

Although you can set the LIVELINESS QosPolicy on Topics, its value can only be used to
initialize the LIVELINESS QosPolicies of either a DataWriter or DataReader. It does not
directly affect the operation of Connext, see Section 5.1.3.

For more information on Liveliness, see Maintaining DataWriter Liveliness for kinds
AUTOMATIC and MANUAL_BY_PARTICIPANT (Section 12.3.1.2).

6.5.12.1 Example

You can use LIVELINESS QosPolicy during system integration to ensure that applica-
tions have been coded to meet design specifications. You can also use it during run time
to detect when systems are performing outside of design specifications. Receiving
applications can take appropriate actions in response to disconnected DataWriters.
6-132

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
The LIVELINESS QosPolicy can be used to manage fail-over when the OWNERSHIP
QosPolicy (Section 6.5.14) is set to EXCLUSIVE. This implies that the DataReader will
only receive data from the highest strength DataWriter that is alive (active). When that
DataWriter’s liveliness expires, then Connext will start delivering data from the next
highest strength DataWriter that is still alive.

6.5.12.2 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

The DataWriter and DataReader must use compatible settings for this QosPolicy. To be
compatible, both of the following conditions must be true:

1. The DataWriter and DataReader must use one of the valid combinations shown in
Table 6.44.

2. DataWriter’s lease_duration <= DataReader’s lease_duration.

If this QosPolicy is found to be incompatible, the
ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corre-
sponding Listeners called for the DataWriter and DataReader respectively.

6.5.12.3 Related QosPolicies

❏ DEADLINE QosPolicy (Section 6.5.4)

❏ OWNERSHIP QosPolicy (Section 6.5.14)

❏ OWNERSHIP_STRENGTH QosPolicy (Section 6.5.15)

Table 6.44 Valid Combinations of Liveliness ‘kind’

DataReader requests:

MANUAL_BY_
TOPIC

MANUAL_BY_
PARTICIPANT AUTOMATIC

DataWriter
offers:

MANUAL_BY_
TOPIC

4 4 4

MANUAL_BY_
PARTICIPANT

incompatible 4 4

AUTOMATIC incompatible incompatible 4
6-133

Sending Data
6.5.12.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.12.5 System Resource Considerations

An internal thread in Connext will wake up periodically to check the liveliness of all the
DataWriters. This happens both in the application that contains the DataWriters at the
lease_duration set on the DataWriters as well as the applications that contain the
DataReaders at the lease_duration set on the DataReaders. Therefore, as lease_duration
becomes smaller, more CPU will be used to wake up threads and perform checks. A
short lease_duration set on DataWriters may also use more network bandwidth because
liveliness packets are being sent at a higher rate—this is especially true when LIVELI-
NESS kind is set to AUTOMATIC.

6.5.13 MULTI_CHANNEL QosPolicy (DDS Extension)

This QosPolicy is used to partition the data published by a DataWriter across multiple
channels. A channel is defined by a filter expression and a sequence of multicast locators.

By using this QosPolicy, a DataWriter can be configured to send data to different multi-
cast groups based on the content of the data. Using syntax similar to those used in Con-
tent-Based Filters, you can associate different multicast addresses with filter expressions
that operate on the values of the fields within the data. When your application’s code
calls write(), data is sent to any multicast address for which the data passes the filter.

See Chapter 16 for complete documentation on multi-channel DataWriters.

Note: Durable writer history is not supported for multi-channel DataWriters (see
Chapter 16); an error is reported if a multi-channel DataWriter tries to configure Durable
Writer History.

This QosPolicy includes the members presented in Table 6.45, Table 6.46, and Table 6.47.
For defaults and valid ranges, please refer to the online documentation.

The format of the filter_expression should correspond to one of the following filter
classes:

❏ DDS_SQLFILTER_NAME (see SQL Filter Expression Notation (Section 5.4.6))

❏ DDS_STRINGMATCHFILTER_NAME (see STRINGMATCH Filter Expression
Notation (Section 5.4.7)
6-134

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
Table 6.45 DDS_MultiChannelQosPolicy

Type Field
Name Description

DDS_ChannelSettingsSeq channels
A sequence of channel settings used to configure the
channels’ properties. If the length of the sequence is
zero, the QosPolicy will be ignored. See Table 6.46.

char * filter_name

Name of the filter class used to describe the filter
expressions. The following values are supported:

❏ DDS_SQLFILTER_NAMEa (see Section 5.4.6)

❏ DDS_STRINGMATCHFILTER_NAMEa (see
Section 5.4.7)

a. In Java and C#, you can access the names of the built-in filters by using
DomainParticipant.SQLFILTER_NAME and DomainParticipant.STRINGMATCHFILTER_NAME.

Table 6.46 DDS_ChannelSettings_t

Type Field Name Description

DDS_MulticastSettingsSeq multicast_settings

A sequence of multicast settings used to con-
figure the multicast addresses associated with
a channel. The sequence cannot be empty.
The maximum number of multicast locators in
a channel is limited to four. (A locator is
defined by a transport alias, a multicast
address and a port.) See Table 6.47.
6-135

Sending Data
A DataReader can use the ContentFilteredTopic API (see Using a ContentFilteredTopic
(Section 5.4.5)) to subscribe to a subset of the channels used by a DataWriter.

6.5.13.1 Example

See Chapter 16: Multi-channel DataWriters.

char * filter_expression

A logical expression used to determine the
data that will be published in the channel.
This string cannot be NULL. An empty string
always evaluates to TRUE.
See SQL Filter Expression Notation (Section
5.4.6) and STRINGMATCH Filter Expression
Notation (Section 5.4.7) for expression syntax.

DDS_Long priority

A positive integer designating the relative pri-
ority of the channel, used to determine the
transmission order of pending transmissions.
Larger numbers have higher priority.
To use publication priorities, the DataWriter’s
PUBLISH_MODE QosPolicy (DDS Extension)
(Section 6.5.17) must be set for asynchronous
publishing and the DataWriter must use a
FlowController that is configured for highest-
priority-first (HPF) scheduling.
See Prioritized Samples (Section 6.6.4).

Table 6.47 DDS_MulticastSettings

Type Field Name Description

DDS_StringSeq transports
A sequence of transport aliases that specifies
which transport should be used to publish
multicast messages for this channel.

char * receive_address
A multicast group address on which
DataReaders subscribing to this channel will
receive data.

DDS_Long receive_port
The multicast port on which DataReaders sub-
scribing to this channel will receive data.

Table 6.46 DDS_ChannelSettings_t

Type Field Name Description
6-136

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
6.5.13.2 Properties

This QosPolicy cannot be modified after the DataWriter is created.

It does not apply to DataReaders, so there is no requirement that the publishing and sub-
scribing sides use compatible values.

6.5.13.3 Related Qos Policies

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 8.5.4)

6.5.13.4 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.13.5 System Resource Considerations

The following fields in the DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy
(DDS Extension) (Section 8.5.4) configure the resources associated with the channels
stored in the MULTI_CHANNEL QosPolicy:

❏ channel_seq_max_length

❏ channel_filter_expression_max_length

For information about partitioning topic data across multiple channels, please refer to
Chapter 16: Multi-channel DataWriters.

6.5.14 OWNERSHIP QosPolicy

The OWNERSHIP QosPolicy specifies whether a DataReader receive data for an instance
of a Topic sent by multiple DataWriters.

For non-keyed Topics, there is only one instance of the Topic.

This policy includes the single member shown in Table 6.48.

The kind of OWNERSHIP can be set to one of two values:

Table 6.48 DDS_OwnershipQosPolicy

Type Field Name Description

DDS_OwnershipQosPolicyKind kind
DDS_SHARED_OWNERSHIP_QOS or
DDS_EXCLUSIVE_OWNERSHIP_QOS
6-137

Sending Data
❏ SHARED Ownership

When OWNERSHIP is SHARED, and multiple DataWriters for the Topic pub-
lishes the value of the same instance, all the updates are delivered to subscribing
DataReaders. So in effect, there is no “owner;” no single DataWriter is responsible
for updating the value of an instance. The subscribing application will receive
modifications from all DataWriters.

❏ EXCLUSIVE Ownership

When OWNERSHIP is EXCLUSIVE, each instance can only be owned by one
DataWriter at a time. This means that a single DataWriter is identified as the
exclusive owner whose updates are allowed to modify the value of the instance
for matching DataWriters. Other DataWriters may submit modifications for the
instance, but only those made by the current owner are passed on to the
DataReaders. If a non-owner DataWriter modifies an instance, no error or notifica-
tion is made; the modification is simply ignored. The owner of the instance can
change dynamically.

Note for non-keyed Topics, EXCLUSIVE ownership implies that DataReaders will
pay attention to only one DataWriter at a time because there is only a single
instance. For keyed Topics, DataReaders may actually receive data from multiple
DataWriters when different DataWriters own different instances of the Topic.

This QosPolicy is often used to help users build systems that have redundant elements
to safeguard against component or application failures. When systems have active and
hot standby components, the Ownership QosPolicy can be used to ensure that data
from standby applications are only delivered in the case of the failure of the primary.

The Ownership QosPolicy can also be used to create data channels or topics that are
designed to be taken over by external applications for testing or maintenance purposes.

Although you can set the OWNERSHIP QosPolicy on Topics, its value can only be used
to initialize the OWNERSHIP QosPolicies of either a DataWriter or DataReader. It does
not directly affect the operation of Connext, see Section 5.1.3.

6.5.14.1 How Connext Selects which DataWriter is the Exclusive Owner

When OWNERSHIP is EXCLUSIVE, the owner of an instance at any given time is the
DataWriter with the highest OWNERSHIP_STRENGTH QosPolicy (Section 6.5.15) that
is “alive” as defined by the LIVELINESS QosPolicy (Section 6.5.12)) and has not vio-
lated the DEADLINE QosPolicy (Section 6.5.4) of the DataReader.
OWNERSHIP_STRENGTH is simply an integer set by the DataWriter.

As mentioned before, if the Topic’s data type is keyed (see Section 2.2.2) then EXCLU-
SIVE ownership is determined on a per-instance basis. That is, the DataWriter owner of
6-138

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
each instance is considered separately. A DataReader can receive values written by a
lower strength DataWriter as long as those values are for instances that are not being
written by a higher-strength DataWriter.

If there are multiple DataWriters with the same OWNERSHIP_STRENGTH writing to
the same instance, Connext resolves the tie by choosing the DataWriter with the smallest
GUID (Globally Unique Identifier, see Section 12.1.1.). This means that different
DataReaders (in different applications) of the same Topic will all choose the same DataW-
riter as the owner when there are multiple DataWriters with the same strength.

The owner of an instance can change when:

❏ A DataWriter with a higher OWNERSHIP_STRENGTH publishes a value for the
instance.

❏ The OWNERSHIP_STRENGTH of the owning DataWriter is dynamically
changed to be less than the strength of an existing DataWriter of the instance.

❏ The owning DataWriter stops asserting its LIVELINESS (the DataWriter dies).

❏ The owning DataWriter violates the DEADLINE QosPolicy by not updating the
value of the instance within the period set by the DEADLINE.

Note however, the change of ownership is not synchronous across different DataReaders
in different participants. That is, DataReaders in different applications may not deter-
mine that the ownership of an instance has changed at exactly the same time.

6.5.14.2 Example

OWNERSHIP is really a property that is shared between DataReaders and DataWriters of
a Topic. However, in a system, some Topics will be exclusively owned and others will be
shared. System requirements will determine which are which.

An example of a Topic that may be shared is one that is used by applications to publish
alarm messages. If the application detects an anomalous condition, it will use a DataW-
riter to write a Topic “Alarm.” Another application that records alarms into a system log
file will have a DataReader that subscribes to “Alarm.” In this example, any number of
applications can publish the “Alarm” message. There is no concept that only one appli-
cation at a time is allowed to publish the “Alarm” message, so in this case, the OWNER-
SHIP of the DataWriters and DataReaders should be set to SHARED.

In a different part of the system, EXCLUSIVE OWNERSHIP may be used to implement
redundancy in support of fault tolerance. Say, the distributed system controls a traffic
system. It monitors traffic and changes the information posted on signs, the operation of
metering lights, and the timing of traffic lights. This system must be tolerant to failure of
6-139

Sending Data
any part of the system including the application that actually issues commands to
change the lights at a particular intersection.

One way to implement fault tolerance is to create the system redundantly both in hard-
ware and software. So if a piece of the running system fails, a backup can take over. In
systems where failover from the primary to backup system must be seamless and trans-
parent, the actual mechanics of failover must be fast, and the redundant component
must immediately pickup where the failed component left off. For the network connec-
tions of the component, Connext can provided redundant DataWriter and DataReaders.

In this case, you would not want the DataReaders to receive redundant messages from
the redundant DataWriters. Instead you will want the DataReaders to only receive mes-
sages from the primary application and only from a backup application when a failure
occurs. To continue our example, if we have redundant applications that all try to con-
trol the lights at an intersection, we would want the DataReaders on the light to receive
messages only from the primary application. To do so, we should configure the DataW-
riters and DataReaders to have EXCLUSIVE OWNERSHIP and set the
OWNERSHIP_STRENGTH differently on different redundant applications to distin-
guish between primary and backup systems.

6.5.14.3 Properties

This QosPolicy cannot be modified after the Entity is enabled.

It must be set to the same kind on both the publishing and subscribing sides. If a
DataWriter and DataReader of the same topic are found to have different kinds set for the
OWNERSHIP QoS, the ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS statuses will be modified and the corre-
sponding Listeners called for the DataWriter and DataReader respectively.

6.5.14.4 Related QosPolicies

❏ DEADLINE QosPolicy (Section 6.5.4)

❏ LIVELINESS QosPolicy (Section 6.5.12)

❏ OWNERSHIP_STRENGTH QosPolicy (Section 6.5.15)

6.5.14.5 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)
6-140

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
6.5.14.6 System Resource Considerations

This QosPolicy does not significantly impact the use of system resources.

6.5.15 OWNERSHIP_STRENGTH QosPolicy

The OWNERSHIP_STRENGTH QosPolicy is used to rank DataWriters of the same
instance of a Topic, so that Connext can decide which DataWriter will have ownership of
the instance when the OWNERSHIP QosPolicy (Section 6.5.14) is set to EXCLUSIVE.

It includes the member in Table 6.49. For the default and valid range, please refer to the
online documentation.

This QosPolicy only applies to DataWriters when EXCLUSIVE OWNERSHIP is used.
The strength is simply an integer value, and the DataWriter with the largest value is the
owner. A deterministic method is used to decide which DataWriter is the owner when
there are multiple DataWriters that have equal strengths. See Section 6.5.14.1 for more
details.

6.5.15.1 Example

Suppose there are two DataWriters sending samples of the same Topic instance, one as
the main DataWriter, and the other as a backup. If you want to make sure the DataReader
always receive from the main one whenever possible, then set the main DataWriter to
use a higher ownership_strength value than the one used by the backup DataWriter.

6.5.15.2 Properties

This QosPolicy can be changed at any time.

It does not apply to DataReaders, so there is no requirement that the publishing and sub-
scribing sides use compatible values.

6.5.15.3 Related QosPolicies
❏ OWNERSHIP QosPolicy (Section 6.5.14)

6.5.15.4 Applicable Entities
❏ DataWriters (Section 6.3)

Table 6.49 DDS_OwnershipStrengthQosPolicy

Type Field
Name Description

DDS_Long value The strength value used to arbitrate among multiple DataWriters.
6-141

Sending Data
6.5.15.5 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

6.5.16 PROPERTY QosPolicy (DDS Extension)

The PROPERTY QosPolicy stores name/value (string) pairs that can be used to config-
ure certain parameters of Connext that are not exposed through formal QoS policies.

It can also be used to store and propagate application-specific name/value pairs that
can be retrieved by user code during discovery. This is similar to the USER_DATA
QosPolicy, except this policy uses (name, value) pairs, and you can select whether or not
a particular pair should be propagated (included in the built-in topic).

It includes the member in Table 6.50.

The Property QoS stores name/value pairs for an Entity. Both the name and value are
strings. Certain configurable parameters for Entities that do not have a formal DDS QoS
definition may be configured via this QoS by using a pre-defined name and the desired
setting in string form.

You can manipulate the sequence of properties (name, value pairs) with the standard
methods available for sequences. You can also use the helper class, DDSPropertyQo-
sPolicyHelper, which provides another way to work with a PropertyQosPolicy object.

The PropertyQosPolicy may be used to configure:

❏ Durable writer history (see Section 11.3.2)

❏ Durable reader state (see Section 11.4.2)

❏ Built-in and extension Transport Plugins (see Section 13.6, Section 20.2,
Section 30.2).

❏ Automatic registration of built-in types (see Registering Built-in Types (Section
3.2.1))

❏ Clock Selection (Section 8.6)

Table 6.50 DDS_PropertyQosPolicy

Type Field
Name Description

DDS_PropertySeq value
A sequence of: (name, value) pairs and booleans that indicate
whether the pair should be propagated (included in the
entity’s built-in topic upon discovery).
6-142

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
In addition, you can add your own name/value pairs to the Property QoS of an Entity.
You may also use this QosPolicy to direct Connext to propagate these name/value pairs
with the discovery information for the Entity. Applications that discover the Entity can
then access the user-specific name/value pairs in the discovery information of the
remote Entity. This allows you to add meta-information about an Entity for application-
specific use, for example, authentication/authorization certificates (which can also be
done using the User or Group Data QoS).

Reasons for using the PropertyQosPolicy include:

❏ Some features can only be configured through the PropertyQosPolicy, not
through other QoS or API.s For example, Durable Reader State, Durable Writer
History, Built-in Types, Monotonic Clock.

❏ Alternative way to configure built-in transports settings. For example, to use
non-default values for the built-in transports without using the PropertyQosPol-
icy, you would have to create a DomainParticipant disabled, change the built-in
transport property settings, then enable the DomainParticipant. Using the Proper-
tyQosPolicy to configure built-in transport settings will save you the work of
enabling and disabling the DomainParticipant. Also, transport settings are not a
QoS and therefore cannot be configured through an XML file. By configuring
built-in transport settings through the PropertyQosPolicy instead, XML files can
be used.

• Note: When using the Java or .NET APIs, transport configuration must take
place through the PropertyQosPolicy (not through the transport property
structures).

❏ Alternative way to support multiple instances of built-in transports (without
using Transport API).

❏ Alternative way to dynamically load extension transports (such as RTI Secure
WAN Transport1 or RTI TCP Transport2) or user-created transport plugins in C/
C++ language bindings. If the extension or user-created transport plugin is
installed using the transport API instead, the library that extra transport library/
code will need to be linked into your application and may require recompilation.

1. RTI Secure WAN Transport is an optional packages available for separate purchase.
2. RTI TCP Transport is included with your Connext distribution but is not a built-in transport and there-

fore not enabled by default.
6-143

Sending Data
❏ Allows full pluggable transport configuration for non-C/C++ language bindings
(Java, C++/CLI, C#, etc.) The pluggable transport API is not available in those
languages. Without using PropertyQosPolicy, you cannot use extension trans-
ports (such as RTI Secure WAN Transport) and you cannot create your own cus-
tom transport.

The PropertyQosPolicyHelper operations are described in Table 6.51. For more informa-
tion, see the online documentation.

6.5.16.1 Properties

This QosPolicy can be changed at any time.

There is no requirement that the publishing and subscribing sides use compatible val-
ues.

6.5.16.2 Related QosPolicies

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 8.5.4)

6.5.16.3 Applicable Entities

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

❏ DomainParticipants (Section 8.3)

Table 6.51 PropertyQoSPolicyHelper Operations

Operation Description

get_number_of_properties Gets the number of properties in the input policy.

assert_property
Asserts the property identified by name in the input policy. (Either
adds it, or replaces an existing one.)

add_property Adds a new property to the input policy.

lookup_property Searches for a property in the input policy given its name.

remove_property Removes a property from the input policy.

get_properties Retrieves a list of properties whose names match the input prefix.
6-144

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
6.5.16.4 System Resource Considerations

The DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Sec-
tion 8.5.4) contains several fields for configuring the resources associated with the prop-
erties stored in this QosPolicy.

6.5.17 PUBLISH_MODE QosPolicy (DDS Extension)

This QosPolicy determines the DataWriter’s publishing mode, either asynchronous or
synchronous.

The publishing mode controls whether data is written synchronously—in the context of
the user thread when calling write(), or asynchronously—in the context of a separate
thread internal to Connext.

Note: Asynchronous DataWriters do not perform sender-side filtering. Any filtering,
such as time-based or content-based filtering, takes place on the DataReader side.

Each Publisher spawns a single asynchronous publishing thread (set in its
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1)) to serve all
its asynchronous DataWriters.

When data is written asynchronously, a FlowController (Section 6.6), identified by
flow_controller_name, can be used to shape the network traffic. The FlowController's
properties determine when the asynchronous publishing thread is allowed to send data
and how much.

The fastest way for Connext to send data is for the user thread to execute the middleware
code that actually sends the data itself. However, there are times when user applications
may need or want an internal middleware thread to send the data instead. For instance,
for sending large data reliably, an asynchronous thread must be used (see
ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1)).

This QosPolicy can select a FlowController to prioritize or shape the data flow sent by a
DataWriter to DataReaders. Shaping a data flow usually means limiting the maximum
data rates with which the middleware will send data for a DataWriter. The FlowCon-
troller will buffer data sent faster than the maximum rate by the DataWriter, and then
only send the excess data when the user send rate drops below the maximum rate.

This QosPolicy includes the members in Table 6.52. For the defaults, please refer to the
online documentation.

The maximum number of samples that will be coalesced depends on
NDDS_Transport_Property_t::gather_send_buffer_count_max (each sample requires
at least 2-4 gather-send buffers). Performance can be improved by increasing
6-145

Sending Data
NDDS_Transport_Property_t::gather_send_buffer_count_max. Note that the maxi-
mum value is operating system dependent.

Connext queues samples until they can be sent by the asynchronous publishing thread
(as determined by the corresponding FlowController).

The number of samples that will be queued is determined by the HISTORY QosPolicy
(Section 6.5.9): when using KEEP_LAST, the most recent depth samples are kept in the
queue.

Once unsent samples are removed from the queue, they are no longer available to the
asynchronous publishing thread and will therefore never be sent.

Unless flow_controller_name points to one of the built-in FlowControllers, finalizing
the DataWriterQos will also free the string pointed to by flow_controller_name. There-
fore, you should use DDS_String_dup() before passing the string to
flow_controller_name, or reset flow_controller_name to NULL before the destructing
/finalizing the QoS.

Table 6.52 DDS_PublishModeQosPolicy

Type Field Name Description

DDS_PublishMode
QosPolicyKind

kind
Either:
DDS_ASYNCHRONOUS_PUBLISH_MODE_QOSa

DDS_SYNCHRONOUS_PUBLISH_MODE_QOS

char*
flow_controller_
name

Name of the associated flow controller.
There are three built-in FlowControllers:
DDS_DEFAULT_FLOW_CONTROLLER_NAME
DDS_FIXED_RATE_FLOW_CONTROLLER_NAME
DDS_ON_DEMAND_FLOW_CONTROLLER_NAME
You may also create your own FlowControllers.
See FlowControllers (DDS Extension) (Section 6.6).

DDS_Long priority

A positive integer designating the relative priority of the
DataWriter, used to determine the transmission order of
pending writes.
To use publication priorities, this QosPolicy’s kind must
be DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS
and the DataWriter must use a FlowController with a
highest-priority first (HPF) scheduling_policy.
See Prioritized Samples (Section 6.6.4).

a. See Note on page 6-96.
6-146

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
Advantages of Asynchronous Publishing:

Asynchronous publishing may increase latency, but offers the following advantages:

❏ The write() call does not make any network calls and is therefore faster and more
deterministic. This becomes important when the user thread is executing time-
critical code.

❏ When data is written in bursts or when sending large data types as multiple
fragments, a flow controller can throttle the send rate of the asynchronous pub-
lishing thread to avoid flooding the network.

❏ Asynchronously written samples for the same destination will be coalesced into
a single network packet which reduces bandwidth consumption.

6.5.17.1 Properties

This QosPolicy cannot be modified after the Publisher is created.

Since it is only for DataWriters, there are no compatibility restrictions for how it is set on
the publishing and subscribing sides.

6.5.17.2 Related QosPolicies

❏ ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension) (Section 6.4.1)

❏ HISTORY QosPolicy (Section 6.5.9)

6.5.17.3 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.17.4 System Resource Considerations

See Configuring Resource Limits for Asynchronous DataWriters (Section 6.5.19.1).

System resource usage depends on the settings in the corresponding FlowController
(see Section 6.6).

6.5.18 RELIABILITY QosPolicy

This RELIABILITY QosPolicy determines whether or not data published by a DataW-
riter will be reliably delivered by Connext to matching DataReaders. The reliability proto-
col used by Connext is discussed in Chapter 10: Reliable Communications.
6-147

Sending Data
The reliability of a connection between a DataWriter and DataReader is entirely user con-
figurable. It can be done on a per DataWriter/DataReader connection. A connection may
be configured to be "best effort" which means that Connext will not use any resources to
monitor or guarantee that the data sent by a DataWriter is received by a DataReader.

For some use cases, such as the periodic update of sensor values to a GUI displaying the
value to a person, "best effort" delivery is often good enough. It is certainly the fastest,
most efficient, and least resource-intensive (CPU and network bandwidth) method of
getting the newest/latest value for a topic from DataWriters to DataReaders. But there is
no guarantee that the data sent will be received. It may be lost due to a variety of factors,
including data loss by the physical transport such as wireless RF or even Ethernet.
Packets received out of order are dropped and a SAMPLE_LOST Status (Section 7.3.7.7)
is generated.

However, there are data streams (topics) in which you want an absolute guarantee that
all data sent by a DataWriter is received reliably by DataReaders. This means that Connext
must check whether or not data was received, and repair any data that was lost by
resending a copy of the data as many times as it takes for the DataReader to receive the
data.

Connext uses a reliability protocol configured and tuned by these QoS policies: HIS-
TORY QosPolicy (Section 6.5.9), DATA_WRITER_PROTOCOL QosPolicy (DDS Exten-
sion) (Section 6.5.2), DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section
7.6.2), and RESOURCE_LIMITS QosPolicy (Section 6.5.19).

The Reliable QoS policy is simply a switch to turn on the reliability protocol for a
DataWriter/DataReader connection. The level of reliability provided by Connext is deter-
mined by the configuration of the aforementioned QoS policies.

You can configure Connext to deliver ALL data in the order they were sent (also known
as absolute or strict reliability). Or, as a trade-off for less memory, CPU, and network
usage, you can choose a reduced level of reliability where only the last N values are
guaranteed to be delivered reliably to DataReaders (where N is user-configurable). In the
reduced level of reliability, there are no guarantees that the data sent before the last N
are received. Only the last N data packets are monitored and repaired if necessary.

It includes the members in Table 6.53. For defaults and valid ranges, please refer to the
online documentation.
6-148

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
The kind of RELIABILITY can be either:

❏ BEST_EFFORT Connext will send data samples only once to DataReaders. No effort
or resources are spent to track whether or not sent samples are received. Minimal
resources are used. This is the most deterministic method of sending data since
there is no indeterministic delay that can be introduced by buffering or resend-
ing data. Data samples may be lost. This setting is good for periodic data.

❏ RELIABLE Connext will send samples reliably to DataReaders–buffering sent data
until they have been acknowledged as being received by DataReaders and
resending any samples that may have been lost during transport. Additional
resources configured by the HISTORY and RESOURCE_LIMITS QosPolicies
may be used. Extra packets will be sent on the network to query (heartbeat) and
acknowledge the receipt of samples by the DataReader. This setting is a good
choice when guaranteed data delivery is required; for example, sending events
or commands.

To send large data reliably, you will also need to set the PUBLISH_MODE
QosPolicy (DDS Extension) (Section 6.5.17) kind to
DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS. Large in this context means
that the data cannot be sent as a single packet by a transport (for example, data
larger than 63K when using UDP/IP).

While a DataWriter sends data reliably, the HISTORY QosPolicy (Section 6.5.9) and
RESOURCE_LIMITS QosPolicy (Section 6.5.19) determine how many samples can be
stored while waiting for acknowledgements from DataReaders. A sample that is sent reli-
ably is entered in the DataWriter’s send queue awaiting acknowledgement from
DataReaders. How many samples that the DataWriter is allowed to store in the send
queue for a data-instance depends on the kind of the HISTORY QoS as well as the
max_samples_per_instance and max_samples parameter of the RESOURCE_LIMITS
QoS.

Table 6.53 DDS_ReliabilityQosPolicy

Type Field Name Description

DDS_ReliabilityQ
osPolicyKind

kind

DDS_BEST_EFFORT_RELIABILITIY_QOS: Data
samples are sent once and missed samples are accept-
able.
DDS_RELIABLE_RELIABILITY_QOS: Connext will
make sure that data sent is received and missed sam-
ples are resent.

DDS_Duration_t max_blocking_time
How long a DataWriter can block on a write() when
the send queue is full due to unacknowledged mes-
sages. (Has no meaning for DataReaders.)
6-149

Sending Data
If the HISTORY kind is KEEP_LAST, then the DataWriter is allowed to have the HIS-
TORY depth number of samples per instance of the Topic in the send queue. Should the
number of unacknowledge samples in the send queue for a data-instance reach the HIS-
TORY depth, then the next sample written by the DataWriter for the instance will over-
write the oldest sample for the instance in the queue. This implies that an
unacknowledged sample may be overwritten and thus lost. So even if the RELIABILITY
kind is RELIABLE, if the HISTORY kind is KEEP_LAST, it is possible that some data
sent by the DataWriter will not be delivered to the DataReader. What is guaranteed is that
if the DataWriter stops writing, the last N samples that the DataWriter wrote will be
delivered reliably; where n is the value of the HISTORY depth.

However, if the HISTORY kind is KEEP_ALL, then when the send queue is filled with
acknowledged samples (either due to the number of unacknowledged samples for an
instance reaching the RESOURCE_LIMITS max_samples_per_instance value or the
total number of unacknowledged samples have reached the size of the send queue as
specified by RESOURCE_LIMITS max_samples), the next write() operation on the
DataWriter will block until either a sample in the queue has been fully acknowledged by
DataReaders and thus can be overwritten or a timeout of RELIABILITY
max_blocking_period has been reached.

If there is still no space in the queue when max_blocking_time is reached, the write()
call will return a failure with the error code DDS_RETCODE_TIMEOUT.

Thus for strict reliability—a guarantee that all data samples sent by a DataWriter are
received by DataReaders—you must use a RELIABILITY kind of RELIABLE and a HIS-
TORY kind of KEEP_ALL for both the DataWriter and the DataReader.

Although you can set the RELIABILITY QosPolicy on Topics, its value can only be used
to initialize the RELIABILITY QosPolicies of either a DataWriter or DataReader. It does
not directly affect the operation of Connext, see Section 5.1.3.

6.5.18.1 Example

This QosPolicy is used to achieve reliable communications, which is discussed in
Chapter 10: Reliable Communications and Section 10.3.1.

6.5.18.2 Properties

This QosPolicy cannot be modified after the Entity has been enabled.

The DataWriter and DataReader must use compatible settings for this QosPolicy. To be
compatible, the DataWriter and DataReader must use one of the valid combinations
shown in Table 6.44.
6-150

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
If this QosPolicy is found to be incompatible, statuses
ON_OFFERED_INCOMPATIBLE_QOS and
ON_REQUESTED_INCOMPATIBLE_QOS will be modified and the corresponding
Listeners called for the DataWriter and DataReader respectively.

There are no compatibility issues regarding the value of max_blocking_wait, since it
does not apply to DataReaders.

6.5.18.3 Related QosPolicies

❏ HISTORY QosPolicy (Section 6.5.9)

❏ PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.17)

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.19)

6.5.18.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.18.5 System Resource Considerations

Setting the kind to RELIABLE will cause Connext to use up more resources to monitor
and maintain a reliable connection between a DataWriter and all of its reliable DataRead-
ers. This includes the use of extra CPU and network bandwidth to send and process
heartbeat, ACK/NACK, and repair packets (see Chapter 10: Reliable Communications).

Setting max_blocking_time to a non-zero number may block the sending thread when
the RELIABILITY kind is RELIABLE.

Table 6.54 Valid Combinations of Reliability ‘kind’

DataReader requests:

BEST_EFFORT RELIABLE

DataWriter offers:
BEST_EFFORT 4 incompatible

RELIABLE 4 4
6-151

Sending Data
6.5.19 RESOURCE_LIMITS QosPolicy

For the reliability protocol (and the DURABILITY QosPolicy (Section 6.5.6)), this
QosPolicy determines the actual maximum queue size when the HISTORY QosPolicy
(Section 6.5.9) is set to KEEP_ALL.

In general, this QosPolicy is used to limit the amount of system memory that Connext
can allocate. For embedded real-time systems and safety-critical systems, pre-determi-
nation of maximum memory usage is often required. In addition, dynamic memory
allocation could introduce non-deterministic latencies in time-critical paths.

This QosPolicy can be set such that an entity does not dynamically allocate any more
memory after its initialization phase.

It includes the members in Table 6.55. For defaults and valid ranges, please refer to the
online documentation.

Table 6.55 DDS_ResourceLimitsQosPolicy

Type Field Name Description

DDS_Long max_samples
Maximum number of live samples that Connext can store for a
DataWriter/DataReader. This is a physical limit.

DDS_Long max_instances

Maximum number of instances that can be managed by a
DataWriter/DataReader.
For DataReaders, max_instances must be <=
max_total_instances in the
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS
Extension) (Section 7.6.3).
See also: Example (Section 6.5.19.3).

DDS_Long
max_samples_
per_instance

Maximum number of samples of any one instance that Con-
next will store for a DataWriter/DataReader.
For keyed types and DataReaders, this value only applies to
samples with an instance state of
DDS_ALIVE_INSTANCE_STATE.
If a keyed Topic is not used, then
max_samples_per_instance must equal max_samples.

DDS_Long initial_samples
Initial number of samples that Connext will store for a DataW-
riter/DataReader. (DDS extension)

DDS_Long initial_instances
Initial number of instances that can be managed by a DataW-
riter/DataReader. (DDS extension)

DDS_Long
instance_hash_
buckets

Number of hash buckets, which are used by Connext to facili-
tate instance lookup. (DDS extension).
6-152

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
One of the most important fields is max_samples, which sets the size and causes mem-
ory to be allocated for the send or receive queues. For information on how this policy
affects reliability, see Tuning Queue Sizes and Other Resource Limits (Section 10.3.2).

When a DataWriter or DataReader is created, the initial_instances and initial_samples
parameters determine the amount of memory first allocated for the those Entities. As
the application executes, if more space is needed in the send/receive queues to store
samples or as more instances are created, then Connext will automatically allocate mem-
ory until the limits of max_instances and max_samples are reached.

You may set initial_instances = max_instances and initial_samples = max_samples if
you do not want Connext to dynamically allocate memory after initialization.

For keyed Topics, the max_samples_per_instance field in this policy represents maxi-
mum number of samples with the same key that are allowed to be stored by a DataW-
riter or DataReader. This is a logical limit. The hard physical limit is determined by
max_samples. However, because the theoretical number of instances may be quite large
(as set by max_instances), you may not want Connext to allocate the total memory
needed to hold the maximum number of samples per instance for all possible instances
(max_samples_per_instance * max_instances) because during normal operations, the
application will never have to hold that much data for the Entity.

So it is possible that an Entity will hit the physical limit max_samples before it hits the
max_samples_per_instance limit for a particular instance. However, Connext must be
able to store max_samples_per_instance for at least one instance. Therefore,
max_samples_per_instance must be <= max_samples.

Important: If a keyed data type is not used, then there is only a single instance of the
Topic, so max_samples_per_instance must equal max_samples.

Once a physical or logical limit is hit, then how Connext deals with new data samples
being sent or received for a DataWriter or DataReader is described in the HISTORY
QosPolicy (Section 6.5.9) setting of DDS_KEEP_ALL_HISTORY_QOS. It is closely tied
to whether or not a reliable connection is being maintained.

Although you can set the RESOURCE_LIMITS QosPolicy on Topics, its value can only be
used to initialize the RESOURCE_LIMITS QosPolicies of either a DataWriter or
DataReader. It does not directly affect the operation of Connext, see Section 5.1.3.

6.5.19.1 Configuring Resource Limits for Asynchronous DataWriters

When using an asynchronous Publisher, if a call to write() is blocked due to a resource
limit, the block will last until the timeout period expires, which will prevent others from
freeing the resource. To avoid this situation, make sure that the DomainParticipant’s
outstanding_asynchronous_sample_allocation in the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
6-153

Sending Data
8.5.4) is always greater than the sum of all asynchronous DataWriters’ max_samples.

6.5.19.2 Configuring DataWriter Instance Replacement

When the max_instances limit is reached, a DataWriter will try to make space for a new
instance by replacing an existing instance according to the instance replacement kind set
in instance_replacement. For the sake of instance replacement, an instance is consid-
ered to be unregistered, disposed, or alive. The oldest instance of the specified kind, if
such an instance exists, would be replaced with the new instance. Also, all samples of a
replaced instance must already have been acknowledged, such that removing the
instance would not deprive any existing reader from receiving them.

Since an unregistered instance is one that a DataWriter will not update any further,
unregistered instances are replaced before any other instance kinds. This applies for all
instance_replacement kinds; for example, the ALIVE_THEN_DISPOSED kind would
first replace unregistered, then alive, and then disposed instances. The rest of the kinds
specify one or two kinds (e.g DISPOSED and ALIVE_OR_DISPOSED). For the single
kind, if no unregistered instances are replaceable, and no instances of the specified kind
are replaceable, then the instance replacement will fail. For the others specifying multi-
ple kinds, it either specifies to look for one kind first and then another kind (e.g.
ALIVE_THEN_DISPOSED), meaning if the first kind is found then that instance will be
replaced, or it will replace either of the kinds specified (e.g. ALIVE_OR_DISPOSED),
whichever is older as determined by the time of instance registering, writing, or dispos-
ing.

If an acknowledged instance of the specified kind is found, the DataWriter will reclaim
its resources for the new instance. It will also invoke the DataWriterListener’s
on_instance_replaced() callback (if installed) and notify the user with the handle of the
replaced instance, which can then be used to retrieve the instance key from within the
callback. If no replaceable instances are found, the new instance will fail to be registered;
the DataWriter may block, if the instance registration was done in the context of a write,
or it may return with an out-of-resources return code.

In addition, replace_empty_instances (in the DATA_WRITER_RESOURCE_LIMITS
QosPolicy (DDS Extension) (Section 6.5.3)) configures whether instances with no sam-
ples are eligible to be replaced. If this is set, then a DataWriter will first try to replace
empty instances, even before replacing unregistered instances.

6.5.19.3 Example

If you want to be able to store max_samples_per_instance for every instance, then you
should set

max_samples >= max_instances * max_samples_per_instance
6-154

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
But if you want to save memory and you do not expect that the running application will
ever reach the case where it will see max_instances of instances, then you may use a
smaller value for max_samples to save memory.

In any case, there is a lower limit for max_samples:

max_samples >= max_samples_per_instance

If the HISTORY QosPolicy (Section 6.5.9)’s kind is set to KEEP_LAST, then you should
set:

max_samples_per_instance = HISTORY.depth

6.5.19.4 Properties

This QosPolicy cannot be modified after the Entity is enabled.

There are no requirements that the publishing and subscribing sides use compatible val-
ues.

6.5.19.5 Related QosPolicies

❏ HISTORY QosPolicy (Section 6.5.9)

❏ RELIABILITY QosPolicy (Section 6.5.18)

❏ For DataReaders, max_instances must be <= max_total_instances in the
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
7.6.3)

6.5.19.6 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.19.7 System Resource Considerations

Larger initial_* numbers will increase the initial system memory usage. Larger max_*
numbers will increase the worst-case system memory usage.

Increasing instance_hash_buckets speeds up instance-lookup time but also increases
memory usage.
6-155

Sending Data
6.5.20 TRANSPORT_PRIORITY QosPolicy

The TRANSPORT_PRIORITY QosPolicy is optional and only partially supported on
certain OSs and transports by RTI. However, its intention is to allow you to specify on a
per-DataWriter basis that the data sent by a DataWriter is of a different priority.

DDS does not specify how a DDS implementation shall treat data of different priorities.
It is often difficult or impossible for DDS implementations to treat data of higher prior-
ity differently than data of lower priority, especially when data is being sent (delivered
to a physical transport) directly by the thread that called DataWriter’s write() operation.
Also, many physical network transports themselves do not have an end-user controlla-
ble level of data packet priority.

In Connext, for the UDPv4 built-in transport, the value set in the
TRANSPORT_PRIORITY QosPolicy is used in a setsockopt call to set the TOS (type of
service) bits of the IPv4 header for datagrams sent by a DataWriter. It is platform depen-
dent on how and whether or not the setsockopt has an effect. On some platforms such as
Windows and Linux, external permissions must be given to the user application in
order to set the TOS bits.

It is incorrect to assume that using the TRANSPORT_PRIORITY QosPolicy will have
any effect at all on the end-to-end delivery of data from a DataWriter to a DataReader. All
network elements such as switches and routers must have the capability and be enabled
to actually use the TOS bits to treat higher priority packets differently. Thus the ability to
use the TRANSPORT_PRIORITY QosPolicy must be designed and configured at a sys-
tem level; just turning it on in an application may have no effect at all.

It includes the member in Table 6.56. For the default and valid range, please refer to the
online documentation.

Connext will propagate the value set on a per-DataWriter basis to the transport when the
DataWriter publishes data. It is up to the implementation of the transport to do some-
thing with the value, if anything.

Although you can set the TRANSPORT_PRIORITY QosPolicy on Topics, its value can
only be used to initialize the TRANSPORT_PRIORITY QosPolicies of a DataWriter. It
does not directly affect the operation of Connext, see Section 5.1.3.

Table 6.56 DDS_TransportPriorityQosPolicy

Type Field Name Description

DDS_Long value Hint as to how to set the priority.
6-156

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
6.5.20.1 Example

Should Connext be configured with a transport that can use and will honor the concept
of a prioritized message, then you would be able to create a DataWriter of a Topic whose
data samples, when published, will be sent at a higher priority than other DataWriters
that use the same transport.

6.5.20.2 Properties

This QosPolicy may be modified after the entity is created.

It does not apply to DataReaders, so there is no requirement that the publishing and sub-
scribing sides use compatible values.

6.5.20.3 Related QosPolicies

This QosPolicy does not interact with any other policies.

6.5.20.4 Applicable Entities

❏ Topics (Section 5.1)

❏ DataWriters (Section 6.3)

6.5.20.5 System Resource Considerations

The use of this policy does not significantly impact the use of resources. However, if a
transport is implemented to use the value set by this policy, then there may be trans-
port-specific issues regarding the resources that the transport implementation itself
uses.

6.5.21 TRANSPORT_SELECTION QosPolicy (DDS Extension)

The TRANSPORT_SELECTION QosPolicy allows you to select the transports that have
been installed with the DomainParticipant to be used by the DataWriter or DataReader.

An application may be simultaneously connected to many different physical transports,
e.g., Ethernet, Infiniband, shared memory, VME backplane, and wireless. By default, the
middleware will use up to 4 transports to deliver data from a DataWriter to a DataReader.

This QosPolicy can be used to both limit and control which of the application’s available
transports may be used by a DataWriter to send data or by a DataReader to receive data.

It includes the member in Table 6.57. For more information, please refer to the online
documentation.
6-157

Sending Data
Connext allows user to configure the transports that it uses to send and receive mes-
sages. A number of built-in transports, such as UDPv4 and shared memory, are avail-
able as well as custom ones that the user may implement and install. Each transport will
be installed in the DomainParticipant with one or more aliases.

To enable a DataWriter or DataReader to use a particular transport, add the alias to the
enabled_transports sequence of this QosPolicy. An empty sequence is a special case,
and indicates that all transports installed in the DomainParticipant can be used by the
DataWriter or DataReader.

For more information on configuring and installing transports, please see the online
documentation (from the Modules page, select “Connext API Reference, Pluggable
Transports”).

6.5.21.1 Example

Suppose a DomainParticipant has both UDPv4 and shared memory transports installed.
If you want a particular DataWriter to publish its data only over shared memory, then
you should use this QosPolicy to specify that restriction.

6.5.21.2 Properties

This QosPolicy cannot be modified after the Entity is created.

It can be set differently for the DataWriter and the DataReader.

6.5.21.3 Related QosPolicies

❏ TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.22)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

6.5.21.4 Applicable Entities

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

Table 6.57 DDS_TransportSelectionQosPolicy

Type Field Name Description

DDS_StringSeq enabled_transports
A sequence of aliases for the transports that may be
used by the DataWriter or DataReader.
6-158

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
6.5.21.5 System Resource Considerations

By restricting DataWriters from sending or DataReaders from receiving over certain
transports, you may decrease the load on those transports.

6.5.22 TRANSPORT_UNICAST QosPolicy (DDS Extension)

The TRANSPORT_UNICAST QosPolicy allows you to specify unicast network
addresses to be used by DomainParticipant, DataWriters and DataReaders for receiving
messages.

Connext may send data to a variety of Entities, not just DataReaders. DomainParticipants
receive messages to support the discovery process discussed in Chapter 12. DataWriters
may receive ACK/NACK messages to support the reliable protocol discussed in
Chapter 10: Reliable Communications.

During discovery, each Entity announces to remote applications a list of (up to 4) uni-
cast addresses to which the remote application should use send data (either user data
packets or reliable protocol meta-data such as ACK/NACK and Heartbeats).

By default, the list of addresses is populated automatically with values obtained from
the enabled transport plugins allowed to be used by the Entity (see the
TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7) and
TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.21)). Also, the asso-
ciated ports are automatically determined (see Inbound Ports for User Traffic (Section
12.5.2)).

Use TRANSPORT_UNICAST QosPolicy to manually set the receive address list for an
Entity. You may optionally set a port to use a non-default receive port as well. Only the
first 4 addresses will be used. Connext will create a receive thread for every unique port
number that it encounters (on a per transport basis).

The QosPolicy structure includes the members in Table 6.58. For more information and
default values, please refer to the online documentation.

A message sent to a unicast address will be received by a single node on the network (as
opposed to a multicast address where a single message may be received by multiple
nodes). This policy sets the unicast addresses and ports that remote entities should use

Table 6.58 DDS_TransportUnicastQosPolicy

Type Field Name Description

DDS_TransportUnicast
SettingsSeq
(see Table 6.59)

value
A sequence of up to 4 unicast settings that should be
used by remote entities to address messages to be sent
to this Entity.
6-159

Sending Data
when sending messages to the Entity on which the TRANSPORT_UNICAST QosPolicy
is set.

Up to four “return” unicast addresses may be configured for an Entity. Instead of speci-
fying addresses directly, you use the transports field of the
DDS_TransportUnicastSetting_t to select the transports (using their aliases) on which
remote entities should send messages destined for this Entity. The addresses of the
selected transports will be the “return” addresses. See the online documentation about
configuring transports and aliases (from the Modules page, select “API Reference, Plug-
gable Transports”).

Note, a single transport may have more than one unicast address. For example, if a node
has multiple network interface cards (NICs), then the UDPv4 transport will have an
address for each NIC. When using the TRANSPORT_UNICAST QosPolicy to set the
return addresses, a single value for the DDS_TransportUnicastSettingsSeq may pro-
vide more than the four return addresses that Connext currently uses.

Whether or not you are able to configure the network interfaces that are allowed to be
used by a transport is up to the implementation the transport. For the built-in UDPv4
transport, you may restrict an instance of the transport to use a subset of the available
network interfaces. See the online documentation for the built-in UDPv4 transport for
more information.

For a DomainParticipant, this QoS policy sets the default list of addresses used by other
applications to send user data for local DataReaders.

For a reliable DataWriter, if set, the other applications will use the specified list of
addresses to send reliable protocol packets (ACKS/NACKS) on the behalf of reliable
DataReaders. Otherwise, if not set, the other applications will use the addresses set by
the DomainParticipant.

Table 6.59 DDS_TransportUnicastSettings_t

Type Field Name Description

DDS_StringSeq transports
A sequence of transport aliases that specifies which
transports should be used to receive unicast messages
for this Entity.

DDS_Long receive_port

The port that should be used in the addressing of uni-
cast messages destined for this Entity. A value of 0 will
cause Connext to use a default port number based on
domain and participant ids. See Ports Used for Discov-
ery (Section 12.5).
6-160

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
For a DataReader, if set, then other applications will use the specified list of addresses to
send user data (and reliable protocol packets for reliable DataReaders). Otherwise, if not
set, the other applications will use the addresses set by the DomainParticipant.

For a DataReader, if the port number specified by this QoS is the same as a port number
specified by a TRANSPORT_MULTICAST QoS, then the transport may choose to pro-
cess data received both via multicast and unicast with a single thread. Whether or not a
transport must use different threads to process data received via multicast or unicast for
the same port number depends on the implementation of the transport.

To use this QosPolicy, you also need to specify a port number. A port number of 0 will
cause Connext to automatically use a default value. As explained in Ports Used for Dis-
covery (Section 12.5), the default port number for unicast addresses is based on the
domain and participant IDs. Should you choose to use a different port number, then for
every unique port number used by Entities in your application, depending on the trans-
port, Connext may create a thread to process messages received for that port on that
transport. See Chapter 17: Connext Threading Model for more about threads.

Threads are created on a per-transport basis, so if this QosPolicy specifies multiple
transports for a receive_port, then a thread may be created for each transport for that
unique port. Some transports may be able to share a single thread for different ports,
others can not. Different Entities can share the same port number, and thus, the same
thread will process all of the data for all of the Entities sharing the same port number for
a transport.

Note: If a DataWriter is using the MULTI_CHANNEL QosPolicy (DDS Extension) (Sec-
tion 6.5.13), the unicast addresses specified in the TRANSPORT_UNICAST QosPolicy
are ignored by that DataWriter. The DataWriter will not publish samples on those loca-
tors.

6.5.22.1 Example

You may use this QosPolicy to restrict an Entity from receiving data through a particular
transport. For example, on a multi-NIC (network interface card) system, you may install
different transports for different NICs. Then you can balance the network load between
network cards by using different values for the TRANSPORT_UNICAST QosPolicy for
different DataReaders. Thus some DataReaders will receive their data from one NIC and
other DataReaders will receive their data from another.

6.5.22.2 Properties

This QosPolicy cannot be modified after the Entity is created.

It can be set differently for the DomainParticipant, the DataWriter and the DataReader.
6-161

Sending Data
6.5.22.3 Related QosPolicies

❏ MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.13)

❏ TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.21)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

6.5.22.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

6.5.22.5 System Resource Considerations

Because this QosPolicy changes the transports on which messages are received for dif-
ferent Entities, the bandwidth used on the different transports may be affected.

Depending on the implementation of a transport, Connext may need to create threads to
receive and process data on a unique-port-number basis. Some transports can share the
same thread to process data received for different ports; others like UDPv4 must have
different threads for different ports. In addition, if the same port is used for both unicast
and multicast, the transport implementation will determine whether or not the same
thread can be used to process both unicast and multicast data. For UDPv4, only one
thread is needed per port–independent of whether the data was received via unicast or
multicast data. See Receive Threads (Section 17.3) for more information.

6.5.23 TYPESUPPORT QosPolicy (DDS Extension)

This policy can be used to modify the rtiddsgen-generated code so that the de/serializa-
tion routines act differently depending on the information passed in via the object
pointer.

RTI generally recommends that users treat generated source files as compiler outputs
(analogous to object files) and that users not modify them. RTI cannot support user
changes to generated source files. Furthermore, such changes would make upgrading to
newer versions of Connext more difficult, as this generated code is considered to be a
part of the middleware implementation and consequently does change from version to
version. This QoS policy should be considered a back door, only to be used after careful
design consideration, testing, and consultation with your RTI representative.
6-162

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
It includes the members in Table 6.60.

6.5.23.1 Properties

This QoS policy may be modified after the DataWriter or DataReader is enabled.

It can be set differently for the DataWriter and DataReader.

6.5.23.2 Related QoS Policies

None.

6.5.23.3 Applicable Entities

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

❏ DomainParticipants (Section 8.3)

6.5.23.4 System Resource Considerations

None.

6.5.24 USER_DATA QosPolicy

This QosPolicy provides an area where your application can store additional informa-
tion related to a DomainParticipant, DataWriter, or DataReader. This information is passed
between applications during discovery (see Chapter 12: Discovery) using built-in-topics
(see Chapter 14: Built-In Topics). How this information is used will be up to user code.
Connext does not do anything with the information stored as USER_DATA except to
pass it to other applications.

Use cases are usually for application-to-application identification, authentication,
authorization, and encryption purposes. For example, applications can use Group or
User Data to send security certificates to each other for RSA-type security.

The value of the USER_DATA QosPolicy is sent to remote applications when they are
first discovered, as well as when the DomainParticipant, DataWriter or DataReader’s

Table 6.60 DDS_TypeSupportQosPolicy

Type Field Name Description

void * plugin_data
Value to pass into the type plug-in's serialization/dese-
rialization function.
6-163

Sending Data
set_qos() methods are called after changing the value of the USER_DATA. User code
can set listeners on the built-in DataReaders of the built-in Topics used by Connext to
propagate discovery information. Methods in the built-in topic listeners will be called
whenever new DomainParticipants, DataReaders, and DataWriters are found. Within the
user callback, you will have access to the USER_DATA that was set for the associated
Entity.

Currently, USER_DATA of the associated Entity is only propagated with the information
that declares a DomainParticipant, DataWriter or DataReader. Thus, you will need to
access the value of USER_DATA through DDS_ParticipantBuiltinTopicData,
DDS_PublicationBuiltinTopicData or DDS_SubscriptionBuiltinTopicData (see
Chapter 14: Built-In Topics).

The structure for the USER_DATA QosPolicy includes just one field, as seen in
Table 6.61. The field is a sequence of octets that translates to a contiguous buffer of bytes
whose contents and length is set by the user. The maximum size for the data are set in
the DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Sec-
tion 8.5.4).

This policy is similar to the GROUP_DATA QosPolicy (Section 6.4.4) and TOPIC_DATA
QosPolicy (Section 5.2.1) that apply to other types of Entities.

6.5.24.1 Example

One possible use of USER_DATA is to pass some credential or certificate that your sub-
scriber application can use to accept or reject communication with the DataWriters (or
vice versa, where the publisher application can validate the permission of DataReaders
to receive its data). Using the same method, an application (DomainParticipant) can
accept or reject all connections from another application. The value of the USER_DATA
of the DomainParticipant is propagated in the ‘user_data’ field of the
DDS_ParticipantBuiltinTopicData that is sent with the declaration of each DomainPar-
ticipant. Similarly, the value of the USER_DATA of the DataWriter is propagated in the
‘user_data’ field of the DDS_PublicationBuiltinTopicData that is sent with the declara-
tion of each DataWriter, and the value of the USER_DATA of the DataReader is propa-
gated in the ‘user_data’ field of the DDS_SubscriptionBuiltinTopicData that is sent
with the declaration of each DataReader.

When Connext discovers a DomainParticipant/DataWriter/DataReader, the application can
be notified of the discovery of the new entity and retrieve information about the Entity’s

Table 6.61 DDS_UserDataQosPolicy

Type Field Name Description

DDS_OctetSeq value Default: empty
6-164

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
QoS by reading the DCPSParticipant, DCPSPublication or DCPSSubscription built-in
topics (see Chapter 14: Built-In Topics). The user application can then examine the
USER_DATA field in the built-in Topic and decide whether or not the remote Entity
should be allowed to communicate with the local Entity. If communication is not
allowed, the application can use the DomainParticipant’s ignore_participant(),
ignore_publication() or ignore_subscription() operation to reject the newly discovered
remote entity as one with which the application allows Connext to communicate. See
Figure 14.2 for an example of how to do this.

6.5.24.2 Properties

This QosPolicy can be modified at any time. A change in the QosPolicy will cause Con-
next to send packets containing the new USER_DATA to all of the other applications in
the domain.

It can be set differently on the publishing and subscribing sides.

6.5.24.3 Related QosPolicies

❏ TOPIC_DATA QosPolicy (Section 5.2.1)

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 8.5.4)

6.5.24.4 Applicable Entities

❏ DataWriters (Section 6.3)

❏ DataReaders (Section 7.3)

❏ DomainParticipants (Section 8.3)

6.5.24.5 System Resource Considerations

As mentioned earlier, the maximum size of the USER_DATA is set in the
participant_user_data_max_length, writer_user_data_max_length, and
reader_user_data_max_length fields of the
DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4). Because Connext will allocated memory based on this value, you should only
increase this value if you need to. If your system does not use USER_DATA, then you
can set this value to 0 to save memory. Setting the value of the USER_DATA QosPolicy
to hold data longer than the value set in the [partici-
6-165

Sending Data
pant,writer,reader]_user_data_max_length field will result in failure and an
INCONSISTENT_QOS_POLICY return code.

However, should you decide to change the maximum size of USER_DATA, you must
make certain that all applications in the domain have changed the value of [partici-
pant,writer,reader]_user_data_max_length to be the same. If two applications have dif-
ferent limits on the size of USER_DATA, and one application sets the USER_DATA
QosPolicy to hold data that is greater than the maximum size set by another application,
then the DataWriters and DataReaders between the two applications will not connect. The
DomainParticipants may also reject connections from each other entirely. This is also true
for the GROUP_DATA (Section 6.4.4) and TOPIC_DATA (Section 5.2.1) QosPolicies.

6.5.25 WRITER_DATA_LIFECYCLE QoS Policy

This QoS policy controls how a DataWriter handles the lifecycle of the instances (keys)
that the DataWriter is registered to manage. This QoS policy includes the members in
Table 6.62.

You may use the DataWriter’s unregister() operation to indicate that the DataWriter no
longer wants to send data for a Topic. This QoS controls whether or not Connext auto-
matically also calls dispose() on the behalf of the DataWriter for the data.

The behavior controlled by this QoS applies on a per instance (key) basis for keyed Top-
ics, so that when a DataWriter unregisters an instance, Connext can automatically also
dispose that instance. This is the default behavior.

In many cases where the ownership of a Topic is EXCLUSIVE (see the OWNERSHIP
QosPolicy (Section 6.5.14)), DataWriters may want to relinquish ownership of a particu-
lar instance of the Topic to allow other DataWriters to send updates for the value of that

Table 6.62 DDS_WriterDataLifecycleQosPolicy

Type Field Name Description

DDS_Boolean
autodispose_unregistered_
instances

RTI_TRUE (default): instance is disposed
when unregistered.
RTI_FALSE: instance is not disposed when
unregistered.

struct
DDS_Duration_t

autopurge_unregistered_in
stance_delay

Determines how long the DataWriter will
maintain information regarding an instance
that has been unregistered.
After this time elapses, the DataWriter will
purge all internal information regarding the
instance, including historical samples.
6-166

DataWriter QosPolicies
6. Se

nd
ing

 D
a

ta
instance. In that case, you may only want a DataWriter to unregister an instance without
disposing the instance. Disposing an instance implies that the DataWriter no longer
owns that instance, but it is a stronger statement to say that instance no longer exists.

User applications may be coded to trigger on the disposal of instances, thus the ability
to unregister without disposing may be useful to properly maintain the semantic of dis-
posal.

When a DataWriter unregisters an instance, it means that this particular DataWriter has
no more information/data on this instance. When an instance is disposed, it means that
the instance is "dead"—there will no more information/data from any DataWriter on
this instance.

Setting autopurge_unregistered_instances to TRUE provides the same behavior as
explicitly calling one of the dispose() operations (Section 6.3.12.2) on the instance before
calling unregister() (Section 6.3.12.1), provided that
autodispose_unregistered_instances is set to TRUE (the default).

When you delete a DataWriter (Section 6.3.1), all of the instances managed by the
DataWriter are automatically unregistered. Therefore, this QoS policy determines
whether or not instances are disposed when the DataWriter is deleted by calling one of
these operations:

❏ Publisher’s delete_datawriter() (see Section 6.3.1)

❏ Publisher’s delete_contained_entities() (see Section 6.2.3.1)

❏ DomainParticipant’s delete_contained_entities() (see Section 8.3.3)

When autopurge_unregistered_instances is TRUE, the middleware will clean up all the
resources associated with an unregistered instance (most notably, the sample history of
non-volatile DataWriters) when all the instance’s samples have been acknowledged by
all its live DataReaders, including the sample that indicates the unregistration. By
default, autopurge_unregistered_instance_delay is disabled (the delay is INFINITE). If
the delay is set to zero, the DataWriter will clean up as soon as all the samples are
acknowledged after the call to unregister(). A non-zero value for the delay can be useful
in two ways:

1. To keep the historical samples for late-joiners for a period of time.

2. In the context of discovery, if the applications temporarily lose the connection
before the unregistration (which represents the remote entity destruction), to
provide the samples that indicate the dispose and unregister actions once the
connection is reestablished.
6-167

Sending Data
This delay can also be set for discovery data through these fields in the
DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3):

❏ publication_writer_data_lifecycle.autopurge_unregistered_instances_delay

❏ subscription_writer_data_lifecycle.autopurge_unregistered_instances_delay

6.5.25.1 Properties

It does not apply to DataReaders, so there is no requirement that the publishing and sub-
scribing sides use compatible values.

This QoS policy may be modified after the DataWriter is enabled.

6.5.25.2 Related QoS Policies

None.

6.5.25.3 Applicable Entities

❏ DataWriters (Section 6.3)

6.5.25.4 System Resource Considerations

None.

6.6 FlowControllers (DDS Extension)
Note: This section does not apply when using the separate add-on product, Ada 2005
Language Support, which does not support FlowControllers.

A FlowController is the object responsible for shaping the network traffic by determin-
ing when attached asynchronous DataWriters are allowed to write data.

You can use one of the built-in FlowControllers (and optionally modify their proper-
ties), create a custom FlowController by using the DomainParticipant’s
create_flowcontroller() operation (see Section 6.6.6), or create a custom FlowController
by using the DomainParticipant's PROPERTY QosPolicy (DDS Extension) (Section
6.5.16); see Creating and Configuring Custom FlowControllers with Property QoS (Sec-
tion 6.6.5).

To use a FlowController, you provide its name in the DataWriter’s PUBLISH_MODE
QosPolicy (DDS Extension) (Section 6.5.17).
6-168

FlowControllers (DDS Extension)
6. Se

nd
ing

 D
a

ta
❏ DDS_DEFAULT_FLOW_CONTROLLER_NAME

By default, flow control is disabled. That is, the built-in
DDS_DEFAULT_FLOW_CONTROLLER_NAME flow controller does not apply
any flow control. Instead, it allows data to be sent asynchronously as soon as it is
written by the DataWriter.

❏ DDS_FIXED_RATE_FLOW_CONTROLLER_NAME

The FIXED_RATE flow controller shapes the network traffic by allowing data to
be sent only once every second. Any accumulated samples destined for the same
destination are coalesced into as few network packets as possible.

❏ DDS_ON_DEMAND_FLOW_CONTROLLER_NAME

The ON_DEMAND flow controller allows data to be sent only when you call the
FlowController’s trigger_flow() operation. With each trigger, all accumulated
data since the previous trigger is sent (across all Publishers or DataWriters). In
other words, the network traffic shape is fully controlled by the user. Any accu-
mulated samples destined for the same destination are coalesced into as few net-
work packets as possible.

This external trigger source is ideal for users who want to implement some form
of closed-loop flow control or who want to only put data on the wire every so
many samples (e.g., with the number of samples based on
NDDS_Transport_Property_t’s gather_send_buffer_count_max).

The default property settings for the built-in FlowControllers are described in the online
documentation.

Samples written by an asynchronous DataWriter are not sent in the context of the write()
call. Instead, Connext puts the samples in a queue for future processing. The FlowCon-
troller associated with each asynchronous DataWriter determines when the samples are
actually sent.

Each FlowController maintains a separate FIFO queue for each unique destination
(remote application). Samples written by asynchronous DataWriters associated with the
FlowController are placed in the queues that correspond to the intended destinations of
the sample.

When tokens become available, a FlowController must decide which queue(s) to grant
tokens first. This is determined by the FlowController's scheduling_policy property
(see Table 6.63). Once a queue has been granted tokens, it is serviced by the asynchro-
nous publishing thread. The queued up samples will be coalesced and sent to the corre-
sponding destination. The number of samples sent depends on the data size and the
number of tokens granted.
6-169

Sending Data
Table 6.63 lists the properties for a FlowController.

Table 6.64 lists the operations available for a FlowController.

6.6.1 Flow Controller Scheduling Policies

❏ Round Robin (DDS_RR_FLOW_CONTROLLER_SCHED_POLICY) Perform
flow control in a round-robin (RR) fashion.

Whenever tokens become available, the FlowController distributes the tokens
uniformly across all of its (non-empty) destination queues. No destinations are
prioritized. Instead, all destinations are treated equally and are serviced in a
round-robin fashion.

❏ Earliest Deadline First (DDS_EDF_FLOW_CONTROLLER_SCHED_POLICY) Per-
form flow control in an earliest-deadline-first (EDF) fashion.

A sample's deadline is determined by the time it was written plus the latency
budget of the DataWriter at the time of the write call (as specified in the
DDS_LatencyBudgetQosPolicy). The relative priority of a flow controller's desti-
nation queue is determined by the earliest deadline across all samples it con-
tains.

Table 6.63 DDS_FlowControllerProperty_t

Type Field Name Description

DDS_FlowControllerSchedulingPolicy
 scheduling_
policy

Round robin, earliest dead-
line first, or highest priority
first. See Section 6.6.1.

DDS_FlowControllerTokenBucketProperty_t token_bucket See Section 6.6.3.

Table 6.64 FlowController Operations

Operation Description Reference

get_property
Get and Set the FlowController properties. Section 6.6.8

set_property

trigger_flow Provides an external trigger to the FlowController. Section 6.6.9

get_name Returns the name of the FlowController.
Section 6.6.10

get_participant
Returns the DomainParticipant to which the FlowCon-
troller belongs.
6-170

FlowControllers (DDS Extension)
6. Se

nd
ing

 D
a

ta
When tokens become available, the FlowController distributes tokens to the des-
tination queues in order of their priority. In other words, the queue containing
the sample with the earliest deadline is serviced first. The number of tokens
granted equals the number of tokens required to send the first sample in the
queue. Note that the priority of a queue may change as samples are sent (i.e.,
removed from the queue). If a sample must be sent to multiple destinations or
two samples have an equal deadline value, the corresponding destination
queues are serviced in a round-robin fashion.

With the default duration of 0 in the LatencyBudgetQosPolicy, using an
EDF_FLOW_CONTROLLER_SCHED_POLICY FlowController preserves the
order in which you call write() across the DataWriters associated with the Flow-
Controller.

Since the LatencyBudgetQosPolicy is mutable, a sample written second may
contain an earlier deadline than the sample written first if the
DDS_LatencyBudgetQosPolicy’s duration is sufficiently decreased in between
writing the two samples. In that case, if the first sample is not yet written (still in
queue waiting for its turn), it inherits the priority corresponding to the (earlier)
deadline from the second sample.

In other words, the priority of a destination queue is always determined by the
earliest deadline among all samples contained in the queue. This priority inheri-
tance approach is required in order to both honor the updated duration and to
adhere to the DataWriter in-order data delivery guarantee.

❏ Highest Priority First (DDS_HPF_FLOW_CONTROLLER_SCHED_POLICY) Per-
form flow control in an highest-priority-first (HPF) fashion.

The next destination queue to service is determined by the publication priority
of the DataWriter, the channel of a multi-channel DataWriter, or individual sam-
ple.

The relative priority of a flow controller's destination queue is determined by the
highest publication priority of all the samples it contains.

When tokens become available, the FlowController distributes tokens to the des-
tination queues in order of their publication priority. The queue containing the
sample with the highest publication priority is serviced first. The number of
tokens granted equals the number of tokens required to send the first sample in
the queue. Note that a queue’s priority may change as samples are sent (i.e., as
they are removed from the queue). If a sample must be sent to multiple destina-
tions or two samples have the same publication priority, the corresponding des-
tination queues are serviced in a round-robin fashion.
6-171

Sending Data
This priority inheritance approach is required to both honor the designated pub-
lication priority and adhere to the DataWriter’s in-order data delivery guarantee.

See also: Prioritized Samples (Section 6.6.4)

6.6.2 Managing Fast DataWriters When Using a FlowController

If a DataWriter is writing samples faster than its attached FlowController can throttle,
Connext may drop samples on the writer’s side. This happens because the samples may
be removed from the queue before the asynchronous publisher’s thread has a chance to
send them. To work around this problem, either:

❏ Use reliable communication to block the write() call and thereby throttle your
application.

❏ Do not allow the queue to fill up in the first place.

The queue should be sized large enough to handle expected write bursts, so that
no samples are dropped. Then in steady state, the FlowController will smooth
out these bursts and the queue will ideally have only one entry.

6.6.3 Token Bucket Properties

FlowControllers use a token-bucket approach for open-loop network flow control. The
flow control characteristics are determined by the token bucket properties. The proper-
ties are listed in Table 6.65; see the online documentation for their defaults and valid
ranges.

Table 6.65 DDS_FlowControllerTokenBucketProperty_t

Type Field Name Description

DDS_Long max_tokens
Maximum number of tokens than can accumu-
late in the token bucket. See Section 6.6.3.1.

DDS_Long tokens_added_per_period
The number of tokens added to the token
bucket per specified period. See Section 6.6.3.2.

DDS_Long tokens_leaked_per_period
The number of tokens removed from the token
bucket per specified period. See Section 6.6.3.3.

DDS_Duration_t period
Period for adding tokens to and removing
tokens from the bucket. See Section 6.6.3.4.

DDS_Long bytes_per_token
Maximum number of bytes allowed to send for
each token available. See Section 6.6.3.5.
6-172

FlowControllers (DDS Extension)
6. Se

nd
ing

 D
a

ta
Asynchronously published samples are queued up and transmitted based on the token
bucket flow control scheme. The token bucket contains tokens, each of which represents
a number of bytes. Samples can be sent only when there are sufficient tokens in the
bucket. As samples are sent, tokens are consumed. The number of tokens consumed is
proportional to the size of the data being sent. Tokens are replenished on a periodic
basis.

The rate at which tokens become available and other token bucket properties determine
the network traffic flow.

Note that if the same sample must be sent to multiple destinations, separate tokens are
required for each destination. Only when multiple samples are destined to the same
destination will they be coalesced and sent using the same token(s). In other words,
each token can only contribute to a single network packet.

6.6.3.1 max_tokens

The maximum number of tokens in the bucket will never exceed this value. Any excess
tokens are discarded. This property value, combined with bytes_per_token, determines
the maximum allowable data burst.

Use DDS_LENGTH_UNLIMITED to allow accumulation of an unlimited amount of
tokens (and therefore potentially an unlimited burst size).

6.6.3.2 tokens_added_per_period

A FlowController transmits data only when tokens are available. Tokens are periodi-
cally replenished. This field determines the number of tokens added to the token bucket
with each periodic replenishment.

Available tokens are distributed to associated DataWriters based on the
scheduling_policy. Use DDS_LENGTH_UNLIMITED to add the maximum number of
tokens allowed by max_tokens.

6.6.3.3 tokens_leaked_per_period

When tokens are replenished and there are sufficient tokens to send all samples in the
queue, this property determines whether any or all of the leftover tokens remain in the
bucket.

Use DDS_LENGTH_UNLIMITED to remove all excess tokens from the token bucket
once all samples have been sent. In other words, no token accumulation is allowed.
When new samples are written after tokens were purged, the earliest point in time at
which they can be sent is at the next periodic replenishment.
6-173

Sending Data
6.6.3.4 period

This field determines the period by which tokens are added or removed from the token
bucket.

The special value DDS_DURATION_INFINITE can be used to create an on-demand
FlowController, for which tokens are no longer replenished periodically. Instead, tokens
must be added explicitly by calling the FlowController’s trigger_flow() operation. This
external trigger adds tokens_added_per_period tokens each time it is called (subject to
the other property settings).

Note: Once period is set to DDS_DURATION_INFINITE, it can no longer be reverted to
a finite period.

6.6.3.5 bytes_per_token

This field determines the number of bytes that can actually be transmitted based on the
number of tokens.

Tokens are always consumed in whole by each DataWriter. That is, in cases where
bytes_per_token is greater than the sample size, multiple samples may be sent to the
same destination using a single token (regardless of the scheduling_policy).

Where fragmentation is required, the fragment size will be either (a) bytes_per_token
or (b) the minimum of the largest message sizes across all transports installed with the
DataWriter, whichever is less.

Use DDS_LENGTH_UNLIMITED to indicate that an unlimited number of bytes can be
transmitted per token. In other words, a single token allows the recipient DataWriter to
transmit all its queued samples to a single destination. A separate token is required to
send to each additional destination.

6.6.4 Prioritized Samples

Prioritized Samples is a feature that allows you to prioritize traffic that is in competition
for transmission resources. The granularity of this prioritization may be by DataWriter,
by instance, or by individual sample.

Prioritized Samples can improve latency in the following cases:

❏ Low-Availability Links

With low-availability communication, unsent samples may accumulate while
the link is unavailable. When the link is restored, a large number of samples may
be waiting for transmission. High priority samples will be sent first.
6-174

FlowControllers (DDS Extension)
6. Se

nd
ing

 D
a

ta
❏ Low-Bandwidth Links

With low-bandwidth communication, a temporary backlog may occur or the link
may become congested with large samples. High-priority samples will be sent at
the first available gap, between the fragments of a large low-priority sample.

❏ Prioritized Topics

With limited bandwidth communication, some topics may be deemed to be of
higher priority than others on an ongoing basis, and samples written to some
topics should be given precedence over others on transmission.

❏ High Priority Events

Due to external rules or content analysis (e.g., perimeter violation or identifica-
tion as a threat), the priority of samples is dynamically determined, and the pri-
ority assigned a given sample will reflect the urgency of its delivery.

To configure a DataWriter to use prioritized samples:

❏ Create a FlowController with the scheduling_policy property set to
DDS_HPF_FLOW_CONTROLLER_SCHED_POLICY.

❏ Create a DataWriter with the PUBLISH_MODE QosPolicy (DDS Extension) (Sec-
tion 6.5.17) kind set to ASYNCHRONOUS and flow_controller_name set to the
name of the FlowController.

A single FlowController may perform traffic shaping for multiple DataWriters and mul-
tiple DataWriter channels. The FlowController’s configuration determines how often
publication resources are scheduled, how much data may be sent per period, and other
transmission characteristics that determine the ultimate performance of prioritized sam-
ples.

When working with prioritized samples, you should use these operations, which allow
you to specify priority:

❏ write_w_params() (see Writing Data (Section 6.3.8))

❏ unregister_instance_w_params() (see Registering and Unregistering Instances
(Section 6.3.12.1))

❏ dispose_w_params() (see Disposing of Data (Section 6.3.12.2))

If you use write(), unregister(), or dispose() instead of the _w_params() versions, the
affected sample is assigned priority 0 (undefined priority). If you are using a multi-
channel DataWriter with a priority filter, and you have no channel for priority 0, the
sample will be discarded.
6-175

Sending Data
6.6.4.1 Designating Priorities

For DataWriters and DataWriter channels, valid publication priority values are:

❏ DDS_PUBLICATION_PRIORITY_UNDEFINED

❏ DDS_PUBLICATION_PRIORITY_AUTOMATIC

❏ Positive integers excluding zero

For individual samples, valid publication priority values are 0 and positive integers.

There are three ways to set the publication priority of a DataWriter or DataWriter chan-
nel:

1. For a DataWriter, publication priority is set in the priority field of its
PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.17). For a multi-chan-
nel DataWriter (see MULTI_CHANNEL QosPolicy (DDS Extension) (Section
6.5.13)), this value will be the default publication priority for any member chan-
nel that has not been assigned a specific value.

2. For a channel of a Multi-channel DataWriter, publication priority can be set in the
DataWriter’s MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.13) in
channels[].priority.

3. If a DataWriter or a channel of a Multi-channel DataWriter is configured for publi-
cation priority inheritance (DDS_PUBLICATION_PRIORITY_AUTOMATIC), its
publication priority is the highest priority among all the samples currently in the
publication queue. When using publication priority inheritance, the publication
priorities of individual samples are set by calling the write_w_params() opera-
tion, which takes a priority parameter.

The effective publication priority is determined from the interaction of the DataWriter,
channel, and sample publication priorities, as shown in Table 6.66.

6.6.4.2 Priority-Based Filtering

The configuration methods explained above are sufficient to create multiple DataWrit-
ers, each with its own assigned priority, all using the same FlowController configured for
publication priority-based scheduling. Such a configuration is sufficient to assign differ-
ent priorities to individual topics, but it does not allow different publication priorities to
be assigned to published data within a Topic.

To assign different priorities to data within a DataWriter, you will need to use a Multi-
channel DataWriter and configure the channels with different priorities. Configuring the
publication priorities of DataWriter channels is explained above. To associate different
priorities of data with different publication channels, configure the chan-
6-176

FlowControllers (DDS Extension)
6. Se

nd
ing

 D
a

ta
nel[].filter_expression in the DataWriter’s MULTI_CHANNEL QosPolicy (DDS Exten-
sion) (Section 6.5.13). The filtering criteria that is available for evaluation by each
channel is determined by the filter type, which is configured with the DataWriter’s
filter_name (also in the MULTI_CHANNEL QosPolicy (DDS Extension) (Section
6.5.13)).

For example, using the built-in SQL-based content filter allows channel membership to
be determined based on the content of each sample.

If you do not want to embed priority criteria within each sample, you can use a built-in
filter named DDS_PRIFILTER_NAME that uses the publication priority that is provided
when you call write_w_params() (see Writing Data (Section 6.3.8)). The filter’s expres-
sion syntax is:

@priority OP VAL

where OP can be < , <= , > , >= , = , or <> (standard relational operators), and VAL is a
positive integer.

The filter supports multiple expressions, combined with the conjunctions AND and OR.
You can use parentheses to disambiguate combinations of AND and OR in the same
expression. For example:

@priority = 2 OR (@priority > 6 AND @priority < 10)

Table 6.66 Effective Publication Priority of

Priority Setting Combinations

Writer
Priority

Undefined Don’t care AUTOMATIC Don’t care
Designated
positive inte-
ger > 0

Channel
Priority

Undefined AUTOMATIC Undefined
Designated
positive inte-
ger > 0

Undefined

Sample
Priority

Don’t care
Designated
positive inte-
ger > 0

Designated
positive inte-
ger > 0

Don’t care Don’t care

Effective
Priority

Lowest
Priority

Sample
Prioritya

Sample
Prioritya

Channel
Priority

Writer
Priority

a. Highest sample priority among all samples currently in the publication queue.
6-177

Sending Data
6.6.5 Creating and Configuring Custom FlowControllers with Property QoS

You can create and configure FlowControllers using the PROPERTY QosPolicy (DDS
Extension) (Section 6.5.16). The properties must have a prefix of
“dds.flow_controller.token_bucket”, followed by the name of the FlowController being
created or configured. For example, if you want to create/configure a FlowController
named MyFC, all the properties for MyFC should have the prefix
“dds.flow_controller.token_bucket.MyFC“.

Table 6.67 lists the properties that can be set for FlowControllers in the DomainPartici-
pant's PROPERTY QosPolicy (DDS Extension) (Section 6.5.16). A FlowController with
the name "dds.flow_controller.token_bucket.<your flow controllername>" will be implic-
itly created when at least one property using that prefix is specified. Then, to link a
DataWriter to your FlowController, use "dds.flow_controller.token_bucket.<your flow
controllername>" in the DataWriter's publish_mode.flow_controller_name.

Table 6.67 FlowController Properties

Property Name
prefix with

‘dds.flow_controller.token_bucket.
<your flow controller name>

Property Value Description

scheduling_policy

Specifies the scheduling policy to be used. (See Flow
Controller Scheduling Policies (Section 6.6.1)) May be:
DDS_RR_FLOW_CONTROLLER_SCHED_POLICY
DDS_EDF_FLOW_CONTROLLER_SCHED_POLICY
DDS_HPF_FLOW_CONTROLLER_SCHED_POLICY

token_bucket.max_tokens
Maximum number of tokens than can accumulate in the
token bucket.
Use -1 for unlimited.

token_bucket.tokens_added_per_period
Number of tokens added to the token bucket per speci-
fied period.
Use -1 for unlimited.

token_bucket.tokens_leaked_per_period
Number of tokens removed from the token bucket per
specified period.
Use -1 for unlimited.

token_bucket.period.sec
Period for adding tokens to and removing tokens from
the bucket in seconds.
6-178

FlowControllers (DDS Extension)
6. Se

nd
ing

 D
a

ta
6.6.5.1 Example

The following example shows how to set FlowController properties.

Note: Some lines in this example, such as dds.flow_controller.token_bucket.MyFlow-
Controller.scheduling_policy, are too long to fit on the page as one line; however in your
XML file, they would each need to be on a single line.

<participant_qos>
<property>

 <value>
 <element>

<name>
dds.flow_controller.token_bucket.MyFlowController.
scheduling_policy

</name>

<value>DDS_RR_FLOW_CONTROLLER_SCHED_POLICY</value>
</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.
token_bucket.period.sec

</name>
<value>100</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.
token_bucket.period.nanosec

</name>
<value>0</value>

</element>
<element>

token_bucket.period.nanosec
Period for adding tokens to and removing tokens from
the bucket in nanoseconds.

token_bucket.bytes_per_token
Maximum number of bytes allowed to send for each
token available.

Table 6.67 FlowController Properties

Property Name
prefix with

‘dds.flow_controller.token_bucket.
<your flow controller name>

Property Value Description
6-179

Sending Data
<name>
dds.flow_controller.token_bucket.MyFlowController.
token_bucket.tokens_added_per_period

</name>
<value>2</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.
token_bucket.tokens_leaked_per_period

</name>
<value>2</value>

</element>
<element>

<name>
dds.flow_controller.token_bucket.MyFlowController.
token_bucket.bytes_per_token

</name>
<value>1024</value>

</element>
</value>

</property>
</participant_qos>

<datawriter_qos>
<publish_mode>

<flow_controller_name>
dds.flow_controller.token_bucket.MyFlowController

</flow_controller_name>
<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>

</publish_mode>
</datawriter_qos>

6.6.6 Creating and Deleting FlowControllers

If you do not want to use one of the three built-in FlowControllers described in Flow-
Controllers (DDS Extension) (Section 6.6), you can create your own with the DomainPar-
ticipant’s create_flowcontroller() operation:

DDSFlowController* create_flowcontroller
(const char * name,
const DDS_FlowControllerProperty_t & property)
6-180

FlowControllers (DDS Extension)
6. Se

nd
ing

 D
a

ta
To associate a FlowController with a DataWriter, you set the FlowController’s name in
the PUBLISH_MODE QosPolicy (DDS Extension) (Section 6.5.17)
(flow_controller_name).

A single FlowController may service multiple DataWriters, even if they belong to a dif-
ferent Publisher. The FlowController’s property structure determines how the FlowCon-
troller shapes the network traffic.

name name of the FlowController to create. A DataWriter is associated with a DDS-
FlowController by name. Limited to 255 characters.

property Properties to be used for creating the FlowController. The special value
DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT can be used to indicate that
the FlowController should be created with the default
DDS_FlowControllerProperty_t set in the DomainParticipant.

Note: If you use DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT, it is not
safe to create the flow controller while another thread may be simultaneously call-
ing set_default_flowcontroller_property() or looking for that flow controller
with lookup_flowcontroller().

To delete an existing FlowController, use the DomainParticipant’s
delete_flowcontroller() operation:

DDS_ReturnCode_t delete_flowcontroller (DDSFlowController * fc)

The FlowController must belong this the DomainParticipant and not have any attached
DataWriters or the delete call will return an error (PRECONDITION_NOT_MET).

6.6.7 Getting/Setting Default FlowController Properties

To get the default DDS_FlowControllerProperty_t values, use this operation on the
DomainParticipant:

DDS_ReturnCode_t get_default_flowcontroller_property
(DDS_FlowControllerProperty_t & property)

The retrieved property will match the set of values specified on the last successful call to
the DomainParticipant’s set_default_flowcontroller_property(), or else, if the call was
never made, the default values listed in DDS_FlowControllerProperty_t.

To change the default DDS_FlowControllerProperty_t values used when a new Flow-
Controller is created, use this operation on the DomainParticipant:

DDS_ReturnCode_t set_default_flowcontroller_property
(const DDS_FlowControllerProperty_t & property)
6-181

Sending Data
The special value DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT may be passed
for the property to indicate that the default property should be reset to the default val-
ues the factory would use if set_default_flowcontroller_property() had never been
called.

Note: It is not safe to set the default FlowController properties while another thread
may be simultaneously calling get_default_flowcontroller_property(),
set_default_flowcontroller_property(), or create_flowcontroller() with
DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT as the qos parameter. It is also
not safe to get the default FlowController properties while another thread may be
simultaneously calling get_default_flowcontroller_property().

6.6.8 Getting/Setting Properties for a Specific FlowController

To get the properties of a FlowController, use the FlowController’s get_property() oper-
ation:

DDS_ReturnCode_t DDSFlowController::get_property
(struct DDS_FlowControllerProperty_t & property)

To change the properties of a FlowController, use the FlowController’s set_property()
operation:

DDS_ReturnCode_t DDSFlowController::set_property
 (const struct DDS_FlowControllerProperty_t & property)

Once a FlowController has been instantiated, only its token_bucket property can be
changed. The scheduling_policy is immutable. A new token.period only takes effect at
the next scheduled token distribution time (as determined by its previous value).

The special value DDS_FLOW_CONTROLLER_PROPERTY_DEFAULT can be used to
match the current default properties set in the DomainParticipant.

6.6.9 Adding an External Trigger

Typically, a FlowController uses an internal trigger to periodically replenish its tokens.
The period by which this trigger is called is determined by the period property setting.

The trigger_flow() function provides an additional, external trigger to the FlowCon-
troller. This trigger adds tokens_added_per_period tokens each time it is called (subject
to the other property settings of the FlowController).

DDS_ReturnCode_t trigger_flow ()
6-182

FlowControllers (DDS Extension)
6. Se

nd
ing

 D
a

ta
An on-demand FlowController can be created with a DDS_DURATION_INFINITE as
period, in which case the only trigger source is external (i.e. the FlowController is solely
triggered by the user on demand).

trigger_flow() can be called on both a strict on-demand FlowController and a hybrid
FlowController (internally and externally triggered).

6.6.10 Other FlowController Operations

If you have the FlowController object and need its name, call the FlowController’s
get_name() operation:

const char* DDSFlowController::get_name()

Conversely, if you have the name of the FlowController and need the FlowController
object, call the DomainPartipant’s lookup_flowcontroller() operation:

DDSFlowController* lookup_flowcontroller (const char * name)

To get a FlowController’s DomainParticipant, call the FlowController’s get_participant()
operation:

DDSDomainParticipant* get_participant ()

Note: It is not safe to lookup a flow controller description while another thread is creat-
ing that flow controller.
6-183

Sending Data
6-184

7. Re
c

e
iving

 D
a

ta
Chapter 7 Receiving Data

This chapter discusses how to create, configure, and use Subscribers and DataReaders to
receive data. It describes how these objects interact, as well as the types of operations
that are available for them.

This chapter includes the following sections:

❏ Preview: Steps to Receiving Data (Section 7.1)

❏ Subscribers (Section 7.2)

❏ DataReaders (Section 7.3)

❏ Using DataReaders to Access Data (Read & Take) (Section 7.4)

❏ Subscriber QosPolicies (Section 7.5)

❏ DataReader QosPolicies (Section 7.6)

The goal of this chapter is to help you become familiar with the Entities you need for
receiving data. For up-to-date details such as formal parameters and return codes on
any mentioned operations, please see the online documentation.

7.1 Preview: Steps to Receiving Data
There are three ways to receive data:

❏ Your application can explicitly check for new data by calling a DataReader’s
read() or take() method. This method is also known as polling for data.
7-1

Receiving Data
❏ Your application can be notified asynchronously whenever new data samples
arrive—this is done with a Listener on either the Subscriber or the DataReader.
Connext will invoke the Listener’s callback routine when there is new data.
Within the callback routine, user code can access the data by calling read() or
take() on the DataReader. This method is the way for your application to receive
data with the least amount of latency.

❏ Your application can wait for new data by using Conditions and a WaitSet, then
calling wait(). Connext will block your application’s thread until the criteria (such
as the arrival of samples, or a specific status) set in the Condition becomes true.
Then your application resumes and can access the data with read() or take().

The DataReader’s read() operation gives your application a copy of the data and leaves
the data in the DataReader’s receive queue. The DataReader’s take() operation removes
data from the receive queue before giving it to your application.

See Section 7.4 for details on using DataReaders to access received data.

See Section 4.6 for details on using Conditions and WaitSets.

To prepare to receive data, create and configure the required Entities:

1. Create a DomainParticipant.

2. Register user data types1 with the DomainParticipant. For example, the ‘FooData-
Type’.

3. Use the DomainParticipant to create a Topic with the registered data type.

4. Optionally2, use the DomainParticipant to create a Subscriber.

5. Use the Subscriber or DomainParticipant to create a DataReader for the Topic.

6. Use a type-safe method to cast the generic DataReader created by the Subscriber to
a type-specific DataReader. For example, ‘FooDataReader’.

Now use one of the following mechanisms to receive data.

To receive data samples by polling for new data:

❏ Using a FooDataReader, use the read() or take() operations to access the data
samples that have been received and stored for the DataReader. These operations
can be invoked at any time, even if the receive queue is empty.

1. Type registration is not required for built-in types (see Section 3.2.1).
2. You are not required to explicitly create a Subscriber; instead, you can use the 'implicit Subscriber' created

from the DomainParticipant. See Creating Subscribers Explicitly vs. Implicitly (Section 7.2.1).
7-2

Preview: Steps to Receiving Data
7. Re

c
e

iving
 D

a
ta
To receive data samples asynchronously:

❏ Install a Listener on the DataReader or Subscriber that will be called back by an
internal Connext thread when new data samples arrive for the DataReader.

1. Create a DDSDataReaderListener for the FooDataReader or a DDSSubscriberLis-
tener for Subscriber. In C++, C++/CLI, C# and Java, you must derive your own
Listener class from those base classes. In C, you must create the individual
functions and store them in a structure.

If you created a DDSDataReaderListener with the on_data_available() callback
enabled: on_data_available() will be called when new data arrives for that
DataReader.

If you created a DDSSubscriberListener with the on_data_on_readers() call-
back enabled: on_data_on_readers() will be called when data arrives for any
DataReader created by the Subscriber.

2. Install the Listener on either the FooDataReader or Subscriber.

For the DataReader, the Listener should be installed to handle changes in the
DATA_AVAILABLE status.

For the Subscriber, the Listener should be installed to handle changes in the
DATA_ON_READERS status.

3. Only 1 Listener will be called back when new data arrives for a DataReader.

Connext will call the Subscriber’s Listener if it is installed. Otherwise, the
DataReader’s Listener is called if it is installed. That is, the
on_data_on_readers() operation takes precedence over the
on_data_available() operation.

If neither Listeners are installed or neither Listeners are enabled to handle their
respective statuses, then Connext will not call any user functions when new
data arrives for the DataReader.

4. In the on_data_available() method of the DDSDataReaderListener, invoke
read() or take() on the FooDataReader to access the data.

If the on_data_on_readers() method of the DDSSubscriberListener is called,
the code can invoke read() or take() directly on the Subscriber’s DataReaders
that have received new data. Alternatively, the code can invoke the Sub-
scriber’s notify_datareaders() operation. This will in turn call the
on_data_available() methods of the DataReaderListeners (if installed and
enabled) for each of the DataReaders that have received new data samples.
7-3

Receiving Data
To wait (block) until data samples arrive:

1. Use the DataReader to create a ReadCondition that describes the samples for which
you want to wait. For example, you can specify that you want to wait for never-
before-seen samples from DataReaders that are still considered to be ‘alive.’

Alternatively, you can create a StatusCondition that specifies you want to wait for
the ON_DATA_AVAILABLE status.

2. Create a WaitSet.

3. Attach the ReadCondition or StatusCondition to the WaitSet.

4. Call the WaitSet’s wait() operation, specifying how long you are willing to wait
for the desired samples. When wait() returns, it will indicate that it timed out, or
that the attached Condition become true (and therefore the desired samples are
available).

5. Using a FooDataReader, use the read() or take() operations to access the data
samples that have been received and stored for the DataReader.

7.2 Subscribers
An application that intends to subscribe to information needs the following Entities:
DomainParticipant, Topic, Subscriber, and DataReader. All Entities have a corresponding
specialized Listener and a set of QosPolicies. The Listener is how Connext notifies your
application of status changes relevant to the Entity. The QosPolicies allow your applica-
tion to configure the behavior and resources of the Entity.

❏ The DomainParticipant defines the domain on which the information will be
available.

❏ The Topic defines the name of the data to be subscribed, as well as the type (for-
mat) of the data itself.

❏ The DataReader is the Entity used by the application to subscribe to updated val-
ues of the data. The DataReader is bound at creation time to a Topic, thus specify-
ing the named and typed data stream to which it is subscribed. The application
uses the DataWriter’s read() or take() operation to access data samples received
for the Topic.
7-4

Subscribers
7. Re

c
e

iving
 D

a
ta
❏ The Subscriber manages the activities of several DataReader entities. The applica-
tion receives data using a DataReader that belongs to a Subscriber. However, the
Subscriber will determine when the data received from applications is actually
available for access through the DataReader. Depending on the settings of various
QosPolicies of the Subscriber and DataReader, data may be buffered until data
samples for associated DataReaders are also received. By default, the data is avail-
able to the application as soon as it is received.

For more information, see Creating Subscribers Explicitly vs. Implicitly (Section
7.2.1).

The UML diagram in Figure 7.1 shows how these Entities are related as well as the
methods defined for each Entity.

Subscribers are used to perform the operations listed in Table 7.1. For details such as for-
mal parameters and return codes, please see the online documentation. Otherwise, you
can find more information about the operations by looking in the section listed under
the Reference column.

Note: Some operations cannot be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).

7.2.1 Creating Subscribers Explicitly vs. Implicitly

To receive data, your application must have a Subscriber. However, you are not required
to explicitly create a Subscriber. If you do not create one, the middleware will implicitly
create a Subscriber the first time you create a DataReader using the DomainParticipant’s
operations. It will be created with default QoS (DDS_SUBCRIBER_QOS_DEFAULT)
and no Listener. The 'implicit Subscriber' can be accessed using the DomainParticipant’s
get_implicit_subscriber() operation (see Section 8.3.9).You can use this ‘implicit Sub-
scriber’ just like any other Subscriber (it has the same operations, QosPolicies, etc.). So
you can change the mutable QoS and set a Listener if desired.

A Subscriber (implicit or explicit) gets its own default QoS and the default QoS for its
child DataReaders from the DomainParticipant. These default QoS are set when the Sub-
scriber is created. (This is true for Publishers and DataWriters, too.)

DataReaders are created by calling create_datareader() or
create_datareader_with_profile()—these operations exist for DomainParticipants and
Subscribers. If you use the DomainParticipant to create a DataReader, it will belong to the
implicit Subscriber. If you use a Subscriber to create a DataReader, it will belong to that
Subscriber.

The middleware will use the same implicit Subscriber for all DataReaders that are created
using the DomainParticipant’s operations.
7-5

Receiving Data
Figure 7.1 Subscription Module
7-6

Subscribers
7. Re

c
e

iving
 D

a
ta
Table 7.1 Subscriber Operations

Working
with ... Operation Description Reference

DataReaders

begin_access
Indicates that the application is about to access
the data samples in the DataReaders of the Sub-
scriber.

Section 7.2.5

create_datareader Creates a DataReader.
Section 7.3.1create_datareader_

with_profile
Creates a DataReader with QoS from a specified
QoS profile.

copy_from_topic_qos
Copies relevant QosPolicies from a Topic into a
DataReaderQoS structure.

Section 7.2.4.5

delete_contained_
entities

Deletes all the DataReaders that were created by
the Subscriber. Also deletes the corresponding
ReadConditions created by the contained DataRead-
ers.

Section 7.2.3.1

delete_datareader Deletes a specific DataReader. Section 7.3.3

end_access
Indicates that the application is done accessing
the data samples in the DataReaders of the Sub-
scriber.

Section 7.2.5

get_all_datareaders
Retrieves all the DataReaders created from this
Subscriber.

Section 7.3.2

get_datareaders
Returns a list of DataReaders that contain samples
with the specified sample_states, view_states
and instance_states.

Section 7.2.7

get_default_datareader
_qos

Copies the Subscriber’s default DataReaderQos
values into a DataReaderQos structure.

Section 7.2.4

get_status_changes Gets all status changes. Section 4.1.4

lookup_datareader
Retrieves a DataReader previously created for a
specific Topic.

Section 7.2.8

notify_datareaders
Invokes the on_data_available() operation for
attached Listeners of DataReaders that have new
data samples.

Section 7.2.6

set_default_datareader_
qos

Sets or changes the Subscriber’s default DataRead-
erQoS values.

Section 7.2.4
7-7

Receiving Data
Having the middleware implicitly create a Subscriber allows you to skip the step of cre-
ating a Subscriber. However, having all your DataReaders belong to the same Sub-
scriber can reduce the concurrency of the system because all the read operations will be
serialized.

Libraries
and Profiles

get_default_library Gets the Subscriber’s default QoS profile library.

Section 7.2.4.3

get_default_profile Gets the Subscriber’s default QoS profile.

get_default_profile_
library

Gets the library that contains the Subscriber’s
default QoS profile.

set_default_library Sets the default library for a Subscriber.

set_default_profile Sets the default profile for a Subscriber.

Participants get_participant Gets the Subscriber’s DomainParticipant. Section 7.2.8

Subscribers

enable Enables the Subscriber. Section 4.1.2

get_listener Gets the currently installed Listener. Section 7.2.6

get_qos
Gets the Subscriber’s current QosPolicy settings.
This is most often used in preparation for calling
set_qos.

Section 7.2.4.2

set_listener
Sets the Subscriber’s Listener. If you created the
Subscriber without a Listener, you can use this
operation to add one later.

Section 7.2.6

set_qos

Sets the Subscriber’s QoS. You can use this opera-
tion to change the values for the Subscriber’s
QosPolicies. Note, however, that not all QosPoli-
cies can be changed after the Subscriber has been
created.

Section 7.2.4.2

set_qos_with_profile Sets the Subscriber’s QoS based on a QoS profile. Section 7.2.4.2

Table 7.1 Subscriber Operations

Working
with ... Operation Description Reference
7-8

Subscribers
7. Re

c
e

iving
 D

a
ta
7.2.2 Creating Subscribers

Before you can explicitly create a Subscriber, you need a DomainParticipant (Section 8.3).
To create a Subscriber, use the DomainParticipant’s create_subscriber() or
create_subscriber_with_profile() operation:

DDSSubscriber* create_subscriber(
const DDS_SubscriberQos &qos,
DDSSubscriberListener *listener,
DDS_StatusMask mask)

DDSSubscriber* create_subscriber_with_profile (
const char * library_name,
const char * profile_name,
DDSSubscriberListener * listener,
DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach,
you can change QoS settings without recompiling the application. For details, see
Chapter 15: Configuring QoS with XML.

qos If you want the default QoS settings (described in the online documentation), use
DDS_SUBSCRIBER_QOS_DEFAULT for this parameter (see Figure 7.2). If you
want to customize any of the QosPolicies, supply a QoS structure (see Figure 7.3).
The QoS structure for a Subscriber is described in Section 7.5.

Note: If you use DDS_SUBSCRIBER_QOS_DEFAULT, it is not safe to create
the Subscriber while another thread may be simultaneously calling
set_default_subscriber_qos().

listener Listeners are callback routines. Connext uses them to notify your application
when specific events (new data samples arrive and status changes) occur with
respect to the Subscriber or the DataReaders created by the Subscriber. The listener
parameter may be set to NULL if you do not want to install a Listener. If you use
NULL, the Listener of the DomainParticipant to which the Subscriber belongs will be
used instead (if it is set). For more information on SubscriberListeners, see
Section 7.2.6.

mask This bit-mask indicates which status changes will cause the Subscriber’s Listener
to be invoked. The bits set in the mask must have corresponding callbacks imple-
mented in the Listener. If you use NULL for the Listener, use
DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all
callbacks, use DDS_STATUS_MASK_ALL. For information on Status, see Listen-
ers (Section 4.4).
7-9

Receiving Data
library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section
15.9).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS
Profiles (Section 15.8).

For more examples, see Configuring QoS Settings when the Subscriber is Created (Sec-
tion 7.2.4.1).

After you create a Subscriber, the next step is to use the Subscriber to create a DataReader
for each Topic, see Section 7.3.1. For a list of operations you can perform with a Sub-
scriber, see Table 7.1.

7.2.3 Deleting Subscribers

This section applies to both implicitly and explicitly created Subscribers.

To delete a Subscriber:

1. You must first delete all DataReaders that were created with the Subscriber. Use
the Subscriber’s delete_datareader() operation (Section 7.3.1) to delete them one
at a time, or use the delete_contained_entities() operation (Section 7.2.3.1) to
delete them all at the same time.

 DDS_ReturnCode_t delete_datareader (DDSDataReader *a_datareader)

2. Delete the Subscriber by using the DomainParticipant’s delete_subscriber() opera-
tion ().

Note: A Subscriber cannot be deleted within a listener callback, see Restricted Operations
in Listener Callbacks (Section 4.5.1).

Figure 7.2 Creating a Subscriber with Default QosPolicies

// create the subscriber
DDSSubscriber* subscriber =

participant->create_subscriber(DDS_SUBSCRIBER_QOS_DEFAULT,
NULL,
DDS_STATUS_MASK_NONE);

if (subscriber == NULL) {
 // handle error
}

7-10

Subscribers
7. Re

c
e

iving
 D

a
ta
7.2.3.1 Deleting Contained DataReaders

The Subscriber’s delete_contained_entities() operation deletes all the DataReaders that
were created by the Subscriber. It also deletes the ReadConditions created by each con-
tained DataReader.

DDS_ReturnCode_t DDSSubscriber::delete_contained_entities ()

After this operation returns successfully, the application may delete the Subscriber (see
Section 7.2.3).

The operation will return PRECONDITION_NOT_MET if any of the contained entities
cannot be deleted. This will occur, for example, if a contained DataReader cannot be
deleted because the application has called read() but has not called the corresponding
return_loan() operation to return the loaned samples.

7.2.4 Setting Subscriber QosPolicies

A Subscriber’s QosPolicies control its behavior. Think of the policies as the configuration
and behavior ‘properties’ for the Subscriber. The DDS_SubscriberQos structure has the
following format:

struct DDS_SubscriberQos {
DDS_PresentationQosPolicy presentation;
DDS_PartitionQosPolicy partition;
DDS_GroupDataQosPolicy group_data;
DDS_EntityFactoryQosPolicy entity_factory;
DDS_ExclusiveAreaQosPolicy exclusive_area;

};

Note: set_qos() cannot always be used by a Listener, see Restricted Operations in Lis-
tener Callbacks (Section 4.5.1).

Table 7.2 summarizes the meaning of each policy. Subscribers have the same set of
QosPolicies as Publishers; they are described in detail in Publisher/Subscriber QosPoli-
cies (Section 6.4). For information on why you would want to change a particular
QosPolicy, see the referenced section. For defaults and valid ranges, please refer to the
online documentation for each policy.

7.2.4.1 Configuring QoS Settings when the Subscriber is Created

As described in Creating Subscribers (Section 7.2.2), there are different ways to create a
Subscriber, depending on how you want to specify its QoS (with or without a QoS Profile).
7-11

Receiving Data
❏ In Figure 7.2 on page 7-10 we saw an example of how to explicitly create a Sub-
scriber with default QosPolicies. It used the special constant,
DDS_SUBSCRIBER_QOS_DEFAULT, which indicates that the default QoS val-
ues for a Subscriber should be used. The default Subscriber QosPolicies are con-
figured in the DomainParticipant; you can change them with the
DomainParticipant’s set_default_subscriber_qos() or
set_default_subscriber_qos_with_profile() operation (see Section 8.3.6.4).

❏ To create a Subscriber with non-default QoS settings, without using a QoS profile,
see Figure 7.3 on page 7-13. It uses the DomainParticipant’s
get_default_subscriber_qos() method to initialize a DDS_SubscriberQos struc-
ture. Then the policies are modified from their default values before the QoS
structure is passed to create_subscriber().

❏ You can also create a Subscriber and specify its QoS settings via a QoS Profile. To
do so, call create_subscriber_with_profile(), as seen in Figure 7.4 on page 7-13.

❏ If you want to use a QoS profile, but then make some changes to the QoS before
creating the Subscriber, call get_subscriber_qos_from_profile(), modify the QoS
and use the modified QoS structure when calling create_subscriber(), as seen in
Figure 7.5 on page 7-14.

For more information, see Creating Subscribers (Section 7.2.2) and Chapter 15: Config-
uring QoS with XML.

Table 7.2 Subscriber QosPolicies

QosPolicy Description

ENTITYFACTORY QosPolicy
 (Section 6.4.2)

Whether or not new entities created from this entity will start
out as ‘enabled.’

EXCLUSIVE_AREA QosPolicy
(DDS Extension)
 (Section 6.4.3)

Whether or not the entity uses a multi-thread safe region with
deadlock protection.

GROUP_DATA QosPolicy
 (Section 6.4.4)

A place to pass group-level information among applications.
Usage is application-dependent.

PARTITION QosPolicy
 (Section 6.4.5)

Set of strings that introduces a logical partition among Topics
visible by Publisher/Subscriber.

PRESENTATION QosPolicy
 (Section 6.4.6)

The order in which instance changes are presented to the Sub-
scriber. By default, no order is used.
7-12

Subscribers
7. Re

c
e

iving
 D

a
ta
7.2.4.2 Changing QoS Settings After the Subscriber Has Been Created

There are 2 ways to change an existing Subscriber’s QoS after it is has been created—
again depending on whether or not you are using a QoS Profile.

DDS_SubscriberQos subscriber_qos;1

// get defaults
if (participant->get_default_subscriber_qos(subscriber_qos) !=

DDS_RETCODE_OK){
// handle error

}
// make QoS changes here
// for example, this changes the ENTITY_FACTORY QoS
subscriber_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_FALSE;
// create the subscriber
DDSSubscriber * subscriber =

participant->create_subscriber(subscriber_qos,
 NULL,
 DDS_STATUS_MASK_NONE);

if (subscriber == NULL) {
// handle error

}

1. For the C API, you need to use DDS_SubscriberQos_INITIALIZER or
DDS_SubscriberQos_initialize(). See Special QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 7.3 Creating a Subscriber with Non-default QosPolicies (not from a profile)

// create the subscriber with QoS profile
DDSSubscriber * subscriber =

participant->create_subscriber_with_profile(
“MySubscriberLibary”,
“MySubscriberProfile”,
NULL, DDS_STATUS_MASK_NONE);

if (subscriber == NULL) {
// handle error

}

Figure 7.4 Creating a Subscriber with a QoS Profile
7-13

Receiving Data
❏ To change an existing Subscriber’s QoS programmatically (that is, without using a
QoS profile), get_qos() and set_qos(). See the example code in Figure 7.6 on
page 7-15. It retrieves the current values by calling the Subscriber’s get_qos()
operation. Then it modify the value and call set_qos() to apply the new value.
Note, however, that some QosPolicies cannot be changed after the Subscriber has
been enabled—this restriction is noted in the descriptions of the individual
QosPolicies.

DDS_SubscriberQos subscriber_qos;1

// Get subscriber QoS from profile
retcode = factory->get_subscriber_qos_from_profile(subscriber_qos,

“SubscriberLibrary”,
“SubscriberProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}
// Makes QoS changes here
// for example, this changes the ENTITY_FACTORY QoS
subscriber_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_TRUE;

// create the subscriber with modified QoS
DDSPublisher* subscriber = participant->create_subscriber(

“Example Foo”,
type_name,
subscriber_qos,
NULL, DDS_STATUS_MASK_NONE);

if (subscriber == NULL) {
// handle error

}

1. For the C API, you need to use DDS_SubscriberQos_INITIALIZER or
DDS_SubscriberQos_initialize(). See Special QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 7.5 Getting QoS Values from a Profile, Changing QoS Values, Creating a Subscriber with
Modified QoS Values
7-14

Subscribers
7. Re

c
e

iving
 D

a
ta
❏ You can also change a Subscriber’s (and all other Entities’) QoS by using a QoS
Profile and calling set_qos_with_profile(). For an example, see Figure 7.7 on
page 7-15. For more information, see Chapter 15: Configuring QoS with XML.

7.2.4.3 Getting and Settings the Subscriber’s Default QoS Profile and Library

You can retrieve the default QoS profile used to create Subscribers with the
get_default_profile() operation. You can also get the default library for Subscribers, as
well as the library that contains the Subscriber’s default profile (these are not necessarily
the same library); these operations are called get_default_library() and
get_default_library_profile(), respectively. These operations are for informational pur-
poses only (that is, you do not need to use them as a precursor to setting a library or pro-
file.) For more information, see Chapter 15: Configuring QoS with XML.

DDS_SubscriberQos subscriber_qos;1

// Get current QoS. subscriber points to an existing DDSSubscriber.
if (subscriber->get_qos(subscriber_qos) != DDS_RETCODE_OK) {

// handle error
}
// make changes
// New entity_factory autoenable_created_entities will be true
subscriber_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_TRUE;
// Set the new QoS
if (subscriber->set_qos(subscriber_qos) != DDS_RETCODE_OK) {
 // handle error
}

1. For the C API, you need to use DDS_SubscriberQos_INITIALIZER or
DDS_SubscriberQos_Initialize(). See Special QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 7.6 Changing the Qos of an Existing Subscriber

retcode = subscriber->set_qos_with_profile(
“SubscriberProfileLibrary”,”SubscriberProfile”);

if (retcode != DDS_RETCODE_OK) {
 // handle error
}

Figure 7.7 Changing the QoS of an Existing Subscriber with a QoS Profile
7-15

Receiving Data
virtual const char * get_default_library ()

const char * get_default_profile ()

const char * get_default_profile_library ()

There are also operations for setting the Subscriber’s default library and profile:

DDS_ReturnCode_t set_default_library (const char * library_name)

DDS_ReturnCode_t set_default_profile (const char * library_name,
 const char * profile_name)

These operations only affect which library/profile will be used as the default the next
time a default Subscriber library/profile is needed during a call to one of this Subscriber’s
operations.

When calling a Subscriber operation that requires a profile_name parameter, you can
use NULL to refer to the default profile. (This same information applies to setting a
default library.)

If the default library/profile is not set, the Subscriber inherits the default from the
DomainParticipant.

set_default_profile() does not set the default QoS for DataReaders created by the Sub-
scriber; for this functionality, use the Subscriber’s
set_default_datareader_qos_with_profile(), see Section 7.2.4.4 (you may pass in NULL
after having called the Subscriber’s set_default_profile()).

set_default_profile() does not set the default QoS for newly created Subscribers; for this
functionality, use the DomainParticipant’s set_default_subscriber_qos_with_profile()
operation, see Section 8.3.6.4.

7.2.4.4 Getting and Setting Default QoS for DataReaders

These operations set the default QoS that will be used for new DataReaders if
create_datareader() is called with DDS_DATAREADER_QOS_DEFAULT as the ‘qos’
parameter:

DDS_ReturnCode_t set_default_datareader_qos (
const DDS_DataReaderQos &qos)

DDS_ReturnCode_t set_default_datareader_qos_with_profile (
const char *library_name,
const char *profile_name)
7-16

Subscribers
7. Re

c
e

iving
 D

a
ta
The above operations may potentially allocate memory, depending on the sequences
contained in some QoS policies.

To get the default QoS that will be used for creating DataReaders if create_datareader() is
called with DDS_DATAREADER_QOS_DEFAULT as the ‘qos’ parameter:

DDS_ReturnCode_t get_default_datareader_qos (
 DDS_DataReaderQos & qos)

The above operation gets the QoS settings that were specified on the last successful call
to set_default_datareader_qos() or set_default_datareader_qos_with_profile(), or else,
if the call was never made, the default values listed in DDS_DataReaderQos.

Note: It is not safe to set the default DataReader QoS values while another thread may be
simultaneously calling get_default_datareader_qos(), set_default_datareader_qos() or
create_datareader() with DDS_DATAREADER_QOS_DEFAULT as the qos parameter.
It is also not safe to get the default DataReader QoS values while another thread may be
simultaneously calling set_default_datareader_qos(),

7.2.4.5 Subscriber QoS-Related Operations

❏ Copying a Topic’s QoS into a DataReader’s QoS This method is provided as a
convenience for setting the values in a DataReaderQos structure before using that
structure to create a DataReader. As explained in Section 5.1.3, most of the policies
in a TopicQos structure do not apply directly to the Topic itself, but to the associ-
ated DataWriters and DataReaders of that Topic. The TopicQos serves as a single
container where the values of QosPolicies that must be set compatibly across
matching DataWriters and DataReaders can be stored.

Thus instead of setting the values of the individual QosPolicies that make up a
DataReaderQos structure every time you need to create a DataReader for a Topic,
you can use the Subscriber’s copy_from_topic_qos() operation to “import” the
Topic’s QosPolicies into a DataReaderQos structure. This operation copies the rele-
vant policies in the TopicQos to the corresponding policies in the DataReaderQos.

This copy operation will often be used in combination with the Subscriber’s
get_default_datareader_qos() and the Topic’s get_qos() operations. The Topic’s
QoS values are merged on top of the Subscriber’s default DataReader QosPolicies
with the result used to create a new DataReader, or to set the QoS of an existing
one (see Section 7.3.8).

❏ Copying a Subscriber’s QoS In the C API users should use the
DDS_SubscriberQos_copy() operation rather than using structure assignment
when copying between two QoS structures. The copy() operation will perform a
7-17

Receiving Data
deep copy so that policies that allocate heap memory such as sequences are cop-
ied correctly. In C++, C++/CLI, C# and Java, a copy constructor is provided to
take care of sequences automatically.

❏ Clearing QoS-Related Memory Some QosPolicies contain sequences that allo-
cate memory dynamically as they grow or shrink. The C API’s
DDS_SubscriberQos_finalize() operation frees the memory used by sequences
but otherwise leaves the QoS unchanged. C users should call finalize() on all
DDS_SubscriberQos objects before they are freed, or for QoS structures allo-
cated on the stack, before they go out of scope. In C++, C++/CLI, C# and Java,
the memory used by sequences is freed in the destructor.

7.2.5 Beginning and Ending Group-Ordered Access

The Subscriber’s begin_access() operation indicates that the application is about to
access the data samples in any of the DataReaders attached to the Subscriber.

If the Subscriber’s access_scope (in the PRESENTATION QosPolicy (Section 6.4.6)) is
GROUP or HIGHEST_OFFERED and ordered_access (also in the PRESENTATION
QosPolicy (Section 6.4.6)) is TRUE, the application is required to use this operation to
access the samples in order across DataWriters of the same group (Publisher with
access_scope GROUP).

In the above case, begin_access() must be called prior to calling any of the sample-
accessing operations: get_datareaders() on the Subscriber, and read(), take(),
read_w_condition(), and take_w_condition() on any DataReader.

Once the application has finished accessing the data samples, it must call end_access().

The application is not required to call begin_access() and end_access() to access the
samples in order if the Publisher’s access_scope is something other than GROUP. In this
case, calling begin_access() and end_access() is not considered an error and has no
effect.

Calls to begin_access() and end_access() may be nested and must be balanced. That is,
end_access() close a previous call to begin_access().

7.2.6 Setting Up SubscriberListeners

Like all Entities, Subscribers may optionally have Listeners. Listeners are user-defined
objects that implement a DDS-defined interface (i.e. a pre-defined set of callback func-
tions). Listeners provide the means for Connext to notify applications of any changes in
Statuses (events) that may be relevant to it. By writing the callback functions in the Lis-
tener and installing the Listener into the Subscriber, applications can be notified to handle
7-18

Subscribers
7. Re

c
e

iving
 D

a
ta
the events of interest. For more general information on Listeners and Statuses, see
Section 4.4.

Note: Some operations cannot be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).

As illustrated in Figure 7.1, the SubscriberListener interface extends the DataReaderLis-
tener interface. In other words, the SubscriberListener interface contains all the functions
in the DataReaderListener interface. In addition, a SubscriberListener has 1 additional func-
tion: on_data_on_readers().

corresponding to the Subscriber’s DATA_ON_READERS status. This is the only status
that is specific to a Subscriber. This status is closely tied to the DATA_AVAILABLE status
(Section 7.3.7.1) of DataReaders.

The Subscriber’s DATA_ON_READERS status is set whenever the DATA_AVAILABLE
status is set for any of the DataReaders created by the Subscriber. This implies that one of
its DataReaders has received new data samples. When the DATA_ON_READERS status
is set, the SubscriberListener’s on_data_on_readers() method will be invoked.

The DATA_ON_READERS status of a Subscriber takes precedence over the
DATA_AVAILABLE status of any of its DataReaders. Thus, when data arrives for a
DataReader, the on_data_on_readers() operation of the SubscriberListener will be called
instead of the on_data_available() operation of the DataReaderListener—assuming that
the Subscriber has a Listener installed that is enabled to handle changes in the
DATA_ON_READERS status. (Note however, that in the SubscriberListener’s
on_data_on_readers() operation, you may choose to call notify_datareaders(), which in
turn may cause the DataReaderListener’s on_data_available() operation to be called.)

All of the other methods of a SubscriberListener will be called back for changes in the Sta-
tuses of Subscriber’s DataReaders only if the DataReader is not set up to handle the statuses
itself.

If you want a Subscriber to handle status events for its DataReaders, you can set up a Sub-
scriberListener during the Subscriber’s creation or use the set_listener() method after the
Subscriber is created. The last parameter is a bit-mask with which you should set which
Status events that the SubscriberListener will handle. For example,

DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |
 DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS;

subscriber =
participant->create_subscriber(DDS_SUBSCRIBER_QOS_DEFAULT,

listener, mask);
or

DDS_StatusMask mask = DDS_REQUESTED_DEADLINE_MISSED_STATUS |
 DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS;
7-19

Receiving Data
subscriber->set_listener(listener, mask);

As previously mentioned, the callbacks in the SubscriberListener act as ‘default’ callbacks
for all the DataReaders contained within. When Connext wants to notify a DataReader of a
relevant Status change (for example, SUBSCRIPTION_MATCHED), it first checks to
see if the DataReader has the corresponding DataReaderListener callback enabled (such as
the on_subscription_matched() operation). If so, Connext dispatches the event to the
DataReaderListener callback. Otherwise, Connext dispatches the event to the correspond-
ing SubscriberListener callback.

NOTE, the reverse is true for the DATA_ON_READERS/DATA_AVAILABLE status.
When DATA_AVAILABLE changes for any DataReaders of a Subscriber, Connext first
checks to see if the SubscriberListener has DATA_ON_READERS enabled. If so, Connext
will invoke the on_data_on_readers() callback. Otherwise, Connext dispatches the event
to the Listener (on_data_available()) of the DataReader whose DATA_AVAILABLE sta-
tus actually changed.

A particular callback in a DataReader is not enabled if either:

❏ The application installed a NULL DataReaderListener (meaning there are no call-
backs for the DataReader at all).

❏ The application has disabled the callback for a DataReaderListener. This is done by
turning off the associated status bit in the mask parameter passed to the
set_listener() or create_datareader() call when installing the DataReaderListener
on the DataReader. For more information on DataReaderListener, see Section 7.3.4.

Similarly, the callbacks in the DomainParticipantListener act as ‘default’ callbacks for all
the Subscribers that belong to it. For more information on DomainParticipantListeners, see
Section 8.3.5.

The Subscriber also provides an operation called notify_datareaders() that can be used
to invoke the on_data_available() callbacks of DataReaders who have new data samples
in their receive queues. Often notify_datareaders() will be used in the
on_data_on_readers() callback to pass off the real processing of data from the Subscrib-
erListener to the individual DataReaderListeners.

Calling notify_datareaders() causes the DATA_ON_READERS status to be reset.
7-20

Subscribers
7. Re

c
e

iving
 D

a
ta
Figure 7.8 shows a SubscriberListener that simply notifies its DataReaders when new data
arrives.

7.2.7 Getting DataReaders with Specific Samples

The Subscriber’s get_datareaders() operation retrieves a list of DataReaders that have
samples with specific sample_states, view_states, and instance_states.

If the application is outside a begin_access()/end_access() block, or if the Subscriber’s
access_scope (in the PRESENTATION QosPolicy (Section 6.4.6)) is INSTANCE or
TOPIC, or ordered_access (also in the PRESENTATION QosPolicy (Section 6.4.6)) is
FALSE, the returned collection is a 'set' containing each DataReader at most once, in no
specified order.

If the application is within a begin_access()/end_access() block, and the Subscriber’s
access_scope is GROUP or HIGHEST_OFFERED, and ordered_access is TRUE, the
returned collection is a 'list' of DataReaders, where a DataReader may appear more than
one time.

To retrieve the samples in the order in which they were published across DataWriters of
the same group (a Publisher configured with GROUP access_scope), the application
should read()/take() from each DataReader in the same order as appears in the output
sequence. The application will move to the next DataReader when the read()/take()
operation fails with NO_DATA.

class MySubscriberListener : public DDSSubscriberListener {
 public:
 void on_data_on_readers(DDSSubscriber *);

 /* For this example we take no action other operations */
};

void MySubscriberListener::on_data_on_readers
(DDSSubscriber *subscriber)

{
... // do global processing

// now dispatch data arrival event to specific DataReaders
subscriber->notify_datareaders();

}

Figure 7.8 Simple SubscriberListener
7-21

Receiving Data
DDS_ReturnCode_t get_datareaders (DDSDataReaderSeq & readers,
 DDS_SampleStateMask sample_states,
 DDS_ViewStateMask view_states,
 DDS_InstanceStateMask instance_states)

For more information, see The SampleInfo Structure (Section 7.4.5).

7.2.8 Finding a Subscriber’s Related Entities

These Subscriber operations are useful for obtaining a handle to related entities:

❏ get_participant(): Gets the DomainParticipant with which a Subscriber was cre-
ated.

❏ lookup_datareader(): Finds a DataReader created by the Subscriber with a Topic of
a particular name. Note that if multiple DataReaders were created by the same
Subscriber with the same Topic, any one of them may be returned by this method.

You can use this operation on a built-in Subscriber to access the built-in DataRead-
ers for the built-in topics. The built-in DataReader is created when this operation
is called on a built-in topic for the first time.

If you are going to modify the transport properties for the built-in DataReaders,
do so before using this operation. Built-in transports are implicitly registered
when the DomainParticipant is enabled or the first DataWriter/DataReader is cre-
ated. To ensure that built-in DataReaders receive all the discovery traffic, you
should lookup the DataReader before the DomainParticipant is enabled. Therefore
the suggested sequence when looking up built-in DataReaders is:

1. Create a disabled DomainParticipant (see Section 6.4.2).

2. If you want to use non-default values, modify the built-in transport proper-
ties (see Section 13.5).

3. Call get_builtin_subscriber() (see Section 14.2).

4. Call lookup_datareader().

5. Call enable() on the DomainParticipant (see Section 4.1.2).

❏ DDS_Subscriber_as_Entity(): This method is provided for C applications and is
necessary when invoking the parent class Entity methods on Subscribers. For
example, to call the Entity method get_status_changes() on a Subscriber, my_sub,
do the following:

DDS_Entity_get_status_changes(DDS_Subscriber_as_Entity(my_sub))
7-22

Subscribers
7. Re

c
e

iving
 D

a
ta
DDS_Subscriber_as_Entity() is not provided in the C++, C++/CLI, C# and Java
APIs because the object-oriented features of those languages make it unneces-
sary.

7.2.9 Statuses for Subscribers

The status indicators for a Subscriber are the same as those available for its DataReaders,
with one additional status: DATA_ON_READERS (Section 7.2.9.1). The following sta-
tuses can be monitored by the SubscriberListener.

❏ DATA_ON_READERS Status (Section 7.2.9.1)

❏ DATA_AVAILABLE Status (Section 7.3.7.1)

❏ LIVELINESS_CHANGED Status (Section 7.3.7.4)

❏ REQUESTED_DEADLINE_MISSED Status (Section 7.3.7.5)

❏ REQUESTED_INCOMPATIBLE_QOS Status (Section 7.3.7.6)

❏ SAMPLE_LOST Status (Section 7.3.7.7)

❏ SAMPLE_REJECTED Status (Section 7.3.7.8)

❏ SUBSCRIPTION_MATCHED Status (Section 7.3.7.9)

You can access Subscriber status by using a SubscriberListener or its inherited
get_status_changes() operation (see Section 4.1.4), which can be used to explicitly poll
for the DATA_ON_READERS status of the Subscriber.

7.2.9.1 DATA_ON_READERS Status

The DATA_ON_READERS status, like the DATA_AVAILABLE status for DataReaders,
is a read communication status, which makes it somewhat different from other plain
communication statuses. (See Types of Communication Status (Section 4.3.1) for more
information on statuses and the difference between read and plain statuses.) In particu-
lar, there is no status-specific data structure; the status is either changed or not, there is
no additional associated information.

The DATA_ON_READERS status indicates that there is new data available for one or
more DataReaders that belong to this Subscriber. The DATA_AVAILABLE status for each
such DataReader will also be updated.

The DATA_ON_READERS status is reset (the corresponding bit in the bitmask is
turned off) when you call read/take (or one of the variations) on any of the DataReaders
that belong to the Subscriber. This is true even if the DataReader on which you call read/
take is not the same DataReader that caused the DATA_ON_READERS status to be set
7-23

Receiving Data
in the first place. This status is also reset when you call notify_datareaders() on the Sub-
scriber, or after on_data_on_readers() is invoked.

If a SubscriberListener has both on_data_on_readers() and on_data_available() callbacks
enabled (by turning on both status bits), only on_data_on_readers() is called.

7.3 DataReaders
To create a DataReader, you need a DomainParticipant, a Topic, and optionally, a Subscriber.
You need at least one DataReader for each Topic whose data samples you want to receive.

After you create a DataReader, you will be able to use the operations listed in Table 7.3.
You are likely to use many of these operations from within your DataReader’s Listener,
which is invoked when there are status changes or new data samples. For more details
on all operations, see the online documentation. The DataReaderListener is described in
Section 7.3.4.
DataReaders are created by using operations on a DomainParticipant or a Subscriber, as
described in Section 7.2.1. If you use the DomainParticipant’s operations, the DataReader
will belong to an implicit Subscriber that is automatically created by the middleware. If
you use a Subscriber’s operations, the DataReader will belong to that Subscriber. So either
way, the DataReader belongs to a Subscriber.

Note: Some operations cannot be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).

Table 7.3 DataReader Operations

Purpose Operation Description Reference

Configuring
the
DataReader

enable Enables the DataReader. Section 4.1.2

get_qos Gets the QoS.

Section 7.3.8set_qos Modifies the QoS.

set_qos_with_profile Modifies the QoS based on a QoS profile.

get_listener Gets the currently installed Listener.
Section 7.3.4

set_listener Replaces the Listener.
7-24

DataReaders
7. Re

c
e

iving
 D

a
ta
Accessing
Data
Samples with
“Read”
(Use
FooData-
Reader, see
Section 7.4.3)

read
Reads (copies) a collection of data samples
from the DataReader.

Section 7.4.3

read_instance
Identical to read, but all samples returned
belong to a single instance, which you specify
as a parameter.

Section 7.4.3.4

read_instance_w_condition
Identical to read_instance, but all samples
returned belong to a single instance and satisfy
a specific ReadCondition.

Section 7.4.3.7

read_next_instance

Similar to read_instance, but the actual
instance is not directly specified as a parame-
ter. Instead, the samples will all belong to
instance ordered after the one previously read.

Section 7.4.3.5

read_next_instance_w_
condition

Accesses a collection of data samples of the
next instance that match a specific set of Read-
Conditions, from the DataReader.

Section 7.4.3.8

read_next_sample
Reads the next not-previously-accessed data
value from the DataReader.

Section 7.4.3.3

read_w_condition
Accesses a collection of data samples from the
DataReader that match specific ReadCondition
criteria.

Section 7.4.3.6

Table 7.3 DataReader Operations

Purpose Operation Description Reference
7-25

Receiving Data
Accessing
Data
Samples with
“Take”
(Use
FooData-
Reader, see
Section 7.4.3)

take
Like read, but the samples are removed from
the DataReader’s receive queue.

Section 7.4.3

take_instance
Identical to take, but all samples returned
belong to a single instance, which you specify
as a parameter.

Section 7.4.3.4

take_instance_w_condition
Identical to take_instance, but all samples
returned belong to a single instance and satisfy
a specific ReadCondition.

Section 7.4.3.7

take_next_instance
Like read_next_instance, but the samples are
removed from the DataReader’s receive queue.

Section 7.4.3.5

take_next_instance_w_
condition

Accesses (and removes) a collection of data
samples of the next instance that match a spe-
cific set of ReadConditions, from the DataReader.

Section 7.4.3.8

take_next_sample
Like read_next_sample, but the samples are
removed from the DataReader’s receive queue.

Section 7.4.3.3

take_w_condition
Accesses (and removes) a collection of data
samples from the DataReader that match spe-
cific ReadCondition criteria.

Section 7.4.3.6

Working
with Data
Samples and
FooData-
Reader
(Use
FooData-
Reader, see
Section 7.4.3)

narrow

A type-safe way to cast a pointer. This takes a
DDSDataReader pointer and ‘narrows’ it to a
‘FooDataReader’ where ‘Foo’ is the related
data type.

Section 7.4.1

return_loan
Returns buffers loaned in a previous read or
take call.

Section 7.4.2

get_key_value Gets the key for an instance handle. Section 7.3.9.4

lookup_instance
Gets the instance handle that corresponds to
an instance key.

Section 7.3.9.3

Table 7.3 DataReader Operations

Purpose Operation Description Reference
7-26

DataReaders
7. Re

c
e

iving
 D

a
ta
Checking
Status

get_liveliness_changed_
status

Gets LIVELINESS_CHANGED_STATUS
 status.

Section 7.3.7

get_requested_deadline_mi
ssed_status

Gets REQUESTED_DEADLINE_
MISSED_STATUS status.

get_requested_
incompatible_qos_status

Gets REQUESTED_INCOMPATIBLE_
QOS_STATUS status.

get_sample_lost_status Gets SAMPLE_LOST_STATUS status.

get_sample_rejected_
status

Gets SAMPLE_REJECTED_STATUS status.

get_subscription_matched_s
tatus

Gets SUBSCRIPTION_MATCHED_STATUS
status.

get_status_changes
Gets a list of statuses that changed since last
time the application read the status or the lis-
teners were called.

Section 4.1.4

get_datareader_cache_
status

Gets DATA_READER_CACHE_STATUS sta-
tus.

Section 7.3.5
Section 7.3.7

get_datareader_protocol_
status

Gets DATA_READER_PROTOCOL_
STATUS status.

get_matched_publication_d
atareader_protocol_
status

Get the protocol status for this DataReader, per
matched publication identified by the
publication_handle.

Navigating
Relationships

get_instance_handle
Returns the DDS_InstanceHandle_t associated
with the Entity.

Section 4.1.3

get_matched_publication_d
ata

Gets information on a publication with a
matching Topic and compatible QoS.

Section 7.3.9.1
get_matched_publications

Gets a list of publications that have a matching
Topic and compatible QoS. These are the publi-
cations currently associated with the
DataReader.

get_subscriber Gets the Subscriber that created the DataReader.
Section 7.3.9.2

get_topicdescription Gets the Topic associated with the DataReader.

Table 7.3 DataReader Operations

Purpose Operation Description Reference
7-27

Receiving Data
7.3.1 Creating DataReaders

Before you can create a DataReader, you need a DomainParticipant and a Topic.

DataReaders are created by calling create_datareader() or
create_datareader_with_profile()—these operations exist for DomainParticipants and
Subscribers. If you use the DomainParticipant to create a DataReader, it will belong to the
implicit Subscriber described in Section 7.2.1. If you use a Subscriber’s operations to cre-
ate a DataReader, it will belong to that Subscriber.

DDSDataReader* create_datareader(DDSTopicDescription *topic,
 const DDS_DataReaderQos &qos,
 DDSDataReaderListener *listener,
 DDS_StatusMask mask);

DDSDataReader * create_datareader_with_profile (
 DDSTopicDescription * topic,
 const char * library_name,
 const char * profile_name,
 DDSDataReaderListener * listener,
 DDS_StatusMask mask)

A QoS profile is way to use QoS settings from an XML file or string. With this approach,
you can change QoS settings without recompiling the application. For details, see
Chapter 15: Configuring QoS with XML.

Working
with
Conditions

create_querycondition Creates a QueryCondition.

Section 4.6.7
create_readcondition Creates a ReadCondition.

delete_readcondition
Deletes a ReadCondition/QueryCondition
attached to the DataReader.

delete_contained_entities
Deletes all the ReadConditions/QueryConditions
that were created by means of the "create"
operations on the DataReader.

Section 7.3.3.1

get_statuscondition
Gets the StatusCondition associated with the
Entity.

Section 4.6.8

Waiting for
Historical
Data

wait_for_historical_data

Waits until all "historical" (previously sent)
data is received. Only valid for Reliable
DataReaders with non-VOLATILE DURABIL-
ITY.

Section 7.3.6

Table 7.3 DataReader Operations

Purpose Operation Description Reference
7-28

DataReaders
7. Re

c
e

iving
 D

a
ta
topic The Topic to which the DataReader is subscribing. This must have been previously
created by the same DomainParticipant.

qos If you want the default QoS settings (described in the online documentation), use
DDS_DATAREADER_QOS_DEFAULT for this parameter (see Figure 7.9 on
page 7-30). If you want to customize any of the QosPolicies, supply a QoS struc-
ture (see Section 7.3.8).

Note: If you use DDS_DATAREADER_QOS_DEFAULT for the qos parameter, it
is not safe to create the DataReader while another thread may be simultaneously
calling the Subscriber’s set_default_datareader_qos() operation.

listener A DataReader’s Listener is where you define the callback routine that will be
notified when new data samples arrive. Connext also uses this Listener to notify
your application of specific events (status changes) that may occur with respect to
the DataReader. For more information, see Section 7.3.4 and Section 7.3.7.

The listener parameter is optional; you may use NULL instead. In that case, the
Subscriber’s Listener (or if that is NULL, the DomainParticipant’s Listener) will
receive the notifications instead. See Section 7.3.4 for more on DataReaderListeners.

mask This bit mask indicates which status changes will cause the Listener to be
invoked. The bits set in the mask must have corresponding callbacks imple-
mented in the Listener. If you use NULL for the Listener, use
DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all
callbacks, use DDS_STATUS_MASK_ALL. For information on statuses, see Lis-
teners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section
15.9).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS
Profiles (Section 15.8).

After you create a DataReader, you can use it to retrieve received data. See Section 7.4.

Note: When a DataReader is created, only those transports already registered are avail-
able to the DataReader. The built-in transports are implicitly registered when (a) the
DomainParticipant is enabled, (b) the first DataReader is created, or (c) you lookup a built-
in DataReader, whichever happens first.

Figure 7.9 shows an example of how to create a DataReader with default QosPolicies.

For more examples on how to create a DataWriter, see Configuring QoS Settings when
the DataReader is Created (Section 7.3.8.1)
7-29

Receiving Data
7.3.2 Getting All DataReaders

To retrieve all the DataReaders created by the Subscriber, use the Subscriber’s
get_all_datareaders() operation:

DDS_ReturnCode_t get_all_datareaders(
DDS_Subscriber* self,
struct DDS_DataReaderSeq* readers);

7.3.3 Deleting DataReaders

To delete a DataReader:

1. Delete any ReadConditions and QueryConditions that were created with the
DataReader. Use the DataReader’s delete_readcondition() operation to delete
them one at a time, or use the delete_contained_entities() operation
(Section 7.3.3.1) to delete them all at the same time.

 DDS_ReturnCode_t delete_readcondition (DDSReadCondition *condi-
tion)

2. Delete the DataReader by using the Subscriber’s delete_datareader() operation
(Section 7.2.3).

Note: A DataReader cannot be deleted within its own reader listener callback, see
Restricted Operations in Listener Callbacks (Section 4.5.1).

Figure 7.9 Creating a DataReader with Default QosPolicies

// MyReaderListener is user defined, extends DDSDataReaderListener
DDSDataReaderListener *reader_listener = new MyReaderListener();

DataReader* reader = subscriber->create_datareader(topic,
DDS_DATAREADER_QOS_DEFAULT,
reader_listener,
DDS_STATUS_MASK_ALL);

if (reader == NULL) {
 // ... error
}

// narrow it into your specific data type
FooDataReader* foo_reader = FooDataReader::narrow(reader);
7-30

DataReaders
7. Re

c
e

iving
 D

a
ta
To delete all of a Subscriber’s DataReaders, use the Subscriber’s
delete_contained_entities() operation (see Section 7.2.3.1).

7.3.3.1 Deleting Contained ReadConditions

The DataReader’s delete_contained_entities() operation deletes all the ReadConditions
and QueryConditions (Section 4.6.7) that were created by the DataReader.

DDS_ReturnCode_t delete_contained_entities ()

After this operation returns successfully, the application may delete the DataReader (see
Section 7.3.3).

7.3.4 Setting Up DataReaderListeners

DataReaders may optionally have Listeners. A DataReaderListener is a collection of call-
back methods; these methods are invoked by Connext when data samples are received
or when there are status changes for the DataReader.

Note: Some operations cannot be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).

If you do not implement a DataReaderListener, the associated Subscriber’s Listener is used
instead. If that Subscriber does not have a Listener either, then the DomainParticipant’s Lis-
tener is used if one exists (see Section 7.2.6 and Section 8.3.5).

If you do not require asynchronous notification of data availability or status changes,
you do not need to set a Listener for the DataReader. In that case, you will need to period-
ically call one of the read() or take() operations described in Section 7.4 to access the
data that has been received.

Listeners are typically set up when the DataReader is created (see Section 7.3.1). You can
also set one up after creation by using the DataReader’s get_listener() and set_listener()
operations. Connext will invoke a DataReader’s Listener to report the status changes listed
in Table 7.4 (if the Listener is set up to handle the particular status, see Section 7.3.4).

Table 7.4 DataReaderListener Callbacks

This DataReaderListener
callback... ...is triggered by a change in this status:

on_data_available() DATA_AVAILABLE Status (Section 7.3.7.1)

on_liveliness_changed() LIVELINESS_CHANGED Status (Section 7.3.7.4)

on_requested_deadline_missed() REQUESTED_DEADLINE_MISSED Status (Section 7.3.7.5)
7-31

Receiving Data
Note that the same callbacks can be implemented in the SubscriberListener or DomainPar-
ticipantListener instead. There is only one SubscriberListener callback that takes prece-
dence over a DataReaderListener’s. An on_data_on_readers() callback in the
SubscriberListener (or DomainParticipantListener) takes precedence over the
on_data_available() callback of a DataReaderListener.

If the SubscriberListener implements an on_data_on_readers() callback, it will be
invoked instead of the DataReaderListener’s on_data_available() callback when new data
arrives. The on_data_on_readers() operation can in turn cause the on_data_available()
method of the appropriate DataReaderListener to be invoked by calling the Subscriber’s
notify_datareaders() operation. For more information on status and Listeners, see Lis-
teners (Section 4.4).

Figure 7.10 shows a DataReaderListener that simply prints the data it receives.

7.3.5 Checking DataReader Status and StatusConditions

You can access individual communication status for a DataReader with the operations
shown in Table 7.5.

on_requested_incompatible_qos()
REQUESTED_INCOMPATIBLE_QOS Status (Section
7.3.7.6)

on_sample_lost() SAMPLE_LOST Status (Section 7.3.7.7)

on_sample_rejected() SAMPLE_REJECTED Status (Section 7.3.7.8)

on_subscription_matched() SUBSCRIPTION_MATCHED Status (Section 7.3.7.9)

Table 7.4 DataReaderListener Callbacks

This DataReaderListener
callback... ...is triggered by a change in this status:

Table 7.5 DataReader Status Operations

Use this operation... ...to retrieve this status:

get_datareader_cache_status DATA_READER_CACHE_STATUS (Section 7.3.7.2)

get_datareader_protocol_status
DATA_READER_PROTOCOL_STATUS (Section
7.3.7.3)get_matched_publication_

datareader_protocol_status

get_liveliness_changed_status LIVELINESS_CHANGED Status (Section 7.3.7.4)

get_sample_lost_status SAMPLE_LOST Status (Section 7.3.7.7)

get_sample_rejected_status SAMPLE_REJECTED Status (Section 7.3.7.8)
7-32

DataReaders
7. Re

c
e

iving
 D

a
ta
class MyReaderListener : public DDSDataReaderListener {
 public:
 virtual void on_data_available(DDSDataReader* reader);

 // don’t do anything for the other callbacks
};
void MyReaderListener::on_data_available(DDSDataReader* reader)
{
 FooDataReader *Foo_reader = NULL;
 FooSeq data_seq; // In C, sequences have to be initialized
 DDS_SampleInfoSeq info_seq; // before use, see Section 7.4.4.
 DDS_ReturnCode_t retcode;
 int i;
 // Must cast generic reader into reader of specific type
 Foo_reader = FooDataReader::narrow(reader);
 if (Foo_reader == NULL) {
 printf("DataReader narrow error\n");
 return;
 }
 retcode = Foo_reader->take(data_seq, info_seq,

 DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
 DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

 if (retcode == DDS_RETCODE_NO_DATA) {
 return;
 } else if (retcode != DDS_RETCODE_OK) {
 printf("take error %d\n", retcode);
 return;
 }
 for (i = 0; i < data_seq.length(); ++i) {
 // the data may not be valid if the sample is meta information
 // about the creation or deletion of an instance
 if (info_seq[i].valid_data) {
 FooTypeSupport::print_data(&data_seq[i]);
 }
 }
 // Connext gave a pointer to internal memory via
 // take(), must return the memory when finished processing the data
 retcode = Foo_reader->return_loan(data_seq, info_seq);
 if (retcode != DDS_RETCODE_OK) {
 printf("return loan error %d\n", retcode);
 }
}

Figure 7.10 Simple DataReaderListener
7-33

Receiving Data
These methods are useful in the event that no Listener callback is set to receive notifica-
tions of status changes. If a Listener is used, the callback will contain the new status
information, in which case calling these methods is unlikely to be necessary.

The get_status_changes() operation provides a list of statuses that have changed since
the last time the status changes were ‘reset.’ A status change is reset each time the appli-
cation calls the corresponding get_*_status(), as well as each time Connext returns from
calling the Listener callback associated with that status.

For more on status, see Setting Up DataReaderListeners (Section 7.3.4), Statuses for
DataReaders (Section 7.3.7), and Listeners (Section 4.4).

7.3.6 Waiting for Historical Data

The wait_for_historical_data() operation waits (blocks) until all "historical" data is
received from matched DataWriters. "Historical" data means samples that were written
before wait_for_historical_data() is called.

This operation is intended only for DataReaders that have:

❏ DURABILITY QosPolicy (Section 6.5.6) kind set to TRANSIENT_LOCAL (not VOL-
ATILE)

❏ RELIABILITY QosPolicy (Section 6.5.18) kind set to RELIABLE.

Calling wait_for_historical_data() on a non-reliable DataReader will always
return immediately, since Connext will never deliver historical data to non-reli-
able DataReaders.

As soon as an application enables a non-VOLATILE DataReader, it will start receiving
both "historical" data as well as any new data written by matching DataWriters. If you

get_requested_deadline_missed_status
REQUESTED_DEADLINE_MISSED Status (Section
7.3.7.5)

get_requested_incompatible_qos_status
REQUESTED_INCOMPATIBLE_QOS Status (Section
7.3.7.6)

get_subscription_match_status SUBSCRIPTION_MATCHED Status (Section 7.3.7.9)

get_status_changes All of the above

get_statuscondition See StatusConditions (Section 4.6.8)

Table 7.5 DataReader Status Operations

Use this operation... ...to retrieve this status:
7-34

DataReaders
7. Re

c
e

iving
 D

a
ta
want the subscribing application to wait until all "historical" data is received, use this
operation:

DDS_ReturnCode_t wait_for_historical_data
 (const DDS_Duration_t & max_wait)

The wait_for_historical_data() operation blocks the calling thread until either all "his-
torical" data is received, or else duration specified by the max_wait parameter elapses,
whichever happens first. A return value of OK indicates that all the "historical" data was
received; a return value of "TIMEOUT" indicates that max_wait elapsed before all the
data was received.

7.3.7 Statuses for DataReaders

There are several types of statuses available for a DataReader. You can use the
get_*_status() operations (Section 7.3.5) to access them, use a DataReaderListener
(Section 7.3.4) to listen for changes in their values (for those statuses that have Listen-
ers), or use a StatusCondition and a WaitSet (Section 4.6.8) to wait for changes. Each sta-
tus has an associated data structure and is described in more detail in the following
sections.

❏ DATA_AVAILABLE Status (Section 7.3.7.1)

❏ DATA_READER_CACHE_STATUS (Section 7.3.7.2)

❏ DATA_READER_PROTOCOL_STATUS (Section 7.3.7.3)

❏ LIVELINESS_CHANGED Status (Section 7.3.7.4)

❏ REQUESTED_DEADLINE_MISSED Status (Section 7.3.7.5)

❏ REQUESTED_INCOMPATIBLE_QOS Status (Section 7.3.7.6)

❏ SAMPLE_LOST Status (Section 7.3.7.7)

❏ SAMPLE_REJECTED Status (Section 7.3.7.8)

❏ SUBSCRIPTION_MATCHED Status (Section 7.3.7.9)

7.3.7.1 DATA_AVAILABLE Status

This status indicates that new data is available for the DataReader. In most cases, this
means that one new sample has been received. However, there are situations in which
more than one samples for the DataReader may be received before the
DATA_AVAILABLE status changes. For example, if the DataReader has the DURABIL-
ITY QosPolicy (Section 6.5.6) set to be non-VOLATILE, then the DataReader may receive
a batch of old data samples all at once. Or if data is being received reliably from DataW-
7-35

Receiving Data
riters, Connext may present several samples of data simultaneously to the DataReader if
they have been originally received out of order.

A change to this status also means that the DATA_ON_READERS status is changed for
the DataReader’s Subscriber.

This status is reset when you call read(), take(), or one of their variations.

Unlike most other statuses, this status (as well as DATA_ON_READERS for Subscribers)
is a read communication status. See Section 7.2.9 and Section 4.3.1 for more information on
read communication statuses.

The DataReaderListener’s on_data_available() callback is invoked when this status
changes, unless the SubscriberListener (Section 7.2.6) or DomainParticipantListener
(Section 8.3.5) has implemented an on_data_on_readers() callback. In that case,
on_data_on_readers() will be invoked instead.

7.3.7.2 DATA_READER_CACHE_STATUS

This status keeps track of the number of samples in the reader's cache.

This status does not have an associated Listener. You can access this status by calling the
DataReader’s get_datareader_cache_status() operation, which will return the status
structure described in Table 7.6.

7.3.7.3 DATA_READER_PROTOCOL_STATUS

The status of a DataReader’s internal protocol related metrics (such as the number of
samples received, filtered, rejected) and the status of wire protocol traffic. The structure
for this status appears in Table 7.7 on page 7-37.

This status does not have an associated Listener. You can access this status by calling the
following operations on the DataReader (all of which return the status structure
described in Table 7.7):

Table 7.6 DDS_DataReaderCacheStatus

Type Field Name Description

DDS_Long sample_count_peak
Highest number of samples in the DataReader’s queue
over the lifetime of the DataReader.

DDS_Long sample_count

Current number of samples in the DataReader’s queue.
Includes samples that may not yet be available to be read
or taken by the user due to samples being received out of
order or settings in the PRESENTATION QosPolicy (Sec-
tion 6.4.6).
7-36

DataReaders
7. Re

c
e

iving
 D

a
ta
❏ get_datareader_protocol_status() returns the sum of the protocol status for all
the matched publications for the DataReader.

❏ get_matched_publication_datareader_protocol_status() returns the protocol
status of a particular matched publication, identified by a publication_handle.

Note: Status for a remote entity is only kept while the entity is alive. Once a remote
entity is no longer alive, its status is deleted. If you try to get the matched subscription
status for a remote entity that is no longer alive, the ‘get status’ call will return an error.

Table 7.7 DDS_DataReaderProtocolStatus

Type Field Name Description

DDS_LongLong

received_sample_count
The number of user samples from a remote DataWriter
received for the first time by a local DataReader.

received_sample_count_
change

The incremental change in the number of user samples
from a remote DataWriter received for the first time by a
local DataReader since the last time the status was read.

received_sample_bytes
The number of bytes of user samples from a remote
DataWriter received for the first time by a local
DataReader.

received_sample_bytes_
change

The incremental change in the number of bytes of user
samples from a remote DataWriter received for the first
time by a local DataReader since the last time the status
was read.

DDS_LongLong

duplicate_sample_count
The number of samples from a remote DataWriter
received, not for the first time, by a local DataReader.

duplicate_sample_count_
change

The incremental change in the number of samples from
a remote DataWriter received, not for the first time, by a
local DataReader since the last time the status was read.

duplicate_sample_bytes
The number of bytes of samples from a remote DataW-
riter received, not for the first time, by a local
DataReader.

duplicate_sample_bytes_
change

The incremental change in the number of bytes of sam-
ples from a remote DataWriter received, not for the first
time, by a local DataReader since the last time the status
was read.
7-37

Receiving Data
DDS_LongLong

filtered_sample_count
The number of user samples filtered by the local
DataReader due to ContentFilteredTopics or Time-Based
Filter.

filtered_sample_count_
change

The incremental change in the number of user samples
filtered by the local DataReader due to Content-Filtered-
Topics or Time-Based Filter since the last time the status
was read.

filtered_sample_bytes
The number of bytes of user samples filtered by the
local DataReader due to ContentFilteredTopics or Time-
Based Filter.

filtered_sample_bytes_
change

The incremental change in the number of bytes of user
samples filtered by the local DataReader due to Content-
FilteredTopics or Time-Based Filter since the last time
the status was read.

DDS_LongLong

received_heartbeat_count
The number of Heartbeats from a remote DataWriter
received by a local DataReader.

received_heartbeat_count_
change

The incremental change in the number of Heartbeats
from a remote DataWriter received by a local DataReader
since the last time the status was read.

received_heartbeat_bytes
The number of bytes of Heartbeats from a remote
DataWriter received by a local DataReader.

received_heartbeat_bytes_
change

The incremental change in the number of bytes of
Heartbeats from a remote DataWriter received by a local
DataReader since the last time the status was read.

DDS_LongLong

sent_ack_count
The number of ACKs sent from a local DataReader to a
matching remote DataWriter.

sent_ack_count_change
The incremental change in the number of ACKs sent
from a local DataReader to a matching remote DataW-
riter since the last time the status was read.

sent_ack_bytes
The number of bytes of ACKs sent from a local
DataReader to a matching remote DataWriter.

sent_ack_bytes_change

The incremental change in the number of bytes of
ACKs sent from a local DataReader to a matching
remote DataWriter since the last time the status was
read.

Table 7.7 DDS_DataReaderProtocolStatus

Type Field Name Description
7-38

DataReaders
7. Re

c
e

iving
 D

a
ta
DDS_LongLong

sent_nack_count
The number of NACKs sent from a local DataReader to a
matching remote DataWriter.

sent_nack_count_change
The incremental change in the number of NACKs sent
from a local DataReader to a matching remote DataW-
riter since the last time the status was read.

sent_nack_bytes
The number of bytes of NACKs sent from a local
DataReader to a matching remote DataWriter.

sent_nack_bytes_change

The incremental change in the number of bytes of
NACKs sent from a local DataReader to a matching
remote DataWriter since the last time the status was
read.

DDS_LongLong

received_gap_count
The number of GAPs received from remote DataWriter
to this DataReader.

received_gap_count_change
The incremental change in the number of GAPs
received from remote DataWriter to this DataReader
since the last time the status was read.

received_gap_bytes
The number of bytes of GAPs received from remote
DataWriter to this DataReader.

received_gap_bytes_change
The incremental change in the number of bytes of GAPs
received from remote DataWriter to this DataReader
since the last time the status was read.

DDS_LongLong

rejected_sample_count
The number of times a sample is rejected for unantici-
pated reasons in the receive path.

rejected_sample_
count_change

The incremental change in the number of times a sam-
ple is rejected for unanticipated reasons in the receive
path since the last time the status was read.

Table 7.7 DDS_DataReaderProtocolStatus

Type Field Name Description
7-39

Receiving Data
DDS_
SequenceNumber_t

first_available_sample_
sequence_number

Sequence number of the first available sample in a
matched DataWriter's reliability queue. Applicable only
when retrieving matched DataWriter statuses.

last_available_sample_
sequence_number

Sequence number of the last available sample in a
matched DataWriter's reliability queue. Applicable only
when retrieving matched DataWriter statuses.

last_committed_sample_
sequence_number

Sequence number of the last committed sample (i.e.
available to be read or taken) in a matched DataWriter's
reliability queue. Applicable only when retrieving
matched DataWriter statuses.
For best-effort DataReaders, this is the sequence number
of the latest sample received.
For reliable DataReaders, this is the sequence number of
the latest sample that is available to be read or taken
from the DataReader's queue.

DDS_Long uncommitted_sample_count

Number of received samples that are not yet available
to be read or taken due to being received out of order.
Applicable only when retrieving matched DataWriter
statuses.

Table 7.7 DDS_DataReaderProtocolStatus

Type Field Name Description
7-40

DataReaders
7. Re

c
e

iving
 D

a
ta
7.3.7.4 LIVELINESS_CHANGED Status

This status indicates that the liveliness of one or more matched DataWriters has changed
(i.e., one or more DataWriters has become alive or not alive). The mechanics of determin-
ing liveliness between a DataWriter and a DataReader is specified in their LIVELINESS
QosPolicy (Section 6.5.12).

The structure for this status appears in Table 7.8.

The DataReaderListener’s on_liveliness_changed() callback may be called for the follow-
ing reasons:

❏ Liveliness is truly lost—a sample has not been received within the time-frame
specified in the LIVELINESS QosPolicy (Section 6.5.12) lease_duration.

❏ Liveliness is recovered after being lost.

❏ A new matching entity has been discovered.

❏ A QoS has changed such that a pair of matching entities are no longer matching
(such as a change to the PartitionQosPolicy). In this case, the middleware will no
longer keep track of the entities’ liveliness. Furthermore:

• If liveliness was maintained: alive_count will decrease and not_alive_count
will remain the same.

• If liveliness had been lost: alive_count will remain the same and
not_alive_count will decrease.

You can also retrieve the value by calling the DataReader’s
get_liveliness_changed_status() operation.

Table 7.8 DDS_LivelinessChangedStatus

Type Field Name Description

DDS_Long

alive_count
Number of matched DataWriters that are currently
alive.

not_alive_count
Number of matched DataWriters that are not currently
alive.

alive_count_change
The change in the alive_count since the last time the
Listener was called or the status was read.

not_alive_count_change
The change in the not_alive_count since the last time
the Listener was called or the status was read.

DDS_Instance
Handle_t

last_publication_handle A handle to the last DataWriter to change its liveliness.
7-41

Receiving Data
This status is reciprocal to the RELIABLE_READER_ACTIVITY_CHANGED Status
(DDS Extension) (Section 6.3.6.8) for a DataWriter.

7.3.7.5 REQUESTED_DEADLINE_MISSED Status

This status indicates that the DataReader did not receive a new sample for an data-
instance within the time period set in the DataReader’s DEADLINE QosPolicy (Section
6.5.4). For non-keyed Topics, this simply means that the DataReader did not receive data
within the DEADLINE period. For keyed Topics, this means that for one of the data-
instances that the DataReader was receiving, it has not received a new sample within the
DEADLINE period. For more information about keys and instances, see Section 2.2.2.

The structure for this status appears in Table 7.9.

The DataReaderListener’s on_requested_deadline_missed() callback is invoked when
this status changes. You can also retrieve the value by calling the DataReader’s
get_requested_deadline_missed_status() operation.

7.3.7.6 REQUESTED_INCOMPATIBLE_QOS Status

A change to this status indicates that the DataReader discovered a DataWriter for the
same Topic, but that DataReader had requested QoS settings incompatible with this
DataWriter’s offered QoS.

The structure for this status appears in Table 7.10.

The DataReaderListener’s on_requested_incompatible_qos() callback is invoked when
this status changes. You can also retrieve the value by calling the DataReader’s
get_requested_incompatible_qos_status() operation.

7.3.7.7 SAMPLE_LOST Status

This status indicates that one or more samples written by a matched DataWriter have
failed to be received.

Table 7.9 DDS_RequestedDeadlineMissedStatus

Type Field Name Description

DDS_Long
total_count

Cumulative number of times that the deadline was vio-
lated for any instance read by the DataReader.

total_count_change
The change in total_count since the last time the Lis-
tener was called or the status was read.

DDS_Instance
Handle_t

last_instance_handle
Handle to the last data-instance in the DataReader for
which a requested deadline was missed.
7-42

DataReaders
7. Re

c
e

iving
 D

a
ta
For a DataReader, when there are insufficient resources to accept incoming samples of
data, samples may be dropped by the receiving application. Those samples are consid-
ered to be REJECTED (see Section 7.3.7.8). But DataWriters are limited in the number of
published data samples that they can store, so that if a DataWriter continues to publish
data samples, new data may overwrite old data that have not yet been received by the
DataReader. The samples that are overwritten can never be resent to the DataReader and
thus are considered to be lost.

This status applies to reliable and best-effort DataReaders, see the RELIABILITY QosPol-
icy (Section 6.5.18).

The structure for this status appears in Table 7.11.

Table 7.10 DDS_RequestedIncompatibleQosStatus

Type Field Name Description

DDS_Long total_count

Cumulative number of times the DataReader
discovered a DataWriter for the same Topic
with an offered QoS that is incompatible with
that requested by the DataReader.

DDS_Long total_count_change
The change in total_count since the last time
the Listener was called or the status was read.

DDS_QosPolicyId_t last_policy_id

The ID of the QosPolicy that was found to be
incompatible the last time an incompatibility
was detected. (Note: if there are multiple
incompatible policies, only one of them is
reported here.)

DDS_QosPolicyCountSeq policies

A list containing—for each policy—the total
number of times that the DataReader discov-
ered a DataWriter for the same Topic with a
offered QoS that is incompatible with that
requested by the DataReader.

Table 7.11 DDS_SampleLostStatus

Type Field Name Description

DDS_Long
total_count

 Cumulative count of all the samples that have been lost,
across all instances of data written for the Topic.

total_count_change
The incremental number of samples lost since the last time
the Listener was called or the status was read.
7-43

Receiving Data
The DataReaderListener’s on_sample_lost() callback is invoked when this status changes.
You can also retrieve the value by calling the DataReader’s get_sample_lost_status()
operation.

7.3.7.8 SAMPLE_REJECTED Status

This status indicates that one or more samples received from a matched DataWriter have
been dropped by the DataReader because a resource limit would have been exceeded.
For example, if the receive queue is full, the number of samples in the queue is equal to
the max_samples parameter of the RESOURCE_LIMITS QosPolicy (Section 6.5.19).

The structure for this status appears in Table 7.12. The reason the sample was rejected
appears in the last_reason field. The possible values are listed in Table 7.13.

Table 7.12 DDS_SampleRejectedStatus

Type Field Name Description

DDS_Long

total_count
Cumulative count of all the samples that
have been rejected by the DataReader.

total_count_change
The incremental number of samples
rejected since the last time the Listener
was called or the status was read.

current_count
The current number of writers with
which the DataReader is matched.

current_count_change
The change in current_count since the
last time the Listener was called or the
status was read.

DDS_SampleRejectedStatus
Kind

last_reason
Reason for rejecting the last sample. See
Table 7.13.

DDS_InstanceHandle_t last_instance_handle
Handle to the data-instance for which the
last sample was rejected.

Table 7.13 DDS_SampleRejectedStatusKind

Reason Kind Description Related QosPolicy

DDS_NOT_REJECTED Sample was accepted.

DDS_REJECTED_BY_
INSTANCES_LIMIT

A resource limit on the number of instances
that can be handled at the same time by the
DataReader was reached.

RESOURCE_LIMITS
QosPolicy (Section
6.5.19)
7-44

DataReaders
7. Re

c
e

iving
 D

a
ta
The DataReaderListener’s on_sample_rejected() callback is invoked when this status
changes. You can also retrieve the value by calling the DataReader’s
get_sample_rejected_status() operation.

7.3.7.9 SUBSCRIPTION_MATCHED Status

A change to this status indicates that the DataReader discovered a matching DataWriter.

A ‘match’ occurs only if the DataReader and DataWriter have the same Topic, same data
type (implied by having the same Topic), and compatible QosPolicies. In addition, if user
code has directed Connext to ignore certain DataWriters, then those DataWriters will
never be matched. See Section 14.4.2 for more on setting up a DomainParticipant to
ignore specific DataWriters.

The structure for this status appears in Table 7.14.

DDS_REJECTED_BY_
REMOTE_WRITERS_
LIMIT

A resource limit on the number of DataWriters
from which a DataReader may read was
reached.

DATA_READER_RE
SOURCE_LIMITS
QosPolicy (DDS
Extension) (Section
7.6.3)

DDS_REJECTED_BY_
REMOTE_WRITERS_
PER_INSTANCE_LIMIT

A resource limit on the number of DataWriters
for a single instance from which a DataReader
may read was reached.

DDS_REJECTED_BY_
SAMPLES_LIMIT

A resource limit on the total number of sam-
ples was reached. RESOURCE_LIMITS

QosPolicy (Section
6.5.19)

DDS_REJECTED_BY_
SAMPLES_PER_
INSTANCE_LIMIT

A resource limit on the number of samples per
instance was reached.

DDS_REJECTED_BY_
SAMPLES_PER_
REMOTE_WRITER_
LIMIT

A resource limit on the number of samples that
a DataReader may store from a specific DataW-
riter was reached. DATA_READER_RE

SOURCE_LIMITS
QosPolicy (DDS
Extension) (Section
7.6.3)

DDS_REJECTED_BY_
VIRTUAL_WRITERS_
LIMIT

A resource limit on the number of virtual writ-
ers from which a DataReader may read was
reached.

DDS_REJECTED_BY_
REMOTE_WRITERS_
PER_SAMPLE_LIMIT

A resource limit on the number of remote writ-
ers per sample was reached.

Table 7.13 DDS_SampleRejectedStatusKind

Reason Kind Description Related QosPolicy
7-45

Receiving Data
The DataReaderListener’s on_subscription_matched() callback is invoked when this sta-
tus changes. You can also retrieve the value by calling the DataReader’s
get_subscription_match_status() operation.

7.3.8 Setting DataReader QosPolicies

A DataReader’s QosPolicies control its behavior. Think of QosPolicies as the ‘properties’
for the DataReader. The DDS_DataReaderQos structure has the following format:

struct DDS_DataReaderQos {
DDS_DurabilityQosPolicy durability;
DDS_DeadlineQosPolicy deadline;
DDS_LatencyBudgetQosPolicy latency_budget;
DDS_LivelinessQosPolicy liveliness;
DDS_ReliabilityQosPolicy reliability;
DDS_DestinationOrderQosPolicy destination_order;
DDS_HistoryQosPolicy history;
DDS_ResourceLimitsQosPolicy resource_limits;
DDS_UserDataQosPolicy user_data;
DDS_TimeBasedFilterQosPolicy time_based_filter;
DDS_ReaderDataLifecycleQosPolicy reader_data_lifecycle;
// Extensions to the DDS standard:
DDS_DataReaderResourceLimitsQosPolicy reader_resource_limits;
DDS_DataReaderProtocolQosPolicy protocol;
DDS_TransportSelectionQosPolicy transport_selection;
DDS_TransportUnicastQosPolicy unicast;

Table 7.14 DDS_SubscriptionMatchedStatus

Type Field Name Description

DDS_Long

total_count
Cumulative number of times the DataReader discov-
ered a "match" with a DataWriter.

total_count_change
The change in total_count since the last time the Lis-
tener was called or the status was read.

current_count
The number of DataWriters currently matched to the
concerned DataReader.

current_count_change
The change in current_count since the last time the lis-
tener was called or the status was read.

current_count_peak
The highest value that current_count has reached
until now.

DDS_Instance
Handle_t

last_publication_
handle

Handle to the last DataWriter that matched the
DataReader causing the status to change.
7-46

DataReaders
7. Re

c
e

iving
 D

a
ta
DDS_TransportMulticastQosPolicy multicast;
DDS_PropertyQosPolicy property;
DDS_AvailabilityQosPolicy availability;
DDS_EntityNameQosPolicy subscription_name;
DDS_TypeSupportQosPolicy type_support;

};

Note: set_qos() cannot always be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).

Table 7.15 summarizes the meaning of each policy. (They appear alphabetically in the
table.) For information on why you would want to change a particular QosPolicy, see the
referenced section. For defaults and valid ranges, please refer to the online documenta-
tion.

Table 7.15 DataReader QosPolicies

QosPolicy Description

Availability
Specifies the group of DataWriters expected to collaboratively provide data
and the time-outs that control when to allow data to be available that may
skip samples. See Section 7.6.1.

DataReaderProtocol
This QosPolicy configures the DDS on-the-network protocol, RTPS. See
Section 7.6.2.

DataReaderResourceLimits
Various settings that configure how DataReaders allocate and use physical
memory for internal resources. See Section 7.6.3.

Deadline

For a DataReader, specifies the maximum expected elapsed time between
arriving data samples.
For a DataWriter, specifies a commitment to publish samples with no greater
elapsed time between them.
See Section 6.5.4.

DestinationOrder
Controls how Connext will deal with data sent by multiple DataWriters for the
same topic. Can be set to "by reception timestamp" or to "by source time-
stamp". See Section 6.5.5.

Durability
Specifies whether or not Connext will store and deliver data that were previ-
ously published to new DataReaders. See Section 6.5.6.

EntityName Assigns a name to a DataReader. See Section 6.5.8.

History

Specifies how much data must to stored by Connextfor the DataWriter or
DataReader. This QosPolicy affects the RELIABILITY QosPolicy (Section
6.5.18) as well as the DURABILITY QosPolicy (Section 6.5.6). See
Section 6.5.9.
7-47

Receiving Data
For a DataReader to communicate with a DataWriter, their corresponding QosPolicies
must be compatible. For QosPolicies that apply both to the DataWriter and the
DataReader, the setting in the DataWriter is considered what the DataWriter “offers” and
the setting in the DataReader is what the DataReader “requests.” Compatibility means
that what is offered by the DataWriter equals or surpasses what is requested by the
DataReader. See QoS Requested vs. Offered Compatibility—the RxO Property (Section
4.2.1).

LatencyBudget
Suggestion to Connext on how much time is allowed to deliver data. See
Section 6.5.10.

Liveliness
Specifies and configures the mechanism that allows DataReaders to detect
when DataWriters become disconnected or "dead." See Section 6.5.12.

Property

Stores name/value (string) pairs that can be used to configure certain param-
eters of Connext that are not exposed through formal QoS policies. It can also
be used to store and propagate application-specific name/value pairs, which
can be retrieved by user code during discovery. See Section 6.5.16.

ReaderDataLifeCycle
Controls how a DataReader manages the lifecycle of the data that it has
received. See Section 7.6.4.

Reliability Specifies whether or not Connext will deliver data reliably. See Section 6.5.18.

ResourceLimits
Controls the amount of physical memory allocated for entities, if dynamic
allocations are allowed, and how they occur. Also controls memory usage
among different instance values for keyed topics. See Section 6.5.19.

TimeBasedFilter
Set by a DataReader to limit the number of new data values received over a
period of time. See Section 7.6.5.

TransportMulticast
Specifies the multicast address on which a DataReader wants to receive its
data. Can specify a port number as well as a subset of the available transports
with which to receive the multicast data. See Section 7.6.6.

TransportSelection
Allows you to select which physical transports a DataWriter or DataReader
may use to send or receive its data. See Section 6.5.21.

TransportUnicast
Specifies a subset of transports and port number that can be used by an
Entity to receive data. See Section 6.5.22.

TypeSupport
Used to attach application-specific value(s) to a DataWriter or DataReader.
These values are passed to the serialization or deserialization routine of the
associated data type. See Section 6.5.23.

UserData
Along with Topic Data QosPolicy and Group Data QosPolicy, used to attach
a buffer of bytes to Connext's discovery meta-data. See Section 6.5.24.

Table 7.15 DataReader QosPolicies

QosPolicy Description
7-48

DataReaders
7. Re

c
e

iving
 D

a
ta
Some of the policies may be changed after the DataReader has been created. This allows
the application to modify the behavior of the DataReader while it is in use. To modify the
QoS of an existing DataReader, use the get_qos() and set_qos() operations on the
DataReader. This is a general pattern for all Entities, described in more detail in
Section 4.1.7.3.

7.3.8.1 Configuring QoS Settings when the DataReader is Created

As described in Creating DataReaders (Section 7.3.1), there are different ways to create a
DataReader, depending on how you want to specify its QoS (with or without a QoS Profile).

❏ In Figure 7.9 on page 7-30, we saw an example of how to create a DataReader
with default QosPolicies by using the special constant,
DDS_DATAREADER_QOS_DEFAULT, which indicates that the default QoS
values for a DataReader should be used. The default DataReader QoS values are
configured in the Publisher or DomainParticipant; you can change them with
set_default_datareader_qos() or set_default_datareader_qos_with_profile().
Then any DataReaders created with the Subscriber will use the new default values.
As described in Section 4.1.7, this is a general pattern that applies to the con-
struction of all Entities.

❏ To create a DataReader with non-default QoS without using a QoS Profile, see the
example code in Figure 7.11 on page 7-50. It uses the Publisher’s
get_default_reader_qos() method to initialize a DDS_DataReaderQos structure.
Then, the policies are modified from their default values before the structure is
used in the create_datareader() method.

❏ You can also create a DataReader and specify its QoS settings via a QoS Profile. To
do so, you will call create_datareader_with_profile(), as seen in Figure 7.12 on
page 7-50.

❏ If you want to use a QoS profile, but then make some changes to the QoS before
creating the DataReader, call get_datareader_qos_from_profile() and
create_datareader() as seen in Figure 7.13 on page 7-51.

For more information, see Creating DataReaders (Section 7.3.1) and Chapter 15: Config-
uring QoS with XML.
7-49

Receiving Data
Figure 7.11 Creating a DataReader with Modified QosPolicies (not from a profile)

DDS_DataReaderQos reader_qos;1

// initialize reader_qos with default values
subscriber->get_default_datareader_qos(reader_qos);

// make QoS changes here
reader_qos.history.depth = 5;

// Create the reader with modified qos
DDSDataReader * reader
 = subscriber->create_datareader(topic,
 reader_qos,
 NULL, DDS_STATUS_MASK_NONE);
if (reader == NULL) {

// ... error
}
// narrow it for your specific data type
FooDataReader* foo_reader = FooDataReader::narrow(reader);

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.

// Create the datareader
DDSDataReader * reader =

subscriber->create_datareader_with_profile(
 topic,
 “MyReaderLibrary”,
 “MyReaderProfile”,
 NULL, DDS_STATUS_MASK_NONE);

if (reader == NULL) {
 // ... error
};

// narrow it for your specific data type
FooDataReader* foo_reader = FooDataReader::narrow(reader);

Figure 7.12 Creating a DataReader with a QoS Profile
7-50

DataReaders
7. Re

c
e

iving
 D

a
ta
DDS_DataReaderQos reader_qos;1

// Get reader QoS from profile
retcode = factory->get_datareader_qos_from_profile(

reader_qos,
“ReaderProfileLibrary”,
“ReaderProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

// Makes QoS changes here
reader_qos.history.depth = 5;

DDSDataReader * reader = subscriber->create_datareader(
 topic,

 reader_qos,
 NULL, DDS_STATUS_MASK_NONE);
if (reader == NULL) {

// handle error
}

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.

Figure 7.13 Getting QoS Values from a Profile, Changing QoS Values, Creating a DataReader with
Modified QoS Values
7-51

Receiving Data
7.3.8.2 Changing QoS Settings After the DataReader Has Been Created

There are 2 ways to change an existing DataReader’s QoS after it is has been created—
again depending on whether or not you are using a QoS Profile.

❏ To change QoS programmatically (that is, without using a QoS Profile), use
get_qos() and set_qos(). See the example code in Figure 7.14. It retrieves the cur-
rent values by calling the DataReader’s get_qos() operation. Then it modifies the
value and calls set_qos() to apply the new value. Note, however, that some
QosPolicies cannot be changed after the DataReader has been enabled—this
restriction is noted in the descriptions of the individual QosPolicies.

❏ You can also change a DataReader’s (and all other Entities’) QoS by using a QoS
Profile and calling set_qos_with_profile(). For an example, see Figure 7.15. For
more information, see Chapter 15: Configuring QoS with XML.

DDS_DataReaderQos reader_qos;1

// Get current QoS.
if (datareader->get_qos(reader_qos) != DDS_RETCODE_OK) {

// handle error
}
// Makes QoS changes here
reader_qos.history.depth = 5;

// Set the new QoS
if (datareader->set_qos(reader_qos) != DDS_RETCODE_OK) {

// handle error
}

1. For the C API, you need to use DDS_ParticipantQos_INITIALIZER or DDS_ParticipantQos_initialize().
See Special QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 7.14 Changing the QoS of an Existing DataReader (without a QoS Profile)

retcode = datareader->set_qos_with_profile(
“ReaderProfileLibrary”,”ReaderProfile”);

if (retcode != DDS_RETCODE_OK) {
 // handle error
}

Figure 7.15 Changing the QoS of an Existing DataReader with a QoS Profile
7-52

DataReaders
7. Re

c
e

iving
 D

a
ta
7.3.8.3 Using a Topic’s QoS to Initialize a DataWriter’s QoS

Several DataReader QosPolicies can also be found in the QosPolicies for Topics (see
Section 5.1.3). The QosPolicies set in the Topic do not directly affect the DataReaders (or
DataWriters) that use that Topic. In many ways, some QosPolicies are a Topic-level con-
cept, even though the DDS standard allows you to set different values for those policies
for different DataReaders and DataWriters of the same Topic. Thus, the policies in the
DDS_TopicQos structure exist as a way to help centralize and annotate the intended or
suggested values of those QoSs. Connext does not check to see if the actual policies set
for a DataReader is aligned with those set in the Topic to which it is bound.

There are many ways to use the QosPolicies’ values set in the Topic when setting the
QosPolicies’ values in a DataReader. The most straight forward way is to get the values
of policies directly from the Topic and use them in the policies for the DataReader.
Figure 6.17 on page 6-58 shows an example of how to this for a DataWriter; the pattern
applies to DataReaders as well.

The Subscriber’s copy_from_topic_qos() operation can be used to copy all the common
policies from the Topic QoS to a DataReaderQoS, as illustrated in Figure 6.18 on page 6-
59 for DataWriters.

The special macro, DDS_DATAREADER_QOS_USE_TOPIC_QOS, can be used to
indicate that the DataReader should be created with the QoS that results from modifying
the default DataReader QoS with the values specified by the Topic. See Figure 6.19 on
page 6-60 and Figure 6.20 on page 6-60 for examples involving DataWriters. The same
pattern applies to DataReaders. For more information on the use and manipulation of
QoS, see Section 4.1.7.

7.3.9 Navigating Relationships Among Entities

7.3.9.1 Finding Matching Publications

The following DataReader operations can be used to get information about the DataWrit-
ers that will send data to this DataReader.

❏ get_matched_publications()

❏ get_matched_publication_data()

The get_matched_publications() operation will return a sequence of handles to
matched DataWriters. You can use these handles in the get_matched_publication_data()
method to get information about the DataWriter such as the values of its QosPolicies.

Note that DataWriter that have been ignored using the DomainParticipant’s
ignore_publication() operation are not considered to be matched even if the DataWriter
7-53

Receiving Data
has the same Topic and compatible QosPolicies. Thus, they will not be included in the
list of DataWriters returned by get_matched_publications(). See Section 14.4.2 for more
on ignore_publication().

You can also get the DATA_READER PROTOCOL_STATUS for matching publications
with get_matched_publication_datareader_protocol_status() (see Section 7.3.7.3).

Notes:

❏ Status/data for a matched publication is only kept while the matched publica-
tion is alive. Once a matched publication is no longer alive, its status is deleted. If
you try to get the status/data for a matched publication that is no longer alive,
the 'get data' or 'get status' call will return an error.

❏ The get_matched_publication_data() operation does not retrieve the type_code
or property fields from built-in-topic data structures. This information is avail-
able through the on_data_available() callback (if a DataReaderListener is
installed on the PublicationBuiltinTopicDataDataReader).

7.3.9.2 Finding a DataReader’s Related Entities

These DataReader operations are useful for obtaining a handle to various related entities:

❏ get_subscriber()

❏ get_topicdescription()

The get_subscriber() operation returns the Subscriber that created the DataReader.
get_topicdescription() returns the Topic with which the DataReader is associated.

7.3.9.3 Looking Up an Instance Handle

Some operations, such as read_instance() and take_instance(), take an instance_handle
parameter. If you need to get such as handle, you can call the lookup_instance() opera-
tion, which takes an instance as a parameter and returns a handle to that instance.

7.3.9.4 Getting the Key Value for an Instance

If you have a handle to a data-instance, you can use the FooDataReader’s
get_key_value() operation to retrieve the key for that instance. The value of the key is
decomposed into its constituent fields and returned in a Foo structure. For information
on keys and keyed data types, please see Section 2.2.2.
7-54

Using DataReaders to Access Data (Read & Take)
7. Re

c
e

iving
 D

a
ta
7.4 Using DataReaders to Access Data (Read & Take)
For user applications to access the data received for a DataReader, they must use the
type-specific derived class or set of functions in the C API. Thus for a user data type
‘Foo’, you must use methods of the FooDataReader class. The type-specific class or
functions are automatically generated if you use rtiddsgen. Else, you will have to create
them yourself, see Section 3.8.5.1 for more details.

7.4.1 Using a Type-Specific DataReader (FooDataReader)

Using a Subscriber you will create a DataReader associating it with a specific data type,
for example ‘Foo’. Note that the Subscriber’s create_datareader() method returns a
generic DataReader. When your code is ready to access data samples received for the
DataReader, you must use type-specific operations associated with the FooDataReader,
such as read() and take().

To cast the generic DataReader returned by create_datareader() into an object of type
FooDataReader, you should use the type-safe narrow() method of the FooDataReader
class. narrow() will make sure that the generic DataReader passed to it is indeed an
object of the FooDataReader class before it makes the cast. Else, it will return NULL.
Figure 7.8 on page 7-21 shows an example:

Foo_reader = FooDataReader::narrow(reader);

Table 7.3, “DataReader Operations,” on page 7-24 lists type-specific operations using a
FooDataReader. Also listed are generic, non-type specific operations that can be per-
formed using the base class object DDSDataReader (or DDS_DataReader in C). In C,
you must pass a pointer to a DDS_DataReader to those generic functions.

7.4.2 Loaning and Returning Data and SampleInfo Sequences

The read() and take() operations (and their variations) return information to your appli-
cation in two sequences:

❏ received data samples in a sequence of the data type

❏ corresponding information about each sample in a SampleInfo sequence

These sequences are parameters that are passed by your code into the read() and take()
operations. If you use empty sequences (sequences that are initialized but have a maxi-
mum length of 0), Connext will fill those sequences with memory directly loaned from
the receive queue itself. There is no copying of the data or of SampleInfo when the con-
7-55

Receiving Data
tents of the sequences are loaned. This is certainly the most efficient way for your code
to retrieve the data.

However when you do so, your code must return the loaned sequences back to Connext
so that they can be reused by the receive queue. If your code does not return the loan by
calling the FooDataReader’s return_loan() method, then Connext will eventually run
out of memory to store data samples received from the network for that DataReader. See
Figure 7.16 for an example of borrowing and returning loaned sequences.

DDS_ReturnCode_t return_loan(FooSeq &received_data,
 DDS_SampleInfoSeq &info_seq);

If your code provides its own sequences to the read/take operations, then Connext will
copy the data from the receive queue. In that case, you do not have to call return_loan()
when you are finished with the data. However, you must make sure the following is

Figure 7.16 Using Loaned Sequences in read() and take()

// In C++ and Java, sequences are automatically initialized
// to be empty
FooSeq data_seq;1

DDS_SampleInfoSeq info_seq;
DDS_ReturnCode_t retcode;
...
// with empty sequences, a take() or read() will return loaned
// sequence elements
retcode = Foo_reader->take(data_seq, info_seq,

 DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
 DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

... // process the returned data

// must return the loaned sequences when done processing
Foo_reader->return_loan(data_seq, info_seq);
...

1. In the C API, you must use the FooSeq_initialize() and DDS_SampleInfoSeq_initialize() operations
or the macro DDS_SEQUENCE_INITIALIZER to initialize the FooSeq and DDS_SampleInfoSeq to be
empty. For example,

DDS_SampleInfoSeq infoSeq;
DDS_SampleInfoSeq_initialize(&infoSeq);

or

FooSeq fooSeq = DDS_SEQUENCE_INITIALIZER;
7-56

Using DataReaders to Access Data (Read & Take)
7. Re

c
e

iving
 D

a
ta
true, or else the read/take operation will fail with a return code of
DDS_RETCODE_PRECONDITION_NOT_MET:

❏ The received_data of type FooSeq and info_seq of type DDS_SampleInfoSeq
passed in as parameters have the same maximum size (length).

❏ The maximum size (length) of the sequences are less than or equal to the passed
in parameter, max_samples.

7.4.3 Accessing Data Samples with Read or Take

To access the data samples that Connext has received for a DataReader, you must invoke
the read() or take() methods. These methods return a list (sequence) of data samples and
additional information about the samples in a corresponding list (sequence) of Sam-
pleInfo structures. The contents of SampleInfo are described in Section 7.4.5.

The way Connext builds the collection of samples depends on QoS policies set on the
DataReader and Subscriber, the source_timestamp of the samples, and the
sample_states, view_states, and instance_states parameters passed to the read/take
operation.

In read() and take(), you may enter parameters so that Connext selectively returns data
samples currently stored in the DataReader’s receive queue. You may want Connext to
return all of the data in a single list or only a subset of the available samples as config-
ured using the sample_states, view_states, and instance_states masks. Section 7.4.5
describes how these masks are used to determine which data samples should be
returned.

7.4.3.1 Read vs. Take

The difference between read() and take() is how Connext treats the data that is returned.
With take(), Connext will remove the data from the DataReader’s receive queue. The data
returned by Connext is no longer stored by Connext. With read(), Connext will continue
to store the data in the DataReader’s receive queue. The same data may be read again
until it is taken in subsequent take() calls. Note that the data stored in the DataReader’s
receive queue may be overwritten, even if it has not been read, depending on the setting
of the HISTORY QosPolicy (Section 6.5.9).

The read() and take() operations are non-blocking calls, so that they may return no data
(DDS_RETCODE_NO_DATA) if the receive queue is empty or has no data that
matches the criteria specified by the StateMasks.

The read_w_condition() and take_w_condition() operations take a ReadCondition as a
parameter instead of sample, view or instance states. The only samples returned will be
7-57

Receiving Data
those for which the ReadCondition is TRUE. These operations, in conjunction with
ReadConditions and a WaitSet, allow you to perform ‘waiting reads.’ For more informa-
tion, see ReadConditions and QueryConditions (Section 4.6.7).

As you will see, read and take have the same parameters:

DDS_ReturnCode_t read(
FooSeq &received_data_seq,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

DDS_ReturnCode_t take(
FooSeq &received_data_seq,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

Note: These operations may loan internal Connext memory, which must be returned
with return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Sec-
tion 7.4.2).

Both operations return an ordered collection of data samples (in the received_data_seq
parameter) and information about each sample (in the info_seq parameter). Exactly
how they are ordered depends on the setting of the PRESENTATION QosPolicy (Section
6.4.6) and the DESTINATION_ORDER QosPolicy (Section 6.5.5). For more details please
see the online documentation for read() and take().

In read() and take(), you can use the sample_states, view_states, and instance_states
parameters to specify properties that are used to select the actual samples that are
returned by those methods. With different combinations of these three parameters, you
can direct Connext to return all data samples, data samples that you have not accessed
before, the data samples of instances that you have not seen before, data samples of
instances that have been disposed, etc. The possible values for the different states are
described both in the online documentation and in Section 7.4.5.

Table 7.16 lists the variations of the read() and take() operations.

7.4.3.2 General Patterns for Accessing Data

Once the data samples are available to the data readers, the samples can be read or
taken by the application. The basic rule is that the application may do this in any order it
wishes. This approach is very flexible and allows the application ultimate control.
7-58

Using DataReaders to Access Data (Read & Take)
7. Re

c
e

iving
 D

a
ta
To access data coherently, or in order, the PRESENTATION QosPolicy (Section 6.4.6)
must be set properly.

❏ Accessing Samples If No Order or Coherence Is Required

Table 7.16 Read and Take Operations

Read Operations Take Operations Description Reference

read take

Reads/takes a collection of data
samples from the DataReader.
Can be used for both keyed and
non-keyed data types.

Section 7.4.3

read_instance take_instance

Identical to read() and take(), but
all returned samples belong to a
single instance, which you specify
as a parameter.
Can only be used with keyed data
types.

Section 7.4.3.4

read_instance_
w_condition

take_instance_
w_condition

Identical to read_instance() and
take_instance(), but all returned
samples belong to the single speci-
fied instance and satisfy the speci-
fied ReadCondition.

Section 7.4.3.7

read_next_instance take_next_instance

Similar to read_instance() and
take_instance(), but the actual
instance is not directly specified as
a parameter. Instead, the samples
will all belong to instance ordered
after the instance that is specified
by the previous_handle parameter.

Section 7.4.3.5

read_next_instance_
w_condition

take_next_instance_
w_condition

Accesses a collection of data sam-
ples of the next instance that match
a specific set of ReadConditions,
from the DataReader.

Section 7.4.3.8

read_next_sample take_next_sample

Provide a convenient way to
access the next data sample in
the receive queue that has not
been accessed before.

Section 7.4.3.3

read_w_condition take_w_condition
Accesses a collection of data samples
from the DataReader that match spe-
cific ReadCondition criteria.

Section 7.4.3.6
7-59

Receiving Data
Simply access the data by calling read/take on each DataReader in any order you
want.

You do not have to call begin_access() and end_access(). However, doing so is
not an error and it will have no effect.

You can call the Subscriber’s get_datareaders() operation to see which DataRead-
ers have data to be read, but you do not need to read all of them or read them in
a particular order. The get_datareaders() operation will return a logical 'set' in
the sense that the same DataReader will not appear twice. The order of the
DataReaders returned is not specified.

❏ Accessing Samples within a SubscriberListener

This case describes how to access the data inside the listener's
on_data_on_readers() operation (regardless of the PRESENTATION QoS policy
settings).

To do so, you can call read/take on each DataReader in any order. You can also
delegate accessing of the data to the DataReaderListeners by calling the Sub-
scriber’s notify_datareaders() operation.

Similar to the previous case, you can still call the Subscriber’s get_datareaders()
operation to determine which DataReaders have data to be read, but you do not
have to read all of them, or read them in a particular order. get_datareaders()
will return a logical 'set.'

You do not have to call begin_access() and end_access(). However, doing so is
not an error and it will have no effect.

7.4.3.3 read_next_sample and take_next_sample

The read_next_sample() or take_next_sample() operation is used to retrieve the next
sample that hasn’t already been accessed. It is a simple way to 'read' samples and frees
your application from managing sequences and specifying sample, instance or view
states. It behaves the same as calling read() or take() with max_samples = 1,
sample_states = NOT_READ, view_states = ANY_VIEW_STATE, and instance_states
= ANY_INSTANCE_STATE.

DDS_ReturnCode_t read_next_sample(Foo & received_data,
 DDS_SampleInfo & sample_info);

DDS_ReturnCode_t take_next_sample(Foo & received_data,
 DDS_SampleInfo & sample_info);

It copies the next, not-previously-accessed data value from the DataReader. It also copies
the sample’s corresponding DDS_SampleInfo structure.
7-60

Using DataReaders to Access Data (Read & Take)
7. Re

c
e

iving
 D

a
ta
If there is no unread data in the DataReader, the operation will return
DDS_RETCODE_NO_DATA and nothing is copied.

Since this operation copies both the data sample and the SampleInfo into user-provided
storage, it does not allocate nor loan memory. You do not have to call return_loan() after
this operation.

Note: If the received_data parameter references a structure that contains a sequence and
that sequence has not been initialized, the operation will return
DDS_RETCODE_ERROR.

7.4.3.4 read_instance and take_instance

The read_instance() and take_instance() operations are identical to read() and take(),
but they are used to access samples for just a specific instance (key value). The parame-
ters are the same, except you must also supply an instance handle. These functions can
only be used when the DataReader is tied to a keyed type, see Section 2.2.2 for more
about keyed data types.

These operations may return BAD_PARAMETER if the instance handle does not corre-
spond to an existing data-object known to the DataReader.

The handle to a particular data instance could have been cached from a previous read()
operation (value taken from the SampleInfo struct) or created by using the DataReader’s
lookup_instance() operation.

DDS_ReturnCode_t read_instance(
FooSeq &received_data,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
const DDS_InstanceHandle_t &a_handle,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

Note: This operation may loan internal Connext memory, which must be returned with
return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Section
7.4.2).

7.4.3.5 read_next_instance and take_next_instance

The read_next_instance() and take_next_instance() operations are similar to
read_instance() and take_instance() in that they return samples for a specific data
instance (key value). The difference is that instead of passing the handle of the data
instance for which you want data samples, instead you pass the handle to a ‘previous’
7-61

Receiving Data
instance. The returned samples will all belong to the 'next' instance, where the ordering
of instances is explained below.

DDS_ReturnCode_t read_next_instance(
FooSeq &received_data,
DDS_SampleInfoSeq &info_seq,
DDS_Long max_samples,
const DDS_InstanceHandle_t &previous_handle,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states)

Connext orders all instances relative to each other.1 This ordering depends on the value
of the key as defined for the data type associated with the Topic. For the purposes of this
discussion, it is 'as if' each instance handle is represented by a unique integer and thus
different instance handles can be ordered by their value.

This operation will return values for the next instance handle that has data samples
stored in the receive queue (that meet the criteria specified by the StateMasks). The next
instance handle will be ordered after the previous_handle that is passed in as a parame-
ter.

The special value DDS_HANDLE_NIL can be passed in as the previous_handle. Doing
so, you will receive values for the “smallest” instance handle that has data samples
stored in the receive queue that you have not yet accessed.

You can call the read_next_instance() operation with a previous_handle that does not
correspond to an instance currently managed by the DataReader. For example, you could
use this approach to iterate though all the instances, take all the samples with a
NOT_ALIVE_NO_WRITERS instance_state, return the loans (at which point the
instance information may be removed, and thus the handle becomes invalid), and then
try to read the next instance.

The example in Figure 7.17 shows how to use take_next_instance() iteratively to pro-
cess all the data received for an instance, one instance at a time. We always pass in
DDS_HANDLE_NIL as the value of previous_handle. Each time through the loop, we
will receive samples for a different instance, since the previous time through the loop,
all of the samples of the previous instance were returned (and thus accessed).

1. The ordering of the instances is specific to each implementation of the DDS standard; to maximize the
portability of your code, do not assume any particular order. In the case of Connext (and likely other DDS
implementations as well), the order is not likely to be meaningful to you as a developer; it is simply important
that some ordering exists.
7-62

Using DataReaders to Access Data (Read & Take)
7. Re

c
e

iving
 D

a
ta
Note: This operation may loan internal Connext memory, which must be returned with
return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Section
7.4.2).

Figure 7.17 Using take_next_instance() to process received data

FooSeq received_data;1

DDS_SampleInfoSeq info_seq;

while (retcode = reader->take_next_instance(
received_data, info_seq,
DDS_LENGTH_UNLIMITED,
DDS_HANDLE_NIL,
DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE,
DDS_ANY_INSTANCE_STATE)

 != DDS_RETCODE_NO_DATA) {

// the data samples returned in received_data will all
// be for a single instance

... // process the data

// now return the loaned sequences
if (reader->return_loan(received_data, info_seq) !=

DDS_RETCODE_OK) {
... // handle error

}
}

1. In the C API, you must use the FooSeq_initialize() and DDS_SampleInfoSeq_initialize() operations
or the macro DDS_SEQUENCE_INITIALIZER to initialize the FooSeq and DDS_SampleInfoSeq to be
empty. For example,

DDS_SampleInfoSeq infoSeq;
DDS_SampleInfoSeq_initialize(&infoSeq);

or

FooSeq fooSeq = DDS_SEQUENCE_INITIALIZER;
7-63

Receiving Data
7.4.3.6 read_w_condition and take_w_condition

The read_w_condition() and take_w_condition() operations are identical to read() and
take(), but instead of passing in the sample_states, view_states, and instance_states
mask parameters directly, you pass in a ReadCondition (which specifies these masks).

 DDS_ReturnCode_t read_w_condition
(FooSeq &received_data,
 DDS_SampleInfoSeq &info_seq,
 DDS_Long max_samples,
 DDSReadCondition *condition)

Note: This operation may loan internal Connext memory, which must be returned with
return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Section
7.4.2).

7.4.3.7 read_instance_w_condition and take_instance_w_condition

The read_instance_w_condition() and take_instance_w_condition() operations are
similar to read_instance() and take_instance(), respectively, except that the returned
samples must also satisfy a specified ReadCondition.

DDS_ReturnCode_t read_instance_w_condition(
FooSeq & received_data,
DDS_SampleInfoSeq & info_seq,
DDS_Long max_samples,
const DDS_InstanceHandle_t & a_handle,
DDSReadCondition * condition);

The behavior of read_instance_w_condition() and take_instance_w_condition() fol-
lows the same rules as read() and take() regarding pre-conditions and post-conditions
for the received_data and sample_info parameters.

These functions can only be used when the DataReader is tied to a keyed type, see
Section 2.2.2 for more about keyed data types.

Similar to read(), these operations must be provided on the specialized class that is gen-
erated for the particular application data-type that is being accessed.

Note: These operations may loan internal Connext memory, which must be returned
with return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Sec-
tion 7.4.2).

7.4.3.8 read_next_instance_w_condition and take_next_instance_w_condition

The read_next_instance_w_condition() and take_next_instance_w_condition() opera-
tions are identical to read_next_instance() and take_next_instance(), but instead of
7-64

Using DataReaders to Access Data (Read & Take)
7. Re

c
e

iving
 D

a
ta
passing in the sample_states, view_states, and instance_states mask parameters directly,
you pass in a ReadCondition (which specifies these masks).

DDS_ReturnCode_t read_next_instance_w_condition
(FooSeq &received_data,
 DDS_SampleInfoSeq &info_seq,
 DDS_Long max_samples,
 const DDS_InstanceHandle_t &previous_handle,
 DDSReadCondition *condition)

Note: This operation may loan internal Connext memory, which must be returned with
return_loan(). See Loaning and Returning Data and SampleInfo Sequences (Section
7.4.2).

7.4.4 The Sequence Data Structure

The DDS specification uses sequences whenever a variable-length array of elements
must be passed through the API. This includes passing QosPolicies into Connext, as well
as retrieving data samples from Connext. A sequence is an ordered collection of ele-
ments of the same type. The type of a sequence containing elements of type “Foo”
(whether “Foo” is one of your types or a built-in Connext type) is typically called “Foo-
Seq.”

In all APIs except Java, FooSeq contains deep copies of Foo elements; in Java, which
does not provide direct support for deep copy semantics, FooSeq contains references to
Foo objects. In Java, sequences implement the java.util.List interface, and thus support
all of the collection APIs and idioms familiar to Java programmers.

A sequence is logically composed of three things: an array of elements, a maximum num-
ber of elements that the array may contain (i.e. its allocated size), and a logical length
indicating how many of the allocated elements are valid. The length may vary dynami-
cally between 0 and the maximum (inclusive); it is not permissible to access an element
at an index greater than or equal to the length.

A sequence may either “own” the memory associated with it, or it may “borrow” that
memory. If a sequence owns its own memory, then the sequence itself will allocate the
its memory and is permitted to grow and shrink that memory (i.e. change its maximum)
dynamically.

You can also loan a sequence of memory using the sequence-specific operations
loan_contiguous() or loan_discontiguous(). This is useful if you want Connext to copy
the received data samples directly into data structures allocated in user space.

Please do not confuse (a) the user loaning memory to a sequence with (b) Connext loan-
ing internal memory from the receive queue to the user code via the read() or take()
7-65

Receiving Data
operations. For sequences of user data, these are complementary operations. read() and
take() loan memory to the user, passing in a sequence that has been loaned memory
with loan_contiguous() or loan_discontinguous().

A sequence with loaned of memory may not change its maximum size.

For C developers: In C, because there is no concept of a constructor, sequences must be
initialized before they are used. You can either set a sequence equal to the macro
DDS_SEQUENCE_INITIALIZER or use a sequence-specific method,
<type>Seq_initialize(), to initialize sequences.

For C++, C++/CLI, and C# developers: C++ sequence classes overload the [] operators to
allow you to access their elements as if the sequence were a simple array. How-
ever, for code portability reasons, Connext’s implementation of sequences does
not use the Standard Template Library (STL).

For Java developers: In Java, sequences implement the List interface, and typically, a List
must contain Objects; it cannot contain primitive types directly. This restriction
makes Lists of primitives types less efficient because each type must be wrapped
and unwrapped into and from an Object as it is added to and removed from the
List.

Connext provides a more efficient implementation for sequences of primitive types. In
Connext, primitive sequence types (e.g., IntSeq, FloatSeq, etc.) are implemented as
wrappers around arrays of primitive types. The wrapper also provides the usual List
APIs; however, these APIs manipulate Objects that store the primitive type.

More efficient APIs are also provided that manipulate the primitive types directly and
thus avoid unnecessary memory allocations and type casts. These additional methods
are named according to the pattern <standard method><primitive type>; for example, the
IntSeq class defines methods addInt() and getInt() that correspond to the List APIs
add() and get(). addInt() and getInt() directly manipulate int values while add() and
get() manipulate Objects that contain a single int.

For more information on sequence APIs in all languages, please consult the online docu-
mentation (from the main page, select Modules, Infrastructure, Sequence Support).

7.4.5 The SampleInfo Structure

When you invoke the read/take operations, for every data sample that is returned, a
corresponding SampleInfo is also returned. SampleInfo structures provide you with
additional information about the data samples received by Connext.

Table 7.17 shows the format of the SampleInfo structure.
7-66

Using DataReaders to Access Data (Read & Take)
7. Re

c
e

iving
 D

a
ta
Table 7.17 DDS_SampleInfo Structure

Type Field Name Description

DDS_SampleStateKind sample_state See Section 7.4.5.2

DDS_ViewStateKind view_state See Section 7.4.5.3

DDS_InstanceStateKind instance_state See Section 7.4.5.4

DDS_Time_t source_timestamp
Time stored by the DataWriter
when the sample was written.

DDS_InstanceHandle_t instance_handle
Handle to the data-instance corre-
sponding to the sample.

DDS_InstanceHandle_t publication_handle

Local handle to the DataWriter that
modified the instance. This is the
same instance handle returned by
get_matched_publications(). You
can use this handle when calling
get_matched_publication_data().

DDS_Long

disposed_generation_count

See Section 7.4.5.5.

no_writers_generation_count

sample_rank

generation_rank

absolute_generation_rank

DDS_Boolean valid_data
Indicates whether the data sample
includes valid data. See
Section 7.4.5.6.

DDS_Time_t reception_timestamp
Time stored when the sample was
committed by the DataReader. See
Section 7.4.5.1.

DDS_SequenceNumber_t publication_sequence_number
Publication sequence number
assigned when the sample was
written by the DataWriter.

DDS_SequenceNumber_t reception_sequence_number

Reception sequence number
assigned when the sample was
committed by the DataReader. See
Section 7.4.5.1.
7-67

Receiving Data
7.4.5.1 Reception Timestamp

In reliable communication, if data samples are received out received of order, Connext
will not deliver them until all the previous data samples have been received. For exam-
ple, if Sample 2 arrives before Sample 1, Sample 2 cannot be delivered until Sample 1 is
received. The reception_timestamp is the time when all previous samples has been
received—the time at which the sample is committed. If samples are all received in order,
the committed time will be same as reception time. However, if samples are lost on the
wire, then the committed time will be later than the initial reception time.

7.4.5.2 Sample States

For each sample received, Connext keeps a sample_state relative to each DataReader. The
sample_state can be either:

❏ READ The DataReader has already accessed that sample by means of read().

❏ NOT_READ The DataReader has never accessed that sample before.

The samples retrieved by a read() or take() need not all have the same sample_state.

7.4.5.3 View States

For each instance (identified by a unique key value), Connext keeps a view_state relative
to each DataReader. The view_state can be either:

struct DDS_GUID_t
original_publication_
virtual_guid

Original publication virtual GUID.
If the Publisher’s access_scope is
GROUP, this field contains the Pub-
lisher virtual GUID that uniquely
identifies the DataWriter group.

struct
DDS_SequenceNumber_t

original_publication_
virtual_sequence_number

Original publication virtual
sequence number.
If the Publisher’s access_scope is
GROUP, this field contains the Pub-
lisher virtual sequence number that
uniquely identifies a sample within
the DataWriter group.

Table 7.17 DDS_SampleInfo Structure

Type Field Name Description
7-68

Using DataReaders to Access Data (Read & Take)
7. Re

c
e

iving
 D

a
ta
❏ NEW Either this is the first time the DataReader has ever accessed samples of the
instance, or else the DataReader has accessed previous samples of the instance,
but the instance has since been reborn (i.e. become not-alive and then alive
again). These two cases are distinguished by examining the
disposed_generation_count and the no_writers_generation_count (see
Section 7.4.5.5).

❏ NOT_NEW The DataReader has already accessed samples of the same instance
and the instance has not been reborn since.

The view_state in the SampleInfo structure is really a per-instance concept (as opposed
to the sample_state which is per data sample). Thus all data samples related to the same
instance that are returned by read() or take() will have the same value for view_state.

7.4.5.4 Instance States

Connext keeps an instance_state for each instance; it can be:

❏ ALIVE The following are all true: (a) samples have been received for the
instance, (b) there are live DataWriters writing the instance, and (c) the instance
has not been explicitly disposed (or else more samples have been received after it
was disposed).

❏ NOT_ALIVE_DISPOSED The instance was explicitly disposed by a DataWriter by
means of the dispose() operation.

❏ NOT_ALIVE_NO_WRITERS The instance has been declared as not-alive by the
DataReader because it has determined that there are no live DataWriter entities
writing that instance.

The events that cause the instance_state to change can depend on the setting of the
OWNERSHIP QosPolicy (Section 6.5.14):

❏ If OWNERSHIP QoS is set to EXCLUSIVE, the instance_state becomes
NOT_ALIVE_DISPOSED only if the DataWriter that currently “owns” the
instance explicitly disposes it. The instance_state will become ALIVE again only
if the DataWriter that owns the instance writes it. Note that ownership of the
instance is determined by a combination of the OWNERSHIP and
OWNERSHIP_STRENGTH QosPolicies. Ownership of an instance can dynami-
cally change.

❏ If OWNERSHIP QoS is set to SHARED, the instance_state becomes
NOT_ALIVE_DISPOSED if any DataWriter explicitly disposes the instance. The
instance_state becomes ALIVE as soon as any DataWriter writes the instance
again.
7-69

Receiving Data
Since the instance_state in the SampleInfo structure is a per-instance concept, all data
samples related to the same instance that are returned by read() or take() will have the
same value for instance_state.

7.4.5.5 Generation Counts and Ranks

Generation counts and ranks allow your application to distinguish samples belonging
to different ‘generations’ of the instance. It is possible for an instance to become alive, be
disposed and become not-alive, and then to cycle again from alive to not-alive states
during the operation of an application. Each time an instance becomes alive defines a
new generation for the instance.

It is possible that an instance may cycle through alive and not-alive states multiple times
before the application accesses the data samples for the instance. This means that the
data samples returned by read() and take() may cross generations. That is, some sam-
ples were published when the instance was alive in one generation and other samples
were published when the instance transitioned through the non-alive state into the alive
state again. It may be important to your application to distinguish the data samples by
the generation in which they were published.

Each DataReader keeps two counters for each new instance it detects (recall that instances
are distinguished by their key values):

❏ disposed_generation_count Counts how many times the instance_state of the
corresponding instance changes from NOT_ALIVE_DISPOSED to ALIVE. The
counter is reset when the instance resource is reclaimed.

❏ no_writers_generation_count Counts how many times the instance_state of the
corresponding instance changes from NOT_ALIVE_NO_WRITERS to ALIVE.
The counter is reset when the instance resource is reclaimed.

The disposed_generation_count and no_writers_generation_count fields in the Sam-
pleInfo structure capture a snapshot of the corresponding counters at the time the cor-
responding sample was received.

The sample_rank and generation_rank in the SampleInfo structure are computed rela-
tive to the sequence of samples returned by read() or take():

❏ sample_rank Indicates how many samples of the same instance follow the cur-
rent one in the sequence. The samples are always time-ordered, thus the newest
sample of an instance will have a sample_rank of 0. Depending on what you
have configured read() and take() to return, a sample_rank of 0 may or may not
be the newest sample that was ever received. It is just the newest sample in the
sequence that was returned.
7-70

Using DataReaders to Access Data (Read & Take)
7. Re

c
e

iving
 D

a
ta
❏ generation_rank Indicates the difference in ‘generations’ between the sample and
the newest sample of the same instance as returned in the sequence. If a sample
belongs to the same generation as the newest sample in the sequence returned by
read() and take(), then generation_rank will be 0.

❏ absolute_generation_rank Indicates the difference in ‘generations’ between the
sample and the newest sample of the same instance ever received by the
DataReader. Recall that the data sequence returned by read() and take() may not
contain all of the data in the DataReader’s receive queue. Thus, a sample that
belongs to the newest generation of the instance will have an
absolute_generation_rank of 0.

Like the ‘generation count’ values, the ‘rank’ values are also reset to 0 if the instance
resource is reclaimed.

By using the sample_rank, generation_rank and absolute_generation_rank informa-
tion in the SampleInfo structure, your application can determine exactly what hap-
pened to the instance and thus make appropriate decisions of what to do with the data
samples received for the instance. For example:

❏ A sample with sample_rank = 0 is the newest sample of the instance in the
returned sequence.

❏ Samples that belong to the same generation will have the same generation_rank
(as well as absolute_generation_rank).

❏ Samples with absolute_generation_rank = 0 belong to the newest generation for
the instance received by the DataReader.

7.4.5.6 Valid Data Flag

The SampleInfo structure’s valid_data flag indicates whether the sample contains data
or is only used to communicate a change in the instance_state of the instance.

Normally, each sample contains both a SampleInfo structure and some data. However,
there are situations in which the sample only contains the SampleInfo and does not have
any associated data. This occurs when Connext notifies the application of a change of
state for an instance that was caused by some internal mechanism (such as a timeout)
for which there is no associated data. An example is whenConnext detects that an
instance has no writers and changes the corresponding instance_state to
NOT_ALIVE_NO_WRITERS.

If this flag is TRUE, then the sample contains valid Data. If the flag is FALSE, the Sample
contains no data.
7-71

Receiving Data
To ensure correctness and portability, your application must check the valid_data flag
prior to accessing the data associated with the sample, and only access the data if it is
TRUE.

7.5 Subscriber QosPolicies
Subscribers have the same set of QosPolicies as Publishers; see Publisher/Subscriber
QosPolicies (Section 6.4).

❏ ENTITYFACTORY QosPolicy (Section 6.4.2)

❏ EXCLUSIVE_AREA QosPolicy (DDS Extension) (Section 6.4.3)

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ PARTITION QosPolicy (Section 6.4.5)

❏ PRESENTATION QosPolicy (Section 6.4.6)

7.6 DataReader QosPolicies
This section describes the QosPolicies that are strictly for DataReaders (not for DataWrit-
ers). For a complete list of QosPolicies that apply to DataReaders, see Table 7.15 on
page 7-47.

❏ AVAILABILITY QosPolicy (DDS Extension) (Section 7.6.1)

❏ DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.2)

❏ DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
7.6.3)

❏ READER_DATA_LIFECYCLE QoS Policy (Section 7.6.4)

❏ TIME_BASED_FILTER QosPolicy (Section 7.6.5)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6)
7-72

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
7.6.1 AVAILABILITY QosPolicy (DDS Extension)

This QoS policy configures the availability of data. It is used in the context of Collabora-
tive DataWriters (Section 7.6.1.1).

It contains the members listed in Table 7.18.

7.6.1.1 Collaborative DataWriters

The Collaborative DataWriters feature allows you to have multiple DataWriters publish-
ing samples from a common logical data source. The DataReaders will combine the sam-
ples coming from the DataWriters in order to reconstruct the correct order at the source.
The Availability QosPolicy allows you to configure the sample combination (synchroni-
zation) process in the DataReader and can be used to support two different use cases:

❏ Ordered delivery of samples with Persistence Service1 (see Section 11.5)

Table 7.18 DDS_AvailabilityQosPolicy

Type Field Name Description

struct DDS_Duration_t
max_data_availability_
waiting_time

Defines how much time to wait before deliver-
ing a sample to the application without having
received some of the previous samples.
For Collaborative DataWriters: See Table 7.20.

struct DDS_Duration_t
max_endpoint_
availability_waiting_time

Defines how much time to wait to discover
DataWriters providing samples for the same data
source.
For Collaborative DataWriters: See Table 7.20.

struct
DDS_EndpointGroupSeq

required_matched_
endpoint_groups

A sequence of endpoint groups that provide
samples for the same data source, described in
Table 7.19.
For Collaborative DataWriters: See Table 7.20.

Table 7.19 struct DDS_EndpointGroup_t

Type Field Name Description

char * role_name Defines the role name of the endpoint group.

int quorum_count Defines the minimum number of members that for the endpoint group.

1. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered to
subscribing applications that join the system at a later time (see Chapter 21: Introduction to RTI Persistence
Service).
7-73

Receiving Data
When a late-joining DataReader configured with DURABILITY QosPolicy (Sec-
tion 6.5.6) set to PERSISTENT or TRANSIENT joins a domain, it will start receiv-
ing historical samples from multiple DataWriters. For example, if the original
DataWriter is still alive, the newly created DataReader will receive samples from
the original DataWriter and one or more Persistence Service DataWriters (PRSTDa-
taWriters). This policy can be used to configure the sample ordering process on
the DataReader.

❏ Ordered delivery of samples with Group Ordered Access

This policy can also be used to configure the sample ordering process when the
Subscriber is configured with PRESENTATION QosPolicy (Section 6.4.6)
access_scope set to GROUP. In this case, the Subscriber must deliver in order the
samples published by a group of DataWriters that belong to the same Publisher
and have access_scope set to GROUP.

Each sample published in a domain for a given logical data source is uniquely identified
by a pair (virtual GUID, virtual sequence number). Samples from the same data source
(same virtual GUID) can be published by different DataWriters.

A DataReader will deliver a sample (VGUIDn, VSNm) to the application if one of the fol-
lowing conditions is satisfied:

❏ (GUIDn, SNm-1) has already been delivered to the application.

❏ All the known DataWriters publishing VGUIDn have announced that they do not
have (VGUIDn, VSNm-1).

❏ None of the known DataWriters publishing VGUIDn have announced potential
availability of (VGUIDn, VSNm-1) and both timeouts in this QoS policy have
expired.

A DataWriter announces potential availability of samples by using virtual heartbeats.
The frequency at which virtual heartbeats are sent is controlled by the protocol parame-
ters virtual_heartbeat_period and samples_per_virtual_ heartbeat (see Table 6.31,
“DDS_RtpsReliableWriterProtocol_t,” on page 6-97).

Table 7.20 describes the fields of this policy when used for a Collaborative DataWriter.

7.6.1.2 Properties

This QosPolicy cannot be changed after the DataReader is created.

It only applies to DataReaders, so there are no compatibility restrictions for how it is set
on the publishing and subscribing sides.
7-74

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
7.6.1.3 Related QosPolicies

❏ ENTITYNAME QosPolicy (DDS Extension) (Section 6.5.8)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 8.5.4)

Table 7.20 Configuring Collaborative DataWriters with DDS_AvailabilityQosPolicy

Field Name Description for Collaborative DataWriters

max_data_availability_
waiting_time

Defines how much time to wait before delivering a sample to the applica-
tion without having received some of the previous samples.
A sample identified by (VGUIDn, VSNm) will be delivered to the applica-
tion if this timeout expires for the sample and the following two condi-
tions are satisfied:
None of the known DataWriters publishing VGUIDn have announced
potential availability of (VGUIDn, VSNm-1).
The DataWriters for all the endpoint groups specified in
required_matched_endpoint_groups have been discovered or
max_endpoint_availability_waiting_time has expired.

max_endpoint_availability_
waiting_time

Defines how much time to wait to discover DataWriters providing samples
for the same data source.
The set of endpoint groups that are required to provide samples for a data
source can be configured using required_matched_endpoint_groups.
A non-consecutive sample identified by (VGUIDn, VSNm) cannot be
delivered to the application unless the DataWriters for all the endpoint
groups in required_matched_endpoint_groups are discovered or this
timeout expires.

required_matched_
endpoint_groups

Specifies the set of endpoint groups that are expected to provide samples
for the same data source.
The quorum count in a group represents the number of DataWriters that
must be discovered for that group before the DataReader is allowed to pro-
vide non consecutive samples to the application.
A DataWriter becomes member of an endpoint group by configuring the
role_name in the DataWriter’s ENTITYNAME QosPolicy (DDS Extension)
(Section 6.5.8).
The DataWriters created by Persistence Service have a predefined role_name
of ‘PERSISTENCE_SERVICE’. For other DataWriters, the role_name is not
set by default.
7-75

Receiving Data
7.6.1.4 Applicable Entities

❏ DataReaders (Section 7.3)

7.6.1.5 System Resource Considerations

The resource limits for the endpoint groups in required_matched_endpoint_groups are
determined by two values in the DOMAIN_PARTICIPANT_RESOURCE_LIMITS
QosPolicy (DDS Extension) (Section 8.5.4):

❏ max_endpoint_groups

❏ max_endpoint_group_cumulative_characters

The maximum number of virtual writers (identified by a virtual GUID) that can be man-
aged by a DataReader is determined by the max_remote_virtual_writers in
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 7.6.3).
When the Subscriber’s access_scope is GROUP, max_remote_virtual_writers determines
the maximum number of DataWriter groups supported by the Subscriber. Since the Sub-
scriber may contain more than one DataReader, only the setting of the first applies.

7.6.2 DATA_READER_PROTOCOL QosPolicy (DDS Extension)

The DATA_READER_PROTOCOL QosPolicy applies only to DataReaders that are set up
for reliable operation (see RELIABILITY QosPolicy (Section 6.5.18)). This policy allows
the application to fine-tune the reliability protocol separately for each DataReader. For
details of the reliable protocol used by Connext, see Chapter 10.

Connext uses a standard protocol for packet (user and meta data) exchange between
applications. The DataReaderProtocol QosPolicy gives you control over configurable
portions of the protocol, including the configuration of the reliable data delivery mecha-
nism of the protocol on a per DataReader basis.

These configuration parameters control timing and timeouts, and give you the ability to
trade off between speed of data loss detection and repair, versus network and CPU
bandwidth used to maintain reliability.

It is important to tune the reliability protocol on a per DataReader basis to meet the
requirements of the end-user application so that data can be sent between DataWriters
and DataReaders in an efficient and optimal manner in the presence of data loss.

You can also use this QosPolicy to control how DDS responds to "slow" reliable
DataReaders or ones that disconnect or are otherwise lost.

See the RELIABILITY QosPolicy (Section 6.5.18) for more information on the per-
DataReader/DataWriter reliability configuration. The HISTORY QosPolicy (Section
7-76

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
6.5.9) and RESOURCE_LIMITS QosPolicy (Section 6.5.19) also play an important role in
the DDS reliability protocol.

This policy includes the members presented in Table 7.21 and Table 7.22. For defaults
and valid ranges, please refer to the online documentation.

When setting the fields in this policy, the following rule applies. If this is false, Connext
returns DDS_RETCODE_INCONSISTENT_POLICY when setting the QoS:

❏ max_heartbeat_response_delay >= min_heartbeat_response_delay

Table 7.21 DDS_DataReaderProtocolQosPolicy

Type Field Name Description

DDS_GUID_t virtual_guid

The virtual GUID (Global Unique Identifier) is used to
uniquely identify the same DataReader across multiple incar-
nations. In other words, this value allows Connext to remem-
ber information about a DataReader that may be deleted and
then recreated.
This value is used to provide durable reader state.
For more information, see Durability and Persistence Based on
Virtual GUIDs (Section 11.2).
By default, Connext will assign a virtual GUID automatically.
If you want to restore the state of the reader after a restart, you
can retrieve the value of the reader's virtual GUID using the
DataReader’s get_qos() operation, and set the virtual GUID of
the restarted DataReader to the same value.

DDS_UnsignedLong rtps_object_id

Determines the DataReader’s RTPS object ID, according to the
DDS-RTPS Interoperability Wire Protocol.
Only the last 3 bytes are used; the most significant byte is
ignored.
The rtps_host_id, rtps_app_id, rtps_instance_id in the
WIRE_PROTOCOL QosPolicy (DDS Extension) (Section
8.5.9), together with the 3 least significant bytes in
rtps_object_id, and another byte assigned by Connext to iden-
tify the entity type, forms the BuiltinTopicKey in Subscription-
BuiltinTopicData.
7-77

Receiving Data
DDS_Boolean expects_inline_qos

Specifies whether this DataReader expects inline QoS with
every sample.
DataReaders usually rely on the discovery process to propagate
QoS changes for matched DataWriters. Another way to get
QoS information is to have it sent inline with a sample.
With Connext, DataWriters and DataReaders cache discovery
information, so sending inline QoS is typically unnecessary.
The use of inline QoS is only needed for stateless implementa-
tions of DDS in which DataReaders do not cache Discovery
information.
The complete set of QoS that a DataWriter may send inline is
specified by the Real-Time Publish-Subscribe (RTPS) Wire
Interoperability Protocol.
Note: The use of inline QoS creates an additional wire-pay-
load, consuming extra bandwidth and serialization/deserial-
ization time.

DDS_Boolean disable_positive_acks

Determines whether the DataReader sends positive acknowl-
edgements (ACKs) to matching DataWriters.
When TRUE. the matching DataWriter will keep samples in its
queue for this DataReader for a minimum keep duration (see
Disabling Positive Acknowledgements (Section 6.5.2.3)).
When strict-reliability is not required and NACK-based reli-
ability is sufficient, setting this field reduces overhead net-
work traffic.

DDS_Boolean
propagate_dispose_
of_unregistered_
instances

Indicates whether or not an instance can move to the
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE state
without being in the DDS_ALIVE_INSTANCE_STATE state.
This field only applies to keyed readers.
When set to TRUE, the DataReader will receive dispose notifi-
cations even if the instance is not alive.
To make sure the key is available to the FooDataReader’s
get_key_value() operation, use this option in combination
with setting the DataWriter’s serialize_key_with_dispose field
(in the DATA_WRITER_PROTOCOL QosPolicy (DDS Exten-
sion) (Section 6.5.2)) to TRUE.
See Propagating Serialized Keys with Disposed-Instance Noti-
fications (Section 6.5.2.5).

Table 7.21 DDS_DataReaderProtocolQosPolicy

Type Field Name Description
7-78

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
7.6.2.1 Receive Window Size

A reliable DataReader presents samples it receives to the user in-order. If it receives sam-
ples out-of-order, it stores them internally until the other missing samples are received.
For example, if the DataWriter sends samples 1 and 2, if the DataReader receives 2 first, it
will wait until it receives 1 before passing the samples to the user.

The number of out-of-order samples that a DataReader can keep is set by the
receive_window_size. A larger window allows more out-of-order samples to be kept.

DDS_RtpsReliable-
ReaderProtocol_t

rtps_reliable_reader See Table 7.22

Table 7.22 DDS_RtpsReliableReaderProtocol_t

Type Field Name Description

DDS_Duration_t heartbeat_suppression_duration

How long additionally received heartbeats are sup-
pressed.
When a reliable DataReader receives consecutive heart-
beats within a short duration, this may trigger redun-
dant NACKs. To prevent the DataReader from sending
redundant NACKs, the DataReader may ignore the lat-
ter heartbeat(s) for this amount of time.

DDS_Duration_t min_heartbeat_response_delay
Minimum delay between when the DataReader
receives a heartbeat and when it sends an ACK/
NACK.

DDS_Duration_t max_heartbeat_response_delay

Maximum delay between when the DataReader
receives a heartbeat and when it sends an ACK/
NACK. Increasing this value helps prevent NACK
storms, but increases latency.

DDS_Duration_t nack_period
Rate at which to send negative acknowledgements to
new DataWriters. See Section 7.6.2.3.

DDS_Long receive_window_size
The number of received out-of-order samples a reader
can keep at a time. See Receive Window Size (Section
7.6.2.1)

DDS_Duration_t round_trip_time
The duration from sending a NACK to receiving a
repair of a sample. See Round-Trip Time For Filtering
Redundant NACKs (Section 7.6.2.2)

Table 7.21 DDS_DataReaderProtocolQosPolicy

Type Field Name Description
7-79

Receiving Data
When the window is full, any subsequent out-of-samples received will be dropped, and
such drops would necessitate NACK repairs that would degrade throughput. So, in net-
work environments where out-of-order samples are more probable or where NACK
repairs are costly, this window likely should be increased.

By default, the window is set to 256, which is the maximum number of samples a single
NACK submessage can request.

7.6.2.2 Round-Trip Time For Filtering Redundant NACKs

When a DataReader requests for a sample to be resent, there is a delay from when the
NACK is sent, to when it receives the resent sample. During that delay, the DataReader
may receive HEARTBEATs that normally would trigger another NACK for the same
sample. Such redundant repairs waste bandwidth and degrade throughput.

The round_trip_time is a user-configured estimate of the delay between sending a
NACK to receiving a repair. A DataReader keeps track of when a sample has been
NACK'd, and will prevent subsequent NACKs from redundantly requesting for the
same sample, until the round trip time has passed.

Note that the default value of 0 seconds means that the DataReader does not filter for
redundant NACKs.

7.6.2.3 Example

For many applications, changing these values will not be necessary. However, the more
nodes that your distributed application uses, and the greater the amount of network
traffic it generates, the more likely it is that you will want to consider experimenting
with these values.

When a reliable DataReader receives a heartbeat from a DataWriter, it will send an ACK/
NACK packet back to the DataWriter. Instead of sending the packet out immediately, the
DataReader can choose to send it after a delay. This policy sets the minimum and maxi-
mum time to delay; the actual delay will be a random value in between. (For more on
heartbeats and ACK/NACK messages, see Chapter 12: Discovery.)

Why is a delay useful? For DataWriters that have multiple reliable DataReaders, an effi-
cient way of heartbeating all of the DataReaders is to send a single heartbeat via multi-
cast. In that case, all of the DataReaders will receive the heartbeat (approximately)
simultaneously. If all DataReaders immediately respond with a ACK/NACK packet, the
network may be flooded. While the size of a ACK/NACK packet is relatively small, as
the number of DataReaders increases, the chance of packet collision also increases. All of
these conditions may lead to dropped packets which forces the DataWriter to send out
additional heartbeats that cause more simultaneous heartbeats to be sent, ultimately
resulting a network packet storm.
7-80

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
By forcing each DataReader to wait for a random amount of time, bounded by the minimum and
maximum values in this policy, before sending an ACK/NACK response to a heartbeat, the use of
the network is spread out over a period of time, decreasing the peak bandwidth required as well
as the likelihood of dropped packets due to collisions. This can increase the overall performance
of the reliable connection while avoiding a network storm.

When a reliable DataReader first matches a reliable DataWriter, the DataReader sends peri-
odic NACK messages at the specified period to pull historical data from the DataWriter.
The DataReader will stop sending periodic NACKs when it has received all historical
data available at the time that it matched the DataWriter. The DataReader ensures that at
least one NACK is sent per period; for example, if, within a NACK period, the
DataReader responds to a HEARTBEAT message with a NACK, then the DataReader will
not send another periodic NACK.

7.6.2.4 Properties

This QosPolicy cannot be modified after the DataReader is created.

It only applies to DataReaders, so there are no restrictions for setting it compatibly with
respect to DataWriters.

7.6.2.5 Related QosPolicies

❏ DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2)

❏ RELIABILITY QosPolicy (Section 6.5.18)

7.6.2.6 Applicable Entities

❏ DataReaders (Section 7.3)

7.6.2.7 System Resource Considerations

Changing the values in this policy requires making tradeoffs between minimizing
latency (decreasing min_heartbeat_response_delay), maximizing determinism
(decreasing the difference between min_heartbeat_response_delay and
max_heartbeat_response_delay), and minimizing network collisions/spreading out
the ACK/NACK packets across a time interval (increasing the difference between
min_heartbeat_response_delay and min_heartbeat_response_delay and/or shifting
their values between different DataReaders).

If the values are poorly chosen with respect to the characteristics and requirements of a
given application, the latency and/or throughput of the application may suffer.
7-81

Receiving Data
7.6.3 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)

The DATA_READER_RESOURCE_LIMITS QosPolicy extends your control over the
memory allocated by Connext for DataReaders beyond what is offered by the
RESOURCE_LIMITS QosPolicy (Section 6.5.19). RESOURCE_LIMITS controls memory
allocation with respect to the DataReader itself: the number of samples that it can store in
the receive queue and the number of instances that it can manage simultaneously.
DATA_READER_RESOURCE_LIMITS controls memory allocation on a per matched-
DataWriter basis. The two are orthogonal.

This policy includes the members in Table 7.23,
“DDS_DataReaderResourceLimitsQosPolicy,” on page 7-83. For defaults and valid
ranges, please refer to the online documentation.

DataReaders must allocate internal structures to handle: the maximum number of
DataWriters that may connect to it; whether or not a DataReader handles data fragmenta-
tion and how many data fragments that it may handle (for data samples larger than the
MTU of the underlying network transport); how many simultaneous outstanding loans
of internal memory holding data samples can be provided to user code; as well as oth-
ers.

Most of these internal structures start at an initial size and, by default, will grow as
needed by dynamically allocating additional memory. You may set fixed, maximum
sizes for these internal structures if you want to bound the amount of memory that can
be used by a DataReader. Setting the initial size to the maximum size will prevent Con-
next from dynamically allocating any memory after the DataReader is created.

This policy also controls how the allocated internal data structure may be used. For
example, DataReaders need data structures to keep track of all of the DataWriters that
may be sending it data samples. The total number of DataWriters that it can keep track of
is set by the initial_remote_writers and max_remote_writers values. For keyed Topics,
initial_remote_writers_per_instance and max_remote_writers_per_instance control
the number of DataWriters allowed by the DataReader to modify the value of a single
instance.

By setting the max value to be less than max_remote_writers, you can prevent instances
with many DataWriters from using up the resources and starving other instances. Once
the resources for keeping track of DataWriters are used up, the DataReader will not be
able to accept “connections” from new DataWriters. The DataReader will not be able to
receive data from new matching DataWriters which would be ignored.

In the reliable protocol used by Connext to support a RELIABLE setting for the RELI-
ABILITY QosPolicy (Section 6.5.18), the DataReader must temporarily store data samples
that have been received out-of-order from a reliable DataWriter. The storage of out-of-
order samples is allocated from the DataReader’s receive queue and shared among all
7-82

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
Table 7.23 DDS_DataReaderResourceLimitsQosPolicy

Type Field Name Description

DDS_
Long

max_remote_writers

Maximum number of DataWriters from which a DataReader may receive
data samples, among all instances.
For unkeyed Topics: max_remote_writers must =
max_remote_writers_per_instance

max_remote_writers_
per_instance

Maximum number of DataWriters from which a DataReader may receive
data samples for a single instance.
For unkeyed Topics: max_remote_writers must =
max_remote_writers_per_instance

max_samples_
per_remote_writer

Maximum number of samples received out-of-order that a DataReader can
store from a single reliable DataWriter.
max_samples_per_remote_writer must be <=
RESOURCE_LIMITS::max_samples

max_infos
Maximum number of DDS_SampleInfo structures that a DataReader can
allocate.
max_infos must be >= RESOURCE_LIMITS::max_samples

initial_remote_writers

Initial number of DataWriters from which a DataReader may receive data
samples, including all instances.
For unkeyed Topics: initial_remote_writers must =
initial_remote_writers_per_instance

initial_remote_
writers_per_instance

Initial number of DataWriters from which a DataReader may receive data
samples for a single instance.
For unkeyed Topics: initial_remote_writers must =
initial_remote_writers_per_instance

initial_infos
Initial number of DDS_SampleInfo structures that a DataReader will allo-
cate.

initial_outstanding_
reads

Initial number of times in which memory can be concurrently loaned via
read/take calls without being returned with return_loan().

max_outstanding_
reads

Maximum number of times in which memory can be concurrently loaned
via read/take calls without being returned with return_loan().

max_samples_per_
read

Maximum number of samples that can be read/taken on a DataReader.

DDS_
Boolean

disable_fragmentation_
support

Determines whether the DataReader can receive fragmented samples.
When fragmentation support is not needed, disabling fragmentation sup-
port will save some memory resources.
7-83

Receiving Data
DDS_
Long

max_fragmented_
samples

The maximum number of samples for which the DataReader may store frag-
ments at a given point in time.
At any given time, a DataReader may store fragments for up to
max_fragmented_samples samples while waiting for the remaining frag-
ments. These samples need not have consecutive sequence numbers and
may have been sent by different DataWriters. Once all fragments of a sam-
ple have been received, the sample is treated as a regular sample and
becomes subject to standard QoS settings, such as max_samples. Connext
will drop fragments if the max_fragmented_samples limit has been
reached.
For best-effort communication, Connext will accept a fragment for a new
sample, but drop the oldest fragmented sample from the same remote
writer.
For reliable communication, Connext will drop fragments for any new sam-
ples until all fragments for at least one older sample from that writer have
been received.
Only applies if disable_fragmentation_support is FALSE.

initial_fragmented_
samples

The initial number of samples for which a DataReader may store fragments.
Only applies if disable_fragmentation_support is FALSE.

max_fragmented_
samples_per_remote_
writer

The maximum number of samples per remote writer for which a
DataReader may store fragments. This is a logical limit, so a single remote
writer cannot consume all available resources.
Only applies if disable_fragmentation_support is FALSE.

max_fragments_per_
sample

Maximum number of fragments for a single sample.
Only applies if disable_fragmentation_support is FALSE.

Table 7.23 DDS_DataReaderResourceLimitsQosPolicy

Type Field Name Description
7-84

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
DDS_
Boolean

dynamically_allocate_
fragmented_samples

Determines whether the DataReader pre-allocates storage for storing frag-
mented samples.
By default, Connext will allocate memory up front for storing fragments for
up to initial_fragmented_samples samples. This memory may grow up to
max_fragmented_samples if needed.
If dynamically_allocate_fragmented_samples is TRUE, Connext does not
allocate memory up front, but instead allocates memory from the heap
upon receiving the first fragment of a new sample. The amount of memory
allocated equals the amount of memory needed to store all fragments in the
sample. Once all fragments of a sample have been received, the sample is
deserialized and stored in the regular receive queue. At that time, the
dynamically allocated memory is freed again.
This QoS setting may be useful for large, but variable-sized data types
where up front memory allocation for multiple samples based on the maxi-
mum possible sample size may be expensive. The main disadvantage of
not pre-allocating memory is that one can no longer guarantee Connext will
have sufficient resources at run-time. Also, dynamic memory allocation
and memory freeing at run time may not give you good performance.
Only applies if disable_fragmentation_support is FALSE.

DDS_
Long

max_total_instances
Maximum number of instances for which a DataReader will keep state.
See max_total_instances and max_instances (Section 7.6.3.1)

DDS_
Long

max_remote_virtual_
writers

The maximum number of virtual writers (identified by a virtual GUID)
from which a DataReader may read, including all instances.
When the Subscriber’s access_scope is GROUP, this value determines the
maximum number of DataWriter groups supported by the Subscriber. Since
the Subscriber may contain more than one DataReader, only the setting of the
first applies.

DDS_
Long

initial_remote_virtual_
writers

The initial number of virtual writers from which a DataReader may read,
including all instances.

Table 7.23 DDS_DataReaderResourceLimitsQosPolicy

Type Field Name Description
7-85

Receiving Data
reliable DataWriters. The parameter max_samples_per_remote_writer controls the max-
imum number of out-of-order data samples that the DataReader is allowed to store for a
single DataWriter. This value must be less than the max_samples value set in the
RESOURCE_LIMITS QosPolicy (Section 6.5.19).

DDS_
Long

max_remote_virtual_
writers_per_instance

Maximum number of virtual remote writers that can be associated with an
instance.
For unkeyed types, this value is ignored.
The features of Durable Reader State and MultiChannel DataWriters, as
well as Persistence Servicea, require Connext to keep some internal state per
virtual writer and instance that is used to filter duplicate samples. These
duplicate samples could be coming from different DataWriter channels or
from multiple executions of Persistence Service.
Once an association between a remote virtual writer and an instance is
established, it is permanent—it will not disappear even if the physical
writer incarnating the virtual writer is destroyed.
If max_remote_virtual_writers_per_instance is exceeded for an instance,
Connext will not associate this instance with new virtual writers. Duplicates
samples coming from these virtual writers will not be filtered on the reader.
If you are not using Durable Reader State, MultiChannel DataWriters or
Persistence Service, you can set this property to 1 to optimize resources.
For additional information about the virtual writers see Chapter 11.

DDS_
Long

initial_remote_virtual_
writers_per_instance

Initial number of virtual remote writers per instance.
For unkeyed types, this value is ignored.

DDS_
Long

max_remote_writers_
per_sample

Maximum number of remote writers that are allowed to write the same
sample.
One scenario in which two DataWriters may write the same sample is when
using Persistence Service. The DataReader may receive the same sample from
the original DataWriter and from an Persistence Service DataWriter.

DDS_
Long

max_query_condition_
filters

This value determines the maximum number of unique query condition
content filters that a reader may create.
Each query condition content filter is comprised of both its
query_expression and query_parameters. Two query conditions that have
the same query_expression will require unique query condition filters if
their query_parameters differ. Query conditions that differ only in their
state masks will share the same query condition filter.

a. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered to subscribing
applications that join the system at a later time (see Chapter 21: Introduction to RTI Persistence Service).

Table 7.23 DDS_DataReaderResourceLimitsQosPolicy

Type Field Name Description
7-86

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
max_samples_per_remote_writer allows Connext to share the limited resources of the
DataReader equitably so that a single DataWriter is unable to use up all of the storage of
the DataReader while missing data samples are being resent.

When setting the values of the members, the following rules apply:

❏ max_remote_writers >= initial_remote_writers

❏ max_remote_writers_per_instance >= initial_remote_writers_per_instance
max_remote_writers_per_instance <= max_remote_writers

❏ max_infos >= initial_infos
max_infos >= RESOURCE_LIMITS::max_samples

❏ max_outstanding_reads >= initial_outstanding_reads

❏ max_remote_writers >= max_remote_writers_per_instance

❏ max_samples_per_remote_writer <= RESOURCE_LIMITS::max_samples

If any of the above are false, Connext returns the error code
DDS_RETCODE_INCONSISTENT_POLICY when setting the DataReader’s QoS.

7.6.3.1 max_total_instances and max_instances

The maximum number of instances actively managed by a DataReader is determined by
max_instances in the RESOURCE_LIMITS QosPolicy (Section 6.5.19). These instances
have associated DataWriters or samples in the DataReader’s queue and are visible to the
user through operations such as take(), read(), and get_key().

The features Durable Reader State (Section 11.4), multi-channel DataWriters
(Chapter 16), and Persistence Service1 require Connext to keep some internal state even
for instances without DataWriters or samples in the DataReader’s queue. The additional
state is used to filter duplicate samples that could be coming from different DataWriter
channels or from multiple executions of Persistence Service. The total maximum number
of instances that will be managed by the middleware, including instances without asso-
ciated DataWriters or samples, is determined by max_total_instances.

max_total_instances must be greater than max_instances or equal to
DDS_AUTO_MAX_TOTAL_INSTANCES, which treats max_total_instances as being equal
to max_instances in the RESOURCE_LIMITS QosPolicy (Section 6.5.19).

When a new instance is received, Connext will check the resource limit max_instances in
the RESOURCE_LIMITS QosPolicy (Section 6.5.19). If the limit is exceeded, Connext will

1. Persistence Service is included with Connext Messaging. It saves data samples so they can be delivered
to subscribing applications that join the system at a later time (see Chapter 21: Introduction to RTI Persistence
Service).
7-87

Receiving Data
drop the sample and report it as lost and rejected. If the limit is not exceeded, Connext
will check max_total_instances. If max_total_instances is exceeded, Connext will
replace an existing instance without DataWriters and samples with the new one. The
application could receive duplicate samples for the replaced instance if it becomes alive
again.

7.6.3.2 Example

The max_samples_per_remote_writer value affects sharing and starvation.
max_samples_per_remote_writer can be set to less than the RESOURCE_LIMITS
QosPolicy’s max_samples to prevent a single DataWriter from starving others. This con-
trol is especially important for Topics that have their OWNERSHIP QosPolicy (Section
6.5.14) set to SHARED.

In the case of EXCLUSIVE ownership, a lower-strength remote DataWriter can "starve"
a higher-strength remote DataWriter by making use of more of the DataReader's
resources, an undesirable condition. In the case of SHARED ownership, a remote
DataWriter may starve another remote DataWriter, making the sharing not really equal.

7.6.3.3 Properties

This QosPolicy cannot be modified after the DataReader is created.

It only applies to DataReaders, so there are no restrictions for setting it compatibly on the
DataWriter.

7.6.3.4 Related QosPolicies

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.19)

❏ OWNERSHIP QosPolicy (Section 6.5.14)

7.6.3.5 Applicable Entities

❏ DataReaders (Section 7.3)

7.6.3.6 System Resource Considerations

Increasing any of the “initial” values in this policy will increase the amount of memory
allocated by Connext when a new DataReader is created. Increasing any of the “max” val-
ues will not affect the initial memory allocated for a new DataReader, but will affect how
much additional memory may be allocated as needed over the DataReader’s lifetime.

Setting a max value greater than an initial value thus allows your application to use
memory more dynamically and efficiently in the event that the size of the application is
7-88

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
not well-known ahead of time. However, Connext may dynamically allocate memory in
response to network communications.

7.6.4 READER_DATA_LIFECYCLE QoS Policy

This policy controls the behavior of the DataReader with regards to the lifecycle of the
data instances it manages, that is, the data instances that have been received and for
which the DataReader maintains some internal resources.

When a DataReader receives data, it is stored in a receive queue for the DataReader. The
user application may either take the data from the queue or leave it there. This QoS con-
trols whether or not Connext will automatically remove data from the receive queue (so
that user applications cannot access it afterwards) when Connext detects that there are
no more DataWriters alive for that data.

DataWriters may also call dispose() on its data, informing DataReaders that the data no
longer exists. This QosPolicy also controls whether or not Connext automatically
removes disposed data from the receive queue.

For keyed Topics, the consideration of removing data samples from the receive queue is
done on a per instance (key) basis. Thus when Connext detects that there are no longer
DataWriters alive for a certain key value for a Topic (an instance of the Topic), it can be
configured to remove all data samples for a certain instance (key). DataWriters also can
dispose its data on a per instance basis. Only the data samples of disposed instances
would be removed by Connext if so configured.

This policy helps purge untaken samples from not-alive-instances and thus may pre-
vent a DataReader from reclaiming resources. With this policy, the untaken samples from
not-alive-instances are purged and treated as if the samples were taken after the speci-
fied amount of time.

The DataReader internally maintains the samples that have not been taken by the appli-
cation, subject to the constraints imposed by other QoS policies such as HISTORY
QosPolicy (Section 6.5.9) and RESOURCE_LIMITS QosPolicy (Section 6.5.19).

The DataReader also maintains information regarding the identity, view-state, and
instance-state of data instances, even after all samples have been ‘taken’ (see
Section 7.4.3). This is needed to properly compute the states when future samples
arrive.

Under normal circumstances, a DataReader can only reclaim all resources for instances
for which there are no DataWriters and for which all samples have been ‘taken.’ The last
sample taken by the DataReader for that instance will have an instance state of
NOT_ALIVE_NO_WRITERS or NOT_ALIVE_DISPOSED_INSTANCE (depending on
whether or not the instance was disposed by the last DataWriter that owned it.) If you
7-89

Receiving Data
are using the default (infinite) values for this QosPolicy, this behavior can cause prob-
lems if the application does not ‘take’ those samples for some reason. The ‘untaken’
samples will prevent the DataReader from reclaiming the resources and they would
remain in the DataReader indefinitely.

It includes the members in Table 7.24.

❏ autopurge_nowriter_samples_delay This defines the maximum duration for
which the DataReader will maintain information regarding an instance once its
instance_state becomes NOT_ALIVE_NO_WRITERS. After this time elapses,
the DataReader will purge all internal information regarding the instance, any
untaken samples will also be lost.

❏ autopurge_disposed_samples_delay This defines the maximum duration for
which the DataReader will maintain samples of an instance once its
instance_state becomes NOT_ALIVE_DISPOSED. After this time elapses, the
DataReader will purge all internal information regarding the instance; any
untaken samples will also be lost.

7.6.4.1 Properties

This QoS policy can be modified after the DataReader is enabled.

It only applies to DataReaders, so there are no RxO restrictions for setting it compatibly
on the DataWriter.

7.6.4.2 Related QoS Policies

❏ HISTORY QosPolicy (Section 6.5.9)

❏ LIVELINESS QosPolicy (Section 6.5.12)

❏ OWNERSHIP QosPolicy (Section 6.5.14)

❏ RESOURCE_LIMITS QosPolicy (Section 6.5.19)

Table 7.24 DDS_ReaderDataLifecycleQosPolicy

Type Field Name Description

DDS_Duration_t
autopurge_nowriter_
samples_delay

How long the DataReader maintains information
about an instance once its instance_state becomes
NOT_ALIVE_NO_WRITERS.

DDS_Duration_t
autopurge_disposed_
samples_delay

How long the DataReader maintains information
about an instance once its instance_state becomes
NOT_ALIVE_DISPOSED.
7-90

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
❏ WRITER_DATA_LIFECYCLE QoS Policy (Section 6.5.25)

7.6.4.3 Applicable Entities

❏ DataReaders (Section 7.3)

7.6.4.4 System Resource Considerations

None.

7.6.5 TIME_BASED_FILTER QosPolicy

The TIME_BASED_FILTER QosPolicy allows you to specify that data should not be
delivered more than once per specified period for data-instances of a DataReader—
regardless of how fast DataWriters are publishing new samples of the data-instance.

This QoS policy allows you to optimize resource usage (CPU and possibly network
bandwidth) by only delivering the required amount of data to different DataReaders.

DataWriters may send data faster than needed by a DataReader. For example, a
DataReader of sensor data that is displayed to a human operator in a GUI application
does not need to receive data updates faster than a user can reasonably perceive
changes in data values. This is often measure in tenths (0.1) of a second up to several
seconds. However, a DataWriter of sensor information may have DataReaders that are
processing the sensor information to control parts of the system and thus need new data
updates in measures of hundredths (0.01) or thousandths (0.001) of a second.

With this QoS policy, different DataReaders can set their own time-based filters, so that
data published faster than the period set by a DataReader will be dropped by the middle-
ware and not delivered to the DataReader. Note that all filtering takes place on the reader
side.

It includes the member in Table 7.25. For the default and valid range, please refer to the
online documentation.

As seen in Figure 7.18, it is inconsistent to set a DataReader’s minimum_separation lon-
ger than its DEADLINE QosPolicy (Section 6.5.4) period.

Table 7.25 DDS_TimeBasedFilterQosPolicy

Type Field Name Description

DDS_Duration_t minimum_separation
Minimum separation time between samples of the
same instance.
Must be <= DEADLINE::period
7-91

Receiving Data
This QosPolicy allows a DataReader to subsample the data being published for a data
instance by DataWriters. If a user application only needs new samples for a data instance
to be received at a specified period, then there is no need for Connext to deliver data
faster than that period. However, whether or not data being published by a DataWriter
at a faster rate than set by the TIME_BASED_FILTER QoS is sent on the wire depends on
several factors, including whether the DataReader is receiving the data reliably and if the
data is being sent via multicast for multiple DataReaders.

For best effort data delivery, if the data type is unkeyed and the DataWriter has an infi-
nite liveliness lease_duration (LIVELINESS QosPolicy (Section 6.5.12)), Connext will
only send as many packets to a DataReader as required by the TIME_BASED_FILTER, no
matter how fast the DataWriter’s write() function is called.

For multicast data delivery to multiple DataReaders, the DataReader with the lowest
TIME_BASED_FILTER minimum_separation determines the DataWriter's send rate.
For example, if a DataWriter sends multicast to two DataReaders, one with
minimum_separation of 2 seconds and one with minimum_separation of 1 second, the
DataWriter will send every 1 second.

Other configurations (for example, when the DataWriter is reliable, or the data type is
keyed, or the DataWriter has finite a liveliness lease_duration) must send all data pub-
lished by the DataWriter. On reception, only the data that passes the
TIME_BASED_FILTER will be stored in the DataReader’s receive queue. Extra data will

Data samples for a DataReader can be filtered out using the TIME_BASED_FILTER QoS
(minimum_separation). Once a data sample for an instance has been received, Connext will
accept but drop any new data samples for the same instance that arrives within the time
specified by minimum_separation. After the minimum_separation, a new sample that arrives
is accepted and stored in the receive queue, and the timer starts again. If no samples arrive by
the DEADLINE, the REQUESTED_DEADLINE_MISSED status will be changed and
Listeners called back if installed.

Figure 7.18 Accepting Data for DataReaders

Minimum_
Separation

REQUESTED_DEADLINE_
MISSED status changes if
no sample received for
instance

New sample for instance will
be accepted

Data received for same
instance is dropped

Deadline

Time

Last data sample is
received
7-92

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
be accepted but dropped. Note that filtering is only applied on ‘alive’ samples (that is,
samples that have not been disposed/unregistered).

7.6.5.1 Example

The purpose of this QosPolicy is to prevent fast DataWriters from overwhelming a
DataReader that cannot process the data at the rate the data is being published. In certain
configurations, the number of packets sent by Connext can also be reduced thus mini-
mizing the consumption of network bandwidth.

You may want to change the minimum_separation between data samples for one or
more of the following reasons:

❏ The DataReader is connected to the network via a low-bandwidth connection that
is unable to sustain the amount of traffic generated by the matched DataWriter(s).

❏ The rate at which the matched DataWriter(s) can generate samples is faster than
the rate at which the DataReader can process them. Or faster than needed by the
DataReader. For example, a graphical user interface seldom needs to be updated
faster than 30 times a second, even if new data values are available much faster.

❏ The resource limits of the DataReader are constrained relative to the number of
samples that could be generated by the matched DataWriter(s). Too many packets
coming at once will cause them to be exhausted before the DataReader has time to
process them.

7.6.5.2 Properties

This QosPolicy can be modified at any time.

It only applies to DataReaders, so there are no restrictions for setting it compatibly on the
DataWriter.

7.6.5.3 Related QosPolicies

❏ RELIABILITY QosPolicy (Section 6.5.18)

❏ DEADLINE QosPolicy (Section 6.5.4)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6)

7.6.5.4 Applicable Entities

❏ DataReaders (Section 7.3)
7-93

Receiving Data
7.6.5.5 System Resource Considerations

Depending on the values of other QosPolicies such as RELIABILITY and
TRANSPORT_MULTICAST, this policy may be able to decrease the usage of network
bandwidth and CPU by preventing unneeded packets from being sent and processed.

7.6.6 TRANSPORT_MULTICAST QosPolicy (DDS Extension)

This QosPolicy specifies the multicast address on which a DataReader wants to receive
its data. It can also specify a port number as well as a subset of the available transports
with which to receive the multicast data.

By default, DataWriters will send individually addressed packets for each DataReader
that subscribes to the topic of the DataWriter—this is known as unicast delivery. Thus, as
many copies of the data will be sent over the network as there are DataReaders for the
data. The network bandwidth used by a DataWriter will thus increase linearly with the
number of DataReaders.

Multicast is a concept supported by some transports, most notably UDP/IP, so that a
single packet on the network can be addressed such that it is received by multiple nodes.
This is more efficient when the same data needs to be sent to multiple nodes. By using
multicast, the network bandwidth usage will be constant, independent of the number of
DataReaders.

Coordinating the multicast address specified by DataReaders can help optimize network
bandwidth usage in systems where there are multiple DataReaders for the same Topic.

The QosPolicy structure includes the members in Table 7.26.

To take advantage of multicast, the value of this QosPolicy must be coordinated among
all of the applications on a network for DataReaders of the same Topic. For a DataWriter to
send a single packet that will be received by all DataReaders simultaneously, the same
multicast address must be used.

To use this QosPolicy, you will also need to specify a port number. A port number of 0
will cause Connext to automatically use a default value. As explained in Ports Used for
Discovery (Section 12.5), the default port number for multicast addresses is based on the
domain ID. Should you choose to use a different port number, then for every unique
port number used by Entities in your application, depending on the transport, Connext
may create a thread to process messages received for that port on that transport. See
Chapter 17: Connext Threading Model for more about threads.

Threads are created on a per-transport basis, so if this QosPolicy specifies multiple
transports for a receive_port, then a thread may be created for each transport for that
unique port. Some transports may be able to share a single thread for different ports,
7-94

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
others can not. Note that different Entities can share the same port number, and thus,
the same thread will process all of the data for all of the Entities sharing the same port
number for a transport.

Also note that if the port number specified by this QoS is the same as a port number
specified by a TRANSPORT_UNICAST QoS, then the transport may choose to process
data received both via multicast and unicast with a single thread. Whether or not a
transport must use different threads to process data received via multicast or unicast for
the same port number depends on the implementation of the transport.

Table 7.26 DDS_TransportMulticastQosPolicy

Type Field Name Description

DDS_TransportMulticastSettingSeq
(A sequence of the type shown in Table 7.27)

value
A sequence of multicast locators.
(See Locator Format (Section
12.2.1.1).)

DDS_TransportMulticastKind kind

Can be either:
AUTOMATIC_TRANSPORT_M
ULTICAST_QOS (a multicast
address is selected automati-
cally); this setting is required
when using
TRANSPORT_MULTICAST_M
APPING QosPolicy (DDS Exten-
sion) (Section 8.5.8).
UNICAST_ONLY_TRANSPORT
_MULTICAST_QOS
(unicast-only mode)

Table 7.27 DDS_TransportMulticastSetting_t

Type Field Name Description

DDS_StringSeq transports
A sequence of transport aliases that specifies which trans-
ports should be used to receive multicast messages for
this DataReader.

char * receive_address
A multicast group address to which the DataWriter
should send data for this DataReader.

DDS_Long receive_port

The port that should be used in the addressing of multi-
cast messages destined for this DataReader. A value of 0
will cause Connext to use a default port number based on
domain ID. See Ports Used for Discovery (Section 12.5).
7-95

Receiving Data
Notes:

❏ The same multicast address can be used by DataReaders of different Topics.

❏ Even though the TRANSPORT_MULTICAST QoS allows you to specify multiple
multicast addresses for a DataReader, Connext currently only uses one multicast
address (the first in the sequence) per DataReader.

❏ If a DataWriter is using the MULTI_CHANNEL QosPolicy (DDS Extension) (Sec-
tion 6.5.13), the multicast addresses specified in the TRANSPORT_MULTICAST
QosPolicy are ignored by that DataWriter. The DataWriter will not publish sam-
ples on those locators.

7.6.6.1 Example

In an airport, there may be many different monitors that display current flight informa-
tion. Assuming each monitor is controlled by a networked application, network band-
width would be greatly reduced if flight information was published using multicast.

Figure 7.19 shows an example of how to set this QosPolicy.

7.6.6.2 Properties

This QosPolicy cannot be modified after the Entity is created.

For compatibility between DataWriters and DataReaders, the DataWriter must be able to
send to the multicast address that the DataReader has specified.

7.6.6.3 Related QosPolicies

❏ MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.13)

❏ TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.22)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

7.6.6.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

❏ DataReaders (Section 7.3)

7.6.6.5 System Resource Considerations

On Ethernet-based systems, the number of multicast addresses that can be “listened” to
by the network interface card is usually limited. The exact number of multicast
addresses that can be monitored simultaneously by a NIC depends on its manufacturer.
7-96

DataReader QosPolicies
7. Re

c
e

iving
 D

a
ta
Setting a multicast address for a DataReader will use up one of the multicast-address
slots of the NIC.

What happens if the number of different multicast addresses used by different
DataReaders across different applications on the same node exceeds the total number
supported by a NIC depends on the specific operating system. Some will prevent you
from configuring too many multicast addresses to be monitored.

Many operating systems will accommodate the extra multicast addresses by putting the
NIC in promiscuous mode. This means that the NIC will pass every Ethernet packet to
the operating system, and the operating system will pass the packets with the specified
multicast addresses to the application(s). This results in extra CPU usage. We recom-
mend that your applications do not use more multicast addresses on a single node than
the NICs on that node can listen to simultaneously in hardware.

Depending on the implementation of a transport, Connext may need to create threads to
receive and process data on a unique-port-number basis. Some transports can share the

Figure 7.19 Setting Up a Multicast DataReader

...

DDS_DataReaderQos reader_qos;

reader_listener = new HelloWorldListener();
if (reader_listener == NULL) {

// handle error
}

// Get default data reader QoS to customize
retcode = subscriber->get_default_datareader_qos(reader_qos);
if (retcode != DDS_RETCODE_OK) {

// handle error
}

// Set up multicast reader
reader_qos.multicast.value.ensure_length(1,1);
reader_qos.multicast.value[0].receive_address =

 DDS_String_dup("239.192.0.1");

reader = subscriber->create_datareader(topic,
reader_qos,

 reader_listener,
 DDS_STATUS_MASK_ALL);
7-97

Receiving Data
same thread to process data received for different ports; others like UDPv4 must have
different threads for different ports. In addition, if the same port is used for both unicast
and multicast, the transport implementation will determine whether or not the same
thread can be used to process both unicast and multicast data. For UDPv4, only one
thread is needed per port–independent of whether the data was received via unicast or
multicast data. See Receive Threads (Section 17.3) for more information.
7-98

8. D
o

m
a

ins
Chapter 8 Working with Domains

This chapter discusses how to use DomainParticipants. It describes the types of opera-
tions that are available for them and their QosPolicies.

This chapter includes the following sections:

❏ Fundamentals of Domains and DomainParticipants (Section 8.1)

❏ DomainParticipantFactory (Section 8.2)

❏ DomainParticipants (Section 8.3)

❏ DomainParticipantFactory QosPolicies (Section 8.4)

❏ DomainParticipant QosPolicies (Section 8.5)

❏ Clock Selection (Section 8.6)

The goal of this chapter is to help you become familiar with the objects you need for set-
ting up your Connext application. For specific details on any mentioned operations, see
the online documentation.

8.1 Fundamentals of Domains and DomainParticipants
DomainParticipants are the focal point for creating, destroying, and managing other Con-
next objects. A domain is a logical network of applications: only applications that belong
to the same domain may communicate using Connext. A domain is identified by a
unique integer value known as a domain ID. An application participates in a domain by
creating a DomainParticipant for that domain ID.

As seen in Figure 8.1, a single application can participate in multiple domains by creat-
ing multiple DomainParticipants with different domain IDs. DomainParticipants in the
8-1

Working with Domains
same domain form a logical network; they are isolated from DomainParticipants of other
domains, even those running on the same set of physical computers sharing the same
physical network. DomainParticipants in different domains will never exchange mes-
sages with each other. Thus, a domain establishes a “virtual network” linking all
DomainParticipants that share the same domain ID.

An application that wants to participate in a certain domain will need to create a
"Domain Participant." As seen in Figure 8.2, a DomainParticipant object is a container for
all other Entities that belong to the same domain. It acts as factory for the Publisher, Sub-
scriber, and Topic entities. (As seen in Chapters 6 and 7, in turn, Publishers are factories for
DataWriters and Subscribers are factories for DataReaders.) DomainParticipants cannot con-
tain other DomainParticipants.

Like all Entities, DomainParticipants have QosPolicies and Listeners. The DomainPartici-
pant entity also allows you to set ‘default’ values for the QosPolicies for all the entities
created from it or from the entities that it creates (Publishers, Subscribers, Topics, DataWrit-
ers, and DataReaders).

Figure 8.1 Relationship between Applications and Domains

Application A

Application B

Application C

Domain-1

Domain-2

Applications can belong to multiple domains—A belongs to domains 1 and 2.
Applications in the same domain can communicate with each other, such as A and B, or
A and C. Applications in different domains, such as B and C, are not even aware of
each other and will not exchange messages.
8-2

Fundamentals of Domains and DomainParticipants
8. D

o
m

a
ins
Figure 8.2 Domain Module

Note: MultiTopics are not currently supported.
8-3

Working with Domains
8.2 DomainParticipantFactory
The main purpose of a DomainParticipantFactory is to create and destroy DomainPartici-
pants.

In C++ terms, this is a singleton class; that is, you will only have a single DomainPartici-
pantFactory in an application—no matter how many DomainParticipants the application
may create. Figure 8.3 shows how to instantiate a DomainParticipantFactory. Notice that
there are no parameters to specify. Alternatively, in C++, C++/CLI, and C#, the pre-
defined macro, DDSTheParticipantFactory,1 can also be used to retrieve the singleton
factory.

Unlike the other Entities that you create, the DomainParticipantFactory does not have an
associated Listener. However, it does have associated QosPolicies, see Section 8.2.1. You
can change them using the factory’s get_qos() and set_qos() operations. The DomainPar-
ticipantFactory also stores the default QoS settings that can be used when a DomainPartic-
ipant is created. These default settings can be changed as well, see Section 8.3.6.4.

Once you have a DomainParticipantFactory, you can use it to perform the operations
listed in Table 8.1. The most important one is create_participant(), described in
Section 8.3.1. For more details on all operations, see the online documentation as well as
the section of the manual listed in the Reference column.

1. In C, the macro is DDS_TheParticipantFactory. In Java, use the static class method DomainPartici-
pantFactory.TheParticipantFactory.

Figure 8.3 Instantiating a DomainParticipantFactory

DDSDomainParticipantFactory* factory = NULL;

factory = DDSDomainParticipantFactory::get_instance();

if (factory == NULL) {
 // ... error
}

8-4

DomainParticipantFactory
8. D

o
m

a
ins
Table 8.1 DomainParticipantFactory Operations

Working
with ... Operation Description Reference

Domain-
Participants

create_participant Creates a DomainParticipant.
Section 8.3.1create_participant_with_

profile
Creates a DomainParticipant based on
a QoS profile.

delete_participant Deletes a DomainParticipant. Section 8.3.2

get_default_participant_qos
Gets the default QoS for DomainPar-
ticipants.

Section 8.2.2

lookup_participant
Finds a specific DomainParticipant,
based on a domain ID.

Section 8.2.4

set_default_participant_qos
Sets the default QoS for DomainPartic-
ipants.

Section 8.2.2
set_default_participant_
qos_with_profile

Sets the default QoS for DomainPartic-
ipants based on a QoS profile.

The
Factory’s
Instance

get_instance
Gets the singleton instance of this
class.

Section 8.2.3
finalize_instance

Destroys the singleton instance of this
class.

The
Factory’s

Own QoS

get_qos
Gets/sets the DomainParticipantFac-
tory’s QoS.

Section 4.1.7
set_qos

Threads unregister_thread

Frees all resources related to a thread.
This function is intended to be used
at the end of any user-created threads
that invoke Connext APIs (not all
users will have this situation). The
best approach is to call it immediately
before exiting such a thread, after all
Connext APIs have been called.
8-5

Working with Domains
Profiles &
Libraries

get_default_library
Gets the default library for a Domain-
ParticipantFactory.

Section 8.2.1.1
get_default_profile

Gets the default QoS profile for a
DomainParticipantFactory.

get_default_profile_library
Gets the library that contains the
default QoS profile for a DomainPar-
ticipantFactory.

get_<entity>_qos_from_
profile

Gets the <entity> QoS values associ-
ated with a specified QoS profile.
<entity> may be topic, datareader,
datawriter, subscriber, publisher, or par-
ticipant.

Section 8.2.5

get_<entity>_qos_from_
profile_w_topic_name

Like get_<entity>_qos_from_profile(),
but this operation allows you to spec-
ify a topic name associated with the
entity. The topic filter expressions in
the profile will be evaluated on the
topic name.
<entity> may be topic, datareader, or
datawriter.

get_qos_profiles
Gets the names of all XML QoS pro-
files associated with a specified XML
QoS profile library.

Section 15.8.5

get_qos_profile_libraries
Gets the names of all XML QoS pro-
file libraries associated with the
DomainParticipantFactory.

Section 15.9.1

load_profiles Explicitly loads or reloads the QoS
profiles.

Section 15.2.1
reload_profiles

set_default_profile
Sets the default QoS profile for a
DomainParticipantFactory.

Section 8.2.1.1
set_default_library

Sets the default library for a Domain-
ParticipantFactory.

unload_profiles
Frees the resources associated with
loading QoS profiles.

Section 15.2.1

Table 8.1 DomainParticipantFactory Operations

Working
with ... Operation Description Reference
8-6

DomainParticipantFactory
8. D

o
m

a
ins
8.2.1 Setting DomainParticipantFactory QosPolicies

The DDS_DomainParticipantFactoryQos structure has the following format:

struct DDS_DomainParticipantFactoryQos {
DDS_EntityFactoryQosPolicy entity_factory;
DDS_SystemResourceLimitsQosPolicy resource_limits;
DDS_ProfileQosPolicy profile;
DDS_LoggingQosPolicy logging;

};

For information on why you would want to change a particular QosPolicy, see the sec-
tion referenced in Table 8.2.

8.2.1.1 Getting and Setting the DomainParticipantFactory’s Default QoS Profile and Library

You can retrieve the default QoS profile for the DomainParticipantFactory with the
get_default_profile() operation. You can also get the default library for the DomainPar-
ticipantFactory, as well as the library that contains the DomainParticipantFactory’s
default profile (these are not necessarily the same library); these operations are called
get_default_library() and get_default_library_profile(), respectively. These operations
are for informational purposes only (that is, you do not need to use them as a precursor
to setting a library or profile.) For more information, see Chapter 15: Configuring QoS
with XML.

virtual const char * get_default_library ()
const char * get_default_profile ()
const char * get_default_profile_library ()

Table 8.2 DomainParticipantFactory QoS

QosPolicy Description

EntityFactory
Controls whether or not child entities are created in the enabled state.
See Section 6.4.2.

Logging
Configures the properties associated with Connext logging. See
Section 8.4.1.

Profile
Configures the way that XML documents containing QoS profiles are
loaded by RTI. See Section 8.4.2.

SystemResource-
Limits

Configures DomainParticipant-independent resources used by Connext.
Mainly used to change the maximum number of DomainParticipants
that can be created within a single process (address space). See
Section 8.4.3.
8-7

Working with Domains
There are also operations for setting the DomainParticipantFactory’s default library and
profile:

DDS_ReturnCode_t set_default_library (const char * library_name)

DDS_ReturnCode_t set_default_profile (const char * library_name,
 const char * profile_name)

set_default_profile() specifies the profile that will be used as the default the next time a
default DomainParticipantFactory profile is needed during a call to a DomainPartici-
pantFactory operation.

When calling a DomainParticipantFactory operation that requires a profile_name
parameter, you can use NULL to refer to the default profile. (This same information
applies to setting a default library.)

set_default_profile() does not set the default QoS for the DomainParticipant that can be
created by the DomainParticipantFactory. To set the default QoS using a profile, use the
DomainParticipantFactory’s set_default_participant_qos_with_profile() operation (see
Section 8.2.2).

8.2.2 Getting and Setting Default QoS for DomainParticipants

To get the default QoS that will be used for creating DomainParticipants if
create_participant() is called with DDS_PARTICIPANT_QOS_DEFAULT as the ‘qos’
parameter, use this DomainParticipantFactory operation:

DDS_ReturnCode_t get_default_participant_qos (
 DDS_DomainParticipantQos & qos)

This operation gets the QoS settings that were specified on the last successful call to
set_default_participant_qos() or set_default_participant_qos_with_profile(), or else, if
the call was never made, the default values listed in DDS_DomainParticipantQos.

To set the default QoS that will be used for new DomainParticipants, use the following
operations. Then these default QoS will be used if create_participant() is called with
DDS_PARTICIPANT_QOS_DEFAULT as the ‘qos’ parameter.

DDS_ReturnCode_t set_default_participant_qos (
const DDS_DomainParticipantQos &qos)

or

DDS_ReturnCode_t set_default_participant_qos_with_profile (
const char *library_name,
const char *profile_name)
8-8

DomainParticipantFactory
8. D

o
m

a
ins
Notes:

❏ These operations may potentially allocate memory, depending on the sequences
contained in some QoS policies.

❏ It is not safe to set the default DomainParticipant QoS values while another thread
may be simultaneously calling get_default_participant_qos(),
set_default_participant_qos(), or create_participant() with
DDS_PARTICIPANT_QOS_DEFAULT as the qos parameter. It is also not safe to
get the default DomainParticipant QoS values while another thread may be simul-
taneously calling set_default_participant_qos().

8.2.3 Freeing Resources Used by the DomainParticipantFactory

The finalize_instance() operation explicitly reclaims resources used by the participant
factory singleton (including resources use for QoS profiles).

On many operating systems, these resources are automatically reclaimed by the OS
when the program terminates. However, some memory-check tools will flag those
resources as unreclaimed. This method provides a way to clean up all the memory used
by the participant factory.

Before calling finalize_instance() on a DomainParticipantFactory, all of the participants
created by the factory must have been deleted. For a DomainParticipant to be success-
fully deleted, all Entities created by the participant or by the Entities that the participant
created must have been deleted. In essence, the DomainParticipantFactory cannot be
deleted until all other Entities have been deleted in an application.

Except for Linux systems: get_instance() and finalize_instance() are UNSAFE on the
FIRST call. It is not safe for two threads to simultaneously make the first call to get or
finalize the factory instance. Subsequent calls are thread safe.

8.2.4 Looking Up a DomainParticipant

The DomainParticipantFactory has a useful operation for retrieving the handle to a par-
ticular DomainParticipant:

DDSDomainParticipant* lookup_participant (DDS_DomainId_t domainId)

8.2.5 Getting QoS Values from a QoS Profile

A QoS Profile may include configuration settings for all types of Entities. If you just
want the settings for a specific type of Entity, call get_<entity>_qos_from_profile()
(where <entity> may be participant, publisher, subscriber, datawriter, datareader, or
8-9

Working with Domains
topic). This is useful if you want to get the QoS values from the profile in a structure,
make some changes, and then use that structure to create an entity.

DDS_ReturnCode_t get_<entity>_qos_from_profile (
DDS_<Entity>Qos &qos,
const char *library_name,
const char *profile_name)

For an example, see Figure 6.5 on page 6-12.

The get_<entity>_qos_from_profile() operations do not take into account the
topic_filter attributes that may be set for DataWriter, DataReader, or Topic QoSs in pro-
files (see Section 15.8.3). If there is a topic name associated with an entity, you can call
get_<entity>_qos_from_profile_w_topic_name() (where <entity> can be datawriter,
datareader, or topic) and the topic filter expressions in the profile will be evaluated on
the topic name.

DDS_ReturnCode_t get_<entity>_qos_from_profile_w_topic_name(
DDS_<entity>Qos &qos,
const char *library_name,
const char *profile_name,
const char *topic_name)

get_<entity>_qos_from_profile() and
get_<entity>_qos_from_profile_w_topic_name() may allocate memory, depending on
the sequences contained in some QoS policies.

8.3 DomainParticipants
A DomainParticipant is a container for Entity objects that all belong to the same domain.
Each DomainParticipant has its own set of internal threads and internal data structures
that maintain information about the Entities created by itself and other DomainPartici-
pants in the same domain. A DomainParticipant is used to create and destroy Publishers,
Subscribers and Topics.

Once you have a DomainParticipant, you can use it to perform the operations listed in
Table 8.3. For more details on all operations, see the online documentation. Some of the
first operations you’ll be interested in are create_topic(), create_subscriber(), and
create_publisher().

Note: Some operations cannot be used within a listener callback, see Restricted Opera-
tions in Listener Callbacks (Section 4.5.1).
8-10

DomainParticipants
8. D

o
m

a
ins
Table 8.3 DomainParticipant Operations

Working
with ... Operation Description Reference

Builtin
Subscriber

get_builtin_subscriber Returns the builtin Subscriber. Section 14.2

Domain-
Participants

add_peer Adds an entry to the peer list. Section 8.5.2.3

enable Enables the DomainParticipant. Section 4.1.2

get_discovered_participant_
data

Provides the ParticipantBuiltinTopicData for
a discovered DomainParticipant.

Section 8.3.11
get_discovered_participants

Provides a list of DomainParticipants that
have been discovered.

get_domain_id
Gets the domain ID of the DomainPartici-
pant.

Section 8.3.4

get_listener
Gets the currently installed DomainPartici-
pantListener.

Section 8.3.5

get_qos Gets the DomainParticipant QoS. Section 8.3.6

ignore_participant
Rejects the connection to a remote Domain-
Participant.

Section 14.4

remove_peer Removes an entry from the peer list. Section 8.5.2.3

set_listener Replaces the DomainParticipantListener. Section 8.3.5

set_qos Sets the DomainParticipant QoS.
Section 8.3.6

set_qos_with_profile
Sets the DomainParticipant QoS based on a
QoS profile.

Content-
Filtered-
Topics

create_contentfilteredtopic
Creates a ContentFilteredTopic that can be
used to process content-based subscriptions.

Section 5.4.3create_contentfilteredtopic_
with_filter

delete_contentfilteredtopic Deletes a ContentFilteredTopic. Section 5.4.4

register_contentfilter Registers a new content filter. Section 5.4.8.1

unregister_contentfilter Unregisters a new content filter. Section 5.4.8.2

lookup_contentfilter Gets a previously registered content filter. Section 5.4.8.3
8-11

Working with Domains
DataReaders

create_datareader
Creates a DataReader with a given
DataReaderListener, and an implicit Sub-
scriber.

Section 7.3.1
create_datareader_with_
profile

Creates a DataReader based on a QoS profile,
with a given DataReaderListener, and an
implicit Subscriber.

delete_datareader
Deletes a DataReader that belongs to the
‘implicit Subscriber.’

Section 7.3.3

get_default_datareader_qos
Copies the default DataReaderQoS values
into the provided structure.

Section 8.3.6.4
ignore_subscription Rejects the connection to a DataReader

set_default_datareader_qos Sets the default DataReaderQos values.

set_default_datareader_
qos_with_profile

Sets the default DataReaderQos using val-
ues from a QoS profile.

DataWriters

create_datawriter
Creates a DataWriter with a given DataW-
riterListener, and an implicit Publisher.

Section 6.2.2
create_datawriter_with_
profile

Creates a DataWriter based on a QoS profile,
with a given DataWriterListener, and an
implicit Publisher.

delete_datawriter
Deletes a DataWriter that belongs to the
‘implicit Publisher.’

Section 6.2.3

ignore_publication Rejects the connection to a DataWriter. Section 14.4

get_default_datawriter_qos
Copies the default DataWriterQos values
into the provided DataWriterQos structure.

Section 8.3.6.4set_default_datawriter_qos Sets the default DataWriterQoS values.

set_default_datawriter_
qos _with_profile

Sets the default DataWriterQos using values
from a profile.

Table 8.3 DomainParticipant Operations

Working
with ... Operation Description Reference
8-12

DomainParticipants
8. D

o
m

a
ins
Publishers

create_publisher Creates a Publisher and a PublisherListener.
Section 6.2.2create_publisher_with_

profile
Creates a Publisher based on a QoS profile,
and a PublisherListener.

delete_publisher Deletes a Publisher. Section 6.2.3

get_default_publisher_qos
Copies the default PublisherQos values into
the provided PublisherQos structure.

Section 8.3.6.4

get_implicit_publisher
Gets the Publisher that is implicitly created
by the DomainParticipant.

Section 8.3.9

get_publishers
Provides a list of all Publishers owned by the
DomainParticipant.

Section 8.3.13.3

set_default_publisher_qos Sets the default PublisherQos values.
Section 8.3.6.4set_default_publisher_qos_

with_profile
Sets the default PublisherQos using values
from a QoS profile.

Subscribers

create_subscriber
Creates a Subscriber and a SubscriberLis-
tener.

Section 7.2.2
create_subscriber_with_
profile

Creates a Subscriber based on a QoS profile,
and a SubscriberListener.

delete_subscriber Deletes a Subscriber. Section 7.2.3

get_default_subscriber_qos
Copies the default SubscriberQos values
into the provided SubscriberQos structure.

Section 8.3.6.4

get_implicit_subscriber
Gets the Subscriber that is implicitly created
by the DomainParticipant.

Section 8.3.9

get_subscribers
Provides a list of all Subscribers owned by
the DomainParticipant.

Section 8.3.13.3

set_default_subscriber_qos Sets the default SubscriberQos values.
Section 8.3.6.4set_default_subscriber_qos_

with_profile
Sets the default SubscriberQos values using
values from a QoS profile.

Table 8.3 DomainParticipant Operations

Working
with ... Operation Description Reference
8-13

Working with Domains
Topics

create_topic Creates a Topic and a TopicListener.

Section 5.1.1create_topic _with_profile
Creates a Topic based on a QoS profile, and
a TopicListener.

delete_topic Deletes a Topic.

get_default_topic_qos
Copies the default TopicQos values into the
provided TopicQos structure.

Section 8.3.6.4

get_discovered_topic_data
Retrieves the BuiltinTopicData for a discov-
ered Topic.

Section 8.3.12
get_discovered_topics

Returns a list of all (non-ignored) discovered
Topics.

ignore_topic Rejects a remote topic. Section 14.4

lookup_topicdescription
Gets an existing locally-created TopicDe-
scription (Topic).

Section 8.3.7

set_default_topic_qos Sets the default TopicQos values.
Section 8.3.6.4set_default_topic_qos_with

_profile
Sets the default TopicQos values using val-
ues from a profile.

find_topic Finds an existing Topic, based on its name. Section 8.3.8

Flow-
Controllers

create_flowcontroller Creates a custom FlowController object.
Section 6.6.6

delete_flowcontroller Deletes a custom FlowController object.

get_default_flowcontroller_
property

Gets the default properties used when a
new FlowController is created.

Section 6.6.7
set_default_flowcontroller_
property

Sets the default properties used when a new
FlowController is created.

lookup_flowcontroller Finds a FlowController, based on its name. Section 6.6.10

Libraries
and Profiles

get_default_library Gets the default library.

Section 8.3.6.3

get_default_profile Gets the default profile.

get_default_profile_library
Gets the library that contains the default
profile.

set_default_profile Sets the default QoS profile.

set_default_library Sets the default library.

Table 8.3 DomainParticipant Operations

Working
with ... Operation Description Reference
8-14

DomainParticipants
8. D

o
m

a
ins
8.3.1 Creating a DomainParticipant

Typically, you will only need to create one DomainParticipant per domain per applica-
tion. (Although unusual, you can create multiple DomainParticipants for the same
domain in an application.)

To create a DomainParticipant, use the DomainParticipantFactory’s create_participant() or
create_participant_with_profile() operation:

DDSDomainParticipant * create_participant(
 DDS_DomainId_t domainId,
 const DDS_DomainParticipantQos &qos,
 DDSDomainParticipantListener *listener,
 DDS_StatusMask mask)

DDSDomainParticipant * create_participant_with_profile (
DDS_DomainId_t domainId,
const char * library_name,
const char *profile_name,
DDSDomainParticipantListener *listener,
DDS_StatusMask mask)

MultiTopics
create_multitopic

Creates a MultiTopic that can be used to sub-
scribe to multiple topics and combine/filter
the received data into a resulting type.

Currently not
supported.

delete_multitopic Deletes a MultiTopic.

Other

assert_liveliness
Manually asserts the liveliness of this
DomainParticipant.

Section 8.3.9

delete_contained_entities
Recursively deletes all the entities that were
created using the "create" operations on the
DomainParticipant and its children.

Section 8.3.3

contains_entity
Confirms if an entity belongs to the Domain-
Participant or not.

Section 8.3.13.1

get_current_time Gets the current time used by Connext. Section 8.3.13.2

get_status_changes
Gets a list of statuses that have changed
since the last time the application read the
status or the Listeners were called.

Section 4.1.4

Table 8.3 DomainParticipant Operations

Working
with ... Operation Description Reference
8-15

Working with Domains
A QoS profile is way to use QoS settings from an XML file or string. With this approach,
you can change QoS settings without recompiling the application. For details, see
Chapter 15: Configuring QoS with XML.

domainId The domain ID uniquely identifies the domain that the DomainParticipant is
in. It controls with which other DomainParticipants it will communicate. See
Section 8.3.4 for more information on domain IDs.

qos If you want the default QoS settings (described in the online documentation), use
DDS_PARTICIPANT_QOS_DEFAULT for this parameter (see Figure 8.4 on
page 8-17). If you want to customize any of the QosPolicies, supply a DomainPar-
ticipantQos structure that is described in Section 8.3.6.

Note: If you use DDS_PARTICIPANT_QOS_DEFAULT, it is not safe to create
the DomainParticipant while another thread may simultaneously be calling the
DomainParticipantFactory’s set_default_participant_qos() operation.

listener Listeners are callback routines. Connext uses them to notify your application of
specific events (status changes) that may occur. The listener parameter may be set
to NULL if you do not want to install a Listener. The DomainParticipant’s Listener is
a catchall for all of the events of all of its Entities. If an event is not handled by an
Entity’s Listener, then the DomainParticipantListener may be called in response to
the event. For more information, see Setting Up DomainParticipantListeners (Sec-
tion 8.3.5).

mask This bit mask indicates which status changes will cause the Listener to be
invoked. The bits set in the mask must have corresponding callbacks imple-
mented in the Listener. If you use NULL for the Listener, use
DDS_STATUS_MASK_NONE for this parameter. If the Listener implements all
callbacks, use DDS_STATUS_MASK_ALL. For information on statuses, see Lis-
teners (Section 4.4).

library_name A QoS Library is a named set of QoS profiles. See QoS Libraries (Section
15.9).

profile_name A QoS profile groups a set of related QoS, usually one per entity. See QoS
Profiles (Section 15.8).

After you create a DomainParticipant, the next step is to register the data types that will
be used by the application, see Using rtiddsgen (Section 3.6). Then you will need to cre-
ate the Topics that the application will publish and/or subscribe, see Creating Topics
(Section 5.1.1). Finally, you will use the DomainParticipant to create Publishers and/or
Subscribers, see Creating Publishers (Section 6.2.2) and Creating Subscribers (Section
7.2.2).
8-16

DomainParticipants
8. D

o
m

a
ins
Note: It is not safe to create one DomainParticipant while another thread may simultane-
ously be looking up (Section 8.2.4) or deleting (Section 8.3.2) the same DomainPartici-
pant.

For more examples, see Configuring QoS Settings when the DomainParticipant is Cre-
ated (Section 8.3.6.1).

8.3.2 Deleting DomainParticipants

If the application is no longer interested in communicating in a certain domain, the
DomainParticipant can be deleted. A DomainParticipant can be deleted only after all the
entities that were created by the DomainParticipant have been deleted (see Deleting Con-
tained Entities (Section 8.3.3)).

To delete a DomainParticipant:

1. You must first delete all Entities (Publishers, Subscribers, ContentFilteredTopics, and
Topics) that were created with the DomainParticipant. Use the DomainParticipant’s
delete_<entity>() operations to delete them one at a time, or use the
delete_contained_entities() operation (Section 8.3.3) to delete them all at the
same time.

DDS_ReturnCode_t delete_publisher (DDSPublisher *p)
DDS_ReturnCode_t delete_subscriber (DDSSubscriber *s)

Figure 8.4 Creating a DomainParticipant with Default QosPolicies

DDS_DomainId_t domain_id = 10;
// MyDomainParticipantListener is user defined and
// extends DDSDomainParticipantListener

MyDomainParticipantListener* participant_listener
 = new MyDomainParticipantListener(); // or = NULL
// Create the participant
DDSDomainParticipant* participant =

factory->create_participant(domain_id,
DDS_PARTICIPANT_QOS_DEFAULT,
participant_listener,
DDS_STATUS_MASK_ALL);

if (participant == NULL) {
 // ... error
};
8-17

Working with Domains
DDS_ReturnCode_t delete_contentfilteredtopic
 (DDSContentFilteredTopic *a_contentfilteredtopic)

DDS_ReturnCode_t delete_topic (DDSTopic *topic)

2. Delete the DomainParticipant by using the DomainParticipantFactory’s
delete_participant() operation.

DDS_ReturnCode_t delete_participant
 (DDSDomainParticipant *a_participant)

Note: A DomainParticipant cannot be deleted within its Listener callback, see Restricted
Operations in Listener Callbacks (Section 4.5.1).

After a DomainParticipant has been deleted, all of the participant’s internal Connext
threads and allocated memory will have been deleted. You should delete the Domain-
ParticipantListener only after the DomainParticipant itself has been deleted.

8.3.3 Deleting Contained Entities

The DomainParticipant’s delete_contained_entities() operation deletes all the Publishers
(including an implicitly created one, if it exists), Subscribers (including an implicitly cre-
ated one, if it exists), ContentFilteredTopics, and Topics that have been created by the
DomainParticipant.

DDS_ReturnCode_t delete_contained_entities()

Prior to deleting each contained entity, this operation recursively calls the correspond-
ing delete_contained_entities() operation on each contained entity (if applicable). This
pattern is applied recursively. Therefore, delete_contained_entities() on the DomainPar-
ticipant will end up deleting all the entities recursively contained in the DomainPartici-
pant, that is also the DataWriter, DataReader, as well as the QueryCondition and
ReadCondition objects belonging to the contained DataReader.

If delete_contained_entities() returns successfully, the application may delete the
DomainParticipant knowing that it has no contained entities (see Deleting DomainPar-
ticipants (Section 8.3.2)).

8.3.4 Choosing a Domain ID and Creating Multiple Domains

A domain ID identifies the domain in which the DomainParticipant is communicating.
DomainParticipants with the same domain ID are on the same communication “chan-
nel”. DomainParticipants with different domain IDs are completely isolated from each
other.
8-18

DomainParticipants
8. D

o
m

a
ins
The domain ID is a purely arbitrary value; you can use any integer 0 or higher, provided
it does not violate the guidelines for the DDS_RtpsWellKnownPorts_t structure
(Section 8.5.9.3). Domain IDs are typically between 0 and 232. Please see the online (HTML)
documentation for the DDS_RtpsWellKnownPorts_t structure and in particular,
DDS_INTEROPERABLE_RTPS_WELL_KNOWN_PORTS.

Most distributed systems can use a single domain for all of its applications. Thus a sin-
gle domain ID is sufficient. Some systems may need to logically partition nodes to pre-
vent them from communicating with each other directly, and thus will need to use
multiple domains. However, even in systems that only use a single domain, during the
testing and development phases, one may want to assign different users/testers differ-
ent domain IDs for running their applications so that their tests do not interfere with
each other.

To run multiple applications on the same node with the same domain ID, Connext uses a
participant ID to distinguish between the different DomainParticipants in the different
applications. The participant ID is simply an integer value that must be unique across
all DomainParticipants created on the same node that use the same domain ID. The
participant_id is part of the WIRE_PROTOCOL QosPolicy (DDS Extension) (Section
8.5.9).

Although usually those DomainParticipants have been created in different applications,
the same application can also create multiple DomainParticipants with the same domain
ID. For optimal results, the participant_id should be assigned sequentially to the differ-
ent DomainParticipants, starting from the default value of 0.

Once you have a DomainParticipant, you can retrieve its domain ID with the
get_domain_id() operation.

The domain ID and participant ID are mapped to port numbers that are used by trans-
ports for discovery traffic. For information on how port numbers are calculated, see
Ports Used for Discovery (Section 12.5). How DomainParticipants discover each other is
discussed in Chapter 12.

8.3.5 Setting Up DomainParticipantListeners

DomainParticipants may optionally have Listeners. Listeners are essentially callback rou-
tines and are how Connext will notify your application of specific events (changes in sta-
tus) for entities Topics, Publishers, Subscribers, DataWriters, and DataReaders. Each Entity
may have a Listener installed and enabled to process the events for itself and all of the
sub-Entities created from it. If an Entity does not have a Listener installed or is not
enabled to listen for a particular event, then Connext will propagate the event to the
Entity’s parent. If the parent Entity does not process the event, Connext will continue to
8-19

Working with Domains
propagate the event up the object hierarchy until either a Listener is invoked or the event
is dropped.

The DomainParticipantListener is the last chance that an event can be processed for the
Entities descended from a DomainParticipant. The DomainParticipantListener is used only
if an event is not handled by any of the Entities contained by the participant.

A Listener is typically set up when the DomainParticipant is created (see Section 8.3.1).
You can also set one up after creation time by using the set_listener() operation, as illus-
trated in Figure 8.5 on page 8-21. The get_listener() operation can be used to retrieve the
current DomainParticipantListener.

If a Listener is set for a DomainParticipant, the Listener needs to exist as long as the
DomainParticipant exists. It is unsafe to destroy the Listener while it is attached to a par-
ticipant. However, you may remove the DomainParticipantListener from a DomainPartici-
pant by calling set_listener() with a NULL value. Once the Listener has been removed
from the participant, you may safely destroy it (see Types of Listeners (Section 4.4.1)).

Note: Due to a thread-safety issue, the destruction of a DomainParticipantListener from
an enabled DomainParticipant should be avoided—even if the DomainParticipantListener
has been removed from the DomainParticipant. (This limitation does not affect the Java
API.)

Note: It is possible for multiple internal Connext threads to call the same method of a
DomainParticipantListener simultaneously. You must write the methods of a DomainPar-
ticipantListener to be multithread safe and reentrant. The methods of the Listener of other
Entities do not have this constraint and are guaranteed to have single threaded access.

See also:

❏ Setting Up TopicListeners (Section 5.1.5)

❏ Setting Up PublisherListeners (Section 6.2.5)

❏ Setting Up DataWriterListeners (Section 6.3.4)

❏ Setting Up SubscriberListeners (Section 7.2.6)

❏ Setting Up DataReaderListeners (Section 7.3.4)

8.3.6 Setting DomainParticipant QosPolicies

A DomainParticipant’s QosPolicies are used to configure discovery, database sizing,
threads, information sent to other DomainParticipants, and the behavior of the Domain-
Participant when acting as a factory for other Entities.
8-20

DomainParticipants
8. D

o
m

a
ins
Figure 8.5 Setting up DomainParticipantListener

// MyDomainParticipantListener only handles PUBLICATION_MATCHED and
// SUBSCRIPTION_MATCHED status for DomainParticipant Entities
class MyDomainParticipantListener :

public DDSDomainParticipantListener {
 public:
 virtual void on_publication_matched(DDSDataWriter *writer,
 const DDS_PublicationMatchedStatus &status);
 virtual void on_subscription_matched(DDSDataReader *reader,
 const DDS_SubscriptionMatchedStatus &status);
};
void MyDomainParticipantListener::on_publication_matched(

DDSDataWriter *writer, const DDS_PublicationMatchedStatus &status)
{
 const char *name = writer->get_topic()->get_name();
 printf(“Number of matching DataReaders for Topic %s is %d\n”,
 name, status.current_count);
};
void MyDomainParticipantListener::on_subscription_matched(

DDSDataReader *reader,
const DDS_SubscriptionMatchedStatus &status)

{
 const char *name = reader->get_topicdescription()->get_name();
 printf(“Number of matching DataWriters for Topic %s is %d\n”,

name, status.current_count);
};
// Set up participant listener
MyDomainParticipantListener* participant_listener =
 new MyDomainParticipantListener();
if (participant_listener == NULL) {
 // ... handle error
}
// Create the participant with a listener
DDSDomainParticipant* participant = factory->create_participant(

domain_id,
 participant_qos,
 participant_listener,

DDS_PUBLICATION_MATCHED_STATUS |
DDS_SUBSCRIPTION_MATCHED_STATUS

);
if (participant == NULL) {
 // ... handle error
}

8-21

Working with Domains
Note: set_qos() cannot always be used in a listener callback; see Restricted Operations
in Listener Callbacks (Section 4.5.1).

The DDS_DomainParticipantQos structure has the following format:

struct DDS_DomainParticipantQos {
DDS_UserDataQosPolicy user_data;
DDS_EntityFactoryQosPolicy entity_factory;
DDS_WireProtocolQosPolicy wire_protocol;
DDS_TransportBuiltinQosPolicy transport_builtin;
DDS_TransportUnicastQosPolicy default_unicast;
DDS_DiscoveryQosPolicy discovery;
DDS_DomainParticipantResourceLimitsQosPolicy resource_limits;
DDS_EventQosPolicy event;
DDS_ReceiverPoolQosPolicy receiver_pool;
DDS_DatabaseQosPolicy database;
DDS_DiscoveryConfigQosPolicy discovery_config;

 DDS_PropertyQosPolicy property;
DDS_EntityNameQosPolicy participant_name;
DDS_TransportMulticastMappingQosPolicy multicast_mapping;
DDS_TypeSupportQosPolicy type_support;

};

Table 8.4 summarizes the meaning of each policy (listed alphabetically). For information
on why you would want to change a particular QosPolicy, see the section referenced in
the table.

Table 8.4 DomainParticipant QosPolicies

QosPolicy Description

Database
Various settings and resource limits used by Connext to control its
internal database. See Section 8.5.1.

Discovery
Configures the mechanism used by Connext to automatically discover
and connect with new remote applications. See Section 8.5.2.

DiscoveryConfig
Controls the amount of delay in discovering entities in the system
and the amount of discovery traffic in the network. See Section 8.5.3.

DomainParticipantResourceLimits
Various settings that configure how DomainParticipants allocate and
use physical memory for internal resources, including the maximum
sizes of various properties. See Section 8.5.4.

EntityFactory
Controls whether or not child entities are created in the enabled state.
See Section 6.4.2.

EntityName Assigns a name to a DomainParticipant. See Section 6.5.8.
8-22

DomainParticipants
8. D

o
m

a
ins
8.3.6.1 Configuring QoS Settings when the DomainParticipant is Created

As described in Creating a DomainParticipant (Section 8.3.1), there are different ways to
create a DomainParticipant, depending on how you want to specify its QoS (with or
without a QoS Profile).

❏ In Figure 8.4 on page 8-17, we saw an example of how to create a DomainPartici-
pant with default QosPolicies by using the special constant,
DDS_PARTICIPANT_QOS_DEFAULT, which indicates that the default QoS
values for a DomainParticipant should be used. The default DomainParticipant
QoS values are configured in the DomainParticipantFactory; you can change
them with set_default_participant_qos() or
set_default_participant_qos_with_profile() (see Section 8.2.2). Then any Domain-

Event
Configures the DomainParticipant’s internal thread that handles timed
events. See Section 8.5.5.

Property

Stores name/value(string) pairs that can be used to configure certain
parameters of Connext that are not exposed through formal QoS poli-
cies. It can also be used to store and propagate application-specific
name/value pairs, which can be retrieved by user code during dis-
covery. See Section 6.5.16.

ReceiverPool
Configures threads used by Connext to receive and process data from
transports (for example, UDP sockets). See Section 8.5.6.

TransportBuiltin Specifies which built-in transport plugins are used. See Section 8.5.7.

TransportMulticastMapping
Specifies the automatic mapping between a list of topic expressions
and multicast address that can be used by a DataReader to receive
data for a specific topic. See Section 8.5.8.

TransportUnicast
Specifies a subset of transports and port number that can be used by
an Entity to receive data. See Section 6.5.22.

TypeSupport
Used to attach application-specific value(s) to a DataWriter or
DataReader. These values are passed to the serialization or deserializa-
tion routine of the associated data type. See Section 6.5.23.

UserData
Along with Topic Data QosPolicy and Group Data QosPolicy, used to
attach a buffer of bytes to Connext's discovery meta-data. See
Section 6.5.24.

WireProtocol
Specifies IDs used by the RTPS wire protocol to create globally
unique identifiers. See Section 8.5.9.

Table 8.4 DomainParticipant QosPolicies

QosPolicy Description
8-23

Working with Domains
Participants created with the DomainParticipantFactory will use the new default
values. As described in Section 4.1.7, this is a general pattern that applies to the
construction of all Entities.

❏ To create a DomainParticipant with non-default QoS without using a QoS Profile,
see the example code in Figure 8.6 on page 8-24. It uses the DomainParticipantFac-
tory’s get_default_participant_qos() method to initialize a DDS_ParticipantQos
structure. Then, the policies are modified from their default values before the
structure is used in the create_participant() method.

❏ You can also create a DomainParticipant and specify its QoS settings via a QoS
Profile. To do so, you will call create_participant_with_profile(), as seen in
Figure 8.7 on page 8-25.

❏ If you want to use a QoS profile, but then make some changes to the QoS before
creating the DomainParticipant, call get_participant_qos_from_profile() and
create_participant() as seen in Figure 8.8 on page 8-25.

For more information, see Creating a DomainParticipant (Section 8.3.1) and Chapter 15:
Configuring QoS with XML.

Figure 8.6 Creating a DomainParticipant with Modified QosPolicies (not from a profile)

DDS_DomainId_t domain_id = 10;
DDS_DomainParticipantQos participant_qos;1

// initialize participant_qos with default values
factory->get_default_participant_qos(participant_qos);

// make QoS changes here
participant_qos.wire_protocol.participant_id = 2;

// Create the participant with modified qos
DDSDomainParticipant* participant =
 factory->create_participant(domain_id,
 participant_qos,
 NULL,
 DDS_STATUS_MASK_NONE);
if (participant == NULL) {

// ... error
}

1. Note: In C, you must initialize the QoS structures before they are used, see Section 4.2.2.
8-24

DomainParticipants
8. D

o
m

a
ins
DDS_DomainId_t domain_id = 10;
// MyDomainParticipantListener is user defined and
// extends DDSDomainParticipantListener

MyDomainParticipantListener* participant_listener
 = new MyDomainParticipantListener(); // or = NULL
// Create the participant
DDSDomainParticipant* participant =

factory->create_participant_with_profile(domain_id,
“MyDomainLibrary”,
“MyDomainProfile”,
participant_listener,
DDS_STATUS_MASK_ALL);

if (participant == NULL) {
 // ... error
};

Figure 8.7 Creating a DomainParticipant with a QoS Profile

DDS_DomainParticipantQos participant_qos;
// Get domain participant QoS from profile
retcode = factory->get_participant_qos_from_profile(

participant_qos1,
“DomainParticipantProfileLibrary”,
“DomainParticipantProfile”);

if (retcode != DDS_RETCODE_OK) {
// handle error

}

// Makes QoS changes here
participant_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_FALSE;

// create participant with modified QoS
DDSDomainParticipant* participant = factory->create_participant(

domain_id,
participant_qos,
NULL, DDS_STATUS_MASK_NONE);

if (participant == NULL) {
// handle error

}

Figure 8.8 Getting QoS Values from a Profile, Changing QoS Values, Creating a
DomainParticipant with Modified QoS Values
8-25

Working with Domains
8.3.6.2 Changing QoS Settings After the DomainParticipant Has Been Created

There are two ways to change an existing DomainParticipant’s QoS after it is has been
created—again depending on whether or not you are using a QoS Profile.

❏ To change QoS programmatically (that is, without using a QoS Profile), use
get_qos() and set_qos(). See the example code in Figure 8.9. It retrieves the cur-
rent values by calling the DomainParticipant’s get_qos() operation. Then it modi-
fies the value and calls set_qos() to apply the new value. Note, however, that
some QosPolicies cannot be changed after the DomainParticipant has been
enabled—this restriction is noted in the descriptions of the individual QosPoli-
cies.

❏ You can also change a DomainParticipant’s (and all other Entities’) QoS by using a
QoS Profile and calling set_qos_with_profile(). For an example, see Figure 8.10
on page 8-27. For more information, see Chapter 15: Configuring QoS with XML.

DDS_DomainParticipantQos participant_qos;1

// Get current QoS.
//participant points to an existing DDSDomainParticipant.
if (participant->get_qos(participant_qos) != DDS_RETCODE_OK) {

// handle error
}
// Make QoS changes
participant_qos.entity_factory.autoenable_created_entities =

DDS_BOOLEAN_FALSE;

// Set the new QoS
if (participant->set_qos(participant_qos) != DDS_RETCODE_OK) {

// handle error
}

1. For the C API, you need to use DDS_ParticipantQos_INITIALIZER or DDS_ParticipantQos_initialize().
See Special QosPolicy Handling Considerations for C (Section 4.2.2)

Figure 8.9 Changing the QoS of an Existing Participant (without a QoS Profile)
8-26

DomainParticipants
8. D

o
m

a
ins
8.3.6.3 Getting and Setting the DomainParticipant’s Default QoS Profile and Library

You can get the default QoS profile for the DomainParticipant with the
get_default_profile() operation. You can also get the default library for the DomainPar-
ticipant, as well as the library that contains the DomainParticipant’s default profile (these
are not necessarily the same library); these operations are called get_default_library()
and get_default_library_profile(), respectively. These operations are for informational
purposes only (that is, you do not need to use them as a precursor to setting a library or
profile.) For more information, see Chapter 15: Configuring QoS with XML.

virtual const char * get_default_library ()

const char * get_default_profile ()

const char * get_default_profile_library ()

There are also operations for setting the DomainParticipant’s default library and profile:

DDS_ReturnCode_t set_default_library (const char * library_name)

DDS_ReturnCode_t set_default_profile (const char * library_name,
 const char * profile_name)

If the default profile/library is not set, the DomainParticipant inherits the default from
the DomainParticipantFactory.

set_default_profile() specifies the profile that will be used as the default the next time a
default DomainParticipant profile is needed during a call to one of this DomainPartici-
pant’s operations. When calling a DomainParticipant operation that requires a
profile_name parameter, you can use NULL to refer to the default profile. (This same
information applies to setting a default library.)

set_default_profile() does not set the default QoS for entities created by the DomainPar-
ticipant; for this functionality, use the DomainParticipant’s

retcode = participant->set_qos_with_profile(
“ParticipantProfileLibrary”,”ParticipantProfile”);

if (retcode != DDS_RETCODE_OK) {

 // handle error

}

Figure 8.10 Changing the QoS of an Existing Participant with a QoS Profile
8-27

Working with Domains
set_default_<entity>_qos_with_profile() operation (you may pass in NULL after hav-
ing called set_default_profile(), see Section 8.3.6.4).

set_default_profile() does not set the default QoS for newly created DomainParticipants;
for this functionality, use the DomainParticipantFactory’s
set_default_participant_qos_with_profile(), see Section 8.2.2).

8.3.6.4 Getting and Setting Default QoS for Child Entities

The set_default_<entity>_qos() and set_default_<entity>_qos_with_profile() opera-
tions set the default QoS that will be used for newly created entities (where <entity>
may be publisher, subscriber, datawriter, datareader, or topic). The new QoS settings
will only be used if DDS_<entity>_QOS_DEFAULT is specified as the qos parameter
when create_<entity>() is called. For example, for a Publisher, you can use either:

DDS_ReturnCode_t set_default_publisher_qos (
const DDS_PublisherQos &qos)

DDS_ReturnCode_t set_default_publisher_qos_with_profile (
const char *library_name,
const char *profile_name)

The following operation gets the default QoS that will be used for creating Publishers if
DDS_PUBLISHER_QOS_DEFAULT is specified as the ‘qos’ parameter when
create_publisher() is called:

DDS_ReturnCode_t get_default_publisher_qos (DDS_PublisherQos & qos)

There are similar operations for Subscribers, DataWriters, DataReaders and Topics. These
operations, get_default_<entity>_qos(), get the QoS settings that were specified on the
last successful call to set_default_<entity>_qos() or
set_default_<entity>_qos_with_profile(), or else, if the call was never made, the
default values listed in DDS_<entity>Qos. They may potentially allocate memory
depending on the sequences contained in some QoS policies.

Note: It is not safe to set default QoS values for an entity while another thread may be
simultaneously getting or setting them, or using the QOS_DEFAULT constant to create
the entity.

8.3.7 Looking up Topic Descriptions

The lookup_topicdescription() operation allows you to access a locally created
DDSTopicDescription based on the Topic’s name.

DDSTopicDescription* lookup_topicdescription
(const char *topic_name)
8-28

DomainParticipants
8. D

o
m

a
ins
DDSTopicDescription is the base class for Topics, MultiTopics1 and ContentFilteredTopics.
You can narrow the DDSTopicDescription returned from lookup_topicdescription() to
a Topic or ContentFilteredTopic as appropriate.

Unlike find_topic() (see Section 8.3.8), which logically returns a new Topic that must be
independently deleted, this operation returns a reference to the original local object.

If no TopicDescription has been created yet with the given Topic name, this method will
return a NULL value.

The DomainParticipant does not have to be enabled when you call
lookup_topicdescription().

Note: It is not safe to create or delete a topic while another thread is calling
lookup_topicdescription() for that same topic.

8.3.8 Finding a Topic

The find_topic() operation finds an existing (or ready to exist) Topic, based on its name.
This call can be used to block for a specified duration to wait for the Topic to be created.

DDSTopic* DDSDomainParticipant::find_topic (const char * topic_name,
 const DDS_Duration_t & timeout)

If the requested Topic already exists, it is returned. Otherwise, find_topic() waits until
either another thread creates it, or else returns when the specified timeout occurs.

find_topic() is useful when multiple threads are concurrently creating and looking up
topics. In that case, one thread can call find_topic() and, if another thread has not yet
created the topic being looked up, it can wait for some period of time for it to do so. In
almost all other cases, it is more straightforward to call lookup_topicdescription() (see
Section 8.3.7).

The DomainParticipant must be enabled when you call find_topic().

Note: Each DDSTopic obtained by find_topic() must also be deleted by calling the
DomainParticipant’s delete_topic() operation (see Section 5.1.2).

8.3.9 Getting the Implicit Publisher or Subscriber

The get_implicit_publisher() operation allows you to access the DomainParticipant’s
implicit Publisher. If one does not already exist, this operation creates an implicit Pub-
lisher.

1. Multitopics are not supported.
8-29

Working with Domains
There is a similar operation for implicit Subscribers:

DDSPublisher * get_implicit_publisher ()
DDSSubscriber * get_implicit_subscriber()

There can only be one implicit Publisher and one implicit Subscriber per DomainPartici-
pant. They are created with default QoS values (DDS_PUBLISHER_QOS_DEFAULT)
and no Listener. For more information, see Creating Publishers Explicitly vs. Implicitly
(Section 6.2.1). You can use an implicit Publisher or implicit Subscriber just like an explic-
itly created one.

An implicit Publisher/Subscriber is deleted automatically when
delete_contained_entities() is called. It can also be deleted by calling delete_publisher/
subscriber() with the implicit Publisher/Subscriber as a parameter.

When a DomainParticipant is deleted, if there are no attached DataReaders that belong to
the implicit Subscriber or no attached DataWriters that belong to the implicit Publisher,
any implicit Publisher/Subscriber will be deleted by the middleware implicitly.

Note: It is not safe to create an implicit Publisher/Subscriber while another thread may be
simultaneously calling set_default_[publisher/subscriber]_qos().

The following example code shows how to get the implicit Publisher/Subscriber. (For sim-
plicity, error handling is not shown.)

using namespace DDS;
...

Publisher * publisher = NULL;
Subscriber * subscriber = NULL;
PublisherQos publisher_qos;
SubscriberQos subscriber_qos;
...

publisher = participant->get_implicit_publisher();

/* Change implicit publisher QoS */
publisher->get_qos(publisher_qos);

publisher_qos.partition.name.maximum(3);
publisher_qos.partition.name.length(3);
publisher_qos.partition.name[0] = DDS_String_dup("partition_A");
publisher_qos.partition.name[1] = DDS_String_dup("partition_B");
publisher_qos.partition.name[2] = DDS_String_dup("partition_C");

publisher->set_qos(publisher_qos);
8-30

DomainParticipants
8. D

o
m

a
ins
/* Get implicit subscriber */
subscriber = participant->get_implicit_subscriber();

/* Change implicit subscriber QoS */
subscriber_qos.partition.name.maximum(3);
subscriber _qos.partition.name.length(3);
subscriber _qos.partition.name[0] = DDS_String_dup("partition_A");
subscriber _qos.partition.name[1] = DDS_String_dup("partition_B");
subscriber _qos.partition.name[2] = DDS_String_dup("partition_C");

subscriber->set_qos(subscriber_qos);

8.3.10 Asserting Liveliness

The assert_liveliness() operation manually asserts the liveliness of all the DataWriters
created by this DomainParticipant that has LIVELINESS QosPolicy (Section 6.5.12) kind
set to MANUAL_BY_PARTICIPANT. When assert_liveliness() is called, then for those
DataWriters who have their LIVELINESS set to MANUAL_BY_PARTICIPANT, Connext
will send a packet to all matched DataReaders that indicates that the DataWriter is still
alive.

However, the LIVELINESS contract of periodically sending liveliness packets to
DataReaders is also fulfilled when the write(), assert_liveliness(), unregister_instance()
and dispose() operations on a DataWriter itself is called. Those calls will also cause Con-
next to send packets that indicate the liveliness of the DataWriter. Therefore, it is neces-
sary for the application to call assert_liveliness() on the DomainParticipant only if those
operations on a DataWriter are not being invoked within the period specified by the
LIVELINESS QosPolicy (Section 6.5.12)

8.3.11 Learning about Discovered DomainParticipants

The get_discovered_participants() operation provides you with a list of DomainPartici-
pants that have been discovered in the domain (except any that you have said to ignore
via the ignore_participant() operation (see Section 14.4)).

Once you have a list of discovered DomainParticipants, you can get more information
about them by calling the get_discovered_participant_data() operation. This operation
can only be used on DomainParticipants that are in the same domain and have not been
marked as ‘ignored.’ Otherwise, the operation will fail and return
DDS_RETCODE_PRECONDITION_NOT_MET. The returned information is of type
DDS_ParticipantBuiltinTopicData, described in Table 14.1 on page 14-2.
8-31

Working with Domains
Note: The get_discovered_participant_data() operation does not retrieve the property
information from the builtin-topic data structure. This information is available through
the DataReaderListener’s on_data_available() callback (if a reader listener is installed
on the ParticipantBuiltinTopicDataDataReader).

8.3.12 Learning about Discovered Topics

The get_discovered_topics() operation provides you with a list of Topics that have been
discovered in the domain (except any that you have said to ignore via the ignore_topic()
operation (see Section 14.4)).

Once you have a list of discovered Topics, you can get more information about them by
calling the get_discovered_topic_data() operation. This operation can only be used on
Topics that have been created by a DomainParticipant in the same domain as the partici-
pant on which this operation is invoked and must not have been "ignored" by means of
the DomainParticipant ignore_topic() operation. Otherwise, the operation will fail and
return DDS_RETCODE_PRECONDITION_NOT_MET. The returned information is
of type DDS_TopicBuiltinTopicData, described in Table 14.4 on page 14-8.

8.3.13 Other DomainParticipant Operations

8.3.13.1 Verifying Entity Containment

If you have a handle to an Entity, and want to see if that Entity was created from your
DomainParticipant (or any of its Publishers or Subscribers), use the contains_entity() oper-
ation, which returns a boolean.

An Entity’s instance handle may be obtained from built-in topic data (see Chapter 14:
Built-In Topics), various statuses, or from the get_instance_handle() operation (see
Section 4.1.3).

8.3.13.2 Getting the Current Time

The get_current_time() operation returns the current time value from the same time-
source (clock) that Connext uses to timestamp the data published by DataWriters
(source_timestamp of the SampleInfo structure, see Section 7.4.5). The time-sources
used by Connext do not have to be synchronized nor are they synchronized by Connext.

See also: Clock Selection (Section 8.6).
8-32

DomainParticipantFactory QosPolicies
8. D

o
m

a
ins
8.3.13.3 Getting All Publishers and Subscribers

The get_publishers() and get_subscribers() operations will provide you with a list of
the DomainParticipant’s Publishers and Subscribers, respectively.

8.4 DomainParticipantFactory QosPolicies
This section describes QosPolicies that are strictly for the DomainParticipantFactory (not
the DomainParticipant). For a complete list of QosPolicies that apply to DomainPartici-
pantFactory, see Table 8.2 on page 8-7.

❏ LOGGING QosPolicy (DDS Extension) (Section 8.4.1)

❏ PROFILE QosPolicy (DDS Extension) (Section 8.4.2)

❏ SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension) (Section 8.4.3)

8.4.1 LOGGING QosPolicy (DDS Extension)

This QosPolicy configures the properties associated with the Connext logging facility.

This QosPolicy includes the members in Table 8.5. For defaults and valid ranges, please
refer to the online documentation.

See also: Controlling Messages from Connext (Section 18.2) and Configuring Logging
via XML (Section 18.2.2).

Table 8.5 DDS_LoggingQosPolicy

Type Field Name Description

NDDS_Config_LogVerbosity verbosity
Specifies the verbosity at which Connext diagnos-
tic information will be logged at.

NDDS_Config_LogCategory category
Specifies the category for which logging needs to
be enabled

NDDS_Config_LogPrintFormat print_format
Specifies the format to be used to output the Con-
next diagnostic information.

char * output_file
Specifies the file to which the logged output is
redirected.
8-33

Working with Domains
8.4.1.1 Example

DSDomainParticipantFactory *factory =
DDSDomainParticipantFactory::get_instance();

DDS_DomainParticipantFactoryQos factoryQos;
DDS_ReturnCode_t retcode = factory->get_qos(factoryQos);
if (retcode != DDS_RETCODE_OK) {

// error
}
factoryQos.logging.output_file = DDS_String_dup(“myOutput.txt”);
factoryQos.logging.verbosity =
NDDS_CONFIG_LOG_VERBOSITY_STATUS_LOCAL;
factory->set_qos(factoryQos);

8.4.1.2 Properties

This QosPolicy can be changed at any time.

Since it is only configuring logging, there are no compatibility restrictions for how it is
set on the publishing and subscribing sides.

8.4.1.3 Related QosPolicies

❏ None

8.4.1.4 Applicable Entities

❏ DomainParticipantFactory (Section 8.2)

8.4.1.5 System Resource Considerations

Because the output_file will be freed by Connext, you should use DDS_String_dup() to
allocate the string.when providing an output_file.

8.4.2 PROFILE QosPolicy (DDS Extension)

This QosPolicy determines the way that XML documents containing QoS profiles are
loaded.

All QoS values for Entities can be configured with QoS profiles defined in XML docu-
ments. XML documents can be passed to Connext in string form, or more likely, through
files found on a file system. This QoS configures how a DomainParticipantFactory loads
the QoS profiles defined in XML. QoS profiles may be stored in this QoS as XML docu-
ments as a string. The location of XML files defining QoS profiles may be configured via
8-34

DomainParticipantFactory QosPolicies
8. D

o
m

a
ins
this QoS. There are also default locations where the DomainParticipantFactory will look
for files to load QoS profiles. You may disable any or all of these default locations using
the Profile QoS. For more information about QoS profiles and libraries, please see
Chapter 15: Configuring QoS with XML.

This QosPolicy includes the members in Table 8.6 on page 8-35. For the defaults and
valid ranges, please refer to the online documentation.

8.4.2.1 Example

DDSDomainParticipantFactory *factory =
DDSDomainParticipantFactory::get_instance();

DDS_DomainParticipantFactoryQos factoryQos;

DDS_ReturnCode_t retcode = factory->get_qos(factoryQos);
if (retcode != DDS_RETCODE_OK) {
 // error
}

Table 8.6 DDS_ProfileQosPolicy

Type Field Name Description

DDS_StringSeq

string_profile

Sequence of strings (empty by default) containing a
XML document to load.
The concatenation of the strings in this sequence
must be a valid XML document according to the
XML QoS profile schema.

url_profile
A sequence of URL groups (empty by default) con-
taining a set of XML documents to load.
See URL Groups (Section 15.10).

DDS_Boolean

ignore_user_profile
When TRUE, the QoS profiles contained in the file
USER_QOS_PROFILES.xml in the current work-
ing directory will be ignored.

ignore_environment_
profile

When TRUE, the value of the environment variable
NDDS_QOS_PROFILES will be ignored.

ignore_resource_
profile

When TRUE, the QoS profiles in the file
$NDDSHOME/resource/qos_profiles_4.5xa/xml/
QOS_PROFILES.xml will be ignored.

a. Replace the x in 4.5x with the version letter for the current release.
8-35

Working with Domains
const char *url_profiles[2] = {
"file://usr/local/default_dds.xml",
"file://usr/local/alternative_default_dds.xml" };

factoryQos.profile.url_profile.from_array(url_profiles, 2);
factoryQos.profile.ignore_resource_profile = DDS_BOOLEAN_TRUE;
factory->set_qos(factoryQos);

8.4.2.2 Properties

This QosPolicy can be changed at any time.

Since it is only for the DomainParticipantFactory, there are no compatibility restrictions
for how it is set on the publishing and subscribing sides.

8.4.2.3 Related QosPolicies

❏ None

8.4.2.4 Applicable Entities

❏ DomainParticipantFactory (Section 8.2)

8.4.2.5 System Resource Considerations

Once the QoS profiles are loaded, the DomainParticipantFactory will keep one copy of
each QoS in the QoS profiles in memory.

You can free the memory associated with the XML QoS profiles by calling the Domain-
ParticipantFactory’s unload_profiles() operation.

8.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension)

The SYSTEM_RESOURCE_LIMITS QosPolicy configures DomainParticipant-indepen-
dent resources used by Connext. Its main use is to change the maximum number of
DomainParticipants that can be created within a single process (address space).

It contains the single member as shown in Table 8.7. For the default and valid range,
please refer to the online documentation.

The only parameter that you can set, max_objects_per_thread, controls the size of
thread-specific storage that is allocated by Connext for every thread that invokes a Con-
next API. This storage is used to cache objects that have to be created on a per-thread
basis when a thread traverses different portions of Connext internal code.
8-36

DomainParticipantFactory QosPolicies
8. D

o
m

a
ins
Thus instead of dynamically creating and destroying the objects as a thread enters and
leaves different parts of the code, Connext caches the objects by storing them in thread-
specific storage. We assume that a thread will repeatedly call Connext APIs so that the
objects cached will be needed again and again.

The number of objects that will be stored in the cache depends the number of APIs (sec-
tions of Connext code) that a thread invokes. It also depends on the number of different
DomainParticipants with which the thread interacts. For a single DomainParticipant, the
maximum number of objects that could be stored is a constant–independent of the num-
ber of Entities created in or by the participant. A safe number to use is 200 objects per
DomainParticipant.

A user thread that only interacts with a single DomainParticipant or the Entities thereof,
would never have more than 200 objects stored in its cache. However, if the same thread
invokes Connext APIs on other Entities of other DomainParticipants, the maximum num-
ber of objects that may be stored will increase with the number of participants involved.

The default setting of this resource should work for most user applications. However, if
your application uses more than 4 DomainParticipants, you may need to increase the
value of max_objects_per_thread.

8.4.3.1 Example

Say an application uses 10 DomainParticipants. If a single thread was used to create all 10
DomainParticipants, or a single thread is used to call write() on DataWriters belonging to
all 10 participants, it is possible to run out of thread-specific storage. Either the creation
of the participant or the write() will fail.

In that case, you will need to increase the value of max_objects_per_thread.

8.4.3.2 Properties

This QoS policy cannot be modified after the DomainParticipantFactory is used to create
the first DomainParticipant in an application.

This QoS can be set differently in different applications.

8.4.3.3 Related QoS Policies

There are no interactions with other QosPolicies.

Table 8.7 DDS_SystemResourceLimitsQosPolicy

Type Field Name Description

DDS_Long max_objects_per_thread
Sizes the thread storage that is allocated on a per-
thread basis when the thread calls Connext APIs.
8-37

Working with Domains
8.4.3.4 Applicable Entities

❏ DomainParticipantFactory (Section 8.2)

8.4.3.5 System Resource Considerations

Increasing the value of max_objects_per_thread will increase the amount of memory
allocated by Connext for every thread that access Connext code. This includes internal
Connext threads as well as user threads. Each object uses about 32 bytes of memory.

8.5 DomainParticipant QosPolicies
This section describes the QosPolicies that are strictly for DomainParticipants (and no
other types of Entities). For a complete list of QosPolicies that apply to DomainPartici-
pant, see Table 8.4 on page 8-22.

❏ DATABASE QosPolicy (DDS Extension) (Section 8.5.1)

❏ DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2)

❏ DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 8.5.4)

❏ EVENT QosPolicy (DDS Extension) (Section 8.5.5)

❏ RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

❏ TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension) (Section
8.5.8)

❏ WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9)

8.5.1 DATABASE QosPolicy (DDS Extension)

The Database QosPolicy configures how Connext manages its internal database, includ-
ing how often it cleans up, the priority of the database thread, and limits on resources
that may be allocated by the database. RTI uses an internal in-memory database to store
information about entities created locally as well as remote entities found during the
discovery process. This database uses a background thread to garbage-collect records
8-38

DomainParticipant QosPolicies
8. D

o
m

a
ins
related to deleted entities. When the DomainParticipant that maintains this database is
deleted, it shuts down this thread..

It includes the members in Table 8.8. For defaults and valid ranges, please refer to the
online documentation.

Table 8.8 DDS_DatabaseQosPolicy

Type Field Name Description

DDS_
ThreadSettings_t

thread.mask
thread.priority
thread.stack_size

Thread settings for the database thread used by Connext
to periodically remove deleted records from the data-
base. The values used for these settings are OS-depen-
dent.
Note: thread.cpu_list and thread.cpu_rotation are not
relevant in this QoS policy.

DDS_Duration_t shutdown_timeout
The maximum time that the DomainParticipant will wait
for the database thread to terminate when the partici-
pant is destroyed.

DDS_Duration_t cleanup_period
The period at which the database thread wakes up to
removed deleted records.

DDS_Duration_t
shutdown_cleanup
_period

The period at which the database thread wakes up to
removed deleted records when the DomainParticipant is
being destroyed.

DDS_Long initial_records

The number of records that is initially created for the
database. These records hold information for both local
and remote entities that are dynamically created or dis-
covered.

DDS_Long max_skiplist_level

This is a performance tuning parameter that optimizes
the time it takes to search the database for a record. A
‘Skip List’ is an algorithm for maintaining a list that is
faster to search than a Binary Tree.
This value should be set to log2(N), where N is the max-
imum number of elements that will be stored in a single
list. The list that stores the records for remote DataRead-
ers or the one for remote DataWriters tend to have the
most entries. So, the number of DataWriters or DataRead-
ers in a system across all DomainParticipants in a single
domain, which ever is greater, can be used to set this
parameter.
8-39

Working with Domains
You may be interested in modifying the shutdown_timeout and
shutdown_cleanup_period parameters to decrease the time it takes to delete a Domain-
Participant when your application is shutting down.

The DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Sec-
tion 8.5.4) controls the memory allocation for elements stored in the database.

Real-time programmers will probably want to adjust the priorities of all of the threads
created by Connext relative to each other as well as relative to non-Connext threads in
their applications. Chapter 17: Connext Threading Model, EVENT QosPolicy (DDS
Extension) (Section 8.5.5), and RECEIVER_POOL QosPolicy (DDS Extension) (Section
8.5.6) discuss the other threads that are created by Connext.

A record in the database can be deleted only when no threads are using it. Connext uses
a thread that periodically checks the database if records that have been marked for dele-
tion can be removed. This period is set by cleanup_period. When a DomainParticipant is

DDS_Long
max_weak_
references

This parameter sets the maximum number of entries in
the weak reference table. Weak references are used as a
technique for ensuring that unreferenced objects are
deleted.
The actual number of weak references is permitted to
grow from the value set by initial_weak_references to
this maximum.
To prevent Connext from allocating memory for weak
references after initialization, you should set the initial
and maximum weak references to the same value.
However, it is difficult to calculate how many weak ref-
erences an application will use. To allow Connext to
grow the weak reference table as needed, and thus
dynamically allocate memory, you should set the value
of this field to DDS_LENGTH_UNLIMITED, the default
setting.

DDS_Long
initial_weak_
references

The initial number of entries in the weak reference table.
See max_weak_references.
Connext may decide to use a larger initial value if
initial_weak_references is set too small. If you access
this parameter after a DomainParticipant has been cre-
ated, you will see the actual value used.

Table 8.8 DDS_DatabaseQosPolicy

Type Field Name Description
8-40

DomainParticipant QosPolicies
8. D

o
m

a
ins
being destroyed, the thread will wake up faster at the shutdown_cleanup_period as
other threads delete and release records in preparation for shutting down.

On Windows and VxWorks systems, the thread that is destroying the DomainParticipant
may block up to shutdown_timeout seconds while waiting for the database thread to
finish removing all records and terminating. On other operating systems, the thread
destroying the DomainParticipant will block as long as required for the database thread
to terminate.

The default values for those and the rest of the parameters in this QosPolicy should be
sufficient for most applications.

8.5.1.1 Example

The priority of the database thread should be set to the lowest priority among all
threads in a real-time system. Although, the database thread should not be permitted to
starve, the work that it performs is non-time-critical.

8.5.1.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.1.3 Related QosPolicies

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 8.5.4)

❏ EVENT QosPolicy (DDS Extension) (Section 8.5.5)

❏ RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6)

8.5.1.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.1.5 System Resource Considerations

Setting the thread parameters correctly on a real-time operating system is usually criti-
cal to the proper overall functionality of the applications on that system. Larger values
for the thread.stack_size parameter will use up more memory.

Smaller values for the cleanup_period and shutdown_cleanup_period will cause the
database thread to wake up more frequently using more CPU.
8-41

Working with Domains
Connext is permitted to use up more memory for larger values of max_skiplist_level
and max_weak_references. Whether or not more memory is actually used depends on
actual operating conditions.

8.5.2 DISCOVERY QosPolicy (DDS Extension)

The DISCOVERY QoS configures how DomainParticipants discover each other on the
network. It identifies where on the network this application can potentially discover
other applications with which to communicate. The middleware will periodically send
network packets to these locations, announcing itself to any remote applications that
may be present, and will listen for announcements from those applications. The discov-
ery process is described in detail in Chapter 12: Discovery.

This QosPolicy includes the members in Table 8.9. For defaults and valid ranges, please
refer to the online documentation.

8.5.2.1 Transports Used for Discovery

The enabled_transports field allows you to specify the set of installed and enabled
transports that can be used to discover other DomainParticipants. This field is a sequence
of strings where each string specifies an alias of a registered (and thus installed and
enabled) transport. Please see the online documentation (Modules, Connext API Refer-
ence, Pluggable Transports) for more information.

Table 8.9 DDS_DiscoveryQosPolicy

Type Field Name Description

DDS_StringSeq enabled_transports
Transports available for use by the discovery process.
See Section 8.5.2.1.

DDS_StringSeq initial_peers
Unicast locators (address/indices) of potential partic-
ipants with which this DomainParticipant will attempt
to establish communications. See Section 8.5.2.2.

DDS_StringSeq
multicast_receive_
addresses

List of multicast addresses on which Discovery-
related messages can be received by the DomainPar-
ticipant. See Section 8.5.2.4.

DDS_Long
metatraffic_transport
_priority

Transport priority to be used for sending Discovery
messages. See Section 8.5.2.5.

DDS_Boolean
accept_unknown_
peers

Whether to accept a participant discovered via uni-
cast that is not in the initial_peers list. See
Section 8.5.2.6.
8-42

DomainParticipant QosPolicies
8. D

o
m

a
ins
8.5.2.2 Setting the ‘Initial Peers’ List

When a DomainParticipant is created, it needs to find other participants in the same
domain—this is known as the ‘discovery process’ which is discussed in Chapter 12: Dis-
covery. One way to do so is to use this QosPolicy to specify a list of potential partici-
pants. This is the role of the parameter initial_peers. The strings containing peer
descriptors are stored in the initial_peers string sequence. The format of a string dis-
cussed in Peer Descriptor Format (Section 12.2.1).

The peers stored in initial_peers are merely potential peers—there is no requirement that
the peer DomainParticipants are actually up and running or even will eventually exist.
The Connext discovery process will try to contact all potential peer participants in the
list periodically using unicast transports (as configured by the DISCOVERY_CONFIG
QosPolicy (DDS Extension) (Section 8.5.3)).

The initial_peers parameter can be modified in source code or it can be initialized from
an environment variable, NDDS_DISCOVERY_PEERS or from a text file, see Config-
uring the Peers List Used in Discovery (Section 12.2).

Note: IPv4 multicast addresses must have a prefix

When using the UDPv6 transport: if there are any IPv4 multicast addresses in the
peers list, make sure they have "udpv4://" in front of them.

For example:

setenv NDDS_DISCOVERY_PEERS
"udpv4://localhost,udpv4://239.255.0.1,shmem://"

or, to add IPv6 loopback and an IPv6 multicast address:

setenv NDDS_DISCOVERY_PEERS
"udpv4://localhost,udpv4://239.255.0.1,
shmem://,udpv6://::1,udpv6://ff05::239.255.0.1"

8.5.2.3 Adding and Removing Peers List Entries

The DomainParticipant’s add_peer() operation adds a peer description to the internal
peer list that was initialized by the initial_peer field of the DISCOVERY QosPolicy.

DDS_ReturnCode_t DDSDomainParticipant::add_peer
(const char* peer_desc)

The peer_desc string must be formatted as specified in Peer Descriptor Format (Section
12.2.1).
8-43

Working with Domains
You can call this operation any time after the DomainParticipant has been enabled. An
attempt will be made to contact the new peer immediately.

Adding peers with this operation has no effect on the initial_peers list. After a Domain-
Participant has been created, the contents of the initial_peers field merely shows what
the internal peer list was initialized to be. Therefore, initial_peers may not reflect the
actual potential peer list used by a DomainParticipant. Furthermore, if you call get_qos(),
the returned list of peers will not include the added peer—get_qos() will only show you
what is set in the initial_peers list.

A peer added with add_peer() is not considered to be “unknown.” (That is, you may
have accept_unknown_peers (Section 8.5.2.6) set to FALSE and still use add_peer().)

You can remove an entry from the list with remove_peer().

You can ignore data from a participant by using the ignore_participant() operation
described in Section 14.4.

8.5.2.4 Configuring Multicast Receive Addresses

The multicast_receive_addresses field in the DISCOVERY QosPolicy is a sequence of
strings that specifies a set of multicast group addresses on which the DomainParticipant
will listen for discovery meta-traffic. Each string must have a valid multicast address in
either IPv4 dot notation or IPv6 presentation format. Please look at publicly available
documentation of the IPv4 and IPv6 standards for the definition and valid address
ranges for multicast.

The multicast_receive_addresses field can be initialized from multicast addresses that
appear in the NDDS_DISCOVERY_PEERS environment variable or text file, see Con-
figuring the Peers List Used in Discovery (Section 12.2). A multicast address found in
the environment variable or text file will be added both to the initial_peers and
multicast_receive_addresses fields. Note that the addresses in initial_peers are ones in
which the DomainParticipant will send discovery meta-traffic, and the ones in
multicast_receive_addresses are used for receiving discovery meta-traffic.

If NDDS_DISCOVERY_PEERS does not contain a multicast address, then
multicast_receive_addresses is cleared and the RTI discovery process will not listen for
discovery messages via multicast.

If NDDS_DISCOVERY_PEERS contains one or more multicast addresses, the
addresses are stored in multicast_receive_addresses, starting at element 0. They will be
stored in the order in which they appear in NDDS_DISCOVERY_PEERS.

Note: Currently, Connext will only listen for discovery traffic on the first multicast
address (element 0) in multicast_receive_addresses.
8-44

DomainParticipant QosPolicies
8. D

o
m

a
ins
If you want to send discovery meta-traffic on a different set of multicast addresses than
you want to receive discovery meta-traffic, set initial_peers and
multicast_receive_addresses via the QosPolicy API.

8.5.2.5 Meta-Traffic Transport Priority

The metatraffic_transport_priority field is used to specify the transport priority to be
used for sending all discovery meta-traffic. See the TRANSPORT_PRIORITY QosPolicy
(Section 6.5.20) for details on how transport priorities may be used.

Currently, the builtin transports provided by Connext will ignore the value set in this
field.

8.5.2.6 Controlling Acceptance of Unknown Peers

The accept_unknown_peers field controls whether or not a DomainParticipant is
allowed to communicate with other DomainParticipants found via unicast transport that
are not in its peers list (which is the combination of the initial_peers list and any peers
added with the add_peer() operation described in Section 8.5.2.3).

Suppose Participant A is included in Participant B’s initial peers list, but Participant B is
not in Participant A’s list. When Participant B contacts Participant A by sending it a uni-
cast discovery packet, then Participant A has a choice:

❏ If accept_unknown_peers is DDS_BOOLEAN_TRUE, then Participant A will
reply to Participant B, and communications will be established.

❏ If accept_unknown_peers is DDS_BOOLEAN_FALSE, then Participant A will
ignore Participant B, and A and B will never talk.

Note that Participants do not exchange peer lists. So if Participant A knows about Par-
ticipant B, and Participant B knows about Participant C, Participant A will not discover
Participant C.

Note: If accept_unknown_peers is false and shared memory is disabled, applications on
the same node will not communicate if only ‘localhost’ is specified in the peer list. If
shared memory is disabled or ‘shmem://’ is not specified in the peer list, if you want to
communicate with other applications on the same node through the loopback interface,
you must put the actual node address or hostname in NDDS_DISCOVERY_PEERS.

8.5.2.7 Example

You will always use this policy to set the participant_id when you want to run more
than one DomainParticipant in the same domain on the same host.
8-45

Working with Domains
The easiest way to set the initial peers list is to use the NDDS_DISCOVERY_PEERS
environment variable. However, should you want asymmetric multicast addresses for
sending or receiving meta-traffic, you will need to use this QosPolicy directly.

A reason to use asymmetric multicast addresses is to take advantage of the efficiency
provided by using multicast, while at the same time preventing all participants from
discovering each other. For example, suppose you have a system in which you have a
single server node and a hundred client nodes. The client nodes do not publish or sub-
scribe to each other’s data and thus never need to know about each others existence.

If we did not use multicast, we would have to populate the server application’s peer list
with 100 peer descriptors for each of the client nodes. Each client application would
only need to have the server application in its peer list. The maintenance of the list is
unwieldy, especially if nodes are constantly reconfigured and addresses changed. In
addition, the server will send out discovery packets on a per client basis since the peer
list essentially holds 100 unicast addresses.

Instead, if we used a single multicast address in the NDDS_DISCOVERY_PEERS envi-
ronment variable, the server and all of the clients would discover each other. Certainly,
the list is easier to maintain, but the total amount of traffic has actually increased since
the clients are now exchanging packets with each other uselessly.

To keep the list maintainable, as well as to minimize discovery traffic, we can have the
server send out packets on a multicast address by modifying its initial_peer field. The cli-
ents would have their multicast_receive_addresses field set to the same address used
by the server. The initial_peers of the clients would only need the single unicast peer
descriptor of the server as before.

Now, the server can send a single packet that will be received by all of the clients, but
the clients will not discover each other because they never send out a multicast packet
themselves.

8.5.2.8 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.2.9 Related QosPolicies

❏ DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)
8-46

DomainParticipant QosPolicies
8. D

o
m

a
ins
8.5.2.10 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.2.11 System Resource Considerations

For every entry in the initial_peers list, Connext will periodically send a discovery
packet to see if that participant exists. If the list has many potential participants that are
never started, then CPU and network bandwidth may be wasted in sending out packets
that will never be received.

8.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)

The DISCOVERY_CONFIG QosPolicy is used to tune the discovery process. It controls
how often to send discovery packets, how to determine when participants are alive or
dead, and resources used by the discovery mechanism.

The amount of network traffic required by the discovery process can vary widely based
on how your application has chosen to configure the middleware's network addressing
(e.g. unicast vs. multicast, multicast TTL, etc.), the size of the system, whether all appli-
cations are started at the same time or whether start times are staggered, and other fac-
tors. Your application can use this policy to make trade-offs between discovery
completion time and network bandwidth utilization. In addition, you can introduce
random back-off periods into the discovery process to decrease the probability of net-
work contention when many applications start simultaneously.

This QosPolicy includes the members in Table 8.10. Many of these members are
described in Chapter 12: Discovery. For defaults and valid ranges, please refer to the
online documentation.

Table 8.10 DDS_DiscoveryConfigQosPolicy

Type Field Name Description

DDS_Duration_t
participant_liveliness_
lease_duration

The time period after which other
DomainParticipants can consider this
one dead if they do not receive a
liveliness packet from this Domain-
Participant.

DDS_Duration_t
participant_liveliness_
assert_period

The period of time at which this
DomainParticipant will send out
packets asserting that it is alive.
8-47

Working with Domains
DDS_RemoteParticipantPurgeKind
remote_participant_
purge_kind

Controls the DomainParticipant's
behavior for purging records of
remote participants (and their con-
tained entities) with which discov-
ery communication has been lost.
See Section 8.5.3.2.

DDS_Duration_t
max_liveliness_loss_
detection_period

The maximum amount of time
between when a remote entity stops
maintaining its liveliness and when
the matched local entity realizes
that fact.

DDS_Long
initial_participant_
announcements

Sets how many initial liveliness
announcements the DomainPartici-
pant will send when it is first
enabled, or after discovering a new
remote participant.

DDS_Duration_t
min_initial_participant_
announcement_period

Sets the minimum and maximum
times between liveliness announce-
ments.
When a participant is first enabled,
or after discovering a new remote
participant, Connext sends
initial_paricipant_annoucements
number of discovery messages.
These messages are sent with a
sleep period between them that is a
random duration between
min_initial_participant_announcem
ent_period and
max_initial_participant_announce
ment_period.

DDS_Duration_t
max_initial_participant_
announcement_period

DDS_BuiltinTopicReaderResourceLimits_t
(see Table 8.11 on page 8-52)

participant_reader_
resource_limits

Configures the resource for the
built-in DataReaders used to access
discovery information; see
Section 8.5.3.1 and Chapter 14:
Built-In Topics.

DDS_RtpsReliableReaderProtocol_t
(see Table 7.22 on page 7-79)

publication_reader
Configures the RTPS reliable proto-
col parameters for a built-in publi-
cation reader.

Table 8.10 DDS_DiscoveryConfigQosPolicy

Type Field Name Description
8-48

DomainParticipant QosPolicies
8. D

o
m

a
ins
DDS_BuiltinTopicReaderResourceLimits_t
(see Table 8.11 on page 8-52)

publication_reader_
resource_limits

Configures the resource for the
built-in DataReaders used to access
discovery information; see
Section 8.5.3.1 and Chapter 14:
Built-In Topics.

DDS_RtpsReliableReaderProtocol_t
(see Table 7.22 on page 7-79)

subscription_reader

Configures the RTPS reliable proto-
col parameters for a built-in sub-
scription reader.
Built-in subscription readers receive
discovery information reliably from
DomainParticipants that were
dynamically discovered (see
Chapter 12: Discovery).

DDS_BuiltinTopicReaderResourceLimits_t
(see Table 8.11 on page 8-52)

subscription_reader_
resource_limits

Configures the resource for the
built-in DataReaders used to access
discovery information; see
Section 8.5.3.1 and Chapter 14:
Built-In Topics.

DDS_RtpsReliableWriterProtocol_t
(see Table 6.31 on page 6-97)

publication_writer

Configures the RTPS reliable proto-
col parameters for the writer side of
a reliable connection.
Built-in DataWriters send reliable
discovery information to Domain-
Participants that were dynamically
discovered (see Chapter 12: Discov-
ery).

DDS_WriterDataLifecycleQosPolicy
(see Table 6.62 on page 6-166)

publication_writer_data_
lifecycle

Configures writer data-lifecycle set-
tings for a built-in publication
writer.
(DDS_WriterDataLifecycleQosPolic
y::
autodispose_unregistered_instance
s will always be TRUE.)

Table 8.10 DDS_DiscoveryConfigQosPolicy

Type Field Name Description
8-49

Working with Domains
A DomainParticipant needs to send a message periodically to other DomainParticipants to
let the other participants know that it is still alive. These liveliness messages are sent to
all peers in the peer list that was initialized by the initial_peers parameter of the DIS-
COVERY QosPolicy (DDS Extension) (Section 8.5.2). Peer participants on the peer list
may or may not be alive themselves. The peer DomainParticipants that already know
about this DomainParticipant will use the participant_liveliness_lease_duration pro-

DDS_RtpsReliableWriterProtocol_t
(see Table 6.31 on page 6-97)

subscription_writer

Configures the RTPS reliable proto-
col parameters for the writer side of
a reliable connection.
Built-in DataWriters send reliable
discovery information to Domain-
Participants that were dynamically
discovered (see Chapter 12: Discov-
ery).

DDS_WriterDataLifecycleQosPolicy
(see Table 6.62 on page 6-166)

subscription_writer_data
_lifecycle

Configures writer data-lifecycle set-
tings for a built-in subscription
writer.
(DDS_WriterDataLifecycleQosPolic
y::
autodispose_unregistered_instanc
es will always be TRUE.)

DDS_DiscoveryConfigBuiltinPluginKind
Mask

builtin_discovery_
plugins

The kind mask for selecting built-in
discovery plugins:
❏ Simple Discovery Protocol:

DDS_DISCOVERYCONFIG_B
UILTIN_SDP

❏ Enterprise Discovery Service:
DDS_DISCOVERYCONFIG_B
UILTIN_EDS
(Requires a separately pur-
chased product, RTI Enterprise
Discovery Service.)

DDS_RtpsReliableReaderProtocol_t
(see Table 7.22 on page 7-79)

participant_message_
reader

RTPS protocol-related configuration
settings for a built-in participant
message reader.

DDS_RtpsReliableWriterProtocol_t
(see Table 6.31 on page 6-97)

participant_message_
writer

RTPS protocol-related configuration
settings for a built-in participant
message writer.

Table 8.10 DDS_DiscoveryConfigQosPolicy

Type Field Name Description
8-50

DomainParticipant QosPolicies
8. D

o
m

a
ins
vided by this participant to declare the participant dead, if they have not received a live-
liness message for the specified time.

The participant_liveliness_assert_period is the periodic rate at which this DomainPar-
ticipant will be sending liveliness messages. Since these liveliness messages are not sent
reliably and can get dropped by the transport, it is important to set:

participant_liveliness_assert_period < participant_liveliness_lease_duration/N

where N is the number of liveliness messages that other DomainParticipants must miss
before they decide that this DomainParticipant is dead.

DomainParticipants that receive a liveliness message from a participant that they did not
know about previously will have “discovered” the participant. When one DomainPartic-
ipant discovers another, the discoverer will immediately send its own liveliness packets
back. initial_participant_announcements controls how many of these initial liveliness
messages are sent, and max_initial_participant_announcement_period controls the
time period in between each message.

After the initial set of liveliness messages are sent, the DomainParticipant will return to
sending liveliness packets to all peers in its peer list at the rate governed by
participant_liveliness_assert_period.

For more information on the discovery process, see Chapter 12: Discovery.

8.5.3.1 Resource Limits for Builtin-Topic DataReaders

The DDS_BuiltinTopicReaderResourceLimits_t structure is shown in Table 8.11. This
structure contains several fields that are used to configure the resource limits of the buil-
tin-topic DataReaders used to receive discovery meta-traffic from other DomainPartici-
pants.

There are builtin-topics for exchanging data about DomainParticipants, for publications
(Publisher/DataWriter combination) and for subscriptions (Subscriber/DataReader combi-
nation). The DataReaders for the publication and subscription builtin-topics are reliable.
The DataReader for the participant builtin-topic is best effort.

You can set listeners on these DataReaders that are created automatically when a Domain-
Participant is created. With these listeners, your code can be notified when remote
DomainParticipants, Publishers/DataWriters, and Subscriber/DataReaders are discovered.
You can always check the receive queues of those DataReaders for the same information
about discovered entities at any time. Please see Chapter 14: Built-In Topics for more
details.

The initial_samples and max_samples, and related initial_infos and max_infos, fields
size the amount of declaration messages can be stored in each builtin-topic DataReader.
8-51

Working with Domains
8.5.3.2 Controlling Purging of Remote Participants

When discovery communication with a remote participant has been lost, the local par-
ticipant must make a decision about whether to continue attempting to communicate
with that participant and its contained entities. The remote_participant_purge_kind is
used to select the desired behavior.

This does not pertain to the situation in which a remote participant has been gracefully
deleted and notification of that deletion have been successfully received by its peers. In
that case, the local participant will immediately stop attempting to communicate with
those entities and will remove the associated remote entity records from its internal
database.

The remote_participant_purge_kind can be set to the following values:

❏ DDS_LIVELINESS_BASED_REMOTE_PARTICIPANT_PURGE

This value causes Connext to keep the state of a remote participant and its con-
tained entities for as long as the participant maintains its liveliness contract (as
specified by its participant_liveliness_lease_duration in the
DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3)).

Table 8.11 DDS_BuiltinTopicReaderResourceLimits_t

Type Field Name Description

DDS_Long

initial_samples
Initial number of meta-traffic data samples that can
be stored by a builtin-topic DataReader.

max_samples
Maximum number of meta-traffic data samples that
can be stored by a builtin-topic DataReader.

initial_infos
Initial number of DDS_SampleInfo structures allo-
cated for the builtin-topic DataReader.

max_infos

Maximum number of DDS_SampleInfo structures
that can be allocated for the built-in topic
DataReader.
max_infos must be >= max_samples

initial_outstanding_reads

Initial number of times in which memory can be
concurrently loaned via read/take calls on the buil-
tin-topic DataReader without being returned with
return_loan().

max_outstanding_reads

Maximum number of times in which memory can
be concurrently loaned via read/take calls on the
builtin-topic DataReader without being returned
with return_loan().
8-52

DomainParticipant QosPolicies
8. D

o
m

a
ins
A participant will maintain its own liveliness to any remote participant via inter-
participant liveliness traffic (see LIVELINESS QosPolicy (Section 6.5.12)).

The default Simple Discovery Protocol described in Chapter 12: Discovery auto-
matically maintains this liveliness, whereas other discovery mechanisms may or
may not.

❏ DDS_NO_REMOTE_PARTICIPANT_PURGE

With this value, Connext will never purge the records of a remote participant
with which discovery communication has been lost.

• If the remote participant is later rediscovered, the records that remain in the
database will be re-used.

• If the remote participant is not rediscovered, the records will continue to take
up space in the database for as long as the local participant remains in exis-
tence.

In most cases, you will not need to change this value from its default,
DDS_LIVELINESS_BASED_REMOTE_PARTICIPANT_PURGE.

However, DDS_NO_REMOTE_PARTICIPANT_PURGE may be a good choice if the fol-
lowing conditions apply:

❏ Discovery communication with a remote participant may be lost while data com-
munication remains intact. This will not be the typical case if discovery takes
place over the Simple Discovery Protocol, but may occur if you are using RTI
Enterprise Discovery Service. 1

❏ Extensive and prolonged lack of discovery communication between participants
is not expected to be common, either because loss of the participant will be rare,
or because participants may be lost sporadically but will typically return again.

❏ Maintaining inter-participant liveliness is problematic, perhaps because a partic-
ipant has no writers with the appropriate LIVELINESS QosPolicy (Section 6.5.12)
kind.

8.5.3.3 Controlling the Reliable Protocol Used by Builtin-Topic DataWriters/DataReaders

The connection between the DataWriters and DataReaders for the publication and sub-
scription builtin-topics are reliable. The publication_writer, subscription_writer,
publication_reader, and subscription_reader parameters of the DISCOVERY_CONFIG
QosPolicy (DDS Extension) (Section 8.5.3) configure the reliable messaging protocol

1. RTI Enterprise Discovery Service is an optional package that provides participant-matching services for
Connext applications.
8-53

Working with Domains
used by Connext for those topics. Connext’s reliable messaging protocol is discussed in
Chapter 10: Reliable Communications.

See also:

❏ DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2)

❏ DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.2).

8.5.3.4 Example

Users will be most interested in setting the participant_liveliness_lease_duration and
participant_liveliness_assert_period values for their DomainParticipants. Basically, the
lease duration governs how fast an application realizes another application dies unex-
pectedly. The shorter the periods, the quicker a DomainParticipant can determine that a
remote participant is dead and act accordingly by declaring all of the remote DataWrit-
ers and DataReaders of that participant dead as well.

However, you should realize that the shorter the period the more liveliness packets will
sent by the DomainParticipant. How many packets is also determined by the number of
peers in the peer list of the participant–whether or not the peers on the list are actually
alive.

8.5.3.5 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.3.6 Related QosPolicies

❏ DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2)

❏ DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
(Section 8.5.4)

❏ WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9)

❏ DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2)

❏ DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.2)

❏ DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
7.6.3)

8.5.3.7 Applicable Entities

❏ DomainParticipants (Section 8.3)
8-54

DomainParticipant QosPolicies
8. D

o
m

a
ins
8.5.3.8 System Resource Considerations

Setting smaller values for time periods can increase the CPU and network bandwidth
usage. Setting larger values for maximum limits can increase the maximum memory
that Connext may allocate for a DomainParticipant while increasing the initial values will
increase the initial memory allocated for a DomainParticipant.

8.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)

The DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy includes various set-
tings that configure how DomainParticipants allocate and use physical memory for inter-
nal resources, including the maximum sizes of various properties.

This QosPolicy sets maximum size limits on variable-length parameters used by the
participant and its contained Entities. It also controls the initial and maximum sizes of
data structures used by the participant to store information about locally-created and
remotely-discovered entities (such as DataWriters/DataReaders), as well as parameters
used by the internal database to size the hash tables used by the data structures.

By default, a DomainParticipant is allowed to dynamically allocate memory as needed as
users create local Entities such as DataWriters and DataReaders or as the participant dis-
covers new applications to store their information. By setting fixed values for the maxi-
mum parameters in this QosPolicy, you can bound the memory that can be allocated by
a DomainParticipant. In addition, by setting the initial values to the maximum values,
you can prevent DomainParticipants from allocating memory after the initialization
period.

The maximum sizes of several variable-length parameters—such as the number of par-
titions that can be stored in the PARTITION QosPolicy (Section 6.4.5), the maximum
length of data store in the USER_DATA QosPolicy (Section 6.5.24) and GROUP_DATA
QosPolicy (Section 6.4.4), and many others—can be changed from their defaults using
this QoS. However, it is important that all DomainParticipants that need to communicate
with each other use the same set of maximum values. Otherwise, when these parame-
ters are propagated from one DomainParticipant to another, a DomainParticipant with a
smaller maximum length may reject the parameter resulting in an error.

This QosPolicy includes the members in Table 8.12. For defaults and valid ranges,
please refer to the online documentation.
Most of the parameters for this QosPolicy are described in the Description column of
the table. However, you may need to refer to the sections listed in the column to fully
understand the context in which the parameter is used.

An important parameter in this QosPolicy that is often changed by users is the
type_code_max_serialized_length. This parameter limits the size of the type code that a
8-55

Working with Domains
Table 8.12 DDS_DomainParticipantResourceLimitsQosPolicy

Type Field Name Description

DDS_Allocatio
n-
Settings_t
(see description
column)

local_writer_allocation

Each allocation structure configures how many
objects of each type, <object>_allocation, will be allo-
cated by the DomainParticipant.
See Configuring Resource Limits for Asynchronous
DataWriters (Section 8.5.4.1).
DDS_AllocationSettings_t
{
 DDS_Long initial_count;
 DDS_Long max_count;
 DDS_Long
 incremental_count;
};

local_reader_allocation

local_publisher_allocation

local_subscriber_allocation

local_topic_allocation

remote_writer_allocation

remote_reader_allocation

remote_participant_allocation

matching_writer_reader_pair_allocation

matching_reader_writer_pair_allocation

ignored_entity_allocation

content_filtered_topic_allocation

content_filter_allocation

read_condition_allocation

query_condition_allocation

outstanding_asynchronous_sample_
allocation

flow_controller_allocation
8-56

DomainParticipant QosPolicies
8. D

o
m

a
ins
DDS_Long

local_writer_hash_buckets

Used to configure the hash tables used for database
searches. If these numbers are too large then memory
is wasted. If these number are too small, searching for
an object will be less efficient.

local_reader_hash_buckets

local_publisher_hash_buckets

local_subscriber_hash_buckets

local_topic_hash_buckets

remote_writer_hash_buckets

remote_reader_hash_buckets

remote_participant_hash_buckets

matching_writer_reader_pair_
hash_buckets

matching_reader_writer_pair_
hash_buckets

ignored_entity_hash_buckets

content_filtered_topic_hash_buckets

content_filter_hash_buckets

flow_controller_hash_buckets

DDS_Long max_gather_destinations

Configures the maximum number of destinations
that a message can be addressed in a single network
send operation. Can improve efficiency if the under-
lying transport support can send to multiple destina-
tions.

DDS_Long

participant_user_data_max_length
Controls the maximum lengths of USER_DATA
QosPolicy (Section 6.5.24), TOPIC_DATA QosPolicy
(Section 5.2.1) and GROUP_DATA QosPolicy (Sec-
tion 6.4.4) for different entities.
Must be configured to be the same values on all
DomainParticipants in the same domain.

topic_data_max_length

publisher_group_data_max_length

subscriber_group_data_max_length

writer_user_data_max_length

reader_user_data_max_length

DDS_Long max_partitions

Controls the maximum number of partitions that can
be assigned to a Publisher or Subscriber with the
PARTITION QosPolicy (Section 6.4.5).
Must be configured to be the same value on all
DomainParticipants in the same domain.

Table 8.12 DDS_DomainParticipantResourceLimitsQosPolicy

Type Field Name Description
8-57

Working with Domains
DDS_Long max_partition_cumulative_characters

Controls the maximum number of combined charac-
ters among all partition names in the PARTITION
QosPolicy (Section 6.4.5).
Must be configured to be the same value on all
DomainParticipants in the same domain.

DDS_Long type_code_max_serialized_length

Maximum size of serialized string for type code.
If your data type has an especially complex type
code, you may need to increase this value. See Using
Generated Types without Connext (Standalone) (Sec-
tion 3.7).

DDS_Long contentfilter_property_max_length
Maximum length of all data related to ContentFil-
teredTopics (Section 5.4).

DDS_Long channel_seq_max_length
Maximum number of channels that can be specified
in a DataWriter’s MULTI_CHANNEL QosPolicy
(DDS Extension) (Section 6.5.13).

DDS_Long channel_filter_expression_max_length
Maximum length of a channel filter_expression in a
DataWriter’s MULTI_CHANNEL QosPolicy (DDS
Extension) (Section 6.5.13).

DDS_Long

participant_property_list_max_length
Maximum number of properties ((name, value) pairs)
that can be stored in the DomainParticipant’s PROP-
ERTY QosPolicy (DDS Extension) (Section 6.5.16).

participant_property_string_max_length
Maximum cumulative length (in bytes) of all the
(name, value) pairs in a DomainParticipant’s Property
QosPolicy.

writer_property_list_max_length
Maximum number of properties ((name, value) pairs)
that can be stored in a DataWriter’s Property QosPol-
icy.

writer_property_string_max_length
Maximum cumulative length (in bytes) of all the
(name, value) pairs in a DataWriter’s Property
QosPolicy.

reader_property_list_max_length
Maximum number of properties ((name, value) pairs)
that can be stored in a DataReader’s Property QosPol-
icy.

reader_property_string_max_length
Maximum cumulative length (in bytes) of all the
(name, value) pairs in a DataReader’s Property
QosPolicy.

Table 8.12 DDS_DomainParticipantResourceLimitsQosPolicy

Type Field Name Description
8-58

DomainParticipant QosPolicies
8. D

o
m

a
ins
DomainParticipant is able to store and propagate for user data types. Type codes can be
used by external applications to understand user data types without having the data
type predefined in compiled form. However, since type codes contain all of the informa-
tion of a data structure including the strings that define the names of the members of a
structure, complex data structures can result in type codes larger than the default maxi-
mum of 2048 bytes. Thus it is common for users to set this parameter to a larger value.
However, as with all parameters in this QosPolicy defining maximum sizes for variable-
length elements, all DomainParticipants should set the same value for
type_code_max_serialized_length.

The <object type>_hash_buckets configure the hash-table data structure that is used to
efficiently search the database. The optimal number of buckets depend on the actual
number of objects that will be stored in the hash table. So if you know how many
DataWriters will be created in a DomainParticipant, you may change the value of
local_writer_hash_buckets to balance memory usage against search efficiency. A
smaller value will use up less memory, but a larger value will make database lookups
for the object more efficient.

If you modify any of the <entity type>_data_max_length, max_partitions, or
max_partition_cummulative_characters parameters, then you must make sure that
they are modified to be the same value for all DomainParticipants in the same domain for
all applications. If they are different and an application sends data that is larger than
another application is configure to hold, then the two Entities, whether a matching
DataWriter/DataReader pair or even two DomainParticipants will fail to connect.

8.5.4.1 Configuring Resource Limits for Asynchronous DataWriters

When using an asynchronous Publisher, if a call to write() is blocked due to a resource
limit, the block will last until the timeout period expires, which will prevent others from
freeing the resource. To avoid this situation, make sure that the DomainParticipant’s
resource_limits.outstanding_asynchronous_sample_allocation is always greater than

DDS_Long

max_endpoint_groups
Maximum number of endpoint groups allowed in an
AVAILABILITY QosPolicy (DDS Extension) (Section
7.6.1) .

max_endpoint_group_cumulative_
characters

Maximum number of combined role_name charac-
ters allowed in all endpoint groups in an Availability-
QosPolicy. The maximum number of combined
characters should account for a terminating NULL ('')
character for each role_name string.

Table 8.12 DDS_DomainParticipantResourceLimitsQosPolicy

Type Field Name Description
8-59

Working with Domains
the sum of all asynchronous DataWriters’ resource_limits.max_samples (see
RESOURCE_LIMITS QosPolicy (Section 6.5.19)).

8.5.4.2 Configuring Memory Allocation

The <object type>_allocation configure the number of <object type>’s that can be
stored in the internal Connext database. For example, local_writer_allocation configures
how many local DataWriters can be created for the DomainParticipant.

The DDS_AllocationSettings_t structure sets the initial and maximum number of each
object type that can be stored. Memory is allocated for the storage of the objects, thus
initial_count will determine how much memory is initially allocated, and max_count
will determine the maximum amount of memory that Connext is allowed to allocate.
The incremental_count is used to allocate more memory in chunks when the number of
objects created exceed the initial_count.

You should modify these parameters only if you want to decrease the initial memory
used by Connext when a DomainParticipant is created or increase the maximum number
of local and remote Entities that can be stored in a DomainParticipant.

How Connext is allowed to allocate memory for a DomainParticipant after initialization
depends on how you set these parameters.

1. Static memory allocation

No memory is allocated by Connext after creation. Set initial_count =
max_count. The incremental_count should be set to 0.

Advantage: All memory allocation is done when creating the DomainParticipant;
no dynamic allocation during run-time. You know immediately if you have
enough memory to run in that configuration.

Disadvantage: Requires a fairly static system and/or good estimates on the num-
ber of Entities in the distributed system. Connext will fail to execute properly
once the number of Entities exceed the configure bounds.

2. Dynamic, bounded allocation

Set initial_count to configure the initial amount of memory to be allocated. Set
max_count to the maximum allowable upper bound (see the online documenta-
tion).

Advantage: Initial memory usage may be lower and memory is allocated as
needed and only if needed.

Disadvantage: Connext may allocate memory dynamically which may have an
impact on performance.
8-60

DomainParticipant QosPolicies
8. D

o
m

a
ins
If you allow Connext to allocate memory dynamically, you can either:

• Use fixed-size increments (set incremental_count to the desired fixed size).

Advantage: well known amount of memory allocated each time.

Disadvantage: may require more frequent allocations.

• Double the amount of extra memory allocated each time memory is needed
(set incremental_count to -1).

Advantage: requires fewer allocations.

Disadvantage: may allocate considerably more memory than is really needed.

8.5.4.3 Example

For most applications, the default values for this QosPolicy may be sufficient. However,
if an application uses the PARTITION, USER_DATA, TOPIC_DATA, or GROUP_DATA
QosPolicies, the default maximum sizes of the data associated with those policies may
need to be adjusted as required by the application. As noted previously, you must make
sure that all DomainParticipants in the same domain use the same sets of values or else it
is possible that Connext will not successfully connect two Entities.

8.5.4.4 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.4.5 Related QosPolicies

❏ DATABASE QosPolicy (DDS Extension) (Section 8.5.1)

❏ DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3)

❏ MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.13)

❏ USER_DATA QosPolicy (Section 6.5.24)

❏ TOPIC_DATA QosPolicy (Section 5.2.1)

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ PARTITION QosPolicy (Section 6.4.5)

❏ PROPERTY QosPolicy (DDS Extension) (Section 6.5.16)
8-61

Working with Domains
8.5.4.6 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.4.7 System Resource Considerations

Memory and CPU usage are directly affected by the values set for parameters of this
QosPolicy. See the detailed descriptions above for specifics.

8.5.5 EVENT QosPolicy (DDS Extension)

The EVENT QosPolicy configures the internal Connext Event thread.

This QoS allows the you to configure thread properties such as priority level and stack
size. You can also configure the maximum number of events that can be posted to the
event thread. It contains the members in Table 8.13. For defaults and valid ranges,
please refer to the online documentation.

The Event thread is used to wake up and execute timed events posted to the event
queue. In a DomainParticipant, different Entities may have constraints that have to be
checked at periodic intervals or at specific times. If the constraint is violated, a callback
function may need to be executed. Timed events include checking for timeouts and
deadlines, and executing internal and user timeout or exception handling routines/call-
backs. A combination of a time, constraint, and callback can be considered to be an
event. For more information, see Event Thread (Section 17.2).

For example, a DataReader may have a constraint that requires data to be received within
a period of time specified by the DEADLINE QosPolicy (Section 6.5.4). For that
DataReader, an event is stored by the Event thread so that it will wake up periodically to
check to see if data has arrived in time. If not, the Event thread will execute the

Table 8.13 DDS_EventQoSPolicy

Type Field Name Description

DDS_Thread
Settings_t

thread.mask
thread.priority
thread.stack_size

Thread settings for the event thread used by Connext to wake
up for a timed event and possibly execute listener callbacks.
The values used for these settings are OS-dependent.
Note: thread.cpu_list and thread.cpu_rotation are not rele-
vant in this QoS policy.

DDS_Long initial_count Initial number of events that can be stored simultaneously.

DDS_Long max_count
Maximum number of events that can be stored simultane-
ously.
8-62

DomainParticipant QosPolicies
8. D

o
m

a
ins
on_requested_deadline_missed() Listener callback of the DataReader (if it was installed
and enabled).

A reliable connection between a DataWriter and DataReader will also post events for
sending heartbeats used in the reliable protocol discussed in Chapter 10: Reliable Com-
munications.

This QoS configures the parameters associated with thread creation as well as the num-
ber of events that can be simultaneously stored by the Event thread.

8.5.5.1 Example

In a real-time operating system, the priority of the Event thread should be set relative to
the priority of the events that it must handle. For example, you may want the Event
thread to have a high priority if the deadlines and callbacks that it handles are time or
safety critical. It may be critical that the data of a particular DataReader arrives on time
or if not, alternative action is taken with minimal latency.

If you create many Entities in a DomainParticipant with QosPolicies that will post events
that check deadlines, liveliness or send heartbeats, then you may need to increase the
maximum number of events that can be stored by the Event thread.

If your application is sending a lot of reliable data, you should increase the event thread
priority to be higher than the sending thread priority.

8.5.5.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.5.3 Related QosPolicies

❏ DATABASE QosPolicy (DDS Extension) (Section 8.5.1)

❏ RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6)

8.5.5.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.5.5 System Resource Considerations

Increasing initial_count and max_count will increase initial and maximum memory
used for storing events.
8-63

Working with Domains
Setting the thread parameters correctly on a real-time operating system is usually criti-
cal to the proper overall functionality of the applications on that system. Larger values
for the thread.stack_size parameter will use up more memory.

By default, a DomainParticipant will dynamically allocate memory as needed for events
posted to the event thread. However, by setting an maximum value or setting the initial
and maximum value to be the same, you can either bound the amount of memory allo-
cated for the event thread or prevent a DomainParticipant from dynamically allocating
memory for the event thread after initialization.

8.5.6 RECEIVER_POOL QosPolicy (DDS Extension)

The RECEIVER_POOL QosPolicy configures the internal Connext thread used to process
the data received from a transport. The Receive thread is described in detail in
Section 17.3.

This QosPolicy contains the members in Table 8.14. For defaults and valid ranges, please
refer to the online documentation.

This QosPolicy sets the thread properties, like priority level and stack size, for the
threads used to receive and process data from transports. Connext uses a separate
receive thread per port per transport plugin. To force Connext to use a separate thread to
process the data for a DataReader, you should set a unique port for the
TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.22) or
TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6) for the
DataReader.

Connext creates at least one thread for every transport that is installed and enabled for
use by the DomainParticipant for receiving data. These threads are used to process data
samples received for the participant’s DataReaders, as well as messages used by Connext
itself in support of the application discovery process discussed in Chapter 12.

Table 8.14 DDS_ReceiverPoolQoSPolicy

Type Field Name Description

struct
DDS_ThreadSettings_t

thread.mask
thread.priority
thread.stack_size
hread.cpu_list
thread.cpu_rotation

Thread settings for the receive thread(s) used
by Connext to process data received from a
transport. The values used for these settings
are OS-dependent.
See also: Controlling CPU Core Affinity for
RTI Threads (Section 17.5).

DDS_Long buffer_size Size of the receive buffer in bytes.

DDS_Long buffer_alignment Byte-alignment of the receive buffer.
8-64

DomainParticipant QosPolicies
8. D

o
m

a
ins
The user application may configure Connext to create many more threads for receiving
data sent via multicast or even to dedicate a thread to process the data samples of a sin-
gle DataReader received on a particular transport. This QosPolicy is used in the creation
of all receive threads.

In many applications, users change the configuration of the builtin-transport
message_size_max property to increase the size of the largest data packet that can be
sent or received through the transport. Typically, users change the UDPv4 transport plu-
gin's message_size_max to 65536 (64 K), which is the largest packet that can be sent/
received via UDP. The ReceiverPool QosPolicy’s buffer_size should be set to at least the
same value as the maximum message_size_max parameter across all of the transports
being used that does not support zero-copy. (A transport that supports zero-copy will
not use the receive buffer. The only built-in transport that supports zero-copy is the
UDPv4 transport on VxWorks platforms.) If you are using the default configuration of
the built-in transports, you should not need to change this buffer size.

In addition, if your application only uses transports that support zero-copy, then you do
not need to modify the value of buffer_size, even if the message_size_max of the trans-
port is changed. Transports that support zero-copy do not copy their data into the buffer
provided by the receive thread. Instead, they provide the receive thread data in a buffer
allocated by the transport itself. The only built-in transport that supports zero-copy is
the UDPv4 transport on VxWorks platforms.

8.5.6.1 Example

When new data arrives on a transport, the receive thread may invoke the
on_data_available() of the Listener callback of a DataReader. Thus, you may want to
adjust the priority of the receive threads with respect to the other threads in the applica-
tion as appropriate for the proper operation of the system.

8.5.6.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.6.3 Related QosPolicies

❏ DATABASE QosPolicy (DDS Extension) (Section 8.5.1)

❏ EVENT QosPolicy (DDS Extension) (Section 8.5.5)
8-65

Working with Domains
8.5.6.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.6.5 System Resource Considerations

Increasing the buffer_size will increase memory used by a receive thread.

Setting the thread parameters correctly on a real-time operating system is usually criti-
cal to the proper overall functionality of the applications on that system. Larger values
for the thread.stack_size parameter will use up more memory.

8.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension)

Connext comes with three different transport plugins built into the core libraries (for
most supported target platforms). These are plugins for UDPv4, shared memory, and
UDPv6.

This QosPolicy allows you to control which built-in transport plugins are used by a
DomainParticipant. By default, only the UDPv4 and shared memory plugins are enabled
(for most platforms; on some platforms, the shared memory plugin is not available).
You can disable one or all of the builtin transports.

In some cases, users will disable the shared memory transport when they do not want
applications to use shared memory to communicate when running on the same node.

It contains the member in Table 8.15. For the default and valid values, please refer to the
online documentation.

Please see the online documentation (Modules, Connext API Reference, Pluggable
Transports, Using Transport Plugins and Built-in Transport Plugins) for more infor-
mation.

See also: “Note:” on page 8-43.

8.5.7.1 Example

See Section 8.5.7.5 for an example of why you may want to use this QosPolicy.

Table 8.15 DDS_TransportBuiltinQosPolicy

Type Field Name Description

DDS_TransportBuiltinKindMask mask
A mask with bits that indicate which
built-in transports will be installed.
8-66

DomainParticipant QosPolicies
8. D

o
m

a
ins
In addition, customers may wish to install and use their own custom transport plugins
instead of any of the builtin transports. In that case, this QosPolicy may be used to dis-
able all builtin transports.

8.5.7.2 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

It can be set differently on the publishing and subscribing sides.

8.5.7.3 Related QosPolicies

❏ TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.21)

❏ TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.22)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6)

8.5.7.4 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.7.5 System Resource Considerations

You can save memory and other system resources if you disable the built-in transports
that your application will not use. For example, if you only run a single application with
a single DomainParticipant on each machine in your network, then you can disable the
shared memory transport since your applications will never use it to send or receive
messages.

8.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension)

The multicast address on which a DataReader wants to receive its data can be explicitly
configured using the TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section
7.6.5). However in systems with many multicast addresses, managing the multicast con-
figuration can become cumbersome. The TransportMulticastMapping QosPolicy is
designed to make configuration and assignment of the DataReader's multicast addresses
more manageable. When using this QosPolicy, the middleware will automatically
assign a multicast receive address for a DataReader from a range by using configurable
mapping rules.

DataReaders can be assigned a single multicast receive address using the rules defined in
this QosPolicy on the DomainParticipant. This multicast receive address is exchanged
8-67

Working with Domains
during simple discovery in the same manner used when the multicast receive address is
defined explicitly. No additional configuration on the writer side is needed.

Mapping within a range is done through a mapping function. The middleware provides
a default hash (md5) mapping function. This interface is also pluggable, so you can
specify a custom mapping function to minimize collisions.

Notes:

❏ This QosPolicy is only available when using the C or C++ API on a platform that
supports multicast on a UDPv4 or UDPv6 transport.

❏ To use this QosPolicy, you must set the kind (Section) (in the
TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6) to
AUTOMATIC.

This QosPolicy contains the member in Table 8.16.

Table 8.16 DDS_TransportMulticastMappingQosPolicy

Type Field Name Description

DDS_TransportMapping
SettingsSeq

value
A sequence of multicast communication set-
tings, each of which has the format shown in
Table 8.17.

Table 8.17 DDS_TransportMulticastSettings_t

Type Field Name Description

char * addresses

A string containing a comma-separated list of
IP addresses or IP address ranges to be used to
receive multicast traffic for the entity with a
topic that matches the topic_expression.
See Formatting Rules for Addresses (Section
8.5.8.1).

char * topic_expression
A regular expression used to map topic names
to corresponding addresses.

DDS_TransportMulticast
MappingFunction_t

mapping_function
Optional. Defines a user-provided pluggable
mapping function. See Table 8.18.
8-68

DomainParticipant QosPolicies
8. D

o
m

a
ins
8.5.8.1 Formatting Rules for Addresses

❏ The string must contain IPv4 or IPv6 addresses separated by commas. For exam-
ple: "239.255.100.1,239.255.100.2,239.255.100.3"

❏ You may specify ranges of addresses by enclosing the start and end addresses in
square brackets. For example: "[239.255.100.1,239.255.100.3]".

❏ You may combine the two approaches. For example:
"239.255.200.1,[239.255.100.1,239.255.100.3], 239.255.200.3"

❏ IPv4 addresses must be specified in Dot-decimal notation.

❏ IPv6 addresses must be specified using 8 groups of 16-bit hexadecimal values
separated by colons. For example: FF00:0000:0000:0000:0202:B3FF:FE1E:8329.

❏ Leading zeroes can be skipped. For example: FF00:0:0:0:202:B3FF:FE1E:8329.

❏ You may replace a consecutive number of zeroes with a double colon, but only
once within an address. For example: FF00::202:B3FF:FE1E:8329.

8.5.8.2 Example

This QoS policy configures the multicast ranges and mapping rules at the DomainPartic-
ipant level. You can configure a large set of multicast addresses on the DomainParticipant.

In addition, you can configure a mapping between topic names and multicast
addresses. For example, topic "A" can be assigned to address 239.255.1.1 and topic "B"
can be assigned to address 239.255.1.2.

Table 8.18 DDS_TransportMulticastMappingFunction_t

Type Field Name Description

char * dll

Specifies a dynamic library that contains a mapping function.
You may specify a relative or absolute path.
If the name is specified as "foo", the library name on Linux systems
will be libfoo.so; on Windows systems it will be foo.dll.

char * function_name

Specifies the name of a mapping function in the library specified in
the above dll.
The function must implement the following interface:

int function(const char* topic_name,
int numberOfAddresses);

The function must return an integer that indicates the index of the
address to use for the given topic_name. For example, if the first
address in the list should be used, it must return 0; if the second
address in the list should be used, it must return 1, etc.
8-69

Working with Domains
This configuration is quite flexible. For example, you can specify mappings between a
subset of topics to a range of multicast addresses. For example, topics "X", "Y" and Z"
can be mapped to [239.255.1.1, 239.255.1.255], or using regular expressions, "X*" and "B-
Z" can be mapped to a sub-range of addresses.

8.5.8.3 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

8.5.8.4 Related QosPolicies

TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6)

8.5.8.5 Applicable Entities
❏ DomainParticipants (Section 8.3)

8.5.8.6 System Resource Considerations

See Section 7.6.6.5.

8.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)

The WIRE_PROTOCOL QosPolicy configures some global Real-Time Publish Subscribe
(RTPS) protocol-related properties for the DomainParticipant. The RTPS OMG-standard,
interoperability protocol is used by Connext to format and interpret messages between
DomainParticipants.

It includes the members in Table 8.19. For defaults and valid ranges, please refer to the
online documentation. (The default values contain the correctly initialized wire protocol
attributes. They should not be modified without an understanding of the underlying
Real-Time Publish Subscribe (RTPS) wire protocol.)

Table 8.19 DDS_WireProtocolQosPolicy

Type Field Name Description

DDS_Long participant_id
Unique identifier for participants
that belong to the same domain on
the same host. See Section 8.5.9.1.
8-70

DomainParticipant QosPolicies
8. D

o
m

a
ins
Note that DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2) and
DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.2) configure
RTPS and reliability properties on a per DataWriter and DataReader basis.

8.5.9.1 Choosing Participant IDs

When you create a DomainParticipant, you must specify a domain ID, which identifies
the communication channel across the whole system. Each DomainParticipant in the
same domain on the same host also needs a unique integer, known as the
participant_id.

The participant_id uniquely identifies a DomainParticipant from other DomainPartici-
pants in the same domain on the same host. You can use the same participant_id value
for DomainParticipants in the same domain but running on different hosts.

The participant_id is also used to calculate the default unicast user-traffic and the uni-
cast meta-traffic port numbers, as described in Ports Used for Discovery (Section 12.5).
If you only have one DomainParticipant in the same domain on the same host, you will
not need to modify this value.

DDS_UnsignedLong

rtps_host_id
A machine/OS-specific host ID,
unique in the domain. See
Section 8.5.9.2.

rtps_app_id
A participant-specific ID, unique
within the scope of the rtps_host_id.
See Section 8.5.9.2.

rtps_instance_id

An instance-specific ID of the
DomainParticipant that, together with
the rtps_app_id, is unique within the
scope of the rtps_host_id. See
Section 8.5.9.2.

DDS_RtpsWellKnownPorts_t
rtps_well_known
_ports

Determines the well-known multi-
cast and unicast ports for discovery
and user traffic. See Section 8.5.9.3.

DDS_RtpsReservedPortKindMask
rtps_reserved_ports
_mask

Specifies which well-known multi-
cast and unicast ports to reserve
when enabling the DomainPartici-
pant.

DDS_WireProtocolQosPolicyAuto
Kind

rtps_auto_id_kind
Kind of auto mechanism used to cal-
culate the GUID prefix.

Table 8.19 DDS_WireProtocolQosPolicy

Type Field Name Description
8-71

Working with Domains
You can either allow Connext to select a participant ID automatically (by setting
participant_id to -1), or choose a specific participant ID (by setting participant_id to the
desired value).

❏ Automatic Participant ID Selection

The default value of participant_id is -1, which means Connext will select a par-
ticipant ID for you.

Connext will pick the smallest participant ID, based on the unicast ports available
on the transports enabled for discovery, based on the unicast and/or multicast
ports available on the transports enabled for discovery and/or user traffic.

The rtps_reserved_ports_mask field determines which ports to check when
picking the next available participant ID. The reserved ports are calculated based
on the formula specified in Inbound Ports for Meta-Traffic (Section 12.5.1) an
Inbound Ports for User Traffic (Section 12.5.2). By default, Connext will reserve
the meta-traffic unicast port, the meta-traffic multicast port, and the user traffic
unicast port.

Connext will attempt to resolve an automatic port ID either when a DomainPartic-
ipant is enabled, or when a DataReader or a DataWriter is created. Therefore, all
the transports enabled for discovery must have been registered by this time. Oth-
erwise, the discovery transports registered after resolving the automatic port
index may produce port conflicts when the DomainParticipant is enabled.

To see what value Connext has selected, either:

• Change the verbosity level of the NDDS_CONFIG_LOG_CATEGORY_API
category to NDDS_CONFIG_LOG_VERBOSITY_STATUS_LOCAL (see Con-
trolling Messages from Connext (Section 18.2)).

• Call get_qos() and look at the participant_id value in the WIRE_PROTOCOL
QosPolicy (DDS Extension) (Section 8.5.9) after the DomainParticipant is
enabled.

❏ Manual Participant ID Selection

If you do have multiple DomainParticipants on the same host, you should use
consecutively numbered participant indices start from 0. This will make it easier
to specify the discovery peers using the initial_peers parameter of this QosPol-
icy or the NDDS_DISCOVERY_PEERS environment variable. See Configuring
the Peers List Used in Discovery (Section 12.2) for more information.

Do not use random participant indices since this would make DISCOVERY
incredibly difficult to configure. In addition, the participant_id has a maximum
value of 120 (and will be less for domain IDs other than 0) when using an IP-
8-72

DomainParticipant QosPolicies
8. D

o
m

a
ins
based transport since the participant_id is used to create the port number (see
Ports Used for Discovery (Section 12.5)), and for IP, a port number cannot be
larger than 65536.

For details, see Ports Used for Discovery (Section 12.5).

8.5.9.2 Host, App, and Instance IDs

The rtps_host_id, rtps_app_id, and rtps_instance_id values are used by the RTPS pro-
tocol to allow Connext to distinguish messages received from different DomainPartici-
pants. Their combined values must be globally unique across all existing
DomainParticipants in the same domain. In addition, if an application dies unexpectedly
and restarted, the IDs used by the new instance of DomainParticipants should be differ-
ent than the ones used by the previous instances. A change in these values allows other
DomainParticipants to know that they are communicating with a new instance of an
application, and not the previous instance.

If the value of rtps_host_id is set to DDS_RTPS_AUTO_ID, the IPv4 address of the
host is used as the host ID. If the host does not have an IPv4 address, then you should
set this value to uniquely distinguish the host from other nodes in the system.

If the value of rtps_app_id is set to DDS_RTPS_AUTO_ID, the process (or task) ID is
used. There can be at most 256 distinct participants in a shared address space (process)
with a unique rtps_app_id.

If the value of rtps_instance_id is set to DDS_RTPS_AUTO_ID, a counter is assigned
that is incremented per new participant. Thus, together with rtps_app_id, there can be
at most 2^64 distinct participants in a shared address space with a unique RTPS Glob-
ally Unique Identifier (GUID).

8.5.9.3 Ports Used for Discovery

The rtps_well_known_ports structure allows you to configure the ports that are used
for discovery of inbound meta-traffic (discovery data internal to Connext) and user traf-
fic (from your application).

It includes the members in Table 8.20. For defaults and valid ranges, please refer to the
online documentation.

8.5.9.4 Controlling How the GUID is Set (rtps_auto_id_kind)

In order for the discovery process to work correctly, each DomainParticipant must have a
unique identifier. This QoS policy specifies how that identifier should be generated.

RTPS defines a 96-bit prefix to this identifier; each DomainParticipant must have a
unique value of this prefix relative to all other participants in its domain. In order to
8-73

Working with Domains
make it easier to control how this 96-bit value is generated, Connext divides it into three
integers: a host ID, the value of which is based on the identity of the machine on which
the participant is executing, an application ID (whose value is based on the process or
task in which the participant is contained), and an instance ID which identifies the par-
ticipant itself.

This QoS policy provides you with a choice of algorithms for generating these values
automatically. In case none of these algorithms suit your needs, you may also choose to
specify some or all of them yourself.

The following three fields compose the GUID prefix and by default are set to
DDS_RTPS_AUTO_ID. The meaning of this flag depends on the value assigned to
rtps_auto_id_kind.

❏ rtps_host_id

❏ rtps_app_id

❏ rtps_instance_id

Depending on the rtps_auto_id_kind value, there are two different scenarios:

Scenario 1:

In the default and most common scenario, rtps_auto_id_kind is set to
DDS_RTPS_AUTO_ID_FROM_IP. Doing so, each field is interpreted as follows:

❏ rtps_host_id: the 32 bit value of the IPv4 of the first up and running interface of
the host machine is assigned

❏ rtps_app_id: the process (or task) ID is assigned

Table 8.20 DDS_RtpsWellKnownPorts_t

Type Field Name Description

DDS_Long

port_base

The base port offset. All mapped well-known
ports are offset by this value. Resulting ports
must be within the range imposed by the
underlying transport.

domain_id_gain Tunable gain parameters. See Ports Used for
Discovery (Section 12.5).participant_id_gain

builtin_multicast_port_offset Additional offset for meta-traffic port. See
Inbound Ports for Meta-Traffic (Section 12.5.1).builtin_unicast_port_offset

user_multicast_port_offset Additional offset for user traffic port. See
Inbound Ports for User Traffic (Section 12.5.2).user_unicast_port_offset
8-74

DomainParticipant QosPolicies
8. D

o
m

a
ins
❏ rtps_instance_id: A counter is assigned that is incremented per new participant

Note: If the IP address assigned to the interface is not unique within the network (for
instance, if it is not configured), then is it possible that the GUID (specifically, the
rtps_host_id portion) may also not be unique.

Scenario 2:

In this situation, Connext provides a different value for rtps_auto_id_kind:
DDS_RTPS_AUTO_ID_FROM_MAC. As the name suggests, this alternative mechanism
uses the MAC address instead of the IPv4 address. Since the MAC address size is up to
64 bits, the logical mapping of the host information, the application ID, and the instance
identifiers has to change.

Note to Solaris Users: To use DDS_RTPS_AUTO_ID_FROM_MAC, you must run the
Connext application while logged in as ‘root.’

Using DDS_RTPS_AUTO_ID_FROM_MAC, the default value of each field is inter-
preted as follows:

❏ rtps_host_id: the first 32 bits of the MAC address of the first up and running
interface of the host machine are assigned

❏ rtps_app_id: the last 32 bits of the MAC address of the first up and running
interface of the host machine are assigned

❏ rtps_instance_id: this field is split into two different parts. The process (or task)
ID is assigned to the first 24 bits. A counter is assigned to the last 8 bits. This
counter is incremented per new participant. In both scenarios, you can change
the value of each field independently.

If DDS_RTPS_AUTO_ID_FROM_MAC is used, the rtps_instance_id has been logically
split into two parts: 24 bits for the process/task ID and 8 bits for the per new participant
counter. To give to users the ability to manually set the two parts independently, a bit
field mechanism has been introduced for the rtps_instance_id field when it is used in
combination with DDS_RTPS_AUTO_ID_FROM_MAC. If one of the two parts is set to
0, only this part will be handled by Connext and you will be able to handle the other one
manually.

Some examples are provided to better explain the behavior of this QoSPolicy in case you
want to change the default behavior with DDS_RTPS_AUTO_ID_FROM_MAC.

The first step is to get the DomainParticipant QoS from the DomainParticipantFactory:

DDS_DomainParticipantFactory_get_default_participant_qos(
DDS_DomainParticipantFactory_get_instance(),
&participant_qos);
8-75

Working with Domains
Next, change the WireProtocolQosPolicy using one of the following options.

Then create the DomainParticipant as usual using the modified QoS structure instead of
the default one.

Option 1. Use DDS_RTPS_AUTO_ID_FROM_MAC to explicitly set just the applica-
tion/task identifier portion of the rtps_instance_id field:

participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;
participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_instance_id =
(/* App ID */ (12 << 8) |
 /* Instance ID*/ (DDS_RTPS_AUTO_ID));

Option 2. Only set the per participant counter and let Connext handle the application/
task identifier:

participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;
participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_instance_id =
(/* App ID */ (DDS_RTPS_AUTO_ID) |
 /* Instance ID*/ (12));

Option 3. Set the entire rtps_instance_id field yourself:

participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;
participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_instance_id =
(/* App ID */ (12 << 8)) |
 /* Instance ID */ (9))

Note: If you are using DDS_RTPS_AUTO_ID_FROM_MAC as rtps_auto_id_kind and
you decide to manually handle the rtps_instance_id field, you must ensure that both
parts are non-zero (otherwise Connext will take responsibility for them).

RTI recommends that you always specify the two parts separately in order to avoid
errors.

Option 4. Let Connext handle the entire rtps_instance_id field:
8-76

DomainParticipant QosPolicies
8. D

o
m

a
ins
participant_qos.wire_protocol.rtps_auto_id_kind =
DDS_RTPS_AUTO_ID_FROM_MAC;
participant_qos.wire_protocol.rtps_host_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_app_id = DDS_RTPS_AUTO_ID;
participant_qos.wire_protocol.rtps_instance_id = DDS_RTPS_AUTO_ID;

Note: If you are using DDS_RTPS_AUTO_ID_FROM_MAC as rtps_auto_id_kind and
you decide to manually set the rtps_instance_id field, you must ensure that both parts
are non-zero (otherwise Connext will take responsibility for them).

RTI recommends that you always specify the two parts separately in order to clearly
show the difference.

8.5.9.5 Example

On many real-time operating systems, and even on some non-real-time operating sys-
tems, when a node is rebooted, and applications are automatically started, process ids
are deterministically assigned. That is, when the system restarts or if an application dies
and is restarted, the application will be reassigned the same process or task ID.

This means that Connext’s automatic algorithm for creating unique rtps_app_id’s will
produce the same value between sequential instances of the same application. This will
confuse the other DomainParticipants on the network into thinking that they are commu-
nicating with the previous instance of the application instead of a new instance. Errors
usually resulting in a failure to communicate will ensue.

Thus for applications running on nodes that may be rebooted without letting the appli-
cation shutdown appropriately (destroying the DomainParticipant), especially on nodes
running real-time operating systems like VxWorks or LynxOS, you will want to set the
rtps_app_id manually. We suggest that a strictly incrementing counter is stored either
on a file system or in non-volatile RAM is used for the rtps_app_id.

Whatever method you use, you should make sure that the rtps_app_id is unique across
all DomainParticipants running on a host as well as DomainParticipants that were recently
running on the host. After a period configured through the DISCOVERY_CONFIG
QosPolicy existing applications will eventually flush old DomainParticipants that did
not properly shutdown from their databases. When that is done, then rtps_app_id may
be reused.

8.5.9.6 Properties

This QosPolicy cannot be modified after the DomainParticipant is created.

If manually set, it must be set differently for every DomainParticipant in the same
domain across all applications. The value of rtps_app_id should also change between
8-77

Working with Domains
different invocations of the same application (for example, when an application is
restarted).

8.5.9.7 Related QosPolicies

❏ DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3)

8.5.9.8 Applicable Entities

❏ DomainParticipants (Section 8.3)

8.5.9.9 System Resource Considerations

The use of this policy does not significantly impact the use of resources.

8.6 Clock Selection
Connext uses clocks to measure time and generate timestamps.

The middleware uses two clocks: an internal clock and an external clock.

❏ The internal clock measures time and handles all timing in the middleware.

❏ The external clock is used solely to generate timestamps (such as the source
timestamp and the reception timestamp), in addition to providing the time given
by the DomainParticipant’s get_current_time() operation (see Section 8.3.13.2).

8.6.1 Available Clocks

Two clock implementations are generally available: the real-time clock and the monotonic
clock.

The real-time clock provides the real time of the system. This clock may generally be
monotonic, but may not be guaranteed to be so. It is adjustable and may be subject to
small and large changes in time. The time obtained from this clock is generally a mean-
ingful time, in that it is the amount of time from a known epoch. For the purposes of
clock selection, this clock can be referenced by the names "realtime" or "system"—both
names map to the same real-time clock.

The monotonic clock provides times that are monotonic from a clock that is not adjust-
able. This clock is not subject to changes in the system or realtime clock, which may be
8-78

Clock Selection
8. D

o
m

a
ins
adjusted by the user or via time synchronization protocols. However, this clock’s time
generally starts from an arbitrary point in time, such as system start-up. Note that the
monotonic clock is not available for all architectures. Please see the Platform Notes for
the architectures on which it is supported. For the purposes of clock selection, this clock
can be referenced by the name "monotonic".

8.6.2 Clock Selection Strategy

To configure the clock selection, use the DomainParticipant’s PROPERTY QosPolicy
(DDS Extension) (Section 6.5.16). Table 8.21 lists the supported properties.

By default, both the internal and external clocks use the realtime clock.

If you want your application to be robust to changes in the system time, you may use
the monotonic clock as the internal clock, and leave the system clock as the external
clock. However, note that this may slightly diminish performance, in that both the send
and receive paths may need to get times from both clocks.

Since the monotonic clock is not available on all architectures, you may want to specify
"monotonic, realtime" for the internal_clock property (see Table 8.21 on page 8-79). By
doing so, the middleware will attempt to use the monotonic clock if it is available, and
will fall back to the realtime clock if the monotonic clock is not available.

If you want the application to be robust to changes in the system time, you are not rely-
ing on source timestamps, and you want to avoid obtaining times from both clocks, you
may use the monotonic clock for both the internal and external clocks.

Table 8.21 Clock Selection Properties

Property Description

dds.clock.external_clock
Comma-delimited list of clocks to use for the external clock, in the
order of preference.
Valid clock names are “realtime”, “system”, or “monotonic”.

dds.clock.internal_clock
Comma-delimited list of clocks to use for the internal clock, in the
order of preference.
Valid clock names are “realtime”, “system”, or “monotonic”.
8-79

Working with Domains
8-80

9. Build
ing
Chapter 9 Building Applications

This chapter provides instructions on how to build Connext applications for the follow-
ing platforms:

❏ UNIX-based Platforms (Section 9.3) (including Solaris™, Red Hat® and Yellow
Dog™ Linux, QNX®, and LynxOS® systems)

❏ Windows Platforms (Section 9.4)

❏ Java Platforms (Section 9.5)

While you can create applications for other operating systems, the platforms presented
in this chapter are a good starting point. We recommend that you first build and test
your application on one of these systems.

Instructions for other supported target platforms are provided in the Platform Notes.

To build a non-Java application using Connext, you must specify the following items:

❏ NDDSHOME environment variable

❏ Connext header files

❏ Connext libraries to link

❏ Compatible system libraries

❏ Compiler options

To build Java applications using Connext, you must specify the following items:

❏ NDDSHOME environment variable

❏ Connext JAR file

❏ Compatible Java virtual machine (JVM)

❏ Compiler options
9-1

Building Applications
This chapter describes the basic steps you will take to build an application on the above-
mentioned platforms. Specific details, such as exactly which libraries to link, compiler
flags, etc. are in the Platform Notes.

9.1 Running on a Computer Not Connected to a Network
If you want to run Connext applications on the same computer, and that computer is not
connected to a network, you must set NDDS_DISCOVERY_PEERS so that it will only
use shared memory. For example:

set NDDS_DISCOVERY_PEERS=4@shmem://

(The number 4 is only an example. This is the maximum participant ID.)

9.2 Connext Header Files — All Architectures
You must include the appropriate Connext header files, which are listed in Table 9.1. The
header files that need to be included depend on the API being used.

For the compiler to find the included files, the path to the appropriate include directo-
ries must be provided. Table 9.2 lists the appropriate include path for use with the com-
piler. The exact path depends on where you installed Connext. For example, it may be
C:\Program Files\RTI\ndds.4.5x\include or /opt/rti/ndds.4.5x/include (where x
stands for the version letter of the current release).

$(NDDSHOME) should be set to the installation directory of Connext 4.5x, where x
stands for the version letter of the current release.

Table 9.1 Header Files to Include for Connext (All Architectures)

Connext API Header Files

C #include “ndds/ndds_c.h”

C++ #include “ndds/ndds_cpp.h”

C++/CLI, C#, Java none
9-2

UNIX-based Platforms
9. Build

ing
The header files that define the data types you want to use within the application also
need to be included. For example, Table 9.3 lists the files to be include for type “Foo”
(these are the filenames generated by rtiddsgen, described in Chapter 3).

9.3 UNIX-based Platforms
Before building a Connext application for a UNIX-based platform (including Solaris,
Red Hat and Yellow Dog Linux, QNX, and LynxOS systems), make sure that:

❏ A supported version of your architecture is installed. See the Platform Notes for
supported architectures.

❏ Connext 4.5x is installed (where x stands for the version letter of the current
release). For installation instructions, refer to Section 2.1.1 in the Getting Started
Guide.

❏ A “make” tool is installed. RTI recommends GNU Make. If you do not have it,
you may be able to download it from your operating system vendor. Learn more
at www.gnu.org/software/make/ or download from ftpmirror.gnu.org/make
as source code.

❏ The NDDSHOME environment variable is set to the root directory of the Con-
next installation (such as /opt/rti/ndds4.5x, where x stands for the version letter
of the current release). To confirm, type this at a command prompt:

Table 9.2 Include Paths for Compilation (All Architectures)

Connext API Include Path Directories

C and C++
<your Connext installation directory>/include
<your Connext installation directory>/include/ndds

C++/CLI, C#, Java none

Table 9.3 Header Files to Include for Data Types (All Architectures)

Connext API User Data Type Header Files

C and C++
#include “Foo.h”
#include “FooSupport.h”

C++/CLI, C#, Java none
9-3

www.gnu.org/software/make/
ftpmirror.gnu.org/make

Building Applications
echo $NDDSHOME
env | grep NDDSHOME

If it is not set or is set incorrectly, type:

setenv NDDSHOME <correct directory>

To compile a Connext application of any complexity, either modify the auto-generated
makefile created by running rtiddsgen or write your own makefile.

9.3.1 Required Libraries

All required system and Connext libraries are listed in the Platform Notes.

You must choose between dynamic (shared) and static libraries. Do not mix the different
types of libraries during linking. The benefit of linking against the dynamic libraries is
that your final executables’ sizes will be significantly smaller. You will also use less
memory when you are running several Connext applications on the same node. How-
ever, shared libraries require more set-up and maintenance during upgrades and instal-
lations.

To see if dynamic libraries are supported for your target architecture, see the Platform
Notes1.

9.3.2 Compiler Flags

See the Platform Notes for information on compiler flags.

9.4 Windows Platforms
Before building an application for a Microsoft Windows® platform, make sure that:

❏ Supported versions of Windows and Visual C++ or Visual Studio .Net are
installed. See Section 10 in the Platform Notes.

❏ Connext 4.5x is installed (where x stands for the version letter of the current
release). For installation instructions, refer to the Section 2.1.2 in the Getting
Started Guide.

1. In the Platform Notes, see the “Building Instructions...” table for your target architecture.
9-4

Windows Platforms
9. Build

ing
❏ The NDDSHOME environment variable is set to the root directory of the Con-
next installation (such as C:\Program Files\RTI\ndds4.5x, where x stands for
the version letter of the current release). To confirm, type this at a command
prompt:

echo %NDDSHOME%

❏ Use the dynamic MFC Library (not static).

To avoid communication problems in your Connext application, use the dynamic
MFC library, not the static version. (If you use the static version, your Connext
application may stop receiving samples once the Windows sockets are initial-
ized.)

To compile a Connext application of any complexity, use a project file in Microsoft Visual
Studio. The project settings are described below. Section 10 in the Getting Started Guide
contains additional information.

9.4.1 Using Microsoft Visual C++ 6.0

1. From the menu bar, select Project, Settings...

2. Select the multi-threaded DLL project setting by following these steps:

a. Select the C/C++ tab.

b. From the Category pull-down menu, select Code Generation.

c. From the Use run-time library category, select one of the options from
Table 9.4.

3. Link in the Connext and system libraries:

a. See Section 10 in the Platform Notes for a list of required libraries. You have a
choice of whether to link with Connext’s static or dynamic libraries. Decide
whether or not you want debugging symbols included.

Table 9.4 Runtime Library Settings for Visual Studio .NET & Visual Studio .NET 2003

If you are using this Library Format... Set the ‘Use run-time library’ field to...

Release version of static libraries Multi-threaded

Debug version of static libraries Debug Multi-threaded

Release version of dynamic libraries Multi-threaded DLL

Debug version of dynamic libraries Debug Multi-threaded DLL
9-5

Building Applications
b. Select the Link tab on the Project Settings Window.

c. From the Category: pull-down menu, select the Input option.

d. Add the appropriate Connext and system libraries to the beginning of the
Object/Library modules list. Be sure to use a space as a delimiter between
libraries, not a comma. (Note that some of the system libraries may already be
in the list.)

e. Specify the path to the libraries in the Additional library path field by adding
the path for your specific architecture. For example:

 c:\rti\ndds.4.5x\lib\i86Win32VC60
Your path may differ, depending on where you installed Connext. Replace the
x in 4.5x with the version letter for the current release.

4. Specify the path to Connext’s header files:

a. Select the C/C++ tab.

b. From the Category pull-down menu, select the Preprocessor option.

c. In the Additional include directories field, add paths to the “include” and
“include\ndds“ directories. For example:

 c:\rti\ndds.4.5x\include\
 c:\rti\ndds.4.5x\include\ndds

Your paths may differ, depending on where you installed Connext. Replace
the x in 4.5x with the version letter for the current release.

5. Specify the compiler flags:

a. Select the C/C++ tab.

b. From the Category pull-down menu, select the Preprocessor option.

c. In the Preprocessor definitions field, add the compiler flags listed in
Table 10.2, “Building Instructions for Windows Host Architectures,” on
page 3-79. You will see the compiler flag appear in the Project Options field.

9.4.2 Using Visual Studio .NET, Visual Studio .NET 2003, or Visual Studio 2005

1. Select the multi-threaded project setting:

a. From the Project menu, select Properties.

b. Select the C/C++ folder.

c. Select Code Generation.
9-6

Windows Platforms
9. Build

ing
d. Set the Runtime Library field to one of the options from Table 9.5.

2. Link against the Connext libraries:

a. Select the Linker folder on the Project, Properties dialog box.

b. Select the Input properties.

c. See Section 10 in the Platform Notes for a list of required libraries. You have a
choice of whether to link with Connext’s static or dynamic libraries. Decide
whether or not you want debugging symbols on. In either case, be sure to use
a space as a delimiter between libraries, not a comma. Add the libraries to the
beginning of the Additional Dependencies field.

d. Select the General properties.

e. Add one of the following to the Additional library path field:

 $(NDDSHOME)\lib\i86Win32VC70 (for Visual Studio .NET)
 $(NDDSHOME)\lib\i86Win32VS2003 (for Visual Studio .NET 2003)
 $(NDDSHOME)\lib\i86Win32VS2005 (for Visual Studio .NET 2005)

3. Specify the path to Connext’s header file:

a. Select the C/C++ folder.

b. Select the General properties.

c. In the Additional include directories: field, add paths to the “include” and
“include\ndds” directories. For example:

 c:\rti\ndds.4.5x\include\
 c:\rti\ndds.4.5x\include\ndds

Your paths may differ, depending on where you installed Connext.

Table 9.5 Runtime Library Settings for Visual Studio .NET, Visual Studio .NET 2003, Visual Studio 2005

If You are using this Library Format... Set the Runtime Library field to...

Release version of static libraries Multi-threaded (/MT)

Debug version of static libraries Multi-threaded Debug (/MTd)

Release version of dynamic libraries Multi-threaded DLL (/MD)

Debug version of dynamic libraries Multi-threaded Debug DLL (/MDd)
9-7

Building Applications
9.5 Java Platforms
Before building an application for a Windows or UNIX Java platform, make sure that:

❏ Connext 4.5x is installed (where x stands for the version letter of the current
release). For installation instructions, refer to Chapter 2 in the Getting Started
Guide.

❏ A supported version of the Java 2 software development kit (J2SDK) is installed.
See the Platform Notes.

9.5.1 Java Libraries

Connext requires that certain Java archive (JAR) files be on your classpath when running
Connext applications. See the Platform Notes for more details.

9.5.2 Native Libraries

Connext for Java is implemented using Java Native Interface (JNI), so it is necessary to
provide your Connext distributed applications access to certain native shared libraries.
See the Platform Notes for more details.
9-8

Part 3: Advanced Concepts

This part of the manual will guide you through some of the more advanced concepts:

❏ Chapter 10: Reliable Communications

❏ Chapter 11: Mechanisms for Achieving Information Durability and Persistence

❏ Chapter 12: Discovery

❏ Chapter 13: Transport Plugins

❏ Chapter 14: Built-In Topics

❏ Chapter 15: Configuring QoS with XML

❏ Chapter 16: Multi-channel DataWriters

❏ Chapter 17: Connext Threading Model

❏ Chapter 18: Troubleshooting

10. Re
lia

b
le
Chapter 10 Reliable Communications

Connext uses best-effort delivery by default. The other type of delivery Connext supports
is called reliable. This chapter provides instructions on how to set up and use reliable
communication.

This chapter includes the following sections:

❏ Sending Data Reliably (Section 10.1)

❏ Overview of the Reliable Protocol (Section 10.2)

❏ Using QosPolicies to Tune the Reliable Protocol (Section 10.3)

10.1 Sending Data Reliably
The DCPS reliability model recognizes that the optimal balance between time-determin-
ism and data-delivery reliability varies widely among applications and can vary among
different publications within the same application. For example, individual samples of
signal data can often be dropped because their value disappears when the next sample is
sent. However, each sample of command data must be received and it must be received
in the order sent.

The QosPolicies provide a way to customize the determinism/reliability trade-off on a
per Topic basis, or even on a per DataWriter/DataReader basis.

There are two delivery models:

❏ Best-effort delivery mode “I’m not concerned about missed or unordered sam-
ples.”
10-1

Reliable Communications
❏ Reliable delivery model “Make sure all samples get there, in order.”

10.1.1 Best-effort Delivery Model

By default, Connext uses the best-effort delivery model: there is no effort spent ensuring
in-order delivery or resending lost samples. Best-effort DataReaders ignore lost samples
in favor of the latest sample. Your application is only notified if it does not receive a new
sample within a certain time period (set in the DEADLINE QosPolicy (Section 6.5.4)).

The best-effort delivery model is best for time-critical information that is sent continu-
ously. For instance, consider a DataWriter for the value of a sensor device (such as a the
pressure inside a tank), and assume the DataWriter sends samples continuously. In this
situation, a DataReader for this Topic is only interested in having the latest pressure read-
ing available—older samples are obsolete.

10.1.2 Reliable Delivery Model

Reliable delivery means the samples are guaranteed to arrive, in the order published.

The DataWriter maintains a send queue with space to hold the last X number of samples
sent. Similarly, a DataReader maintains a receive queue with space for consecutive X
expected samples.

The send and receive queues are used to temporarily cache samples until Connext is sure
the samples have been delivered and are not needed anymore. Connext removes sam-
ples from a publication’s send queue after the sample has been acknowledged by all reli-
able subscriptions. When positive acknowledgements are disabled (see
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2) and
DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.2)), samples are
removed from the send queue after the corresponding keep-duration has elapsed (see
Table 6.31, “DDS_RtpsReliableWriterProtocol_t,” on page 6-97).

If an out-of-order sample arrives, Connext speculatively caches it in the DataReader’s
receive queue (provided there is space in the queue). Only consecutive samples are
passed on to the DataReader.

DataWriters can be set up to wait for available queue space when sending samples. This
will cause the sending thread to block until there is space in the send queue. (Or, you can
decide to sacrifice sending samples reliably so that the sending rate is not compro-
mised.) If the DataWriter is set up to ignore the full queue and sends anyway, then older
cached samples will be pushed out of the queue before all DataReaders have received
them. In this case, the DataReader (or its Subscriber) is notified of the missing samples
through its Listener and/or Conditions.
10-2

Overview of the Reliable Protocol
10. Re

lia
b

le
Connext automatically sends acknowledgments (ACKNACKs) as necessary to maintain
reliable communications. The DataWriter may choose to block for a specified duration to
wait for these acknowledgments (see Waiting for Acknowledgments (Section 6.3.11)).

Connext establishes a virtual reliable channel between the matching DataWriter and all
DataReaders. This mechanism isolates DataReaders from each other, allows the applica-
tion to control memory usage, and provides mechanisms for the DataWriter to balance
reliability and determinism. Moreover, the use of send and receive queues allows Connext
to be implemented efficiently without introducing unnecessary delays in the stream.

Note that a successful return code (DDS_RETCODE_OK) from write() does not neces-
sarily mean that all DataReaders have received the data. It only means that the sample
has been added to the DataWriter’s queue. To see if all DataReaders have received the
data, look at the RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension)
(Section 6.3.6.7) to see if any samples are unacknowledged.

Suppose DataWriter A reliably publishes a Topic to which DataReaders B and C reliably
subscribe. B has space in its queue, but C does not. Will DataWriter A be notified? Will
DataReader C receive any error messages or callbacks? The exact behavior depends on
the QoS settings:

❏ If HISTORY_KEEP_ALL is specified for C, C will reject samples that cannot be
put into the queue and request A to resend missing samples. The Listener is noti-
fied with the on_sample_rejected() callback (see SAMPLE_REJECTED Status
(Section 7.3.7.8)). If A has a queue large enough, or A is no longer writing new
samples, A won’t notice unless it checks the
RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension) (Section
6.3.6.7).

❏ If HISTORY_KEEP_LAST is specified for C, C will drop old samples and accept
new ones. The Listener is notified with the on_sample_lost() callback (see
SAMPLE_LOST Status (Section 7.3.7.7)). To A, it is as if all samples have been
received by C (that is, they have all been acknowledged).

10.2 Overview of the Reliable Protocol
An important advantage of Connext is that it can offer the reliability and other QoS guar-
antees mandated by DDS on top of a very wide variety of transports, including packet-
based transports, unreliable networks, multicast-capable transports, bursty or high-
latency transports, etc. Connext is also capable of maintaining liveliness and application-
level QoS even in the presence of sporadic connectivity loss at the transport level, an
10-3

Reliable Communications
important benefit in mobile networks. Connext accomplishes this by implementing a
reliable protocol that sequences and acknowledges application-level messages and
monitors the liveliness of the link. This is called the Real-Time Publish-Subscribe (RTPS)
protocol; it is an open, international standard.1

In order to work in this wide range of environments, the reliable protocol defined by
RTPS is highly configurable with a set of parameters that let the application fine-tune its
behavior to trade-off latency, responsiveness, liveliness, throughput, and resource utili-
zation. This section describes the most important features to the extent needed to under-
stand how the configuration parameters affect its operation.

The most important features of the RTPS protocol are:

❏ Support for both push and pull operating modes

❏ Support for both positive and negative acknowledgments

❏ Support for high data-rate DataWriters

❏ Support for multicast DataReaders

❏ Support for high-latency environments

In order to support these features, RTPS uses several types of messages: Data messages
(DATA), acknowledgments (ACKNACKs), and heartbeats (HBs).

❏ DATA messages contain snapshots of the value of data-objects and associate the
snapshot with a sequence number that Connext uses to identify them within the
DataWriter’s history. These snapshots are stored in the history as a direct result of
the application calling write() on the DataWriter. Incremental sequence numbers
are automatically assigned by the DataWriter each time write() is called. In
Figure 10.1 through Figure 10.7, these messages are represented using the nota-
tion DATA(<value>, <sequenceNum>). For example, DATA(A,1) represents a
message that communicates the value ‘A’ and associates the sequence number ‘1’
with this message. A DATA is used for both keyed and non-keyed data types.

❏ HB messages announce to the DataReader that it should have received all snap-
shots up to the one tagged with a range of sequence numbers and can also
request the DataReader to send an acknowledgement back. For example, HB(1-3)
indicates to the DataReader that it should have received snapshots tagged with
sequence numbers 1, 2, and 3 and asks the DataReader to confirm this.

❏ ACKNACK messages communicate to the DataWriter that particular snapshots
have been successfully stored in the DataReader’s history. ACKNACKs also tell
the DataWriter which snapshots are missing on the DataReader side. The ACK-

1. For a link to the RTPS specification, see the RTI website, www.rti.com.
10-4

http://www.rti.com

Overview of the Reliable Protocol
10. Re

lia
b

le
NACK message includes a set of sequence numbers represented as a bit map.
The sequence numbers indicate which ones the DataReader is missing. (The bit
map contains the base sequence number that has not been received, followed by
the number of bits in bit map and the optional bit map. The maximum size of the
bit map is 256.) All numbers up to (not including) those in the set are considered
positively acknowledged. They are represented in Figure 10.1 through
Figure 10.7 as ACKNACK(<first-missing>) or ACKNACK(<first-missing>-
<last-missing>). For example, ACKNACK(4) indicates that the snapshots with
sequence numbers 1, 2, and 3 have been successfully stored in the DataReader
history, and that 4 has not been received.

It is important to note that Connext can bundle multiple of the above messages within a
single network packet. This ‘submessage bundling’ provides for higher performance
communications.

Figure 10.1 illustrates the basic behavior of the protocol when an application calls the
write() operation on a DataWriter that is associated with a DataReader. As mentioned, the
RTPS protocol can bundle multiple submessages into a single network packet. In
Figure 10.1 this feature is used to piggyback a HB message to the DATA message. Note
that before the message is sent, the data is given a sequence number (1 in this case)
which is stored in the DataWriter’s send queue. As soon as the message is received by
the DataReader, it places it into the DataReader’s receive queue. From the sequence num-
ber the DataReader can tell that it has not missed any messages and therefore it can make
the data available immediately to the user (and call the DataReaderListener). This is indi-
cated by the “✔” symbol. The reception of the HB(1) causes the DataReader to check that
it has indeed received all updates up to and including the one with sequenceNumber=1.
Since this is true, it replies with an ACKNACK(2) to positively acknowledge all mes-
sages up to (but not including) sequence number 2. The DataWriter notes that the
update has been acknowledged, so it no longer needs to be retained in its send queue.
This is indicated by the “✔” symbol.

Figure 10.2 illustrates the behavior of the protocol in the presence of lost messages.
Assume that the message containing DATA(A,1) is dropped by the network. When the
DataReader receives the next message (DATA(B,2); HB(1-2)) the DataReader will notice
that the data associated with sequence number 1 was never received. It realizes this
because the heartbeat HB(1-2) tells the DataReader that it should have received all mes-
10-5

Reliable Communications
Figure 10.1 Basic RTPS Reliable Protocol

DataWriter DataReader

write(A)

1 A X

1 A 4

cache (A, 1)

Assigned sequence number

History of send data values

Whether or not the sample
has been delivered to the
reader history

acked (1)

1 A 4cache (A, 1)

check (1)

tim
e

DataReader
history

Assigned sequence
number

Whether or not the
sample is available
for the application
to read/take

tim
e

ACKNACK (2)

DATA (A,1); HB (1)
10-6

Overview of the Reliable Protocol
10. Re

lia
b

le
Figure 10.2 RTPS Reliable Protocol in the Presence of Message Loss

DataWriter DataReader

cache (A, 1)

cache(B,2)

cache (B,2)

tim
e

DATA (A,1); HB (1)

1 A X

write(S01)

r

write(S02)

1 A X

2 B X

get(1)

DATA (B,2); HB (1-2)

tim
e

ACKNACK(1)
1 X

2 B X

1 A 4

2 B 4

DATA (A,1)

cache (A,1)

cache(C,3)

write(S03)

1 A X

2 B X

3 C X

DATA (C,3); HB (1-3)

1 A 4

2 B 4

3 C 4

cache (C,3)

check(1-3)

ACKNACK(4)

acked(1-3)

1 A 4

2 B 4

3 C 4

See Figure 10.1 for meaning
of table columns.
10-7

Reliable Communications
sages up to and including the one with sequence number 2. This realization has two
consequences:

1. The data associated with sequence number 2 (B) is tagged with ‘X’ to indicate
that it is not deliverable to the application (that is, it should not be made avail-
able to the application, because the application needs to receive the data associ-
ated with sample 1 (A) first).

2. An ACKNACK(1) is sent to the DataWriter to request that the data tagged with
sequence number 1 be resent.

Reception of the ACKNACK(1) causes the DataWriter to resend DATA(A,1). Once the
DataReader receives it, it can ‘commit’ both A and B such that the application can now
access both (indicated by the “✔”) and call the DataReaderListener. From there on, the
protocol proceeds as before for the next data message (C) and so forth.

A subtle but important feature of the RTPS protocol is that ACKNACK messages are
only sent as a direct response to HB messages. This allows the DataWriter to better con-
trol the overhead of these ‘administrative’ messages. For example, if the DataWriter
knows that it is about to send a chain of DATA messages, it can bundle them all and
include a single HB at the end, which minimizes ACKNACK traffic.

10.3 Using QosPolicies to Tune the Reliable Protocol
Reliability is controlled by the QosPolicies in Table 10.1. To enable reliable delivery, read
the following sections to learn how to change the QoS for the DataWriter and
DataReader:

❏ Enabling Reliability (Section 10.3.1)

❏ Tuning Queue Sizes and Other Resource Limits (Section 10.3.2)

❏ Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy (Section
10.3.4)

❏ Avoiding Message Storms with DataReaderProtocol QosPolicy (Section 10.3.5)

❏ Resending Samples to Late-Joiners with the Durability QosPolicy (Section 10.3.6)

Then see this section to explore example use cases:

❏ Use Cases (Section 10.3.7)
10-8

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
Table 10.1 QosPolicies for Reliable Communications

QosPolicy Description Related
Entitiesa Reference

Reliability

To establish reliable communication, this QoS
must be set to
DDS_RELIABLE_RELIABILITY_QOS for
the DataWriter and its DataReaders.

DW, DR
Section 10.3.1,
Section 6.5.18

ResourceLimits

This QoS determines the amount of resources
each side can use to manage instances and
samples of instances. Therefore it controls the
size of the DataWriter’s send queue and the
DataReader’s receive queue. The send queue
stores samples until they have been ACKed
by all DataReaders. The DataReader’s receive
queue stores samples for the user’s applica-
tion to access.

DW, DR
Section 10.3.2,
Section 6.5.19

History
This QoS affects how a DataWriter/
DataReader behaves when its send/receive
queue fills up.

DW, DR
Section 10.3.3,
Section 6.5.9

DataWriterProtocol
This QoS configures DataWriter-specific pro-
tocol. The QoS can disable positive ACKs for
its DataReaders.

DW
Section 10.3.4,
Section 6.5.2

DataReaderProtocol

When a reliable DataReader receives a heart-
beat from a DataWriter and needs to return an
ACKNACK, the DataReader can choose to
delay a while. This QoS sets the minimum
and maximum delay. It can also disable posi-
tive ACKs for the DataReader.

DR
Section 10.3.5,
Section 7.6.2

DataReaderResource-
Limits

This QoS determines additional amounts of
resources that the DataReader can use to man-
age samples (namely, the size of the
DataReader’s internal queues, which cache
samples until they are ordered for reliability
and can be moved to the DataReader’s receive
queue for access by the user’s application).

DR
Section 10.3.2,
Section 7.6.3

Durability
This QoS affects whether late-joining
DataReaders will receive all previously-sent
data or not.

DW, DR
Section 10.3.6,
Section 6.5.6

a. DW = DataWriter, DR = DataReader
10-9

Reliable Communications
10.3.1 Enabling Reliability

You must modify the RELIABILITY QosPolicy (Section 6.5.18) of the DataWriter and
each of its reliable DataReaders. Set the kind field to DDS_RELIABLE_RELIABILITY_QOS:

❏ DataWriter

writer_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

❏ DataReader

reader_qos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;

10.3.1.1 Blocking until the Send Queue Has Space Available

The max_blocking_time property in the RELIABILITY QosPolicy (Section 6.5.18) indi-
cates how long a DataWriter can be blocked during a write().

If max_blocking_time is non-zero and the reliability send queue is full, the write is
blocked (the sample is not sent). If max_blocking_time has passed and the sample is
still not sent, write() returns DDS_RETCODE_TIMEOUT and the sample is not sent.

If the number of unacknowledged samples in the reliability send queue drops below
max_samples (set in the RESOURCE_LIMITS QosPolicy (Section 6.5.19)) before
max_blocking_time, the sample is sent and write() returns DDS_RETCODE_OK.

If max_blocking_time is zero and the reliability send queue is full, write() returns
DDS_RETCODE_TIMEOUT and the sample is not sent.

10.3.2 Tuning Queue Sizes and Other Resource Limits

Set the HISTORY QosPolicy (Section 6.5.9) appropriately to accommodate however
many samples should be saved in the DataWriter’s send queue or the DataReader’s
receive queue. The defaults may suit your needs; if so, you do not have to modify this
QosPolicy.

Set the DDS_RtpsReliableWriterProtocol_t in the DATA_WRITER_PROTOCOL QosPol-
icy (DDS Extension) (Section 6.5.2) appropriately to accommodate the number of unac-
knowledged samples that can be in-flight at a time from a DataWriter.

For more information, see the following sections:

❏ Understanding the Send Queue and Setting its Size (Section 10.3.2.1)

❏ Understanding the Receive Queue and Setting Its Size (Section 10.3.2.2)

Note: The HistoryQosPolicy’s depth must be less than or equal to the ResourceLim-
itsQosPolicy’s max_samples_per_instance; max_samples_per_instance must be less
10-10

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
than or equal to the ResourceLimitsQosPolicy’s max_samples (see RESOURCE_LIMITS
QosPolicy (Section 6.5.19)), and max_samples_per_remote_writer (see
DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 7.6.3)) must
be less than or equal to max_samples.

❏ depth <= max_samples_per_instance <= max_samples

❏ max_samples_per_remote_writer <= max_samples

Examples:

❏ DataWriter

writer_qos.resource_limits.initial_instances = 10;
writer_qos.resource_limits.initial_samples = 200;
writer_qos.resource_limits.max_instances = 100;
writer_qos.resource_limits.max_samples = 2000;
writer_qos.resource_limits.max_samples_per_instance = 20;
writer_qos.history.depth = 20;

❏ DataReader

reader_qos.resource_limits.initial_instances = 10;
reader_qos.resource_limits.initial_samples = 200;
reader_qos.resource_limits.max_instances = 100;
reader_qos.resource_limits.max_samples = 2000;
reader_qos.resource_limits.max_samples_per_instance = 20;
reader_qos.history.depth = 20;
reader_qos.reader_resource_limits.max_samples_per_remote_writer

 = 20;

10.3.2.1 Understanding the Send Queue and Setting its Size

A DataWriter’s send queue is used to store each sample it writes. A sample will be
removed from the send queue after it has been acknowledged (through an ACKNACK)
by all the reliable DataReaders. A DataReader can request that the DataWriter resend a
missing sample (through an ACKNACK). If that sample is still available in the send
queue, it will be resent. To elicit timely ACKNACKs, the DataWriter will regularly send
heartbeats to its reliable DataReaders.

A DataWriter’s send queue size is determined by its RESOURCE_LIMITS QosPolicy
(Section 6.5.19), specifically the max_samples field. The appropriate value depends on
application parameters such as how fast the publication calls write().

A DataWriter has a "send window" that is the maximum number of unacknowledged
samples allowed in the send queue at a time. The send window enables configuration of
the number of samples queued for reliability to be done independently from the num-
10-11

Reliable Communications
ber of samples queued for history. This is of great benefit when the size of the history
queue is much different than the size of the reliability queue. For example, you may
want to resend a large history to late-joining DataReaders, so the send queue size is
large. However, you do not want performance to suffer due to a large send queue; this
can happen when the send rate is greater than the read rate, and the DataWriter has to
resend many samples from its large historical send queue. If the send queue size was
both the historical and reliability queue size, then both these goals could not be met.
Now, with the send window, having a large history with good live reliability perfor-
mance is possible.

The send window is determined by the DataWriterProtocolQosPolicy, specifically the
fields min_send_window_size and max_send_window_size within the
rtps_reliable_writer field of type DDS_RtpsReliableWriterProtocol_t. Other fields con-
trol a dynamic send window, where the send window size changes in response to net-
work congestion to maximize the effective send rate. Like for max_samples, the
appropriate values depend on application parameters.

Strict reliability: If a DataWriter does not receive ACKNACKs from one or more reliable
DataReaders, it is possible for the reliability send queue—either its finite send window,
or max_samples if its send window is infinite—to fill up. If you want to achieve strict
reliability, the kind field in the HISTORY QosPolicy (Section 6.5.9) for both the
DataReader and DataWriter must be set to KEEP_ALL, positive acknowledgments must
be enabled for both the DataReader and DataWriter, and your publishing application
should wait until space is available in the reliability queue before writing any more sam-
ples. Connext provides two mechanisms to do this:

❏ Allow the write() operation to block until there is space in the reliability queue
again to store the sample. The maximum time this call blocks is determined by
the max_blocking_time field in the RELIABILITY QosPolicy (Section 6.5.18)
(also discussed in Section 10.3.1.1).

❏ Use the DataWriter’s Listener to be notified when the reliability queue fills up or
empties again.

When the HISTORY QosPolicy (Section 6.5.9) on the DataWriter is set to KEEP_LAST,
strict reliability is not guaranteed. When there are depth number of samples in the
queue (set in the HISTORY QosPolicy (Section 6.5.9), see Section 10.3.3) the oldest sam-
ple will be dropped from the queue when a new sample is written. Note that in such a
reliable mode, when the send window is larger than max_samples, the DataWriter will never
block, but strict reliability is no longer guaranteed. If there is a request for the purged sample
from any DataReaders, the DataWriter will send a heartbeat that no longer contains the
sequence number of the dropped sample (it will not be able to send the sample).
10-12

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
Alternatively, a DataWriter with KEEP_LAST may block on write() when its send win-
dow is smaller than its send queue. The DataWriter will block when its send window is
full. Only after the blocking time has elapsed, the DataWriter will purge a sample, and
then strict reliability is no longer guaranteed.

The send queue size is set in the max_samples field of the RESOURCE_LIMITS QosPol-
icy (Section 6.5.19). The appropriate size for the send queue depends on application
parameters (such as the send rate), channel parameters (such as end-to-end delay and
probability of packet loss), and quality of service requirements (such as maximum
acceptable probability of sample loss).

The DataReader’s receive queue size should generally be larger than the DataWriter’s
send queue size. Receive queue size is discussed in Section 10.3.2.2.

A good rule of thumb, based on a simple model that assumes individual packet drops
are not correlated and time-independent, is that the size of the reliability send queue, N,
is as shown in Figure 10.3.

In the above equation, R is the rate of sending samples, T is the round-trip transmission
time, p is the probability of a packet loss in a round trip, and Q is the required probabil-
ity that a sample is eventually successfully delivered. Of course, network-transport
dropouts must also be taken into account and may influence or dominate this calcula-
tion.

Table 10.2 gives the required size of the send queue for several common scenarios.

Figure 10.3 Calculating Minimum Send Queue Size for a Desired Level of Reliability

Simple formula for determining the minimum size of the send queue required for strict
reliability.

N 2RT 1 Q–()log
p()log

--------------------------=

Table 10.2 Required Size of the Send Queue for Different Network Parameters

Qa pb Tc Rd Ne

99% 1% 0.001f sec 100 Hz 1

99% 1% 0.001 sec 2000 Hz 2

99% 5% 0.001 sec 100 Hz 1

99% 5% 0.001 sec 2000 Hz 4

99.99% 1% 0.001 sec 100 Hz 1

99.99% 1% 0.001 sec 2000 Hz 6
10-13

Reliable Communications
Note: Packet loss on a network frequently happens in bursts, and the packet loss events
are correlated. This means that the probability of a packet being lost is much higher if
the previous packet was lost because it indicates a congested network or busy receiver.
For this situation, it may be better to use a queue size that can accommodate the longest
period of network congestion, as illustrated in Figure 10.4.

In the above equation R is the rate of sending samples, D(Q) is a time such that Q per-
cent of the dropouts are of equal or lesser length, and Q is the required probability that a
sample is eventually successfully delivered. The problem with the above formula is that
it is hard to determine the value of D(Q) for different values of Q.

For example, if we want to ensure that 99.9% of the samples are eventually delivered
successfully, and we know that the 99.9% of the network dropouts are shorter than 0.1
seconds, then we would use N = 0.1*R. So for a rate of 100Hz, we would use a send
queue of N = 10; for a rate of 2000Hz, we would use N = 200.

10.3.2.2 Understanding the Receive Queue and Setting Its Size

Samples are stored in the DataReader’s receive queue, which is accessible to the user’s
application.

A sample is removed from the receive queue after it has been accessed by take(), as
described in Accessing Data Samples with Read or Take (Section 7.4.3). Note that read()
does not remove samples from the queue.

99.99% 5% 0.001 sec 100 Hz 1

99.99% 5% 0.001 sec 2000 Hz 8

a. "Q" is the desired level of reliability measured as the probability that any data update will eventually be
delivered successfully. In other words, percentage of samples that will be successfully delivered.
b. "p" is the probability that any single packet gets lost in the network.
c. "T" is the round-trip transport delay in the network
d. "R" is the rate at which the publisher is sending updates.
e. "N" is the minimum required size of the send queue to accomplish the desired level of reliability "Q".
f. The typical round-trip delay for a dedicated 100 Mbit/second ethernet is about 0.001 seconds.

Table 10.2 Required Size of the Send Queue for Different Network Parameters

Qa pb Tc Rd Ne

Figure 10.4 Calculating Minimum Send Queue Size for Networks with Dropouts

Send queue size as a function of send rate "R" and maximum dropout time D.

N RD Q()=
10-14

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
A DataReader's receive queue size is limited by its RESOURCE_LIMITS QosPolicy (Sec-
tion 6.5.19), specifically the max_samples field. The storage of out-of-order samples for
each DataWriter is also allocated from the DataReader’s receive queue; this sample
resource is shared among all reliable DataWriters. That is, max_samples includes both
ordered and out-of-order samples.

A DataReader can maintain reliable communications with multiple DataWriters (e.g., in
the case of the OWNERSHIP_STRENGTH QosPolicy (Section 6.5.15) setting of
SHARED). The maximum number of out-of-order samples from any one DataWriter that
can occupy in the receive queue is set in the max_samples_per_remote_writer field of
the DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 7.6.3);
this value can be used to prevent a single DataWriter from using all the space in the
receive queue. max_samples_per_remote_writer must be set to be <= max_samples.

The DataReader will cache samples that arrive out of order while waiting for missing
samples to be resent. (Up to 256 samples can be resent; this limitation is imposed by the
wire protocol.) If there is no room, the DataReader has to reject out-of-order samples and
request them again later after the missing samples have arrived.

The appropriate size of the receive queue depends on application parameters, such as
the DataWriter’s sending rate and the probability of a dropped sample. However, the
receive queue size should generally be larger than the send queue size. Send queue size
is discussed in Section 10.3.2.1.

Figure 10.5 and Figure 10.6 compare two hypothetical DataReaders, both interacting
with the same DataWriter. The queue on the left represents an ordering cache, allocated
from receive queue—samples are held here if they arrive out of order. The DataReader in
Figure 10.5 on page 10-16 has a sufficiently large receive queue (max_samples) for the
given send rate of the DataWriter and other operational parameters. In both cases, we
assume that all samples are taken from the DataReader in the Listener callback. (See
Accessing Data Samples with Read or Take (Section 7.4.3) for information on take() and
related operations.)

In Figure 10.6 on page 10-17, max_samples is too small to cache out-of-order samples
for the same operational parameters. In both cases, the DataReaders eventually receive
all the samples in order. However, the DataReader with the larger max_samples will get
the samples earlier and with fewer transactions. In particular, sample “4” is never resent
for the DataReader with the larger queue size.
10-15

Reliable Communications
Figure 10.5 Effect of the Receive-Queue Size on Performance: Large Queue Size

Sample 1 is taken

Send Sample “1”

ACKNACK “2”
3

1

5

Note: no unordered samples cached

Send Sample “2”

Send Sample “3”

Send Sample “4”

Re-send Sample “2”
Send Sample “5”

2

3 4

3 4

Space reserved for missing sample “2”.

Samples “3” and “4” are cached
while waiting for missing sample “2”.

Samples 2-4 are taken

Sample 5 is taken

max_samples is 4. This also limits the
number of unordered samples that
can be cached.

Sample
“2” lost.

DataWriter DataReader

HB (1-3)

Send HeartBeat
10-16

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
Figure 10.6 Effect of Receive Queue Size on Performance: Small Queue Size

Move sample 1 to receive queue.

Send Sample “1”

ACKNACK(2)
3

1

Note: no unordered samples cached

Send Sample “2”

Send Heartbeat

Send Sample “4”

Re-send Sample “2”
Send Sample “5”

2

Space reserved for missing sample “2”.

Sample “4” must be dropped
because it does not fit in the queue.

Move samples 2 and 3 to receive queue.

Move samples 4 and 5 to receive queue.

max_samples is 2. This also limits the
number of unordered samples that
can be cached.

Sample
“2” lost

3

3

5

Space reserved for missing sample “4”.Re-send Sample “4”

54

DataWriter DataReader

ACKNACK(4)

Send Sample “3”

HB (1-3)

Send Heartbeat
HB (1-5)
10-17

Reliable Communications
10.3.3 Controlling Queue Depth with the History QosPolicy

If you want to achieve strict reliability, set the kind field in the HISTORY QosPolicy (Sec-
tion 6.5.9) for both the DataReader and DataWriter to KEEP_ALL; in this case, the depth
does not matter.

Or, for non-strict reliability, you can leave the kind set to KEEP_LAST (the default). This
will provide non-strict reliability; some samples may not be delivered if the resource
limit is reached.

The depth field in the HISTORY QosPolicy (Section 6.5.9) controls how many samples
Connext will attempt to keep on the DataWriter’s send queue or the DataReader’s receive
queue. For reliable communications, depth should be >= 1. The depth can be set to 1, but
cannot be more than the max_samples_per_instance in RESOURCE_LIMITS QosPolicy
(Section 6.5.19).

Example:

❏ DataWriter

writer_qos.history.depth =
<number of samples to keep in send queue>;

❏ DataReader

reader_qos.history.depth =
<number of samples to keep in receive queue>;

10.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy

In the Connext reliability model, the DataWriter sends data samples and heartbeats to
reliable DataReaders. A DataReader responds to a heartbeat by sending an ACKNACK,
which tells the DataWriter what the DataReader has received so far.

In addition, the DataReader can request missing samples (by sending an ACKNACK)
and the DataWriter will respond by resending the missing samples. This section
describes some advanced timing parameters that control the behavior of this mecha-
nism. Many applications do not need to change these settings. These parameters are
contained in the DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section
6.5.2).

The protocol described in Overview of the Reliable Protocol (Section 10.2) uses very
simple rules such as piggybacking HB messages to each DATA message and responding
immediately to ACKNACKs with the requested repair messages. While correct, this
protocol would not be capable of accommodating optimum performance in more
advanced use cases.
10-18

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
This section describes some of the parameters configurable by means of the
rtps_reliable_writer structure in the DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) (Section 6.5.2) and how they affect the behavior of the RTPS protocol.

10.3.4.1 How Often Heartbeats are Resent (heartbeat_period)

If a DataReader does not acknowledge a sample that has been sent, the DataWriter
resends the heartbeat. These heartbeats are resent at the rate set in the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2), specifically its
heartbeat_period field.

For example, a heartbeat_period of 3 seconds means that if a DataReader does not
receive the latest sample (for example, it gets dropped by the network), it might take up
to 3 seconds before the DataReader realizes it is missing data. The application can lower
this value when it is important that recovery from packet loss is very fast.

The basic approach of sending HB messages as a piggyback to DATA messages has the
advantage of minimizing network traffic. However, there is a situation where this
approach, by itself, may result in large latencies. Suppose there is a DataWriter that
writes bursts of data, separated by relatively long periods of silence. Furthermore
assume that the last message in one of the bursts is lost by the network. This is the case
shown for message DATA(B, 2) in Figure 10.7. If HBs were only sent piggybacked to
DATA messages, the DataReader would not realize it missed the ‘B’ DATA message with
sequence number ‘2’ until the DataWriter wrote the next message. This may be a long
time if data is written sporadically. To avoid this situation, Connext can be configured so
that HBs are sent periodically as long as there are samples that have not been acknowl-
edged even if no data is being sent. The period at which these HBs are sent is configu-
rable by setting the heartbeat_period field in the DATA_WRITER_PROTOCOL
QosPolicy (DDS Extension) (Section 6.5.2).

Note that a small value for the heartbeat_period will result in a small worst-case latency
if the last message in a burst is lost. This comes at the expense of the higher overhead
introduced by more frequent HB messages.

10.3.4.2 How Often Piggyback Heartbeats are Sent (heartbeats_per_max_samples)

A DataWriter will automatically send heartbeats with new samples to request regular
ACKNACKs from the DataReader. These are called “piggyback” heartbeats.

If batching is disabled1: one piggyback heartbeat will be sent every [max_samples2/
heartbeats_per_max_samples] number of samples.

1. Batching is enabled with the BATCH QosPolicy (DDS Extension) (Section 6.5.1).
2. max_samples is set in the RESOURCE_LIMITS QosPolicy (Section 6.5.19)
10-19

Reliable Communications
Figure 10.7 Use of heartbeat_period

DataWriter DataReader

cache (A, 1)

cache(B,2)

cache (A,1)

tim
e

DATA (A,1)

1 A X

write(A)

r

write(B)

1 A X

2 B X
DATA (B,2)

tim
e

ACKNACK(2)

1 A 4

HB(1-2)

1 A 4

2 B 4
cache (B,2)

check(1-2)

ACKNACK(3)

acked(1-2)

1 A 4

2 B 4

h
e

a
rt

b
e

a
t_

p
e

ri

check(1-2)

HB(1-2)

DATA(B,2)

acked(1)
get(2)

See Figure 10.1 for
meaning of table
columns.
10-20

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
If batching is enabled: one piggyback heartbeat will be sent every [max_batches1/
heartbeats_per_max_samples] number of samples.

Furthermore, one piggyback heartbeat will be sent per send window. If the above calcu-
lation is greater than the send window size, then the DataWriter will send a piggyback
heartbeat for every [send window size] number of samples.

The heartbeats_per_max_samples field is part of the rtps_reliable_writer structure in
the DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2). If
heartbeats_per_max_samples is set equal to max_samples, this means that a heartbeat
will be sent with each sample. A value of 8 means that a heartbeat will be sent with
every 'max_samples/8' samples. Say max_samples is set to 1024, then a heartbeat will be
sent once every 128 samples. If you set this to zero, samples are sent without any piggy-
back heartbeat. The max_samples field is part of the RESOURCE_LIMITS QosPolicy
(Section 6.5.19).

Figure 10.1 on page 10-6 and Figure 10.2 on page 10-7 seem to imply that a HB is sent as
a piggyback to each DATA message. However, in situations where data is sent continu-
ously at high rates, piggybacking a HB to each message may result in too much over-
head; not so much on the HB itself, but on the ACKNACKs that would be sent back as
replies by the DataReader.

There are two reasons to send a HB:

❏ To request that a DataReader confirm the receipt of data via an ACKNACK, so
that the DataWriter can remove it from its send queue and therefore prevent the
DataWriter’s history from filling up (which could cause the write() operation to
temporarily block2).

❏ To inform the DataReader of what data it should have received, so that the
DataReader can send a request for missing data via an ACKNACK.

The DataWriter’s send queue can buffer many data-samples while it waits for ACK-
NACKs, and the DataReader’s receive queue can store out-of-order samples while it
waits for missing ones. So it is possible to send HB messages much less frequently than
DATA messages. The ratio of piggyback HB messages to DATA messages is controlled
by the rtps_reliable_writer.heartbeats_per_max_samples field in the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2).

1. max_batches is set in the DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
6.5.3)

2. Note that data could also be removed from the DataWriter’s send queue if it is no longer relevant due to
some other QoS such a HISTORY KEEP_LAST (Section 6.5.9) or LIFESPAN (Section 6.5.11).
10-21

Reliable Communications
A HB is used to get confirmation from DataReaders so that the DataWriter can remove
acknowledged samples from the queue to make space for new samples. Therefore, if the
queue size is large, or new samples are added slowly, HBs can be sent less frequently.

In Figure 10.8 on page 10-23, the DataWriter sets the heartbeats_per_max_samples to
certain value so that a piggyback HB will be sent for every three samples. The DataW-
riter first writes sample A and B. The DataReader receives both. However, since no HB
has been received, the DataReader won’t send back an ACKNACK. The DataWriter will
still keep all the samples in its queue. When the DataWriter sends sample C, it will send
a piggyback HB along with the sample. Once the DataReader receives the HB, it will
send back an ACKNACK for samples up to sequence number 3, such that the DataW-
riter can remove all three samples from its queue. ,

10.3.4.3 Controlling Packet Size for Resent Samples (max_bytes_per_nack_response)

A repair packet is the maximum amount of data that a DataWriter will resend at a time.
For example, if the DataReader requests 20 samples, each 10K, and the
max_bytes_per_nack_response is set to 100K, the DataWriter will only send the first 10
samples. The DataReader will have to ACKNACK again to receive the next 10 samples.

A DataWriter may resend multiple missed samples in the same packet. The
max_bytes_per_nack_response field in the DATA_WRITER_PROTOCOL QosPolicy
(DDS Extension) (Section 6.5.2) limits the size of this ‘repair’ packet.

10.3.4.4 Controlling How Many Times Heartbeats are Resent (max_heartbeat_retries)

If a DataReader does not respond within max_heartbeat_retries number of heartbeats, it
will be dropped by the DataWriter and the reliable DataWriter’s Listener will be called
with a RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension) (Section
6.3.6.8).

If the dropped DataReader becomes available again (perhaps its network connection was
down temporarily), it will be added back to the DataWriter the next time the DataWriter
receives some message (ACKNACK) from the DataReader.

When a DataReader is ‘dropped’ by a DataWriter, the DataWriter will not wait for the
DataReader to send an ACKNACK before any samples are removed. However, the
DataWriter will still send data and HBs to this DataReader as normal.

The max_heartbeat_retries field is part of the DATA_WRITER_PROTOCOL QosPolicy
(DDS Extension) (Section 6.5.2).
10-22

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
Figure 10.8 Use of the heartbeats_per_max_samples

DataWriter DataReader

cache (A, 1)

cache(B,2)

cache (A,1)

tim
e

DATA (A,1)

1 A X

write(A)

write(B)

1 A X

2 B X

tim
e

1 A 4

1 A 4

2 B 4

3 C 4

cache (C,3)

check(1-3)

DATA(B,2)

cache (B,2) 1 A 4

2 B 4

cache(C,3)

write(C)

1 A X

2 B X

3 C X

DATA(C,3);HB(1-3)

ACKNACK(4)

acked(1-3)1 A 4

2 B 4

3 C 4

See Figure 10.1 for
meaning of table
columns.
10-23

Reliable Communications
10.3.4.5 Treating Non-Progressing Readers as Inactive Readers
(inactivate_nonprogressing_readers)

In addition to max_heartbeat_retries, if inactivate_nonprogressing_readers is set, then
not only are non-responsive DataReaders considered inactive, but DataReaders sending
non-progressing NACKs can also be considered inactive. A non-progressing NACK is one
which requests the same oldest sample as the previously received NACK. In this case,
the DataWriter will not consider a non-progressing NACK as coming from an active
reader, and hence will inactivate the DataReader if no new NACKs are received before
max_heartbeat_retries number of heartbeat periods has passed.

One example for which it could be useful to turn on
inactivate_nonprogressing_readers is when a DataReader’s (keep-all) queue is full of
untaken historical samples. Each subsequent heartbeat would trigger the same NACK,
and nominally the DataReader would not be inactivated. A user not requiring strict-reli-
ability could consider setting inactivate_nonprogressing_readers to allow the DataW-
riter to progress rather than being held up by this non-progressing DataReader.

10.3.4.6 Coping with Redundant Requests for Missing Samples (max_nack_response_delay)

When a DataWriter receives a request for missing samples from a DataReader and
responds by resending the requested samples, it will ignore additional requests for the
same samples during the time period max_nack_response_delay.

The rtps_reliable_writer.max_nack_response_delay field is part of the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2).

If your send period is smaller than the round-trip delay of a message, this can cause
unnecessary sample retransmissions due to redundant ACKNACKs. In this situation,
an ACKNACK triggered by an out-of-order sample is not received before the next sam-
ple is sent. When a DataReader receives the next message, it will send another ACK-
NACK for the missing sample. As illustrated in Figure 10.9 on page 10-25, duplicate
ACKNACK messages cause another resending of missing sample “2” and lead to
wasted CPU usage on both the publication and the subscription sides.

While these redundant messages provide an extra cushion for the level of reliability
desired, you can conserve the CPU and network bandwidth usage by limiting how
often the same ACKNACK messages are sent; this is controlled by
min_nack_response_delay.

Reliable subscriptions are prevented from resending an ACKNACK within
min_nack_response_delay seconds from the last time an ACKNACK was sent for the
same sample. Our testing shows that the default min_nack_response_delay of 0 sec-
onds achieves an optimal balance for most applications on typical Ethernet LANs.
10-24

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
However, if your system has very slow computers and/or a slow network, you may
want to consider increasing min_nack_response_delay. Sending an ACKNACK and
resending a missing sample inherently takes a long time in this system. So you should
allow a longer time for recovery of the lost sample before sending another ACKNACK.
In this situation, you should increase min_nack_response_delay.

If your system consists of a fast network or computers, and the receive queue size is very
small, then you should keep min_nack_response_delay very small (such as the default
value of 0). If the queue size is small, recovering a missing sample is more important
than conserving CPU and network bandwidth (new samples that are too far ahead of
the missing sample are thrown away). A fast system can cope with a smaller
min_nack_response_delay value, and the reliable sample stream can normalize more
quickly.

Figure 10.9 Resending Missing Samples due to Duplicate ACKNACKs

3

1

5

2

3 4

3 4

DataWriter DataReader

Send Sample “1”

Send Sample “2”

Send Sample “3”

Send Sample “4”

Resend Sample “2”
Send Sample “5”

Resend Sample “2”

ACKNACK(2)

ACKNACK(2)

Space must be
reserved for missing
sample “2”.

Samples “3” and
“4” are cached
while waiting for
missing sample “2”.

Sample “2” is dropped since
it is older than the last sam-
ple that has been handed
to the application.
10-25

Reliable Communications
10.3.4.7 Disabling Positive Acknowledgements
(disable_postive_acks_min_sample_keep_duration)

When ACKNACK storms are a primary concern in a system, an alternative to tuning
heartbeat and ACKNACK response delays is to disable positive acknowledgments
(ACKs) and rely just on NACKs to maintain reliability. Systems with non-strict reliabil-
ity requirements can disable ACKs to reduce network traffic and directly solve the prob-
lem of ACK storms. ACKs can be disabled for the DataWriter and the DataReader; when
disabled for the DataWriter, none of its DataReaders will send ACKs, whereas disabling it
at the DataReader allows per-DataReader configuration.

Normally when ACKs are enabled, strict reliability is maintained by the DataWriter,
guaranteeing that a sample stays in its send queue until all DataReaders have positively
acknowledged it (aside from relevant DURABILITY, HISTORY, and LIFESPAN QoS pol-
icies). When ACKs are disabled, strict reliability is no longer guaranteed, but the DataW-
riter should still keep the sample for a sufficient duration for ACK-disabled DataReaders
to have a chance to NACK it. Thus, a configurable “keep-duration”
(disable_postive_acks_min_sample_keep_duration) applies for samples written for
ACK-disabled DataReaders, where samples are kept in the queue for at least that keep-
duration. After the keep-duration has elapsed for a sample, the sample is considered to
be “acknowledged” by its ACK-disabled DataReaders.

The keep duration should be configured for the expected worst-case from when the
sample is written to when a NACK for the sample could be received. If set too short, the
sample may no longer be queued when a NACK requests it, which is the cost of not
enforcing strict reliability.

If the peak send rate is known and writer resources are available, the writer queue can
be sized so that writes will not block. For this case, the queue size must be greater than
the send rate multiplied by the keep duration.

10.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicy

DataWriters send data samples and heartbeats to DataReaders. A DataReader responds to
a heartbeat by sending an acknowledgement that tells the DataWriter what the
DataReader has received so far and what it is missing. If there are many DataReaders, all
sending ACKNACKs to the same DataWriter at the same time, a message storm can
result. To prevent this, you can set a delay for each DataReader, so they don’t all send
ACKNACKs at the same time. This delay is set in the DATA_READER_PROTOCOL
QosPolicy (DDS Extension) (Section 7.6.2).
10-26

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
If you have several DataReaders per DataWriter, varying this delay for each one can
avoid ACKNACK message storms to the DataWriter. If you are not concerned about
message storms, you do not need to change this QosPolicy.

Example:

reader_qos.protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec =
0;
reader_qos.protocol.rtps_reliable_reader.min_heartbeat_response_delay.nano-
sec = 0;
reader_qos.protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec =
0;
reader_qos.protocol.rtps_reliable_reader.max_heartbeat_response_delay.nano-
sec = 0.5 * 1000000000UL; // 0.5 sec

As the name suggests, the minimum and maximum response delay bounds the random
wait time before the response. Setting both to zero will force immediate response, which
may be necessary for the fastest recovery in case of lost samples.

10.3.6 Resending Samples to Late-Joiners with the Durability QosPolicy

The DURABILITY QosPolicy (Section 6.5.6) is also somewhat related to Reliability. Con-
next requires a finite time to "discover" or match DataReaders to DataWriters. If an appli-
cation attempts to send data before the DataReader and DataWriter "discover" one
another, then the sample will not actually get sent. Whether or not samples are resent
when the DataReader and DataWriter eventually "discover" one another depends on how
the DURABILITY and HISTORY QoS are set. The default setting for the Durability
QosPolicy is VOLATILE, which means that the DataWriter will not store samples for
redelivery to late-joining DataReaders.

Connext also supports the TRANSIENT_LOCAL setting for the Durability, which means
that the samples will be kept stored for redelivery to late-joining DataReaders, as long as
the DataWriter is around and the RESOURCE_LIMITS QosPolicy (Section 6.5.19) allows.
The samples are not stored beyond the lifecycle of the DataWriter.

See also: Waiting for Historical Data (Section 7.3.6).

10.3.7 Use Cases

This section contains advanced material that discusses practical applications of the reli-
ability related QoS.
10-27

Reliable Communications
10.3.7.1 Importance of Relative Thread Priorities

For high throughput, the Connext Event thread’s priority must be sufficiently high on
the sending application. Unlike an unreliable writer, a reliable writer relies on internal
Connext threads: the Receive thread processes ACKNACKs from the DataReaders, and
the Event thread schedules the events necessary to maintain reliable data flow.

❏ When samples are sent to the same or another application on the same host, the
Receive thread priority should be higher than the writing thread priority (prior-
ity of the thread calling write() on the DataWriter). This will allow the Receive
thread to process the messages as they are sent by the writing thread. A sus-
tained reliable flow requires the reader to be able to process the samples from the
writer at a speed equal to or faster than the writer emits.

❏ The default Event thread priority is low. This is adequate if your reliable transfer
is not sustained; queued up events will eventually be processed when the writ-
ing thread yields the CPU. The Connext can automatically grow the event queue
to store all pending events. But if the reliable communication is sustained, reli-
able events will continue to be scheduled, and the event queue will eventually
reach its limit. The default Event thread priority is unsuitable for maintaining a
fast and sustained reliable communication and should be increased through the
participant_qos.event.thread.priority. This value maps directly to the OS thread
priority, see EVENT QosPolicy (DDS Extension) (Section 8.5.5)).

The Event thread should also be increased to minimize the reliable latency. If
events are processed at a higher priority, dropped packets will be resent sooner.

Now we consider some practical applications of the reliability related QoS:

❏ Aperiodic Use Case: One-at-a-Time (Section 10.3.7.2)

❏ Aperiodic, Bursty (Section 10.3.7.3)

❏ Periodic (Section 10.3.7.4)

10.3.7.2 Aperiodic Use Case: One-at-a-Time

Suppose you have aperiodically generated data that needs to be delivered reliably, with
minimum latency, such as a series of commands (“Ready,” “Aim,” “Fire”). If a writing
thread may block between each sample to guarantee reception of the just sent sample on
the reader’s middleware end, a smaller queue will provide a smaller upper bound on
the sample delivery time. Adequate writer QoS for this use case are presented in
Figure 10.10.

Line 1 (Figure 10.10): This is the default setting for a writer, shown here strictly for clar-
ity.
10-28

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
Line 2 (Figure 10.10): Setting the History kind to KEEP_ALL guarantees that no sample
is ever lost.

Line 3 (Figure 10.10): This is the default setting for a writer, shown here strictly for clar-
ity. ‘Push’ mode reliability will yield lower latency than ‘pull’ mode reliability in normal
situations where there is no sample loss. (See DATA_WRITER_PROTOCOL QosPolicy
(DDS Extension) (Section 6.5.2).) Furthermore, it does not matter that each packet sent in
response to a command will be small, because our data sent with each command is
likely to be small, so that maximizing throughput for this data is not a concern.

Figure 10.10 QoS for an Aperiodic, One-at-a-time Reliable Writer

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3 qos->protocol.push_on_write = DDS_BOOLEAN_TRUE;
4
5 //use these hard coded value unless you use a key
6 qos->resource_limits.initial_samples = qos->resource_limits.max_samples = 1;
7 qos->resource_limits.max_samples_per_instance =
8 qos->resource_limits.max_samples;
9 qos->resource_limits.initial_instances =
10 qos->resource_limits.max_instances = 1;
11
12 // want to piggyback HB w/ every sample.
13 qos->protocol.rtps_reliable_writer.heartbeats_per_max_samples =
14 qos->resource_limits.max_samples;
15
16 qos->protocol.rtps_reliable_writer.high_watermark = 1;
17 qos->protocol.rtps_reliable_writer.low_watermark = 0;
18 qos->protocol.rtps_reliable_writer.min_nack_response_delay.sec = 0;
19 qos->protocol.rtps_reliable_writer.min_nack_response_delay.nanosec = 0;
20 //consider making non-zero for reliable multicast
21 qos->protocol.rtps_reliable_writer.max_nack_response_delay.sec = 0;
22 qos->protocol.rtps_reliable_writer.max_nack_response_delay.nanosec = 0;
23
24 // should be faster than the send rate, but be mindful of OS resolution
25 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.sec = 0;
26 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.nanosec =
27 alertReaderWithinThisMs * 1000000;
28
29 qos->reliability.max_blocking_time = blockingTime;
30 qos->protocol.rtps_reliable_writer.max_heartbeat_retries = 7;
31
32 // essentially turn off slow HB period
33 qos->protocol.rtps_reliable_writer.heartbeat_period.sec = 3600 * 24 * 7;
10-29

Reliable Communications
Line 5 - Line 10 (Figure 10.10): For this example, we assume a single writer is writing
samples one at a time. If we are not using keys (see Section 2.2.2), there is no reason to
use a queue with room for more than one sample, because we want to resolve a sample
completely before moving on to the next. While this negatively impacts throughput, it
minimizes memory usage. In this example, a written sample will remain in the queue
until it is acknowledged by all active readers (only 1 for this example).

Line 12 - Line 14 (Figure 10.10): The fastest way for a writer to ensure that a reader is up-
to-date is to force an acknowledgement with every sample. We do this by appending a
Heartbeat with every sample. This is akin to a certified mail; the writer learns—as soon
as the system will allow—whether a reader has received the letter, and can take correc-
tive action if the reader has not. As with certified mail, this model has significant over-
head compared to the unreliable case, trading off lower packet efficiency in favor of
latency and fast recovery.

Line 16-Line 17 (Figure 10.10): Since the writer takes responsibility for pushing the sam-
ples out to the reader, a writer will go into a “heightened alert” mode as soon as the high
water mark is reached (which is when any sample is written for this writer) and only
come out of this mode when the low water mark is reached (when all samples have
been acknowledged for this writer). Note that the selected high and low watermarks are
actually the default values.

Line 18-Line 22 (Figure 10.10): When a reader requests a lost sample, we respond to the
reader immediately in the interest of faster recovery. If the readers receive packets on
unicast, there is no reason to wait, since the writer will eventually have to feed individ-
ual readers separately anyway. In case of multicast readers, it makes sense to consider
further. If the writer delayed its response enough so that all or most of the readers have
had a chance to NACK a sample, the writer may coalesce the requests and send just one
packet to all the multicast readers. Suppose that all multicast readers do indeed NACK
within approximately 100 μsec. Setting the minimum and maximum delays at 100 μsec
will allow the writer to collect all these NACKs and send a single response over multi-
cast. (See DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2) for
information on setting min_nack_response_delay and max_nack_response_delay.)
Note that Connext relies on the OS to wait for this 100 μsec. Unfortunately, not all operat-
ing systems can sleep for such a fine duration. On Windows systems, for example, the
minimum achievable sleep time is somewhere between 1 to 20 milliseconds, depending
on the version. On VxWorks systems, the minimum resolution of the wait time is based
on the tick resolution, which is 1/system clock rate (thus, if the system clock rate is 100
Hz, the tick resolution is 10 millisecond). On such systems, the achievable minimum
wait is actually far larger than the desired wait time. This could have an unintended
consequence due to the delay caused by the OS; at a minimum, the time to repair a
packet may be longer than you specified.
10-30

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
Line 24-Line 27 (Figure 10.10): If a reader drops a sample, the writer recovers by notify-
ing the reader of what it has sent, so that the reader may request resending of the lost
sample. Therefore, the recovery time depends primarily on how quickly the writer
pings the reader that has fallen behind. If commands will not be generated faster than
one every few seconds, it may be acceptable for the writer to ping the reader several
hundred milliseconds after the sample is sent.

❏ Suppose that the round-trip time of fairly small packets between the writer and
the reader application is 50 microseconds, and that the reader does not delay
response to a Heartbeat from the writer (see DATA_READER_PROTOCOL
QosPolicy (DDS Extension) (Section 7.6.2) for how to change this). If a sample is
dropped, the writer will ping the reader after a maximum of the OS delay resolu-
tion discussed above and alertReaderWithinThisMs (let’s say 10 ms for this
example). The reader will request the missing sample immediately, and with the
code set as above, the writer will feed the missing sample immediately. Neglect-
ing the processing time on the writer or the reader end, and assuming that this
retry succeeds, the time to recover the sample from the original publication time
is: alertReaderWithinThisMs + 50 μsec + 25 μsec.

If the OS is capable of micro-sleep, the recovery time can be within 100 μsec,
barely noticeable to a human operator. If the OS minimum wait resolution is
much larger, the recovery time is dominated by the wait resolution of the OS.
Since ergonomic studies suggest that delays in excess of a 0.25 seconds start
hampering operations that require low latency data, even a 10 ms limitation
seems to be acceptable.

❏ What if two packets are dropped in a row? Then the recovery time would be
2 * alertReaderWithinThisMs + 2 * 50 μsec + 25 μsec. If alertReaderWithin-
ThisMs is 100 ms, the recovery time now exceeds 200 ms, and can perhaps
degrade user experience.

Line 29-Line 30 (Figure 10.10): What if another command (like another button press) is
issued before the recovery? Since we must not drop this new sample, we block the
writer until the recovery completes. If alertReaderWithinThisMs is 10 ms, and we
assume no more than 7 consecutive drops, the longest time for recovery will be just
above (alertReaderWithinThisMs * max_heartbeat_retries), or 70 ms.

So if we set blockingTime to about 80 ms, we will have given enough chance for recov-
ery. Of course, in a dynamic system, a reader may drop out at any time, in which case
max_heartbeat_retries will be exceeded, and the unresponsive reader will be dropped
by the writer. In either case, the writer can continue writing. Inappropriate values will
cause a writer to prematurely drop a temporarily unresponsive (but otherwise healthy)
reader, or be stuck trying unsuccessfully to feed a crashed reader. In the unfortunate
case where a reader becomes temporarily unresponsive for a duration exceeding (aler-
10-31

Reliable Communications
tReaderWithinThisMs * max_heartbeat_retries), the writer may issue gaps to that
reader when it becomes active again; the dropped samples are irrecoverable. So estimat-
ing the worst case unresponsive time of all potential readers is critical if sample drop is
unacceptable.

Line 32-Line 33 (Figure 10.10): Since the command may not be issued for hours or even
days on end, there is no reason to keep announcing the writer’s state to the readers.

Figure 10.11 shows how to set the QoS for the reader side, followed by a line-by-line
explanation.

Line 1-Line 2 (Figure 10.11): Unlike a writer, the reader’s default reliability setting is
best-effort, so reliability must be turned on. Since we don’t want to drop anything, we
choose KEEP_ALL history.

Line 4-Line 6 (Figure 10.11): Since we enforce reliability on each sample, it would be suf-
ficient to keep the queue size at 1, except in the following case: suppose that the reader
takes some action in response to the command received, which in turn causes the writer
to issue another command right away. Because Connext passes the user data up to the
application even before acknowledging the sample to the writer (for minimum latency),
the first sample is still pending for acknowledgement in the writer’s queue when the
writer attempts to write the second sample, and will cause the writing thread to block
until the reader completes processing the first sample and acknowledges it to the writer;
all are as they should be. But if you want to run this infinite loop at full throttle, the
reader should buffer one more sample. Let’s follow the packets flow under a normal cir-
cumstance:

1. The sender application writes sample 1 to the reader. The receiver application
processes it and sends a user-level response 1 to the sender application, but has
not yet ACK’d sample 1.

Figure 10.11 QoS for an Aperiodic, One-at-a-time Reliable Reader

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3
4 // 1 is ok for normal use. 2 allows fast infinite loop
5 qos->reader_resource_limits.max_samples_per_remote_writer = 2;
6 qos->resource_limits.initial_samples = 2;
7 qos->resource_limits.initial_instances = 1;
8
9 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec = 0;
10 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.nanosec = 0;
11 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec = 0;
12 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.nanosec = 0;
10-32

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
2. The sender application writes sample 2 to the receiving application in response
to response 1. Because the reader’s queue is 2, it can accept sample 2 even
though it may not yet have acknowledged sample 1. Otherwise, the reader may
drop sample 2, and would have to recover it later.

3. At the same time, the receiver application acknowledges sample 1, and frees up
one slot in the queue, so that it can accept sample 3, which it on its way.

The above steps can be repeated ad-infinitum in a continuous traffic.

Line 7 (Figure 10.11): Since we are not using keys, there is just one instance.

Line 9-Line 12 (Figure 10.11): We choose immediate response in the interest of fastest
recovery. In high throughput, multicast scenario, delaying the response (with event
thread priority set high of course) may decrease the likelihood of NACK storm causing
a writer to drop some NACKs. This random delay reduces this chance by staggering the
NACK response. But the minimum delay achievable once again depends on the OS.

10.3.7.3 Aperiodic, Bursty

Suppose you have aperiodically generated bursts of data, as in the case of a new aircraft
approaching an airport. The data may be the same or different, but if they are written by
a single writer, the challenge to this writer is to feed all readers as quickly and efficiently
as possible when this burst of hundreds or thousands of samples hits the system.

❏ If you use an unreliable writer to push this burst of data, some of them may be
dropped over an unreliable transport such as UDP.

❏ If you try to shape the burst according to however much the slowest reader can
process, the system throughput may suffer, and places an additional burden of
queueing the samples on the sender application.

❏ If you push the data reliably as fast they are generated, this may cost dearly in
repair packets, especially to the slowest reader, which is already burdened with
application chores.

Connext pull mode reliability offers an alternative in this case by letting each reader pace
its own data stream. It works by notifying the reader what it is missing, then waiting for
it to request only as much as it can handle. As in the aperiodic one-at-a-time case
(Section 10.3.7.2), multicast is supported, but its performance depends on the resolution
of the minimum delay supported by the OS. At the cost of greater latency, this model
can deliver reliability while using far fewer packets than in the push mode. The writer
QoS is given in Figure 10.12, with a line-by-line explanation below.

Line 1 (Figure 10.12): This is the default setting for a writer, shown here strictly for clar-
ity.
10-33

Reliable Communications
Line 2 (Figure 10.12): Since we do not want any data lost, we want the History kind set
to KEEP_ALL.

Line 3 (Figure 10.12): The default Connext reliable writer will push, but we want the
reader to pull instead.

Line 5-Line 11 (Figure 10.12): We assume a single instance, in which case the maximum
sample count will be the same as the maximum sample count per writer. In contrast to
the one-at-a-time case discussed in Section 10.3.7.2, the writer’s queue is large; as big as
the burst size in fact, but no more because this model tries to resolve a burst within a
reasonable period, to be computed shortly. Of course, we could block the writing thread

Figure 10.12QoS for an Aperiodic, Bursty Writer

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3 qos->protocol.push_on_write = DDS_BOOLEAN_FALSE;
4
5 //use these hard coded value until you use key
6 qos->resource_limits.initial_instances =
7 qos->resource_limits.max_instances = 1;
8 qos->resource_limits.initial_samples = qos->resource_limits.max_samples
9 = worstBurstInSample;
10 qos->resource_limits.max_samples_per_instance =
11 qos->resource_limits.max_samples;
12
13 // piggyback HB not used
14 qos->protocol.rtps_reliable_writer.heartbeats_per_max_samples = 0;
15
16 qos->protocol.rtps_reliable_writer.high_watermark = 1;
17 qos->protocol.rtps_reliable_writer.low_watermark = 0;
18
19 qos->protocol.rtps_reliable_writer.min_nack_response_delay.sec = 0;
20 qos->protocol.rtps_reliable_writer.min_nack_response_delay.nanosec = 0;
21 qos->protocol.rtps_reliable_writer.max_nack_response_delay.sec = 0;
22 qos->protocol.rtps_reliable_writer.max_nack_response_delay.nanosec = 0;
23 qos->reliability.max_blocking_time = blockingTime;
24
25 // should be faster than the send rate, but be mindful of OS resolution
26 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.sec = 0;
27 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.nanosec =
28 alertReaderWithinThisMs * 1000000;
29 qos->protocol.rtps_reliable_writer.max_heartbeat_retries = 5;
30
31 // essentially turn off slow HB period
32 qos->protocol.rtps_reliable_writer.heartbeat_period.sec = 3600 * 24 * 7;
10-34

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
in the middle of the burst, but that might complicate the design of the sending applica-
tion.

Line 13-Line 14 (Figure 10.12): By a ‘piggyback’ Heartbeat, we mean only a Heartbeat
that is appended to data being pushed from the writer. Strictly speaking, the writer will
also append a Heartbeat with each reply to a reader’s lost sample request, but we call
that a ‘framing’ Heartbeat. Since data is pulled, heartbeats_per_max_samples is
ignored.

Line 16-Line 17 (Figure 10.12): Similar to the previous aperiodic writer, this writer
spends most of its time idle. But as the name suggests, even a single new sample implies
more sample to follow in a burst. Putting the writer into a fast mode quickly will allow
readers to be notified soon. Only when all samples have been delivered, the writer can
rest.

Line 19- Line 23 (Figure 10.12): Similar to the one-at-a-time case, there is no reason to
delay response with only one reader. In this case, we can estimate the time to resolve a
burst with only a few parameters. Let’s say that the reader figures it can safely receive
and process 20 samples at a time without being overwhelmed, and that the time it takes
a writer to fetch these 20 samples and send a single packet containing these 20 samples,
plus the time it takes a reader to receive and process these sample samples, and send
another request back to the writer for the next 20 samples is 11 ms. Even on the same
hardware, if the reader’s processing time can be reduced, this time will decrease; other
factors such as the traversal time through Connext and the transport are typically in
microseconds range (depending on machines of course).

For example, let’s also say that the worst case burst is 1000 samples. The writing thread
will of course not block because it is merely copying each of the 1000 samples to the
Connext queue on the writer side; on a typical modern machine, the act of writing these
1000 samples will probably take no more than a few ms. But it would take at least 1000/
20 = 50 resend packets for the reader to catch up to the writer, or 50 times 11 ms = 550
ms. Since the burst model deals with one burst at a time, we would expect that another
burst would not come within this time, and that we are allowed to block for at least this
period. Including a safety margin, it would appear that we can comfortably handle a
burst of 1000 every second or so.

But what if there are multiple readers? The writer would then take more time to feed
multiple readers, but with a fast transport, a few more readers may only increase the 11
ms to only 12 ms or so. Eventually, however, the number of readers will justify the use of
multicast. Even in pull mode, Connext supports multicast by measuring how many mul-
ticast readers have requested sample repair. If the writer does not delay response to
NACK, then repairs will be sent in unicast. But a suitable NACK delay allows the writer
to collect potentially NACKs from multiple readers, and feed a single multicast packet.
But as discussed in Section 10.3.7.2, by delaying reply to coalesce response, we may end
10-35

Reliable Communications
up waiting much longer than desired. On a Windows system with 10 ms minimum
sleep achievable, the delay would add at least 10 ms to the 11 ms delay, so that the time
to push 1000 samples now increases to 50 times 21 ms = 1.05 seconds. It would appear
that we will not be able to keep up with incoming burst if it came at roughly 1 second,
although we put fewer packets on the wire by taking advantage of multicast.

Line 25-Line 28 (Figure 10.12): We now understand how the writer feeds the reader in
response to the NACKs. But how does the reader realize that it is behind? The writer
notifies the reader with a Heartbeat to kick-start the exchange. Therefore, the latency
will be lower bound by the writer’s fast heartbeat period. If the application is not partic-
ularly sensitive to latency, the minimum wait time supported by the OS (10 ms on Win-
dows systems, for example) might be a reasonable value.

Line 29 (Figure 10.12): With a fast heartbeat period of 50 ms, a writer will take 500 ms (50
ms times the default max_heartbeat_retries of 10) to write-off an unresponsive reader.
If a reader crashes while we are writing a lot of samples per second, the writer queue
may completely fill up before the writer has a chance to drop the crashed reader. Lower-
ing max_heartbeat_retries will prevent that scenario.

Line 31-Line 32 (Figure 10.12): For an aperiodic writer, turning off slow periodic Heart-
beats will remove unwanted traffic from the network.

Figure 10.13 shows example code for a corresponding aperiodic, bursty reader.

Figure 10.13QoS for an Aperiodic, Bursty Reader

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3 qos->resource_limits.initial_samples =
4 qos->resource_limits.max_samples =
5 qos->reader_resource_limits.max_samples_per_remote_writer = 32;
6
7 //use these hard coded value until you use key
8 qos->resource_limits.max_samples_per_instance =
9 qos->resource_limits.max_samples;
10 qos->resource_limits.initial_instances =
11 qos->resource_limits.max_instances = 1;
12
13 // the writer probably has more for the reader; ask right away
14 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec = 0;
15 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.nanosec = 0;
16 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec = 0;
17 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.nanosec = 0;
10-36

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
Line 1-Line 2 (Figure 10.13): Unlike a writer, the reader’s default reliability setting is
best-effort, so reliability must be turned on. Since we don’t want to drop anything, we
choose KEEP_ALL for the History QoS kind.

Line 3-Line 5 (Figure 10.13): Unlike the writer, the reader’s queue can be kept small,
since the reader is free to send ACKs for as much as it wants anyway. In general, the
larger the queue, the larger the packet needs to be, and the higher the throughput will
be. When the reader NACKs for lost sample, it will only ask for this much.

Line 7-Line 11 (Figure 10.13): We do not use keys in this example.

Line 13-Line 17 (Figure 10.13): We respond immediately to catch up as soon as possible.
When there are many readers, this may cause a NACK storm, as discussed in the reader
code for one-at-a-time reliable reader.

10.3.7.4 Periodic

In a periodic reliable model, we can use the writer and the reader queue to keep the data
flowing at a smooth rate. The data flows from the sending application to the writer
queue, then to the transport, then to the reader queue, and finally to the receiving appli-
cation. Unless the sending application or any one of the receiving applications becomes
unresponsive (including a crash) for a noticeable duration, this flow should continue
uninterrupted.

The latency will be low in most cases, but will be several times higher for the recovered
and many subsequent samples. In the event of a disruption (e.g., loss in transport, or
one of the readers becoming temporarily unresponsive), the writer’s queue level will
rise, and may even block in the worst case. If the writing thread must not block, the
writer’s queue must be sized sufficiently large to deal with any fluctuation in the sys-
tem. Figure 10.14 shows an example, with line-by-line analysis below.

Line 1 (Figure 10.14): This is the default setting for a writer, shown here strictly for clar-
ity.

Line 2 (Figure 10.14): Since we do not want any data lost, we set the History kind to
KEEP_ALL.

Line 3 (Figure 10.14): This is the default setting for a writer, shown here strictly for clar-
ity. Pushing will yield lower latency than pulling.

Line 5-Line 7 (Figure 10.14): We do not use keys in this example, so there is only one
instance.

Line 9-Line 11 (Figure 10.14): Though a simplistic model of queue, this is consistent with
the idea that the queue size should be proportional to the data rate and the wort case jit-
ter in communication.
10-37

Reliable Communications
Line 12 (Figure 10.14): Even though we have sized the queue according to the worst
case, there is a possibility for saving some memory in the normal case. Here, we initially
size the queue to be only half of the worst case, hoping that the worst case will not
occur. When it does, Connext will keep increasing the queue size as necessary to accom-
modate new samples, until the maximum is reached. So when our optimistic initial
queue size is breached, we will incur the penalty of dynamic memory allocation. Fur-

Figure 10.14QoS for a Periodic Reliable Writer

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3 qos->protocol.push_on_write = DDS_BOOLEAN_TRUE;
4
5 //use these hard coded value until you use key
6 qos->resource_limits.initial_instances =
7 qos->resource_limits.max_instances = 1;
8
9 int unresolvedSamplePerRemoteWriterMax =
10 worstCaseApplicationDelayTimeInMs * dataRateInHz / 1000;
11 qos->resource_limits.max_samples = unresolvedSamplePerRemoteWriterMax;
12 qos->resource_limits.initial_samples = qos->resource_limits.max_samples/2;
13 qos->resource_limits.max_samples_per_instance =
14 qos->resource_limits.max_samples;
15
16 int piggybackEvery = 8;
17 qos->protocol.rtps_reliable_writer.heartbeats_per_max_samples =
18 qos->resource_limits.max_samples / piggybackEvery;
19
20 qos->protocol.rtps_reliable_writer.high_watermark = piggybackEvery * 4;
21 qos->protocol.rtps_reliable_writer.low_watermark = piggybackEvery * 2;
22 qos->reliability.max_blocking_time = blockingTime;
23
24 qos->protocol.rtps_reliable_writer.min_nack_response_delay.sec = 0;
25 qos->protocol.rtps_reliable_writer.min_nack_response_delay.nanosec = 0;
26
27 qos->protocol.rtps_reliable_writer.max_nack_response_delay.sec = 0;
28 qos->protocol.rtps_reliable_writer.max_nack_response_delay.nanosec = 0;
29
30 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.sec = 0;
31 qos->protocol.rtps_reliable_writer.fast_heartbeat_period.nanosec =
32 alertReaderWithinThisMs * 1000000;
33 qos->protocol.rtps_reliable_writer.max_heartbeat_retries = 7;
34
35 // essentially turn off slow HB period
36 qos->protocol.rtps_reliable_writer.heartbeat_period.sec = 3600 * 24 * 7;
10-38

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
thermore, you will wind up using more memory, as the initially allocated memory will
be orphaned (note: does not mean a memory leak or dangling pointer); if the initial
queue size is M_i and the maximal queue size is M_m, where M_m = M_i * 2^n, the
memory wasted in the worst case will be (M_m - 1) * sizeof(sample) bytes. Note that the
memory allocation can be avoided by setting the initial queue size equal to its max
value.

Line 13-Line 14 (Figure 10.14): If there is only one instance, maximum samples per
instance is the same as maximum samples allowed.

Line 16-Line 18 (Figure 10.14): Since we are pushing out the data at a potentially rapid
rate, the piggyback heartbeat will be useful in letting the reader know about any miss-
ing samples. The piggybackEvery can be increased if the writer is writing at a fast rate,
with the cost that more samples will need to queue up for possible resend. That is, you
can consider the piggyback heartbeat to be taking over one of the roles of the periodic
heartbeat in the case of a push. So sending fewer samples between piggyback heartbeats
is akin to decreasing the fast heartbeat period seen in previous sections. Please note that
we cannot express piggybackEvery directly as its own QoS, but indirectly through the
maximum samples.

Line 20-Line 22 (Figure 10.14): If piggybackEvery was exactly identical to the fast heart-
beat, there would be no need for fast heartbeat or the high watermark. But one of the
important roles for the fast heartbeat period is to allow a writer to abandon inactive
readers before the queue fills. If the high watermark is set equal to the queue size, the
writer would not doubt the status of an unresponsive reader until the queue completely
fills—blocking on the next write (up to blockingTime). By lowering the high water-
mark, you can control how vigilant a writer is about checking the status of unresponsive
readers. By scaling the high watermark to piggybackEvery, the writer is expressing
confidence that an alive reader will respond promptly within the time it would take a
writer to send 4 times piggybackEvery samples. If the reader does not delay the
response too long, this would be a good assumption. Even if the writer estimated on the
low side and does go into fast mode (suspecting that the reader has crashed) when a
reader is temporarily unresponsive (e.g., when it is performing heavy computation for a
few milliseconds), a response from the reader in question will resolve any doubt, and
data delivery can continue uninterrupted. As the reader catches up to the writer and the
queue level falls below the low watermark, the writer will pop out to the normal,
relaxed mode.

Line 24-Line 28 (Figure 10.14): When a reader is behind (including a reader whose Dura-
bility QoS is non-VOLATILE and therefore needs to catch up to the writer as soon as it is
created), how quickly the writer responds to the reader’s request will determine the
catch-up rate. While a multicast writer (that is, a writer with multicast readers) may con-
10-39

Reliable Communications
sider delaying for some time to take advantage of coalesced multicast packets. Keep in
mind the OS delay resolution issue discussed in the previous section.

Line 30-Line 33 (Figure 10.14): The fast heartbeat mechanism allows a writer to detect a
crashed reader and move along with the remaining readers when a reader does not
respond to any of the max_heartbeat_retries number of heartbeats sent at the
fast_heartbeat_period rate. So if you want a more cautious writer, decrease either num-
bers; conversely, increasing either number will result in a writer that is more reluctant to
write-off an unresponsive reader.

Line 35-Line 36 (Figure 10.14): Since this a periodic model, a separate periodic heartbeat
to notify the writer’s status would seem unwarranted; the piggyback heartbeat sent
with samples takes over that role.

Figure 10.15 shows how to set the QoS for a matching reader, followed by a line-by-line
explanation.

Line 1-Line 2 (Figure 10.15): Unlike a writer, the reader’s default reliability setting is
best-effort, so reliability must be turned on. Since we don’t want to drop anything, we
choose KEEP_ALL for the History QoS.

Line 3-Line 6 (Figure 10.15) Unlike the writer, the reader queue is sized not according to
the jitter of the reader, but rather how many samples you want to cache speculatively in
case of a gap in sequence of samples that the reader must recover. Remember that a
reader will stop giving a sequence of samples as soon as an unintended gap appears,
because the definition of strict reliability includes in-order delivery. If the queue size

Figure 10.15QoS for a Periodic Reliable Reader

1 qos->reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
2 qos->history.kind = DDS_KEEP_ALL_HISTORY_QOS;
3 qos->resource_limits.initial_samples =
4 qos->resource_limits.max_samples =
5 qos->reader_resource_limits.max_samples_per_remote_writer =
6 ((2*piggybackEvery - 1) + dataRateInHz * delayInMs / 1000);
7
8 //use these hard coded value until you use key
9 qos->resource_limits.max_samples_per_instance =
10 qos->resource_limits.max_samples;
11 qos->resource_limits.initial_instances =
12 qos->resource_limits.max_instances = 1;
13
14 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.sec = 0;
15 qos->protocol.rtps_reliable_reader.min_heartbeat_response_delay.nanosec = 0;
16 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.sec = 0;
17 qos->protocol.rtps_reliable_reader.max_heartbeat_response_delay.nanosec = 0;
10-40

Using QosPolicies to Tune the Reliable Protocol
10. Re

lia
b

le
were 1, the reader would have no choice but to drop all subsequent samples received
until the one being sought is recovered. Connext uses speculative caching, which mini-
mizes the disruption caused by a few dropped samples. Even for the same duration of
disruption, the demand on reader queue size is greater if the writer will send more rap-
idly. In sizing the reader queue, we consider 2 factors that comprise the lost sample
recovery time:

❏ How long it takes a reader to request a resend to the writer.

The piggyback heartbeat tells a reader about the writer’s state. If only samples
between two piggybacked samples are dropped, the reader must cache piggy-
backEvery samples before asking the writer for resend. But if a piggybacked
sample is also lost, the reader will not get around to asking the writer until the
next piggybacked sample is received. Note that in this worst case calculation, we
are ignoring stand-alone heartbeats (i.e., not piggybacked heartbeat from the
writer). Of course, the reader may drop any number of heartbeats, including the
stand-alone heartbeat; in this sense, there is no such thing as the absolute worst
case—just reasonable worst case, where the probability of consecutive drops is
acceptably low. For the majority of applications, even two consecutive drops is
unlikely, in which case we need to cache at most (2*piggybackEvery - 1) sam-
ples before the reader will ask the writer to resend, assuming no delay (Line 14-
Line 17).

❏ How long it takes for the writer to respond to the request.

Even ignoring the flight time of the resend request through the transport, the
writer takes a finite time to respond to the repair request--mostly if the writer
delays reply for multicast readers. In case of immediate response, the processing
time on the writer end, as well as the flight time of the messages to and from the
writer do not matter unless very larger data rate; that is, it is the product term
that matters. In case the delay for multicast is random (that is, the minimum and
the maximum delay are not equal), one would have to use the maximum delay
to be conservative.

Line 8-Line 12 (Figure 10.15): Since we are not using keys, there is just one instance.

Line 14-Line 17 (Figure 10.15): If we are not using multicast, or the number of readers
being fed by the writer, there is no reason to delay.
10-41

Reliable Communications
10-42

11. D
ura

b
ility a

nd

Pe
rsiste

nc
e

Chapter 11 Mechanisms for Achieving Information
Durability and Persistence

11.1 Introduction
Connext offers the following mechanisms for achieving durability and persistence:

❏ Durable Writer History This feature allows a DataWriter to persist its historical
cache, perhaps locally, so that it can survive shutdowns, crashes and restarts.
When an application restarts, each DataWriter that has been configured to have
durable writer history automatically loads all of the data in this cache from disk
and can carry on sending data as if it had never stopped executing. To the rest of
the system, it will appear as if the DataWriter had been temporarily disconnected
from the network and then reappeared.

❏ Durable Reader State This feature allows a DataReader to persist its state and
remember which data it has already received. When an application restarts, each
DataReader that has been configured to have durable reader state automatically
loads its state from disk and can carry on receiving data as if it had never
stopped executing. Data that had already been received by the DataReader before
the restart will be suppressed so that it is not even sent over the network.

❏ Data Durability This feature is a full implementation of the OMG DDS Persis-
tence Profile. The DURABILITY QosPolicy (Section 6.5.6) allows an application
to configure a DataWriter so that the information written by the DataWriter sur-
vives beyond the lifetime of the DataWriter. In this manner, a late-joining
DataReader can subscribe to and receive the information even after the DataWriter
application is no longer executing. To use this feature, you need Persistence Ser-
vice, a separate application described in Chapter 21: Introduction to RTI Persis-
tence Service.
11-1

Mechanisms for Achieving Information Durability and Persistence
These features can be configured separately or in combination. To use Durable Writer
State and Durable Reader State, you need a relational database, which is not included
with Connext. Supported databases are listed in the Release Notes. Persistence Service does
not require a database when used in TRANSIENT mode (see Section 11.5.1) or in PER-
SISTENT mode with file-system storage (see Section 11.5.1 and Section 22.5).

To understand how these features interact we will examine the behavior of the system
using the following scenarios:

❏ Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History)
(Section 11.1.1)

❏ Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable Reader
State) (Section 11.1.2)

❏ Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable Data)
(Section 11.1.3)

11.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer
History)

In this scenario, a DomainParticipant joins the domain, creates a DataWriter and writes
some data, then the DataWriter shuts down (gracefully or due to a fault). The DataWriter
restarts and a DataReader joins the domain. Depending on whether the DataWriter is
configured with durable history, the late-joining DataReader may or may not receive the
11-2

Introduction
11. D

ura
b

ility a
nd

Pe

rsiste
nc

e

data published already by the DataWriter before it restarted. This is illustrated in
Figure 11.1. For more information, see Durable Writer History (Section 11.3)

11.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable
Reader State)

In this scenario, two DomainParticipants join a domain; one creates a DataWriter and the
other a DataReader on the same Topic. The DataWriter publishes some data ("a" and "b")
that is received by the DataReader. After this, the DataReader shuts down (gracefully or
due to a fault) and then restarts—all while the DataWriter remains present in the
domain.

Depending on whether the DataReader is configured with Durable Reader State, the
DataReader may or may not receive a duplicate copy of the data it received before it

Figure 11.1 Durable Writer History

Without Durable Writer History:
the late-joining DataReader will not receive
data (a and b) that was published before the
DataWriter’s restart.

DataWriter

DataReader

a

b

With Durable Writer History:
the restarted DataWriter will recover its
history and deliver its data to the late-
joining DataReader

DataWriter

a

b

a

b

DataReader
11-3

Mechanisms for Achieving Information Durability and Persistence
restarted. This is illustrated in Figure 11.2. For more information, see Durable Reader
State (Section 11.4).

11.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable
Data)

In this scenario, a DomainParticipant joins a domain, creates a DataWriter, publishes
some data on a Topic and then shuts down (gracefully or due to a fault). Later, a
DataReader joins the domain and subscribes to the data. Persistence Service is running.

Figure 11.2 Durable Reader State

Without Durable Reader State:
the DataReader will receive the data
that was already received before the
restart.

DataWriter DataReader

a

b

a

b

a

b

With Durable Reader State:
the DataReader remembers that it
already received the data and does not
request it again.

DataWriter DataReader

a

b

a

b

11-4

Durability and Persistence Based on Virtual GUIDs
11. D

ura
b

ility a
nd

Pe

rsiste
nc

e

Depending on whether Durable Data is enabled for the Topic, the DataReader may or
may not receive the data previous published by the DataWriter. This is illustrated in
Figure 11.3. For more information, see Data Durability (Section 11.5)

This third scenario is similar to Scenario 1. DataReader Joins after DataWriter Restarts
(Durable Writer History) (Section 11.1.1) except that in this case the DataWriter does not
need to restart for the DataReader to get the data previously written by the DataWriter.
This is because Persistence Service acts as an intermediary that stores the data so it can be
given to late-joining DataReaders.

11.2 Durability and Persistence Based on Virtual GUIDs
Every modification to the global dataspace made by a DataWriter is identified by a pair
(virtual GUID, sequence number).

Figure 11.3 Durable Data

Without Durable Data:
the late-joining DataReader will not
receive data (a and b) that was
published before the DataWriter quit.

DataWriter

DataReader

a

b

With Durable Data:
Persistence Service remembers what
data was published and delivers it to
the late-joining DataReader.

DataWriter

a

b

a

b

DataReader

Persistence
Service

a

b

11-5

Mechanisms for Achieving Information Durability and Persistence
❏ The virtual GUID (Global Unique Identifier) is a 16-byte character identifier
associated with a DataWriter or DataReader; it is used to uniquely identify this
entity in the global data space.

❏ The sequence number is a 64-bit identifier that identifies changes published by a
specific DataWriter.

Several DataWriters can be configured with the same virtual GUID. If each of these
DataWriters publishes a sample with sequence number '0', the sample will only be
received once by the DataReaders subscribing to the content published by the DataWrit-
ers (see Figure 11.4).

Additionally, Connext uses the virtual GUID to associate a persisted state (state in per-
manent storage) to the corresponding Entity.

For example, the history of a DataWriter will be persisted in a database table with a
name generated from the virtual GUID of the DataWriter. If the DataWriter is restarted, it
must have associated the same virtual GUID to restore its previous history.

Figure 11.4 Global Dataspace Changes

DataWriter

(vg: 1)

DataReader

(vg: 1)
DataWriter

(vg: 1)

DataWriter

(vg: 2)

(vg: 1, sn: 0)

(vg: 2, sn: 0)

(vg: 1, sn: 0)

(vg: 2, sn: 0)

(vg: 2, sn: 0)

(vg: 1, sn: 0)

(vg: 1, sn: 0)
11-6

Durable Writer History
11. D

ura
b

ility a
nd

Pe

rsiste
nc

e

Likewise, the state of a DataReader will be persisted in a database table whose name is
generated from the DataReader virtual GUID (see Figure 11.5).

A DataWriter’s virtual GUID can be configured using the member virtual_guid in the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2).

A DataReader’s virtual GUID can be configured using the member virtual_guid in the
DATA_READER_PROTOCOL QosPolicy (DDS Extension) (Section 7.6.2).

The DDS_PublicationBuiltinTopicData and DDS_SubscriptionBuiltinTopicData struc-
tures include the virtual GUID associated with the discovered publication or subscrip-
tion (see Built-in DataReaders (Section 14.2)).

11.3 Durable Writer History
The DURABILITY QosPolicy (Section 6.5.6) controls whether or not, and how, pub-
lished samples are stored by the DataWriter application for DataReaders that are found
after the samples were initially written. The samples stored by the DataWriter constitute
the DataWriter’s history.

Connext provides the capability to make the DataWriter history durable, by persisting its
content in a relational database. This makes it possible for the history to be restored
when the DataWriter restarts. See the Release Notes for the list of supported relational
databases.

Figure 11.5 History/State Persistence Based on the Virtual GUID

DataWriter DataReader

vg: 1

vg: 1
11-7

Mechanisms for Achieving Information Durability and Persistence
The association between the history stored in the database and the DataWriter is done
using the virtual GUID.

11.3.1 Durable Writer History Use Case

The following use case describes the durable writer history functionality:

1. A DataReader receives two samples with sequence number 1 and 2 published by
a DataWriter with virtual GUID 1.

2. The process running the DataWriter is stopped and a new late-joining DataReader
is created.

The new DataReader with virtual GUID 2 does not receive samples 1 and 2
because the original DataWriter has been destroyed. If the samples must be avail-
able to late-joining DataReaders after the DataWriter deletion, you can use Persis-
tence Service, described in Chapter 21: Introduction to RTI Persistence Service.

3. The DataWriter is restarted using the same virtual GUID.

DataWriter

(vg: 1)

DataReader

(vg: 1)

1, 2 1, 2 1, 2

DataReader

(vg: 1)

DataReader

(vg: 2)

DataWriter

(vg: 1)

DataReader

(vg: 1)
1, 2

1, 2DataReader

(vg: 2)
11-8

Durable Writer History
11. D

ura
b

ility a
nd

Pe

rsiste
nc

e

After being restarted, the DataWriter restores its history. The late-joining
DataReader will receive samples 1 and 2 because they were not received previ-
ously. The DataReader with virtual GUID 1 will not receive samples 1 and 2
because it already received them

4. The DataWriter publishes two new samples.

The two new samples with sequence numbers 3 and 4 will be received by both
DataReaders.

11.3.2 How To Configure Durable Writer History

Connext allows a DataWriter’s history to be stored in a relational database that provides
an ODBC driver.

For each DataWriter history that is configured to be durable, Connext will create a maxi-
mum of two tables:

❏ The first table is used to store the samples associated with the writer history. The
name of that table is WS<32 uuencoding of the writer virtual GUID>.

❏ The second table is only created for keyed-topic and it is used to store the
instances associated with the writer history. The name of the second table is
WI<32 uuencoding of the writer virtual GUID>.

To configure durable writer history, use the PROPERTY QosPolicy (DDS Extension)
(Section 6.5.16) associated with DataWriters and DomainParticipants.

A ‘durable writer history’ property defined in the DomainParticipant will be applicable
to all the DataWriters belonging to the DomainParticipant unless it is overwritten by the
DataWriter. Table 11.1 lists the supported ‘durable writer history’ properties.

Note: Durable Writer History is not supported for Multi-channel DataWriters (see
Chapter 16) or when Batching is enabled (see Section 6.5.1); an error is reported if this
type of DataWriter tries to configure Durable Writer History.

See also: Durable Reader State (Section 11.4).

DataWriter

(vg: 1)

DataReader

(vg: 1)

3, 4 3, 4DataReader

(vg: 2)

3, 4
3, 4
11-9

Mechanisms for Achieving Information Durability and Persistence
Table 11.1 Durable Writer History Properties

Property Description

dds.data_writer.history.plugin_name
Required.
Must be set to "dds.data_writer.history.odbc_plugin.builtin" to enable
durable writer history in the DataWriter.

dds.data_writer.history.odbc_plugin.
dsn

Required.
The ODBC DSN (Data Source Name) associated with the database
where the writer history must be persisted.

dds.data_writer.history.odbc_plugin.
driver

This property tells Connext which ODBC driver to load. If the property
is not specified, Connext will try to use the standard ODBC driver
manager library (UnixOdbc on UNIX/Linux systems, the Windows
ODBC driver manager on Windows systems).

dds.data_writer.history.odbc_plugin.
username Configures the username/password used to connect to the database.

Default: No password or usernamedds.data_writer.history.odbc_plugin.
password

dds.data_writer.history.odbc_plugin.
shared

When set to 1, Connext will create a single connection per DSN that
will be shared across DataWriters within the same Publisher.
A DataWriter can be configured to create its own database connection
by setting this property to 0 (the default).
11-10

Durable Writer History
11. D

ura
b

ility a
nd

Pe

rsiste
nc

e

dds.data_writer.history.odbc_plugin.
instance_cache_max_size

These properties configure the resource limits associated with the
ODBC writer history caches.
To minimize the number of accesses to the database, Connext uses two
caches, one for samples and one for instances. The initial size and the
maximum size of these caches are configured using these properties.
The resource limits, initial_instances, max_instances, initial_samples,
max_samples, and max_samples_per_instance defined in
RESOURCE_LIMITS QosPolicy (Section 6.5.19) are used to configure
the maximum number of samples and instances that can be stored in
the relational database.
Defaults:

❏ instance_cache_max_size: max_instances in
RESOURCE_LIMITS QosPolicy (Section 6.5.19)

❏ instance_cache_init_size: initial_instances in
RESOURCE_LIMITS QosPolicy (Section 6.5.19)

❏ sample_cache_max_size: 32

❏ sample_cache_init_size: 32

Note: If the property in_memory_state (see below in this table) is 1,
then instance_cache_max_size is always equal to max_instances
in RESOURCE_LIMITS QosPolicy (Section 6.5.19)—it cannot be
changed.

dds.data_writer.history.odbc_plugin.
instance_cache_init_size

dds.data_writer.history.odbc_plugin.
sample_cache_max_size

dds.data_writer.history.odbc_plugin.
sample_cache_init_size

dds.data_writer.history.odbc_plugin.
restore

This property indicates whether or not the persisted writer history
must be restored once the DataWriter is restarted.
If this property is 0, the content of the database associated with the
DataWriter being restarted will be deleted.
If it is 1, the DataWriter will restore its previous state from the database
content.
Default: 1

Table 11.1 Durable Writer History Properties

Property Description
11-11

Mechanisms for Achieving Information Durability and Persistence
Example C++ Code

/* Get default QoS */
...
retcode = DDSPropertyQosPolicyHelper::add_property(
 writerQos.property,

 "dds.data_writer.history.plugin_name",
"dds.data_writer.history.odbc_plugin.builtin",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
 /* Report error */
}
retcode = DDSPropertyQosPolicyHelper::add_property(

 writerQos.property,
 "dds.data_writer.history.odbc_plugin.dsn",

"<user DSN>",
DDS_BOOLEAN_FALSE);

retcode = DDSPropertyQosPolicyHelper::add_property(
 writerQos.property,
 "dds.data_writer.history.odbc_plugin.driver",

"<ODBC library>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}

dds.data_writer.history.odbc_plugin.
in_memory_state

This property determines how much state will be kept in memory by
the ODBC writer history in order to avoid accessing the database.
If this property is 1, then the property instance_cache_max_size (see
above in this table) is always equal to max_instances in
RESOURCE_LIMITS QosPolicy (Section 6.5.19)—it cannot be changed.
In addition, the ODBC writer history will keep in memory a fixed state
overhead of 24 bytes per sample. This mode provides the best ODBC
writer history performance. However, the restore operation will be
slower and the maximum number of samples that the writer history
can manage is limited by the available physical memory.
If it is 0, all the state will be kept in the underlying database. In this
mode, the maximum number of samples in the writer history is not
limited by the physical memory available.
Default: 1

Table 11.1 Durable Writer History Properties

Property Description
11-12

Durable Reader State
11. D

ura
b

ility a
nd

Pe

rsiste
nc

e

retcode = DDSPropertyQosPolicyHelper::add_property (
 writerQos.property,

"dds.data_writer.history.odbc_plugin.shared",
"<0|1>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
 /* Report error */
}

/* Create Data Writer */
...

11.4 Durable Reader State
Durable reader state allows a DataReader to locally persists its state and remember
which data it has already received. When an application restarts, each DataReader that
has been configured to have durable reader state automatically loads its state from disk.
Data that was already received by the DataReader before the restart will be suppressed
so it is not sent over the network again.

Connext provides the capability to persist the state of a DataReader in a relational data-
base. This database is accessed using ODBC. See the Release Notes for the list of sup-
ported relational databases.

For each DataReader that is configured to be durable, Connext will create one database
table with the following name RS<32 uuencoding of the reader virtual GUID>. This
table will be used to store the last sample (sequence number) received from each virtual
DataWriter. For DataReaders on keyed topics requesting instance-ordering (see PRESEN-
TATION QosPolicy (Section 6.4.6)), this state will be stored per instance per virtual
DataWriter, not simply per virtual DataWriter.

For the read/take methods that require calling return_loan(), a sample 's1' with
sequence number 'sn1' sent by a DataWriter 'dw1' will be considered as received when
the application return the loan on 'sn1' or any other sample sent by the same DataWriter
(same virtual GUID) with a sequence number equal or greater than 'sn1'. For example:

retcode = Foo_reader->take(data_seq, info_seq,
DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);

if (retcode == DDS_RETCODE_NO_DATA) {
return;

} else if (retcode != DDS_RETCODE_OK) {
11-13

Mechanisms for Achieving Information Durability and Persistence
 /* report error */
return;

}

for (i = 0; i < data_seq.length(); ++i) {
 /* Operate with the data */

 }

/* Return the loan */
retcode = Foo_reader->return_loan(data_seq, info_seq);
if (retcode != DDS_RETCODE_OK) {
 /* Report and error */
}
/* At this point the samples contained in data_seq will be consid-
ered as received. If the DataReader restarts, the samples will not
be received again */

For the read/take methods that do not require calling return_loan(), a sample 's1' with
sequence number 'sn1' sent by a DataWriter 'dw1' will be considered as received after
the application read or take 's1' or any other sample sent by the same DataWriter with a
sequence number equal or greater than 'sn1'. For example:

retcode = Foo_reader->take_next_sample(data,info);

/* At this point the sample contained in data will be considered as
received. All the samples with a sequence number smaller than the
sequence number associated with data will also be considered as
received. If the DataReader restarts these sample will not be
received again */

Important: For DataReaders on keyed topics requesting topic ordering, if you use read/
take methods based on the instance handle, view_state, or instance_state, samples that
have not been taken or read by the application yet may still be considered as received.
To guarantee that every sample that is marked as received by the middleware has been
read/taken by the application, you must use read/take methods that do not depend on
the instance handle, view_state, or instance_state.

Important: The DataReader does not persist the full contents of the data in its historical
cache; it only persists a record of which data it has delivered. This distinction is not
meaningful if your application always uses the ‘take’ methods to access your data, since
these methods remove the data from the cache at the same time they deliver it to your
application. (See Read vs. Take (Section 7.4.3.1)) However, if your application uses the
‘read’ methods, leaving the data in the DataReader's cache after you've accessed it for the
first time, those previously viewed samples will not be restored to the DataReader's
cache in the event of a restart.
11-14

Durable Reader State
11. D

ura
b

ility a
nd

Pe

rsiste
nc

e

11.4.1 Durable Reader State Use Case

The following use case describes the durable reader state functionality:

1. A DataReader receives two samples with sequence number 1 and 2 published by
a DataWriter with virtual GUID 1. The application takes those samples.

2. After the application returns the loan on samples 1 and 2, the DataReader consid-
ers them as received and it persists the state change.

3. The process running the DataReader is stopped.

4. The DataReader is restarted.

Because all the samples with sequence number smaller or equal than 2 were con-
sidered as received, the reader will not ask for these samples to the DataWriter.

DataWriter

(vg: 1)

DataReader

(vg: 1)

1, 2 1, 2 take 1, 2

DataWriter

(vg: 1)
DataReader

(vg: 1)

return loan 1, 2

(dw vg: 1,last sn: 2)

DataWriter

(vg: 1)

DataReader

(vg: 1)

(dw vg: 1,last sn: 2)
11-15

Mechanisms for Achieving Information Durability and Persistence
11.4.2 How To Configure a DataReader for Durable Reader State

To configure a DataReader with durable reader state, use the PROPERTY QosPolicy
(DDS Extension) (Section 6.5.16) associated with DataReaders and DomainParticipants.

A property defined in the DomainParticipant will be applicable to all the DataReaders
contained in the participant unless it is overwritten by the DataReaders. Table 11.2 lists
the supported properties.

Table 11.2 Durable Reader State Properties

Property Description

dds.data_reader.state.odbc.dsn
Required.
The ODBC DSN (Data Source Name) associated with the database
where the DataReader state must be persisted.

dds.data_reader.state.
filter_redundant_samples

To enable durable reader state, this property must be set to 1.
When set to 0, the reader state is not maintained and Connext does
not filter duplicate samples that may be coming from the same vir-
tual writer.
Default: 1

dds.data_reader.state.odbc.driver

This property indicates which ODBC driver to load. If the property is
not specified, Connext will try to use the standard ODBC driver
manager library (UnixOdbc on UNIX/Linux systems, the Windows
ODBC driver manager on Windows systems).

dds.data_reader.state.odbc.username These two properties configure the username and password used to
connect to the database.
Default: No password or usernamedds.data_reader.state.odbc.password

dds.data_reader.state.restore

This property indicates if the persisted DataReader state must be
restored or not once the DataReader is restarted.
If this property is 0, the previous state will be deleted from the data-
base. If it is 1, the DataReader will restore its previous state from the
database content.
Default: 1
11-16

Durable Reader State
11. D

ura
b

ility a
nd

Pe

rsiste
nc

e

Example (C++ code):

/* Get default QoS */
...
retcode = DDSPropertyQosPolicyHelper::add_property(
 readerQos.property,

 "dds.data_reader.state.odbc.dsn",
"<user DSN>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
 retcode = DDSPropertyQosPolicyHelper::add_property(
 readerQos.property,

 "dds.data_reader.state.odbc.driver",
"<ODBC library>",
DDS_BOOLEAN_FALSE);

 if (retcode != DDS_RETCODE_OK) {
/* Report error */

 }
retcode = DDSPropertyQosPolicyHelper::add_property(
 readerQos.property,

 "dds.data_reader.state.restore",
"<0|1>",
DDS_BOOLEAN_FALSE);

if (retcode != DDS_RETCODE_OK) {
/* Report error */

}
/* Create Data Reader */

 ...

dds.data_reader.state.
checkpoint_frequency

This property controls how often the reader state is stored into the
database. A value of N means store the state once every N samples.
A high frequency will provide better performance. However, if the
reader is restarted it may receive some duplicate samples. These sam-
ples will be filtered by Connext and they will not be propagated to
the application.
Default: 1

dds.data_reader.state.persistence_
service.request_depth

This property indicates how many of the most recent historical sam-
ples the persisted DataReader wants to receive upon start-up.
Default: 0

Table 11.2 Durable Reader State Properties

Property Description
11-17

Mechanisms for Achieving Information Durability and Persistence
11.5 Data Durability
The data durability feature is an implementation of the OMG DDS Persistence Profile.
The DURABILITY QosPolicy (Section 6.5.6) allows an application to configure a DataW-
riter so that the information written by the DataWriter survives beyond the lifetime of
the DataWriter.

Connext implements TRANSIENT and PERSISTENT durability using an external ser-
vice called Persistence Service, available for purchase as a separate RTI product.

Persistence Service receives information from DataWriters configured with TRANSIENT
or PERSISTENT durability and makes that information available to late-joining
DataReaders—even if the original DataWriter is not running.

The samples published by a DataWriter can be made durable by setting the kind field of
the DURABILITY QosPolicy (Section 6.5.6) to one of the following values:

❏ DDS_TRANSIENT_DURABILITY_QOS: Connext will store previously pub-
lished samples in memory using Persistence Service, which will send the stored
data to newly discovered DataReaders.

❏ DDS_PERSISTENT_DURABILITY_QOS: Connext will store previously pub-
lished samples in permanent storage, like a disk, using Persistence Service, which
will send the stored data to newly discovered DataReaders.

A DataReader can request TRANSIENT or PERSISTENT data by setting the kind field of
the corresponding DURABILITY QosPolicy (Section 6.5.6). A DataReader requesting
PERSISTENT data will not receive data from DataWriters or Persistence Service applica-
tions that are configured with TRANSIENT durability.

11.5.1 RTI Persistence Service

Persistence Service is a Connext application that is configured to persist topic data. Persis-
tence Service is included with Connext Messaging. For each one of the topics that must be
persisted for a specific domain, the service will create a DataWriter (known as PRSTDa-
taWriter) and a DataReader (known as PRSTDataReader). The samples received by the
PRSTDataReaders will be published by the corresponding PRSTDataWriters to be avail-
able for late-joiners DataReaders.

For more information on Persistence Service, please see:

❏ Chapter 21: Introduction to RTI Persistence Service

❏ Chapter 22: Configuring Persistence Service
11-18

Data Durability
11. D

ura
b

ility a
nd

Pe

rsiste
nc

e

❏ Chapter 23: Running RTI Persistence Service

Persistence Service can be configured to operate in PERSISTENT or TRANSIENT mode:

❏ TRANSIENT mode The PRSTDataReaders and PRSTDataWriters will be created
with TRANSIENT durability and Persistence Service will keep the received sam-
ples in memory. Samples published by a TRANSIENT DataWriter will survive
the DataWriter lifecycle but will not survive the lifecycle of Persistence Service
(unless you are running multiple copies).

❏ PERSISTENT mode The PRSTDataWriters and PRSTDataReaders will be created
with PERSISTENT durability and Persistence Service will store the received sam-
ples in files or in an external relational database. Samples published by a PER-
SISTENT DataWriter will survive the DataWriter lifecycle as well as any restarts
of Persistence Service.

Peer-to-Peer Communication:

By default, a PERSISTENT/TRANSIENT DataReader will receive samples directly from
the original DataWriter if it is still alive. In this scenario, the DataReader may also receive
the same samples from Persistence Service. Duplicates will be discarded at the middle-
ware level. This Peer-To-Peer communication pattern is illustrated inFigure 11.6. To use
this peer-to-peer communication pattern, set the direct_communication field in the
DURABILITY QosPolicy (Section 6.5.6) to TRUE. A PERSISTENT/TRANSIENT
DataReader will receive information directly from PERSISTENT/TRANSIENT
DataWriters.

DataWriter

(vg: 1)
DataReader

(vg: 1)

(vg: 1, sn: 0)

(vg: 1, sn: 0)(vg: 1, sn: 0)

(vg: 1, sn: 0)(vg: 1, sn: 0) (vg: 1, sn: 0)

The application
only receives
one sample.

Figure 11.6 Peer-to-Peer Communication

RTI Persistence
Service
11-19

Mechanisms for Achieving Information Durability and Persistence
Relay Communication:

A PERSISTENT/TRANSIENT DataReader may also be configured to not receive sam-
ples from the original DataWriter. In this case the traffic is relayed by Persistence Service.
This ‘relay communication’ pattern is illustrated in Figure 11.7. To use relay communi-
cation, set the direct_communication field in the DURABILITY QosPolicy (Section
6.5.6) to FALSE. A PERSISTENT/TRANSIENT DataReader will receive all the informa-
tion from Persistence Service.

Figure 11.7 Relay Communication

DataWriter

(vg: 1)

DataReader

(vg: 1)

(vg: 1, sn: 0)

(vg: 1, sn: 0)

(vg: 1, sn: 0)

RTI Persistence
Service
11-20

12. D
isc

ove
ry
Chapter 12 Discovery

This chapter discusses how Connext objects on different nodes find out about each other
using the default Simple Discovery Protocol (SDP). It describes the sequence of mes-
sages that are passed between Connext on the sending and receiving sides.

This chapter includes the following sections:

❏ What is Discovery? (Section 12.1)

❏ Configuring the Peers List Used in Discovery (Section 12.2)

❏ Discovery Implementation (Section 12.3)

❏ Debugging Discovery (Section 12.4)

❏ Ports Used for Discovery (Section 12.5)

The discovery process occurs automatically, so you do not have to implement any spe-
cial code. We recommend that all users read What is Discovery? (Section 12.1) and Con-
figuring the Peers List Used in Discovery (Section 12.2). The remaining sections contain
advanced material for those who have a particular need to understand what is happen-
ing ‘under the hood.’ This information can help you debug a system in which objects are
not communicating.

You may also be interested in reading Chapter 13: Transport Plugins , as well as learning
about these QosPolicies:

❏ TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.21)

❏ TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)

❏ TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.22)

❏ TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6)
12-1

Chapter 12
12.1 What is Discovery?
Discovery is the behind-the-scenes way in which Connext objects (DomainParticipants,
DataWriters, and DataReaders) on different nodes find out about each other. Each
DomainParticipant maintains a database of information about all the active DataReaders
and DataWriters that are in the same domain. This database is what makes it possible for
DataWriters and DataReaders to communicate. To create and refresh the database, each
application follows a common discovery process.

This chapter describes the default discovery mechanism known as the Simple Discovery
Protocol, which includes two phases: Simple Participant Discovery (Section 12.1.1) and
Simple Endpoint Discovery (Section 12.1.2). (Discovery can also be performed using the
Enterprise Discovery Protocol—this requires a separately purchased package, RTI Enter-
prise Discovery Service.)

The goal of these two phases is to build, for each DomainParticipant, a complete picture
of all the entities that belong to the remote participants that are in its peers list. The
peers list is the list of nodes with which a participant may communicate. It starts out the
same as the initial_peers list that you configure in the DISCOVERY QosPolicy (DDS
Extension) (Section 8.5.2). If the accept_unknown_peers flag in that same QosPolicy is
TRUE, then other nodes may also be added as they are discovered; if it is FALSE, then
the peers list will match the initial_peers list, plus any peers added using the Domain-
Participant’s add_peer() operation.

12.1.1 Simple Participant Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Participant Dis-
covery Protocol (SPDP).

During the Participant Discovery phase, DomainParticipants learn about each other. The
DomainParticipant’s details are communicated to all other DomainParticipants in the
same domain by sending participant declaration messages, also known participant
DATA submessages. The details include the DomainParticipant’s unique identifying key
(GUID or Globally Unique ID described below), transport locators (addresses and port
numbers), and QoS. These messages are sent on a periodic basis using best-effort com-
munication.

Participant DATAs are sent periodically to maintain the liveliness of the DomainPartici-
pant. They are also used to communicate changes in the DomainParticipant’s QoS. Only
changes to QosPolicies that are part of the DomainParticipant’s built-in data (namely, the
USER_DATA QosPolicy (Section 6.5.24)) need to be propagated.
12-2

12.1 What is Discovery?
12. D

isc
ove

ry
When a DomainParticipant is deleted, a participant DATA (delete) submessage with the
DomainParticipant's identifying GUID is sent.

The GUID is a unique reference to an entity. It is composed of a GUID prefix and an
Entity ID. By default, the GUID prefix is calculated from the IP address and the process
ID. (For more on how the GUID is calculated, see Controlling How the GUID is Set
(rtps_auto_id_kind) (Section 8.5.9.4).) The IP address and process ID are stored in the
DomainParticipant’s WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9). The
entityID is set by Connext (you may be able to change it in a future version).

Once a pair of remote participants have discovered each other, they can move on to the
Endpoint Discovery phase, which is how DataWriters and DataReaders find each other.

12.1.2 Simple Endpoint Discovery

This phase of the Simple Discovery Protocol is performed by the Simple Endpoint Dis-
covery Protocol (SEDP).

During the Endpoint Discovery phase, Connext matches DataWriters and DataReaders.
Information (GUID, QoS, etc.) about your application’s DataReaders and DataWriters is
exchanged by sending publication/subscription declarations in DATA messages that
we will refer to as publication DATAs and subscription DATAs. The Endpoint Discovery
phase uses reliable communication.

As described in Section 12.3, these declaration or DATA messages are exchanged until
each DomainParticipant has a complete database of information about the participants in
its peers list and their entities. Then the discovery process is complete and the system
switches to a steady state. During steady state, participant DATAs are still sent periodi-
cally to maintain the liveliness status of participants. They may also be sent to commu-
nicate QoS changes or the deletion of a DomainParticipant.

When a remote DataWriter/DataReader is discovered, Connext determines if the local
application has a matching DataReader/DataWriter. A ‘match’ between the local and
remote entities occurs only if the DataReader and DataWriter have the same Topic, same
data type, and compatible QosPolicies (which includes having the same partition name
string, see Section 6.4.5). Furthermore, if the DomainParticipant has been set up to ignore
certain DataWriters/DataReaders, those entities will not be considered during the match-
ing process. See Section 14.4.2 for more on ignoring specific publications and subscrip-
tions.

This ‘matching’ process occurs as soon as a remote entity is discovered, even if the entire
database is not yet complete: that is, the application may still be discovering other
remote entities.
12-3

Chapter 12
A DataReader and DataWriter can only communicate with each other if each one’s appli-
cation has hooked up its local entity with the matching remote entity. That is, both sides
must agree to the connection.

Section 12.3 describes the details about the discovery process.

12.2 Configuring the Peers List Used in Discovery
The Connext discovery process will try to contact all possible participants on each
remote node in the ‘initial peers list,’ which comes from the initial_peers field of the
DomainParticipant’s DISCOVERY QosPolicy.

The ‘initial peers list’ is just that: an initial list of peers to contact. Furthermore, the peers
list merely contains potential peers—there is no requirement that there actually be Con-
next applications on the hosts in the list.

After startup, you can add to the ‘peers list’ with the add_peer() operation (see Adding
and Removing Peers List Entries (Section 8.5.2.3)). The ‘peer list’ may also grow as peers
are automatically discovered (if accept_unknown_peers is TRUE, see Controlling
Acceptance of Unknown Peers (Section 8.5.2.6)).

When you call get_default_participant_qos() for a DomainParticipantFactory, the values
used for the DiscoveryQosPolicy’s initial_peers and multicast_receive_addresses may
come from the following:

❏ A file named NDDS_DISCOVERY_PEERS, which is formatted as described in
NDDS_DISCOVERY_PEERS File Format (Section 12.2.3). The file must be in the
same directory as your application’s executable.

❏ An environment variable named NDDS_DISCOVERY_PEERS, defined as a
comma-separated list of peer descriptors (see NDDS_DISCOVERY_PEERS Envi-
ronment Variable Format (Section 12.2.2)).

❏ The value specified in the default XML QoS profile (see Overwriting Default
QoS Values (Section 15.8.4)).

If NDDS_DISCOVERY_PEERS (file or environment variable) does not contain a multi-
cast address, then multicast_receive_addresses is cleared and the RTI discovery process
will not listen for discovery messages via multicast.

If NDDS_DISCOVERY_PEERS (file or environment variable) contains one or more
multicast addresses, the addresses are stored in multicast_receive_addresses, starting
12-4

12.2 Configuring the Peers List Used in Discovery
12. D

isc
ove

ry
at element 0. They will be stored in the order in which they appear in
NDDS_DISCOVERY_PEERS.

Note: Setting initial_peers in the default XML QoS Profile does not modify the value of
multicast_receive_address.

If both the file and environment variable are found, the file takes precedence and the
environment variable will be ignored.1 The settings in the default XML QoS Profile take
precedence over the file and environment variable. In the absence of a file, environment
variable, or default XML QoS profile values, Connext will use a default value. See the
online documentation for details (in the section on the DISCOVERY QosPolicy).

If initial peers are specified in both the currently loaded QoS XML profile and in the
NDDS_DISCOVERY_PEERS file, the values in the profile take precedence.

The file, environment variable, and default XML QoS Profile make it easy to reconfigure
which nodes will take part in the discovery process—without recompiling your applica-
tion.

The file, environment variable, and default XML QoS Profile are the possible sources for
the default initial peers list. You can, of course, explicitly set the initial list by changing
the values in the QoS provided to the DomainParticipantFactory's create_participant()
operation, or by adding to the list after startup with the DomainParticipant’s add_peer()
operation (see Section 8.5.2.3).

If you set NDDS_DISCOVERY_PEERS and You Want to Communicate over Shared Memory:

Suppose you want to communicate with other Connext applications on the same host
and you are explicitly setting NDDS_DISCOVERY_PEERS (generally in order to use
unicast discovery with applications on other hosts).

If the local host platform does not support the shared memory transport, then you can
include the name of the local host in the NDDS_DISCOVERY_PEERS list. (To check if
your platform supports shared memory, see the Platform Notes document.)

If the local host platform supports the shared memory transport, then you must do one
of the following:

❏ Include "shmem://" in the NDDS_DISCOVERY_PEERS list. This will cause
shared memory to be used for discovery and data traffic for applications on the
same host.

or:

1. This is true even if the file is empty.
12-5

Chapter 12
❏ Include the name of the local host in the NDDS_DISCOVERY_PEERS list, and
disable the shared memory transport in the TRANSPORT_BUILTIN QosPolicy
(DDS Extension) (Section 8.5.7) of the DomainParticipant. This will cause UDP
loopback to be used for discovery and data traffic for applications on the same
host.

12.2.1 Peer Descriptor Format

A peer descriptor string specifies a range of participants at a given locator. Peer descrip-
tor strings are used in the DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2)
initial_peers field (see Section 8.5.2.2) and the DomainParticipant’s add_peer() and
remove_peer() operations (see Section 8.5.2.3).

The anatomy of a peer descriptor is illustrated in Figure 12.1 using a special "StarFabric"
transport example.

A peer descriptor consists of:

Figure 12.1 Peer Descriptor Address String
12-6

12.2 Configuring the Peers List Used in Discovery
12. D

isc
ove

ry
❏ [optional] A participant ID. If a simple integer is specified, it indicates the maxi-
mum participant ID to be contacted by the Connext discovery mechanism at the
given locator. If that integer is enclosed in square brackets (e.g., [2]), then only
that Participant ID will be used. You can also specify a range in the form of [a,b]:
in this case only the Participant IDs in that specific range are contacted. If omit-
ted, a default value of 4 is implied.

❏ A locator, as described in Section 12.2.1.1.

These are separated by the '@' character. The separator may be omitted if a participant
ID limit is not explicitly specified.

The "participant ID limit" only applies to unicast locators; it is ignored for multicast
locators (and therefore should be omitted for multicast peer descriptors).

12.2.1.1 Locator Format

A locator string specifies a transport and an address in string format. Locators are used
to form peer descriptors. A locator is equivalent to a peer descriptor with the default
participant ID limit (4).

A locator consists of:

❏ [optional] Transport name (alias or class). This identifies the set of transport plug-
ins (transport aliases) that may be used to parse the address portion of the loca-
tor. Note that a transport class name is an implicit alias used to refer to all the
transport plug-in instances of that class.

❏ [optional] An address, as described in Section 12.2.1.2.

These are separated by the "://" string. The separator is specified if and only if a trans-
port name is specified.

If a transport name is specified, the address may be omitted; in that case all the unicast
addresses (across all transport plug-in instances) associated with the transport class are
implied. Thus, a locator string may specify several addresses.

If an address is specified, the transport name and the separator string may be omitted;
in that case all the available transport plug-ins for the Entity may be used to parse the
address string.

The transport names for the built-in transport plug-ins are:

❏ shmem - Shared Memory Transport

❏ udpv4 - UDPv4 Transport
12-7

Chapter 12
❏ udpv6 - UDPv6 Transport

12.2.1.2 Address Format

An address string specifies a transport-independent network address that qualifies a
transport-dependent address string. Addresses are used to form locators. Addresses are
also used in the DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2)
multicast_receive_addresses and the
DDS_TransportMulticastSettings_t::receive_address fields. An address is equivalent
to a locator in which the transport name and separator are omitted.

An address consists of:

❏ [optional] A network address in IPv4 or IPv6 string notation. If omitted, the net-
work address of the transport is implied.

❏ [optional] A transport address, which is a string that is passed to the transport for
processing. The transport maps this string into
NDDS_Transport_Property_t::address_bit_count bits. If omitted, the network
address is used as the fully qualified address.

These are separated by the '#' character. If a separator is specified, it must be followed by
a non-empty string which is passed to the transport plug-in.

The bits resulting from the transport address string are prepended with the network
address. The least significant NDDS_Transport_Property_t::address_bit_count bits of
the network address are ignored.

If you omit the ‘#’ separator and the string is not a valid IPv4 or IPv6 address, it is
treated as a transport address with an implicit network address (of the transport plug-
in).

12.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format

You can set the default value for the initial peers list in an environment variable named
NDDS_DISCOVERY_PEERS. Multiple peer descriptor entries must be separated by
commas. Table 12.1 shows some examples. The examples use an implied maximum par-
ticipant ID of 4 unless otherwise noted. (If you need instructions on how to set environ-
ment variables, see the Getting Started Guide).
12-8

12.2 Configuring the Peers List Used in Discovery
12. D

isc
ove

ry
12.2.3 NDDS_DISCOVERY_PEERS File Format

You can set the default value for the initial peers list in a file named
NDDS_DISCOVERY_PEERS. The file must be in the your application’s current work-
ing directory.

Table 12.1 NDDS_DISCOVERY_PEERS Environment Variable Examples

NDDS_DISCOVERY_PEERS Description of Host(s)

239.255.0.1 multicast

localhost localhost

192.168.1.1 10.10.30.232 (IPv4)

FAA0::1 FAA0::0 (IPv6)

himalaya,gangotri himalaya and gangotri

1@himalaya,1@gangotri
himalaya and gangotri (with a maximum participant ID of
1 on each host)

FAA0::0localhost
FAA0::0localhost (could be a UDPv4 transport plug-in reg-
istered at network address of FAA0::0) (IPv6)

udpv4://himalaya
himalaya accessed using the "udpv4" transport plug-ins)
(IPv4)

udpv4://FAA0::0localhost
localhost using the "udpv4" transport plug-ins) registered
at network address FAA0::0

udpv4://
all unicast addresses accessed via the "udpv4" (UDPv4)
transport plug-ins)

0/0/R

#0/0/R
0/0/R (StarFabric)

starfabric://0/0/R

starfabric://#0/0/R

0/0/R (StarFabric) using the "starfabric" (StarFabric) trans-
port plug-ins

starfabric://FBB0::0#0/0/R
0/0/R (StarFabric) using the "starfabric" (StarFabric) trans-
port plug-ins registered at network address FAA0::0

starfabric://
all unicast addresses accessed via the "starfabric" (StarFab-
ric) transport plug-ins

shmem://
all unicast addresses accessed via the "shmem" (shared
memory) transport plug-ins

shmem://FCC0::0
all unicast addresses accessed via the "shmem" (shared
memory) transport plug-ins registered at network address
FCC0::0
12-9

Chapter 12
The file is optional. If it is found, it supersedes the values in any environment variable of
the same name.

Entries in the file must contain a sequence of peer descriptors separated by whitespace
or the comma (',') character. The file may also contain comments starting with a semico-
lon (';') character until the end of the line.

Example file contents:

;; NDDS_DISCOVERY_PEERS - Default Discovery Configuration File

;; Multicast builtin.udpv4://239.255.0.1 ; default discovery multicast addr

;; Unicast
localhost,192.168.1.1 ; A comma can be used a separator
FAA0::1 FAA0::0#localhost ; Whitespace can be used as a separator
1@himalaya ; Max participant ID of 1 on 'himalaya'
1@gangotri

;; UDPv4
udpv4://himalaya ; 'himalaya' via 'udpv4' transport plugin(s)
udpv4://FAA0::0#localhost ; 'localhost' via 'updv4' transport plugin

 ; registered at network address FAA0::0

;; Shared Memory
shmem:// ; All 'shmem' transport plugin(s)
builtin.shmem:// ; The builtin builtin 'shmem' transport plugin
shmem://FCC0::0 ; Shared memory transport plugin registered

 ; at network address FCC0::0

;; StarFabric
0/0/R ; StarFabric node 0/0/R
starfabric://0/0/R ; 0/0/R accessed via 'starfabric'

; transport plugin(s)
starfabric://FBB0::0#0/0/R ; StarFabric transport plugin registered

; at network address FBB0::0
starfabric:// ; All 'starfabric' transport plugin(s)
12-10

12.3 Discovery Implementation
12. D

isc
ove

ry
12.3 Discovery Implementation
Note: this section contains advanced material not required by most users.

Discovery is implemented using built-in DataWriters and DataReaders. These are the
same class of entities your application uses to send/receive data. That is, they are also of
type DDSDataWriter/DDSDataReader. For each DomainParticipant, three built-in
DataWriters and three built-in DataReaders are automatically created for discovery pur-
poses. Figure 12.2 shows how these objects are used. (For more on built-in DataReaders
and DataWriters, see Chapter 14: Built-In Topics).

The implementation is split into two separate protocols:

Simple Participant Discovery Protocol (SPDP)
+ Simple Endpoint Discovery Protocol (SEDP)

= Simple Discovery Protocol (SDP)

12.3.1 Participant Discovery

When a DomainParticipant is created, a DataWriter and a DataReader are automatically
created to exchange participant DATA messages in the network. These DataWriters and
DataReaders are "special" because the DataWriter can send to a given list of destinations,
regardless of whether there is a Connext application at the destination, and the
DataReader can receive data from any source, whether the source is previously known or
not. In other words, these special readers and writers do not need to discover the remote
entity and perform a match before they can communicate with each other.

When a DomainParticipant joins or leaves the network, it needs to notify its peer partici-
pants. The list of remote participants to use during discovery comes from the peer list
described in the DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2). The remote
participants are notified via participant DATA messages. In addition, if a participant’s
QoS is modified in such a way that other participants need to know about the change
(that is, changes to the USER_DATA QosPolicy (Section 6.5.24)), a new participant DATA
will be sent immediately.

Participant DATAs are also used to maintain a participant’s liveliness status. These are
sent at the rate set in the participant_liveliness_assert_period in the
DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3).

Let’s examine what happens when a new remote participant is discovered. If the new
remote participant is in the local participant's peer list, the local participant will add that
remote participant into its database. If the new remote participant is not in the local
12-11

Chapter 12
application's peer list, it may still be added, if the accept_unknown_peers field in the
DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2) is set to TRUE.

Once a remote participant has been added to the Connext database, Connext keeps track
of that remote participant’s participant_liveliness_lease_duration. If a participant
DATA for that participant (identified by the GUID) is not received at least once within
the participant_liveliness_lease_duration, the remote participant is considered stale,

Figure 12.2 Built-in Writers and Readers for Discovery

For each DomainParticipant, there are six objects automatically created for discovery purposes.
The top two objects are used to send/receive participant DATA messages, which are used in the
Participant Discovery phase to find remote DomainParticipants. This phase uses best-effort
communications. Once the participants are aware of each other, they move on to the Endpoint
Discovery Phase to learn about each other’s DataWriters and DataReaders. This phase uses
reliable communications.

Builtin
DataWriter

Builtin
DataReader

Advertises this
participant’s

DataWriters and
DataReaders

Discovers other
participants’

DataWriters and
DataReaders

Advertises this
participant

Discovers other
participants

participant DATA

participant DATA

publication DATA

subscription DATA

publication DATA

subscription DATA

DomainParticipant

Participant
Discovery
Phase

Endpoint
(Writer/
Reader)
Discovery
Phase

NetworkBuiltin
DataWriter

Builtin
DataWriter

Builtin
DataReader

Builtin
DataReader

“DCPSParticipant” builtin topic

“DCPSParticipant” builtin topic

“DCPSPublication” builtin topic

“DCPSSubscription” builtin topic

“DCPSPublication” builtin topic

“DCPSSubscription” builtin topic
12-12

12.3 Discovery Implementation
12. D

isc
ove

ry
and the remote participant, together with all its entities, will be removed from the data-
base of the local participant.

To keep from being purged by other participants, each participant needs to periodically
send a participant DATA to refresh its liveliness. The rate at which the participant DATA is
sent is controlled by the participant_liveliness_assert_period in the participant’s
DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3). This exchange,
which keeps Participant A from appearing ‘stale,’ is illustrated in Figure 12.3.
Figure 12.4 shows what happens when Participant A terminates ungracefully and there-
fore needs to be seen as ‘stale.’

12.3.1.1 Refresh Mechanism

To ensure that a late-joining participant does not need to wait until the next refresh of
the remote participant DATA to discover the remote participant, there is a resend mecha-
nism. If the received participant DATA is from a never-before-seen remote participant,
and it is in the local participant's peers list, the application will resend its own participant
DATA to all its peers. This resend can potentially be done multiple times, with a random
sleep time in between. Figure 12.5 illustrates this scenario.

The number of retries and the random amount of sleep between them are controlled by
each participant’s DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3)
(see ① and ✍ in Figure 12.5).

Figure 12.6 provides a summary of the messages sent during the participant discovery
phase.
12-13

Chapter 12
Figure 12.3 Periodic ‘participant DATAs’

The DomainParticipant on Node A sends a ‘participant DATA’ to Node B, which is in Node A’s peers list.
This occurs regardless of whether or not there is a Connext application on Node B.

① The green short dashed lines are periodic participant DATAs. The time between these messages is
controlled by the participant_liveliness_assert_period in the DiscoveryConfig QosPolicy.

➁ In addition to the periodic participant DATAs, ‘initial repeat messages’ (shown in blue, with longer
dashes) are sent from A to B. These messages are sent at a random time between
min_initial_participant_announcement_period and max_initial_participant_announcement_period (in A’s
DiscoveryConfig QosPolicy). The number of these initial repeat messages is set in
initial_participant_announcements.

participant A DATA

Participant created

Participant’s UserDataQosPolicy
modified

Participant destroyed
participant A DATA
(delete)

Node A Node B

① Participant A’s
DDS_DomainParticipantQos.discovery_config.
participant_liveliness_assert_period

①

①

①

①

①

①

➁

➁

➁ Random time between
min_initial_participant_announcement_period
and
max_initial_participant_announcement_period
(in A’s
DDS_DomainParticipantQos.discovery_config)
12-14

12.3 Discovery Implementation
12. D

isc
ove

ry
Figure 12.4 Ungraceful Termination of a Participant

Participant A is removed from participant B’s database if it is not refreshed within the liveliness lease
duration. Dashed lines are periodic participant DATA messages.

(Periodic resends of ‘participant B DATA’ from B to A are omitted from this diagram for simplicity.
Initial repeat messages from A to B are also omitted from this diagram—these messages are sent at a
random time between min_initial_participant_announcement_period and
max_initial_participant_announcement_period, see Figure 12.3.)

participant A DATA

Participant created

Participant ungracefully
terminated

Node A Node B

Remote participant A
considered ‘stale,’
removed from database

Participant created

New remote participant A
added to database➀

➀

➁ Participant A’s
DDS_DomainParticipantQos.discovery_config.
participant_liveliness_lease_duration

➁

➁

➀ Participant A’s
DDS_DomainParticipantQos.discovery_config.
participant_liveliness_assert_period
12-15

Chapter 12
Figure 12.5 Resending ‘participant DATA’ to a Late-Joiner

Participant A has Participant B in its peers list. Participant B does not have Participant A in its peers
list, but [DiscoveryQosPolicy.accept_unknown_peers] is set to DDS_BOOLEAN_TRUE. Participant A
joins the system after B has sent its initial announcement. After B discovers A, it waits for time ➁, then
resends its participant DATA.

(Initial repeat messages are omitted from this diagram for simplicity, see Figure 12.3.)

participant A DATA

Participant created

participant B DATA

Node A Node B

Participant created

New remote participant A
added to database

➁

➁

participant A already in database,
no action taken

➀

New remote participant B
added to database

➀

 ➀wait random time (between
min_initial_participant_announcement_period
and
max_initial_participant_announcement_period)
for [initial_participant_announcements] = 2
(using values from A’s DiscoveryQosPolicy)

participant A DATA
participant A DATA

participant B DATA

participant B already in
database, no action taken

Resend participant DATA to
all peers

 ➁ same as ➀, but using participant B’s
QoS
12-16

12.3 Discovery Implementation
12. D

isc
ove

ry
periodic

participant B DATA

Figure 12.6 Participant Discovery Summary

Participants A and B both have each other in their peers lists. Participant A is created first.

participant A DATA

Participant created

Newly discovered participant B
added to database

Node A Node B

Participant created
participant B DATA

participant A DATA Newly discovered
participant A added
to database

Participants have discovered
each other

participant B DATA

periodic participant B DATA

periodic participant A DATA

Participant B already in database,
no action required

 ➀ wait random time (between
min_initial_participant_announcement_period
and
max_initial_participant_announcement_period)
for [initial_participant_announcements] = 1
(using values from A’s DiscoveryQosPolicy)

➀

➁ same as ①, but using Participant B’s QoS

➁

periodic participant A DATA

initial repeat of
participant A DATA

initial repeat of

participant B DATA

➀

➁

12-17

Chapter 12
12.3.1.2 Maintaining DataWriter Liveliness for kinds AUTOMATIC and MANUAL_BY_PARTICIPANT

To maintain the liveliness of DataWriters that have a LIVELINESS QosPolicy (Section
6.5.12) kind field set to AUTOMATIC or MANUAL_BY_PARTICIPANT, Connext uses
a built-in DataWriter and DataReader pair, referred to as the inter-participant reader and
inter-participant writer.

If the DomainParticipant has any DataWriters with Liveliness QosPolicy kind set to
AUTOMATIC, the inter-participant writer will reliably broadcast an AUTOMATIC
liveliness message at a period equal to the shortest lease_duration of these DataWriters.
(The lease_duration is a field in the LIVELINESS QosPolicy (Section 6.5.12).) Figure 12.7
illustrates this scenario.

If the DomainParticipant has any DataWriters with Liveliness QosPolicy kind set to
MANUAL_BY_PARTICIPANT, Connext will periodically check to see if any of them
have called write(), assert_liveliness(), dispose() or unregister(). The rate of this check
is every X seconds, where X is the smallest lease_duration among all the DomainPartici-
pant's MANUAL_BY_PARTICIPANT DataWriters. (The lease_duration is a field in the
LIVELINESS QosPolicy (Section 6.5.12).) If any of the MANUAL_BY_PARTICIPANT

Figure 12.7 DataWriter with AUTOMATIC Liveliness

A liveliness message is sent automatically when a DataWriter with AUTOMATIC Liveliness kind is
created, and then periodically, every DDS_DataWriterQos.liveliness.lease_duration.

AUTOMATIC liveliness message

Participant created

DataWriter C created
with liveliness kind = AUTOMATIC

Node A Node B

 ➀ DataWriter C’s

DDS_DataWriterQos.liveliness.lease_duration

➀

➀

➀

➀

12-18

12.3 Discovery Implementation
12. D

isc
ove

ry
DataWriters have called any of those operations, the inter-participant writer will reliably
broadcast a MANUAL liveliness message.

If a DomainParticipant's assert_liveliness() operation is called, and that DomainPartici-
pant has any MANUAL_BY_PARTICIPANT DataWriters, the inter-participant writer
will reliably broadcast a MANUAL liveliness message within the above-defined X time
period. These MANUAL liveliness messages are used to update the liveliness of all the
DomainParticipant's MANUAL_BY_PARTICIPANT DataWriters, as well as the liveli-
ness of the DomainParticipant itself. Figure 12.8 shows an example sequence.

Figure 12.8 DataWriter with MANUAL_BY_PARTICIPANT Liveliness

Participant created

Node A Node B

➀ DataWriter C’s
DDS_DataWriterQos.liveliness.lease_duration

DomainParticipant::assert_liveliness()
(no liveliness message is sent)

DataWriter C created
with liveliness kind = MANUAL_BY_PARTICIPANT

DomainParticipant::assert_liveliness()
(causes Liveliness message to be sent later)

Calling assert_liveliness(), write(), dispose(), or
unregister_instance() on DataWriter C

(causes Liveliness message to be sent later)

MANUAL Liveliness message

MANUAL Liveliness message

➀

➀

Once a MANUAL_BY_PARTICIPANT DataWriter is created, subsequent calls to
assert_liveliness, write, dispose, or unregister_instance will trigger Liveliness messages, which
update the liveliness status of all the participant’s DataWriters, and the participant itself.
12-19

Chapter 12
The inter-participant reader receives data from remote inter-participant writers and
asserts the liveliness of remote DomainParticipants endpoints accordingly.

If the DomainParticipant has no DataWriters with LIVELINESS QosPolicy (Section 6.5.12)
kind set to AUTOMATIC or MANUAL_BY_PARTICIPANT, then no liveliness mes-
sages are ever sent from the inter-participant writer.

12.3.2 Endpoint Discovery

As we saw in Figure 12.2 on page 12-12, reliable DataReaders and Datawriters are auto-
matically created to exchange publication/subscription information for each Domain-
Participant. We will refer to these as ‘discovery endpoint readers and writers.’ However,
nothing is sent through the network using these entities until they have been ‘matched’
with their remote counterparts. This ‘matching’ is triggered by the Participant Discov-
ery phase. The goal of the Endpoint Discovery phase is to add the remote endpoint to
the local database, so that user-created endpoints (your application’s DataWriters/
DataReaders) can communicate with each other.

When a new remote DomainParticipant is discovered and added to a participant’s data-
base, Connext assumes that the remote DomainParticipant is implemented in the same
way and therefore is creating the appropriate counterpart entities. Therefore, Connext
will automatically add two remote discovery endpoint readers and two remote discov-
ery endpoint writers for that remote DomainParticipant into the local database. Once that
is done, there is now a match with the local discovery endpoint writers and readers, and
publication DATAs and subscription DATAs can then be sent between the discovery end-
point readers/writers of the two DomainParticipant.

When you create a DataWriter/DataReader for your user data, a publication/subscription
DATA describing the newly created object is sent from the local discovery endpoint
writer to the remote discovery endpoint readers of the remote DomainParticipants that
are currently in the local database.

If your application changes any of the following QosPolicies for a local user-data
DataWriter/DataReader, a modified subscription/publication DATA is sent to propagate the
QoS change to other DomainParticipants:

❏ TOPIC_DATA QosPolicy (Section 5.2.1)

❏ GROUP_DATA QosPolicy (Section 6.4.4)

❏ USER_DATA QosPolicy (Section 6.5.24)

❏ USER_DATA QosPolicy (Section 6.5.24)

❏ OWNERSHIP_STRENGTH QosPolicy (Section 6.5.15)

❏ PARTITION QosPolicy (Section 6.4.5)
12-20

12.3 Discovery Implementation
12. D

isc
ove

ry
❏ TIME_BASED_FILTER QosPolicy (Section 7.6.5)

❏ LIFESPAN QoS Policy (Section 6.5.11)

What the above QosPolicies have in common is that they are all changeable and part of
the built-in data (see Chapter 14: Built-In Topics).

Similarly, if the application deletes any user-data writers/readers, the discovery end-
point writer/readers send delete publication/subscription DATAs. In addition to send-
ing publication/subscription DATAs, the discovery endpoint writer will check
periodically to see if the remote discovery endpoint reader is up-to-date. (The rate for
this check is the publication_writer.heartbeat_period or
subscription_writer.heartbeat_period in the DISCOVERY_CONFIG QosPolicy (DDS
Extension) (Section 8.5.3). If the discovery endpoint writer has not been acknowledged
by the remote discovery endpoint reader regarding receipt of the latest DATA, the dis-
covery endpoint writer will send a special Heartbeat (HB) message with the Final bit set
to 0 (F=0) to request acknowledgement from the remote discovery endpoint reader, as
seen in Figure 12.9.

Discovery endpoint writers and readers have their HISTORY QosPolicy (Section 6.5.9)
set to KEEP_LAST, and their DURABILITY QosPolicy (Section 6.5.6) set to
TRANSIENT_LOCAL. Therefore, even if the remote DomainParticipant has not yet been
discovered at the time the local user’s DataWriter/DataReader is created, the remote
DomainParticipant will still be informed about the previously created DataWriter/
DataReader. This is achieved by the HB and ACK/NACK that are immediately sent by
the built-in endpoint writer and built-in endpoint reader respectively when a new
remote participant is discovered. Figure 12.10 and Figure 12.11 illustrate this sequence
for HB and ACK/NACK triggers, respectively.

Endpoint discovery latency is determined by the following members of the DomainPar-
ticipant’s DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3):

❏ publication_writer

❏ subscription_writer

❏ publication_reader

❏ subscription_reader

When a remote entity record is added, removed, or changed in the database, matching is
performed with all the local entities. Only after there is a successful match on both ends
can an application’s user-created DataReaders and DataWriters communicate with each
other.

For more information about reliable communication, see Chapter 10: Reliable Commu-
nications.
12-21

Chapter 12
Figure 12.9 Endpoint Discovery Summary

Assume participants A and B have been discovered on both sides. A’s
DiscoveryConfigQosPolicy.publication_writer.heartbeats_per_max_samples = 0, so no HB is piggybacked
with the publication DATA. A HB with F=0 is a request for an ACK/NACK. The periodic and initial repeat
participant DATAs are omitted from the diagram.

publication C DATA

DataWriter C created

Modify DataWriter C’s
UserData QoS

Node A Node B

Remote DataWriter C discovered,
added to database

DataWriter C’s QoS modified,
record in database modified

periodic HB (F=0)

ACKNACK

DataWriter C deleted

➁wait random time between B’s
[DDS_DomainParticipantQos.
discovery_config.
publication_reader.min_heartbeat_
response_delay] and
[...max_heartbeat_response_delay]

modified publication C DATA

periodic HB (F=0)

ACKNACK

delete publication C DATAperiodic HB (F=0)

ACKNACK

DataWriter C removed
from database

➀ A’s DDS_DomainParticipantQos.discovery_config.
publication_writer.heartbeat_period

➀

➀

➁

➁

➁

Periodic HB not sent since A
knows that B is up-to-date

➀

➀

12-22

12.3 Discovery Implementation
12. D

isc
ove

ry
Figure 12.10 DataWriter Discovered by Late-Joiner, Triggered by HB

Writer C is created on Participant A before Participant A discovers Participant B. Assuming
DiscoveryConfigQosPolicy.publication_writer.heartbeats_per_max_samples = 0, no HB is piggybacked with the
publication DATA. Participant B has A in its peer list, but not vice versa. Accept_unknown_locators is true. On
A, in response to receiving the new participant B DATA message, a participant A DATA message is sent to B. The
discovery endpoint reader on A will also send an ACK/NACK to the discovery endpoint writer on B. (Initial repeat
participant messages and periodic participant messages are omitted from this diagram for simplicity, see
Figure 12.3.)

Publication C DATA sent to discovery

endpoint readers of discovered remote

participants in database
Create DataWriter C

Node A Node B

HB (F=1)

ACKNACK

periodic HB (F=0)

ACK

Remote DataWriter C finally
discovered, added to database

➁ wait random time between B’s
[DDS_DomainParticipantQos.discovery_config.
publication_reader.min_heartbeat_response_delay]
and (...max_heartbeat_response_delay]

➁

➁

 ➂ wait random time between A’s
[DDS_DomainParticipantQos.discovery_config.
publication_writer.min_nack_response_delay]
and (...max_nack_response_delay]

 ➀ Participant A’s
[DDS_DomainParticipant
Qos.discovery_config.
publication_writer.
heartbeat_period)

➀

➂

➀

Node B hasn’t been discovered by
Node A yet, so it doesn’t receive
the publication DATA for C

Publication C DATA sent to
 discovery endpoint reader
of remote participant B

Send HB to see if the
discovery publication
reader on Node B is
up-to-date.

Latest DATA from C has
not been received

participant B DATA
Participant B created
12-23

Chapter 12
Figure 12.11 DataWriter Discovered by Late-Joiner, Triggered by ACKNACK

Writer C is created on Participant A before Participant A discovers Participant B. Assuming
DiscoveryConfigQosPolicy.publication_writer.heartbeats_per_max_samples = 0, no HB is piggybacked with
the publication DATA message. Participant A has B in its peer list, but not vice versa.
Accept_unknown_locators is true. In response to receiving the new Participant A DATA message on node B,
a participant B DATA message will be sent to A. The discovery endpoint writer on Node B will also send a
HB to the discovery endpoint reader on Node A. These are omitted in the diagram for simplicity. (Initial
repeat participant messages and periodic participant messages are omitted from this diagram, see
Figure 12.3.)

Publication C DATA sent to discovery

endpoint readers of discovered remote

participantsCreate DataWriter C

Node A Node B

C DATA + HB (F=0)

ACKNACK

ACKNACK

Remote DataWriter C discovered,
added to database

➁ wait random time between B’s
[DDS_DomainParticipantQos.discovery_config.
publication_reader.min_heartbeat_response_delay]
and (...max_heartbeat_response_delay]

➁

 ➂ wait random time between A’s
[DDS_DomainParticipantQos.discovery_config.
publication_writer.min_nack_response_delay]
and (...max_nack_response_delay]

 ➀ Participant A’s
[DDS_DomainParticipant
Qos.discovery_config.
publication_writer.
heartbeat_period)

➀

➂

➀

Participant B created

A is discovered. ACKNACK sent
immediately to discovery endpoint writer
of the newly discovered remote
participant

periodic A DATA
12-24

12.3 Discovery Implementation
12. D

isc
ove

ry
12.3.3 Discovery Traffic Summary

This diagram shows both phases of the discovery process. Participant A is created first, followed by
Participant B. Each has the other in its peers list. After they have discovered each other, a DataWriter is
created on Participant A. Periodic participant DATAs, HBs and ACK/NACKs are omitted from this
diagram.

participant A DATA

Participant A created
Node A Node B

participant B DATA

publication C DATA

participant A DATA

Remote DataWriter C
discovered, added to database

Newly discovered Participant
B added to database

participant B DATA

publication C DATA (delete)

participant A DATA (delete)

participant B DATA (delete)

Newly discovered Participant A
added to database

Participant B created

DataWriter C created

DataWriter C deleted

Remote DataWriter C deleted,
removed from database

Participant A destroyed

Remote Participant A
removed from database

 ➀ wait random time (between
min_initial_participant_announcement_period
and
max_initial_participant_announcement_period)
for [initial_participant_announcements] = 1
(using values from A’s DiscoveryConfigQosPolicy)

➁ same as ➀, but using participant
B’s QoS

➀

➁

Participant B destroyed

initial repeat of
participant A DATA

initial repeat of

participant B DATA

➁

➀

12-25

Chapter 12
12.3.4 Discovery-Related QoS

Each DomainParticipant needs to be uniquely identified in the domain and specify which
other DomainParticipants it is interested in communicating with. The
WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9) uniquely identifies a
DomainParticipant in the domain. The DISCOVERY QosPolicy (DDS Extension) (Section
8.5.2) specified the peer participants it is interested in communicating with.

There is a trade-off between the amount of traffic on the network for the purposes of
discovery and the delay in reaching steady state when the DomainParticipant is first cre-
ated.

For example, if the DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2)’s
participant_liveliness_assert_period and participant_liveliness_lease_duration fields
are set to small values, the discovery of stale remote DomainParticipants will occur faster,
but more discovery traffic will be sent over the network. Setting the participant’s
heartbeat_period1 to a small value can cause late-joining DomainParticipants to discover
remote user-data DataWriters and DataReaders at a faster rate, but Connext might send
HBs to other nodes more often. This timing can be controlled by the following Domain-
Participant QosPolicies:

DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2) — specifies how other Domain-
Participants in the network can communicate with this DomainParticipant, and
which other DomainParticipants in the network this DomainParticipant is interested
in communicating with. See also:Ports Used for Discovery (Section 12.5)

DISCOVERY_CONFIG QosPolicy (DDS Extension) (Section 8.5.3) — specifies the QoS
of the discovery readers and writers (parameters that control the HB and ACK
rates of discovery endpoint readers/writers, and periodic refreshing of participant
DATA from discovery participant readers/writers).

DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section
8.5.4) — specifies the number of local and remote entities expected in the system.

WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9) — specifies the
rtps_app_id and rtps_host_id that uniquely identify the participant in the
domain.

The other important parameter is the domain ID: DomainParticipants can only discover
each other if they belong to the same domain. The domain ID is a parameter passed to
the create_participant() operation (see Section 8.3.1).

1. heartbeat_period is part of the DDS_RtpsReliableWriterProtocol_t structure used in the DISCOVERY
QosPolicy (DDS Extension) (Section 8.5.2)’s publication_writer and subscription_writer fields.
12-26

12.4 Debugging Discovery
12. D

isc
ove

ry
12.4 Debugging Discovery
To understand the flow of messages during discovery, you can increase the verbosity of
the messages logged by Connext so that you will see whenever a new entity is discov-
ered, and whenever there is a match between a local entity and a remote entity.

This can be achieved with the logging API:

NDDSConfigLogger::get_instance()->set_verbosity_by_category
(NDDS_CONFIG_LOG_CATEGORY_ENTITIES, NDDS_CONFIG_LOG_VERBOSITY_STATUS_REMOTE);

Using the scenario in the summary diagram in Section 12.3.3, these are the messages as
seen on DomainParticipant A:

[D0049|ENABLE]DISCPluginManager_onAfterLocalParticipantEnabled:announcing new
local participant: 0XA0A01A1,0X5522,0X1,0X1C1
[D0049|ENABLE]DISCPluginManager_onAfterLocalParticipantEnabled:at
{46c614d9,0C43B2DC}

• (The above messages mean: First participant A DATA sent out when partici-
pant A is enabled.)

DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:discovered
new participant: host=0x0A0A01A1, app=0x0000552B, instance=0x00000001
DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:at
{46c614dd,8FA13C1F}
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin discovered/updated
remote participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at {46c614dd,8FACE677}
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin accepted new
remote participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at {46c614dd,8FACE677}

• (The above messages mean: Received participant B DATA.)

DISCSimpleParticipantDiscoveryPlugin_remoteParticipantDiscovered:re-announcing
participant self: 0XA0A01A1,0X5522,0X1,0X1C1
DISCSimpleParticipantDiscoveryPlugin_remoteParticipantDiscovered:at
{46c614dd,8FC02AF7}

• (The above messages mean: Resending participant A DATA to the newly dis-
covered remote participant.)

PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X200C2,
local 0x000200C7 in reliable reader service
PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X200C7,
local 0x000200C2 in reliable writer service
12-27

Chapter 12
PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X4C7, local
0x000004C2 in reliable writer service
PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X3C7, local
0x000003C2 in reliable writer service
PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X4C2, local
0x000004C7 in reliable reader service
PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X3C2, local
0x000003C7 in reliable reader service
PRESPsService_linkToLocalReader:assert remote 0XA0A01A1,0X552B,0X1,0X100C2,
local 0x000100C7 in best effort reader service

• (The above messages mean: Automatic matching of the discovery readers and
writers. A built-in remote endpoint's object ID always ends with Cx.)

DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:discovered
modified participant: host=0x0A0A01A1, app=0x0000552B, instance=0x00000001
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:plugin discovered/updated
remote participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:at {46c614dd,904D876C}

• (The above messages mean: Received participant B DATA.)

DISCPluginManager_onAfterLocalEndpointEnabled:announcing new local publication:
0XA0A01A1,0X5522,0X1,0X80000003
DISCPluginManager_onAfterLocalEndpointEnabled:at {46c614d9,1013B9F0}
DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLocalWriterEnabled:announc-
ing new publication: 0XA0A01A1,0X5522,0X1,0X80000003
DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLocalWriterEnabled:at
{46c614d9,101615EB}

• (The above messages mean: Publication C DATA has been sent.)

DISCSimpleEndpointDiscoveryPlugin_subscriptionReaderListenerOnDataAvailable:dis-
covered subscription: 0XA0A01A1,0X552B,0X1,0X80000004
DISCSimpleEndpointDiscoveryPlugin_subscriptionReaderListenerOnDataAvailable:at
{46c614dd,94FAEFEF}
DISCEndpointDiscoveryPlugin_assertRemoteEndpoint:plugin discovered/updated
remote endpoint: 0XA0A01A1,0X552B,0X1,0X80000004
DISCEndpointDiscoveryPlugin_assertRemoteEndpoint:at {46c614dd,950203DF}

• (The above messages mean: Receiving subscription D DATA from Node B.)

PRESPsService_linkToLocalWriter:assert remote 0XA0A01A1,0X552B,0X1,0X80000004,
local 0x80000003 in best effort writer service

• (The above message means: User-created DataWriter C and DataReader D are
matched.)

[D0049|DELETE_CONTAINED]DISCPluginManager_onAfterLocalEndpointDeleted:announc-
ing disposed local publication: 0XA0A01A1,0X5522,0X1,0X80000003
12-28

12.4 Debugging Discovery
12. D

isc
ove

ry
[D0049|DELETE_CONTAINED]DISCPluginManager_onAfterLocalEndpointDeleted:at
{46c61501,288051C8}
[D0049|DELETE_CONTAINED]DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLoca
lWriterDeleted:announcing disposed publication: 0XA0A01A1,0X5522,0X1,0X80000003
[D0049|DELETE_CONTAINED]DISCSimpleEndpointDiscoveryPluginPDFListener_onAfterLoca
lWriterDeleted:at {46c61501,28840E15}

• (The above messages mean: Publication C DATA(delete) has been sent.)

DISCPluginManager_onBeforeLocalParticipantDeleted:announcing before disposed
local participant: 0XA0A01A1,0X5522,0X1,0X1C1
DISCPluginManager_onBeforeLocalParticipantDeleted:at {46c61501,28A11663}

• (The above messages mean: Participant A DATA(delete) has been sent.)

DISCParticipantDiscoveryPlugin_removeRemoteParticipantsByCookie:plugin removing
3 remote entities by cookie
DISCParticipantDiscoveryPlugin_removeRemoteParticipantsByCookie:at
{46c61501,28E38A7C}
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:plugin discovered dis-
posed remote participant: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:at {46c61501,28E68E3D}
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:remote entity removed
from database: 0XA0A01A1,0X552B,0X1,0X1C1
DISCParticipantDiscoveryPlugin_removeRemoteParticipantI:at {46c61501,28E68E3D}

• (The above messages mean: Removing discovered entities from local database,
before shutting down.)

As you can see, the messages are encoded, since they are primarily used by RTI support
personnel.

For more information on the message logging API, see Controlling Messages from Con-
next (Section 18.2).

If you notice that a remote entity is not being discovered, check the QoS related to dis-
covery (see Section 12.3.4).

If a remote entity is discovered, but does not match with a local entity as expected,
check the QoS of both the remote and local entity.
12-29

Chapter 12
12.5 Ports Used for Discovery
There are two kinds of traffic in a Connext application: discovery (meta) traffic, and user
traffic. Meta-traffic is for data (declarations) that is sent between the automatically-cre-
ated discovery writers and readers; user traffic is for data that is sent between user-cre-
ated DataWriters and DataReaders. To keep the two kinds of traffic separate, Connext uses
different ports, as described below.

Note: The ports described in this section are used for incoming data. Connext uses
ephemeral ports for outbound data.

Connext uses the RTPS wire protocol. The discovery protocols defined by RTPS rely on
well-known ports to initiate discovery. These well-known ports define the multicast and
unicast ports on which a Participant will listen for meta-traffic from other Participants.
The meta-traffic contains the information required by Connext to establish the presence
of remote Entities in the network.

The well-known incoming ports are defined by RTPS in terms of port mapping expres-
sions with several tunable parameters. This allows you to customize what network
ports are used for receiving data by Connext. These parameters are shown in Table 12.2.
(For defaults and valid ranges, please see the online documentation.)

In order for all Participants in a system to correctly discover each other, it is important
that they all use the same port mapping expressions.

Table 12.2 WireProtocol QosPolicy’s rtps_well_known_ports (DDS_RtpsWellKnownPorts_t)

Type Field Name Description

DDS_Long

port_base

The base port offset. All mapped well-known
ports are offset by this value. Resulting ports
must be within the range imposed by the under-
lying transport.

domain_id_gain
Tunable gain parameters. See Section 12.5.4.

participant_id_gain

builtin_multicast_port_offset Additional offset for meta-traffic port. See
Inbound Ports for Meta-Traffic (Section 12.5.1).builtin_unicast_port_offset

user_multicast_port_offset Additional offset for user traffic port. See
Inbound Ports for User Traffic (Section 12.5.2).user_unicast_port_offset
12-30

12.5 Ports Used for Discovery
12. D

isc
ove

ry
In addition to the parameters listed in Table 12.2, the port formulas described below
depend on:

❏ The domain ID specified when the DomainParticipant is created (see
Section 8.3.1). The domain ID ensures no port conflicts exist between Partici-
pants belonging to different domains. This also means that discovery traffic in
one domain is not visible to DomainParticipants in other domains.

❏ The participant_id is a field in the WIRE_PROTOCOL QosPolicy (DDS Exten-
sion) (Section 8.5.9), see Section 8.5.9.1. The participant_id ensures that unique
unicast port numbers are assigned to DomainParticipants belonging to the same
domain on a given host.

Backwards Compatibility: Connext 4.5 supports the standard DDS Interoperability Wire
Protocol based on the Real-time Publish-Subscribe (RTPS) protocol. Because this proto-
col is not compatible with that used by RTI Data Distribution Service 4.2c and older,
applications built with 4.5 (as well as 4.4, 4.3, and 4.2e) will not interoperate with appli-
cations built with versions 4.2c and older. The default port mapping from domainID
and participant index has also been changed according to the new interoperability spec-
ification. The message types and formats used by RTPS have also changed.

Port Aliasing: When modifying the port mapping parameters, avoid port aliasing. This
would result in undefined discovery behavior. The chosen parameter values will also
determine the maximum possible number of domains in the system and the maximum
number of participants per domain. Additionally, any resulting mapped port number
must be within the range imposed by the underlying transport. For example, for
UDPv4, this range typically equals [1024 - 65535].

12.5.1 Inbound Ports for Meta-Traffic

The Wire Protocol QosPolicy’s rtps_well_known_ports.metatraffic_unicast_port deter-
mines the port used for receiving meta-traffic using unicast:

metatraffic_unicast_port = port_base +
(domain_id_gain * Domain ID) +
(participant_id_gain * participant_id) +
 builtin_unicast_port_offset

Similarly, rtps_well_known_ports.metatraffic_multicast_port determines the port
used for receiving meta-traffic using multicast. The corresponding multicast group
12-31

Chapter 12
addresses are specified via multicast_receive_addresses (see Section 8.5.2.4).

metatraffic_multicast_port = port_base +
 (domain_id_gain * Domain ID) +
 builtin_multicast_port_offset

Note: Multicast is only used for meta-traffic if a multicast address is specified in the
NDDS_DISCOVERY_PEERS environment variable or file or if the
multicast_receive_addresses field of the DISCOVERY_CONFIG QosPolicy (DDS Exten-
sion) (Section 8.5.3) is set.

12.5.2 Inbound Ports for User Traffic

RTPS also defines the default multicast and unicast ports on which DataReaders and
DataWriters receive user traffic. These default ports can be overridden using the
DataReader’s TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6) and
TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.22), or the DataW-
riter’s TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.22).

The WireProtocol QosPolicy’s rtps_well_known_ports.usertraffic_unicast_port deter-
mines the port used for receiving user data using unicast:

usertraffic_unicast_port = port_base +
 (domain_id_gain * Domain ID) +
 (participant_id_gain * participant_id)+
 user_unicast_port_offset

Similarly, rtps_well_known_ports.usertraffic_multicast_port determines the port used
for receiving user data using multicast. The corresponding multicast group addresses
can be configured using the TRANSPORT_UNICAST QosPolicy (DDS Extension) (Sec-
tion 6.5.22).

usertraffic_multicast_port = port_base +
 (domain_id_gain * Domain ID) +

user_multicast_port_offset

12.5.3 Automatic Selection of participant_id and Port Reservation

The WIRE_PROTOCOL QosPolicy (DDS Extension) (Section 8.5.9)
rtps_reserved_ports_mask field determines what type of ports are reserved when the
DomainParticipant is enabled. See Choosing Participant IDs (Section 8.5.9.1).
12-32

12.5 Ports Used for Discovery
12. D

isc
ove

ry
12.5.4 Tuning domain_id_gain and participant_id_gain

The domain_id_gain is used as a multiplier of the domain ID. Together with
participant_id_gain (Section 12.5.4), these values determine the highest domain ID and
participant_id allowed on this network.

In general, there are two ways to set up the domain_id_gain and participant_id_gain
parameters.

❏ If domain_id_gain > participant_id_gain, it results in a port mapping layout
where all DomainParticipants in a domain occupy a consecutive range of
domain_id_gain ports. Precisely, all ports occupied by the domain fall within:

(port_base + (domain_id_gain * Domain ID))

and:

 (port_base + (domain_id_gain * (Domain ID + 1)) - 1)

In this case, the highest domain ID is limited only by the underlying transport's
maximum port. The highest participant_id, however, must satisfy:

max_participant_id < (domain_id_gain / participant_id_gain)

❏ On the contrary, if domain_id_gain <= participant_id_gain, it results in a port
mapping layout where a given domain's DomainParticipant instances occupy
ports spanned across the entire valid port range allowed by the underlying
transport. For instance, it results in the following potential mapping:

In this case, the highest participant_id is limited only by the underlying trans-
port's maximum port. The highest domain_id, however, must satisfy:

max_domain_id < (participant_id_gain / domain_id_gain)

Mapped Port Domain ID Participant ID

higher port number

1
2

0

1
1

0

1
0

lower port number 0
12-33

Chapter 12
The domain_id_gain also determines the range of the port-specific offsets:

domain_id_gain >
abs(builtin_multicast_port_offset - user_multicast_port_offset)

and

 domain_id_gain >
abs(builtin_unicast_port_offset - user_unicast_port_offset)

Violating this may result in port aliasing and undefined discovery behavior.

The participant_id_gain also determines the range of builtin_unicast_port_offset and
user_unicast_port_offset.

participant_id_gain > abs(builtin_unicast_port_offset -
user_unicast_port_offset)

In all cases, the resulting ports must be within the range imposed by the underlying
transport.
12-34

13. Tra
nsp

o
rt Plug

ins
Chapter 13 Transport Plugins

Connext has a pluggable-transports architecture. The core of Connext is transport agnos-
tic—it does not make any assumptions about the actual transports used to send and
receive messages. Instead, Connext uses an abstract "transport API" to interact with the
transport plugins that implement that API. A transport plugin implements the abstract
transport API, and performs the actual work of sending and receiving messages over a
physical transport.

There are essentially three categories of transport plugins:

❏ Builtin Transport Plugins Connext comes with a set of commonly used transport
plugins. These ‘builtin’ plugins include UDPv4, UDPv6, and shared memory. So
that Connext applications can work out-of-the-box, some of these are enabled by
default (see TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7)).

❏ Extension Transport Plugins RTI offers extension transports, including RTI Secure
WAN Transport (see Chapter 19 and Chapter 20) and RTI TCP Transport (see
Chapter 30).

❏ Custom-developed Transport Plugins RTI supports the use of custom transport
plugins. This is a powerful capability that distinguishes Connext from competing
middleware approaches. If you are interested in developing a custom transport
plugin for Connext, please contact your local RTI representative or email
sales@rti.com.

This chapter describes the following:

❏ Builtin Transport Plugins (Section 13.1)

❏ Extension Transport Plugins (Section 13.2)

❏ The NDDSTransportSupport Class (Section 13.3)

❏ Explicitly Creating Builtin Transport Plugin Instances (Section 13.4)
13-1

Transport Plugins
❏ Setting Builtin Transport Properties of the Default Transport Instance—get/
set_builtin_transport_properties() (Section 13.5)

❏ Setting Builtin Transport Properties with the PropertyQosPolicy (Section 13.6)

❏ Installing Additional Builtin Transport Plugins with register_transport() (Section
13.7)

❏ Installing Additional Builtin Transport Plugins with PropertyQosPolicy (Section
13.8)

❏ Other Transport Support Operations (Section 13.9)

13.1 Builtin Transport Plugins
There are two ways in which the builtin transport plugins may be registered:

❏ Default builtin Transport Instances: Builtin transports that are turned "on" in the
TRANSPORT_BUILTIN QosPolicy (DDS Extension) (Section 8.5.7) are implicitly
registered when (a) the DomainParticipant is enabled, (b) the first DataWriter/
DataReader is created, or (c) you look up a builtin DataReader (by calling
lookup_datareader() on a Subscriber), whichever happens first. The builtin
transport plugins have default properties. If you want to change these proper-
ties, do so before1 the transports are registered.

❏ Other Transport Instances: There are two ways to install non-default builtin trans-
port instances:

• Transport plugins may be explicitly registered by first creating an instance of
the transport plugin (by calling NDDS_Transport_UDPv4_new(),
NDDS_Transport_UDPv6_new() or NDDS_Transport_Shmem_new(), see
Section 13.4), then calling register_transport() (Section 13.7). (For example,
suppose you want an extra instance of a transport.) (Not available for the Java
or .NET API.)

• Additional builtin transport instances can also be installed through the
PROPERTY QosPolicy (DDS Extension) (Section 6.5.16).

To configure the properties of the builtin transports:

❏ Set properties by calling set_builtin_transport_property() (see Section 13.5)

1. Any transport property changes made after the plugin is registered will have no effect.
13-2

Extension Transport Plugins
13. Tra

nsp
o

rt Plug
ins
or

❏ Specify predefined property strings in the DomainParticipant’s PropertyQosPol-
icy, as described in Section 13.6.

❏ For other builtin transport instances:

• If the builtin transport plugin is created with
NDDS_Transport_UDPv4_new(), NDDS_Transport_UDPv6_new() or
NDDS_Transport_Shmem_new(), properties can be specified during cre-
ation time. See Explicitly Creating Builtin Transport Plugin Instances (Section
13.4).

• If the additional builtin transport instances are installed through the PROP-
ERTY QosPolicy (DDS Extension) (Section 6.5.16), the properties of the builtin
transport plugins can also be specified through that same QosPolicy.

13.2 Extension Transport Plugins
If you want to change the properties for an extension transport plugin, do so before1 the
plugin is registered.

There are two ways to install an extension transport plugin:

❏ Implicit Registration: Transports can be installed through the predefined strings in
the DomainParticipant’s PropertyQosPolicy. Once the transport’s properties are
specified in the PropertyQosPolicy, the transport will be implicitly registered
when (a) the DomainParticipant is enabled, (b) the first DataWriter/DataReader is
created, or (c) you look up a builtin DataReader (by calling lookup_datareader()
on a Subscriber), whichever happens first.

QosPolicies can also be configured from XML resources (files, strings)—with this
approach, you can change the QoS without recompiling the application. The QoS
settings are automatically loaded by the DomainParticipantFactory when the
first DomainParticipant is created. For more information, see Chapter 15: Config-
uring QoS with XML.

❏ Explicit Registration: Transports may be explicitly registered by first creating an
instance of the transport plugin (see Section 13.4) and then calling
register_transport() (see Section 13.7).

1. Any transport property changes made after the plugin is registered will have no effect.
13-3

Transport Plugins
13.3 The NDDSTransportSupport Class
The register_transport() and set_builtin_transport_property() operations are part of
the NDDSTransportSupport class, which includes the operations listed in Table 13.1.

13.4 Explicitly Creating Builtin Transport Plugin Instances
The builtin transports (UDPv4, UDPv6, and Shared Memory) are implicitly created by
default (if they are enabled via the TRANSPORT_BUILTIN QosPolicy (DDS Extension)
(Section 8.5.7)). Therefore, you only need to explicitly create a new instance if you want
an extra instance (suppose you want two UDPv4 transports, one with special settings).

Transport plugins may be explicitly registered by first creating an instance of the trans-
port plugin and then calling register_transport() (Section 13.7). (For example, suppose
you want an extra instance of a transport.) (Not available for the Java API.)

To create an instance of a builtin transport plugin, use one of the following functions:

NDDS_Transport_Plugin* NDDS_Transport_UDPv4_new (
const struct NDDS_Transport_UDPv4_Property_t * property_in)

Table 13.1 Transport Support Operations

Operation Description Reference

get_transport_plugin
Retrieves a previously registered transport plu-
gin.

Section 13.7
register_transport

Registers a transport plugin for use with a
DomainParticipant.

get_builtin_transport_property
Gets the properties used to create a builtin
transport plugin.

Section 13.5
set_builtin_transport_property

Sets the properties used to create a builtin
transport plugin.

add_send_route Adds a route for outgoing messages. Section 13.9.1

add_receive_route Adds a route for incoming messages. Section 13.9.2

lookup_transport
Looks up a transport plugin within a Domain-
Participant.

Section 13.9.3
13-4

Setting Builtin Transport Properties of the Default Transport Instance—get/set_builtin_transport_properties()
13. Tra

nsp
o

rt Plug
ins
NDDS_Transport_Plugin* NDDS_Transport_UDPv4_new (
const struct NDDS_Transport_UDPv4_Property_t * property_in)

NDDS_Transport_Plugin* NDDS_Transport_Shmem_new (
const struct NDDS_Transport_Shmem_Property_t * property_in)

property_in Desired behavior of this transport. May be NULL for default properties.

For details on using these functions, please see the online (HTML) documentation.

Your application may create and register multiple instances of these transport plugins
with Connext. This may be done to partition the network interfaces across multiple
domains. However, note that the underlying transport, the operating system's IP layer,
is still a "singleton." For example, if a unicast transport has already bound to a port, and
another unicast transport tries to bind to the same port, the second attempt will fail.

13.5 Setting Builtin Transport Properties of the Default Transport
Instance—get/set_builtin_transport_properties()
Perhaps you want to use one of the builtin transports, but need to modify the proper-
ties. (For default values, please see the online/HTML documentation.) Used together,
the two operations below allow you to customize properties of the builtin transport
when it is implicitly registered (see Section 13.1).

Note: Another way to change the properties is with the Property QosPolicy, see
Section 13.6. Changing properties with the Property QosPolicy will overwrite the prop-
erties set by calling set_builtin_transport_property().

DDS_ReturnCode_t NDDSTransportSupport::get_builtin_transport_property
(DDSDomainParticipant * participant_in,
 DDS_TransportBuiltinKind builtin_transport_kind_in,
 struct NDDS_Transport_Property_t &builtin_transport_property_inout)

DDS_ReturnCode_t NDDSTransportSupport::set_builtin_transport_property
(DDSDomainParticipant * participant_in,
 DDS_TransportBuiltinKind builtin_transport_kind_in,
 const struct NDDS_Transport_Property_t
 &builtin_transport_property_in)
13-5

Transport Plugins
participant_in A valid non-NULL DomainParticipant that has not been enabled. If the
DomainParticipant if already enabled when this operation is called, your transport
property changes will not be reflected in the transport used by the DomainPartici-
pant's DataWriters and DataReaders.

builtin_transport_kind_in The builtin transport kind for which to specify the properties.

builtin_transport_property_inout (Used by the “get” operation only.) The storage area
where the retrieved property will be output. The specific type required by the
builtin_transport_kind_in must be used.

builtin_transport_property_in (Used by the “set” operation only.) The new transport
property that will be used to the create the builtin transport plugin. The specific
type required by the builtin_transport_kind_in must be used.

In this example, we want to use the builtin UDPv4 transport, but with modified proper-
ties.

/* Before reaching this point, create a disabled DomainParticipant
*/
struct NDDS_Transport_UDPv4_Property_t property =
 NDDS_TRANSPORT_UDPV4_PROPERTY_DEFAULT;

if (NDDSTransportSupport::get_builtin_transport_property(

participant, DDS_TRANSPORTBUILTIN_UDPv4,
(struct NDDS_Transport_Property_t&)property) !=
 DDS_RETCODE_OK) {

 printf("**Error: get builtin transport property\n");
}
/* Make your desired changes here */
/* For example, to increase the UDPv4 max msg size to 64K: */
property.parent.message_size_max = 65535;
property.recv_socket_buffer_size = 65535;
property.send_socket_buffer_size = 65535;

if (NDDSTransportSupport::set_builtin_transport_property(
 participant, DDS_TRANSPORTBUILTIN_UDPv4,
 (struct NDDS_Transport_Property_t&)property)
 != DDS_RETCODE_OK) {
 printf("***Error: set builtin transport property\n");
}

/* Enable the participant to turn on communications with other
 participants in the domain using the new properties for the
 automatically registered builtin transport plugins.*/
13-6

Setting Builtin Transport Properties with the PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
if (entity->enable() != DDS_RETCODE_OK) {
 printf("***Error: failed to enable entity\n");
}

Note: Builtin transport property changes will have no effect after the builtin transport
has been registered. The builtin transports are implicitly registered when (a) the
DomainParticipant is enabled, (b) the first DataWriter/DataReader is created, or (c) you
lookup a builtin DataReader, whichever happens first.

Note: If message_size_max is increased from the default for any of the built-in trans-
ports, or if custom transports are used, then the buffer_size in the RECEIVER_POOL
QosPolicy (DDS Extension) (Section 8.5.6) of the DomainParticipant should also be
increased accordingly.

13.6 Setting Builtin Transport Properties with the
PropertyQosPolicy
The PROPERTY QosPolicy (DDS Extension) (Section 6.5.16) allows you to set name/
value pairs of data and attach them to an entity, such as a DomainParticipant.

To assign properties, use the add_property() operation:

DDS_ReturnCode_t DDSPropertyQosPolicyHelper::add_property
(DDS_PropertyQosPolicy policy,

 const char * name,
 const char * value,
 DDS_Boolean propagate)

For more information on add_property() and the other operations in the DDSProperty-
QosPolicyHelper class, please see Table 6.51, “PropertyQoSPolicyHelper Operations,”
on page 6-144, as well as the online (HTML) documentation.

The ‘name’ part of the name/value pairs is a predefined string. The property names for
the builtin transports are described in these tables:

❏ Table 13.2, “Properties for the Builtin UDPv4 Transport,” on page 13-8

❏ Table 13.3, “Properties for Builtin UDPv6 Transport,” on page 13-16

❏ Table 13.4, “Properties for Builtin Shared-Memory Transport,” on page 13-23

See also:

❏ “Notes Regarding Loopback and Shared Memory” (Section 13.6.1 on page 13-26)
13-7

Transport Plugins
❏ “Setting the Maximum Gather-Send Buffer Count for UDPv4 and UDPv6” (Sec-
tion 13.6.2 on page 13-26)

❏ “Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists” (Section 13.6.3 on
page 13-27)

Note: Changing properties with the PROPERTY QosPolicy (DDS Extension) (Section
6.5.16) will overwrite any properties set by calling set_builtin_transport_property().

Table 13.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description

parent.address_bit_count

Number of bits in a 16-byte address that are used by the transport. Should
be between 0 and 128.
For example, for an address range of 0-255, the address_bit_count should
be set to 8. For the range of addresses used by IPv4 (4 bytes), it should be set
to 32.

parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext
core.
Currently, the only property supported is whether or not the transport plu-
gin will always loan a buffer when Connext tries to receive a message using
the plugin. This is in support of a zero-copy interface.

parent.
gather_send_buffer_count_max

Specifies the maximum number of buffers that Connext can pass to the
send() method of a transport plugin.
The transport plugin send() API supports a gather-send concept, where the
send() call can take several discontiguous buffers, assemble and send them
in a single message. This enables Connext to send a message from parts
obtained from different sources without first having to copy the parts into a
single contiguous buffer.
However, most transports that support a gather-send concept have an
upper limit on the number of buffers that can be gathered and sent. Setting
this value will prevent Connext from trying to gather too many buffers into
a send call for the transport plugin.
Connext requires all transport-plugin implementations to support a gather-
send of least a minimum number of buffers. This minimum number is
NDDS_TRANSPORT_PROPERTY_GATHER_SEND_BUFFER_COUNT_MIN.
See Setting the Maximum Gather-Send Buffer Count for UDPv4 and
UDPv6 (Section 13.6.2).
13-8

Setting Builtin Transport Properties with the PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
parent.message_size_max

The maximum size of a message in bytes that can be sent or received by the
transport plugin.
This value must be set before the transport plugin is registered, so that Con-
next can properly use the plugin.
If you set this higher than the default, then the DomainParticipant’s Receiv-
erPoolQosPolicy’s buffer_size should also be changed.

parent.allow_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. Interfaces must be specified as comma-separated strings, with
each comma delimiting an interface.
For example, the following are acceptable strings:
192.168.1.1
192.168.1.*
192.168.*
192.*
ether0
If the list is non-empty, this "white" list is applied before the par-
ent.deny_interfaces_list list. The DomainParticipant will use the resulting list
of interfaces to inform its remote participant(s) about which unicast
addresses may be used to contact the DomainParticipant.
The resulting list restricts reception to a particular set of interfaces for uni-
cast UDP. Multicast output will still be sent and may be received over the
interfaces in the list (if multicast is supported on the platform).
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

Table 13.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
13-9

Transport Plugins
parent.deny_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, deny the use of these interfaces.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface.
For example, the following are acceptable strings:
192.168.1.1
192.168.1.*
192.168.*
192.*
ether0
This "black" list is applied after the parent.allow_interfaces_list list and fil-
ters out the interfaces that should not be used for receiving data.
The resulting list restricts reception to a particular set of interfaces for uni-
cast UDP. Multicast output will still be sent and may be received over the
interfaces in the list (if multicast is supported on the platform).
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

parent.
allow_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, allow the use of multicast only on these
interfaces. If the list is empty, allow the use of all the allowed interfaces.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface.
This list sub-selects from the allowed interfaces that are obtained after
applying the parent.allow_interfaces_list "white" list and the par-
ent.deny_interfaces_list "black" list. From that resulting list, parent.
deny_multicast_interfaces_list is applied. Multicast output will be sent and
may be received over the interfaces in the resulting list (if multicast is sup-
ported on the platform).
If this list is empty, all the allowed interfaces may potentially be used for
multicast.
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

Table 13.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
13-10

Setting Builtin Transport Properties with the PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
parent.
deny_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, deny the use of those interfaces for mul-
ticast.
Interfaces should be specified as comma-separated strings, with each
comma delimiting an interface.
This "black" list is applied after the parent. allow_multicast_interfaces_list
list and filters out the interfaces that should not be used for multicast. The
final resulting list will be those interfaces that—if multicast is available—
will be used for multicast sends.
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is deleted.

send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending. On most oper-
ating systems, setsockopt() will be called to set the SENDBUF to the value
of this parameter.
This value must be greater than or equal to the property,
parent.message_size_max.
The maximum value is operating system-dependent.
If NDDS_TRANSPORT_UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT,
then setsockopt() (or equivalent) will not be called to size the send buffer of
the socket.

recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving.
On most operating systems, setsockopt() will be called to set the RECVBUF
to the value of this parameter.
This value must be greater than or equal to the property, par-
ent.message_size_max. The maximum value is operating system-depen-
dent.
Default: NDDS_TRANSPORT_UDPV4_MESSAGE_SIZE_MAX_DEFAULT.
If NDDS_TRANSPORT_UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT, then
setsockopt() (or equivalent) will not be called to size the receive buffer of
the socket.

unicast_enabled

Allows the transport plugin to use unicast UDP for sending and receiving.
By default, it will be turned on. Also by default, it will use all the allowed
network interfaces that it finds up and running when the plugin is
instanced.
Can be 1 (enabled) or 0 (disabled).

Table 13.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
13-11

Transport Plugins
multicast_enabled

Allows the transport plugin to use multicast for sending and receiving. You
can turn multicast on or off for this plugin. The default is that multicast is
on and the plugin will use the all network interfaces allowed for multicast
that it finds up and running when the plugin is instanced.
Can be 1 (enabled) or 0 (disabled).

multicast_ttl
Value for the time-to-live parameter for all multicast sends using this plu-
gin. This is used to set the TTL of multicast packets sent by this transport
plugin.

multicast_loopback_disabled

Prevents the transport plugin from putting multicast packets onto the loop-
back interface.
If disabled, then when sending multicast packets, do not put a copy on the
loopback interface. This will prevent other applications on the same node
(including itself) from receiving those packets.
This is set to 0 by default. So multicast loopback is enabled. Turning off
multicast loopback (set to 1) may result in minor performance gains when
using multicast.
Note: Windows CE does not support multicast loopback. This field is
ignored for Windows CE targets.

ignore_loopback_interface

Prevents the transport plugin from using the IP loopback interface. Three
values are allowed:
0: Forces local traffic to be sent over loopback, even if a more efficient trans-
port (such as shared memory) is installed (in which case traffic will be sent
over both transports).
1: Disables local traffic via this plugin. The IP loopback interface will not be
used, even if no NICs are discovered. This is useful when you want applica-
tions running on the same node to use a more efficient transport (such as
shared memory) instead of the IP loopback.
-1: Automatic. Lets Connext decide among the above two choices. If a
shared memory transport plugin is available for local traffic, the effective
value is 1 (i.e., disable UPV4 local traffic). Otherwise, the effective value is
0, i.e., use UDPv4 for local traffic also.

Table 13.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
13-12

Setting Builtin Transport Properties with the PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
ignore_nonup_interfaces

This property is only supported on Windows platforms with statically con-
figused IP addresses.
It allows/disallows the use of interfaces that are not reported as UP (by the
operating system) in the UDPv4 transport. Two values are allowed:
0: Allow interfaces that are reported as DOWN.
Setting this value to 0 supports communication scenarios in which inter-
faces are enabled after the participant is created. Once the interfaces are
enabled, discovery will not occur until the participant sends the next peri-
odic announcement (controlled by the parameter
participant_qos.discovery_config.participant_liveliness_
assert_period).
To reduce discovery time, you may want to decrease the value of
participant_liveliness_assert_period.
For the above scenario, there is one caveat: non-UP interfaces must have a
static IP assigned.
1 (default): Do not allow interfaces that are reported as DOWN.

interface_poll_period

If ignore_nonup_interfaces is 0, the UDPv4 transport creates a new thread
to query the status of the interfaces. The interface_poll_period specifies the
polling period in milliseconds for performing this query.
This property’s value is ignored if ignore_nonup_interfaces is 1.

reuse_multicast_receive_resource

Controls whether or not to reuse receive resources. Setting this to 0 (FALSE)
prevents multicast crosstalk by uniquely configuring a port and creating a
receive thread for each multicast group address.
Affects Linux systems only; ignored for non-Linux systems.

Table 13.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
13-13

Transport Plugins
ignore_nonrunning_interfaces

Prevents the transport plugin from using a network interface that is not
reported as RUNNING by the operating system.
The transport checks the flags reported by the operating system for each
network interface upon initialization. An interface which is not reported as
UP will not be used. This property allows the same check to be extended to
the IFF_RUNNING flag implemented by some operating systems. The
RUNNING flag is defined to mean that "all resources are allocated", and
may be off if there is no link detected, e.g., the network cable is unplugged.
Two values are allowed:
0: Do not check the RUNNING flag when enumerating interfaces, just make
sure the interface is UP.
1: Check the flag when enumerating interfaces, and ignore those that are
not reported as RUNNING. This can be used on some operating systems to
cause the transport to ignore interfaces that are enabled but not connected
to the network.

no_zero_copy

Prevents the transport plugin from doing a zero copy.
By default, this plugin will use the zero copy on OSs that offer it. While this
is good for performance, it may sometime tax the OS resources in a manner
that cannot be overcome by the application.
The best example is if the hardware/device driver lends the buffer to the
application itself. If the application does not return the loaned buffers soon
enough, the node may error or malfunction. In case you cannot reconfigure
the hardware, device driver, or the OS to allow the zero-copy feature to
work for your application, you may have no choice but to turn off zero-
copy.
By default this is set to 0, so Connext will use the zero-copy API if offered by
the OS.

send_blocking

Controls the blocking behavior of send sockets. CHANGING THIS FROM
THE DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROB-
LEMS. Currently two values are defined:
NDDS_TRANSPORT_UDPV4_BLOCKING_ALWAYS: Sockets are blocking
(default socket options for Operating System).
NDDS_TRANSPORT_UDPV4_BLOCKING_NEVER: Sockets are modified
to make them non-blocking. This is not a supported configuration and
may cause significant performance problems.

Table 13.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
13-14

Setting Builtin Transport Properties with the PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
transport_priority_mask

Mask for the transport priority field. This is used in conjunction with
transport_priority_mapping_low and transport_priority_mapping_high
to define the mapping from the TRANSPORT_PRIORITY QosPolicy (Sec-
tion 6.5.20) to the IPv4 TOS field. Defines a contiguous region of bits in the
32-bit transport priority value that is used to generate values for the IPv4
TOS field on an outgoing socket.
For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the
mapping. The value will be scaled from the mask range (0x0000 - 0xff00 in
this case) to the range specified by low and high.
If the mask is set to zero, then the transport will not set IPv4 TOS for send
sockets.

transport_priority_mapping_low Sets the low and high values of the output range to IPv4 TOS.
These values are used in conjunction with transport_priority_mask to
define the mapping from the TRANSPORT_PRIORITY QosPolicy (Section
6.5.20) to the IPv4 TOS field. Defines the low and high values of the output
range for scaling.
Note that IPv4 TOS is generally an 8-bit value.

transport_priority_mapping_high

reuse_multicast_receive_resource

Controls whether or not to reuse receive resources. Setting this to 0 (FALSE)
prevents multicast crosstalk by uniquely configuring a port and creating a
receive thread for each multicast group address.
Affects Linux systems only; ignored for non-Linux systems.

protocol_overhead_max

Maximum size in bytes of protocol overhead, including headers.
This value is the maximum size, in bytes, of protocol-related overhead.
Normally, the overhead accounts for UDP and IP headers. The default
value is set to accommodate the most common UDP/IP header size.
Note that when parent.message_size_max plus this overhead is larger than
the UDPv4 maximum message size (65535 bytes), the middleware will
automatically reduce the effective message_size_max to 65535 minus this
overhead.

Table 13.2 Properties for the Builtin UDPv4 Transport

Property Name
(prefix with

‘dds.transport.UDPv4.builtin.’)
Property Value Description
13-15

Transport Plugins
Table 13.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description

parent.address_bit_count

Number of bits in a 16-byte address that are used by the transport. Should be
between 0 and 128.
For example, for an address range of 0-255, this address_bit_count should be
set to 8. For the range of addresses used by IPv4 (4 bytes), it should be set to
32.

parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext core.
Currently, the only property supported is whether or not the transport plu-
gin will always loan a buffer when Connext tries to receive a message using
the plugin. This is in support of a zero-copy interface.

parent.gather_send_buffer_
count_max

Specifies the maximum number of buffers that Connext can pass to the
send() method of a transport plugin.
The transport plugin send() API supports a gather-send concept, where the
send() call can take several discontiguous buffers, assemble and send them
in a single message. This enables Connext to send a message from parts
obtained from different sources without first having to copy the parts into a
single contiguous buffer.
However, most transports that support a gather-send concept have an upper
limit on the number of buffers that can be gathered and sent. Setting this
value will prevent Connext from trying to gather too many buffers into a
send call for the transport plugin.
Connext requires all transport-plugin implementations to support a gather-
send of least a minimum number of buffers. This minimum number is
NDDS_TRANSPORT_PROPERTY_GATHER_SEND_BUFFER_COUNT_MIN.

parent.message_size_max

The maximum size of a message in bytes that can be sent or received by the
transport plugin.
This value must be set before the transport plugin is registered, so that Con-
next can properly use the plugin.
If you set this higher than the default, then the DomainParticipant’s Receiver-
PoolQosPolicy’s buffer_size should also be changed.
See also: Note on page 13-8.
13-16

Setting Builtin Transport Properties with the PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
parent.allow_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface. See “Formatting Rules for IPv6 ‘Allow’ and ‘Deny’
Address Lists” (Section 13.6.3 on page 13-27).
If the list is non-empty, this "white" list is applied before the par-
ent.deny_interfaces_list list. The DomainParticipant will use the resulting list
of interfaces to inform its remote participant(s) about which unicast
addresses may be used to contact the DomainParticipant.
The resulting list restricts reception to a particular set of interfaces for unicast
UDP. Multicast output will still be sent and may be received over the inter-
faces in the list (if multicast is supported on the platform).
You must manage the memory of the list. The memory may be freed after the
DomainParticipant is deleted.

parent.deny_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, deny the use of these interfaces.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface. See “Formatting Rules for IPv6 ‘Allow’ and ‘Deny’
Address Lists” (Section 13.6.3 on page 13-27).
This "black" list is applied after the parent.allow_interfaces_list list and fil-
ters out the interfaces that should not be used.
The resulting list restricts reception to a particular set of interfaces for unicast
UDP. Multicast output will still be sent and may be received over the inter-
faces in the list (if multicast is supported on the platform).
You must manage the memory of the list. The memory may be freed after the
DomainParticipant is deleted.

Table 13.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description
13-17

Transport Plugins
parent.
allow_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, allow the use of multicast only these
interfaces; otherwise allow the use of all the allowed interfaces.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface. See “Formatting Rules for IPv6 ‘Allow’ and ‘Deny’
Address Lists” (Section 13.6.3 on page 13-27).
This list sub-selects from the allowed interfaces that are obtained after
applying the parent.allow_interfaces_list "white" list and the par-
ent.deny_interfaces_list "black" list. Finally, the parent.
deny_multicast_interfaces_list is applied. Multicast output will be sent and
may be received over the interfaces in the resulting list (if multicast is sup-
ported on the platform).
If this list is empty, all the allowed interfaces may potentially be used for
multicast.
You must manage the memory of the list. The memory may be freed after the
DomainParticipant is deleted.

parent.
deny_multicast_interfaces_list

A list of strings, each identifying a range of interface addresses or an inter-
face name. If the list is non-empty, deny the use of those interfaces for multi-
cast.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface. See “Formatting Rules for IPv6 ‘Allow’ and ‘Deny’
Address Lists” (Section 13.6.3 on page 13-27).
This "black" list is applied after the parent. allow_multicast_interfaces_list
list and filters out the interfaces that should not be used for multicast. Multi-
cast output will be sent and may be received over the interfaces in the result-
ing list (if multicast is supported on the platform).
You must manage the memory of the list. The memory may be freed after the
DomainParticipant is deleted.

send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending.
On most operating systems, setsockopt() will be called to set the SENDBUF
to the value of this parameter.
This value must be greater than or equal to parent.message_size_max. The
maximum value is operating system-dependent.
If NDDS_TRANSPORT_UDPV6_SOCKET_BUFFER_SIZE_OS_DEFAULT, then
setsockopt() (or equivalent) will not be called to size the send buffer of the
socket.

Table 13.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description
13-18

Setting Builtin Transport Properties with the PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving.
On most operating systems, setsockopt() will be called to set the RECVBUF
to the value of this parameter.
This value must be greater than or equal to parent.message_size_max. The
maximum value is operating system-dependent.
If NDDS_TRANSPORT_UDPV6_SOCKET_-BUFFER_SIZE_OS_DEFAULT,
then setsockopt() (or equivalent) will not be called to size the receive buffer
of the socket.

unicast_enabled

Allows the transport plugin to use unicast UDP for sending and receiving.
By default, it will be turned on (1). Also by default, it will use all the allowed
network interfaces that it finds up and running when the plugin is
instanced.
Can be 1 (enabled) or 0 (disabled).

multicast_enabled

Allows the transport plugin to use multicast for sending and receiving.
You can turn multicast UDP on or off for this plugin. By default, it will be
turned on (1). Also by default, it will use the all network interfaces allowed
for multicast that it finds up and running when the plugin is instanced.
Can be 1 (enabled) or 0 (disabled).

multicast_ttl
Value for the time-to-live parameter for all multicast sends using this plugin.
This is used to set the TTL of multicast packets sent by this transport plugin

multicast_loopback_disabled

Prevents the transport plugin from putting multicast packets onto the loop-
back interface.
If disabled, then when sending multicast packets, Connext will not put a
copy on the loopback interface. This will prevent applications on the same
node (including itself) from receiving those packets.
This is set to 0 by default, meaning multicast loopback is enabled. Disabling
multicast loopback off (setting this value to 1) may result in minor perfor-
mance gains when using multicast.
Note: Windows CE does not support multicast loopback. This field is
ignored for Windows CE targets.

Table 13.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description
13-19

Transport Plugins
ignore_loopback_interface

Prevents the transport plugin from using the IP loopback interface. Three
values are allowed:
0: Enable local traffic via this plugin. This plugin will only use and report the
IP loopback interface if there are no other network interfaces (NICs) up on
the system.
1: Disable local traffic via this plugin. Do not use the IP loopback interface
even if no NICs are discovered. This is useful when you want applications
running on the same node to use a more efficient plugin like Shared Memory
instead of the IP loopback.
-1: Automatic. Lets Connext decide among the above two choices. If a shared
memory transport plugin is available for local traffic, the effective value is 1
(i.e., disable UDPv4 local traffic). Otherwise, the effective value is 0, i.e., use
UDPv4 for local traffic also.

ignore_nonrunning_interfaces

Prevents the transport plugin from using a network interface that is not
reported as RUNNING by the operating system.
The transport checks the flags reported by the operating system for each net-
work interface upon initialization. An interface which is not reported as UP
will not be used. This property allows the same check to be extended to the
IFF_RUNNING flag implemented by some operating systems. The RUN-
NING flag is defined to mean that "all resources are allocated", and may be
off if there is no link detected, e.g., the network cable is unplugged. Two val-
ues are allowed:
0: Do not check the RUNNING flag when enumerating interfaces, just make
sure the interface is UP.
1: Check the flag when enumerating interfaces, and ignore those that are not
reported as RUNNING. This can be used on some operating systems to
cause the transport to ignore interfaces that are enabled but not connected to
the network.

Table 13.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description
13-20

Setting Builtin Transport Properties with the PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
no_zero_copy

Prevents the transport plugin from doing a zero copy.
By default, this plugin will use the zero copy on OSs that offer it. While this
is good for performance, it may sometime tax the OS resources in a manner
that cannot be overcome by the application.
The best example is if the hardware/device driver lends the buffer to the
application itself. If the application does not return the loaned buffers soon
enough, the node may error or malfunction. In case you cannot reconfigure
the H/W, device driver, or the OS to allow the zero-copy feature to work for
your application, you may have no choice but to turn off zero-copy.
By default this is set to 0, so Connext will use the zero-copy API if offered by
the OS.

send_blocking

Controls the blocking behavior of send sockets. CHANGING THIS FROM
THE DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE PROB-
LEMS. Currently two values are defined:
NDDS_TRANSPORT_UDPV4_BLOCKING_ALWAYS: Sockets are blocking
(default socket options for Operating System).
NDDS_TRANSPORT_UDPV4_BLOCKING_NEVER: Sockets are modified
to make them non-blocking. This is not a supported configuration and may
cause significant performance problems.

enable_v4mapped

Specifies whether the UDPv6 transport will process IPv4 addresses.
Set this to 1 to turn on processing of IPv4 addresses. Note that this may make
it incompatible with use of the UDPv4 transport within the same domain
participant.

transport_priority_mask

Sets a mask for use of transport priority field.
If transport priority mapping is supported on the platforma, this mask is
used in conjunction with transport_priority_mapping_low and
transport_priority_mapping_high to define the mapping from the DDS
transport priority TRANSPORT_PRIORITY QosPolicy (Section 6.5.20) to the
IPv6 TCLASS field.
Defines a contiguous region of bits in the 32-bit transport priority value that
is used to generate values for the IPv6 TCLASS field on an outgoing socket.
For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the
mapping. The value will be scaled from the mask range (0x0000 - 0xff00 in
this case) to the range specified by low and high.
If the mask is set to zero, then the transport will not set IPv6 TCLASS for
send sockets.

Table 13.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description
13-21

Transport Plugins
transport_priority_mapping_low Sets the low and high values of the output range to IPv6 TCLASS.
These values are used in conjunction with transport_priority_mask to define
the mapping from DDS transport priority to the IPv6 TCLASS field. Defines
the low and high values of the output range for scaling.
Note that IPv6 TCLASS is generally an 8-bit value.

transport_priority_mapping_high

a. Please refer to the Platform Notes to find out if the transport priority is supported on a specific platform.

Table 13.3 Properties for Builtin UDPv6 Transport

Property Name (prefix with
‘dds.transport.UDPv6.builtin.’) Description
13-22

Setting Builtin Transport Properties with the PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
Table 13.4 Properties for Builtin Shared-Memory Transport

Property Name
(prefix with

‘dds.transport.shmem.builtin.’)
Property Value Description

parent.address_bit_count

Number of bits in a 16-byte address that are used by the transport. Should
be between 0 and 128.
For example, for an address range of 0-255, this address_bit_count should
be set to 8. For the range of addresses used by IPv4 (4 bytes), it should be
set to 32.

parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext
core.
Currently, the only property supported is whether or not the transport plu-
gin will always loan a buffer when Connext tries to receive a message using
the plugin. This is in support of a zero-copy interface.

parent.gather_send_buffer_
count_max

Specifies the maximum number of buffers that Connext can pass to the
send() method of a transport plugin.
The transport plugin send() API supports a gather-send concept, where the
send() call can take several discontiguous buffers, assemble and send them
in a single message. This enables Connext to send a message from parts
obtained from different sources without first having to copy the parts into
a single contiguous buffer.
However, most transports that support a gather-send concept have an
upper limit on the number of buffers that can be gathered and sent. Setting
this value will prevent Connext from trying to gather too many buffers into
a send call for the transport plugin.
Connext requires all transport-plugin implementations to support a gather-
send of least a minimum number of buffers. This minimum is
NDDS_TRANSPORT_PROPERTY_GATHER_SEND_BUFFER_COUNT_MIN.

parent.message_size_max

The maximum size of a message in bytes that can be sent or received by the
transport plugin.
This value must be set before the transport plugin is registered, so that Con-
next can properly use the plugin.
If you set this higher than the default, then the DomainParticipant’s Receiv-
erPoolQosPolicy’s buffer_size should also be changed.
See also: Note on page 13-8.
13-23

Transport Plugins
parent.allow_interfaces_list

Not applicable to the Shared-Memory Transport

parent.deny_interfaces_list

parent.
allow_multicast_interfaces_list

parent.
deny_multicast_interfaces_list

received_message_count_max

Number of messages that can be buffered in the receive queue. This is the
maximum number of messages that can be buffered in a RecvResource of
the Transport Plugin. This does not guarantee that the Transport-Plugin
will actually be able to buffer received_message_count_max messages of
the maximum size set in parent.message_size_max.
The total number of bytes that can be buffered for a RecvResource is actu-
ally controlled by receive_buffer_size.

Table 13.4 Properties for Builtin Shared-Memory Transport

Property Name
(prefix with

‘dds.transport.shmem.builtin.’)
Property Value Description
13-24

Setting Builtin Transport Properties with the PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
receive_buffer_size

The total number of bytes that can be buffered in the receive queue.
This number controls how much memory is allocated by the plugin for the
receive queue (on a per RecvResource basis). The actual number of bytes
allocated is:
size = receive_buffer_size + message_size_max +
 received_message_count_max * fixedOverhead
where fixedOverhead is some small number of bytes used by the queue data
structure.
If receive_buffer_size <
message_size_max * received_message_count_max, then the transport
plugin will not be able to store received_message_count_max messages of
size message_size_max.
If receive_buffer_size >
message_size_max * received_message_count_max, then there will be
memory allocated that cannot be used by the plugin and thus wasted.
To optimize memory usage, specify a receive queue size less than that
required to hold the maximum number of messages which are all of the
maximum size.
In most situations, the average message size may be far less than the maxi-
mum message size. So for example, if the maximum message size is 64K
bytes, and you configure the plugin to buffer at least 10 messages, then
640K bytes of memory would be needed if all messages were 64K bytes.
Should this be desired, then receive_buffer_size should be set to 640K
bytes.
However, if the average message size is only 10K bytes, then you could set
the receive_buffer_size to 100K bytes. This allows you to optimize the
memory usage of the plugin for the average case and yet allow the plugin
to handle the extreme case.
The queue will always be able to hold 1 message of message_size_max
bytes, regardless of the value of receive_buffer_size.

Table 13.4 Properties for Builtin Shared-Memory Transport

Property Name
(prefix with

‘dds.transport.shmem.builtin.’)
Property Value Description
13-25

Transport Plugins
13.6.1 Notes Regarding Loopback and Shared Memory

By default, Connext uses shared memory to communicate with other DomainParticipants
on the same node, and disables local traffic over the UDPv4 or UPDv6 loopback inter-
face. Thus, by default, a Connext application with shared memory enabled will not com-
municate with other applications on the same node that don’t have shared memory
enabled.

For example, suppose you have three Connext applications on the same node. Shared
memory is enabled on Applications A and B, but disabled on Application C. In this sce-
nario, A and B will communicate with each other, but they will not communicate with
C.

You can change this behavior by setting the "ignore_loopback_interface" field of the
UDPv4 transport properties to 0 on Applications A and B. This will force DomainPartici-
pants with shared memory enabled to also communicate over UDPv4 or UDPv6 loop-
back (and thus find Application C without using shared memory). Alternatively, you
can disable shared memory on A and B via the TransportBuiltinQosPolicy.

13.6.2 Setting the Maximum Gather-Send Buffer Count for UDPv4 and UDPv6

To minimize memory copies, Connext uses the "gather send" API that may be available
on the transport.

Some operating systems limit the number of gather buffers that can be given to the
gather-send function. This limits Connext's ability to concatenate multiple samples into a
single network message. An example is the UDP transport's sendmsg() call, which on
some OSs (such as Solaris) can only take 16 gather buffers, limiting the number of sam-
ples that can be concatenated to five or six.

To match this limitation, Connext sets the UDPv4 and UDPv6 transport plug-ins'
gather_send_buffer_count_max to 16 by default for all operating systems. This field is
part of the NDDS_Transport_Property_t structure.

❏ On VxWorks 5.5 operating systems, gather_send_buffer_count_max can be set
as high as 63.

❏ On Windows and INTEGRITY operating systems,
gather_send_buffer_count_max can be set as high as 128.

❏ On most other operating systems, gather_send_buffer_count_max can be set as
high as 16.

If you are using an OS that allows more than 16 gather buffers for a sendmsg() call, you
may increase the UDPv4 or UDPv6 transport plug-in's gather_send_buffer_count_max
from the default up to your OS's limit (but no higher than 128).
13-26

Setting Builtin Transport Properties with the PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
For example, if your OS imposes a limit of 64 gather buffers, you may increase the
gather_send_buffer_count_max up to 64. However, if your OS's gather-buffer limit is
1024, you may only increase the gather_send_buffer_count_max up to 128.

By changing gather_send_buffer_count_max, you can increase performance in the fol-
lowing situations:

❏ When a DataWriter is sending multiple packets to a DataReader either because the
DataReader is a late-joiner and needs to catch up, or because several packets were
dropped and need to be resent. Changing the setting will help when the DataW-
riter needs to send or resend more than five or six packets at a time.

❏ If your application has more than five or six DataWriters or DataReaders in a par-
ticipant. (In this case, the change will make the discovery process more efficient.)

❏ When using an asynchronous DataWriter, samples are sent asynchronously by a
separate thread. Samples may not be sent immediately, but may be queued
instead, depending on the settings of the associated FlowController. If multiple
samples in the queue must be sent to the same destination, they will be coalesced
into as few network packets as possible. The number of samples that can be put
in a single message is directly proportional to gather_send_buffer_count_max.
Therefore, by maximizing gather_send_buffer_count_max, you can minimize
the number of packets on the wire.

13.6.3 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists

This section describes how to format the strings in the properties that create “allow”
and “deny” lists:

❏ dds.transport.UDPv6.builtin.parent.allow_interfaces_list

❏ dds.transport.UDPv6.builtin.parent.deny_interfaces_list

❏ dds.transport.UDPv6.builtin.parent. allow_multicast_interfaces_list

❏ dds.transport.UDPv6.builtin.parent. deny_multicast_interfaces_list

These properties may contain a list of strings, each identifying a range of interface
addresses or an interface name. Interfaces should be specified as comma-separated
strings, with each comma delimiting an interface.

The strings can be addresses and patterns in IPv6 notation. They are case-insensitive.

They may contain a wildcard '*' and can expand up to 4 digits in a block. The wildcard
must be either leading or trailing (cannot be in the middle of the string). Multiple wild-
cards can be specified in a single filter, but only one wildcard can be specified per block
(between colons). Table 13.5 shows some examples.
13-27

Transport Plugins
13.7 Installing Additional Builtin Transport Plugins with
register_transport()
After you create an instance of a transport plugin (see Section 13.4) , you have to register
it.

The builtin transports (UDPv4, UDPv6, and Shared Memory) are implicitly registered
by default (if they are enabled via the TRANSPORT_BUILTIN QosPolicy (DDS Exten-
sion) (Section 8.5.7)). Therefore, you only need to explicitly register a builtin transport if
you want an extra instance of it (suppose you want two UDPv4 transports, one with
special settings).

The register_transport() operation registers a transport plugin for use with a Domain-
Participant and assigns it a network address. (Note: this operation is only available in the
APIs other than Java or .NET. If you are using Java or .NET, use the Property QosPolicy
to install additional transport plugins.)

NDDS_Transport_Handle_t NDDSTransportSupport::register_transport
(DDSDomainParticipant * participant_in,
 NDDS_Transport_Plugin * transport_in,
 const DDS_StringSeq & aliases_in,
 const NDDS_Transport_Address_t & network_address_in)

participant_in A non-NULL, disabled DomainParticipant.

transport_in A non-NULL transport plugin that is currently not registered with
another DomainParticipant.

aliases_in A non-NULL sequence of strings used as aliases to refer to the transport
plugin symbolically. The transport plugin will be "available for use" to an Entity
contained in the DomainParticipant, if the transport alias list associated with the
Entity contains one of these transport aliases. An empty alias list represents a

Table 13.5 Examples of IPv6 Address Filters

Example Filter Equivalent Filters Matches

::*:*:*:*:*:* Any IPv6 interface

FE80::*:* fe80::*:*,

Fe80:0:0::*:*

Fe80:0:0:0:0:0:*:* FE80:0000:0000:0000:0000:0000:xxxx:xxxx

FE80:aBC::202:2*:*:*2 FE80:0ABC:0000:0000:0202:2xxx:xxxx:xxx2
13-28

Installing Additional Builtin Transport Plugins with register_transport()
13. Tra

nsp
o

rt Plug
ins
WILDCARD and matches ALL aliases. See Transport Aliases (Section 13.7.2).

network_address_in The network address at which to register this transport plugin.
The least significant transport_in.property.address_bit_count will be truncated.
The remaining bits are the network address of the transport plugin. See Transport
Network Addresses (Section 13.7.3).

Note: You must ensure that the transport plugin instance is only used by one Domain-
Participant at a time. See Section 13.7.1.

Upon success, a valid non-NIL transport handle is returned, representing the associa-
tion between the DomainParticipant and the transport plugin. If the transport cannot be
registered, NDDS_TRANSPORT_HANDLE_NIL is returned.

Note that a transport plugin's class name is automatically registered as an implicit alias
for the plugin. Thus, a class name can be used to refer to all the transport plugin
instances of that class.

The C and C++ APIs also have a operation to retrieve a registered transport plugin,
get_transport_plugin().

NDDS_Transport_Plugin* get_transport_plugin(
DDSDomainParticipant* participant_in,
const char* alias_in);

13.7.1 Transport Lifecycles

If you create and register a transport plugin with a DomainParticipant, you are responsi-
ble for deleting it by calling its destructor. Builtin transport plugins are automatically
managed by Connext if they are implicitly registered through the TransportBuiltinQo-
sPolicy.

User-created transport plugins must not be deleted while they are is still in use by a
DomainParticipant. This generally means that a user-created transport plugin instance
can only be deleted after the DomainParticipant with which it was registered is deleted.
Note that a transport plugin cannot be "unregistered" from a DomainParticipant.

A transport plugin instance cannot be registered with more than one DomainParticipant
at a time. This requirement is necessary to guarantee the multi-threaded safety of the
transport API.

Thus, if the same physical transport resources are to be used with multiple DomainPar-
ticipants in the same address space, the transport plugin should be written in such a way
so that it can be instantiated multiple times—once for each DomainParticipant in the
address space. Note that it is always possible to write the transport plugin so that multi-
ple transport plugin instances share the same underlying resources; however the bur-
13-29

Transport Plugins
den (if any) of guaranteeing multi-threaded safety to access shared resource shifts to the
transport plugin developer.

13.7.2 Transport Aliases

In order to use a transport plugin instance in a Connext application, it must be registered
with a DomainParticipant using the register_transport() operation (Section 13.7).
register_transport() takes a pointer to the transport plugin instance, and in addition
allows you to specify a sequence of "alias" strings to symbolically refer to the transport
plugin. The same alias strings can be used to register more than one transport plugin.

Multiple transport plugins can be registered with a DomainParticipant. An alias symboli-
cally refers to one or more transport plugins registered with the DomainParticipant. Pre-
configured builtin transport plugin instances can be referred to using preconfigured
aliases.

A transport plugin's class name is automatically used as an implicit alias. It can be used
to refer to all the transport plugin instance of that class.

You can use aliases to refer to transport plugins in order to specify:

❏ Transport plugins to use for discovery (see enabled_transports in DISCOVERY
QosPolicy (DDS Extension) (Section 8.5.2)), and for DataWriters and DataReaders
(see TRANSPORT_SELECTION QosPolicy (DDS Extension) (Section 6.5.21)).

❏ Multicast addresses on which to receive discovery messages (see
multicast_receive_addresses in DISCOVERY QosPolicy (DDS Extension) (Sec-
tion 8.5.2)), and the multicast addresses and ports on which to receive user data
(DDS_DataReaderQos::multicast).

❏ Unicast ports used for user data (see TRANSPORT_UNICAST QosPolicy (DDS
Extension) (Section 6.5.22)) on both DataWriters and DataReaders.

❏ Transport plugins used to parse an address string in a locator.

A DomainParticipant (and its contained entities) will start using a transport plugin after
the DomainParticipant is enabled (see Enabling Entities (Section 4.1.2)). An entity will
use all the transport plugins that match the specified transport QoS policy. All transport
plugins are treated uniformly, regardless of how they were created or registered; there is
no notion of some transports being more "special" that others.

13.7.3 Transport Network Addresses

The address bits not used by the transport plugin for its internal addressing constitute
its network address bits.
13-30

Installing Additional Builtin Transport Plugins with PropertyQosPolicy
13. Tra

nsp
o

rt Plug
ins
In order for Connext to properly route the messages, each unicast interface in the
domain must have a unique address.

You specify the network address when installing a transport plugin via the
register_transport() operation (Section 13.7). Choose the network address for a trans-
port plugin so that the resulting fully qualified 128-bit address will be unique in the
domain.

If two instances of a transport plugin are registered with a DomainParticipant, they need
different network addresses so that their unicast interfaces will have unique, fully qual-
ified 128-bit addresses.

While it is possible to create multiple transports with the same network address (this
can be useful for certain situations), this requires special entity configuration for most
transports to avoid clashes in resource use (e.g., sockets for UDPv4 transport).

13.8 Installing Additional Builtin Transport Plugins with
PropertyQosPolicy
Similar to default builtin transport instances, additional builtin transport instances can
also be configured through PROPERTY QosPolicy (DDS Extension) (Section 6.5.16).

To install additional instances of builtin transport, the Properties listed in Table 13.6 are
required.

Table 13.6 Properties for Dynamically Loading and Registering Additional Builtin Transport Plugins

Property Name Description

dds.transport.load_plugins
Comma-separated list of <TRANSPORT_PREFIX>. Up to 8 entries may be
specified.

<TRANSPORT_PREFIX>

Indicates the additional builtin transport instances to be installed, and must be
in one of the following form, where <STRING> can be any string other than
“builtin”:
dds.transport.shmem.<STRING>
dds.transport.UDPv4.<STRING>
dds.transport.UDPv6.<STRING>
In the following examples in this table, <TRANSPORT_PREFIX> is used to
indicate one element of this string that is used as a prefix in the property
names for all the settings that are related to the plugin.
13-31

Transport Plugins
<TRANSPORT_PREFIX>.
aliases

Optional.
Aliases used to register the transport to the DomainParticipant. Refer to the
aliases_in parameter in register_transport() (see Installing Additional Builtin
Transport Plugins with register_transport() (Section 13.7)). Aliases should be
specified as a comma separated string, with each comma delimiting an alias. If
it is not specified, <TRANSPORT_PREFIX> is used as the default alias for the
plugin.

<TRANSPORT_PREFIX>.
network_address

Optional.
Network address used to register the transport to the DomainParticipant. Refer
to network_address_in parameter in register_transport() (see Installing Addi-
tional Builtin Transport Plugins with register_transport() (Section 13.7)). If it is
not specified, the network_address_out output parameter from
NDDS_Transport_create_plugin is used. The default value is a zeroed out
network address.

<TRANSPORT_PREFIX>.
<property_name>

Optional.
Property for creating the transport plugin. More than one
<TRANSPORT_PREFIX>.<property_name> can be specified. See Table 13.2
on page 13-8 through Table 13.4 on page 13-23 for the property names that can
be used to configure the additional builtin transport instances. The only differ-
ence is that the property name will be prefixed by dds.trans-
port.<builitn_transport_name>.<instance_name>, where <instance_name>
is configured through the dds.transport.load_plugins property instead of
dds.transport.<builtin_transport_name>.builtin.

Table 13.6 Properties for Dynamically Loading and Registering Additional Builtin Transport Plugins

Property Name Description
13-32

Other Transport Support Operations
13. Tra

nsp
o

rt Plug
ins
13.9 Other Transport Support Operations

13.9.1 Adding a Send Route

By default, a transport plugin will send outgoing messages using the network address
range at which the plugin was registered.

The add_send_route() operation allows you to control the routing of outgoing mes-
sages, so that a transport plugin will only send messages to certain ranges of destination
addresses.

Before using this operation, the DomainParticipant to which the transport is registered
must be disabled.

DDS_ReturnCode_t NDDSTransportSupport::add_send_route
 (const NDDS_Transport_Handle_t & transport_handle_in,

 const NDDS_Transport_Address_t & address_range_in,
 DDS_Long address_range_bit_count_in)

transport_handle_in A valid non-NIL transport handle as a result of a call to
register_transport() (Section 13.7).

address_range_in The outgoing address range for which to use this transport plugin.

address_range_bit_count_in The number of most significant bits used to specify the
address range.

It returns one of the standard return codes or
DDS_RETCODE_PRECONDITION_NOT_MET.

The method can be called multiple times for a transport plugin, with different address
ranges. You can set up a routing table to restrict the use of a transport plugin to send
messages to selected addresses ranges.

+--+
| Outgoing Address Range 1 -> Transport Plugin |
+--+
| : -> : |
+--+
| Outgoing Address Range K -> Transport Plugin |
+--+
13-33

Transport Plugins
13.9.2 Adding a Receive Route

By default, a transport plugin will receive incoming messages using the network
address range at which the plugin was registered.

The add_receive_route() operation allows you to configure a transport plugin so that it
will only receive messages on certain ranges of addresses.

Before using this operation, the DomainParticipant to which the transport is registered
must be disabled.

DDS_ReturnCode_t NDDSTransportSupport::add_receive_route
 (const NDDS_Transport_Handle_t & transport_handle_in,
 const NDDS_Transport_Address_t & address_range_in,
 DDS_Long address_range_bit_count_in)

transport_handle_in A valid non-NIL transport handle as a result of a call to
register_transport() (Section 13.7).

address_range_in The incoming address range for which to use this transport plugin.

address_range_bit_count_in The number of most significant bits used to specify the
address range.

It returns one of the standard return codes or
DDS_RETCODE_PRECONDITION_NOT_MET.

The method can be called multiple times for a transport plugin, with different address
ranges.

+--+
| Transport Plugin <- Incoming Address Range 1 |
+--+
| : <- : |
+--+
| Transport Plugin <- Incoming Address Range M |
+--+
You can set up a routing table to restrict the use of a transport plugin to receive mes-
sages from selected ranges. For example, you may restrict a transport plugin to:

❏ Receive messages from a certain multicast address range.

❏ Receive messages only on certain unicast interfaces (when multiple unicast inter-
faces are available on the transport plugin).
13-34

Other Transport Support Operations
13. Tra

nsp
o

rt Plug
ins
13.9.3 Looking Up a Transport Plugin

If you need to get the handle associated with a transport plugin that is registered with a
DomainParticipant, use the lookup_transport() operation.

NDDS_Transport_Handle_t NDDSTransportSupport::lookup_transport
(DDSDomainParticipant * participant_in,

 DDS_StringSeq & aliases_out,
 NDDS_Transport_Address_t & network_address_out,
 NDDS_Transport_Plugin * transport_in)

participant_in A non-NULL DomainParticipant.

aliases_out A sequence of strings where the aliases used to refer to the transport plu-
gin symbolically will be returned. NULL if not interested.

network_address_out The network address at which to register the transport plugin
will be returned here. NULL if not interested.

transport_in A non-NULL transport plugin that is already registered with the Domain-
Participant.

If successful, this operation returns a valid non-NIL transport handle, representing the
association between the DomainParticipant and the transport plugin; otherwise it returns
a NDDS_TRANSPORT_HANDLE_NIL upon failure.
13-35

Transport Plugins
13-36

14. Built-In To
p

ic
s

Chapter 14 Built-In Topics

This chapter discusses how to use Built-in Topics.

Connext must discover and keep track of remote entities, such as new participants in the
domain. This information may also be important to the application itself, which may
want to react to this discovery, or else access it on demand. To support these needs, Con-
next provides built-in Topics (“DCPSParticipant”, “DCPSPublication”, “DCPSSubscrip-
tion” in Figure 12.2 on page 12-12) and the corresponding built-in DataReaders that you
can use to access this discovery information.

The discovery information is accessed just as if it is normal application data. This allows
the application to know (either via listeners or by polling) when there are any changes
in those values. Note that only entities that belong to a different DomainParticipant are
being discovered and can be accessed through the built-in readers. Entities that are cre-
ated within the local DomainParticipant are not included as part of the data that can be
accessed by the built-in readers.

Built-in topics contain information about the remote entities, including their QoS poli-
cies. These QoS policies appear as normal fields inside the topic’s data, which can be
read by means of the built-in Topic. Additional information is provided to identify the
entity and facilitate the application logic.

14.1 Listeners for Built-in Entities
Built-in entities have default listener settings:

❏ The built-in Subscriber and its built-in topics have 'nil' listeners—all status bits
are set in the listener masks, but the listener is NULL. This effectively creates a
NO-OP listener that does not reset communication status.
14-1

Built-In Topics
❏ Built-in DataReaders have null listeners with no status bits set in their masks.

This approach prevents callbacks to the built-in DataReader listeners from invoking your
DomainParticipant’s listeners, and at the same time ensures that the status changed flag
is not reset. For more information, see Table 4.4, “Effect of Different Combinations of
Listeners and Status Bit Masks,” on page 4-27 and “Hierarchical Processing of Listen-
ers” on page 4-29.

14.2 Built-in DataReaders
Built-in DataReaders belong to a built-in Subscriber, which can be retrieved by using the
DomainParticipant’s get_builtin_subscriber() operation. You can retrieve the built-in
DataReaders by using the Subscriber’s lookup_datareader() operation, which takes the
Topic name as a parameter. The built-in DataReader is created when
lookup_datareader() is called on a built-in topic for the first time.

To conserve memory, built-in Subscribers and DataReaders are created only if and when
you look them up. Therefore, if you do not want to miss any built-in data, you should
look up the built-in readers before the DomainParticipant is enabled.

Table 14.1 through Table 14.4 describe the built-in topics and their data types. The
USER_DATA QosPolicy (Section 6.5.24), TOPIC_DATA QosPolicy (Section 5.2.1) and
GROUP_DATA QosPolicy (Section 6.4.4) are included as part of the built-in data type
and are not used by Connext. Therefore, you can use them to send application-specific
information.

Built-in topics can be used in conjunction with the ignore_*() operations to ignore cer-
tain entities (see Section 14.4).

Table 14.1 Participant Built-in Topic’s Data Type (DDS_ParticipantBuiltinTopicData)

Type Field Description

DDS_BuiltinTopicKey key Key to distinguish the discovered DomainParticipant

DDS_UserDataQosPolicy user_data

Data that can be set when the related DomainParticipant is
created (via the USER_DATA QosPolicy (Section 6.5.24))
and that the application may use as it wishes (e.g., to per-
form some security checking).

DDS_PropertyQosPolicy property
Pairs of names/values to be stored with the DomainPar-
ticipant. See PROPERTY QosPolicy (DDS Extension) (Sec-
tion 6.5.16). The usage is strictly application-dependent.
14-2

Built-in DataReaders
14. Built-In To

p
ic

s

DDS_ProtocolVersion_t
rtps_protocol_
version

Version number of the RTPS wire protocol used.

DDS_VendorId_t rtps_vendor_id ID of vendor implementing the RTPS wire protocol.

DDS_UnsignedLong
dds_builtin_
endpoints

Bitmap set by the discovery plugins.
Each bit in this field indicates a built-in endpoint present
for discovery.

DDS_LocatorSeq
default_unicast_
locators

If the TransportUnicastQosPolicy is not specified when a
DataWriter/DataReader is created, the unicast_locators in
the corresponding Publication/Subscription built-in
topic data will be empty. When the unicast_locators in the
Publication/SubscriptionBuiltinTopicData is empty, the
default_unicast_locators in the corresponding Participant
Builtin Topic Data is assumed.
If default_unicast_locators is empty, it defaults to
DomainParticipantQos.default_unicast.

DDS_ProductVersion_t product_version
Vendor-specific parameter. The current version of Con-
next.

DDS_EntityNameQosPolicy participant_name
Name and role_name assigned to the DomainParticipant.
See ENTITYNAME QosPolicy (DDS Extension) (Section
6.5.8).

Table 14.2 Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData)

Type Field Description

DDS_BuiltinTopicKey_t key Key to distinguish the discovered DataWriter

DDS_BuiltinTopicKey_t participant_key
Key to distinguish the participant to which the dis-
covered DataWriter belongs

DDS_String topic_name Topic name of the discovered DataWriter

DDS_String type_name
Type name attached to the topic of the discovered
DataWriter

Table 14.1 Participant Built-in Topic’s Data Type (DDS_ParticipantBuiltinTopicData)

Type Field Description
14-3

Built-In Topics
DDS_DurabilityQosPolicy durability

QosPolicies of the discovered DataWriter

DDS_DurabilityService-
QosPolicy

durability_service

DDS_DeadlineQosPolicy deadline

DDS_DestinationOrder-
QosPolicy

destination_order

DDS_LatencyBudget-
QosPolicy

latency_budget

DDS_LivelinessQosPolicy liveliness

DDS_ReliabilityQosPolicy reliability

DDS_LifespanQosPolicy lifespan

DDS_UserDataQosPolicy user_data
Data that can be set when the DataWriter is created
(via the USER_DATA QosPolicy (Section 6.5.24)) and
that the application may use as it wishes.

DDS_OwnershipQosPolicy ownership

QosPolicies of the discovered DataWriter

DDS_OwnershipStrength-
QosPolicy

ownership_strength

DDS_DestinationOrder-
QosPolicy

destination_order

DDS_PresentationQosPolicy presentation

DDS_PartitionQosPolicy partition
Name of the partition, set in the PARTITION QosPol-
icy (Section 6.4.5) for the publisher to which the dis-
covered DataWriter belongs

DDS_TopicDataQosPolicy topic_data

Data that can be set when the Topic (with which the
discovered DataWriter is associated) is created (via the
TOPIC_DATA QosPolicy (Section 5.2.1)) and that the
application may use as it wishes.

DDS_GroupDataQosPolicy group_data

Data that can be set when the Publisher to which the
discovered DataWriter belongs is created (via the
GROUP_DATA QosPolicy (Section 6.4.4)) and that the
application may use as it wishes.

DDS_TypeCode * type_code
Type code information about this Topic. See Using
Generated Types without Connext (Standalone) (Sec-
tion 3.7).

Table 14.2 Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData)

Type Field Description
14-4

Built-in DataReaders
14. Built-In To

p
ic

s

DDS_BuiltinTopicKey_t publisher_key
The key of the Publisher to which the DataWriter
belongs.

DDS_PropertyQosPolicy property

Properties (pairs of names/values) assigned to the
corresponding DataWriter. Usage is strictly applica-
tion-dependent. See PROPERTY QosPolicy (DDS
Extension) (Section 6.5.16).

DDS_LocatorSeq unicast_locators

If the TransportUnicastQosPolicy is not specified
when a DataWriter/DataReader is created, the
unicast_locators in the corresponding Publication/
Subscription built-in topic data will be empty. When
the unicast_locators in the Publication/Subscription-
BuiltinTopicData is empty, the
default_unicast_locators in the corresponding Partici-
pant Builtin Topic Data is assumed.

DDS_GUID_t virtual_guid
Virtual GUID for the corresponding DataWriter. For
more information, see Durability and Persistence
Based on Virtual GUIDs (Section 11.2).

DDS_ProtocolVersion_t
rtps_protocol_
version

Version number of the RTPS wire protocol in use.

DDS_VendorId_t rtps_vendor_id
ID of the vendor implementing the RTPS wire proto-
col.

DDS_Product_Version_t product_version
Vendor-specific value. For RTI, this is the current ver-
sion of Connext.

DDS_LocatorFilterQosPolicy locator_filter

When the MULTI_CHANNEL QosPolicy (DDS
Extension) (Section 6.5.13) is used on the discovered
DataWriter, the locator_filter contains the sequence of
LocatorFilters in that policy.
There is one LocatorFilter per DataWriter channel. A
channel is defined by a filter expression and a
sequence of multicast locators.
See LOCATOR_FILTER QoS Policy (DDS Extension)
(Section 14.2.1).

DDS_Boolean
disable_positive_
acks

Vendor specific parameter. Determines whether
matching DataReaders send positive acknowledge-
ments for reliability.

DDS_EntityNameQosPolicy publication_name
Name and role_name assigned to the DataWriter. See
ENTITYNAME QosPolicy (DDS Extension) (Section
6.5.8).

Table 14.2 Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData)

Type Field Description
14-5

Built-In Topics
Table 14.3 Subscription Built-in Topic’s Data Type (DDS_SubscriptionBuiltinTopicData)

Type Field Description

DDS_BuiltinTopicKey_t key Key to distinguish the discovered DataReader.

DDS_BuiltinTopicKey_t participant_key
Key to distinguish the participant to which the discov-
ered DataReader belongs.

char * topic_name Topic name of the discovered DataReader.

char * type_name
Type name attached to the Topic of the discovered
DataReader.

DDS_DurabilityQosPolicy durability

QosPolicies of the discovered DataReader

DDS_DeadlineQosPolicy deadline

DDS_LatencyBudget-
QosPolicy

latency_budget

DDS_LivelinessQosPolicy liveliness

DDS_ReliabilityQosPolicy reliability

DDS_OwnershipQosPolicy ownership

DDS_
DestinationOrderQosPolicy

destination_order

DDS_UserDataQosPolicy user_data
Data that can be set when the DataReader is created (via
the USER_DATA QosPolicy (Section 6.5.24)) and that
the application may use as it wishes.

DDS_
TimeBasedFilterQosPolicy

time_based_filter
QosPolicies of the discovered DataReader

DDS_PresentationQosPolicy presentation

DDS_PartitionQosPolicy partition
Name of the partition, set in the PARTITION QosPol-
icy (Section 6.4.5) for the Subscriber to which the dis-
covered DataReader belongs.

DDS_TopicDataQosPolicy topic_data

Data that can be set when the Topic to which the dis-
covered DataReader belongs is created (via the
TOPIC_DATA QosPolicy (Section 5.2.1)) and that the
application may use as it wishes.

DDS_GroupDataQosPolicy group_data

Data that can be set when the Publisher to which the
discovered DataReader belongs is created (via the
GROUP_DATA QosPolicy (Section 6.4.4)) and that the
application may use as it wishes.

DDS_TypeCode * type_code
Type code information about this Topic. See Using Gen-
erated Types without Connext (Standalone) (Section
3.7).
14-6

Built-in DataReaders
14. Built-In To

p
ic

s

DDS_BuiltinTopicKey_t subscriber_key Key of the Subscriber to which the DataReader belongs.

DDS_PropertyQosPolicy property

Properties (pairs of names/values) assigned to the cor-
responding DataReader. Usage is strictly application-
dependent. See PROPERTY QosPolicy (DDS Exten-
sion) (Section 6.5.16).

DDS_LocatorSeq unicast_locators

If the TransportUnicastQosPolicy is not specified when
a DataWriter/DataReader is created, the unicast_locators
in the corresponding Publication/Subscription builtin
topic data will be empty. When the unicast_locators in
the Publication/SubscriptionBuiltinTopicData is
empty, the default_unicast_locators in the correspond-
ing Participant Builtin Topic Data is assumed.

 DDS_LocatorSeq multicast_locators
Custom multicast locators that the endpoint can spec-
ify.

DDS_ContentFilter-
Property_t

content_filter_
property

Provides all the required information to enable content
filtering on the writer side.

DDS_GUID_t virtual_guid
Virtual GUID for the corresponding DataReader. For
more information, see Durability and Persistence
Based on Virtual GUIDs (Section 11.2).

DDS_ProtocolVersion_t
rtps_protocol_
version

Version number of the RTPS wire protocol in use.

DDS_VendorId_t rtps_vendor_id
ID of the vendor implementing the RTPS wire proto-
col.

DDS_Product_Version_t product_version
Vendor-specific value. For RTI, this is the current ver-
sion of Connext.

DDS_Boolean
disable_positive_
acks

Vendor specific parameter. Determines whether
matching DataReaders send positive acknowledge-
ments for reliability.

DDS_EntityNameQosPolicy subscription_name
Name and role_name assigned to the DataReader. See
ENTITYNAME QosPolicy (DDS Extension) (Section
6.5.8).

Table 14.3 Subscription Built-in Topic’s Data Type (DDS_SubscriptionBuiltinTopicData)

Type Field Description
14-7

Built-In Topics
Table 14.4 Topic Built-in Topic’s Data Type (DDS_TopicBuiltinTopicData) (See “Note:” on page 14-10)

Type Field Description

DDS_BuiltinTopicKey_t key Key to distinguish the discovered Topic

DDS_String name Topic name

DDS_String type_name type name attached to the Topic

DDS_DurabilityQosPolicy durability

QosPolicy of the discovered Topic

DDS_DurabilityServiceQosPolicy durability_service

DDS_DeadlineQosPolicy deadline

DDS_LatencyBudgetQosPolicy latency_budget

DDS_LivelinessQosPolicy liveliness

DDS_ReliabilityQosPolicy reliability

DDS_TransportPriorityQosPolicy transport_priority

DDS_LifespanQosPolicy lifespan

DDS_DestinationOrderQosPolicy
destination_
order

DDS_HistoryQosPolicy history

DDS_ResourceLimitsQosPolicy resource_limits

DDS_OwnershipQosPolicy ownership

DDS_TopicDataQosPolicy topic_data

Data that can be set when the Topic to which the
discovered DataReader belongs is created (via the
TOPIC_DATA QosPolicy (Section 5.2.1)) and that
the application may use as it wishes.
14-8

Built-in DataReaders
14. Built-In To

p
ic

s

Table 14.5 lists the QoS of the built-in Subscriber and DataReader created for accessing
discovery data. These are provided for your reference only; they cannot be changed.

Table 14.5 QoS of Built-in Subscriber and DataReader

QosPolicy Value

Deadline period = infinite

DestinationOrder kind = BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

Durability kind = TRANSIENT_LOCAL_DURABILITY_QOS

EntityFactory autoenable_created_entities = TRUE

GroupData value = empty sequence

History
kind = KEEP_LAST_HISTORY_QOS
depth = 1

LatencyBudget duration = 0

Liveliness
kind = AUTOMATIC_LIVELINESS_QOS
lease_duration = infinite

Ownership kind = SHARED_OWNERSHIP_QOS

Ownership Strength value = 0

Presentation
access_scope = TOPIC_PRESENTATION_QOS
coherent_access = FALSE
ordered_access = FALSE

Partition name = empty sequence

ReaderDataLifecycle autopurge_nowriter_samples_delay = infinite

Reliability
kind = RELIABLE_RELIABILITY_QOS
max_blocking_time is irrelevant for the DataReader

ResourceLimits

Depends on setting of DomainParticipantResourceLimitsQosPolicy and Discovery-
ConfigQosPolicy in DomainParticipantQos:
max_samples = domainParticipantQos.discovery_config.
[participant/publication/subscription]_reader_resource_limits.max_samples
max_instances = domainParticipantQos.resource_limits.
[remote_writer/reader/participant]_allocation.max_count
max_samples_per_instance = 1

TimeBasedFilter minimum_separation = 0

TopicData value = empty sequence

UserData value = empty sequence
14-9

Built-In Topics
Note: The DDS_TopicBuiltinTopicData built-in topic (described in Table 14.4) is meant
to convey information about discovered Topics. However, this topic's data is not sent
separately and therefore a DataReader for DDS_TopicBuiltinTopicData will not receive
any data. Instead, DDS_TopicBuiltinTopicData data is included in the information car-
ried by the built-in topics for Publications and Subscriptions
(DDS_PublicationBuiltinTopicData and DDS_SubscriptionBuiltinTopicData) and can be
accessed with their built-in DataReaders.

14.2.1 LOCATOR_FILTER QoS Policy (DDS Extension)

The LocatorFilter QoS Policy is only applicable to the built-in topic for a Publication (see
Table 14.2, “Publication Built-in Topic’s Data Type (DDS_PublicationBuiltinTopicData),”
on page 14-3).

Table 14.6 DDS_LocatorFilterQosPolicy

Type Field Name Description

DDS_LocatorFilterSeq locator_filters

A sequence of locator filters, described in Table 14.7 on page 14-
10. There is one locator filter per DataWriter channel. If the
length of the sequence is zero, the DataWriter is not using multi-
channel.

char * filter_name

Name of the filter class used to describe the locator filter expres-
sions. The following two values are supported:
DDS_SQLFILTER_NAME
DDS_STRINGMATCHFILTER_NAME

Table 14.7 DDS_LocatorFilter_t

Type Field Name Description

DDS_LocatorSeq locators
A sequence of multicast address locators for the locator filter.
See Table 14.8 on page 14-11.

char *
filter_express
ion

A logical expression used to determine if the data will be pub-
lished in the channel associated with this locator filter. See “SQL
Filter Expression Notation” on page 5-23 and “STRINGMATCH
Filter Expression Notation” on page 5-32 for information about
the expression syntax.
14-10

Accessing the Built-in Subscriber
14. Built-In To

p
ic

s

14.3 Accessing the Built-in Subscriber
Getting the built-in subscriber allows you to retrieve the built-in readers of the built-in
topics through the Subscriber’s lookup_datareader() operation. By accessing the built-in
reader, you can access discovery information about remote entities.

// Lookup built-in reader
DDSDataReader *builtin_reader =
builtin_subscriber->lookup_datareader(DDS_PUBLICATION_TOPIC_NAME);
if (builtin_reader == NULL) {
 // ... error
}
// Register listener to built-in reader
MyPublicationBuiltinTopicDataListener builtin_reader_listener =

new MyPublicationBuiltinTopicDataListener();
if (builtin_reader->set_listener(builtin_reader_listener,

DDS_DATA_AVAILABLE_STATUS) != DDS_RETCODE_OK) {
 // ... error
}
// enable domain participant
if (participant->enable() != DDS_RETCODE_OK) {
 // ... error
}

Table 14.8 DDS_Locator_t

Type Field Name Description

DDS_Long kind

If the locator kind is DDS_LOCATOR_KIND_UDPv4a, the
address contains an IPv4 address. The leading 12 octets of the
address must be zero. The last 4 octets store the IPv4 address.
If the locator kind is DDS_LOCATOR_KIND_UDPv6a, the
address contains an IPv6 address. IPv6 addresses typically use a
shorthand hexadecimal notation that maps one-to-one to the 16
octets of the address.

DDS_Octet[16] address The locator address.

DDS_UnsignedLong port The locator port number.

a. In C#, the locator kinds for UDPv4 and UDPv6 addresses are Locator_t.LOCATOR_KIND_UDPv4 and
Locator_t.LOCATOR_KIND_UDPv6.
14-11

Built-In Topics
For example, you can call the DomainParticipant’s get_builtin_subscriber() operation,
which will provide you with a built-in Subscriber. Then you can use that built-in Sub-
scriber to call the Subscriber’s lookup_datareader() operation; this will retrieve the built-
in reader. Another option is to register a Listener on the built-in subscriber instead, or
poll for the status of the built-in subscriber to see if any of the built-in data readers have
received data.

14.4 Restricting Communication—Ignoring Entities
The ignore_participant() operation allows an application to ignore all communication
from a specific DomainParticipant. Or for even finer control you can use the
ignore_publication(), ignore_subscription(), and ignore_topic() operations. These
operations are described below.

DDS_ReturnCode_t ignore_participant (const DDS_InstanceHandle_t &handle)
DDS_ReturnCode_t ignore_publication (const DDS_InstanceHandle_t &handle)
DDS_ReturnCode_t ignore_subscription (const DDS_InstanceHandle_t &handle)
DDS_ReturnCode_t ignore_topic (const DDS_InstanceHandle_t &handle)

The entity to ignore is identified by the handle argument. It may be a local or remote
entity. For ignore_publication(), the handle will be that of a local DataWriter or a discov-
ered remote DataWriter. For ignore_subscription(), that handle will be that of a local
DataReader or a discovered remote DataReader.

The safest approach for ignoring an entity is to call the ignore operation within the Lis-
tener callback of the built-in reader, or before any local entities are enabled. This will
guarantee that the local entities (entities that are created by the local DomainParticipant)
will never have a chance to establish communication with the remote entities (entities
that are created by another DomainParticipant) that are going to be ignored.

If the above is not possible and a remote entity is to be ignored after the communication
channel has been established, the remote entity will still be removed from the database
of the local application as if it never existed. However, since the remote application is
not aware that the entity is being ignored, it may potentially be expecting to receive
messages or continuing to send messages. Depending on the QoS of the remote entity,
this may affect the behavior of the remote application and may potentially stop the
remote application from communicating with other entities.

You can use this operation in conjunction with the ParticipantBuiltinTopicData to imple-
ment access control. You can pass application data associated with a DomainParticipant
in the USER_DATA QosPolicy (Section 6.5.24). This application data is propagated as a
14-12

Restricting Communication—Ignoring Entities
14. Built-In To

p
ic

s

field in the built-in topic. Your application can use the data to implement an access con-
trol policy.

Ignore operations, in conjunction with the Built-in Topic Data, can be used to implement
access control. You can pass data associated with an entity in the USER_DATA QosPol-
icy (Section 6.5.24), GROUP_DATA QosPolicy (Section 6.4.4) or TOPIC_DATA QosPol-
icy (Section 5.2.1). This data is propagated as a field in the built-in topic. When data for a
built-in topic is received, the application can check the user_data, group_data or
topic_data field of the remote entity, determine if it meets the security requirement, and
ignore the remote entity if necessary.

See also: Chapter 12: Discovery.

14.4.1 Ignoring Specific Remote DomainParticipants

The ignore_participant() operation is used to instruct Connext to locally ignore a remote
DomainParticipant. It causes Connext to locally behave as if the remote DomainParticipant
does not exist.

DDS_ReturnCode_t ignore_participant (const DDS_InstanceHandle_t & handle)

After invoking this operation, Connext will locally ignore any Topic, publication, or sub-
scription that originates on that DomainParticipant. (If you only want to ignore specific
publications or subscriptions, see Section 14.4.2 instead.) Figure 14.1, “Ignoring Partici-
pants,” on page 14-14 provides an example.

Caution: There is no way to reverse this operation. You can add to the peer list, how-
ever—see Section 8.5.2.3.

14.4.2 Ignoring Publications and Subscriptions

You can instruct Connext to locally ignore a publication or subscription. A publication/
subscription is defined by the association of a Topic name, user data and partition set on
the Publisher/Subscriber. After this call, any data written related to associated DataW-
riter/DataReader will be ignored.

The entity to ignore is identified by the handle argument. For ignore_publication(), the
handle will be that of a DataWriter. For ignore_subscription(), that handle will be that of
a DataReader.
14-13

Built-In Topics
Figure 14.1 Ignoring Participants

class MyParticipantBuiltinTopicDataListener :
public DDSDataReaderListener {
 public:
 virtual void on_data_available(DDSDataReader *reader);
 //
};
void MyParticipantBuiltinTopicdataListener::on_data_available(
DDSDataReader *reader) {

DDSParticipantBuiltinTopicDataDataReader *builtinTopicDataReader =
DDSParticipantBuiltinTopicDataDataReader *) reader;

DDS_ParticipantBuiltinTopicDataSeq data_seq;
DDS_SampleInfoSeq info_seq;
int = 0;
if (builtinTopicDataReader->take(data_seq, info_seq,

DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,
DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE) != DDS_RETCODE_OK){
// ... error

}
for (i = 0; i < data_seq.length(); ++i) {
 if (info_seq[i].valid_data) {

// check user_data for access control
if (data_seq[i].user_data[0] != 0x9) {
 if (
 builtinTopicDataReader->get_subscriber()->get_participant()

->ignore_participant(info_seq[i].instance_handle)
!= DDS_RETCODE_OK) {
 // ... error

 }
 }
 }
}
if (builtinTopicDataReader->return_loan(data_seq, info_seq)

!= DDS_RETCODE_OK) {
 // ... error
}

}

14-14

Restricting Communication—Ignoring Entities
14. Built-In To

p
ic

s

This operation can be used to ignore local and remote entities:

❏ For local entities, you can obtain the handle argument by calling the
get_instance_handle() operation for that particular entity.

❏ For remote entities, you can obtain the handle argument from the
DDS_SampleInfo structure retrieved when reading data samples available for
the entity’s built-in DataReader.

 DDS_ReturnCode_t ignore_publication (const DDS_InstanceHandle_t & handle)
 DDS_ReturnCode_t ignore_subscription (const DDS_InstanceHandle_t & handle)

Caution: There is no way to reverse these operations.

Figure 14.2, “Ignoring Publications,” on page 14-16 provides an example.

14.4.3 Ignoring Topics

The ignore_topic() operation instructs Connext to locally ignore a Topic. This means it
will locally ignore any publication or subscription to the Topic.

DDS_ReturnCode_t ignore_topic (const DDS_InstanceHandle_t & handle)

Caution: There is no way to reverse this operation.

If you know that your application will never publish or subscribe to data under certain
topics, you can use this operation to save local resources.

The Topic to ignore is identified by the handle argument. This handle is the one that
appears in the DDS_SampleInfo retrieved when reading the data samples from the
built-in DataReader to the Topic.
14-15

Built-In Topics
Figure 14.2 Ignoring Publications

class MyPublicationBuiltinTopicDataListener : public DDSDataReaderL-
istener {
 public:
 virtual void on_data_available(DDSDataReader *reader);
 //
};
void MyPublicationBuiltinTopicdataListener::on_data_available(

DDSDataReader *reader) {
DDSPublicationBuiltinTopicDataReader *builtinTopicDataReader =

(DDS_PublicationBuiltinTopicDataReader *)reader;
 DDS_PublicationBuiltinTopicDataSeq data_seq;
 DDS_SampleInfoSeq info_seq;
 int = 0;
 if (builtinTopicDataReader->take(data_seq, info_seq,
 DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE,

DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE)
!= DDS_RETCODE_OK) {

// ... error
 }

for (i = 0; i < data_seq.length(); ++i) {
 if (info_seq[i].valid_data) {
 // check user_data for access control
 if (data_seq[i].user_data[0] != 0x9) {

 if (builtinTopicDataReader->get_subscriber()
->get_participant()
->ignore_publication(info_seq[i].instance_handle)
!= DDS_RETCODE_OK) {

// ... error
 }
 }

 }
 }
 if (builtinTopicDataReader->return_loan(data_seq, info_seq) !=

DDS_RETCODE_OK) {
 // ... error
 }
}

14-16

15. C
o

nfig
uring

 Q
o

w
ith X

M
L

Chapter 15 Configuring QoS with XML

Connext entities are configured by means of QosPolicies. The QoS may be set program-
matically in one of the following ways:

❏ Directly when the entity is created as an additional argument to the
create_<entity>() operation.

❏ Directly via the set_qos() operation on the entity.

❏ Indirectly as a default QoS on the factory for the entity
(set_default_<entity>_qos() operations on Publisher, Subscriber, DomainPartici-
pant, DomainParticipantFactory)

Entities can also be configured from an XML file or XML string. With this feature, you
can change QoS configurations simply by changing the XML file or string—you do not
have to recompile the application. This chapter describes how to configure Connext enti-
ties using XML:

❏ Example XML File (Section 15.1)

❏ How to Load XML-Specified QoS Settings (Section 15.2)

❏ How to Use XML-Specified QoS Settings (Section 15.3)

❏ XML File Syntax (Section 15.4)

❏ XML String Syntax (Section 15.5)

❏ How the XML is Validated (Section 15.6)

❏ Configuring QoS with XML (Section 15.7)

❏ QoS Profiles (Section 15.8)

❏ QoS Libraries (Section 15.9)

❏ URL Groups (Section 15.10)
15-1

S

Configuring QoS with XML
15.1 Example XML File
The QoS configuration of a Entity can be loaded from an XML file or string. Let's look at
a very basic configuration file, just to get an idea of its contents. You will learn the mean-
ing of each line as you read the rest of this chapter:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- A XML configuration file -->
<dds version = 4.5x>
 <qos_library name="RTILibrary">
 <!--Individual QoS are shortcuts for QoS Profiles with 1 QoS->
 <datawriter_qos name="KeepAllWriter">
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
 </datawriter_qos>
 <!-- A Qos Profile is a set of related QoS -->
 <qos_profile name="StrictReliableCommunicationProfile">
 <datawriter_qos>
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
 <reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
 </reliability>
 </datawriter_qos>
 <datareader_qos>
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
 <reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
 </reliability>
 </datareader_qos>
 </qos_profile>
 </qos_library>
</dds>

See $NDDSHOME/resource/qos_profiles_4.5x1/xml/NDDS_QOS_PROFILES.exam-
ple.xml for another example; this file contains the default QoS values for all entity
kinds.

1. x stands for the version letter of the current release.
15-2

How to Load XML-Specified QoS Settings
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

15.2 How to Load XML-Specified QoS Settings
If specified, XML-specified QoS settings are automatically loaded by the DomainPartici-
pantFactory. There are several ways to load XML QoS profiles into your application.

The following list presents the various approaches, listed by load order:

• $NDDSHOME/resource/qos_profiles_4.5x1/xml/NDDS_QOS_PROFILES.xml
This file is loaded automatically if it exists (not the default) and
ignore_resource_profile in the PROFILE QosPolicy (DDS Extension) (Section
8.4.2) is FALSE (the default). NDDS_QOS_PROFILES.xml does not exist by
default. However, NDDS_QOS_PROFILES.example.xml is shipped with the host
bundle of the product; you can copy it to NDDS_QOS_PROFILES.xml and
modify it for your own use. The file contains the default QoS values that will
be used for all entity kinds. (First to be loaded)

• URL Groups in NDDS_QOS_PROFILES
URL groups (see URL Groups (Section 15.10)) separated by semicolons refer-
enced by the environment variable NDDS_QOS_PROFILES are loaded
automatically if they exist and ignore_environment_profile in PROFILE
QosPolicy (DDS Extension) (Section 8.4.2) is FALSE (the default).

• <working directory>/USER_QOS_PROFILES.xml
This file is loaded automatically if it exists and ignore_user_profile in PRO-
FILE QosPolicy (DDS Extension) (Section 8.4.2) is FALSE (the default).

• URL groups in url_profile
URL groups (see URL Groups (Section 15.10)) referenced by url_profile (in
PROFILE QosPolicy (DDS Extension) (Section 8.4.2)) will be loaded automati-
cally if specified.

• XML strings in string_profile
The sequence of XML strings referenced by string_profile (in PROFILE
QosPolicy (DDS Extension) (Section 8.4.2)) will be loaded automatically if
specified. (Last to be loaded)

You may use a combination of the above approaches.

The location of the XML documents (only files and strings are supported) is specified
using URL (Uniform Resource Locator) format. For example:

❏ File Specification: file:///usr/local/default_dds.xml

1. x stands for the version letter of the current release.
15-3

S

Configuring QoS with XML
❏ String Specification: str://"<dds><qos_library>…</qos_library></dds>"

If you omit the URL schema name, Connext will assume a file name. For example:

❏ File Specification: /usr/local/default_dds.xml

Duplicate QoS profiles are not allowed. Connext will report an error message in these
scenarios. To overwrite a QoS profile, use QoS-Profile Inheritance (Section 15.8.2).

15.2.1 Loading, Reloading and Unloading Profiles

You do not have to explicitly call load_profiles(). QoS profiles are loaded when any of
these DomainParticipantFactory operations are called:

❏ create_participant() (see Section 8.3.1)

❏ create_participant_with_profile() (see Section 8.3.1)

❏ get_<entity>_qos_from_profile() (where <entity> is participant, topic, pub-
lisher, subscriber, datawriter, or datareader) (see Section 8.2.5)

❏ get_<entity>_qos_from_profile_w_topic_name() (where <entity> is topic,
datawriter, or datareader) (see Section 8.2.5)

❏ get_default_participant_qos() (see Section 8.2.2)

❏ get_qos_profile_libraries() (See Section 15.9.1)

❏ get_qos_profiles() (See Section 15.8.5)

❏ load_profiles()

❏ set_default_participant_qos_with_profile() (see Section 8.2.2)

❏ set_default_library() (see Section 6.2.4.3)

❏ set_default_profile() (see Section 6.2.4.3)

QoS profiles are reloaded when either of these DomainParticipantFactory operations are
called:

❏ reload_profiles()

❏ set_qos() (see Section 4.1.7)

It is important to distinguish between loading and reloading:

❏ Loading only happens when there are no previously loaded profiles. This could
be when the profiles are loaded the first time or after a call to unload_profiles().
15-4

How to Use XML-Specified QoS Settings
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

❏ Reloading replaces all previously loaded profiles. Reloading a profile does not
change the QoS of entities that have already been created with previously loaded
profiles.

The DomainParticipantFactory also has an unload_profiles() operation that frees the
resources associated with the XML QoS profiles.

DDS_ReturnCode_t unload_profiles()

15.3 How to Use XML-Specified QoS Settings
You can use the operations listed in Table 15.1 to refer and use QoS profiles (see
Section 15.8) described in XML files and XML strings.

Table 15.1 Operations for Working with QoS Profiles

Working With ... Profile-Related Operations Reference

DataReaders set_qos_with_profile Section 7.3.8.2

DataWriters set_qos_with_profile Section 6.3.13.2

DomainParticipants

create_datareader_with_profile Section 7.3.1

create_datawriter_with_profile Section 6.3.1

create_publisher_with_profile Section 6.2.2

create_subscriber_with_profile Section 7.2.2

create_topic_with_profile Section 5.1.1

get_default_library

Section 8.3.6.3get_default_profile

get_default_profile_library

set_default_datareader_qos_with_profile
Section 8.3.6.4

set_default_datawriter_qos_with_profile

set_default_library
Section 8.3.6.3

set_default_profile

set_default_publisher_qos_with_profile

Section 8.3.6.4set_default_subscriber_qos_with_profile

set_default_topic_qos_with_profile

set_qos_with_profile Section 8.3.6.2
15-5

S

Configuring QoS with XML
DomainParticipantFactory

create_participant_with_profile Section 8.3.1

get_datareader_qos_from_profile

Section 8.2.5
get_datawriter_qos_from_profile

get_datawriter_qos_from_profile_w_topic_name

get_datareader_qos_from_profile_w_topic_name

get_default_library

Section 8.2.1.1get_default_profile

get_default_profile_library

get_participant_qos_from_profile

Section 8.2.5

get_publisher_qos_from_profile

get_subscriber_qos_from_profile

get_topic_qos_from_profile

get_topic_qos_from_profile_w_topic_name

get_qos_profiles Section 15.8.5

get_qos_profile_libraries Section 15.9.1

load_profiles
Section 15.2.1

reload_profiles

set_default_participant_qos_with_profile Section 8.2.2

set_default_library
Section 8.2.1.1

set_default_profile

unload_profiles Section 15.2.1

Publishers

create_datawriter_with_profile Section 6.2.2

get_default_library

Section 6.2.4.3get_default_profile

get_default_profile_library

set_default_datawriter_qos_with_profile Section 6.2.4.4

set_default_library
Section 6.2.4.3

set_default_profile

set_qos_with_profile Section 6.2.4.2

Table 15.1 Operations for Working with QoS Profiles

Working With ... Profile-Related Operations Reference
15-6

XML File Syntax
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

15.4 XML File Syntax
The XML configuration file must follow these syntax rules:

❏ The syntax is XML and the character encoding is UTF-8.

❏ Opening tags are enclosed in <>; closing tags are enclosed in </>.

❏ A tag value is a UTF-8 encoded string. Legal values are alphanumeric characters.
The middleware’s parser will remove all leading and trailing spaces1 from the
string before it is processed.

For example, " <tag> value </tag>" is the same as "<tag>value</tag>".

❏ All values are case-sensitive unless otherwise stated.

❏ Comments are enclosed as follows: <!-- comment -->.

❏ The root tag of the configuration file must be <dds> and end with </dds>.

❏ The primitive types for tag values are specified in Table 15.2.

Subscribers

create_datareader_with_profile Section 7.3.1

get_default_library

Section 7.2.4.3get_default_profile

get_default_profile_library

set_default_datawriter_qos_with_profile Section 7.2.4.4

set_default_library
Section 7.2.4.3

set_default_profile

set_qos_with_profile Section 7.2.4.2

Topics set_qos_with_profile Section 5.1.3

Table 15.1 Operations for Working with QoS Profiles

Working With ... Profile-Related Operations Reference

1. Leading and trailing spaces in enumeration fields will not be considered valid if you use the distributed
XSD document to do validation at run-time with a code editor (see Section 15.6).
15-7

S

Configuring QoS with XML
15.5 XML String Syntax
XML profiles can be described using strings. This configuration is useful for architec-
tures without a file system.

There are two different ways to configure Entities via XML strings:

❏ String URLs are prefixed by the URI schema str:// and enclosed in double quotes.
For example:

 str://"<dds><qos_library>...</qos_library></dds>"

Table 15.2 Supported Tag Values

Type Format Notes

DDS_Boolean

yesa, 1, true, BOOLEAN_TRUEa or
DDS_BOOLEAN_TRUEa: these all mean TRUE

Not case-sensitivenoa, 0, false, BOOLEAN_FALSEa or
DDS_BOOLEAN_FALSEa: these all mean
FALSE

DDS_Enum
A string. Legal values are those listed in the
online (HTML) documentation for the Ca or
Java API.

Must be specified as a
string. (Do not use
numeric values.)

DDS_Long

 -2147483648 to 2147483647
or 0x80000000 to 0x7fffffffa

or LENGTH_UNLIMITED
or DDS_LENGTH_UNLIMITEDa

A 32-bit signed inte-
ger

DDS_UnsignedLong
 0 to 4294967296
or
 0 to 0xffffffffa

A 32-bit unsigned
integer

String UTF-8 character string
All leading and trail-
ing spaces are ignored
between two tags

a. These values will not be considered valid if you use the distributed XSD document to do validation at
run-time with a code editor (see Section 15.6).
15-8

How the XML is Validated
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

The string URLs can be specified in the environment variable
NDDS_QOS_PROFILES as well as in the field url_profile in PROFILE QosPol-
icy (DDS Extension) (Section 8.4.2). Each string URL must contain a whole XML
document.

❏ The string_profile field in the PROFILE QosPolicy (DDS Extension) (Section
8.4.2) allows you to split an XML document into multiple strings. For example:

const char * MyXML[4] =
{
 "<dds>",

"<qos_library name=\"MyLibrary\">",
"</qos_library>",

 "</dds>"
};
factoryQos.profile.string_profile.from_array(MyXML,4);

Only one XML document can be specified with the string_profile field.

15.6 How the XML is Validated

15.6.1 Validation at Run-Time

Connext validates the input XML files using a builtin Document Type Definition (DTD).

You can find a copy of the builtin DTD in $(NDDSHOME)/resource/
qos_profiles_4.5x1/schema/rti_dds_qos_profiles.dtd. (This is only a copy of what the
Connext core uses. Changing this file has no effect unless you specify its path with the
<!DOCTYPE> tag, described below.)

You can overwrite the builtin DTD by using the XML tag, <!DOCTYPE>. For example,
the following indicates that Connext must use a DTD file from a user’s directory to per-
form validation:

<!DOCTYPE dds SYSTEM "/local/joe/rti/dds/mydds.dtd">

❏ The DTD path can be absolute, or relative to the application's current working
directory.

1. x stands for the version letter of the current release.
15-9

S

Configuring QoS with XML
❏ If the specified file does not exist, you will see the following error:

RTIXMLDtdParser_parse:!open DTD file

❏ If you do not specify the DOCTYPE tag in the XML file, the builtin DTD is used.

❏ The XML files used by Connext can be versioned using the attribute version in
the <dds> tag. For example:

<dds version="4.5x">1

 ...
</dds>

Although the attribute version is not required during the validation process, it
helps to detect DTD incompatibility scenarios by providing better error mes-
sages.

For example, if an application using Connext 4.5x tries to load an XML file from
Connext 4.5z and there is some incompatibility in the XML content, the following
parsing error will be printed:

ATTENTION: The version declared in this file (4.5z) is different from the
version of Connext (4.5x). If these versions are not compatible, that
incompatibility could be the cause of this error

15.6.2 XML File Validation During Editing

Connext provides DTD and XSD files that describe the format of the XML content. We
recommend including a reference to one of these documents in the XML file that con-
tains the QoS profiles—this provides helpful features in code editors such as Visual Stu-
dio and Eclipse, including validation and auto-completion while you are editing the
XML file.

The DTD and XSD definitions of the XML elements are in
$(NDDSHOME)/resource/qos_profiles_4.5x/schema/rti_dds_qos_profiles.dtd and
$(NDDSHOME)/resource/qos_profiles_4.5x/schema/rti_dds_qos_profiles.xsd,
respectively (in ‘4.5x’, x stands for the version letter of the current release).

To include a reference to the XSD document in your XML file, use the attribute
xsi:noNamespaceSchemaLocation in the <dds> tag. For example:

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=

1. x stands for the version letter of the current release.
15-10

Configuring QoS with XML
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

"<NDDSHOME1>/resource/qos_profiles_4.5x/schema/
rti_dds_qos_profiles.xsd">
 ...
</dds>

To include a reference to the DTD document in your XML file use the <!DOCTYPE> tag.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dds SYSTEM
"<NDDSHOME1>/resource/qos_profiles_4.5x/schema/
rti_dds_qos_profiles.dtd">
<dds>
 ...
</dds>

We recommend including a reference to the XSD file in the XML documents because it
provides stricter validation and better auto-completion than the corresponding DTD
file.

15.7 Configuring QoS with XML
To configure the QoS for an Entity using XML, use the following tags:

❏ <participant_factory_qos>

Note: The only QoS policies that can be configured for the DomainPartici-
pantFactory are <entity_factory> and <logging>.

❏ <participant_qos>

❏ <publisher_qos>

❏ <subscriber_qos>

❏ <topic_qos>

❏ <datawriter_qos> or <writer_qos> (writer_qos is valid only with DTD valida-
tion)

❏ <datareader_qos> or <reader_qos> (reader_qos is valid only with DTD valida-
tion)

Each QoS can be identified by a name. The QoS can inherit its values from other QoSs
described in the XML file. For example:

1. Replace <NDDSHOME> with the installation directory of Connext.
15-11

S

Configuring QoS with XML
<datawriter_qos name="DerivedWriterQos" base_name="Lib::BaseWriter-
Qos">
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
</datawriter_qos>

In the above example, the datawriter_qos named 'DerivedWriterQos' inherits the values
from 'BaseWriterQos' in the library 'Lib'. The HistoryQosPolicy kind is set to
KEEP_ALL_HISTORY_QOS.

Each XML tag with an associated name can be uniquely identified by its fully qualified
name in C++ style.

The writer, reader and topic QoSs can also contain an attribute called topic_filter that
will be used to associate a set of topics to a specific QoS when that QoS is part of a QoS
profile. See Topic Filters (Section 15.8.3) and QoS Profiles (Section 15.8).

15.7.1 QosPolicies

The fields in a QosPolicy are described in XML using a 1-to-1 mapping with the equiva-
lent C representation. For example, the Reliability QosPolicy is represented with the fol-
lowing C structures:

struct DDS_Duration_t {
 DDS_Long sec;
 DDS_UnsignedLong nanosec;
}
struct DDS_ReliabilityQosPolicy {
 DDS_ReliabilityQosPolicyKind kind;
 DDS_Duration_t max_blocking_time;
}

The equivalent representation in XML is as follows:

<reliability>
 <kind></kind>
 <max_blocking_time>

<sec></sec>
<nanosec></nanosec>

 </max_blocking_time>
</reliability>
15-12

Configuring QoS with XML
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

15.7.2 Sequences

In general, sequences in QosPolicies are described with the following XML format:

<a_sequence_member_name>
 <element>...</element>
 <element>...</element>
 ...
</a_sequence_member_name>

Each element of the sequence is enclosed in an <element> tag. For example:

<property>
 <value>
 <element>
 <name>my name</name>
 <value>my value</value>
 </element>
 <element>
 <name>my name2</name>
 <value>my value2</value>
 </element>
 </value>
</property>

A sequence without elements represents a sequence of length 0. For example:

<discovery>
 <!-- initial_peers sequence contains zero elements -->
 <initial_peers/>
</discovery>

For sequences that may have a default initialization that is not empty (such as the
initial_peers field in the DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2)), using
the above construct would result in an empty list and not the default value. So to simply
show a sequence for the sake of completeness, but not change its default value, com-
ment it out, as follows:

<discovery>
 <!-- initial_peers sequence contains the default value -->
 <!-- <initial_peers/> -->
</discovery>

Sequences defined in a derived1 QoS will replace the corresponding sequences in the
base QoS. For example:

1. The concepts of derived and base QoS are described in QoS-Profile Inheritance (Section 15.8.2).
15-13

S

Configuring QoS with XML
 <participant_qos name="MyBaseQos">
 <property>
 <value>
 <element>
 <name>

dds.transport.UDPv4.builtin.send_socket_buffer_size
 </name>
 <value>524288</value>
 </element>
 <element>
 <name>

 dds.transport.UDPv4.builtin.recv_socket_buffer_size
 </name>
 <value>2097152</value>
 </element>
 </value>
 </property>
</participant_qos>

<participant_qos name="MyDerivedQos" base_name="MyBaseQos">
 <property>
 <value>
 <element>
 <name>

dds.transport.UDPv4.builtin.recv_socket_buffer_size
 </name>
 <value>1048576</value>
 </element>
 </value>
 </property>
</qos_profile>

The property sequence defined in the participant QoS of MyDerivedProfile will contain
a single property named dds.transport.UDPv4.builtin.recv_socket_buffer_size, with a
value of 1048576. The property dds.transport.UDPv4.builtin.send_socket_buffer_size
will not be inherited.

As a special case, sequences of octets are represented with a single XML tag enclosing a
sequence of decimal/hexadecimal values between 0..255 separated with commas. For
example:

<user_data>
 <value>100,200,0,0,0,223</value>
</user_data>

<topic_data>
15-14

Configuring QoS with XML
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

 <value>0xff,0x00,0x8e,0xEE,0x78</value>
</topic_data>

15.7.3 Arrays

In general, the arrays contained in the QosPolicies are described with the following
XML format:

<an_array_member_name>
 <element>...</element>
 <element>...</element>
 ...
</an_array_member_name>

Each element of the array is enclosed in an <element> tag.

As a special case, arrays of octets are represented with a single XML tag enclosing an
array of decimal/hexadecimal values between 0..255 separated with commas. For
example:

<reader_qos>
 ...
 <protocol>
 <virtual_guid>
 <value>1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16</value>
 </virtual_guid>
 </protocol>
</reader_qos>

15.7.4 Enumeration Values

Enumeration values are represented using their C or Java string representation. For
example:

<history>
 <kind>DDS_KEEP_ALL_HISTORY_QOS</kind>
</history>

or

<history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

When the XSD document is used for validation during editing (see Section 15.6.2), only
the Java representation is valid.
15-15

S

Configuring QoS with XML
15.7.5 Time Values (Durations)

You can use the following special values for fields that require seconds or nanoseconds:

❏ DURATION_INFINITE_SEC or DDS_DURATION_INFINITE_SEC,

❏ DURATION_ZERO_SEC or DDS_DURATION_ZERO_SEC,

❏ DURATION_INFINITE_NSEC or DDS_DURATION_INFINITE_NSEC

❏ DURATION_ZERO_NSEC or DDS_DURATION_ZERO_NSEC

For example:

<deadline>
 <period>

 <sec>DURATION_INFINITE_SEC</sec>
 <nanosec>DURATION_INFINITE_NSEC</nanosec>
 </period>
</deadline>

When the XSD document is used for validation during editing (see Section 15.6.2), only
the values without the DDS prefix are considered valid.

15.7.6 Transport Properties

You can configure transport plugins using the DomainParticipant’s PROPERTY QosPol-
icy (DDS Extension) (Section 6.5.16).

❏ Properties for the builtin transports are described in Setting Builtin Transport
Properties with the PropertyQosPolicy (Section 13.6).

❏ Properties for other transport plugins such as RTI TCP Transport1are described in
their respective chapters in this manual.

For example:

<participant_qos>
<property>
 <value>
 <element>

<name>dds.transport.UDPv4.builtin.parent.message_size_max
</name>
<value>65536</value>

 </element>

1. RTI TCP Transport is included with Connext, but is not enabled by default.
15-16

QoS Profiles
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

 <element>
<name>dds.transport.UDPv4.builtin.send_socket_buffer_size
</name>

 <value>131072</value>
 </element>
 <element>

<name>dds.transport.UDPv4.builtin.recv_socket_buffer_size
</name>
<value>262144</value>

 </element>
</value>
</property>

</participant_qos>

15.7.7 Thread Settings

When thread priorities are configured using XML, the values are considered native pri-
orities. For example:

<thread>
 <mask>STDIO|FLOATING_POINT</mask>
 <priority>10</priority>
 <stack_size>THREAD_STACK_SIZE_DEFAULT</stack_size>
</thread>

When the XML file is loaded using the Java API, the priority is a native priority, not a
Java thread priority.

15.8 QoS Profiles
A QoS profile groups a set of related QoS, usually one per entity, identified by a name.
For example:

<qos_profile name="StrictReliableCommunicationProfile">
<datawriter_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

 </history>
 <reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>
15-17

S

Configuring QoS with XML
<datareader_qos>
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datareader_qos>
</qos_profile>

Duplicate QoS profiles are not allowed. To overwrite a QoS profile, use QoS-Profile
Inheritance (Section 15.8.2).

There are functions that allow you to create Entities using profiles, such as
create_participant_with_profile() (Section 8.3.1), create_topic_with_profile()
(Section 5.1.1), etc.

If you create an entity using a profile without a QoS definition or an inherited QoS defi-
nition (see QoS-Profile Inheritance (Section 15.8.2)) for that class of entity, Connext uses
the default QoS.

Example 1:

<qos_profile name="BatchStrictReliableCommunicationProfile"
base_name="StrictReliableCommunicationProfile">

 <datawriter_qos>
 <batch>
 <enable>true</enable>
 </batch>
 </datawriter_qos>
</qos_profile>

The DataReader QoS value in the profile BatchStrictReliableCommunicationProfile is
inherited from the profile StrictReliableCommunicationProfile.

Example 2:

<qos_profile name="BatchProfile">
 <datawriter_qos>
 <batch>
 <enable>true</enable>
 </batch>
 </datawriter_qos>
</qos_profile>

The DataReader QoS value in the profile BatchProfile is the default Connext QoS.
15-18

QoS Profiles
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

15.8.1 QoS Profiles with a Single QoS

The definition of an individual QoS outside a profile is a shortcut for defining a QoS
profile with a single QoS. For example:

<datawriter_qos name="KeepAllWriter">
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

</datawriter_qos>

is equivalent to:

<qos_profile name="KeepAllWriter">
<datawriter_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
</datawriter_qos>

</qos_profile>

15.8.2 QoS-Profile Inheritance

An individual QoS or profile can inherit values from other QoSs or profiles described in
the XML file by using the attribute, base_name.

Inheriting from other XML Files: A QoS or QoS Profile may inherit values from other
QoSs or QoS Profiles described in different XML files. A QoS or profile can only inherit
from other QoS policies or profiles that have already been loaded. The order in which
XML resources are loaded is described in Section 15.2.

The following examples show how to inherit from other profiles:

Example 1:

<qos_library name=”Library”>
 <qos_profile name="BaseProfile">
 <datawriter_qos>
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>

 <qos_profile name="DerivedProfile" base_name="BaseProfile">
15-19

S

Configuring QoS with XML
 <datawriter_qos>
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>
</qos_library>

The writer_qos and reader_qos in DerivedProfile inherit their values from the corre-
sponding QoS in BaseProfile.

Example 2:

<qos_library name=”Library”>
 <datareader_qos name="BaseProfile">
 ...
 </datareader_qos>
 <datareader_qos name="DerivedProfile" base_name="BaseProfile">
 ...
 </datareader_qos>
</qos_library>

The datareader_qos in DerivedProfile inherits its values from the datareader_qos of
BaseProfile. In this example, the datareader_qos definition is a shortcut for a profile def-
inition with a single QoS (see Section 15.8.1).

Example 3:

<qos_library name=”Library”>
 <qos_profile name="Profile1">
 <datawriter_qos name="BaseWriterQoS">
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>

 <qos_profile name="Profile2">
 <datawriter_qos name="DerivedWriterQos"

base_name="Profile1::BaseWriterQos">
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
15-20

QoS Profiles
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

 </qos_profile>
</qos_library>

The datawriter_qos in Profile2 inherits its values from the datawriter_qos in Profile1.
The datareader_qos in Profile2 will not inherit the values from the corresponding QoS
in Profile1.

Example 4:

<qos_library name=”Library”>
 <qos_profile name="Profile1">
 <datawriter_qos>
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>

 <qos_profile name="Profile2">
 <datawriter_qos name="BaseWriterQoS">
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>

 <qos_profile name="Profile3" base_name="Profile1">
 <datawriter_qos name="DerivedWriterQos"

 base_name="Profile2::BaseWriterQos">
 ...
 </datawriter_qos>
 <datareader_qos>
 ...
 </datareader_qos>
 </qos_profile>
</qos_library></qos_library>

The datawriter_qos in Profile3 inherits its values from the datawriter_qos in Profile2.
The datareader_qos in Profile3 inherits its values from the datareader_qos in Profile1.

Example 5:

<qos_library name=”Library”>
 <datareader_qos name="BaseProfile">
 ...
15-21

S

Configuring QoS with XML
 </datareader_qos>

 <profile name="DerivedProfile" base_name="BaseProfile">
 <datareader_qos>
 ...
 </datareader_qos>

 </profile>
</qos_library>

The datareader_qos in DerivedProfile inherits its values from the datareader_qos in
BaseProfile.

15.8.3 Topic Filters

A QoS profile may contain several writer, reader and topic QoSs. Connext will select a
QoS based on the evaluation of a filter expression on the topic name. The filter expres-
sion is specified as an attribute in the XML QoS definition. For example:

<qos_profile name="StrictReliableCommunicationProfile">
<datawriter_qos topic_filter="A*">

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>

<datawriter_qos topic_filter="B*">
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>
<resource_limits>

<max_samples>128</max_samples>
<max_samples_per_instance>128
</max_samples_per_instance>
<initial_samples>128</initial_samples>
<max_instances>1</max_instances>
<initial_instances>1</initial_instances>

</resource_limits>
</datawriter_qos>
15-22

QoS Profiles
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

…
</qos_profile>

If topic_filter is not specified in a QoS, Connext will assume the filter '*'. The QoSs with
an explicit topic_filter attribute definition will be evaluated in order; they have prece-
dence over a QoS without a topic_filter expression.

The topic_filter attribute is only used with the following APIs:

DomainParticipantFactory:

❏ get_<entity>_qos_from_profile_w_topic_name() (where <entity> may be topic,
datareader, or datareader; see Section 8.2.5)

DomainParticipant:

❏ create_datawriter_with_profile() (see Creating DataWriters (Section 6.3.1))

❏ create_datareader_with_profile() (see Creating DataReaders (Section 7.3.1)

❏ create_topic_with_profile() (see Creating Topics (Section 5.1.1))

Publisher:

❏ create_datawriter_with_profile() (see Creating DataWriters (Section 6.3.1))

Subscriber:

❏ create_datareader_with_profile() (see Creating DataReaders (Section 7.3.1))

Topic:

❏ set_qos_with_profile() (see Setting Topic QosPolicies (Section 5.1.3))

DataWriter:

❏ set_qos_with_profile() (see Changing QoS Settings After the Publisher Has
Been Created (Section 6.2.4.2))

DataReader:

❏ set_qos_with_profile() (see Setting DataReader QosPolicies (Section 7.3.8))

Other APIs will ignore QoSs with a topic_filter value different than "*". A QoS Profile
with QoSs using topic_filter can also inherits from other QoS Profiles. In this case,
inheritance will consider the value of the topic_filter expression.

Example 1:

<qos_library name=”Library”>
 <qos_profile name="BaseProfile">
 <datawriter_qos>
 ...
15-23

S

Configuring QoS with XML
 </datawriter_qos>
 <datawriter_qos topic_filter="T1*">
 ...
 </datawriter_qos>
 <datawriter_qos topic_filter="T2*">
 ...
 </datawriter_qos>
 </qos_profile>

 <qos_profile name="DerivedProfile" base_name="BaseProfile">
 <datawriter_qos topic_filter="T11">
 ...
 </datawriter_qos>
 <datawriter_qos topic_filter="T21">
 ...
 </datawriter_qos>
 <datawriter_qos topic_filter="T31">
 ...
 </datawriter_qos>
 </qos_profile>
</qos_library>

The datawriter_qos with topic_filter T11 in DerivedProfile will inherit its values from
the datawriter_qos with topic_filter T1* in BaseProfile. The datawriter_qos with
topic_filter T21 in DerivedProfile will inherit its values from the datawriter_qos with
topic_filter T2* in BaseProfile. The datawriter_qos with topic_filter T31 in DerivedPro-
file will inherit its values from the datawriter_qos without topic_filter in BaseProfile.

Example 2:

<qos_library name=”Library”>
 <qos_profile name="BaseProfile">
 <datawriter_qos topic_filter="T1*">
 ...
 </datawriter_qos>
 <datawriter_qos name="T2DataWriterQoS" topic_filter="T2*">
 ...
 </datawriter_qos>
 </qos_profile>

 <qos_profile name="DerivedProfile" base_name="BaseProfile">
 <datawriter_qos topic_filter="T11"
 base_name="BaseProfile::T2DataWriterQoS">
 ...
 </datawriter_qos>
15-24

QoS Profiles
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

 <datawriter_qos topic_filter="T21">
 ...
 </datawriter_qos>
 </qos_profile>
</qos_library>

Although the topic_filter expressions do not match, the datawriter_qos with
topic_filter T11 in DerivedProfile will inherit its values from the datawriter_qos with
topic_filter T2* in BaseProfile. topic_filter is not used with inheritance from QoS to
QoS. The datawriter_qos with topic_filter T21 in DerivedProfile will inherit its values
from the datawriter_qos with topic_filter T2* in BaseProfile.

Example 3:

<qos_library name=”Library”>
 <datawriter_qos name="BaseQos" topic_filter="T1">
 ...
 </datawriter_qos>
 <datawriter_qos name="DerivedQos" base_name="BaseQos"
 topic_filter="T2">
 ...
 </datawriter_qos>
</qos_library>

In the case of a single QoS profile, although the topic_filter expressions do not match,
the datawriter_qos named DerivedQos with topic_filter T2 will inherit its values from
the datawriter_qos named BaseQos with topic_filter T1.

15.8.4 Overwriting Default QoS Values

There are two ways to overwrite the default QoS used for new entities with values from
a profile: programmatically and with an XML attribute.

❏ You can overwrite the default QoS programmatically with
set_default_<entity>_qos_with_profile() (where <entity> is participant, topic,
publisher, subscriber, datawriter, or datareader)

❏ You can overwrite the default QoS using the XML attribute is_default_qos with
the <qos_profile> tag

❏ Only for the DomainParticipantFactory: You can overwrite the default QoS using
the XML attribute is_default_participant_factory_profile. This attribute has
precedence over is_default_qos if both are set.
15-25

S

Configuring QoS with XML
In the following example, the DataWriter and DataReader default QoS will be overwrit-
ten with the values specified in a profile named ‘StrictReliableCommunicationProfile’:

<qos_profile name="StrictReliableCommunicationProfile"
 is_default_qos="true">
 <datawriter_qos>
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
 <reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
 </reliability>
 </datawriter_qos>
 <datareader_qos>
 <history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
 </history>
 <reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
 </reliability>
 </datareader_qos>
</qos_profile>

If multiple profiles are configured to overwrite the default QoS, only the last one parsed
applies.

Example:

In this example, the profile used to configure the default QoSs will be StrictReliable-
CommunicationProfile.

<qos_profile name="BestEffortCommunicationProfile"
 is_default_qos="true">
...
</qos_profile>
<qos_profile name="StrictReliableCommunicationProfile"
 is_default_qos="true">
...
</qos_profile>

15.8.5 Get Qos Profiles

To get a list of loaded QoS profiles, call the DomainParticipantFactory’s
get_qos_profiles() operation, which returns the names of all profiles within a specified
15-26

QoS Libraries
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

QoS library. Either the input QoS library name must be specified or the default profile
library must have been set prior to calling this function.

DDS_ReturnCode_t get_qos_profiles (
struct DDS_StringSeq *profile_names,
const char *library_name)

15.9 QoS Libraries
A QoS Library is a named set of QoS profiles.

One configuration file may have several QoS libraries, each one defining its own QoS
profiles.

All QoS libraries must be declared within <dds> and </dds> tags. For example:

<dds>
<qos_library name="RTILibrary">

 <!-- Individual QoSs are shortcuts for QoS Profiles with 1 QoS
-->

<datawriter_qos name="KeepAllWriter">
<history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

</datawriter_qos>

<!-- Qos Profile -->
<qos_profile name="StrictReliableCommunicationProfile">

<datawriter_qos>
<history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
</history>
<reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>
<datareader_qos>

<history>
 <kind>KEEP_ALL_HISTORY_QOS</kind>
</history>
<reliability>
 <kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>
15-27

S

Configuring QoS with XML
</datareader_qos>
</qos_profile>

</qos_library>
</dds>

A QoS library can be reopened within the same configuration file or across different
configuration files. For example:

<dds>
<qos_library name="RTILibrary">

 ...
 </qos_library>
 ...

<qos_library name="RTILibrary">
 ...
 </qos_library>

</dds>

15.9.1 Get Qos Profile Libraries

To get a list of available QoS libraries, call the DomainParticipantFactory’s
get_qos_profile_libraries() operation, which returns the names of all QoS libraries that
have been loaded by Connext.

DDS_ReturnCode_t get_qos_profile_libraries (
struct DDS_StringSeq *profile_names)

15.10 URL Groups
To provide redundancy and fault tolerance, you can specify multiple locations for a sin-
gle XML document via URL groups. The syntax of a URL group is:

[URL1 | URL2 | URL2 | ... | URLn]

For example:

[file:///usr/local/default_dds.xml | file:///usr/local/
alternative_default_dds.xml]

Only one of the elements in the group will be loaded by Connext, starting from the left.

Brackets are not required for groups with a single URL.
15-28

Configuring Logging Via XML
15. C

o
nfig

uring
 Q

o
w

ith X
M

L

The NDDS_QOS_PROFILES environment variable contains a set of URL groups sepa-
rated by semicolons. For example, on Linux and Solaris systems:

setenv NDDS_QOS_PROFILES [file:///usr/local/default_dds.xml|file:///
usr/local/alternative_default_dds.xml];[str://"<dds><qos_library
name="MyQosLibrary"></qos_library></dds>"]

The url_profile field in the PROFILE QosPolicy (DDS Extension) (Section 8.4.2) will
contain a sequence of URL groups.

15.11 Configuring Logging Via XML
Logging can be configured via XML using the DomainParticipantFactory’s LoggingQo-
sPolicy. See Section 18.2.2 for additional details.
15-29

S

Configuring QoS with XML
15-30

16. M
ulti-c

ha
nne

l
D

a
ta

W
rite

rs
Chapter 16 Multi-channel DataWriters

In Connext, producers publish data to a Topic, identified by a topic name; consumers
subscribe to a Topic and optionally to specific content by means of a content-filter
expression.

The middleware’s efficient implementation of content-filtering is critical for scenarios
such as the above "Market Data" example, where there are large numbers of consumers,
large volumes of data, or Topics that transmit information about many data-objects or
subjects (e.g., individual stocks).

Traditionally, middleware products use four approaches to implement content filtering:
Producer-based, Consumer-based, Server-based, and Network Switch-based.

❏ Producer-based approaches push the burden of filtering to the producer side.
The producer knows what each consumer wants and delivers to the consumer
only the data that matches the consumer's filter. This approach is suitable when
using point-to-point protocols such as TCP—it saves bandwidth and lowers the
load on the consumer—but it does not work if data is distributed via multicast.

A Market Data Example:

A producer can publish data on the Topic "MarketData" which can be defined
as a structured record containing fields that identify the exchange (e.g.,
"NYSE" or "NASDAQ"), the stock symbol (e.g., "APPL" or "JPM"), volume,
bid and ask prices, etc.

Similarly, a consumer may want to subscribe to data on the "MarketData"
Topic, but only if the exchange is "NYSE" or the symbol starts with the letter
"M." Or the consumer may want all the data from the "NYSE" whose volume
exceeds a certain threshold, or may want MarketData for a specific stock
symbol, regardless of the exchange, and so on.
16-1

Multi-channel DataWriters
Also, this approach does not scale to large numbers of consumers, because the
producer would be overburdened by the need to filter for each individual con-
sumer.

❏ Consumer-based approaches push the burden of filtering to the consumer side.
The producer sends all the data to every consumer and the middleware on the
consumer side decides whether the application wants it or not, automatically fil-
tering the unwanted data. This approach is simple and fits well in systems that
use multicast protocols as a transport. But the approach is not efficient for con-
sumers that want small subsets of the data, since the consumers have to spend a
lot of time filtering unwanted data. This approach is also unsuitable for systems
with large volumes of data, such as the above Market Data system.

❏ Server-based approaches push the burden of filtering to a third component: a
server or broker. This approach has some scalability advantages—the server can
be run on a more powerful computer and can be federated to handle a large
number of consumers. Some providers also provide hardware-assisted filtering
in the server. However, the server-based approach significantly increases latency
and jitter. It is also far more expensive to deploy and manage.

❏ Network Switch-based approaches leverage the network hardware, specifically
advanced (IGMP snooping) network switches, to offload most of the burden of
filtering from the producers and consumers without introducing additional
hardware, servers or proxies. This approach preserves the low latency and ease
of deployment of the brokerless approaches while still providing most of the off-
loading and scalability benefits of the broker.

RTI supports the producer-based, consumer-based and network-switch approaches to
content filtering:

❏ RTI automatically uses the producer-based and consumer-based approaches as
soon as it detects a consumer that specifies a content filter. The producer-based
approach is used if the consumer is receiving data over a point-to-point protocol
(i.e., not multicast) and the number of consumers that specify filters is reason-
ably low (below 32). Otherwise, RTI uses a subscriber-based approach.

❏ To use the more scalable network-switched based approach, an application must
configure the DataWriter as a Multi-channel DataWriter. This concept is described
in the following section.
16-2

What is a Multi-channel DataWriter?
16. M

ulti-c
ha

nne
l

D
a

ta
W

rite
rs
16.1 What is a Multi-channel DataWriter?
A Multi-channel DataWriter is a DataWriter that is configured to send data over multiple
multicast addresses, according to some filtering criteria applied to the data.

To determine which multicast addresses will be used to send the data, the middleware
evaluates a set of filters that are configured for the DataWriter. Each filter "guards" a
channel—a set of multicast addresses. Each time a multi-channel DataWriter writes data,
the filters are applied. If a filter evaluates to true, the data is sent over that filter’s associ-
ated channel (set of multicast addresses). We refer to this type of filter as a Channel
Guard filter.

Figure 16.1 Multi-channel Data Flow
16-3

Multi-channel DataWriters
Multi-channel DataWriters can be used to trade off network bandwidth with the unnec-
essary processing of unwanted data for situations where there are multiple DataReaders
who are interested in different subsets of data that come from the same data stream
(Topic). For example, in Financial applications, the data stream may be quotes for differ-
ent stocks at an exchange. Applications usually only want to receive data (quotes) for
only a subset of the stocks being traded. In tracking applications, a data stream may
carry information on hundreds or thousands of objects being tracked, but again, appli-
cations may only be interested in a subset.

The problem is that the most efficient way to deliver data to multiple applications is to
use multicast so that a data value is only sent once on the network for any number of
subscribers to the data. However, using multicast, an application will receive all of the
data sent and not just the data in which it is interested, thus extra CPU time is wasted to
throw away unwanted data. With this QoS, you can analyze the data-usage patterns of
your applications and optimize network vs. CPU usage by partitioning the data into
multiple multicast streams. While network bandwidth is still being conserved by send-
ing data only once using multicast, most applications will only need to listen to a subset
of the multicast addresses and receive a reduced amount of unwanted data.

Figure 16.2 Multi-channel Evaluation
16-4

How to Configure a Multi-channel DataWriter
16. M

ulti-c
ha

nne
l

D
a

ta
W

rite
rs
Note: Your system can gain more of the benefits of using multiple multicast groups if
your network uses Layer 2 Ethernet switches. Layer 2 switches can be configured to
only route multicast packets to those ports that have added membership to specific mul-
ticast groups. Using those switches will ensure that only the multicast packets used by
applications on a node are routed to the node; all others are filtered-out by the switch.

16.2 How to Configure a Multi-channel DataWriter
To configure a multi-channel DataWriter, simply define a list of all its channels in the
DataWriter’s MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.13).

Each channel consists of filter criterion to apply to the data and a set of multicast destina-
tions (transport, address, port) that will be used for sending data that matches the filter.
You can think of this sequence of channels as a table like the one shown below:

The example C++ code in Figure 16.3 on page 6 shows how to configure the channels.

The MULTI_CHANNEL QosPolicy is propagated along with discovery traffic. The
value of this policy is available in the builtin topic for the publication (see the
locator_filter field in Table 14.2, “Publication Built-in Topic’s Data Type
(DDS_PublicationBuiltinTopicData),” on page 14-3).

16.2.1 Limitations

When considering use of a multi-channel DataWriter, please be aware of the following
limitations:

❏ A DataWriter that uses the MULTI_CHANNEL QosPolicy will ignore multicast
and unicast addresses specified on the reader side through the
TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6) and
TRANSPORT_UNICAST QosPolicy (DDS Extension) (Section 6.5.22). The
DataWriter will not publish samples on these locators.

❏ Multi-channel DataWriters cannot be configured to use the Durable Writer His-
tory feature (described in Section 11.3).

If the Data Matches this Filter... Send the Data to these Multicast Destinations

Symbol MATCH '[A-K]* UDPv4:225.0.0.1:9000

Symbol MATCH '[L-Q]* UDPv4:225.0.0.2:9001

Symbol MATCH '[P-Z]* UDPv4:225.0.0.3:9002; 225.0.0.4:9003;
16-5

Multi-channel DataWriters
❏ Multi-channel DataWriters do not support fragmentation of large data.

❏ Multi-channel DataWriters cannot be configured for asynchronous publishing
(described in Section 6.4.1).

❏ Multi-channel DataWriters rely on the rtps_object_id in the
DATA_WRITER_PROTOCOL QosPolicy (DDS Extension) (Section 6.5.2) to be
DDS_RTPS_AUTO_ID (which causes automatic assignment of object IDs to
channels).

Figure 16.3 Using the MULTI_CHANNEL QosPolicy

// initialize writer_qos with default values
publisher->get_default_datawriter_qos(writer_qos);

// Initialize MULTI_CHANNEL Qos Policy

// Assign the filter name
// Possible options: DDS_STRINGMATCHFILTER_NAME, DDS_SQLFILTER_NAME
writer_qos.multi_channel.filter_name = (char*) DDS_STRINGMATCHFILTER_NAME;

// Create two channels
writer_qos.multi_channel.channels.ensure_length(2,2);

// First channel
writer_qos.multi_channel.channels[0].filter_expression =

DDS_String_dup("Symbol MATCH '[A-M]*'");
writer_qos.multi_channel.channels[0].multicast_settings.ensure_length(1,1);
writer_qos.multi_channel.channels[0].multicast_settings[0].receive_port =

8700;
writer_qos.multi_channel.channels[0].multicast_settings[0].receive_address =

DDS_String_dup("239.255.1.1");

// Second channel
writer_qos.multi_channel.channels[1].multicast_settings.ensure_length(1,1);
writer_qos.multi_channel.channels[1].multicast_settings[0].receive_port =

8800;
writer_qos.multi_channel.channels[1].multicast_settings[0].receive_address =

DDS_String_dup("239.255.1.2");
writer_qos.multi_channel.channels[1].filter_expression =

DDS_String_dup("Symbol MATCH '[N-Z]*'");

// Create writer
writer = publisher->create_datawriter(

topic, writer_qos, NULL, DDS_STATUS_MASK_NONE);
16-6

Multi-channel Configuration on the Reader Side
16. M

ulti-c
ha

nn
D

a
ta

W
rite

rs
❏ To guarantee reliable delivery, a DataReader's PRESENTATION QosPolicy (Sec-
tion 6.4.6) must be set to per-instance ordering
(DDS_INSTANCE_PRESENTATION_QOS, the default value), instead of per-
topic ordering (DDS_TOPIC_PRESENTATION_QOS), and the matching DataW-
riter's MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.13) must use
expressions that only refer to key fields.

16.3 Multi-channel Configuration on the Reader Side
No special changes are required in a subscribing application to get data from a multi-
channel DataWriter.

If you want the DataReader to subscribe to only a subset of the channels, use a Content-
FilteredTopic, as described in Section 5.4. For example:

// Create a content filtered topic
contentFilter = participant-
>create_contentfilteredtopic_with_filter(

"FilteredTopic",
topic,
"symbol MATCH 'NYE/BAC,NASDAQ/MSFT,NASDAQ/GOOG",
parameters,
DDS_STRINGMATCHFILTER_NAME);

// Create a DataReader that uses the content filtered topic
reader = subscriber->create_datareader(

contentFilter,
DDS_DATAREADER_QOS_DEFAULT,
NULL,0);

From there, Connext takes care of all the necessary steps:

❏ The DataReader automatically discovers all the DataWriters—including multi-
channel DataWriters—for the Topic it subscribes to.

❏ When the DataReader discovers a multi-channel DataWriter, it also discovers the
list of channels used by that DataWriter.

❏ When the multi-channel DataWriter discovers a DataReader, it also discovers the
content filters specified by that DataReader, if any.

With all this information, Connext automatically determines which channels are of
"interest" to the DataReader.
16-7

e
l

Multi-channel DataWriters
A DataReader is interested in a channel if and only if the set of data values for which the
channel guard filter evaluates to TRUE intersects the set of data values for which the
DataReader's content filter evaluates to TRUE. If a DataReader does not use a content fil-
ter, then it is interested in all the channels.

Figure 16.4 Filter Intersection

In this scenario, the DataReader is interested in Channel1 and Channel2, but not Channel3.

Market Data Example, continued:

If the channel guard filter for Channel 1 is 'Symbol MATCH '[A-K]*' then the channel will
only transfer data for stocks whose symbol starts with a letter in the A to K range.
That is, it will transfer data on 'APPL', "GOOG', and 'IBM', but not on 'MSFT', 'ORCL', or
'YHOO'. Channel 1 will be of interest to DataReaders whose content filter includes at least
one stock whose symbol starts with a letter in the A to K range.
A DataReader that specifies a content filter such as "Symbol MATCH 'IBM, YHOO' " will be
interested in Channel1.
A DataReader that specifies a content filter such as "Symbol MATCH '[G-M]*'" will also be
interested in Channel1.
A DataReader that specifies a content filter such as "Symbol MATCH '[M-T]*' " will not be
interested in Channel1.
16-8

Where Does the Filtering Occur?
16. M

ulti-c
ha

nne
l

D
a

ta
W

rite
rs
16.4 Where Does the Filtering Occur?
If Multi-channel DataWriters are used, the filtering can occur in three places:

❏ Filtering at the DataWriter (Section 16.4.1)

❏ Filtering at the DataReader (Section 16.4.2)

❏ Filtering on the Network Hardware (Section 16.4.3)

16.4.1 Filtering at the DataWriter

Each time data is written, the DataWriter evaluates each of the channel guard filters to
determine which channels will transmit the data. This filtering occurs on the DataWriter.

Filtering on the DataWriter side is scalable because the number of filter evaluations
depends only on the number of channels, not on the number of DataReaders. Usually, the
number of channels is smaller than the number of possible DataReaders.

As explained in Section 16.7, if the channel guard filters are configured to only look at
the "key" fields in the data, the channel filtering becomes a very efficient lookup opera-
tion.

16.4.2 Filtering at the DataReader

The DataReader will listen on the multicast addresses that correspond to the channels of
interest (see Section 16.3). When a channel is 'of interest', it means that it is possible for
the channel to transmit data that meets the content filter of the DataReader, however the
channel may also transmit data that does not pass the DataReader's content filter. There-
fore, the DataReader has to filter all incoming data on that channel to determine if it
passes its content filter.

Market Data Example, continued:

Channel 1, identified by guard filter "Symbol MATCH '[A-M]*'", will be of interest to
DataReaders whose content filter includes at least one stock whose symbol starts with a
letter in the A to K range.

A DataReader with content filter "Symbol MATCH 'GOOG'" will listen on Channel1.

In addition to 'GOOG', the DataReader will also receive samples corresponding to stock
symbols such as 'MSFT' and 'APPL'. The DataReader must filter these samples out.
16-9

Multi-channel DataWriters
As explained in Section 16.7, if the DataReader’s content filters are configured to only
look at the "key" fields in the data, the DataReader filtering becomes a very efficient
lookup operation.

16.4.3 Filtering on the Network Hardware

DataReaders will only listen to multicast addresses that correspond to the channels of
interest. The multicast traffic generated in other channels will be filtered out by the net-
work hardware (routers, switches).

Layer 3 routers will only forward multicast traffic to the actual destination ports. How-
ever, by default, layer 2 switches treat multicast traffic as broadcast traffic. To take
advantage of network filtering with layer 2 devices, they must be configured with IGMP
snooping enabled (see Section 16.7.1).

16.5 Fault Tolerance and Redundancy
To achieve fault tolerance and redundancy, configure the DataWriter’s
MULTI_CHANNEL QosPolicy (DDS Extension) (Section 6.5.13) to publish a sample
over multiple channels or over different multicast addresses within a single channel.
Figure 16.5 shows how to use overlapping channels.

If a sample is published to multiple multicast addresses, a DataReader may receive mul-
tiple copies of the sample. By default, duplicates are discarded by the DataReader and
not provided to the application. To change this default behavior, use the Durable Reader
State property, dds.data_reader.state.filter_redundant_samples (see Section 11.4.2).

16.6 Reliability with Multi-Channel DataWriters

16.6.1 Reliable Delivery

Reliable delivery is only guaranteed when the access_scope in the Subscriber's PRESEN-
TATION QosPolicy (Section 6.4.6) is set to DDS_INSTANCE_PRESENTATION_QOS
16-10

Reliability with Multi-Channel DataWriters
16. M

ulti-c
ha

nne
l

D
a

ta
W

rite
rs
Figure 16.5 Using the MULTI_CHANNEL QosPolicy with Overlapping Channels

// initialize writer_qos with default values
publisher->get_default_datawriter_qos(writer_qos);

// Initialize MULTI_CHANNEL Qos Policy

// Assign the filter name
// Possible options: DDS_STRINGMATCHFILTER_NAME and DDS_SQLFILTER_NAME
writer_qos.multi_channel.filter_name = (char*) DDS_STRINGMATCHFILTER_NAME;

// Create two channels
writer_qos.multi_channel.channels.ensure_length(2,2);

// First channel
writer_qos.multi_channel.channels[0].filter_expression =

DDS_String_dup("Symbol MATCH '[A-M]*'");
writer_qos.multi_channel.channels[0].multicast_settings.ensure_length(2,2);
writer_qos.multi_channel.channels[0].multicast_settings[0].receive_port = 8700;
writer_qos.multi_channel.channels[0].multicast_settings[0].receive_address =

DDS_String_dup("239.255.1.1");
// Second channel
writer_qos.multi_channel.channels[1].multicast_settings.ensure_length(1,1);
writer_qos.multi_channel.channels[1].multicast_settings[0].receive_port = 8800;
writer_qos.multi_channel.channels[1].multicast_settings[0].receive_address =

DDS_String_dup("239.255.1.2");
writer_qos.multi_channel.channels[1].filter_expression =

DDS_String_dup("Symbol MATCH '[C-Z]*'");

// Symbols starting with [C-M] will be published in two different channels

// Create writer
writer = publisher->create_datawriter(
 topic, writer_qos, NULL, DDS_STATUS_MASK_NONE);
16-11

Multi-channel DataWriters
(default value) and the filters in the DataWriter's MULTI_CHANNEL QosPolicy (DDS
Extension) (Section 6.5.13)) are keyed-only based.

If any of the guard filters are based on non-key fields, Connext only guarantees reception
of the most recent data from the multi-Channel DataWriter.

16.6.2 Reliable Protocol Considerations

Reliability is maintained on a per-channel basis. Each channel has its own reliability
channel send queue. The size of that queue is limited by max_samples in the
RESOURCE_LIMITS QosPolicy (Section 6.5.19) and/or max_batches in
DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension) (Section 6.5.3). The
protocol parameters described in the DATA_WRITER_PROTOCOL QosPolicy (DDS
Extension) (Section 6.5.2) are applied per channel, with the following exceptions:

❏ low_watermark and high_watermark: The low watermark and high watermark
control the queue levels (in number of samples) that determine when to switch
between regular and fast heartbeat rates (see Section 6.5.2.1). With multi-channel
DataWriters, high_watermark and low_watermark refer to the DataWriter’s
queue (not the reliability channel queue). Therefore, periodic heartbeating can-
not be controlled on a per-channel basis.

Important: With multi-channel DataWriters, low_watermark and
high_watermark refer to application samples even if batching is enabled. This
behavior differs from the one without multi-channel DataWriters (where
low_watermark and high_watermark refer to batches).

❏ heartbeats_per_max_samples: This field defines the number of heartbeats per
send queue. For multi-channel DataWriters, the value is applied per channel.
However, the send queue size that is used to calculate the a piggyback heartbeat

Market Data Example, continued:

Given the following IDL description for our MarketData topic type:

Struct MarketData {
 string<255> Symbol; //@key
 double Price;
}

A guard filter "Symbol MATCH 'APPL'" is keyed-only based.

A guard filter "Symbol MATCH 'APPL' and Price < 100" is not keyed-only based.
16-12

Performance Considerations
16. M

ulti-c
ha

nne
l

D
a

ta
W

rite
rs
rate is defined per DataWriter (see max_samples in RESOURCE_LIMITS QosPol-
icy (Section 6.5.19)).

Important: With multi-channel DataWriters, heartbeats_per_max_samples refers
to samples even if batching is enabled. This behavior differs from the one with-
out multi-channel DataWriters (where heartbeats_per_max_samples refers to
batches, Section 6.5.2).

With batching and multi-channel DataWriters, the size of the DataWriter’s send queue
should be configured using max_samples (in RESOURCE_LIMITS QosPolicy (Section
6.5.19)) instead of max_batches (in DATA_WRITER_RESOURCE_LIMITS QosPolicy
(DDS Extension) (Section 6.5.3)) in order to take advantage of
heartbeats_per_max_samples.

16.7 Performance Considerations

16.7.1 Network-Switch Filtering

By default, multicast traffic is treated as broadcast traffic by layer 2 switches. To avoid
flooding the network with broadcast traffic and take full advantage of network filtering,
the layer 2 switches should be configured to use IGMP snooping. Refer to your switch’s
manual for specific instructions.

When IGMP snooping is enabled, a switch can route a multicast packet to just those
ports that subscribe to it, as seen in Figure 16.6.

16.7.2 DataWriter and DataReader Filtering

Where Does the Filtering Occur? (Section 16.4) describes the three places where filtering
can occur with Multi-channel DataWriters. To improve performance when filtering

Figure 16.6 IGMP Snooping
16-13

Multi-channel DataWriters
occurs on the reader and/or writer sides, use filter expressions that are only based on
keys (see Section 2.2.2). Then the results of the filter are cached in a hash table on a per-
key basis.

You can also improve performance by increasing the number of buckets associated with
the hash table. To do so, use the instance_hash_buckets field in the
RESOURCE_LIMITS QosPolicy (Section 6.5.19) on both the writer and reader sides. A
higher number of buckets will provide better performance, but requires more resources.

Market Data Example, continued:

The filter expressions in the Market Data example are based on the value of the
field, Symbol. To make filter operations on this field more efficient, declare Sym-
bol as a key. For example:

struct {
 string<MAX_SYMBOL_SIZE> Symbol; //@key
}

16-14

17. Thre
a

d
ing

 M
o

d
e

l

Chapter 17 Connext Threading Model

This chapter describes the internal threads that Connext uses for sending and receiving
data, maintaining internal state, and calling user code when events occur such as the
arrival of new data samples. It may be important for you to understand how these
threads may interact with your application.

A DomainParticipant uses three types of threads. The actual number of threads depends
on the configuration of various QosPolicies as well as the implementation of the trans-
ports used by the DomainParticipant to send and receive data.

❏ Database Thread (Section 17.1)

❏ Event Thread (Section 17.2)

❏ Receive Threads (Section 17.3)

❏ Exclusive Areas, Connext Threads and User Listeners (Section 17.4)

❏ Controlling CPU Core Affinity for RTI Threads (Section 17.5)

Through various QosPolicies, the user application can configure the priorities and other
properties of the threads created by Connext. In real-time systems, the user often needs
to set the priorities of all threads in an application relative to each other for the proper
operation of the system.

17.1 Database Thread
Connext uses internal data structures to store information about locally-created and
remotely-discovered Entities. In addition, it will store various objects and data used by
Connext for maintaining proper communications between applications. This “database”
is created for each DomainParticipant.
17-1

Connext Threading Model
As Entities and objects are created and deleted during the normal operation of the user
application, different entries in the database may be created and deleted as well.
Because multiple threads may access objects stored in the database simultaneously, the
deletion and removal of an object from the database happens in two phases to support
thread safety.

When an entry/object in the database is deleted either through the actions of user code
or as a result of a change in system state, it is only marked for deletion. It cannot be actu-
ally deleted and removed from the database until Connext can be sure that no threads
are still accessing the object. Instead, the actual removal of the object is delegated to an
internal thread that Connext spawns to periodically wake up and purge the database of
deleted objects.

This thread is known as the Database thread (also referred to as the database cleanup
thread).

❏ Only one Database thread is created for each DomainParticipant.

The DATABASE QosPolicy (DDS Extension) (Section 8.5.1) of the DomainParticipant con-
figures both the resources used by the database as well as the properties of the cleanup
thread. Specifically, the user may want to use this QosPolicy to set the priority, stack size
and thread options of the cleanup thread. You must set these options before the Domain-
Participant is created, because once the cleanup thread is started as a part of participant
creation, these properties cannot be changed.

The period at which the database-cleanup thread wakes up to purge deleted objects is
also set in the DATABASE QosPolicy. Typically, this period is set to a long time (on the
order of a minute) since there is no need to waste CPU cycles to wake up a thread only
to find nothing to do.

However, when a DomainParticipant is destroyed, all of the objects created by the
DomainParticipant will be destroyed as well. Many of these objects are stored in the data-
base, and thus must be destroyed by the cleanup thread. The DomainParticipant cannot
be destroyed until the database is empty and is destroyed itself. Thus, there is a different
parameter in the DATABASE QosPolicy, shutdown_cleanup_period, that is used by the
database cleanup thread when the DomainParticipant is being destroyed. Typically set to
be on the order of a second, this parameter reduces the additional time needed to
destroy a DomainParticipant simply due to waiting for the cleanup thread to wake up
and purge the database.
17-2

Event Thread
17. Thre

a
d

ing
 M

o
d

e
l

17.2 Event Thread
During operation, Connext must wake up at different intervals to check the condition of
many different time-triggered or periodic events. These events are usually to determine
if something happened or did not happen within a specified time. Often the condition
must be checked periodically as long as the Entity for which the condition applies still
exists. Also, the DomainParticipant may need to do something periodically to maintain
connections with remote Entities.

For example, the DEADLINE QosPolicy (Section 6.5.4) is used to ensure that DataWrit-
ers have published data or DataReaders have received data within a specified time
period. Similarly, the LIVELINESS QosPolicy (Section 6.5.12) configures Connext both to
check periodically to see if a DataWriter has sent a liveliness message and to send liveli-
ness messages periodically on the behalf of a DataWriter. As a last example, for reliable
connections, heartbeats must be sent periodically from the DataWriter to the DataReader
so that the DataReader can acknowledge the data that it has received, see Chapter 10:
Reliable Communications.

The checking of whether or not deadlines have been missed, the invoking of user-
installed Listener callbacks to notify the application missed deadlines, and the sending
of heartbeats to maintain reliable connections are all done with an internal Connext
thread called the Event thread.

❏ Only one Event thread is created per DomainParticipant.

The EVENT QosPolicy (DDS Extension) (Section 8.5.5) of the DomainParticipant config-
ures both the properties and resources of the Event thread. Specifically, the user may
want to use this QosPolicy to set the priority, stack size and thread options of the Event
thread. You must set these options before the DomainParticipant is created, because once
the Event thread is started as a part of participant creation, these properties cannot be
changed.

The EVENT QosPolicy also configures the maximum number of events that can be han-
dled by the Event thread. While the Event thread can only service a single event at a
time, it must maintain a queue to hold events that are pending. The initial_count and
max_count parameters of the QosPolicy set the initial and maximum size of the queue.

The priority of the Event thread should be carefully set with respect to the priorities of
the other threads in a system. While many events can tolerate some amount of latency
between the time that the event expires and the time that the Event thread services the
event, there may be application-specific events that must be handled as soon as possi-
ble.
17-3

Connext Threading Model
For example, if an application uses the liveliness of a remote DataWriter to infer the cor-
rect operation of a remote application, it may be critical for the user code in the
DataReader Listener callback, on_liveliness_changed(), to be called by the Event thread
as soon as it can be determined that the remote application has died. The operating sys-
tem uses the priority of the Event thread to schedule this action.

17.3 Receive Threads
Connext uses internal threads, known as Receive threads, to process the data packets
received via underlying network transports. These data packets may contain meta-traf-
fic exchanged by DomainParticipants for discovery, or user data (and meta-data to sup-
port reliable connections) destined for local DataReaders.

As a result of processing packets received by a transport, a Receive thread may respond
by sending packets on the network. Discovery packets may be sent to other DomainPar-
ticipants in response to ones received. ACK/NACK packets are sent in response to
heartbeats to support a reliable connection.

When a data-sample arrives, the Receive thread is responsible for deserializing and stor-
ing the data in the receive queue of a DataReader as well as invoking the
on_data_available() DataReaderListener callback (see Section 7.3.4).

The number of Receive threads that Connext will create for a DomainParticipant depends
on how you have configured the QosPolicies of DomainParticipants, DataWriters and
DataReaders as well as on the implementation of a particular transport. The behavior of
the builtin transports is well specified. However, if a custom transport is installed for a
DomainParticipant, you will have to understand how the custom transport works to pre-
dict how many Receive threads will be created.

The following discussion applies on a per-transport basis. A single Receive thread will
only service a single transport.

Connext will try to create receive resources1 for every port of every transport on which it
is configured to receive messages. The TRANSPORT_UNICAST QosPolicy (DDS Exten-
sion) (Section 6.5.22) for DomainParticipant, DataWriters, and DataReaders, the
TRANSPORT_MULTICAST QosPolicy (DDS Extension) (Section 7.6.6) for DataReaders
and the DISCOVERY QosPolicy (DDS Extension) (Section 8.5.2) for DomainParticipants
all configure the number of ports and the number of transports that Connext will try to
use for receiving messages.

1. If UDPv4 was the only transport that Connext supports, then we would have called these receive
resources, sockets.
17-4

Receive Threads
17. Thre

a
d

ing
 M

o
d

e
l

Generally, transports will require Connext to create a new receive resource for every
unique port number. However, this is both dependent on how the underlying physical
transport works and the implementation of the transport plug-in used by Connext.
Sometimes Connext only needs to create a single receive resource for any number of
ports.

When Connext finds that it is configured to receive data on a port for a transport for
which it has not already created a receive resource, it will ask the transport if any of the
existing receive resources created for the transport can be shared. If so, then Connext will
not have to create a new receive resource. If not, then Connext will.

The TRANSPORT_UNICAST, TRANSPORT_MULTICAST, and DISCOVERY QosPoli-
cies allow you customize ports for receiving user data (on a per-DataReader basis) and
meta-traffic (DataWriters and DomainParticipants); ports can be also set differently for
unicast and multicast.

How do receive resources relate to Receive threads? Connext will create a Receive thread
to service every receive resource that is created. If you use a socket analogy, then for
every socket created, Connext will use a separate thread to process the data received on
that socket.

So how many thread will Connext create by default–using only the builtin UDPv4 and
shared memory transports and without modifying any QosPolicies?

Three Receive threads are created for meta-traffic1:

❏ 2 for unicast (one for UDPv4, one for shared memory)

❏ 1 for multicast (for UDPv4)2

Two Receive threads created for user data:

❏ 2 for unicast (UDPv4, shared memory)

❏ 0 for multicast (because user data is not sent via multicast by default)

Therefore, by default, you will have a total of five Receive threads per DomainPartici-
pant. By using only a single transport and disabling multicast, a DomainParticipant can
have as few as 2 Receive threads.

Similar to the Database and Event threads, a Receive thread is configured by the
RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6). However, note that the
thread properties in the RECEIVER_POOL QosPolicy apply to all Receive threads cre-
ated for the DomainParticipant.

1. Meta-traffic refers to traffic internal to Connext related to dynamic discovery (see Chapter 12: Discov-
ery).

2. Multicast is not supported by shared memory transports.
17-5

Connext Threading Model
17.4 Exclusive Areas, Connext Threads and User Listeners
Connext Event and Receive threads may invoke user code through the Listener callbacks
installed on different Entities while executing internal Connext code. In turn, user code
inside the callbacks may invoke Connext APIs that reenter the internal code space of
Connext. For thread safety, Connext allocates and uses mutual exclusion semaphores
(mutexes).

As discussed in Section 4.5, when multiple threads and multiple mutexes are mixed
together, deadlock may result. To prevent deadlock from occurring, Connext is designed
using careful analysis and following rules that force mutexes to be taken in a certain
order when a thread must take multiple mutexes simultaneously.

However, because the Event and Receive threads already hold mutexes when invoking
user callbacks, and because the Connext APIs that the user code can invoke may try to
take other mutexes, deadlock may still result. Thus, to prevent user code to cause inter-
nal Connext threads to deadlock, we have created a concept called Exclusive Areas (EA)
that follow rules that prevent deadlock. The more EAs that exist in a system, the more
concurrency is allowed through Connext code. However, the more EAs that exist, the
more restrictions on the Connext APIs that are allowed to be invoked in Entity Listener
callbacks.

The EXCLUSIVE_AREA QosPolicy (DDS Extension) (Section 6.4.3) control how many
EAs will be created by Connext. For a more detailed discussion on EAs and the restric-
tions on the use of Connext APIs within Entity Listener methods, please see Exclusive
Areas (EAs) (Section 4.5).

17.5 Controlling CPU Core Affinity for RTI Threads
Two fields in the DDS_ThreadSettings_t structure are related to CPU core affinity:
cpu_list and cpu_rotation.

Note: Although DDS_ThreadSettings_t is used in the Event, Database, ReceiverPool,
and AsynchronousPublisher QoS policies, cpu_list and cpu_rotation are only relevant
in the RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6).

While most thread-related QoS settings apply to a single thread, the ReceiverPool QoS
policy’s thread-settings control every receive thread created. In this case, there are sev-
eral schemes to map M threads to N processors; cpu_rotation controls which scheme is
used.
17-6

Controlling CPU Core Affinity for RTI Threads
17. Thre

a
d

ing
 M

o
d

e
l

The cpu_rotation determines how cpu_list affects processor affinity for thread-related
QoS policies that apply to multiple threads. If cpu_list is empty, cpu_rotation is irrele-
vant since no affinity adjustment will occur. Suppose instead that cpu_list ={0,1} and
that the middleware creates three receive threads: {A, B, C}. If cpu_rotation is set to
CPU_NO_ROTATION, threads A, B and C will have the same processor affinities (0-1),
and the OS will control thread scheduling within this bound.

CPU affinities are commonly denoted with a bitmask, where set bits represent allowed
processors to run on. This mask is printed in hex, so a CPU affinity of 0-1 can be repre-
sented by the mask 0x3.

If cpu_rotation is CPU_RR_ROTATION, each thread will be assigned in round-robin
fashion to one of the processors in cpu_list; perhaps thread A to 0, B to 1, and C to 0.
Note that the order in which internal middleware threads spawn is unspecified.

The Platform Notes describe which architectures support this feature.
17-7

Connext Threading Model
17-8

18. Tro
ub

le
sho

o
ting
Chapter 18 Troubleshooting

This chapter contains tips on troubleshooting Connext applications. For an up-to-date
list of frequently asked questions, see the RTI Support Portal, accessible from https://
support.rti.com—select the Find Solution link to see sample code, general information
on Connext, performance information, troubleshooting tips, and technical details.

This chapter contains the following sections:

❏ What Version am I Running? (Section 18.1)

❏ Controlling Messages from Connext (Section 18.2)

18.1 What Version am I Running?
There are two ways to obtain version information:

❏ By looking at the revision files, as described in Section 18.1.1.

❏ Programmatically at run time, as described in Section 18.1.2.

18.1.1 Finding Version Information in Revision Files

In the top-level directory of your Connext installation (${NDDSHOME}), you will find
text files that include revision information. The files are named rev_<prod-
uct>_rtidds.<version>. For example, you might see files called rev_host_rtidds.4.5x and
rev_persistence_rtidds4.5x (where x is a release-specific letter). Each file contains more
details, such as a patch level and if the product is license managed.
18-1

https://support.rti.com
https://support.rti.com

Troubleshooting
For example:

Host Build 4.5x rev 04 (0x04050200)

The revision files for Connext target libraries are in the same directory as the libraries
(${NDDSHOME}/lib/<architecture>).

18.1.2 Finding Version Information Programmatically

The methods in the NDDSConfigVersion class can be used to retrieve version informa-
tion for the Connext product, the core library, and the C, C++ or Java libraries.

The version information includes four fields:

❏ A major version number

❏ A minor version number

❏ A letter release

❏ A build number

Table 18.4 lists the available operations (they will vary somewhat depending on the pro-
gramming language you are using; consult the online documentation for more informa-
tion).

The get_product_version() operation returns a reference to a structure of type
DDS_ProductVersion_t:

struct NDDS_Config_ProductVersion_t {
DDS_Char major;

Table 18.1 NDDSConfigVersion Operations

Purpose Operation Description

To retrieve version
information in a
structured format

get_product_version
Gets version information for the Connext prod-
uct.

get_core_version
Gets version information for the Connext core
library.

get_c_api_version
Gets version information for the Connext C
library.

get_cpp_api_version
Gets version information for the Connext C++
library.

To retrieve version
information in string
format

to_string
Converts the version information for each library
into a string. The strings for each library are put
in a single hyphen-delimited list.
18-2

Controlling Messages from Connext
18. Tro

ub
le

sho
o

ting
DDS_Char minor;
DDS_Char release;
DDS_Char revision;

};

The other get_*_version() operations return a reference to a structure of type
NDDS_Config_LibraryVersion_t:

struct NDDS_Config_LibraryVersion_t {
DDS_Long major;
DDS_Long minor;
char release;
DDS_Long build;

};

The to_string() operation returns version information for the Connext core, followed by
the C and C++ API libraries, separated by hyphens. For example:

18.2 Controlling Messages from Connext
Connext provides several types of messages to help you debug your system and alert
you to errors during run time. You can control how much information is reported and
where it is logged.

How much information is logged is known as the verbosity setting. Table 18.2 describes
the six increasing verbosity levels.

Note that the verbosities are cumulative: logging at a high verbosity means also logging
all lower verbosity messages. If you change nothing, the default verbosity will be set to
NDDS_CONFIG_LOG_VERBOSITY_ERROR.

Caution: Logging at high verbosities can be detrimental to your application's perfor-
mance. You should generally not set the verbosity above
NDDS_CONFIG_LOG_VERBOSITY_WARNING, unless you are debugging a spe-
cific problem.

nddscore1.0g.rev0-nddsc1.0g.rev1-nddscpp1.0g.rev0

Core
major: 1
minor: 0
release: g
build: 0

C API:
major: 1
minor: 0
release: g
build: 1

C++ API:
major: 1
minor: 0
release:g
build: 0
18-3

Troubleshooting
You will typically change the verbosity of all of Connext at once. However, in the event
that such a strategy produces too much output, you can further discriminate among the
messages you would like to see. The types of messages logged by Connext fall into the
five categories listed in Table 18.3; each category can be set to a different verbosity level.

Table 18.2 Message Logging Verbosity Levels

Verbosity
(NDDS_CONFIG_

LOG_VERBOSITY_*)
Description

SILENT No messages will be logged. (lowest verbosity)

ERROR (default level
for all categories)

Log only high-priority error messages. An error indicates something
is wrong with how Connext is functioning. The most common cause
of this type of error is an incorrect configuration.

WARNING

Additionally log warning messages. A warning indicates that Con-
next is taking an action that may or may not be what you intended.
Some configuration information is also logged at this verbosity to aid
in debugging.

STATUS_LOCAL
Additionally log verbose information about the lifecycles of local
Connext objects.

STATUS_REMOTE
Additionally log verbose information about the lifecycles of remote
Connext objects.

STATUS_ALL
Additionally log verbose information about periodic activities and
Connext threads. (highest verbosity)

Table 18.3 Message Logging Categories

Category
(NDDS_CONFIG_

LOG_CATEGORY_*)
Description

PLATFORM Messages about the underlying platform (hardware and OS).

COMMUNICATION
Messages about data serialization and deserialization and network
traffic.

DATABASE Messages about the internal database of Connext objects.

ENTITIES Messages about local and remote entities and the discovery process.

API
Messages about Connext’s API layer (such as method argument vali-
dation).
18-4

Controlling Messages from Connext
18. Tro

ub
le

sho
o

ting
The methods in the NDDSConfigLogger class can be used to change verbosity settings,
as well as the destination for logged messages. Table 18.4 lists the available operations;
consult the online documentation for more information.

18.2.1 Format of Logged Messages

You can control the amount of information in each message with the set_print_format()
operation. The format options are listed in Step 18.5.

Table 18.4 NDDSConfigLogger Operations

Purpose Operation Description

Change Verbosity
for all Categories

get_verbosity
Gets the current verbosity.
If per-category verbosities are used, returns
the highest verbosity of any category.

set_verbosity Sets the verbosity of all categories.

Change Verbosity
for a Specific Cate-
gory

get_verbosity_by_category
Gets/Sets the verbosity for a specific cate-
gory.set_verbosity_by_category

Change Destina-
tion of Logged
Messages

get_output_file
Returns the file to which messages are being
logged, or NULL for the default destination
(standard output on most platforms).

set_output_file
Redirects future logged messages to the spec-
ified file (or NULL to return to the default).

Change Message
Format

get_print_format Gets/Sets the current message format that
Connext is using to log diagnostic informa-
tion. See Format of Logged Messages (Sec-
tion 18.2.1).

set_print_format

Table 18.5 Message Formats

Message Format
(NDDS_CONFIG_LOG_

PRINT_FORMAT_*)
Description

DEFAULT Message, method name, and activity context.

TIMESTAMPED Message, method name, activity context, and timestamp.

VERBOSE
Message with all available context information (includes thread
identifier, activity context).

VERBOSE_TIMESTAMPED Message with all available context information and timestamp.

DEBUG Information for internal debugging by RTI personnel.
18-5

Troubleshooting
Of course, you are not likely to recognize all of the method names; many of the opera-
tions that perform logging are deep within the implementation of Connext. However, in
case of errors, logging will typically take place at several points within the call stack; the
output thus implies the stack trace at the time the error occurred. You may only recog-
nize the name of the operation that was the last to log its message (i.e., the function that
called all the others); however, the entire stack trace is extremely useful to RTI support
personnel in the event that you require assistance.

You may notice that many of the logged messages begin with an exclamation point
character. This convention indicates an error and is intended to be reminiscent of the
negation operator in many programming languages. For example, the message “!create
socket”in the second line of the above stack trace means “cannot create socket.”

18.2.1.1 Timestamps

Reported times are in seconds from a system-dependent starting time; these are equiva-
lent to the output format from Connext. The timestamp is in the form "ssssss.mmm-
mmm" where <ssssss> is a number of seconds, and <mmmmm> is a fraction of a second
expressed in microseconds. Enabling timestamps will result in some additional over-
head for clock access for every message that is logged.

Logging of timestamps is not enabled by default. To enable it, use
NDDS_Config_Logger method set_print_format().

18.2.1.2 Thread identification

Thread identification strings uniquely identify for active thread when a message is out-
put to the console. A thread may be a user (application) thread or one of several types
of internal threads. The possible thread types are:

❏ user thread: U<threadID>

❏ receive thread: rR<thread index><domain ID><app ID>, where thread index is
an integer identifying this receive thread

❏ event thread: revt<domain ID><app ID>

❏ asynchronous publisher thread: rDsp

MINIMAL Message number, method name.

MAXIMAL All available fields.

Table 18.5 Message Formats

Message Format
(NDDS_CONFIG_LOG_

PRINT_FORMAT_*)
Description
18-6

Controlling Messages from Connext
18. Tro

ub
le

sho
o

ting
Logging of thread IDs are not enabled by default. To enable it, use
NDDS_Config_Logger method set_print_format().

18.2.1.3 Hierarchical Context

Many middleware APIs now store information in thread-specific storage about the cur-
rent operation, as well as information about which domain (and participant ID) was
active, and which entities were being operated on. In the case of objects that are associ-
ated with topics, the topic name is also stored.

The context field is output by default.

18.2.1.4 Explanation of Context Strings

❏ Domain context

Dxxyy
In this case, xx = participant ID, yy = domain #. For example, D0149 means
“domain 49, participant 01.”

❏ Entity context

Operation on an entity will specify the object and a numeric ID, such as
Writer(001A1). The name will be one of the following:

❏ Topic Context

T=Hello refers to topic "Hello."

The operations which report context include:

String Object type

Participant DDS_DomainParticipant

Pub DDS_Publisher

Sub DDS_Subscriber

Topic DDS_Topic

Writer DDS_<*>DataWriter

Reader DDS_<*>DataReader

String Operation

Entity operations

ENABLE Entity::enable
18-7

Troubleshooting
18.2.2 Configuring Logging via XML

Logging can also be configured using the DomainParticipantFactory’s LOGGING
QosPolicy (DDS Extension) (Section 8.4.1) with the tags,
<participant_factory_qos><logging>. The fields in the LoggingQosPolicy are described
in XML using a 1-to-1 mapping with the equivalent C representation shown below:

struct DDS_LoggingQosPolicy {
NDDS_Config_LogVerbosity verbosity;
NDDS_Config_LogCategory category;
NDDS_Config_LogPrintFormat print_format;
char * output_file;

};

The equivalent representation in XML:

<participant_factory_qos>
<logging>

<verbosity></verbosity>
<category></category>
<print_format></print_format>
<output_file></output_file>

GET_QOS Entity::get_qos

SET_QOS Entity::set_qos

GET_LISTENER Entity::get_listener

SET_LISTENER Entity::set_listener

Factory operations (DP Factory, Participant, Pub/Sub)

CREATE <Entity> Factory::create_<entity>

DELETE <Entity> Factory::delete_<entity>

GET_DEFAULT_QOS <Entity> Factory::get_default_<entity>_qos

SET_DEFAULT_QOS <Entity> Factory::set_default_<entity>_qos

Participant-specific operations

GET_PUBS Participant::get_publishers

GET_SUBS Participant::get_subscribers

LOOKUP Topic(<name>) Participant::lookup_topicdescription

LOOKUP FlowController(<name>) Participant::lookup_flowcontroller

IGNORE <Entity>(<host ID>) Participant::ignore_<entity>

String Operation
18-8

Controlling Messages from Connext
18. Tro

ub
le

sho
o

ting
</logging>
</participant_factory_qos>

The attribute <is_default_participant_factory_profile> can be set to true for the
<qos_profile> tag to indicate from which profile to use <participant_factory_qos>. If
multiple QoS profiles have <is_default_participant_factory_profile> set to true, the last
profile with <is_default_participant_factory_profile> set to true will be used.

If none of the profiles have set <is_default_participant_factory_profile> to true, the pro-
file with <is_default_qos> set to true will be used.

In the following example, DefaultProfile2 will be used:

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../xsd/
rti_dds_qos_profiles.xsd">
 <!-- Qos Library -->
 <qos_library name="DefaultLibrary">
 <qos_profile name="DefaultProfile1"
 is_default_participant_factory_profile ="true">
 <participant_factory_qos>
 <logging>
 <verbosity>ALL</verbosity>
 <category>ENTITY</category>
 <print_format>MAXIMAL</print_format>
 <output_file>LoggerOutput1.txt</output_file>
 </logging>
 </participant_factory_qos>
 </qos_profile>

 <qos_profile name="DefaultProfile2"
 is_default_participant_factory_profile ="true">

 <participant_factory_qos>
 <logging>
 <verbosity>WARNING</verbosity>
 <category>API</category>
 <print_format>VERBOSE_TIMESTAMPED</print_format>
 <output_file>LoggerOutput2.txt</output_file>
 </logging>
 </participant_factory_qos>
 </qos_profile>

 <qos_profile name="DefaultProfile3" is_default_qos="true">
 <participant_factory_qos>
 <logging>
 <verbosity>ERROR</verbosity>
18-9

Troubleshooting
 <category>DATABASE</category>
 <print_format>VERBOSE</print_format>
 <output_file>LoggerOutput3.txt</output_file>
 </logging>
 </participant_factory_qos>
 </qos_profile>
 </qos_library>
</dds>

Note: The LoggingQosPolicy is currently the only QoS policy that can be configured
using the <participant_factory_qos> tag.
18-10

Part 4: RTI Secure WAN Transport

The material in this part of the manual is only relevant if you have installed Secure WAN
Transport.

This feature is not part of the standard Connext package; it must be downloaded and
installed separately. It is only available on specific architectures. See the Secure WAN
Transport Release Notes and Installation Guide for details.

Secure WAN Transport is an optional package that enables participant discovery and data
exchange in a secure manner over the public WAN. Secure WAN Transport enables Con-
next to address the challenges in NAT traversal and authentication of all participants. By
implementing UDP hole punching using the STUN protocol and providing security to
channels by leveraging DTLS (Datagram TLS), you can securely exchange information
between different sites separated by firewalls.

❏ Chapter 19: Secure WAN Transport

❏ Chapter 20: Configuring RTI Secure WAN Transport

19. RTI Se
c

ure
 W

A
N

Tra

nsp
o

rt
Chapter 19 Secure WAN Transport

Secure WAN Transport provides transport plugins that can be used by developers of Con-
next applications. These transport plugins allow Connext applications running on pri-
vate networks to communicate securely over a Wide-Area Network (WAN), such the
internet. There are two primary components in the package which may be used inde-
pendently or together: communication over Wide-Area Networks that involve Network
Address Translators (NATs), and secure communication with support for peer authenti-
cation and encrypted data transport.

The Connext core is transport-agnostic. Connext offers three built-in transports: UDP/
IPv4, UDP/IPv6, and inter-process shared memory. The implementation of NAT tra-
versal and secure communication is done at the transport level so that the Connext core
is not affected and does not need to be changed, although there is additional on-the-
wire traffic.

The basic problem to overcome in a WAN environment is that messages sent from an
application on a private local-area network (LAN) appear to come from the LAN's
router address, not from the internal IP address of the host running the application. This
is due to the existence of a Network Address Translator (NAT) at the gateway. This does
not cause problems for client/server systems because only the server needs to be glob-
ally addressable; it is only a problem for systems with peer-to-peer communication
models, such as Connext. Secure WAN Transport solves this problem, allowing communi-
cation between peers that are in separate LAN networks, using a UDP hole-punching
mechanism based on the STUN protocol (IETF RFC 3489bis) for NAT traversal. This
requires the use of an additional rendezvous server application, the RTI WAN Server.

Once the transport has enabled traffic to cross the NAT gateway to the WAN, it is flow-
ing on network hardware that is shared (in some cases, over the public internet). In this
context, it is important to consider the security of data transmission. There are three pri-
mary issues involved:
19-1

Secure WAN Transport
❏ Authenticating the communication peer (source or destination) as a trusted part-
ner;

❏ Encrypting the data to hide it from other parties that may have access to the net-
work;

❏ Validating the received data to ensure that it was not modified in transmission.

Secure WAN Transport addresses these problems by wrapping all RTPS-encoded data
using the DTLS protocol (IETF RFC 4347), which is a variant of SSL/TLS that can be
used over a datagram network-layer transport such as UDP. The security features of the
WAN Transport may also be used on an untrusted local-area network with the Secure
Transport.

In summary, the package includes two transports:

❏ The WAN Transport is for use on a WAN and includes security. It must be used
with the WAN Server, a rendezvous server that provides the ability to discover
public addresses and to register and look up peer addresses based on a unique
WAN ID. The WAN Server is based on the STUN (Session Traversal Utilities for
NAT) protocol [draft-ietfbehave-rfc3489bis], with some extensions. Once infor-
mation about public addresses for the application and its peers has been
obtained and connections have been initiated, the server is no longer required to
maintain communication with a peer. (Note: security is disabled by default.)

❏ The Secure Transport is an alternate transport that provides security on an
untrusted LAN. Use of the RTI WAN Server is not required.

Multicast communication is not supported by either of these transports.

This chapter provides a technical overview of:

❏ WAN Traversal via UDP Hole-punching (Section 19.1)

❏ WAN Locators (Section 19.2)

❏ Datagram Transport-Layer Security (DTLS) (Section 19.3)

❏ Certificate Support (Section 19.4)

For information on how to use Secure WAN Transport with your Connext application, see
Chapter 20: Configuring RTI Secure WAN Transport.
19-2

WAN Traversal via UDP Hole-punching
19. RTI Se

c
ure

 W
A

N

Tra
nsp

o
rt
19.1 WAN Traversal via UDP Hole-punching
In order to resolve the problem of communication across NAT boundaries, the WAN
Transport implements a UDP hole-punching solution for NAT traversal [draft-ietf-
behave-p2p-state]. This solution uses a rendezvous server, which provides the ability to
discover public addresses, and to register and lookup peer addresses based on a unique
WAN ID. This server is based on the STUN (Session Traversal Utilities for NAT) proto-
col [draft-ietf-behave-rfc3489bis], with some extensions. This protocol is a part of the
solution used for standards-based voice over IP applications; similar technology has be
used by systems such as Skype and has proven to be highly reliable. A key advantage of
STUN is that it is based on UDP and therefore is able to preserve the real-time character-
istics of the DDS Interoperability Wire Protocol.

Once information about public addresses for the application and its peers has been
obtained, and connections have been initiated, the server is no longer required to main-
tain communication with a peer. However, if communication fails, possibly due to
changes in dynamically-allocated addresses, the server will be needed to reopen new
public channels.

Figure 19.1 shows the RTI WAN transport architecture.

Figure 19.1 RTI WAN Transport Architecture

Connext

DTLS

RTPS Discovery Traffic
RTPS User Traffic

NAT

STUN

Application 1

Connext

DTLS

STUN

Application 2

DTLS handshaking
Encrypted RTPS

STUN traffic
DTLS traffic

STUN traffic

NAT

RTI WAN Rendezvous Server

Server

Register

DomainParticipant 1

Connect to DP 2

Register

DP 2 public address DP 1 public address

Connect

DTLS handshaking

RTPS discovery

RTPS user traffic

DomainParticipant 2
19-3

Secure WAN Transport
19.1.1 Protocol Details

The UDP hole-punching algorithm implemented by the WAN transport has two differ-
ent phases: registration and connection. This algorithm only works with cone or asym-
metric NATs where the same public address/port is assigned to all the sessions with the
same private address/port address.

❏ Registration Phase

The RTI WAN Server application runs on a machine that resides on the WAN
network (i.e., not in a private LAN). It has to be globally accessible to LAN appli-
cations. It is started by a script and acts as a rendezvous point for LAN applica-
tions. During the registration phase, each transport locator is registered with the
RTI WAN Server using a STUN binding request message.

The RTI WAN Server associates RTPS locators with their corresponding public
IPv4 transport addresses (a combination of IP address and port) and stores that
information in an internal table. Figure 19.2 illustrates the registration phase.

❏ Connection Phase

The connection phase starts when locator A wants to establish a connection with
locator B. Locator A obtains information about locator B via Connext discovery
traffic or the initial NDDS_DISCOVERY_PEERS list. To establish a connection
with locator B, locator A sends a STUN connect request to the RTI WAN server.
The server sends a STUN connect response to locator A, including information
about the public IP transport address (IP address and port) of locator B. In paral-
lel, the RTI WAN server contacts locator B using another STUN connect request
to let it know that locator A wants to establish a connection with it.

When locator A receives the public IP address of locator B, it will try to contact B
using two STUN binding request messages. The first message is sent to the pub-
lic address of B and the second message is sent to the private address of B. The
private address was obtained using the last 32 bits of the locator address of B.
The STUN binding request message directed to the public transport address of B
sent by locator A will open a hole in A's NAT to receive messages from B.

When locator B receives the public address of locator A, it will try to contact A
sending a STUN binding request message to that public address. This message
will open a hole in B's NAT to receive messages from A. When locator A receives
the first STUN binding response from locator B, it starts sending RTPS traffic.

The connection phase includes two processes: the connect process (Figure 19.3
on page 19-6) and the NAT hole punching process (Figure 19.4 on page 19-7).
19-4

WAN Traversal via UDP Hole-punching
19. RTI Se

c
ure

 W
A

N

Tra
nsp

o
rt
❏ STUN Liveliness

Finally, since bindings allocated by NAT expire unless refreshed, the clients
(locators) must generate binding request messages for the server and other cli-
ents to refresh the bindings. The RTI STUN protocol implementation uses the
attribute LIVELINESS-PERIOD in the STUN binding request to indicate the
period in milliseconds at which a client will assert its liveliness. The WAN Server
will remove a locator from its mapping table when the liveliness contract is not
met. Likewise, a transport instance will remove a STUN connection with a loca-
tor when this locator does not assert its liveliness as indicated in the last binding
request.

Figure 19.2 Registration Phase

Connext

NAT
Transport

Plugin

Connext

NAT
Transport

Plugin
RTPS

Locator A
other.com#192.168.15.100:8000

Locator B
rti.com#192.168.1.100:700

0

RTI WAN Server
(18.181.0.31)

NAT
(155.99.25.11)

(1) From locator A to server
BIND REQUEST

Src Locator Attribute:
other.com#192.168.15.100:8000

Liveliness Period:
60000

NAT
(138.76.29.7)

(1) From locator B to server
BIND REQUEST

Src Locator Attribute:
rti.com#192.168.1.100:7000

Liveliness Period:
60000

(2) From server to locator A
BIND RESPONSE

Mapped Address Attribute:
155.99.25.11:8001

(2) From server to locator B
BIND RESPONSE

Mapped Address Attribute:
138.76.29.7:7001
19-5

Secure WAN Transport
Figure 19.3 Connect Process

Connext

WAN
Transport

Plugin

Connext

WAN
Transport

Plugin
RTPS

Locator A
other.com#192.168.15.100:8000

Locator B
rti.com#192.168.1.100:7000

RTI WAN Server
(18.181.0.31)

NAT
(155.99.25.11)

(1) From locator A to server
CONNECT REQUEST
Src Locator Attribute:

other.com#192.168.15.100:8000
Dst Locator Attribute

rti.com#192.168.1.100:7000

NAT
(138.76.29.7)

(2) From server to locator A
CONNECT RESPONSE

Mapped Address Attribute:
138.76.29.7:7001

(3) From server to locator B
CONNECT REQUEST
Src Locator Attribute:

rti.com#192.168.1.100:7000
Dst Locator Attribute

other.com#192.168.15.100:8000
Mapped Address Attribute:

155.99.25.11:8001

(4) From locator B to server
CONNECT RESPONSE
19-6

WAN Traversal via UDP Hole-punching
19. RTI Se

c
ure

 W
A

N

Tra
nsp

o
rt
Figure 19.4 NAT Hole Punching Process

Connext

WAN
Transport

Plugin

Connext

WAN
Transport

Plugin
RTPS

Locator A
other.com#192.168.15.100:8000

Locator B
rti.com#192.168.1.100:7000

RTI WAN Server
(18.181.0.31)

NAT
(155.99.25.11)

(1) From locator A to public address
of locator B

BIND REQUEST
Src Locator Attribute:

other.com#192.168.15.100:8000
Liveliness Period:

60000

NAT
(138.76.29.7)

(1) From locator B to public address
of locator A

BIND REQUEST
Src Locator Attribute:

rti.com#192.168.1.100:7000
Liveliness Period:

60000

(2) From locator A to public address of
locator B

BIND RESPONSE
Mapped Address Attribute:

138.76.29.7:7001

(2) From locator B to public address of
locator A

BIND RESPONSE
Mapped Address Attribute:

155.99.25.11:8001

(1) From locator A to private address
of locator B

BIND REQUEST
Src Locator Attribute:

other.com#192.168.15.100:8000
Liveliness Period:

60000
19-7

Secure WAN Transport
19.2 WAN Locators
The WAN transport does not use simple IP addresses to locate peers. A WAN transport
locator consists of a WAN ID, which is an arbitrary 12-byte value, and a bottom 4-byte
value that specifies a fallback local IPv4 address. Your peers list
(NDDS_DISCOVERY_PEERS) must be configured to look for peers with locators of the
form:

❏ The address is a 128-bit address in IPv6 notation.

❏ The "wan://" part specifies that the address is for the WAN transport.

❏ The next part, "::1", specifies the top 12 bytes of the address to be 11 zero bytes,
followed by a byte with value 1 (this corresponds to the peer's WAN ID).

❏ The last part, "10.10.1.150" refers to the peers local IPv4 address, which will be
used if the peers are on the same local network.

A DomainParticipant using the WAN transport will have to initialize the
DDS_DiscoveryQosPolicy’s initial_peers field with the WAN locator addresses corre-
sponding to the peers to which it wants to connect to. The value of initial_peers can be
set using the environment variable NDDS_DISCOVERY_PEERS or the
NDDS_DISCOVERY_PEERS configuration file. (See Configuring the Peers List Used in
Discovery (Section 12.2).)
19-8

Datagram Transport-Layer Security (DTLS)
19. RTI Se

c
ure

 W
A

N

Tra
nsp

o
rt
19.3 Datagram Transport-Layer Security (DTLS)
Data security is provided by wrapping all Connext network traffic with the Datagram
Transport Layer Security (DTLS) protocol (IETF RFC 4347). DTLS is a relatively recent
variant of the mature SSL/TLS family of protocols which adds the capability to secure
communication over a connectionless network-layer transport such as UDP. UDP is the
preferred network layer transport for the DDS wire protocol RTPS, as well as for NAT
traversal. Like SSL/TLS, the DTLS protocol provides capabilities for certificate-based
authentication, data encryption, and message integrity. The protocol specifies a number
of standard cryptographic algorithms that must be available; the base set is listed in the
TLS 1.1 specification (IETF RFC 4346).

Secure protocol support is provided by the open source OpenSSL library, which has
supported the DTLS protocol since the release of OpenSSL 0.9.8. Note however that
many critical issues in DTLS were resolved by the OpenSSL 0.9.8f release. For more
detailed information about available ciphers, certificate support, etc. please refer to the
OpenSSL documentation. The DTLS protocol securely authenticates with each individ-
ual peer; as such, multicast communication is not supported by the Secure Transport.
There is also a FIPS security-certified version of OpenSSL (OpenSSL-FIPS 1.1.1), but this
does not yet support DTLS.

The Secure Transport protocol stack is similar to the Secure WAN transport stack, but
without the STUN layer and server. See Figure 19.1 on page 19-3.

19.3.1 Security Model

In order to communicate securely, an instance of the secure plugin requires: 1) a certifi-
cate authority (shared with all peers), 2) an identifying certificate which has been signed
by the authority, 3) the private key associated with the public key contained in the certif-
icate.

The Certificate Authority (CA) is specified by using a PEM format file containing its
public key or by using a directory of PEM files following standard OpenSSL naming
conventions. If a single CA file is used, it may contain multiple CA keys. In order to suc-
cessfully communicate with a peer, the CA keys that are supplied must include the CA
that has signed that peer's identifying certificate.

The identifying certificate is specified by using a PEM format file containing the chain of
CAs used to authenticate the certificate. The identifying certificate must be signed by a
CA. It will either be directly signed by a root CA (one of the CAs supplied above), by an
authority whose certificate has been signed by the root CA, or by a longer chain of cer-
tificate authorities. The file must be sorted starting with the certificate to the highest
19-9

Secure WAN Transport
level (root CA). If the certificate is directly signed by a root CA, then this file will only
contain the root CA certificate followed by the identity certificate.

Finally, a private key is required. In order to avoid impersonation of an identity, this
should be kept private. It can be stored in its own PEM file specified in one of the pri-
vate key properties, or it can be appended to the certificate chain file.

One complication in the use of DTLS for communication by Connext is that even though
DTLS is a connectionless protocol, it still has client/server semantics. The RTI Secure
Transport maps a bidirectional communication channel between two peer applications
into a pair of unidirectional encrypted channels. Both peers are playing the part of a cli-
ent (when sending data) and a server (when receiving).

19.3.2 Liveliness Mechanism

When a peer shuts down cleanly, the DTLS protocol ensures that resources are released.
If a peer crashes or otherwise stops responding, a liveliness mechanism in the DTLS
transport cleans up resources. You can configure the DTLS handshake retransmission
interval and the connection liveliness interval.

19.4 Certificate Support
Cryptographic certificates are required to use the security features of the WAN trans-
port. This section describes a mechanism to use the OpenSSL command line tool to gen-
erate a simple private certificate authority. For more information, see the manual page
for the openssl tool (http://www.openssl.org/docs/apps/openssl.html) or the book,
"Network Security with OpenSSL" by Viega, Messier, & Chandra (O'Reilly 2002; http://
www.opensslbook.com), or other references on Public Key Infrastructure.

1. Initialize the Certificate Authority:

a. Create a copy of the openssl.cnf file and edit fields to specify the proper
default names and paths.

b. Create the required CA directory structure:

 mkdir myCA
 mkdir myCA/certs
 mkdir myCA/private
 mkdir myCA/newcerts
 mkdir myCA/crl
 touch myCA/index.txt
19-10

http://www.openssl.org/docs/apps/openssl.html
http://www.opensslbook.com
http://www.opensslbook.com

License Issues
19. RTI Se

c
ure

 W
A

N

Tra
nsp

o
rt
c. Create a self-signed certificate and CA private key:

 openssl req -nodes -x509 -days 1095 -newkey rsa:2048 \
 -keyout myCA/private/cakey.pem -out myCA/cacert.pem \
 -config openssl.cnf

2. For each identifying certificate:

a. You may want to create a copy of your customized openssl.cnf file with
default identifying information to be used as a template for certificate request
creation; the commands below refer to this file as "template.cnf."

b. Generate a certificate request and private key:

 openssl req -nodes -new -newkey rsa:2048 -config template.cnf \
 -keyout peer1key.pem -out peer1req.pem

c. Use the CA to sign the certificate request to generate certificate:

 openssl ca -create_serial -config openssl.cnf -days 365 \
 -in peer1req.pem -out myCA/newcerts/peer1cert.pem

d. Optionally, append the private key to the peer certificate:

 cat myCA/newcerts/peer1cert.pem peer1key.pem \
 $>${private location}/ peer1.pem

19.5 License Issues
The OpenSSL toolkit stays under a dual license, i.e., both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.

/* ==
 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
19-11

Secure WAN Transport
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

 Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
19-12

License Issues
19. RTI Se

c
ure

 W
A

N

Tra
nsp

o
rt
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given
 * attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the routines from the
 * library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof)
 * from
 * the apps directory (application code) you must include an
 * acknowledgement:
 * "This product includes software written by Tim Hudson
 * (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19-13

Secure WAN Transport
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publicly available
 * version or
 * derivative of this code cannot be changed. i.e. this code cannot
 * simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
19-14

20. C
o

nfig
uring

 W
A

N

Tra
nsp

o
rts
Chapter 20 Configuring RTI Secure WAN Transport

The Secure WAN Transport package includes two transports:

❏ The WAN Transport is for use on a WAN and includes security.1 It must be used
with the WAN Server, a separate application that provides additional services
needed for Connext applications to communicate with each other over a WAN.

❏ The Secure Transport is an alternate transport that provides security on an
untrusted LAN. Use of the RTI WAN Server is not required.

There are two ways in which these transports can be configured:

❏ By setting up predefined strings in the Property QoS Policy of the DomainPartici-
pant (on UNIX, Solaris and Windows systems only). This process is described in
Setting Up a Transport with the Property QoS (Section 20.2).

❏ By instantiating a new transport (Section 20.5) and then registering it with the
DomainParticipant, see Section 13.7 (not available in Java API).

Refer to the online documentation for details on these two approaches.

20.1 Example Applications
A simple example is available to show how to configure the WAN transport. It includes
example settings to enable communication over WAN, and optional settings to enable
security (along with example certificate files to use for secure communication). The
example is located in <Connext installation directory>/example/<language>/Hello-
WorldWAN.

1. Security is disabled by default.
20-1

Configuring RTI Secure WAN Transport
As seen in the example, you can configure the properties of either transport by setting
the appropriate name/value pairs in the DomainParticipant’s PropertyQoS, as described
in Section 20.2. This will cause Connext to dynamically load the WAN or Secure Trans-
port libraries at run time and then implicitly create and register the transport plugin.

Another way to use the WAN or Secure transports is to explicitly create the plugin and
use register_transport() to register the transport with Connext (see Section 13.7). This
way is not shown in the example. See Explicitly Instantiating a WAN or Secure Trans-
port Plugin (Section 20.5).

20.2 Setting Up a Transport with the Property QoS
The PROPERTY QosPolicy (DDS Extension) (Section 6.5.16) allows you to set up name/
value pairs of data and attach them to an entity, such as a DomainParticipant. This will
cause Connext to dynamically load the WAN or Secure Transport libraries at run time
and then implicitly create and register the transport plugin.

Please refer to Setting Builtin Transport Properties with the PropertyQosPolicy (Section
13.6).

To assign properties, use the add_property() operation:

DDS_ReturnCode_t DDSPropertyQosPolicyHelper::add_property
(DDS_PropertyQosPolicy policy,

 const char * name,
 const char * value,
 DDS_Boolean propagate)

For more information on add_property() and the other operations in the DDSProperty-
QosPolicyHelper class, please see Table 6.51, “PropertyQoSPolicyHelper Operations,”
on page 6-144, as well as the online (HTML) documentation.

The ‘name’ part of the name/value pairs is a predefined string, described in WAN
Transport Properties (Section 20.3) and Secure Transport Properties (Section 20.4).

Here are the basic steps, taken from the example Hello World application (for details,
please see the example application.)

1. Get the default DomainParticipant QoS from the DomainParticipantFactory.

DDSDomainParticipantFactory::get_instance()->get_default_participant_qos(
 participant_qos);

2. Disable the builtin transports.
20-2

Setting Up a Transport with the Property QoS
20. C

o
nfig

uring
 W

A
N

Tra

nsp
o

rts
participant_qos.transport_builtin.mask = DDS_TRANSPORTBUILTIN_MASK_NONE;

3. Set up the DomainParticipant’s Property QoS.

a. Load the plugin.

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.load_plugins", "dds.transport.wan_plugin.wan",
DDS_BOOLEAN_FALSE);

b. Specify the transport plugin library.

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
 "dds.transport.wan_plugin.wan.library", "libnddstransportwan.so",
 DDS_BOOLEAN_FALSE);

c. Specify the transport’s ‘create’ function.

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.wan_plugin.wan.create_function",
"NDDS_Transport_WAN_create",
DDS_BOOLEAN_FALSE);

d. Specify the WAN Server and instance ID.

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.wan_plugin.wan.server", "192.168.1.1",
DDS_BOOLEAN_FALSE);

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.wan_plugin.wan.transport_instance_id", 1,
DDS_BOOLEAN_FALSE);

e. Specify any other properties, as needed.

4. Create the DomainParticipant, using the modified QoS.

participant = DDSTheParticipantFactory->create_participant (domainId,
participant_qos, NULL /* listener */, DDS_STATUS_MASK_NONE);

Important! Property changes should be made before the transport is loaded: either
before the DomainParticipant is enabled, before the first DataWriter/DataReader is created,
or before the builtin topic reader is looked up, whichever one happens first.
20-3

Configuring RTI Secure WAN Transport
20.3 WAN Transport Properties
Table 20.1 lists the properties that you can set for the WAN Transport.

Table 20.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description

dds.transport.load_plugins
(note: this does not take a prefix)

Required Comma-separated strings indicating the prefix names of all
plugins that will be loaded by Connext. For example: “dds.trans-
port.WAN.wan1". You will use this string as the prefix to the property
names. See a. Note: You can load up to 8 plugins.

library

Required Must set to "libnddstransportwan.so" (for UNIX/Solaris sys-
tems) or "nddstransportwan.dll" (for Windows system).
This library and the dependent OpenSSL libraries need to be in the path
during run time for use by Connext (in the LD_LIBRARY_PATH environ-
ment variable on UNIX/Solaris systems, in Path for Windows systems).

create_function Required Must be "NDDS_Transport_WAN_create"

aliases

Used to register the transport plugin returned by
NDDS_Transport_WAN_create() (as specified by
<WAN_prefix>.create_function) to the DomainParticipant. Aliases should
be specified as a comma-separated string, with each comma delimiting an
alias. If it is not specified, the prefixa is used as the default alias for the
plugin.

verbosity

Specifies the verbosity of log messages from the transport.
Possible values:
-1: silent
0 (default): errors only
1: errors and warnings
2: local status
5 or higher: all messages

parent.parent.address_bit_count
Number of bits in a 16-byte address that are used by the transport. Should
be between 0 and 128. For example, for an address range of 0-255, the
address_bit_count should be set to 8.
20-4

WAN Transport Properties
20. C

o
nfig

uring
 W

A
N

Tra

nsp
o

rts
parent.parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext
core. Currently, the only property supported is whether or not the trans-
port plugin will always loan a buffer when Connext tries to receive a mes-
sage using the plugin. This is in support of a zero-copy interface.

parent.parent.gather_send_
buffer_count_max

Specifies the maximum number of buffers that Connext can pass to the
send() function of the transport plugin.
The transport plugin send() API supports a gather-send concept, where
the send() call can take several discontiguous buffers, assemble and send
them in a single message. This enables Connext to send a message from
parts obtained from different sources without first having to copy the
parts into a single contiguous buffer.
However, most transports that support a gather-send concept have an
upper limit on the number of buffers that can be gathered and sent. Set-
ting this value will prevent Connext from trying to gather too many buf-
fers into a send call for the transport plugin.
Connext requires all transport-plugin implementations to support a
gather-send of least a minimum number of buffers. This minimum num-
ber is defined as NDDS_TRANSPORT_-
PROPERTY_GATHER_SEND_BUFFER_COUNT_MIN.

parent.parent.message_size_max

The maximum size of a message in bytes that can be sent or received by
the transport plugin.
This value must be set before the transport plugin is registered, so that
Connext can properly use the plugin.
If you set this higher than the default, the DomainParticipant’s buffer_size
(in the RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6))
should also be changed.

Table 20.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description
20-5

Configuring RTI Secure WAN Transport
parent.parent.allow_interfaces

A list of strings, each identifying a range of interface addresses.
Interfaces must be specified as comma-separated strings, with each
comma delimiting an interface.
If the list is non-empty, this "white" list is applied before the parent.par-
ent.deny_interfaces list.
It is up to the transport plugin to interpret the list of strings passed in.
Usually this interpretation will be consistent with
NDDS_Transport_String_To_Address_Fcn_cEA().
This property is not interpreted by the Connext core; it is provided merely
as a convenient and standardized way to specify the interfaces for the ben-
efit of the transport plugin developer and user.
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is enabled.

parent.parent.deny_interfaces

A list of strings, each identifying a range of interface addresses. If the list
is non-empty, deny the use of these interfaces.
Interfaces must be specified as comma-separated strings, with each
comma delimiting an interface.
This "black" list is applied after the parent.parent.allow_interfaces list and
filters out the interfaces that should not be used.
It is up to the transport plugin to interpret the list of strings passed in.
Usually this interpretation will be consistent with
NDDS_Transport_String_To_Address_Fcn_cEA().
This property is not interpreted by the Connext core; it is provided merely
as a convenient and standardized way to specify the interfaces for the ben-
efit of the transport plugin developer and user.
You must manage the memory of the list. The memory may be freed after
the DomainParticipant is enabled.

Table 20.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description
20-6

WAN Transport Properties
20. C

o
nfig

uring
 W

A
N

Tra

nsp
o

rts
parent.send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending. On most oper-
ating systems, setsockopt() will be called to set the SENDBUF to the value
of this parameter.
This value must be greater than or equal to
parent.parent.message_size_max.
The maximum value is operating system-dependent.
If NDDS_TRANSPORT_UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT,
then setsockopt() (or equivalent) will not be called to size the send buffer
of the socket.

parent.recv_socket_buffer_size

Size in bytes of the receive buffer of a socket used for receiving.
On most operating systems, setsockopt() will be called to set the
RECVBUF to the value of this parameter.
This value must be greater than or equal to parent.par-
ent.message_size_max. The maximum value is operating system-depen-
dent.
If NDDS_TRANSPORT_UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT,
then setsockopt() (or equivalent) will not be called to size the receive buf-
fer of the socket.

parent.unicast_enabled

Allows the transport plugin to use unicast UDP for sending and receiving.
By default, it will be turned on. Also by default, it will use all the allowed
network interfaces that it finds up and running when the plugin is
instanced.

Table 20.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description
20-7

Configuring RTI Secure WAN Transport
parent.ignore_loopback_interface

Prevents the transport plugin from using the IP loopback interface. Three
values are allowed:
0: Enable local traffic via this plugin. This plugin will only use and report

the IP loopback interface only if there are no other network interfaces
(NICs) up on the system.

1: Disable local traffic via this plugin. Do not use the IP loopback interface
even if no NICs are discovered. This is useful when you want applica-
tions running on the same node to use a more efficient plugin like
Shared Memory instead of the IP loopback.

-1:Automatic. Lets Connext decide among the above two choices. If a
shared memory transport plugin is available for local traffic, the effec-
tive value is 1 (i.e., disable UDPv4 local traffic). Otherwise, the effective
value is 0, i.e., use UDPv4 for local traffic also.

parent.ignore_nonrunning_
interfaces

Prevents the transport plugin from using a network interface that is not
reported as RUNNING by the operating system.
The transport checks the flags reported by the operating system for each
network interface upon initialization. An interface which is not reported
as UP will not be used. This property allows the same check to be
extended to the IFF_RUNNING flag implemented by some operating sys-
tems. The RUNNING flag is defined to mean that "all resources are allo-
cated", and may be off if there is no link detected, e.g., the network cable is
unplugged.
Two values are allowed:
0: Do not check the RUNNING flag when enumerating interfaces, just

make sure the interface is UP.
1: Check the flag when enumerating interfaces, and ignore those that are

not reported as RUNNING. This can be used on some operating sys-
tems to cause the transport to ignore interfaces that are enabled but not
connected to the network.

Table 20.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description
20-8

WAN Transport Properties
20. C

o
nfig

uring
 W

A
N

Tra

nsp
o

rts
parent.no_zero_copy

Prevents the transport plugin from doing a zero copy.
By default, this plugin will use the zero copy on OSs that offer it. While
this is good for performance, it may sometime tax the OS resources in a
manner that cannot be overcome by the application.
The best example is if the hardware/device driver lends the buffer to the
application itself. If the application does not return the loaned buffers
soon enough, the node may error or malfunction. In case you cannot
reconfigure the H/W, device driver, or the OS to allow the zero copy fea-
ture to work for your application, you may have no choice but to turn off
zero copy use.
By default this is set to 0, so Connext will use the zero-copy API if offered
by the OS.

parent.send_blocking

Controls the blocking behavior of send sockets. CHANGING THIS
FROM THE DEFAULT CAN CAUSE SIGNIFICANT PERFORMANCE
PROBLEMS.
Currently two values are defined:
NDDS_TRANSPORT_UDPV4_BLOCKING_ALWAYS: Sockets are block-

ing (default socket options for Operating System).
NDDS_TRANSPORT_UDPV4_BLOCKING_NEVER: Sockets are modi-

fied to make them non-blocking. THIS IS NOT A SUPPORTED CON-
FIGURATION AND MAY CAUSE SIGNIFICANT PERFORMANCE
PROBLEMS.

parent.transport_priority_mask

Mask for the transport priority field. This is used in conjunction with
transport_priority_mapping_low/high to define the mapping from DDS
transport priority to the IPv4 TOS field. Defines a contiguous region of
bits in the 32-bit transport priority value that is used to generate values for
the IPv4 TOS field on an outgoing socket.
For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the
mapping. The value will be scaled from the mask range (0x0000 - 0xff00 in
this case) to the range specified by low and high.
If the mask is set to zero, then the transport will not set IPv4 TOS for send
sockets.

Table 20.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description
20-9

Configuring RTI Secure WAN Transport
parent.transport_priority_
mapping_low

Sets the low and high values of the output range to IPv4 TOS.
These values are used in conjunction with transport_priority_mask to
define the mapping from DDS transport priority to the IPv4 TOS field.
Defines the low and high values of the output range for scaling.
Note that IPv4 TOS is generally an 8-bit value.

parent.transport_priority_
mapping_high

enable_security Required if you want to use security.

recv_decode_buffer_size
Size of buffer for decoding packets from wire. An extra buffer is required
for storage of encrypted data.

port_offset Port offset to allow coexistence with non-secure UDP transport.

dtls_handshake_resend_interval DTLS handshake retransmission interval in milliseconds

tls.verify.ca_file

A string that specifies the name of file containing Certificate Authority
certificates. File should be in PEM format. See the OpenSSL manual page
for SSL_load_verify_locations for more information.
If you want to use security, ca_file or ca_path must be specified; both may
be specified.

tls.verify.ca_path

A string that specifies paths to directories containing Certificate Authority
certificates. Files should be in PEM format, and follow the OpenSSL-
required naming conventions. See the OpenSSL manual page for
SSL_CTX_load_verify_locations for more information.
If you want to use security, ca_file or ca_path must be specified; both may
be specified.

tls.verify.verify_depth Maximum certificate chain length for verification.

tls.verify.verify_peer
If non-zero, use mutual authentication when performing TLS hand- shake
(default). If zero, only the reader side will present a certificate, which will
be verified by the writer side.

tls.verify.verify_callback

This can be set to one of three values:
"default" selects the default callback

NDDS_Transport_TLS_default_verify_callback()
verbose" selects the verbose callback

NDDS_Transport_TLS_verbose_verify_callback()
"none" requests no callback be registered

Table 20.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description
20-10

WAN Transport Properties
20. C

o
nfig

uring
 W

A
N

Tra

nsp
o

rts
tls.cipher.cipher_list
List of available (D)TLS ciphers. See the OpenSSL manual page for
SSL_set_cipher_list for more information on the format of this string.

tls.cipher.dh_param_files

List of available Diffie-Hellman (DH) key files. For example:
"foo.h:512,bar.h:256" means:
dh_param_files[0].file = foo.pem,
dh_param_files[0].bits = 512,
dh_param_files[1].file = bar.pem,
dh_param_files[1].bits = 256

tls.cipher.engine_id String ID of OpenSSL cipher engine to request.

tls.identity.certificate_chain_file

Required if you want to use security. A string that specifies the name of
a file containing an identifying certificate chain (in PEM format). An iden-
tifying certificate is required for secure communication. The file must be
sorted starting with the certificate to the highest level (root CA). If no pri-
vate key is specified, this file will be used to load a non-RSA private key.

tls.identity.private_key_password A string that specifies the password for private key.

tls.identity.private_key_file
A string that specifies that name of a file containing private key (in PEM
format). If no private key is specified (all values are NULL), this value will
default to the same file as the specified certificate chain file.

tls.identity.rsa_private_key_file
A string that specifies that name of a file containing an RSA private key (in
PEM format).

transport_instance_id[0] to
[NDDS_TRANSPORT_
WAN_TRANSPORT_
INSTANCE_ID_LENGTH]

Required A set of comma-separated values to specify the elements of the
array. This value must be unique for all transport instances communicat-
ing with the same WAN Rendezvous Server.
If less than the full array is specified, it will be right-aligned. For example,
the string "01,02" results in the array being set to:
 {0,0,0,0,0,0,0,0,0,0,1,2}

interface_address Locator, as a string

server Required Server locator, as a string.

server_port Server port number.

Table 20.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description
20-11

Configuring RTI Secure WAN Transport
20.4 Secure Transport Properties
Table 20.2 lists the properties that you can set for the Secure Transport.

stun_retransmission_interval
STUN request messages requiring a response are resent with this interval.
The interval is doubled after each retransmission. Specified in msec.

stun_number_of_retransmissions
Maximum number of times STUN messages are resent unless a response
is received.

stun_liveliness_period
Period at which messages are sent to peers to keep NAT holes open; and
to the WAN server to refresh bound ports. Specified in msec.

a. Assuming you used ‘dds.transport.WAN.wan1’ as the alias to load the plugin. If not, change the prefix to match the
string used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

Table 20.1 Properties for NDDS_Transport_WAN_Property_t

Property Name
(prefix with

‘dds.transport.WAN.wan1.’)a
Property Value Description

Table 20.2 Properties for NDDS_Transport_DTLS_Property_t

Property Name
(prefix with

‘dds.transport.DTLS.dtls1’)a
Property Value Description

dds.transport.load_plugins
(note: this does not take a prefix)

Required Comma-separated strings indicating the prefix names of all
plugins that will be loaded by Connext. For example: “dds.trans-
port.DTLS.dtls1". You will use this string as the prefix to the property
names. See a.
Note: you can load up to 8 plugins.

library

Required Must set to "libnddstransporttls.so" (for UNIX/Solaris) or
"nddstransporttls.dll" (for Windows).
This library and the dependent Openssl libraries need to be in the path
during run time for use by Connext (in the LD_LIBRARY_PATH environ-
ment variable on UNIX/Solaris systems, in PATH for Windows sys-
tems).

create_function Required Must be "NDDS_Transport_DTLS_create"
20-12

Secure Transport Properties
20. C

o
nfig

uring
 W

A
N

Tra

nsp
o

rts
aliases

Used to register the transport plugin returned by
NDDS_Transport_DTLS_create() (as specified by
<DTLS_prefix>.create_function) to the DomainParticipant. Aliases
should be specified as comma separated string, with each comma delim-
iting an alias. If it is not specified, the prefix (see a) is used as the default
alias for the plugin.

network_address

The network address at which to register this transport plugin.
The least significant transport_in.property.address_bit_count will be
truncated. The remaining bits are the network address of the transport
plugin.
This value overwrites the value returned by the output parameter in
NDDS_Transport_create_plugin function as specified in
"<DTLS_prefix>.create_function".

verbosity

Specifies the verbosity of log messages from the transport.
Possible values:
-1: silent
0 (default): errors only
1: errors and warnings
2: local status
5 or higher: all messages

parent.address_bit_count
Number of bits in a 16-byte address that are used by the transport.
Should be between 0 and 128. For example, for an address range of 0-
255, the address_bit_count should be set to 8.

parent.properties_bitmap

A bitmap that defines various properties of the transport to the Connext
core. Currently, the only property supported is whether or not the trans-
port plugin will always loan a buffer when Connext tries to receive a
message using the plugin. This is in support of a zero-copy interface.

parent.gather_send_buffer_
count_max

Specifies the maximum number of buffers that Connext can pass to the
transport plugin’s send() function.

parent.message_size_max

The maximum size of a message in bytes that can be sent or received by
the transport plugin.
Note: If you use a value greater than the default, the DomainParticipant’s
buffer_size (in the RECEIVER_POOL QosPolicy (DDS Extension) (Sec-
tion 8.5.6)) should also be changed.

Table 20.2 Properties for NDDS_Transport_DTLS_Property_t

Property Name
(prefix with

‘dds.transport.DTLS.dtls1’)a
Property Value Description
20-13

Configuring RTI Secure WAN Transport
parent.allow_interfaces

A list of strings, each identifying a range of interface addresses.
Interfaces must be specified as comma-separated strings, with each
comma delimiting an interface.
If the list is non-empty, this "white" list is applied before the par-
ent.deny_interfaces list.
You must manage the memory of the list. The memory may be freed
after the DomainParticipant is enabled.

parent.deny_interfaces

A list of strings, each identifying a range of interface addresses.
Interfaces should be specified as comma-separated strings, with each
comma delimiting an interface.
This "black" list is applied after the parent.allow_interfaces list and filters
out the interfaces that should not be used.
You must manage the memory of the list. The memory may be freed
after the DomainParticipant is enabled.

send_socket_buffer_size Size in bytes of the send buffer of a socket used for sending.

recv_socket_buffer_size Size in bytes of the receive buffer of a socket used for sending.

ignore_loopback_interface Prevents the Transport Plugin from using the IP loopback interface.

ignore_nonrunning_interfaces

Prevents the transport plugin from using a network interface that is not
reported as RUNNING by the operating system.
The transport checks the flags reported by the operating system for each
network interface upon initialization. An interface which is not reported
as UP will not be used. This property allows the same check to be
extended to the IFF_RUNNING flag implemented by some operating
systems. The RUNNING flag is defined to mean that "all resources are
allocated", and may be off if there is no link detected, e.g., the network
cable is unplugged.
Two values are allowed:
0: Do not check the RUNNING flag when enumerating interfaces, just

make sure the interface is UP.
1: Check the flag when enumerating interfaces, and ignore those that

are not reported as RUNNING. This can be used on some operating
systems to cause the transport to ignore interfaces that are enabled
but not connected to the network.

transport_priority_mask Mask for use of transport priority field.

Table 20.2 Properties for NDDS_Transport_DTLS_Property_t

Property Name
(prefix with

‘dds.transport.DTLS.dtls1’)a
Property Value Description
20-14

Secure Transport Properties
20. C

o
nfig

uring
 W

A
N

Tra

nsp
o

rts
transport_priority_mapping_low
Low and high values of output range to IPv4 TOS.

transport_priority_mapping_high

recv_decode_buffer_size
Size of buffer for decoding packets from wire. An extra buffer is required
for storage of encrypted data.

port_offset Port offset to allow coexistence with non-secure UDP transport.

dtls_handshake_resend_interval DTLS handshake retransmission interval in milliseconds

dtls_connection_liveliness_
interval

Liveliness interval (multiple of resend interval)
The connection will be dropped if no message from the peer is received
in this amount of time. This enables cleaning up state for peers that are
no longer responding. A secure keep-alive message will be sent every
half-interval if no other sends have occurred for a given DTLS connec-
tion during that time.

tls.verify.ca_file

A string that specifies the name of file containing Certificate Authority
certificates. File should be in PEM format. See the OpenSSL manual
page for SSL_load_verify_locations for more information.
ca_file or ca_path must be specified; both may be specified.

tls.verify.ca_path

A string that specifies paths to directories containing Certificate Author-
ity certificates. Files should be in PEM format, and follow the OpenSSL-
required naming conventions. See the OpenSSL manual page for
SSL_CTX_load_verify_locations for more information.
ca_file or ca_path must be specified; both may be specified.

tls.verify.verify_depth Maximum certificate chain length for verification.

tls.verify.verify_peer
If non-zero, use mutual authentication when performing TLS hand-
shake (default). If zero, only the reader side will present a certificate,
which will be verified by the writer side.

tls.verify.verify_callback

This can be set to one of three values:
"default" selects the default callback

NDDS_Transport_TLS_default_verify_callback()
"verbose" selects the verbose callback

NDDS_Transport_TLS_verbose_verify_callback()
"none" requests no callback be registered

tls.cipher.cipher_list
List of available (D)TLS ciphers. See the OpenSSL manual page for
SSL_set_cipher_list for more information on the format of this string.

Table 20.2 Properties for NDDS_Transport_DTLS_Property_t

Property Name
(prefix with

‘dds.transport.DTLS.dtls1’)a
Property Value Description
20-15

Configuring RTI Secure WAN Transport
20.5 Explicitly Instantiating a WAN or Secure Transport Plugin
As described on page 20-1, there are two ways to instantiate a transport plugin. This sec-
tion describes the mechanism that includes calling NDDSTransportSup-
port::register_transport(). (The other way is to use the Property QoS mechanism,
described in Section 20.2).

Notes:

❏ This way of instantiating a transport is not supported in the Java API. If you are
using Java, use the Property QoS mechanism, described in Section 20.2.

tls.cipher.dh_param_files

List of available Diffie-Hellman (DH) key files. For example:
"foo.h:512,bar.h:256" means:
dh_param_files[0].file = foo.pem,
dh_param_files[0].bits = 512,
dh_param_files[1].file = bar.pem,
dh_param_files[1].bits = 256

tls.cipher.engine_id String ID of OpenSSL cipher engine to request.

tls.identity.certificate_chain_file

Required A string that specifies the name of a file containing an identi-
fying certificate chain (in PEM format). An identifying certificate is
required for secure communication. The file must be sorted starting with
the certificate to the highest level (root CA). If no private key is specified,
this file will be used to load a non-RSA private key.

tls.identity.private_key_password A string that specifies the password for private key.

tls.identity.private_key_file
A string that specifies that name of a file containing private key (in PEM
format). If no private key is specified (all values are NULL), this value
will default to the same file as the specified certificate chain file.

tls.identity.rsa_private_key_file
A string that specifies that name of a file containing an RSA private key
(in PEM format).

a. Assuming you used ‘dds.transport.DTLS.dtls1’ as the alias to load the plugin. If not, change the prefix to match the
string used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

Table 20.2 Properties for NDDS_Transport_DTLS_Property_t

Property Name
(prefix with

‘dds.transport.DTLS.dtls1’)a
Property Value Description
20-16

Explicitly Instantiating a WAN or Secure Transport Plugin
20. C

o
nfig

uring
 W

A
N

Tra

nsp
o

rts
❏ To use this mechanism, there are extra libraries that you must link into your
program and an additional header file that you must include. Please see the
Section 20.5.1 and Section 20.5.2 for details.

To instantiate a WAN or Secure Transport prior to explicitly registering it with
NDDSTransportSupport::register_transport(), use one of the following functions:

NDDS_Transport_Plugin* NDDS_Transport_WAN_new (
const struct NDDS_Transport_WAN_Property_t * property_in)

NDDS_Transport_Plugin* NDDS_Transport_DTLS_new (
const struct NDDS_Transport_DTLS_Property_t * property_in)

See the online (HTML) documentation for details on these functions.

20.5.1 Additional Header Files and Include Directories
❏ To use the Secure WAN Transport API, you must include an extra header file (in

addition to those in Table 9.1, “Header Files to Include for Connext (All Architec-
tures),” on page 9-2).

#include "ndds/ndds_transport_secure_wan.h"
Assuming that Secure WAN Transport is installed in the same directory as Connext
(see Table 9.2, “Include Paths for Compilation (All Architectures),” on page 9-3),
no additional include paths need to be added for the Secure WAN Transport
API. If this is not the case, you will need to specify the appropriate include path.

❏ If you want to access OpenSSL data structures, add the OpenSSL include direc-
tory, <openssl install dir>/<arch>/include, and include the OpenSSL headers
before ndds_transport_secure_wan.h:

#include <openssl/ssl.h>
#include <openssl/x509.h> (if accessing certificate functions)
etc.

On Windows systems, if you are loading statically: you should also include the
OpenSSL file, applink.c, in your application. It can be found in the OpenSSL
include directory, or included as <openssl/applink.c>.

20.5.2 Additional Libraries
To use the Secure WAN Transport API, you must link in additional libraries, which are
listed in the Platform Notes (in the appropriate section for your architecture). Refer to
Section 9.3.1 for differences between shared and static libraries.

20.5.3 Compiler Flags
No additional compiler flags are required.
20-17

Configuring RTI Secure WAN Transport
20-18

Part 5: RTI Persistence Service

The material in this part of the manual describes Persistence Service, which is included
with Connext Messaging. It saves data samples so they can be delivered to subscribing
applications that join the system at a later time—even if the publishing application has
already terminated.

❏ Chapter 21: Introduction to RTI Persistence Service

❏ Chapter 22: Configuring Persistence Service

❏ Chapter 23: Running RTI Persistence Service

❏ Chapter 24: Administering Persistence Service from a Remote Location

21. Intro
d

uc
tio

n to

RTI Pe
rsiste

nc
e

 Se
r-
Chapter 21 Introduction to RTI Persistence Service

Persistence Service is a Connext application that saves data samples to transient or perma-
nent storage, so they can be delivered to subscribing applications that join the system at
a later time—even if the publishing application has already terminated.

Persistence Service runs as a separate application; you can run it on the same node as the
publishing application, the subscribing application, or some other node in the network.

When configured to run in PERSISTENT mode, Persistence Service can use the filesystem
or a relational database that provides an ODBC driver. For each persistent topic, it col-
lects all the data written by the corresponding persistent DataWriters and stores them
into persistent storage. See the Persistence Service Release Notes for the list of platforms
and relational databases that have been tested.

When configured to run in TRANSIENT mode, Persistence Service stores the data in
memory.

The following chapters assume you have a basic understanding of DDS terms such as
DomainParticipants, Publishers, DataWriters, Topics, and Quality of Service (QoS) policies.
For an overview of DDS terms, please see Chapter 2: Data-Centric Publish-Subscribe
Communications. You should also have already read Chapter 11: Mechanisms for
Achieving Information Durability and Persistence.
21-1

Introduction to RTI Persistence Service
21-2

22. C
o

nfig
uring

 RTI
Pe

rsiste
nc

e
 Se

rvic
e

Chapter 22 Configuring Persistence Service

To use Persistence Service:

1. Modify your Connext applications.

• The DURABILITY QosPolicy (Section 6.5.6) controls whether or not, and how,
published samples are stored by Persistence Service for delivery to late-joining
DataReaders. See Data Durability (Section 11.5).

• For each DataWriter whose data must be stored, set the Durability
QosPolicy’s kind to DDS_PERSISTENT_DURABILITY_QOS or
DDS_TRANSIENT_DURABILITY_QOS.

• For each DataReader that needs to receive stored data, set the Durability
QosPolicy’s kind to DDS_PERSISTENT_DURABILITY_QOS or
DDS_TRANSIENT_DURABILITY_QOS.

• Optionally, modify the DURABILITY SERVICE QosPolicy (Section 6.5.7),
which can be used to configure Persistence Service.

By default, the History and ResourceLimits QosPolicies for a Persistence Service
DataReader (PRSTDataReader) and Persistence Service DataWriter (PRSTDa-
taWriter) with topic 'A' will be configured using the DurabilityService QosPolicy
of the first-discovered DataWriter publishing 'A'. (For more information on the
PRSTDataReader and PRSTDataWriter, see RTI Persistence Service (Section
11.5.1).) These values will overwrite the values specified in the XML file (unless
you use the tag <use_durability_service> in the persistence group definition,
see Section 22.8).

2. Create a configuration file or edit an existing file, as described in XML Configu-
ration File (Section 22.2).
22-1

Configuring Persistence Service
3. Start Persistence Service with your configuration file, as described in Starting Per-
sistence Service (Section 23.1). You can start it on either application’s node, or
even an entirely different node (provided that node is included in one of the
applications’ NDDS_DISCOVERY_PEERS lists).

22.1 How to Load the XML Configuration
Persistence Service loads its XML configuration from multiple locations. This section
presents the various approaches, listed in load order.

The first three locations only contain QoS Profiles and are inherited from Connext (see
Chapter 15: Configuring QoS with XML).

❏ $NDDSHOME/resource/qos_profiles_4.5x1/xml/NDDS_QOS_PROFILES.xml

This file contains the DDS default QoS values; it is loaded automatically if it
exists. (First to be loaded.)

❏ File specified in NDDS_QOS_PROFILES Environment Variable

The files (or XML strings) separated by semicolons referenced in this environ-
ment variable are loaded automatically.

❏ <working directory>/USER_QOS_PROFILES.xml

This file is loaded automatically if it exists.

The next locations are specific to Persistence Service.

❏ <Persistence Service executable location>/../../resource/xml/
RTI_PERSISTENCE_SERVICE.xml

This file contains the default Persistence Service configurations; it is loaded if it
exists. There are two default configurations: default and defaultDisk. The
default configuration persists all the topics into memory. The defaultDisk con-
figuration persists all the topics into files located in the current working direc-
tory.

❏ <working directory>/USER_PERSISTENCE_SERVICE.xml

This file is loaded automatically if it exists.

❏ File specified using the command line option, -cfgFile

1. x stands for the version letter of the current release.
22-2

XML Configuration File
22. C

o
nfig

uring
 RTI

Pe
rsiste

nc
e

 Se
rvic

e

The command-line option -cfgFile (see Table 23.1 in the Getting Started Guide)
can be used to specify a configuration file.

22.2 XML Configuration File
The configuration file uses XML format. Let's look at a very basic configuration file, just
to get an idea of its contents. You will learn the meaning of each line as you read the rest
of this chapter:

❏ QoS Configuration (Section 22.3)

❏ Configuring the Persistence Service Application (Section 22.4)

❏ Configuring Remote Administration (Section 22.5)

❏ Configuring the Persistent Storage (Section 22.6)

❏ Configuring Participants (Section 22.7)

❏ Creating Persistence Groups (Section 22.8)

❏ Using RTI Monitoring Library with Persistence Service (Section 22.9)

Example Configuration File

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- A Configuration file may be used by several
 persistence services specifying multiple
 <persistence_service> entries
-->
<dds>
 <!-- QoS LIBRARY SECTION -->
 <qos_library name="QosLib1">
 <qos_profile name="QosProfile1">
 <datawriter_qos name="WriterQos1">
 <history>
 <kind>DDS_KEEP_ALL_HISTORY_QOS</kind>
 </history>
 </datawriter_qos>
 <datareader_qos name="ReaderQos1">
 <reliability>
 <kind>DDS_RELIABLE_RELIABILITY_QOS</kind>
 </reliability>
 <history>
 <kind>DDS_KEEP_ALL_HISTORY_QOS</kind>
 </history>
22-3

Configuring Persistence Service
 </datareader_qos>
 </qos_profile>
 </qos_library>

 <!-- PERSISTENCE SERVICE SECTION -->
 <persistence_service name="Srv1">
 <!-- REMOTE ADMINISTRATION SECTION -->
 <administration>
 <domain_id>72</domain_id>
 </administration>

 <!-- PERSISTENT STORAGE SECTION -->
 <persistent_storage>
 <filesystem>
 <directory>/tmp</directory>
 <file_prefix>PS</file_prefix>
 </filesystem>
 </persistent_storage>

 <!-- DOMAIN PARTICIPANT SECTION -->
 <participant name="Part1">
 <domain_id>71</domain_id>

 <!-- PERSISTENCE GROUP SECTION -->
 <persistence_group name="PerGroup1" filter="*">
 <single_publisher>true</single_publisher>
 <single_subscriber>true</single_subscriber>
 <datawriter_qos base_name="QosLib1::QosProfile1"/>
 <datareader_qos base_name="QosLib1::QosProfile1"/>
 </persistence_group>

 </participant>
 </persistence_service>
</dds>

22.2.1 Configuration File Syntax

The configuration file must follow these syntax rules:

❏ The syntax is XML and the character encoding is UTF-8.

❏ Opening tags are enclosed in <>; closing tags are enclosed in </>.

❏ A value is a UTF-8 encoded string. Legal values are alphanumeric characters. All
leading and trailing spaces are removed from the string before it is processed.
22-4

XML Configuration File
22. C

o
nfig

uring
 RTI

Pe
rsiste

nc
e

 Se
rvic

e

For example, " <tag> value </tag>" is the same as "<tag>value</tag>".

❏ All values are case-sensitive unless otherwise stated.

❏ Comments are enclosed as follows: <!-- comment -->.

❏ The root tag of the configuration file must be <dds> and end with </dds>.

❏ The primitive types for tag values are specified in Table 22.1.

22.2.2 XML Validation

22.2.2.1 Validation at Run Time

Persistence Service validates the input XML files using a builtin Document Type Defini-
tion (DTD). You can find a copy of the builtin DTD in $(NDDSHOME)/resource/rtiper-
sistenceservice/schema/rti_persistence_service.dtd. (This is only a copy of what the
Persistence Service core uses. Changing this file has no effect unless you specify its path
with the DOCTYPE tag, described below.)

Table 22.1 Supported Tag Values

Type Format Notes

DDS_Boolean

yes, 1, true, BOOLEAN_TRUE or
DDS_BOOLEAN_TRUE: these all mean TRUE

Not case-sensitive
no, 0, false, BOOLEAN_FALSE or
DDS_BOOLEAN_FALSE: these all mean FALSE

DDS_Enum
A string. Legal values are those listed in the online
(HTML) documentation for the C or Java API.

Must be specified as a
string. (Do not use
numeric values.)

DDS_Long

 -2147483648 to 2147483647
or 0x80000000 to 0x7fffffff
or LENGTH_UNLIMITED
or DDS_LENGTH_UNLIMITED

A 32-bit signed integer

DDS_UnsignedLong
 0 to 4294967296
or
 0 to 0xffffffff

A 32-bit unsigned integer

String UTF-8 character string
All leading and trailing
spaces are ignored
between two tags
22-5

Configuring Persistence Service
You can overwrite the builtin DTD by using the XML tag, <!DOCTYPE>. For example,
the following indicates that Persistence Service must use a different DTD file to perform
validation:

<!DOCTYPE dds SYSTEM
 "/local/usr/rti/dds/modified_rtipersistenceservice.dtd">

If you do not specify the DOCTYPE tag in the XML file, the builtin DTD is used.

The DTD path can be absolute, or relative to the application's current working directory.

22.2.2.2 Validation During Editing

Persistence Service provides DTD and XSD files that describe the format of the XML con-
tent. We recommend including a reference to one of these documents in the XML file
that contains the persistence service’s configuration—this provides helpful features in
code editors such as Visual Studio and Eclipse, including validation and auto-comple-
tion while you are editing the XML file. Including a reference to the XSD file in the XML
documents provides stricter validation and better auto-completion than the correspond-
ing DTD file.

The DTD and XSD definitions of the XML elements are in
$(NDDSHOME)/resource/rtipersistenceservice/schema/rti_persistence_service.dtd
and
$(NDDSHOME)/resource/rtipersistenceservice/schema/rti_persistence_service.xsd,
respectively.

To include a reference to the XSD document in your XML file, use the attribute xsi:noN-
amespaceSchemaLocation in the <dds> tag. For example (in the following, replace
<NDDSHOME> with the Connext installation directory):

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"<NDDSHOME>/resource/rtipersistenceservice/schema/
rti_persistence_service.xsd">
 ...
</dds>

To include a reference to the DTD document in your XML file, use the <!DOCTYPE>
tag. For example (in the following, replace <NDDSHOME> with the Connext installa-
tion directory):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dds SYSTEM
"<NDDSHOME>/resource/rtipersistenceservice/schema/
rti_persistence_service.dtd">
22-6

QoS Configuration
22. C

o
nfig

uring
 RTI

Pe
rsiste

nc
e

 Se
rvic

e

<dds>
 ...
</dds>

22.3 QoS Configuration
Each persistence group and participant has a set of DDS QoSs. There are six tags:

❏ <participant_qos>

❏ <publisher_qos>

❏ <subscriber_qos>

❏ <topic_qos>

❏ <datawriter_qos>

❏ <datareader_qos>

Each QoS is identified by a name. The QoS can inherit its values from other QoSs
described in the XML file. For example:

<datawriter_qos name="DerivedWriterQos" base_qos_name="Lib::Base-
WriterQos">
 <history>
 <kind>DDS_KEEP_ALL_HISTORY_QOS</kind>
 </history>
</datawriter_qos>

In the above example, the writer QoS named 'DerivedWriterQos' inherits the values
from the writer QoS 'BaseWriterQos' contained in the library 'Lib'. The HistoryQosPol-
icy kind is set to DDS_KEEP_ALL_HISTORY_QOS.

Each XML tag with an associated name can be uniquely identified by its fully qualified
name in C++ style. For more information on tags, see Chapter 15: Configuring QoS with
XML

The persistence groups and participants can use QoS libraries and profiles to configure
their QoS values. For example:

<dds>
 <!- QoS LIBRARY SECTION -->
 <qos_library name="QosLib1">
 <qos_profile name="QosProfile1">
 <datawriter_qos name="WriterQos1">
 <history>
22-7

Configuring Persistence Service
 <kind>DDS_KEEP_ALL_HISTORY_QOS</kind>
 </history>
 </datawriter_qos>
 </qos_profile>
 </qos_library>

 <!-PERSISTENCE SERVICE SECTION -->
 <persistence_service name="Srv1">
 ...
 <!-PERSISTENCE GROUP SECTION -->
 <persistence_group name="PerGroup1" filter="*">
 <single_publisher>true</single_publisher>
 <single_subscriber>true</single_subscriber>
 <datawriter_qos base_name="QosLib1::QosProfile1"/>
 </persistence_group>
 </persistence_service>
</dds >

For more information about QoS libraries and profiles see Chapter 15: Configuring QoS
with XML.

22.4 Configuring the Persistence Service Application
Each execution of the Persistence Service application is configured using the content of a
tag: <persistence_service>. When you start Persistence Service (described in Section 23.1),
you must specify which <persistence_service> tag to use to configure the service.

For example:

<dds>
 <persistence_service name="Srv1">

...
 </persistence_service>
</dds>

If you do not specify a service name when you start Persistence Service, the service will
print the list of available configurations and then exit.

Because a configuration file may contain multiple <persistence_service> tags, one file
can be used to configure multiple Persistence Service executions.

Table 22.2 lists the tags you can specify for a persistence service. For default values,
please see the online (HTML) documentation.
22-8

Configuring the Persistence Service Application
22. C

o
nfig

uring
 RTI

Pe
rsiste

nc
e

 Se
rvic

e

Table 22.2 Persistence Service Application Tags

Tag Description
Number
of Tags

Allowed

<annotation>

Provides a description for the persistence service configuration.
Example:

<annotation>
 <documentation>
 Persists in the file system all topics
published with PERSISTENT durability
 </documentation>
</annotation>

0 or 1

<administration> Enables and configures remote administration. See Section 22.5. 0 or 1

<persistent_storage>
When this tag is present, the topic data will be persisted to disk.
You can select between file storage and relational database stor-
age. See Section 22.6.

0 or 1

<participant>

For each <participant> tag, Persistence Service creates two
DomainParticipants on the same domain ID:
one to subscribe to changes and one to publish changes.
The QoS values used to configure both participants are the
same, except for WireProtocol.domain_id.
If WireProtocol.domain_id is not -1 (the default value), Persis-
tence Service uses WireProtocol.domain_id for the first domain
DomainParticipant and WireProtocol.domain_id+1 for the sec-
ond DomainParticipant.

1 or more

<synchronization>

A DDS_Boolean (see Table 22.1) that indicates if redundant per-
sistence service instances should synchronize their states with
one another.
When set to TRUE, messages lost on the way to one service
instance can be repaired by another without impacting the origi-
nal publisher of that message.
To synchronize the instances, the tag <synchronize> must be set
to true in every instance involved in the synchronization.
Note: This synchronization mechanism is not equivalent to data-
base replication. The extent to which database instances have
identical contents depends on the destination ordering and
other QoS settings for the persistence service instances.
Default: 0

0 or 1
22-9

Configuring Persistence Service
22.5 Configuring Remote Administration
You can create a Connext application that can remotely control Persistence Service. The
<administration> tag is used to enable remote administration and configure its behav-
ior.

By default, remote administration is turned off in Persistence Service.

When remote administration is enabled, Persistence Service will create a DomainPartici-
pant, Publisher, Subscriber, DataWriter, and DataReader. These Entities are used to receive
commands and send responses. You can configure these entities with QoS tags within
the <administration> tag.

Table 22.3 lists the tags allowed within <administration> tag.

For more details, please see Chapter 24: Administering Persistence Service from a
Remote Location.

Note: The command-line options used to configure remote administration take prece-
dence over the XML configuration (see Table 23.1).

Table 22.3 Remote Administration Tags

Tags within
<administration> Description

Number
of Tags

Allowed

<domain_id>
Specifies which domain ID Persistence Service will use to enable
remote administration.

1
(required)

<participant_qos>
Configures the DomainParticipant QoS for remote administration.
If the tag is not defined, Persistence Service will use the DDS
defaults.

0 or 1

<publisher_qos>
Configures the Publisher QoS for remote administration.
If the tag is not defined, Persistence Service will use the DDS
defaults.

0 or 1

<subscriber_qos>
Configures the Subscriber QoS for remote administration.
If the tag is not defined, Persistence Service will use the DDS
defaults.

0 or 1
22-10

Configuring the Persistent Storage
22. C

o
nfig

uring
 RTI

Pe
rsiste

nc
e

 Se
rvic

e

22.6 Configuring the Persistent Storage
The <persistent_storage> tag is used to persist samples into permanent storage. If the
<persistence_storage> tag is not specified, the service will operate in TRANSIENT
mode and all the data will be kept in memory. Otherwise, the persistence service will
operate in PERSISTENT mode and all the topic data will be stored into the filesystem or
into a relational database that provides an ODBC driver.

Table 22.4 lists the tags that you can specify in <persistent_storage>.

Table 22.6 and Table 22.5 list the tags that you can specify in <filesystem> and
<external_database> .

Relational Database Limitations: The ODBC storage does not support BLOBs. The maxi-
mum size for a serialized sample is 65535 bytes in MySQL.

<datareader_qos>

Configures the DataReader QoS for remote administration.
If the tag is not defined, Persistence Service will use the DDS
defaults with the following changes:
reliability.kind = DDS_RELIABLE_RELIABILITY_QOS (this value
cannot be changed)
history.kind = DDS_KEEP_ALL_HISTORY_QOS
resource_limits.max_samples = 32

0 or 1

<datawriter_qos>

Configures the DataWriter QoS for remote administration.
If the tag is not defined, Persistence Servicewill use the DDS
defaults with the following changes:
history.kind = DDS_KEEP_ALL_HISTORY_QOS
resource_limits.max_samples = 32

0 or 1

Table 22.3 Remote Administration Tags

Tags within
<administration> Description

Number
of Tags

Allowed
22-11

Configuring Persistence Service
Table 22.4 Persistent Storage tags

Tag Description
Number
of Tags

Allowed

<filesystem>
When this tag is present, the topic data will be persisted into files.
This tag is required if <external_database> is not specified.

0 or 1

<external_database>
When this tag is present, the topic data will be persisted in a rela-
tional database.
This tag is required if <filesystem> is not specified.

0 or 1

<restore>

This DDS_Boolean (see Table 22.1) indicates if the topic data asso-
ciated with a previous execution of the persistence service must be
restored or not. If the topic data is not restored, it will be deleted
from the persistent storage.
Default: 1

0 or 1

Table 22.5 Filesystem tags

Tag Description
Number
of Tags

Allowed

<directory>

Specifies the directory of the files in which topic data will be per-
sisted. There will be one file per PRSTDataWriter/PRSTDa-
taReader pair.
Default: current working directory

0 or 1

<file_prefix>
A name prefix associated with all the files created by Persistence
Service.
Default: PS

0 or 1
22-12

Configuring the Persistent Storage
22. C

o
nfig

uring
 RTI

Pe
rsiste

nc
e

 Se
rvic

e

<journal_mode>

Sets the journal mode of the persistent storage. This tag can take
these values:
• DELETE: Deletes the rollback journal at the conclusion of

each transaction.
• TRUNCATE: Commits transactions by truncating the roll-

back journal to zero-length instead of deleting it.
• PERSIST: Prevents the rollback journal from being deleted at

the end of each transaction. Instead, the header of the journal
is overwritten with zeros.

• MEMORY: Stores the rollback journal in volatile RAM. This
saves disk I/O.

• WAN: Uses a write-ahead log instead of a rollback journal to
implement transactions.

• OFF: Completely disables the rollback journal. If the applica-
tion crashes in the middle of a transaction when the OFF
journaling mode is set, the files containing the samples will
very likely be corrupted.

Default: DELETE

0 or 1

<vacuum>

Sets the auto-vacuum status of the storage. This tag can take these
values:
• NONE: When data is deleted from the storage files, the files

remain the same size.
• FULL: The storage files are compacted every transaction.

Default: FULL

0 or 1

<synchronization>

Determines the level of synchronization with the physical disk.
This tag can take three values:
• FULL: Every sample is written into physical disk as Persis-

tence Service receives it.
• NORMAL: Samples are written into disk at critical moments.
• OFF: No synchronization is enforced. Data will be written to

physical disk when the OS flushes its buffers.
Default: OFF

0 or 1

<trace_file>

Specifies the name of the trace file for debugging purposes. The
trace file contains information about all SQL statements executed
by the persistence service.
Default: No trace file is generated

0 or 1

Table 22.5 Filesystem tags

Tag Description
Number
of Tags

Allowed
22-13

Configuring Persistence Service
22.7 Configuring Participants
An XML <persistence_service> tag will contain a set of domain participants. The persis-
tence service will persist topics published in the domainIDs associated with these par-
ticipants. For example:

<persistence_service name="Srv1">
 <participant name="Part1">
 <domain_id>71</domain_id>
 ...
 </participant>
 <participant name="Part2">
 <domain_id>72</domain_id>
 ...
 </participant>
</persistence_service>

Using the above example, the persistence service will create two domain participants on
domains 71 and 72. After the domain participants are created, the persistence service
will monitor the discovery traffic looking for topics to persist.

The <domain_id> tag can be specified alternatively as an attribute of <participant>. For
example:

Table 22.6 External Database Tags

Tag Description
Number
of Tags

Allowed

<dsn>

DSN used to connect to the database using ODBC. You should
create this DSN through the ODBC settings on Windows sys-
tems, or in your .odbc.ini file on UNIX/Linux systems.
This tag is required.

1

<username>
Username to connect to the database.
Default: no username is used

0 or 1

<password>
Password to connect to the database.
Default: no username is used

0 or 1

<odbc_library>

Specifies the ODBC driver to load. By default, Connext will try to
use the standard ODBC driver manager library (UnixOdbc on
UNIX/Linux systems, the Windows ODBC driver manager on
Windows systems).

0 or 1
22-14

Creating Persistence Groups
22. C

o
nfig

uring
 RTI

Pe
rsiste

nc
e

 Se
rvic

e

<persistence_service name="Srv1">
 <participant name="Part1" domain_id="71">
 ...
 </participant>
</persistence_service>

Table 22.7 further describes the participant tags.

22.8 Creating Persistence Groups
The topics that must be persisted in a specific domain ID are specified using
<persistence_group> tags. A <persistence_group> tag defines a set of topics identified
by a POSIX expression.

For example:

<participant name="Part1">
 <domain_id>71</domain_id>
 <persistence_group name="PerGroup1" filter="H*">
 ...
 </persistence_group>
</participant>

In the previous example, the persistence group 'PerGroup1' is associated with all the
topics published in domain 71 whose name starts with 'H'.

When a participant discovers a topic that matches a persistence group, it will create a
PRSTDataReader and a PRSTDataWriter. The PRSTDataReader and PRSTDataWriter
will be configured using the QoS policies associated with the persistence group. The

Table 22.7 Participant Tags

Tag Description
Number
of Tags

Allowed

<domain_id>
Domain ID associated with the Participant. The domain ID can be
specified as an attribute of the participant tag.
Default: 0

0 or 1

<participant_qos>
Participant QoS.
Default: DDS defaults

0 or 1

<persistence_group>
A persistence group describes a set of topics whose data that must
be persisted by the persistence service.

1 or more
22-15

Configuring Persistence Service
samples received by the PRSTDataReader will be persisted in the queue of the corre-
sponding PRSTDataWriter.

A <participant> tag can contain multiple persistence groups; the set of topics that each
one represents can intersect.

Table 22.8 further describes the persistence group tags. For default values, please see the
online (HTML) documentation.

Table 22.8 Persistence Group Tags

Tag Description
Number
of Tags

Allowed

<filter>

Specifies a list of POSIX expressions separated by commas
that describe the set of topics associated with the persistence
group.
The filter can be specified as an attribute of
<persistence_group> as well.
Default: *

0 or 1

<deny_filter>

Specifies a list of POSIX expressions separated by commas that
describe the set of topics to be denied in the persistence group.
This "black" list is applied to the topics that pass the filter spec-
ified with the <filter> tag
Default: *

0 or 1

<content_filter>

Content filter topic expression. A persistence group can sub-
scribe to a specific set of data based on the value of this expres-
sion.
A filter expression is similar to the WHERE clause in SQL. For
more information on the syntax, please see the online docu-
mentation (from the Modules page, select RTI Connext API
Reference, Queries and Filters Syntax.
Default: no expression)

0 or 1

<propagate_dispose>

A DDS_Boolean (see Table 22.1) that controls whether or not
the persistence service propagates dispose messages from
DataWriters to DataReaders.
Default: 1

0 or 1

<propagate_unregister>

A DDS_Boolean (see Table 22.1) that controls whether or not
the persistence service propagates unregister messages from
DataWriters to DataReaders.
Default: 0

0 or 1
22-16

Creating Persistence Groups
22. C

o
nfig

uring
 RTI

Pe
rsiste

nc
e

 Se
rvic

e

<single_publisher>

A DDS_Boolean (see Table 22.1) that indicates if the persistence
service should create one Publisher per persistence group or
one Publisher per PRSTDataWriter inside the persistence
group.
See Section 22.8.3
Default: 1

0 or 1

<single_subscriber>

A DDS_Boolean (see Table 22.1) that indicates if the persistence
service should create one Subscriber per persistence group or
one Subscriber per PRSTDataReader in the persistence group.
See Section 22.8.3
Default: 1

0 or 1

<use_durability_service>

A DDS_Boolean (see Table 22.1) that indicates if the HISTORY
and RESOURCE_LIMITS QoS policy of the PRSTDataWriters
and PRSTDataReaders should be configured based on the
DURABILITY SERVICE value of the discovered DataWriters.
See Section 22.8.2
Default: 1

0 or 1

<share_database_
connection>

A DDS_Boolean (see Table 22.1) that indicates if the persistence
service will create an independent database connection per
PRSTDataWriter in the group (0) or per Publisher (1) in the
group.
When <single_publisher> is 0 and
<share_database_connection> is 1, there is a single database
connection per group. All the PRSTDataWriters will share the
same connection.
When <single_publisher> is 1 or <share_database_connection>
is 0, there is a database connection per PRSTDataWriter.
This parameter is only applicable to configurations persisting
the data into a relational database using the tag
<external_database> in <persistent_storage>.
See Section 22.8.4
Default: 0

0 or 1

Table 22.8 Persistence Group Tags

Tag Description
Number
of Tags

Allowed
22-17

Configuring Persistence Service
<reader_checkpoint_
frequency>

This property controls how often (expressed as a number of
samples) the PRSTDataReader state is stored in the database.
The PRSTDataReaders are the DataReaders created by the per-
sistence service.
A high frequency will provide better performance. However, if
the persistence service is restarted, it may receive some dupli-
cate samples. The persistence service will send these duplicates
samples on the wire but they will be filtered by the DataRead-
ers and they will not be propagated to the application.
This property is only applicable when the persistence service
operates in persistent mode (the <persistent_storage> tag is
present).
Default: 1

0 or 1

<writer_in_memory_
state>

A DDS_Boolean (see Table 22.1) that determines how much
state will be kept in memory by the PRSTDataWriters in order
to avoid accessing the persistent storage.
The property is only applicable when the persistence service
operates in persistent mode (the <persistent_storage> tag is
present).
If this property is 1, the PRSTDataWriters will keep a copy of
all the instances in memory. They will also keep a fixed state
overhead of 24 bytes per sample. This mode provides the best
performance. However, the restore operation will be slower
and the maximum number of samples that a PRSTDataWriter
can manage will be limited by the available physical memory.
If this property is 0, all the state will be kept in the underlying
persistent storage. In this mode, the maximum number of sam-
ples that a PRSTDataWriter can manage will not be limited by
the available physical memory.
Default: For KEEP_LAST or ResourceLimitsQosPol-
icy.max_samples != DDS_UNLIMITED_LENGTH, the default
is 1. Otherwise, the default is 0.

0 or 1

<memory_management>
This flag configures the memory allocation policy for samples
in PRSTDataReaders and PRSTDataWriters.
See Section 22.8.5.

0 or 1

Table 22.8 Persistence Group Tags

Tag Description
Number
of Tags

Allowed
22-18

Creating Persistence Groups
22. C

o
nfig

uring
 RTI

Pe
rsiste

nc
e

 Se
rvic

e

22.8.1 QoSs

When a persistence service discovers a topic 'A' that matches a specific persistence
group, it creates a reader (known as ‘PRSTDataReader’) and writer (‘PRSTDataWriter’)
to persist that topic. The QoSs associated with these readers and writers, as well as the
corresponding Publishers and Subscribers, can be configured inside the persistence
group using QoS tags.

For example:

<participant name="Part1">
 <domain_id>71</domain_id>
 <persistence_group name="PerGroup1" filter="*">
 ...
 <publisher_qos base_qos_name="QosLib1::PubQos1"/>
 <subscriber_qos base_qos_name="QosLib1::SubQos1"/>
 <datawriter_qos base_qos_name="QosLib1::WriterQos1"/>
 <datareader_qos base_qos_name="QosLib1::ReaderQos1"/>

...

<topic_qos>
Topic QoS.
See Section 22.8.1.
Default: DDS defaults

0 or 1

<publisher_qos>
Publisher QoS.
See Section 22.8.1.
Default: DDS defaults

0 or 1

<subscriber_qos>
Subscriber QoS.
See Section 22.8.1.
Default: DDS defaults

0 or 1

<datawriter_qos>
PRSTDataWriter QoSa

See Section 22.8.1.
Default: DDS defaults

0 or 1

<datareader_qos>
PRSTDataReader QoSa

See Section 22.8.1.
Default: DDS defaults

0 or 1

a. These fields cannot be set and are assigned automatically: protocol.virtual_guid, protocol.rtps_object_id, durabil-
ity.kind.

Table 22.8 Persistence Group Tags

Tag Description
Number
of Tags

Allowed
22-19

Configuring Persistence Service
 </persistence_group>
</participant>

For instance, the number of samples saved by Persistence Service is configurable through
the HISTORY QosPolicy (Section 6.5.9) of the PRSTDataWriters.

If a QoS tag is not specified the persistence service will use the corresponding DDS
default values (Section 22.8.2 describes an exception to this rule).

22.8.2 DurabilityService QoS Policy

The DURABILITY SERVICE QosPolicy (Section 6.5.7) associated with a DataWriter is
used to configure the HISTORY and the RESOURCE_LIMITS associated with the PRST-
DataReaders and PRSTDataWriters.

By default, the HISTORY and RESOURCE_LIMITS of a PRSTDataReader and PRSTDa-
taWriter with topic 'A' will be configured using the DURABILITY_SERVICE value of the
first discovered DataWriter publishing 'A'. These values will overwrite the values speci-
fied in the XML file.

To not overwrite the XML values, you can use the tag <use_durability_service> in the
persistence group definition:

<participant name="Part1">
 <domain_id>71</domain_id>
 <persistence_group name="PerGroup1" filter="*">
 ...
 <use_durability_service/>0</ use_durability_service>

...
 </persistence_group>
</participant>

22.8.3 Sharing a Publisher/Subscriber

By default, the PRSTDataWriters and PRSTDataReaders associated with a persistence
group will share the same Publisher and Subscriber.

To associate a different Publisher and Subscriber with each PRSTDataWriter and PRST-
DataReader, use the tags <single_publisher> and <single_subscriber>, as follows:

<participant name="Part1">
 <domain_id>71</domain_id>
 <persistence_group name="PerGroup1" filter="*">
 ...
 <single_publisher/>0</single_publisher>
 <single_subscriber/>0</single_subscriber>
22-20

Creating Persistence Groups
22. C

o
nfig

uring
 RTI

Pe
rsiste

nc
e

 Se
rvic

e

 ...
 </persistence_group>
</participant>

22.8.4 Sharing a Database Connection

By default, the persistence service will share a single ODBC database connection to per-
sist the topic data received by each PRSTDataReader.

To associate an independent database connection to the PRSTDataReaders created by
the persistence service, use the tag <share_database_connection>, as follows:

<participant name="Part1">
 <domain_id>71</domain_id>
 <persistence_group name="PerGroup1" filter="*">
 ...
 <share_database_connection>0</share_database_connection>
 ...
 </persistence_group>
</participant>

Sharing a database connection optimizes the resource usage. However, the concurrency
of the system decreases because the access to the database connection must be pro-
tected.

22.8.5 Memory Management

The samples received and stored by the PRSTDataReaders and PRSTDataWriters are in
serialized form.

The serialized size of a sample is the number of bytes required to send the sample on the
wire. The maximum serialized size of a sample is the number of bytes that the largest
sample for a given type requires on the wire.

By default, the PRSTDataReaders and PRSTDataWriters created by the persistence ser-
vice try to allocate multiple samples to their maximum serialized size. This may cause
memory allocation issues when the maximum serialized size is significantly large.

For PRSTDataReaders, the number of samples in the DataReader’s queues can be con-
trolled using the QoS values resource_qos.resource_limits.max_samples and
resource_qos.resource_limits.initial_samples.

The PRSTDataWriters keep a cache of samples so that they do not have to access the
database every time. The minimum size of this cache is 32 samples.
22-21

Configuring Persistence Service
In addition, each PRSTDataWriter keeps an additional sample called DB sample that is
used to move information from the DataWriter cache to the database and vice versa

The <memory_management> tag in a persistence group can be used to control the
memory allocation policy for the samples created by PRSTDataReaders and PRSTDa-
taWriters in the persistence group.

Table 22.9 describes the memory management tags.

Table 22.9 Memory Management Tags

Tag Description
Number
of Tags

Allowed

<pool_sample_buffer_
max_size>

This tag applies to both PRSTDataReaders and PRSTDataWriters.
Its value determines the maximum size (in bytes) of the buffers
that will be pre-allocated to store the samples. If the space required
for a new sample is greater than this size, the persistence service
will allocate the memory dynamically to the exact size required by
the sample.
This parameter is used to control the memory allocated for the
samples in the PRSTDataReaders queues and the PRSTDataWrit-
ers caches.
The size of the DB sample in the PRSTDataWriters is controlled by
the value of the tag <persistent_sample_buffer_max_size>.
Default: LENGTH_UNLIMITED (samples are allocated to the
maximum size).

0 or 1

<persistent_sample_b
uffer_max_size>

This tag is used to control the memory associated with the DB
sample in a PRSTDataWriter. The persistence service will not be
able to store a sample into persistent storage if the serialized size is
greater than this value. Therefore, this parameter must be used
carefully.
Default: LENGTH_UNLIMITED (DB sample is allocated to the
maximum size).

0 or 1
22-22

Using RTI Monitoring Library with Persistence Service
22. C

o
nfig

uring
 RTI

Pe
rsiste

nc
e

 Se
rvic

e

22.9 Using RTI Monitoring Library with Persistence Service
To enable monitoring with Persistence Service, you must specify the property rti.moni-
tor.library for the participants that you want to monitor. For example:

<persistence_service name="monitoring_test">
<participant name="monitoring_enabled_participant">

<domain_id>54</domain_id>
<participant_qos>

<property>
<value>

<element>
<name>rti.monitor.library</name>
<value>rtimonitoring</value>
<propagate>false</propagate>

</element>
</value>

</property>
</participant_qos>

<persistence_group name="persistAll">
...

</persistence_group>
</participant> </persistence_service>

Notice that since Persistence Service is statically linked with RTI Monitoring Library, you
do not need to have it in your Path (on Windows systems) or LD_LIBRARY_PATH (on
UNIX-based systems).

For details on how to configure the monitoring process, see the RTI Monitoring Library
Getting Started Guide.
22-23

Configuring Persistence Service
22-24

23. Running
 RTI Pe

r-
siste

nc
e

 Se
rvic

e

Chapter 23 Running RTI Persistence Service

This chapter describes how to start and stop Persistence Service.

You can run Persistence Service on any node in the network. It does not have to be run on
the same node as the publishing or subscribing applications for which it is saving/
delivering data. If you run it on a separate node, make sure that the other applications
can find it during the discovery process—that is, it must be in one of the
NDDS_DISCOVERY_PEERS lists.

23.1 Starting Persistence Service
The script to run Persistence Service’s executable is located in $NDDSHOME/scripts.

RTI Persistence Service v4.5f
Usage: rtipersistenceservice [options]
Options:
 -cfgFile <file> Configuration file. This parameter is optional
 since the configuration can be loaded from
 other locations

Required —> -cfgName <name> Configuration name. This parameter is required
 and it is used to find a <persistence_service>
 matching tag in the configuration files
 -appName <name> Application name
 Used to identify this execution for
 remote administration
 and to name the domain participants
 Default: -cfgName
 -identifyExecution Appends the host name and process ID to the
 appName to help ensure unique names
23-1

Running RTI Persistence Service
 -domainId <int> domain ID for the domain participants
 created by the service
 Default: Use XML value
 -remoteAdministrationDomainId <int> Enables remote administration and
 sets the domain ID for the
 communication
 Default: Use XML value
 -restore <0|1> Indicates whether or not persistence
 service must restore its state from the
 persistent storage
 Default: Use XML value
 -noAutoStart Use this option if you plan to start
 RTI Persistence Service remotely
 -infoDir <dir> The info directory of the running
 persistence service. The service writes
 a ps.pid file into this directory when
 is started. When the service finalizes
 the file is deleted
 Default: None
 -maxObjectsPerThread <int> Sets the maximum number of objects that
 can be stored per thread for a
 DomainParticipantFactory
 Default: Connext default
 -serviceStackSize <int> Service thread stack size
 Default: OS default
 -verbosity [0-6] RTI Persistence Service verbosity
 * 0 - silent
 * 1 - exceptions (Core Libraries and
 Service)
 * 2 - warnings (Service)
 * 3 - information (Service)
 * 4 - warnings (Core Libraries and
 Service)
 * 5 - tracing (Service)
 * 6 - tracing (Core Libraries and
 Service)
 Default: 1 (exceptions)
 -version Prints RTI Persistence Service version
 -help Displays this information

The command-line options are described with more detail in Table 23.1.
23-2

Stopping Persistence Service
23. Running

 RTI Pe
r-

siste
nc

e
 Se

rvic
e

23.2 Stopping Persistence Service
To stop Persistence Service: press Ctrl-C. Persistence Service will close all files and per-
form a clean shutdown. Persistence Service can also be stopped and shutdown remotely
(see Chapter 24).

Table 23.1 Command-Line Options

Command-line Option Description

-appName <string>

Assigns a name to the execution of Persistence Service.
Remote commands will refer to the persistence service using this
name.
In addition, the name of the DomainParticipants created by Persis-
tence Service will be based on this name as follows:
RTI Persistence Service: <appName>: <participant-
Name>(<pub|sub>)
Default: The name given with -cfgName if present, otherwise it is
“RTI_Persistence_Service”

-cfgFile <string>

Specifies an XML configuration file for the Persistence Service.
The parameter is optional since the Persistence Service configura-
tion can be loaded from other locations. See Section 22.1 for further
details.

-cfgName <string>

Required.
Selects a Persistence Service configuration.
The same configuration files can be used to configure multiple per-
sistence services. Each Persistence Service instance will load its con-
figuration from a different <persistence_service> tag based on the
name specified with this option.
If not specified, Persistence Service will print the list of available
configurations and then exit.

-identifyExecution
Appends the host name and process ID to the service name pro-
vided with the -appName option. This helps ensure unique names
for remote administration.

-domainId <ID>

Sets the domain ID for the DomainParticipants created by Persis-
tence Service.
If not specified, the value in the <participant> XML tag (see
Table 22.7 on page 22-15) is used.
23-3

Running RTI Persistence Service
-remoteAdministrationDo-
mainId <ID>

Enables remote administration and sets the domain ID for remote
communication.
When remote administration is enabled, Persistence Service will cre-
ate a DomainParticipant, Publisher, Subscriber, DataWriter, and
DataReader in the designated domain.
This option overwrites the value of the tag <domain_id> within
<administration>.
Default: Use the value <domain_id> under <administration>.

-help
Prints the Persistence Service version and list of command-line
options.

-licenseFile <file>

Specifies the license file (path and filename). Only applicable to
licensed versions of Persistence Service.
If not specified, Persistence Service looks for the license as described
in the Persistence Service Installation Guide.

-restore <0|1>

Indicates whether or not Persistence Service must restore its state
from the persistent storage. 0 = do not restore; 1 = do restore.
If this option is not specified, the corresponding XML value in the
<persistent_storage> tag (see Table 22.4 on page 22-12) is used.

-noAutoStart

Indicates that Persistence Service will not be started when the pro-
cess is executed.
Use this option if you plan to start Persistence Service remotely, as
described in Chapter 24..

Table 23.1 Command-Line Options

Command-line Option Description
23-4

Stopping Persistence Service
23. Running

 RTI Pe
r-

siste
nc

e
 Se

rvic
e

-infoDir <dir>

The info directory of the running Persistence Service.
Using this command line option, Persistence Service can be config-
ured to create a file used to monitor the status of the last shut-
down.
At startup, the Persistence Service instance will create a file called
ps.pid into the directory specified by -infoDir.
If Persistence Service is shutdown gracefully, the file will be deleted
before the process exists.
If Persistence Service is not shutdown gracefully, the file will not be
deleted.
You can detect the shutdown state of Persistence Service by check-
ing for the presence of the ps.pid file.
If the file is present and Persistence Service is no longer running, the
previous shutdown was not graceful.
If Persistence Service is started and a ps.pid file exists, Persistence
Service will immediately shutdown. In this case, you must remove
the file before Persistence Service can be restarted again.
Default: The file ps.pid will not be generated.

-maxObjectsPerThread <int>
Parameter used to configure the maximum objects per thread in
the DomainParticipantFactory created by Persistence Service.
Default: DDS default

-serviceStackSize <int>
Service thread stack size.
Default: DDS default

-verbosity

Persistence Service verbosity:
0 - No verbosity
1 - Exceptions (Core Libraries and Persistence Service) (default)
2 - Warning (Persistence Service)
3 - Information (Persistence Service)
4 - Warning (Core Libraries and Persistence Service)
5 - Tracing (Persistence Service)
6 - Tracing (Core Libraries and Persistence Service)
Each verbosity level, n, includes all the verbosity levels smaller
than n.

-version Prints the Persistence Service version.

Table 23.1 Command-Line Options

Command-line Option Description
23-5

Running RTI Persistence Service
23-6

24. Re
m

o
te

 A
d

m
inis-

tra
tio

n

Chapter 24 Administering Persistence Service from a
Remote Location

Persistence Service can be controlled remotely by sending commands through a special
Topic. Any Connext application can be implemented to send these commands and
receive the corresponding responses. A shell application that sends/receives these com-
mands is provided with Persistence Service.

The script for the shell application is in $NDDSHOME/scripts/rtipssh.

Entering rtipssh -help will show you the command-line options:

RTI Persistence Service Shell v4.5x
Usage: rtipssh [options]...
Options:
 -domainId <integer> Domain ID for the remote configuration
 -timeout <seconds> Max time to wait a remote response
 -cmdFile <file> Run commands in this file
 -help Displays this information

24.1 Enabling Remote Administration
By default, remote administration is disabled in Persistence Service.

To enable remote administration you can use the <administration> tag (see
Section 22.5) or the -remoteAdministrationDomainId command-line parameter (see
Table 23.1), which enables remote administration and sets the domain ID for remote
communication.
24-1

Administering Persistence Service from a Remote Location
When remote administration is enabled, Persistence Service will create a DomainPartici-
pant, Publisher, Subscriber, DataWriter, and DataReader in the designated domain. (The
QoS values for these entities are described in Section 22.5.)

24.2 Remote Commands
This section describes the remote commands using the shell interface; Section 24.3
explains how to use remote administration from a Connext application.

Remote commands:

start <target_persistence_service>
stop <target_persistence_service>
shutdown <target_persistence_service>
status <target_persistence_service>

Parameters:

❏ <target_persistence_service> can be:

• The application name of a persistence service, such as
“MyPersistenceService1”, as specified at start-up with the command-line
option -appName

• A wildcard expression1 for a persistence service name, such as
“MyPersistenceService*”

24.2.1 start
start <target_persistence_service>

The start command starts the persistence service instance. Samples will not be persisted
until the persistence service is started.

By default, the persistence service is started automatically when the process is executed.
To start the service remotely use the command line option -noAutoStart (see Table 23.1).

24.2.2 stop

stop <target_persistence_service>

1. As defined by the POSIX fnmatch API (1003.2-1992 section B.6)
24-2

Accessing Persistence Service from a Connext Application
24. Re

m
o

te
 A

d
m

inis-
tra

tio
n

The stop command stops the persistence service instance.

An instance that has been stopped can be started again using the command start.

24.2.3 shutdown
shutdown <target_persistence_service>

The command shutdown stops the persistence service instance and finalizes the process

24.2.4 status
status <target_persistence_service>

The status command gets the status of a running persistence service instance. Possible
values are STARTED and STOPPED.

24.3 Accessing Persistence Service from a Connext
Application
You can send commands to control an Persistence Service instance from your own Con-
next application. You will need to create a DataWriter for a specific topic and type. Then,
you can send a sample that contains a command and its parameters. Optionally, you can
create a DataReader for a specific topic to receive the results of the execution of your
commands.

The topics are:

❏ rti/persistence_service/administration/command_request

❏ rti/persistence_service/administration/command_response

The types are:

❏ RTI::PersistenceService::Administration::CommandRequest

❏ RTI::PersistenceService::Administration::CommandResponse

You can find the IDL definitions for these types in $(NDDSHOME)/resource/rtipersis-
tenceservice/idl/PersistenceServiceAdministration.idl.

The QoS configuration of your DataWriter and DataReader must be compatible with the
one used by the persistence service (see how this QoS is configured in Section 22.5).
24-3

Administering Persistence Service from a Remote Location
The following example in C shows how to send a command to shutdown a persistence
service instance:

/***/
/*** Create the Entities needed to send the command request ****/
/***/
participant = DDS_DomainParticipantFactory_create_participant(
 DDS_TheParticipantFactory, domainId,
 &DDS_PARTICIPANT_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);
if (participant == NULL) { /* Error */ }

publisher = DDS_DomainParticipant_create_publisher(
 participant, &DDS_PUBLISHER_QOS_DEFAULT,
 NULL, DDS_STATUS_MASK_NONE);
if (publisher == NULL) { /* Error */ }

subscriber = DDS_DomainParticipant_create_subscriber(
 participant, &DDS_SUBSCRIBER_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);
if (publisher == NULL) { /* Error */ }

typeName =
RTI_PersistenceService_Administration_CommandRequestTypeSupport_get_type_name();

retcode =
RTI_PersistenceService_Administration_CommandRequestTypeSupport_register_type
(participant, typeName);
if (retcode != DDS_RETCODE_OK) { /* Error */ }

topicCmd = DDS_DomainParticipant_create_topic(
 participant, "rti/persistence_service/administration/command_request",
 typeName, &DDS_TOPIC_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);
if (topicCmd == NULL) { /* Error */ }

typeName =
RTI_PersistenceService_Administration_CommandResponseTypeSupport_get_type_name()
;
retcode =
RTI_PersistenceService_Administration_CommandResponseTypeSupport_register_type(p
articipant, typeName);
if (retcode != DDS_RETCODE_OK) { /* Error */ }

topicResponse = DDS_DomainParticipant_create_topic(
 participant, "rti/persistence_service/administration/command_response",
 typeName, &DDS_TOPIC_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);
if (topicResponse == NULL) { /* Error */ }

writerQos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
writerQos.history.kind = DDS_KEEP_ALL_HISTORY_QOS;
24-4

Accessing Persistence Service from a Connext Application
24. Re

m
o

te
 A

d
m

inis-
tra

tio
n

writer = DDS_Publisher_create_datawriter(
 publisher, topicCmd, &writerQos, NULL /* listener */,

 DDS_STATUS_MASK_NONE);
if (writer == NULL) { /* Error */ }

readerQos.reliability.kind = DDS_RELIABLE_RELIABILITY_QOS;
readerQos.history.kind = DDS_KEEP_ALL_HISTORY_QOS;

reader = DDS_Subscriber_create_datareader(
 subscriber, DDS_Topic_as_topicdescription(topicResponse),
 &readerQos, NULL, DDS_STATUS_MASK_NONE);
if (reader == NULL) { /* Error */ }

/***/
/*** Wait for discovery **/
/***/

/* Wait until we discover one reader and one writer matching
 * with the command request DataWriter and the command response
 * DataReader */

while (count < maxPollPeriods) {
 retcode = DDS_DataWriter_get_publication_matched_status(

writer, &pubMatchStatus);
 if (retcode != DDS_RETCODE_OK) { /* Error */ }

 retcode = DDS_DataReader_get_subscription_matched_status(
reader, &subMatchStatus);

 if (retcode != DDS_RETCODE_OK) { /* Error */ }

 if (pubMatchStatus.total_count == 1 &&
subMatchStatus.total_count == 1) {
break;

 }
 count++;
 NDDS_Utility_sleep(&pollPeriod);
}

if (count == maxPollPeriods) {
 /* Error */
}

/***/
/*** Send the command request **************************************/
/***/
request =
RTI_PersistenceService_Administration_CommandRequestTypeSupport_create_data();
if (request == NULL) { /* Error */ }
24-5

Administering Persistence Service from a Remote Location
/* request->id provides an unique way to identify a request so that
 * it can be correlated with a response. Although one of the fields is
 * called host it does not necessarily has to contain the IP address of
 * the host. Same applies to app */
request->id.host = 0;
request->id.app = 0;
request->id.invocation = 0;

strcpy(request->target_ps, "MyPersistenceService");
request->command._d = RTI_PERSISTENCE_SERVICE_COMMAND_SHUTDOWN;

retcode = RTI_PersistenceService_Administration_CommandRequestDataWriter_write(
 (RTI_PersistenceService_Administration_CommandRequestDataWriter *)
 writer, request, &instance_handle);
if (retcode != DDS_RETCODE_OK) { /* Error */ }

/***/
/*** Wait for response **/
/***/

response =
RTI_PersistenceService_Administration_CommandResponseTypeSupport_create_data();
if (response == NULL) { /* Error */ }

count = 0;
while (count < maxPollPeriods) {
 retcode =
RTI_PersistenceService_Administration_CommandResponseDataReader_take_next_sample
(
 (RTI_PersistenceService_Administration_CommandResponseDataReader*)

reader, response, &sampleInfo);
 if (retcode == DDS_RETCODE_OK) {
 break;
 } else if (retcode != DDS_RETCODE_NO_DATA) {

/* Error */
 }
 NDDS_Utility_sleep(&pollPeriod);
 count++;
}
if (count == maxPollPeriods) {
 printf("No response received\n");
} else {
 printf("Response received: %s\n",response->message);
}

24-6

Part 6: RTI CORBA Compatibility Kit

The material in this part of the manual is only relevant if you have purchased the
CORBA Compatibility Kit, an optional package that allows Connext’s code generator, rtid-
dsgen, to output type-specific code that is compatible with OCI’s distribution of TAO
and the JacORB distribution.

❏ Chapter 25: Introduction to RTI CORBA Compatibility Kit

❏ Chapter 26: Generating CORBA-Compatible Code with rtiddsgen

❏ Chapter 27: Supported IDL Types

25. Intro
d

uc
tio

n to

RTI C
O

RBA

C
o

m
p

a
tib

ility Kit
Chapter 25 Introduction to RTI CORBA
Compatibility Kit

RTI CORBA Compatibility Kit is an optional package that allows the RTI Connext (for-
merly, RTI Data Distribution Service) code generator, rtiddsgen, to output type-specific
code that is compatible with OCI’s or DOC’s distribution of TAO and the JacORB distri-
bution.

By having compatible data types, your applications can use CORBA and Connext APIs,
with no type conversions required.

For more information about OCI's or DOC’s distribution of TAO and JacORB, please
refer to the documentation included with those distributions. Additional information
can be found on OCI’s TAO website (www.theaceorb.com), DOC’s TAO website
(www.dre.vanderbilt.edu), and JacORB’s website (www.jacorb.org). TAO and JacOrb
distributions that are compatible with this version of Connext are available from the RTI
Support Portal, accessible from https://support.rti.com.

In addition to this document, a simple example is available.

❏ C++ using TAO:

• See the example in <RTI Connext installation directory>/example/CPP/corba.
Please read Instructions.pdf.

❏ Java using JacORB:

• See the example in <RTI Connext installation directory>/example/JAVA/corba.
Please read Instructions.pdf.
25-1

http://www.theaceorb.com
http://www.jacorb.org
http://www.jacorb.org
../../example/CPP/corba/
../../example/JAVA/corba
../../example/CPP/corba/Instructions.pdf
../../example/JAVA/corba/Instructions.pdf
https://support.rti.com
http://www.dre.vanderbilt.edu

Introduction to RTI CORBA Compatibility Kit
The following figure shows the process of using IDL files and types that are shared with
CORBA.

CORBA Compatibility Kit is designed to be installed on top of Connext; this kit replaces
the default version of Connext’s code generation tool, rtiddsgen. The replacement rtidds-
gen includes support for the command-line option, -corba.

On the wire, the serialized version of the code for types generated using the -corba
option is identical to the serialized version of the code for types generated without the
option. As result, endpoints (DataReaders or DataWriters) using type support code gener-
ated with -corba can fully communicate with endpoints using type support code gener-
ated without -corba.

RTI IDL
Compiler

(rtiddsgen)

IDL File

RTI Connext
plugins

and
support code

CORBA
Compiler

CORBA Types

CORBA
Stubs and
Skeletons

generates

uses

generates
uses
25-2

26. G
e

ne
ra

ting

C
O

RBA
-C

o
m

p
a

tib
le

C

o
d

e

Chapter 26 Generating CORBA-Compatible Code
with rtiddsgen

The CORBA Compatibility Kit enables Connext’s IDL compiler, rtiddsgen, to produce type-
specific code that is compatible with OCI’s distribution of TAO for C++ and with
JacORB for Java.

When using rtiddsgen, specify the -corba option on the command line to generate com-
patible code. The -corba option enables the use of data structures for both CORBA and
Connext API calls without requiring any translation: the IDL-to-language mapping is the
same for both.

There are some trade-off’s to consider:

❏ While the -corba option provides the benefit of CORBA-compatible type-specific
code, it does not provide support for bit fields, pointers and ValueTypes.

❏ For complex types such as sequences and strings, the memory management is
different when the -corba option is used. When code is generated without the
option, the memory needed for the type is pre-allocated at system initialization.
When code is generated with the option, the memory is allocated when it is
needed, so memory allocation system calls may occur while the system is in
steady state.

❏ Without the -corba option, access to data fields within types may be faster under
some circumstances. CORBA-compatible types require the use of accessor meth-
ods. When -corba is not used, while the accessor methods are provided for con-
venience but they can be bypassed and the data can be accessed directly. This
direct access is available to the user as well as to the Connext internal implemen-
tation code. As a result, depending on the complexity of the types used, overall
system latency could be lower when using non-compatible types (that is, when -
corba is not used).
26-1

Generating CORBA-Compatible Code with rtiddsgen
The following sections describe how to use the CORBA Compatibility Kit. In addition to
these instructions, a simple example is available.

❏ C++ using TAO:

• Generating C++ Code (Section 26.1)

• See the example in <RTI Connext installation directory>/example/CPP/
corba and read Instructions.pdf.

❏ Java using JacORB:

• Generating Java Code (Section 26.2)

• See the example in <RTI Connext installation directory>/example/JAVA/
corba and read Instructions.pdf.

26.1 Generating C++ Code
To generate CORBA-compatible type-specific code, first run TAO’s code generator,
tao_idl, on the IDL file containing your data types. If you followed the TAO distribution
compilation instructions contained in this document, the tao_idl compiler executable
will be in the TAO install directory under <ACE_ROOT>/bin.

<ACE_ROOT>/bin/tao_idl <IDL file name>.idl

This will generate CORBA support files for your data types. The generated file will have
a name matching the pattern <IDL file name>C.h and will contain the type definitions.
Pass this header file as a parameter to rtiddsgen to generate the Connext support code for
the data types.

rtiddsgen -language C++ -corba <IDL file name>C.h -example \
<architecture> <IDL file name>.idl

The optional -example <architecture> flag will generate code for a publisher and a sub-
scriber. It will also generate an .mpc file (and an .mwc file for Windows) that can be
used with TAO's Makefile, Project and Workspace Creator (MPC) to generate a makefile
or a Visual Studio project file for your DDS-CORBA application. The .mpc file is meant
to work out-of-the-box with the DDS-CORBA C++ Message example only, so you will
have to modify it to compile your custom application. Please refer to the DDS-CORBA
C++ example for more information about using MPC (see Instructions.pdf).
26-2

../../example/CPP/corba/Instructions.pdf

Generating Java Code
26.2 Generating Java Code
To generate Java CORBA-compatible type specific code, first run the JacORB code gen-
erator on the IDL file containing your data types.

<JacORB install dir>/bin/idl <IDL file name>.idl

After generating the CORBA code for the IDL types run rtiddsgen as follows:

rtiddsgen -language Java -corba -example <architecture> \
<IDL file name>.idl

The optional -example <architecture> flag will generate code for a DDS publisher and a
DDS subscriber. It will also generate a makefile specific to your architecture that can be
used to compile the example using the publisher and subscriber code generated.

To form a complete code set, use the type class generated by the CORBA IDL compiler
and the files generated by rtiddsgen.
26-3

Generating CORBA-Compatible Code with rtiddsgen
26-4

27. Sup
p

o
rte

d
 ID

L
Typ

e
s

Chapter 27 Supported IDL Types

Table 27.1 lists the IDL types supported when using the –corba option.

Table 27.1 Supported IDL Types when Using rtiddsgen -corba

IDL Construct Support

Modules Supported

Interfaces Ignored

Constants Supported

Basic Data Types Supported

Enums Supported

String Types Supported

Wide String Types Supported

Struct Types
Supported
Note: In-line nested structures are not supported (whether using -corba or
not). See Note 1.

Fixed Types Ignored

Union Types Supported

Sequence Types
Supported
Note: Sequences of anonymous sequences are not supported. See Note 2.

Array Types Supported

Typedefs Supported

Any
Not Supported.
Note that rtiddsgen does not ignore them. This construct cannot be in the
IDL file.

Value Types Ignored
27-1

Supported IDL Types
❏ Note 1

Inline nested structures, such as the following example, are not supported.

struct Outer {
 short outer_short;

 struct Inner {
 char inner_char;
 short inner_short;
 } outer_nested_inner;

};

❏ Note 2

Sequences of anonymous Sequences are not supported. This kind of type will be
banned in future revisions of CORBA. For example, the following is not sup-
ported:

sequence<sequence<short,4>,4> MySequence;

Instead, sequences of sequences can be supported using typedef definitions. For
example, this is supported:

typedef sequence<short,4> MyShortSequence;
sequence<MyShortSequence,4> MySequence;

Exception Types Ignored

Type Code
Supported
rtiddsgen generates Connext TypeCodes
CORBA TypeCodes are generated by the CORBA IDL compiler

Table 27.1 Supported IDL Types when Using rtiddsgen -corba

IDL Construct Support
27-2

Part 7: RTI RTSJ Extension Kit

The material in this part of the manual is only relevant if you have purchased RTI RTSJ
Extension Kit, an optional package that allows you to configure Connext applications to
use Real-Time Specification for Java (RTSJ)-specific thread types and memory areas.

❏ Chapter 28: Introduction to RTI RTSJ Extension Kit

❏ Chapter 29: Using RTI RTSJ Extension Kit

28. Intro
d

uc
tio

n to

RTI RTSJ Exte
nsio

n Kit
Chapter 28 Introduction to RTI RTSJ Extension Kit

The RTI RTSJ Extension Kit is an optional package that allows you to configure Connext
applications to use Real-Time Specification for Java (RTSJ)-specific thread types and
memory areas. In particular, the threads used by Connext can be configured so that they
are never interrupted by a Java virtual machine’s garbage collector—greatly improving
the application’s determinism.

For more information on RTSJ, please refer to the documentation available on the offi-
cial web site: www.rtsj.org.

Additional documentation for the RTSJ Extension Kit is available in the online documen-
tation: <RTI Connext installation directory>/ReadMe.html.

A simple example is also available: <RTI Connext installation directory>/example/
JAVA/rtsj. Please read Instructions.pdf.
28-1

../../example/JAVA/corba
../../example/JAVA/rtsj/Instructions.pdf
http://www.rtsj.org

Introduction to RTI RTSJ Extension Kit
28-2

29. U
sing

 RTI RTSJ
Exte

nsio
n Kit
Chapter 29 Using RTI RTSJ Extension Kit

The kit includes a JAR file and associated electronic documentation, including API doc-
umentation in HTML and PDF formats and example code. The JAR file is provided in
two versions, release and debug, named nddsrtsj.jar and nddsrtsjd.jar, respectively.
These must be used in addition to the libraries provided with Connext itself. If you are
using the Connext release JAR, we recommend that you also use the RTSJ release JAR, and
likewise for the debug JAR, although this is not a requirement.

Detailed API documentation is available in HTML format, accessible here:
<RTI_Connext_INSTALL_ROOT>/ReadMe.html.

A simple example is also available here:
<RTI_Connext_INSTALL_ROOT>/example/JAVA/rtsj. Please read Instructions.pdf.
29-1

../../ReadMe.html
../../example/JAVA/corba
../../example/JAVA/rtsj/Instructions.pdf

Using RTI RTSJ Extension Kit
29-2

Part 8: RTI TCP Transport

RTI TCP Transport is only available on specific architectures. See the Platform Notes for
details.

Out of the box, Connext uses the UDPv4 and Shared Memory transport to communicate
with other DDS applications. This configuration is appropriate for systems running
within a single LAN. However, using UDPv4 introduces some problems when Connext
applications in different LANs need to communicate:

❏ UDPv4 traffic is usually filtered out by the LAN firewalls for security reasons.

❏ Forwarded ports are usually TCP ports.

❏ Each LAN may run in its own private IP address space and use NAT (Network
Address Translation) to communicate with other networks.

TCP Transport enables participant discovery and data exchange using the TCP protocol
(either on a local LAN, or over the public WAN). TCP Transport allows Connext to
address the challenges of using TCP as a low-level communication mechanism between
peers and limits the number of ports exposed to one. (When using the default UDP
transport, a Connext application uses multiple UDP ports for communication, which
may make it unsuitable for deployment across firewalled networks).

This part of the User’s Manual contains the following chapter:

❏ Chapter 30: Configuring the RTI TCP Transport

30. TC
P Tra

nsp
o

rt
Chapter 30 Configuring the RTI TCP Transport

This chapter explains how to use and configure the TCP Transport:

❏ TCP Communication Scenarios (Section 30.1)

❏ Configuring the TCP Transport (Section 30.2)

30.1 TCP Communication Scenarios
TCP Transport can be used to address multiple communication scenarios—from simple
communication within a single LAN, to complex communication scenarios across LANs
where NATs and firewalls may be involved. This section describes these scenarios:

❏ Communication Within a Single LAN (Section 30.1.1)

❏ Symmetric Communication Across NATs (Section 30.1.2)

❏ Asymmetric Communication Across NATs (Section 30.1.3)

30.1.1 Communication Within a Single LAN

TCP Transport can be used as an alternative to UDPv4 to communicate Connext
applications running inside the same LAN. Figure 30.1 shows how to configure the TCP
transport in this scenario.

parent.classid and server_bind_port are transport properties configured using the
PropertyQosPolicy of the participant. (Note: When the TCP transport is instanti-
ated, by default it is configured to work in a LAN environment using symmetric
communication and binding to port 7400 for incoming connections.) For addi-
tional information about these properties, see Table 30.1 on page 30-11.
30-1

Configuring the RTI TCP Transport
Initial Peers represents the peers to which the participant will be announced to. Usu-
ally, these peers are configured using the DiscoveryQosPolicy of the participant or
the environment variable NDDS_DISCOVERY_PEERS. For information on the
format of initial peers, see Section 30.2.1.

Note: Unlike the UDPv4 transport, you must specify the initial peers, because multicast
cannot be used with TCP.

30.1.2 Symmetric Communication Across NATs

In NAT communication scenarios, each one of the LANs has a private IP address space.
The communication with other LANs is done through NAT routers that translate pri-
vate IP addresses and ports into public IP addresses and ports.

In symmetric communication scenarios, any Connext application can initiate TCP con-
nections with other applications. Figure 30.2 shows how to configure the TCP transport
in this scenario.

Notice that initial peers refer to the public address of the remote LAN where the Connext
application is deployed and not the private address of the node where the application is
running. In addition, the transport associated with a Connext instance will have to be
configured with its public address (public_address) so that this information can be
propagated as part of the discovery process.

Because the public address and port of the Connext instances must be known before the
communication is established, the NAT Routers will have to be configured statically to
translate (forward) the private server_bind_port into a public port. This process is

Figure 30.1 Communication within a Single LAN

TCPv4
Transport

IP address:
192.168.1.55

RTI Connext
Participant 1 parent.classid:

NDDS_TRANSPORT_
CLASSID_TCPV4_LAN

server_bind_port: 7400
Initial peers:

192.168.1.44:7400

parent.classid:
NDDS_TRANSPORT_
CLASSID_TCPV4_LAN

server_bind_port: 7400
Initial peers:

192.168.1.55:7400

TCPv4
Transport

IP address:
192.168.1.44

RTI Connext
Participant 2
30-2

TCP Communication Scenarios 30. TC
P Tra

nsp
o

rt

Figu
known as static NAT or port forwarding; it allows traffic originating in outer networks to
reach designated peers in the LAN behind the NAT router. You will need to refer to
your router’s configuration manual to understand how to correctly set up port forward-
ing.

30.1.3 Asymmetric Communication Across NATs

This scenario is similar to the previous one, except in this case the TCP connections can
be initiated only by the Connext instance in LAN1. For security reasons, incoming con-
nections to LAN1 are not allowed. In this case, the peer in LAN1 is considered ‘unreach-
able.’ Unreachable peers can publish and subscribe just like any other peer, but
communication can occur only to a ‘reachable’ peer.

Figure 30.3 shows how to configure the TCP transport in this scenario. Notice that the
transport property server_bind_port is set to 0 to configure the node as unreachable.

re 30.2 Symmetric Communication Across NATs

TCPv4
Transport

IP address:
192.168.1.55

RTI Connext
Participant 1 parent.classid:

NDDS_TRANSPORT_
CLASSID_TCPV4_WAN

server_bind_port: 7400
public_address: 155.99.25.11
Initial peers: 155.99.25.12:8500

parent.classid:
NDDS_TRANSPORT_
CLASSID_TCPV4_WAN

server_bind_port: 7400
public_address: 155.99.25.12
Initial peers: 155.99.25.11:8400

TCPv4
Transport

IP address:
192.168.1.44

RTI Connext
Participant 2

Connection

DataNAT Router

WAN: 155.99.25.11
LAN: 192.168.1.0
Port forward settings:

WAN port 8400 TO 192.168.1.55:7400

NAT Router

WAN: 155.99.25.12
LAN: 192.168.1.0
Port forward settings:

WAN port 8500 TO 192.168.1.44:7400
30-3

Configuring the RTI TCP Transport
In an asymmetric configuration, an unreachable peer (that is behind a firewall or NAT
without port forwarding) can still publish and subscribe like a reachable peer, but with
some important limitations:

❏ An unreachable peer can only communicate with reachable peers: two unreach-
able peers cannot establish a direct communication since they are both behind a
firewall and/or NAT.

Note that since Connext always relies on a direct connection between peers (even
if there is a third node that can be reachable by both unreachable peers), commu-
nication can never occur between unreachable peers. For example, suppose
Peers A and B are unreachable and Peer C is reachable. Communication can take
place between A and C, and between B and C, but not between A and B. For this
configuration, you should consider using RTI Federation Service (available for
purchase as a separate product).

Figure 30.3 Asymmetric Communication Across NATs

TCPv4
Transport

IP address:
192.168.1.55

RTI Connext
Participant 1 parent.classid:

NDDS_TRANSPORT_
CLASSID_TCPV4_WAN

server_bind_port: 0
public_address: invalid
Initial peers:

155.99.25.12:8500

parent.classid:
NDDS_TRANSPORT_
CLASSID_TCPV4_WAN

server_bind_port: 7400
public_address:

155.99.25.12:8500

TCPv4
Transport

IP address:
192.168.1.44

RTI Connext
Participant 2

Connection

Data
NAT Router
WAN: 155.99.25.11
LAN: 192.168.1.0

NAT Router
WAN: 155.99.25.12
LAN: 192.168.1.0
Port forward settings:
WAN port 8500 TO 192.168.1.44:7400
30-4

TCP Communication Scenarios 30. TC
P Tra

nsp
o

rt
❏ It can take longer to discover unreachable peers than reachable ones. This is
because a reachable peer has to wait for the unreachable peer to establish the
communication first.

For example, suppose Peer A (unreachable) starts before Peer B (reachable). The
discovery mechanism of A attempts to connect to the (not-yet existing) Peer B.
Since it fails, it will retry after n seconds. Right after that, B starts. If A would be
reachable (and in B’s peer list), the discovery mechanism will immediately con-
tact A. In this case, since A cannot be reached, B needs to wait until the discovery
process of A decides to retry.

This effect can be minimized by modifying the QoS that controls the discovery
mechanism used by A. In particular, you should set the DomainParticipant’s
DiscoveryConfig QoS policy’s min_initial_participant_announcement_period
to a small value.

Note that the concept of symmetric/asymmetric configuration is a local concept that
only describes the communication mechanism between two peers. A reachable peer can
be involved in symmetric communication with another reachable peer, and at the same
time have asymmetric communication with a unreachable peer. When a peer attempts
to communicate with a remote peer, it knows if the remote peer is reachable or not by
looking at the transport address provided.
30-5

Configuring the RTI TCP Transport
30.2 Configuring the TCP Transport
TCP Transport is distributed as a both shared and static library in “<Connext installation
directory>/lib/<architecture>.” The library is called nddstransporttcp.

Mechanisms for Configuring the Transport:

❏ By explicitly instantiating a new transport (see Section 30.2.2) and then register-
ing it with the DomainParticipant (see Section 13.7). (Not available in the Java and
.Net APIs.)

❏ Through the Property QoS policy of the DomainParticipant (on UNIX, Solaris
and Windows systems only). This process is described in Section 30.2.3.

This section describes:

❏ Choosing a Transport Mode (Section 30.2.1)

❏ Explicitly Instantiating the TCP Transport Plugin (Section 30.2.2)

❏ Configuring the TCP Transport with the Property QosPolicy (Section 30.2.3)

❏ Setting the Initial Peers (Section 30.2.4)

❏ TCP/TLS Transport Properties (Section 30.2.5)

30.2.1 Choosing a Transport Mode

When you configure the TCP transport, you must choose one of the following types of
communication:

❏ TCP over LAN — Communication between the two peers is not encrypted (data
is written directly to a TCP socket). Each node can use all the possible interfaces
available on that machine to receive connections. The node can only receive con-
nections from machines that are on a local LAN.

❏ TCP over WAN — Communication is not encrypted (data is written directly to a
TCP socket). The node can only receive connections from a specific port, which
must be configured in the public router of the local network (WAN mode).

❏ TLS over LAN — This is similar to the TCP over LAN, where the node can use
all the available network interfaces to TX/RX data (LAN nodes only), but in this
mode, the data being written on the physical socket is encrypted first (through
the openssl library). Performance (throughput and latency) may be less than
TCP over LAN since the data needs to be encrypted before going on the wire.
Discovery time may be longer with this mode because when the first connection
30-6

Configuring the TCP Transport 30. TC
P Tra

nsp
o

rt
is established, the two peers exchange handshake information to ensure line pro-
tection. For more general information on TLS, see Section 19.3.

❏ TLS over WAN — The data is encrypted just like TLS over LAN, but it can be
sent and received only from a specific port of the router.

Note: To use either TLS mode, you also need RTI TLS Support, which is available for
purchase as a separate package.

An instance of the transport can only communicate with other nodes that use the same
transport mode.

You can specify the transport mode in either the NDDS_Transport_TCPv4_Property_t
structure (see Section 30.2.1) or in the parent.classid field of the Properties QoS (see
Section 30.2.3). Your choice of transport mode will also be reflected in the prefix you use
for setting the initial peers (see Section 30.2.4).

30.2.2 Explicitly Instantiating the TCP Transport Plugin

As described on page 30-6, there are two ways to configure a transport plugin. This sec-
tion describes the way that includes explicitly instantiating and registering a new trans-
port. (The other way is to use the Property QoS mechanism, described in Section 30.2.3).

Notes:

❏ This way of instantiating a transport is not supported in the Java and .NET APIs.
If you are using Java or .Net, use the Property QoS mechanism described in
Section 30.2.3.

❏ To use this mechanism, there are extra libraries that you must link into your
program and an additional header file that you must include. Please see
Section 30.2.2.1 and Section 30.2.2.2 for details.

To instantiate a TCP transport:

1. Include the extra header file described in Section 30.2.2.1.

2. Instantiate a new transport by calling NDDS_Transport_TCPv4_new():

NDDS_Transport_Plugin* NDDS_Transport_TCPv4_new (
 const struct NDDS_Transport_TCPv4_Property_t * property_in)

3. Register the transport by calling NDDSTransportSupport::register_transport().

See the online (HTML) documentation for details on these functions and the contents of
the NDDS_Transport_TCPv4_Property_t structure.
30-7

Configuring the RTI TCP Transport
30.2.2.1 Additional Header Files and Include Directories

To use the TCP Transport API, you must include an extra header file (in addition to those
in Table 9.1, “Header Files to Include for Connext (All Architectures),” on page 9-2):

#include "ndds/transport_tcp/transport_tcp_tcpv4.h"

Since TCP Transport is in the same directory as Connext (see Table 9.2, “Include Paths for
Compilation (All Architectures),” on page 9-3), no additional include paths need to be
added for the TCP Transport API. If this is not the case, you will need to specify the
appropriate include path.

30.2.2.2 Additional Libraries and Compiler Flags

To use the TCP Transport, you must add the nddstransporttcp library to the link phase
of your application. There are four different kind of libraries, depending on if you want
a debug or release version, and static or dynamic linking with Connext.

For UNIX- based systems, the libraries are:

libnddstransporttcp.a — Release version, dynamic libraries
libnddstransporttcpd.a — Debug version, dynamic libraries
libnddstransporttcpz.a — Release version, static libraries
libnddstransporttcpzd.a — Debug version, static libraries

For Windows-based systems, the libraries are:

NDDSTRANSPORTTCP.LIB — Release version, dynamic libraries
NDDSTRANSPORTTCPD.LIB — Debug version, dynamic libraries
NDDSTRANSPORTTCPZ.LIB — Release version, static libraries
NDDSTRANSPORTTCPZD.LIB — Debug version, static libraries

Notes for using TLS:

To use either TLS mode (see Section 30.2.1), you also need RTI TLS Support, which is
available for purchase as a separate package. The TLS library (libnddstls.so or
NDDSTLS.LIB, depending on your platform) must be in your library search path
(LD_LIBRARY_PATH environment variable on UNIX/Solaris systems, or Path
environment variable on Windows systems).

If you already have $NDDSHOME/lib/<architecture> in your library search path,
no extra steps are needed to use TLS once TLS Support is installed.

Even if you link everything statically, you must make sure that the location for
$NDDSHOME/lib/<architecture> (or wherever the TLS library is located) is in
30-8

Configuring the TCP Transport 30. TC
P Tra

nsp
o

rt
your search path. The TLS library is loaded dynamically, even if you use static link-
ing for everything else.

Your search path must also include the location for the Openssl library, which is
used by the TLS library.

30.2.3 Configuring the TCP Transport with the Property QosPolicy
The PROPERTY QosPolicy (DDS Extension) (Section 6.5.16) allows you to set up name/
value pairs of data and attach them to an entity, such as a DomainParticipant.

Like all QoS policies, there are two ways to specify the Property QoS policy:

❏ Programmatically, as described in this section and Section 4.1.7. This includes
using the add_property() operation to attach name/value pairs to the Property
QosPolicy and then configuring the DomainParticipant to use that QosPolicy (by
calling set_qos() or specifying QoS values when the DomainParticipant is cre-
ated).

❏ With an XML QoS Profile, as described in Chapter 15: Configuring QoS with
XML. This causes Connext to dynamically load the TCP transport library at run
time and then implicitly create and register the transport plugin.

To add name/value pairs to the Property QoS policy, use the add_property() operation:

DDS_ReturnCode_t DDSPropertyQosPolicyHelper::add_property
(DDS_PropertyQosPolicy policy,

 const char * name,
 const char * value,
 DDS_Boolean propagate)

For more information on add_property() and the other operations in the DDSProperty-
QosPolicyHelper class, see Table 6.51, “PropertyQoSPolicyHelper Operations,” on
page 6-144, as well as the online (HTML) documentation.

The ‘name’ part of the name/value pairs is a predefined string. The property names for
the TCP Transport are described in Table 30.1, “Properties for
NDDS_Transport_TCPv4_Property_t,” on page 30-11.

Here are the basic steps, taken from the example Hello World application (for details,
please see the example application.)

1. Get the default DomainParticipant QoS from the DomainParticipantFactory.
DDSDomainParticipantFactory::get_instance()->

get_default_participant_qos(participant_qos);
30-9

Configuring the RTI TCP Transport
2. Disable the builtin transports.
participant_qos.transport_builtin.mask =
DDS_TRANSPORTBUILTIN_MASK_NONE;

3. Set up the DomainParticipant’s Property QoS.
a. Load the plugin.
DDSPropertyQosPolicyHelper::add_property (participant_qos.property,

"dds.transport.load_plugins", "dds.transport.TCPv4.tcp1",
DDS_BOOLEAN_FALSE);

b. Specify the transport plugin library.

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
 "dds.transport.TCPv4.tcp1.library", "nddstransporttcp",
 DDS_BOOLEAN_FALSE);

c. Specify the transport’s ‘create’ function.

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.TCPv4.tcp1.create_function",
"NDDS_Transport_TCPv4_create",
DDS_BOOLEAN_FALSE);

d. Set the transport to work in a WAN configuration with a public address:

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.TCPv4.tcp1.parent.classid",
”NDDS_TRANSPORT_CLASSID_TCPV4_WAN”,
DDS_BOOLEAN_FALSE);

DDSPropertyQosPolicyHelper::add_property (participant_qos.property,
"dds.transport.TCPv4.public_address", "182.181.2.31",
DDS_BOOLEAN_FALSE);

e. Specify any other properties, as needed.

4. Create the DomainParticipant using the modified QoS.

participant = DDSTheParticipantFactory->create_participant (domainId,
participant_qos, NULL /* listener */, DDS_STATUS_MASK_NONE);

Important! Property changes should be made before the transport is loaded—either
before the DomainParticipant is enabled, before the first DataWriter/
DataReader is created, or before the builtin topic reader is looked up, which-
ever one happens first.
30-10

Configuring the TCP Transport 30. TC
P Tra

nsp
o

rt
30.2.4 Setting the Initial Peers

Note: You must specify the initial peers (you cannot use the defaults because multicast
cannot be used with TCP).

For TCP Transport, the addresses of the initial peers (NDDS_DISCOVERY_PEERS) that
will be contacted during the discovery process have the following format:

For WAN communication using TCP:tcpv4_wan://<IP address or hostname>:<port>
For WAN communication using TLS:tlsv4_wan://<IP address or hostname>:<port>

For LAN communication using TCP: tcpv4_lan://<IP address or hostname>:<port>
For LAN communication using TLS:tlsv4_lan://<IP address or hostname>:<port>

For example:

setenv NDDS_DISCOVERY_PEERS tcpv4_wan://10.10.1.165:7400,
tcpv4_wan://10.10.1.111:7400,tcpv4_lan://192.168.1.1:7500

When the TCP transport is configured for LAN communication (with the parent.classid
property), the IP address is the LAN address of the peer and the port is the server port
used by the transport (the server_bind_port property).

When the TCP transport is configured for WAN communication (with the parent.clas-
sid property), the IP address is the WAN or public address of the peer and the port is the
public port that is used to forward traffic to the server port in the TCP transport.

30.2.5 TCP/TLS Transport Properties

Table 30.1 on page 30-11 describes the TCP and TLS transport properties.

Note: To use TLS, you also need RTI TLS Support, which is a separate package.

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description

dds.transport.load_plugins
(Note: this does not take a prefix)

Required
Comma-separated strings indicating the prefix names of all plugins that will be
loaded by Connext. For example: “dds.transport.TCPv4.tcp1". You will use this
string as the prefix to the property names. See Footnote 1.
Note: you can load up to 8 plugins.

library

Required Must be "nddstransporttcp".
 This library needs to be in the path during run time for use by Connext (in the
LD_LIBRARY_PATH environment variable on UNIX systems, in PATH for Win-
dows systems).

create_function Required Must be “NDDS_Transport_TCPv4_create”.
30-11

Configuring the RTI TCP Transport
aliases

Used to register the transport plugin returned by
NDDS_Transport_TCPv4_create() (as specified by
<TCP_prefix>.create_function) to the DomainParticipant. Aliases should be
specified as a comma-separated string, with each comma delimiting an alias.

Default: the transport prefix (see Footnote 1)

parent.classid

Must be set to one of the following values:
NDDS_TRANSPORT_CLASSID_TCPV4_LAN

for TCP communication within a LAN
NDDS_TRANSPORT_CLASSID_TLSV4_LAN

for TLS communication within a LAN
NDDS_TRANSPORT_CLASSID_TCPV4_WAN

for TCP communication across LANs and firewalls
NDDS_TRANSPORT_CLASSID_TLSV4_WAN

for TLS communication across LAN and firewalls
Default: NDDS_TRANSPORT_CLASSID_TCPV4_LAN

Note: To use either TLS mode, you also need RTI TLS Support which is
available for purchase as a separate package.

parent.gather_send_
buffer_count_max

Specifies the maximum number of buffers that Connext can pass to the send()
function of the transport plugin.
The transport plugin send() API supports a gather-send concept, where the
send() call can take several discontiguous buffers, assemble and send them in a
single message. This enables Connext to send a message from parts obtained
from different sources without first having to copy the parts into a single contig-
uous buffer.
However, most transports that support a gather-send concept have an upper
limit on the number of buffers that can be gathered and sent. Setting this value
will prevent Connext from trying to gather too many buffers into a send call for
the transport plugin.
Connext requires all transport-plugin implementations to support a gather-send
of least a minimum number of buffers. This minimum number is defined as
NDDS_TRANSPORT_PROPERTY_GATHER_SEND_BUFFER_COUNT_MIN.
Default: 128

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-12

Configuring the TCP Transport 30. TC
P Tra

nsp
o

rt
parent.message_size_max

The maximum size of a message in bytes that can be sent or received by the
transport plugin.
If you set this higher than the default, the DomainParticipant’s buffer_size (in the
RECEIVER_POOL QosPolicy (DDS Extension) (Section 8.5.6)) should also be
changed.
Default: 9216

parent.allow_interfaces_list

A list of strings, each identifying a range of interface addresses that can be used
by the transport.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface.
For example: 10.10.*, 10.15.*
If the list is non-empty, this "white" list is applied before par-
ent.deny_interfaces_list.
Default: All available interfaces are used.

parent.deny_interfaces_list

A list of strings, each identifying a range of interface addresses that will not be
used by the transport.
If the list is non-empty, deny the use of these interfaces.
Interfaces must be specified as comma-separated strings, with each comma
delimiting an interface.
For example: 10.10.*
This "black" list is applied after parent.allow_interfaces_list and filters out the
interfaces that should not be used.
Default: No interfaces are denied

send_socket_buffer_size

Size in bytes of the send buffer of a socket used for sending. On most operating
systems, setsockopt() will be called to set the SENDBUF to the value of this
parameter.
This value must be greater than or equal to parent.message_size_max or -1.
The maximum value is operating system-dependent.
Default: -1 (means that setsockopt() (or equivalent) will not be called to size the
send buffer of the socket)

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-13

Configuring the RTI TCP Transport
recv_socket_buffer_size

Size, in bytes, of the receive buffer of a socket used for receiving.
On most operating systems, setsockopt() will be called to set the RECVBUF to
the value of this parameter.
This value must be greater than or equal to parent.message_size_max or -1. The
maximum value is operating-system dependent.
Default: -1 (setsockopt() (or equivalent) will not be called to size the receive buf-
fer of the socket)

ignore_loopback_interface

Prevents the transport plugin from using the IP loopback interface.
This property is ignored when parent.classid is
NDDS_TRANSPORT_CLASSID_TCPV4_WAN or
NDDS_TRANSPORT_CLASSID_TLSV4_WAN.
Two values are allowed:

0: Enable local traffic via this plugin. The plugin will only use and report the IP
loopback interface only if there are no other network interfaces (NICs) up
on the system.

1: Disable local traffic via this plugin. This means “do not use the IP loopback
interface, even if no NICs are discovered.” This setting is useful when you
want applications running on the same node to use a more efficient plugin
like shared memory instead of the IP loopback.

Default: 1

ignore_
nonrunning_interfaces

Prevents the transport plugin from using a network interface that is not
reported as RUNNING by the operating system.
The transport checks the flags reported by the operating system for each net-
work interface upon initialization. An interface which is not reported as UP will
not be used. This property allows the same check to be extended to the
IFF_RUNNING flag implemented by some operating systems. The RUNNING
flag is defined to mean that "all resources are allocated" and may be off if no link
is detected (e.g., the network cable is unplugged).

Two values are allowed:

0: Do not check the RUNNING flag when enumerating interfaces, just make
sure the interface is UP.

1: Check the flag when enumerating interfaces, and ignore those that are not
reported as RUNNING. This can be used on some operating systems to
cause the transport to ignore interfaces that are enabled but not connected to
the network.

Default: 1

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-14

Configuring the TCP Transport 30. TC
P Tra

nsp
o

rt
transport_priority_mask

Mask for the transport priority field. This is used in conjunction with
transport_priority_ mapping_low/transport_priority_ mapping_high to
define the mapping from DDS transport priority to the IPv4 TOS field. Defines a
contiguous region of bits in the 32-bit transport priority value that is used to
generate values for the IPv4 TOS field on an outgoing socket.
For example, the value 0x0000ff00 causes bits 9-16 (8 bits) to be used in the map-
ping. The value will be scaled from the mask range (0x0000 -0xff00 in this case)
to the range specified by low and high.
If the mask is set to zero, then the transport will not set IPv4 TOS for send sock-
ets.
Default: 0

transport_priority_
mapping_low

Sets the low and high values of the output range to IPv4 TOS.
These values are used in conjunction with transport_priority_mask to define
the mapping from DDS transport priority to the IPv4 TOS field. Defines the low
and high values of the output range for scaling.
Note that IPv4 TOS is generally an 8-bit value.
Default transport_priority_mapping_low: 0
Default transport_priority_mapping_high: 0xFF

transport_priority_
mapping_high

server_socket_backlog
The backlog parameter determines what is the maximum length of the queue of
pending connections.
Default: 5

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-15

Configuring the RTI TCP Transport
public_address

Required for WAN communication (see note below)
Public IP address and port (WAN address and port) (separated with ‘:’) associ-
ated with the transport instantiation.
For example: 10.10.9.10:4567
This field is used only when parent.classid is
NDDS_TRANSPORT_CLASSID_TCPV4_WAN or
NDDS_TRANSPORT_CLASSID_TLSV4_WAN.
The public address and port are necessary to support communication over
WAN that involves Network Address Translators (NATs). Typically, the address
is the public address of the IP router that provides access to the WAN. The port
is the IP router port that is used to reach the private server_bind_port inside the
LAN from the outside. This value is expressed as a string in the form: ip[:port],
where ip represents the IPv4 address and port is the external port number of the
router.
Host names are not allowed in the public_address because they may resolve to
an internet address that is not what you want (i.e., ‘localhost’ may map to your
local IP or to 127.0.0.1).
Note: If you are using an asymmetric configuration, public_address does not
have to be set for the non-public peer.

server_bind_port

Private IP port (inside the LAN) used by the transport to accept TCP connec-
tions.
If this property is set to zero, the transport will disable the internal server
socket, making it impossible for external peers to connect to this node. In this
case, the node is considered unreachable and will communicate only using the
asymmetric mode with other (reachable) peers.
For WAN communication, this port must be forwarded to a public port in the
NAT-enabled router that connects to the outer network.
Default: 7400

read_buffer_allocation

Allocation settings applied to read buffers.
These settings configure the initial number of buffers, the maximum number of
buffers and the buffers to be allocated when more buffers are needed.
Default:

❏ read_buffer_allocation.initial_count = 2

❏ read_buffer_allocation.max_count = -1 (unlimited)

❏ read_buffer_allocation.incremental_count = -1 (number of buffers will
keep doubling on each allocation until it reaches max_count)

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-16

Configuring the TCP Transport 30. TC
P Tra

nsp
o

rt
write_buffer_allocation

Allocation settings applied to buffers used for asynchronous (non-blocking)
write.
These settings configure the initial number of buffers, the maximum number of
buffers and the buffers to be allocated when more buffers are needed.
Default:

❏ write_buffer_allocation.initial_count = 4

❏ write_buffer_allocation.max_count = 1000

❏ write_buffer_allocation.incremental_count = 10

Note that for the write buffer pool, the max_count is not set to unlimited. This is
to avoid having a fast writer quickly exhaust all the available system memory,
in case of a temporary network slowdown. When this write buffer pool reaches
the maximum, the low-level send command of the transport will fail; at that
point Connext will take the appropriate action (retry to send or drop it), accord-
ing to the application’s QoS (if the transport is used for reliable communication,
the data will still be sent eventually).

control_buffer_allocation

Allocation settings applied to buffers used to serialize and send control mes-
sages.
These settings configure the initial number of buffers, the maximum number of
buffers and the buffers to be allocated when more buffers are needed.
Default:

❏ control_buffer_allocation.initial_count = 2

❏ control_buffer_allocation.max_count = -1 (unlimited)

❏ control_buffer_allocation.incremental_count = -1 (number of buffers
will keep doubling on each allocation until it reaches max_count)

control_message_allocation

Allocation settings applied to control messages.
These settings configure the initial number of messages, the maximum number
of messages and the messages to be allocated when more messages are needed.
Default:

❏ control_message_allocation.initial_count = 2

❏ control_message_allocation.max_count = -1 (unlimited)

❏ control_message_allocation.incremental_count = -1 (number of mes-
sages will keep doubling on each allocation until it reaches max_count)

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-17

Configuring the RTI TCP Transport
control_attribute_allocation

Allocation settings applied to control messages attributes.
These settings configure the initial number of attributes, the maximum number
of attributes and the attributes to be allocated when more attributes are needed.
Default:

❏ control_attribute_allocation.initial_count = 2

❏ control_attribute_allocation.max_count = -1 (unlimited)

❏ control_attribute_allocation.incremental_count = -1 (number of attri-
butes will keep doubling on each allocation until it reaches max_count)

force_asynchronous_send

Forces asynchronous send. When this parameter is set to 0, the TCP transport
will attempt to send data as soon as the internal send() function is called. When
it is set to 1, the transport will make a copy of the data to send and enqueue it in
an internal send buffer. Data will be sent as soon as the low-level socket buffer
has space.
Normally setting it to 1 delivers better throughput in a fast network, but will
result in a longer time to recover from various TCP error conditions. Setting it to
0 may cause the low-level send() function to block until the data is physically
delivered to the lower socket buffer. For an application writing data at a very
fast rate, it may cause the caller thread to block if the send socket buffer is full.
This could produce lower throughput in those conditions (the caller thread
could prepare the next packet while waiting for the send socket buffer to
become available).
Default: 0

max_packet_size

The maximum size of a TCP segment.
This parameter is only supported on Linux architectures.
By default, the maximum size of a TCP segment is based on the network MTU
for destinations on a local network, or on a default 576 for destinations on non-
local networks. This behavior can be changed by setting this parameter to a
value between 1 and 65535.
Default: -1 (default behavior)

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-18

Configuring the TCP Transport 30. TC
P Tra

nsp
o

rt
enable_keep_alive

Configures the sending of KEEP_ALIVE messages in TCP.
Setting this value to 1, causes a KEEP_ALIVE packet to be sent to the remote
peer if a long time passes with no other data sent or received.
This feature is implemented only on architectures that provide a low-level
implementation of the TCP keep-alive feature.
On Windows systems, the TCP keep-alive feature can be globally enabled
through the system’s registry: \HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Tcpip\Parameters.
Refer to MSDN documentation for more details.
On Solaris systems, most of the TCP keep-alive parameters can be changed
though the kernel properties.
Default: 0

keep_alive_time

Specifies the interval of inactivity in seconds that causes TCP to generate a
KEEP_ALIVE message.
This parameter is only supported on Linux architectures.
Default: -1 (OS default value)

keep_alive_interval
Specifies the interval in seconds between KEEP_ALIVE retries.
This parameter is only supported on Linux architectures.
Default: -1 (OS default value)

keep_alive_retry_count
The maximum number of KEEP_ALIVE retries before dropping the connection.
This parameter is only supported on Linux architectures.
Default: -1 (OS default value)

disable_nagle

Disables the TCP nagle algorithm.
When this property is set to 1, TCP segments are always sent as soon as possi-
ble, which may result in poor network utilization.
Default: 0

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-19

Configuring the RTI TCP Transport
logging_verbosity_bitmap

Bitmap that specifies the verbosity of log messages from the transport.
Logging values:

❏ -1 (0xffffffff): do not change the current verbosity
❏ 0x00: silence
❏ 0x01: errors
❏ 0x02: warnings
❏ 0x04: local
❏ 0x08: remote
❏ 0x10: period
❏ 0x80: other (used for control protocol tracing)

Default: -1
Note: the logging verbosity is a global property shared across multiple instances
of the TCP transport. If you create a new TCP Transport instance with
logging_verbosity_bitmap different than -1, the change will affect all the other
instances as well.
The default TCP transport verbosity is errors and warnings.
Note: The option of 0x80 (other) is used only for tracing the internal control pro-
tocol. Since the output is very verbose, this feature is enabled only in the debug
version of the TCP Transport library
(libnddstransporttcpd.so / LIBNDDSTRANSPORTD.LIB).

outstanding_connection_
cookies

Maximum number of outstanding connection cookies allowed by the transport
when acting as server.
A connection cookie is a token provided by a server to a client; it is used to
establish a data connection. Until the data connection is established, the cookie
cannot be reused by the server.
To avoid wasting memory, it is good practice to set a cap to the maximum num-
ber of connection cookies (pending connections).
When the maximum value is reached, a client will not be able to connect to the
server until new cookies become available.
Range: 1 or higher, or -1 (which means an unlimited number).
Default: 100

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-20

Configuring the TCP Transport 30. TC
P Tra

nsp
o

rt
outstanding_connection_
cookies_life_span

Maximum lifespan (in seconds) of the cookies associated with pending connec-
tions.
If a client does not connect to the server before the lifespan of its cookie expires,
it will have to request a new cookie.
Range: 1 second or higher, or -1
Default: -1, which means an unlimited amount of time (effectively disabling the
feature).

send_max_wait_sec

Controls the maximum time (in seconds) the low-level sendto() function is
allowed to block the caller thread when the TCP send buffer becomes full.

If the bandwidth used by the transport is limited, and the sender thread tries to
push data faster than the OS can handle, the low-level sendto() function will
block the caller until there is some room available in the queue. Limiting this
delay eliminates the possibility of deadlock and increases the response time of
the internal DDS thread.

This property affects both CONTROL and DATA streams. It only affects SYN-
CHRONOUS send operations. Asynchronous sends never block a send opera-
tion.

For synchronous send() calls, this property limits the time the DDS sender
thread can block for a full send buffer. If it is set too large, Connext not only
won't be able to send more data, it also won't be able to receive any more data
because of an internal resource mutex.

Setting this property to 0 causes the low-level function to report an immediate
failure if the TCP send buffer is full.

Setting this property to -1 causes the low-level function to block forever until
space becomes available in the TCP buffer.

Default: 3 seconds.

tls.verify.
ca_file

A string that specifies the name of file containing Certificate Authority certifi-
cates. File should be in PEM format. See the OpenSSL manual page for
SSL_load_verify_locations for more information.

To enable TLS, ca_file or ca_path is required; both may be specified (at least
one is required).

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-21

Configuring the RTI TCP Transport
tls.verify.
ca_path

A string that specifies paths to directories containing Certificate Authority cer-
tificates. Files should be in PEM format and follow the OpenSSL-required nam-
ing conventions. See the OpenSSL manual page for
SSL_CTX_load_verify_locations for more information.

To enable TLS, ca_file or ca_path is required; both may be specified (at least
one is required).

tls.verify.verify_depth Maximum certificate chain length for verification.

tls.verify.
crl_file

Name of the file containing the Certificate Revocation List.

File should be in PEM format.

tls.identity.
certificate_chain

String containing an identifying certificate (in PEM format) or certificate chain
(appending intermediate CA certs in order).

An identifying certificate is required for secure communication. The string
must be sorted starting with the certificate to the highest level (root CA). If this
is specified, certificate_chain_file must be empty.

tls.identity.
certificate_chain_file

File containing identifying certificate (in PEM format) or certificate chain
(appending intermediate CA certs in order).

An identifying certificate is required for secure communication. The file must
be sorted starting with the certificate to the highest level (root CA). If this is
specified, certificate_chain must be empty.

Optionally, a private key may be appended to this file. If no private key option
is specified, this file will be used to load a private key.

tls.identity.
private_key_password

A string that specifies the password for private key.

tls.identity.
private_key

String containing private key (in PEM format).

At most one of private_key and private_key_file may be specified. If no private
key is specified (all values are NULL), the private key will be read from the cer-
tificate chain file.

tls.identity.
private_key_file

File containing private key (in PEM format).

At most one of private_key and private_key_file may be specified. If no private
key is specified (all values are NULL), the private key will be read from the cer-
tificate chain file.

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-22

Configuring the TCP Transport 30. TC
P Tra

nsp
o

rt
tls.identity.
rsa_private_key

String containing additional RSA private key (in PEM format).
For use if both an RSA and non-RSA key are required for the selected cipher. At
most one of rsa_private_key and rsa_private_key_file may be specified.
At most one of rsa_private_key and rsa_private_key_file may be specified.

tls.identity.
rsa_private_key_file

File containing additional RSA private key (in PEM format).
For use if both an RSA and non-RSA key are required for the selected cipher. At
most one of rsa_private_key and rsa_private_key_file may be specified.
At most one of rsa_private_key and rsa_private_key_file may be specified.

tls.cipher.
cipher_list

List of available (D)TLS ciphers. See the OpenSSL manual page for
SSL_set_cipher_list for more information on the format of this string.

tls.cipher.
dh_param_files

List of available Diffie-Hellman (DH) key files.

tls.cipher.
engine_id

ID of OpenSSL cipher engine to request.

1. Assuming you used ‘dds.transport.TCPv4.tcp1’ as the alias to load the plugin. If not, change the prefix to match the
string used with dds.transport.load_plugins. This prefix must begin with 'dds.transport.'

Table 30.1 Properties for NDDS_Transport_TCPv4_Property_t

Property Name
(prefix with

‘dds.transport.TCPv4.tcp1.’)1
Description
30-23

Configuring the RTI TCP Transport
30-24

Index

Symbols
@copy rtiddsgen directive 3-75
@key rtiddsgen directive 3-74
@resolve-name rtiddsgen directive 3-76
@top-level rtiddsgen directive 3-80
$NDDSHOME 3-107

A
absolute_generation_rank (DDS_SampleInfo) 7-67, 7-

71
accept_unknown_peers 8-42, 8-45, 12-12
access control 14-13
access_scope (Presentation QoS) 6-82, 6-84
ACKNACK messages 6-19, 6-47, 10-3 to 10-4, 10-26
acknowledgments 6-19, 6-47
ALIVE instance state 7-69
allocation of memory 7-82

DataReaders 7-88
API message category 18-4
app ID 8-73
architectures supported i-xxii
as_Entity() 6-19, 7-22 to 7-23
assert_liveliness() 6-62, 6-132, 8-31
asynchronous data 7-3
autodispose_unregistered_instances

(WriterDataLifeCycle QoS) 6-166
automatic participant ID 8-72
autoregister_instances (DataWriterResouceLimits

QoS) 6-110

B
batching small samples 6-63, 6-88, 10-19
begin_coherent_changes() 6-46, 6-83
BEST_EFFORT (Reliable QoS) 6-149
best-effort delivery 10-2
blocking threads 6-109
blocking time 10-10
building applications 9-1, 9-3 to 9-4
builtin data types

definition 3-7
See also data types.
See also user data types.

built-in Subscriber 14-2, 14-11
QoS 14-9

built-in topics 14-1
built-in transports 8-66
builtin_discovery_plugins (DiscoveryConfig QoS) 8-

50
BuiltinTopicReaderResourceLimits 8-51

bundling messages 10-5

C
categories of messages 18-4
channel guard filter 16-3
cleanup_period 8-39
clear() 6-16, 7-18
client-server model 1-3
clock selection 8-78
coalescing samples 6-91
coherent sets 6-46
coherent_access (Presentation QoS) 6-82 to 6-83
command-line options for rtiddsgen 3-107
COMMUNICATION message category 18-4
communications models 1-3

client-server 1-3
data-centric 2-2
DCPS 2-2, 2-10
object-centric 2-2
point-to-point 1-3
publish-subscribe 1-4, 2-7

compatibility between QoS 6-54, 7-48
compiling applications 9-1
concurrent threads 6-109
Conditions 4-36

example code 4-42
conserving CPU and bandwidth 10-24
contains_entity() 8-32
content filter 5-34

syntax for 5-23
ContentFilteredTopics 6-109

compile function 5-35
creating 5-17
custom filters 5-23, 5-33
deleting 5-19
evaluate function 5-37
filter syntax 5-23
finalize function 5-37
introduction 5-15
setting filter expressions 5-21

controlling queue depth 10-18
copy_from_topic_qos() 6-15, 6-59, 7-17, 7-53
copy() 6-16, 7-17
CPU core affinity 17-6
CPU usage 10-24
create_datawriter() 6-42
create_publisher() 6-7
create_topic() 5-4

D
data samples. See samples.
data types 2-4

supported 3-4, 3-7
DATA_AVAILABLE status 4-19, 7-23, 7-35
DATA_ON_READERS status 4-19, 7-23
DATA_READER_CACHE status 7-36
Index-1

DATA_READER_PROTOCOL status 7-36
DATA_WRITER_CACHE status 6-30
DATA_WRITER_PROTOCOL status 6-30
database cleanup thread 17-1
DATABASE message category 18-4
Database QoS 8-38
data-centric communications 2-2
DataReaderProtocol QoS 7-76
DataReaderResouceLimits QoS 10-15
DataReaderResourceLimits QoS 7-82
DataReaders

checking status for 7-32
copying QoS for 7-53
copying Topic QoS 7-17
creating/deleting 7-28
finding matching writers 7-53
Listeners for 7-31
memory allocation 7-88
operations on 7-24
QoS for 7-46
status for 7-35

DataWriterProtocol QoS 6-94, 10-18
DataWriterResourceLimits QoS 6-108
DataWriters

copying Topic QoS 6-15, 6-59, 7-17
creating/deleting 6-24
definition 6-3, 7-4
finding matching readers 6-61
Listener’s relationship to Publishers’ 6-16
Listeners for 6-27
operations on 6-21
ordering samples from multiple 6-114
preventing starvation 7-88
QoS for 6-51, 6-87
resource limits for 6-108
samples per 7-86
saving samples for later use 6-117
status for 6-20, 6-29 to 6-30
writing data 6-42

DCPS 2-2, 2-10
DCPSParticipant 14-1
DCPSPublication 14-1
DCPSSubscription 14-1
DDS_BuiltinTopicReaderResourceLimits_t 8-51
DDS_DATAREADER_QOS_DEFAULT 7-29
DDS_DATAREADER_QOS_USE_TOPIC 7-53
DDS_DataReaderQos structure 7-46
DDS_DATAWRITER_QOS_USE_TOPIC_QOS 6-59
DDS_ParticipantBuiltinTopicData 14-2
DDS_ReliableWriterCacheEventCount 6-39
DDS_RtpsReliableReaderProtocol_t 7-79
DDS_RtpsReliableWriterProtocol_t 6-97
DDS_SubscriberQos structure 7-11
DDS_TransportMulticastSetting_t 7-95
deadline

status for missing 6-37, 7-42
Deadline QoS 6-111

interaction with TimeBasedFilter QoS 7-92

debugging error messages 12-27, 18-3, 18-5
delete_contained_entities() 6-9, 7-11, 7-31, 8-18
depth (History QoS) 6-125
depth of queues 10-18
destination timestamp 6-114
DestinationOrder QoS 6-114
direct_communication 11-19
direct_communication (Durability QoS) 6-119
disable_fragmentation_support(DataReaderResourceL

imits QoS) 7-83
disable_positive_acks (DataReaderProtocol QoS) 7-78
disable_positive_acks (DataWriterProtocol QoS) 6-96
disable_positive_acks_decrease_sample_keep_duratio

n_factor (RtpsReliableWriterProtocol_t) 6-100
disable_positive_acks_enable_adaptive_sample_keep_

duration (RtpsReliableWriterProtocol_t) 6-100
disable_positive_acks_increase_sample_keep_duration

_factor (RtpsReliableWriterProtocol_t) 6-100
disable_positive_acks_max_sample_keep_duration

(RtpsReliableWriterProtocol_t) 6-100
disable_positive_acks_min_sample_keep_duration

(RtpsReliableWriterProtocol_t) 6-100
Discovery

accessing Topics 8-32
finding remote DomainParticipants 8-31

discovery
debugging 12-27
definition 12-2
endpoint phase 12-3
endpoint readers/writers 12-20
entities used 12-11
late-joiners 10-27
participant phase 12-2
ports used 8-73
refresh mechanism 12-13
related QoS 12-26
summary diagram 12-25

Discovery QoS 8-42
DiscoveryConfig QoS 8-47
dispose() 6-50, 6-167

vs. unregister_instance() 6-50
disposed_generation_count (DDS_SampleInfo) 7-67,

7-70
domain ID 8-18, 8-71
domain_id_gain 12-33
DomainParticipantFactory

example code 8-4
operations on 8-5, 13-4
purpose of 8-4
QoS for 8-7, 8-9

DomainParticipantResourceLimits QoS 8-55
DomainParticipants

accessing discovered 8-31
creating 8-15
definition 8-2, 8-10
deleting 8-17
discovery of 8-51
domain IDs 8-18, 8-71
Index-2

example code 6-8, 6-55, 7-50, 8-17, 8-21, 8-24
Listener of last resort 6-17, 7-20
Listeners for 8-19
operations on 8-11
QoS for 8-20

domains
definition 2-10, 8-1
multiple 2-10, 8-1
vs. partitions 6-74

dropped samples status 7-42
Durability QoS 6-117, 6-120, 10-27
dynamic memory 8-60
dynamically_allocate_fragmented_samples(DataReade

rResourceLimits QoS) 7-85

E
enable() 4-3
enabled_transports 6-158, 8-42
enabling entities 6-66

recursiveness 4-4
end_coherent_changes() 6-46, 6-83
endpoint discovery 12-3
ENTITIES message category 18-4
EntityFactory QoS 4-4, 6-66
entityID 12-3
environment variables

NDDS_DISCOVERY_PEERS 12-4
NDDSHOME i-xxii

error messages 12-27, 18-3
format of 18-5

ERROR verbosity 18-4
Event QoS 8-62
event thread 17-1, 17-3
ExclusiveArea QoS 6-63, 6-68, 6-145

when to change 6-69
expects_inline_qos (DataReaderProtocol QoS) 7-78
expression parameters 5-21
external clock 8-78

F
factory class 4-3
fast_heartbeat_period

(RtpsReliableWriterProtocol_t) 6-97
filter expression syntax 5-23
filter expressions 5-15, 5-21
finalize_instance() 8-9
finalizeX() 3-50
find_topic() 8-29
FlowControllers

creating and deleting 6-180
external trigger 6-182

flushing batched samples 6-45, 6-63, 6-90 to 6-91
FooDataReader

definition 7-55
operations on 7-25 to 7-26

FooDataWriter

definition 6-42
operations on 6-21

FooSeq 7-65
framing Heartbeat 10-35

G
generating code

See rtiddsgen.
generation_rank (DDS_SampleInfo) 7-67, 7-71
get_builtin_subscriber() 14-2
get_c_version() 18-2
get_core_api_version() 18-2
get_cpp_api_version() 18-2
get_datareader_cache_status() 7-32
get_datareader_protocol_status() 7-32
get_datareaders() 7-21
get_datawriter_cache_status() 6-29
get_datawriter_protocol_status() 6-29
get_deadline_missed_status() 6-37
get_default_datawriter_qos() 6-15, 7-17
get_discovered_participant_data() 8-31
get_discovered_participants() 8-31
get_discovered_topic_data() 8-32
get_discovered_topics() 8-32
get_domain_id() 8-19
get_instance_handle() 4-6, 8-32
get_key_value() 6-51, 7-54
get_listener() 4-7
get_liveliness_changed_status() 7-32, 7-41
get_liveliness_lost_status() 6-29, 6-37
get_matched_publication_data() 7-53
get_matched_publication_datareader_protocol_status(

) 7-32
get_matched_publications() 7-53 to 7-54
get_matched_subscription_data() 6-61
get_matched_subscription_datawriter_protocol_status

_by_locator() 6-29
get_matched_subscription_datawriter_protocol_status

() 6-29
get_matched_subscription_locators() 6-61
get_matched_subscriptions() 6-61
get_offered_deadline_missed_status() 6-29
get_offered_incompatible_qos_status() 6-29, 6-37
get_output_file() 18-5
get_participant() 6-19, 7-22
get_publication_match_status() 6-29
get_qos() 4-8, 6-54
get_reliable_reader_activity_changed_status() 6-29
get_reliable_writer_cache_changed_status() 6-29
get_requested_deadline_missed_status() 7-34, 7-42
get_requested_incompatible_qos_status() 7-34, 7-42
get_sample_lost_status() 7-32, 7-44
get_sample_rejected_status() 7-32, 7-45
get_status_changes() 4-6, 4-18 to 4-19, 6-29, 7-34
get_statuscondition() 4-48, 7-34
get_subscription_match_status() 7-34, 7-46
get_trigger_value() 4-36
Index-3

get_verbosity() 18-5
getting data 7-2 to 7-4, 7-31, 7-35, 7-57, 7-65
GroupData QoS 6-71
GUID (Globally Unique ID) 6-139, 8-73, 12-3

H
hash table 3-74, 6-96, 6-152, 8-57, 8-59
HB messages. See heartbeats.
heartbeat_period 10-19

diagram 10-20
heartbeat_period (RtpsReliableWriterProtocol_t) 6-97,

6-102
heartbeat_suppression_duration

(DDS_RtpsReliableReaderProtocol_t) 7-79
Heartbeats

types of 10-35
heartbeats 10-4

controlling 10-18
how many resent 10-22
how often 10-19
response delays 7-79

heartbeats_per_max_samples 10-21
diagram 10-23

heartbeats_per_max_samples
(RtpsReliableWriterProtocol_t) 6-99

high_watermark (RtpsReliableWriterProtocol_t) 6-97
historical data 6-117, 7-34, 10-27
HISTORY QoS 10-18
History QoS 6-124

depth 10-18
effect of ResourceLimits QoS 6-125

history_depth (DurabilityService QoS) 6-121
history_kind (DurabilityService QoS) 6-121
host ID 8-73

I
IDL 2-4, 3-48

including other files 3-72
supported types 3-53, 3-59, 3-62
unsupported types 3-49

ignore_participant() 14-12
ignore_publication() 7-53 to 7-54, 14-12
ignore_publisher() 6-72, 6-165
ignore_subscription() 6-61, 14-12
ignore_topic() 8-32, 14-12
implicit Publishers 6-7, 7-5
inactivate_nonprogressing_readers

(RtpsReliableWriterProtocol_t) 6-98
incompatible QoS

status for 6-37
info units 7-83
inheriting QoS profiles 15-19
initial and maximum values in QoS 7-82, 7-88
initial peers list 12-4
initial_batches (DataWriterResouceLimits QoS) 6-109

initial_concurrent_blocking_threads
(DataWriterResourceLimits QoS) 6-109

initial_fragmented_samples(DataReaderResourceLimit
s QoS) 7-84

initial_infos (DataReaderResourceLimits QoS) 7-83
initial_instances (ResourceLimits QoS) 6-152
initial_outstanding_reads (DataReaderResourceLimits

QoS) 7-83
initial_participant_announcements (DiscoveryConfig

QoS) 8-48
initial_peers 8-42

adding to 8-43
initial_records 8-39
initial_remote_virtual_writers

(DataReaderResourceLimits QoS) 7-85
initial_remote_virtual_writers_per_instance(DataRead

erResourceLimits QoS) 7-86
initial_remote_writers (DataReaderResourceLimits

QoS) 7-83
initial_remote_writers_per_instance

(DataReaderResourceLimits QoS) 7-83
initial_samples (ResourceLimits QoS) 6-152
initial_virtual_writers (DataWriterResouceLimits

QoS) 6-109
initial_weak_references 8-40
instance handle 4-6
instance ID 8-73
instance state 7-69

interaction with Ownership QoS 7-69
instance states 6-50
instance_handle (DDS_SampleInfo) 7-67
instance_hash_buckets (ResourceLimits QoS) 6-152
instance_replacement (DataWriterResouceLimits

QoS) 6-109
instance_state (DDS_SampleInfo) 7-67
instances

registration 6-48
registration example 6-49

Interface Description Language. See IDL
internal clock 8-78
inter-participant reader/writer 12-18

K
keep duration 6-103, 10-26
key hash 6-96, 6-152, 8-57, 8-59
key-hash 3-74, 6-96
keys

definition 6-47
getting value of 6-51
in IDL file 3-74
managing data instances 6-47
registering instances 6-48
rtiddsgen 3-74

L
last_reason (SAMPLE_REJECTED status) 7-44
Index-4

late_joiner_heartbeat_period
(RtpsReliableWriterProtocol_t) 6-97

late-joiners 10-27
discovery of 12-24

latency 7-81
layer 2 switches 16-5
lease_duration (Liveliness QoS) 6-131
LENGTH_UNLIMITED 8-40
Listeners

basic steps 7-3
creating and deleting 4-28
definition 6-16
example code 6-18, 7-21, 7-33, 8-21
for DataReaders 7-31
for DataWriters 6-27
for DomainParticipants 8-19
for Publishers 6-16
for Topics 5-10
last resort 6-17, 7-20, 8-19
operations allowed in 4-31
precedence of 6-17, 6-27, 7-20
purpose of 4-18
relationship of PublisherListener and

DataWriterListener 6-16
removing 8-20

listening for data 7-3
liveliness assertion during write() 6-44
LIVELINESS_CHANGED status 6-40, 7-41
LIVELINESS_LOST status 6-36
locators (TransportUnicast QoS) 6-159
logged error messages 18-3
long double 3-70 to 3-71
lookup_datareader() 6-19, 7-22, 14-2, 14-11
lookup_instance() 6-50 to 6-51, 7-54
lookup_participant() 8-9
lookup_topicdescription() 8-28 to 8-29
lost samples 7-43
low_watermark (RtpsReliableWriterProtocol_t) 6-97
low-bandwidth connections 7-93

M
matching writers and readers 6-38, 6-61, 7-41, 7-53,

12-3
status for 7-45

max_batches (DataWriterResouceLimits QoS) 6-109
max_blocking_time (Reliability QoS) 6-110, 6-149, 10-

10
max_bytes_per_nack_response

(RtpsReliableWriterProtocol_t) 6-100, 10-22
max_concurrent_blocking_threads

(DataWriterResourceLimits QoS) 6-109
max_data_bytes (Batch QoS) 6-89
max_flush_delay (Batch QoS) 6-89
max_fragmented_samples_per_remote_writer(DataRe

aderResourceLimits QoS) 7-84
max_fragmented_samples(DataReaderResourceLimits

QoS) 7-84

max_fragments_per_sample(DataReaderResourceLimi
ts QoS) 7-84

max_heartbeat_response_delay
(RtpsReliableReaderProtocol_t) 7-79

max_heartbeat_response_delay(DDS_RtpsReliableRea
derProtocol_t) 7-79

max_heartbeat_retries
(RtpsReliableWriterProtocol_t) 6-98, 10-22

max_infos (DataReaderResourceLimits QoS) 7-83
max_instances (DurabilityService QoS) 6-121
max_instances (ResourceLimits QoS) 6-152, 7-87
max_liveliness_loss_detection_period

(DiscoveryConfig QoS) 8-48
max_nack_response_delay (DataWriterProtocol

QoS) 10-24
max_nack_response_delay

(RtpsReliableWriterProtocol_t) 6-99
max_outstanding_reads (DataReaderResourceLimits

QoS) 7-83
max_remote_reader_filters (DataWriterResouceLimits

QoS) 6-109
max_remote_virtual_writers

DataReaderResourceLimits QoS) 7-85
max_remote_virtual_writers_per_instance(DataReader

ResourceLimits QoS) 7-86
max_remote_writers (DataReaderResourceLimits

QoS) 7-83
max_remote_writers_per_instance

(DataReaderResourceLimits QoS) 7-82 to 7-83
max_samples (Batch QoS) 6-89
max_samples (DurabilityService QoS) 6-121
max_samples (ResourceLimits QoS) 6-39, 6-152, 10-21
max_samples_per_instance (DurabilityService QoS) 6-

121
max_samples_per_instance (ResourceLimits QoS) 6-

152, 10-18
max_samples_per_read(DataReaderResourceLimits

QoS) 7-83
max_samples_per_remote_writer 10-15
max_samples_per_remote_writer

(DataReaderResourceLimits QoS) 7-83, 7-86 to 7-88
max_send_window_size

(RtpsReliableWriterProtocol_t) 6-101
max_skiplist_level 8-39
max_total_instances (DataReaderResourceLimits

QoS) 7-85, 7-87
max_virtual_writers (DataWriterResouceLimits

QoS) 6-109
max_weak_references 8-40
maximizing throughput 7-81
memory

allocation 3-50, 7-82, 7-88, 8-60
clearing 6-16, 7-18
copying 7-17
returning 8-9

message bundling 10-5
message storms 10-26
meta data
Index-5

ports for 12-31
meta-traffic 8-42

definition 17-5
metatraffic_transport_priority 8-42, 8-45
min_heartbeat_response_delay

(RtpsReliableReaderProtocol_t) 7-79
min_nack_response_delay

(RtpsReliableWriterProtocol_t) 6-99
min_send_window_size

(RtpsReliableWriterProtocol_t) 6-101
minimizing latency 7-81
minimum_separation

reasons for changing 7-93
minimum_separation (TimeBasedFilter QoS) 7-91, 7-

93
missed deadline status 6-37, 7-42
missing samples status 7-42
module (IDL type) 3-58, 3-62, 3-69
monotonic clock 8-78
multicast

addresses 7-95, 8-44
example code 7-97
locators 7-95
ports 7-95
ports used 12-31
TransportMulticast QoS 7-94

multicast_receive_addresses 8-42, 8-44

N
nack_period (DDS_RtpsReliableReaderProtocol_t) 7-

79
nack_suppression_duration

(RtpsReliableWriterProtocol_t) 6-100
NACKs

non-progressing 10-24
namespace (rtiddsgen option) 3-109
NDDS_Config_LibraryVersion_t structure 18-2 to 18-3
NDDS_DISCOVERY_PEERS 12-4
NDDSConfigLogger class 18-5

operations on 18-5
NDDSConfigVersion class 18-2
NDDSHOME i-xxii
NEW view state 7-69
new_remote_participant_announcement_period

(DiscoveryConfig QoS) 8-48
no_writers_generation_count (DDS_SampleInfo) 7-67,

7-70
non-progressing NACK 10-24
NOT_ALIVE_DISPOSED instance state 7-69
NOT_ALIVE_NO_WRITERS instance state 6-50, 7-69
NOT_NEW view state 7-69
NOT_READ sample state 7-68
notification of new data 7-31

O
object-centric communications 2-2

offered QoS 6-54
OFFERED_DEADLINE_MISSED status 6-37
OFFERED_INCOMPATIBLE_QOS status 6-37
on_data_available() 7-31, 7-36
on_data_on_readers() 7-23
on_instance_replaced() 6-28
on_liveliness_changed() 7-31, 7-41
on_liveliness_lost() 6-28, 6-37
on_offered_deadline_missed() 6-28, 6-37

example 6-18
on_offered_incompatible_qos() 6-28, 6-37
on_publication_matched() 6-28
on_reliable_reader_activity_changed() 6-28
on_reliable_writer_cache_changed() 6-28
on_requested_deadline_missed() 7-31, 7-42
on_requested_incompatible_qos() 7-32, 7-42
on_sample_lost() 7-32, 7-44
on_sample_rejected() 7-32, 7-45
on_subscription_matched() 7-32, 7-46
order of samples 6-114
ordered_access (Presentation QoS) 6-82

effect of 6-84
original_publication_virtual_guid

(DDS_SampleInfo) 7-68
original_publication_virtual_sequence_number

(DDS_SampleInfo) 7-68
ownership of data 7-57

effect of unregistering 6-49
Ownership QoS

effect of sharing 7-88
effect on instance state 7-69
preventing starvation 7-88

OwnershipStrength QoS 6-141

P
packet loss 10-14
participant DATA messages 12-2, 12-11, 12-13
participant ID 8-71 to 8-72
participant_assert_liveliness_period 12-13
participant_id (WireProtocol QoS) 8-70
participant_id_gain 12-33
participant_liveliness_assert_period 12-11
participant_liveliness_assert_period (DiscoveryConfig

QoS) 8-47
participant_liveliness_assert_period (DisocveryConfig

QoS) 8-51, 8-54
participant_liveliness_lease_duration

(DiscoveryConfig QoS) 8-47
participant_liveliness_lease_duration_period

(DiscoveryConfig QoS) 12-11
participant_message_reader (DiscoveryConfig QoS) 8-

50
participant_message_writer (DiscoveryConfig QoS) 8-

50
ParticipantBuiltinTopicData 14-12
Partition QoS 6-74

example 6-78
Index-6

example of changing 6-78
impact on memory 6-81

partitions
definition 6-74
rules for matching names 6-76
vs. domains 6-74
wildcards 6-76

peers list 12-2, 12-4
adding to 8-43

peer-to-peer communication 11-19
performance

improving with registration 6-48
period (Deadline QoS) 6-112
piggyback heartbeats 10-19
plain communication status 4-19, 7-23
PLATFORM message category 18-4
platforms supported i-xxii
plugin_data 6-163
pointer (IDL type) 3-54, 3-64
point-to-point communication 1-3
polling for data 7-2, 7-4
port numbers 8-71
ports 8-73, 12-31 to 12-32
preprocessor directives 3-73, 3-110
Presentation QoS 6-81
preventing starvation 7-88
prioritized samples 6-174
promiscuous mode 7-97
Property QoS 6-142, 8-34
PRSTDataReader 11-18, 22-1, 22-15
PRSTDataWriter 11-18, 22-1, 22-15
publication DATA messages 12-3
publication_handle (DDS_SampleInfo) 7-67
PUBLICATION_MATCHED status 6-38
publication_reader_ resource_limits 8-48
publication_squence_number (DDS_SampleInfo) 7-67
publication_writer (DiscoveryConfig QoS) 8-49
publication_writer_data_lifecycle (DiscoveryConfig

QoS) 8-49
publications 2-9

definition 2-8
Publishers

creating 6-7
definition 2-7, 6-3
deleting 6-9, 8-17
example Listener 6-18
implicit 6-7, 7-5
Listener’s relationship to DataWriters’ Listener 6-16
Listeners for 6-16
operations on 5-20, 6-5, 6-170
QoS for 6-10, 6-62
setting QoS for 6-9

publish-subscribe communications 1-4, 2-7
pulled samples 6-30
push_on_write (DataWriterProtocol QoS) 6-96

when to change 6-107
pushed samples 6-31

Q
QoS

compatibility 6-37, 6-54, 7-48
Database 8-38
DataReaderProtocol 7-76
DataReaderResourceLimits 7-82
DataReaders 7-46
DataWriterProtocol 6-94, 10-18
DataWriterResourceLimits 6-108
Deadline 6-111
DestinationOrder 6-114
Discovery 8-42
DiscoveryConfig 8-47
DomainParticipantResourceLimits 8-55
Durability 6-117, 6-120, 10-27
EntityFactory 6-66
Event 8-62
ExclusiveArea 6-63, 6-68, 6-145
for built-in Subscribers and DataReaders 14-9
for DataWriters 6-51, 6-87
for DomainParticipantFactory 8-7, 8-9
for DomainParticipants 8-20
for Publishers 6-62
for Topics 5-11
GroupData 6-71
History 6-124, 10-18
how to set 4-8
offered 6-54
OwnershipStrength 6-141
Partition 6-74
Property 6-142, 8-34
Publishers 6-9
ReceiverPool 8-64
Reliability 6-147
requested 6-54
ResourceLimits 6-152
rules for setting 4-8
Subscribers 7-11, 7-72
summary table 4-13
TimeBasedFilter 7-91
TransportBuiltin 8-66
TransportMulticast 7-94
TransportPriority 6-156
TransportSelection 6-157
TransportUnicast 6-159
UserData 6-163
using defaults 7-29
using Topic’s 7-53
WireProtocol 8-70

QoS. See Also individual QoS policy names.
Quality of Service. See QoS
queue depths 10-18

R
read communication status 4-19, 7-23, 7-36
READ sample state 7-68
read_instance() 7-54, 7-61, 7-64
Index-7

read_next_instance() 7-61
read_next_sample() 7-60
read() vs. take() 7-57
reading data 7-57
real-time applications

features of 2-2
realtime clock 8-78
receive queue 10-2

example 10-17
size 6-152, 10-10, 10-13, 10-15, 10-18

receive thread 8-64, 17-1, 17-4
receive_address (DDS_TransportMulticastSetting_t) 7-

95
receive_port (DDS_TransportMulticastSetting_t) 7-95
receive_port (TransportUnicast QoS) 6-160
receive_window_size

(DDS_RtpsReliableReaderProtocol_t) 7-79
ReceiverPool QoS 8-64
receiving data 7-31, 7-35, 7-57, 7-65

basic steps 7-2 to 7-4
reception_timestamp (DDS_SampleInfo) 7-67
refilter (History QoS) 6-125
register_instance() 6-48, 6-51
rejected samples 7-44
relay communication 11-20
Reliability QoS 6-147

effect on bandwidth 6-151
reliable delivery 6-147, 10-2

blocking time 10-10
definition 10-2
diagram 10-7
strict 10-18
tuning 10-8

RELIABLE_READER_ACTIVITY_CHANGED
status 6-40

RELIABLE_WRITER_CACHE_CHANGED status 6-
39

remote_participant_purge_kind (DiscoveryConfig
QoS) 8-48

repair packages 10-22
replace_empty_instances (DataWriterResouceLimits

QoS) 6-109
requested QoS 6-54
REQUESTED_DEADLINE_MISSED status 7-42
REQUESTED_INCOMPATIBLE_QOS status 7-42
resource configuration 7-82
resource limits 7-82
ResourceLimits QoS 6-152

effect on History QoS 6-125
response delays 7-79
restricting communication 14-12
retries

controlling 10-18
round_trip_time

(DDS_RtpsReliableReaderProtocol_t) 7-79
rtiddsgen

@copy directive 3-75
@key directive 3-74

@resolve-name directive 3-76
@top-level directive 3-80
command-line options 3-107
directives 3-73
generated files 3-105 to 3-106
IDL conversions 3-53, 3-59, 3-62
including IDL files 3-72
support types 3-53, 3-59, 3-62
syntax 3-107

RTPS protocol 8-70, 10-4
basic behavior diagram 10-6
bundling messages 10-5
reliable behavior diagram 10-7

rtps_app_id 12-26
rtps_app_id (WireProtocol QoS) 8-71
rtps_auto_id_kind (WireProtocol QoS) 8-71
rtps_host_id 12-26
rtps_host_id (WireProtocol QoS) 8-71
rtps_instance_id (WireProtocol QoS) 8-71
rtps_object_id (DataReaderProtocol QoS) 7-77
rtps_object_id (DataWriterProtocol QoS) 6-95
rtps_reliable_reader (DataReaderProtocol QoS) 7-79
rtps_reliable_writer (DataWriterProtocol QoS) 6-97
rtps_reserved_ports_mask (WireProtocol QoS) 8-71
rtps_well_known_ports (WireProtocol QoS) 8-71
RxO 6-54

S
sample state 7-68
SAMPLE_LOST status 7-42
sample_rank (DDS_SampleInfo) 7-70 to 7-71
sample_rank (SampleInfo) 7-67
SAMPLE_REJECTED status

reason codes 7-44
sample_state (DDS_SampleInfo) 7-67
SampleInfo structure 7-67
samples

coherent sets 6-46
count of lost 7-43
definition 2-5 to 2-6
how many per DataWriter 7-86
lost 7-42
notification of arrival 7-35
order of delivery 6-114
ownership of data 7-57
reasons for rejection 7-44
resending 10-22, 10-24
saving for later use 6-117
structure of 7-67
unacknowledged 6-39
writing 6-42

samples_per_virtual_heartbeat
RtpsReliableWriterProtocol_t) 6-97

send queue
blocking time 10-10
max_samples 10-13
purpose of 10-2
Index-8

size 6-125, 6-152, 10-10 to 10-11, 10-14 to 10-15, 10-
18

size (formula) 10-13 to 10-14
unblocking when full 6-110

send window 10-11
send_window_decrease_factor

(RtpsReliableWriterProtocol_t) 6-101
send_window_increase_factor

(RtpsReliableWriterProtocol_t) 6-101
send_window_update_period

(RtpsReliableWriterProtocol_t) 6-101
sending data. See writing data.
sequence data type 3-50, 7-65
sequence number 7-67 to 7-68
sequences (defined) 7-65
service_cleanup_delay (DurabilityService QoS) 6-121
set_default_datawriter_qos() 4-9
set_enabled_statuses() 4-48
set_listener() 4-7
set_output_file() 18-5
set_qos() 4-8, 6-54
set_verbosity() 18-5
shared ownership

effect of max_samples_per_remote_writer 7-88
shutdown_cleanup_period 8-39
shutdown_timeout 8-39
SILENT verbosity 18-4
skip list 8-39
source timestamp 6-114
source_timestamp (DDS_SampleInfo) 7-67
source_timestamp_resolution (Batch QoS) 6-89
speculative caching 10-41
SQL syntax 5-23
starvation 7-88
static memory allocation 8-60
status changes 7-34
STATUS_ALL verbosity 18-4
STATUS_LOCAL verbosity 18-4
STATUS_REMOTE verbosity 18-4
statuses

changes in 4-19
DATA_AVAILABLE 4-19, 7-23, 7-35
DATA_ON_READERS 4-19, 7-23
DATA_READER_CACHE 7-36
DATA_READER_PROTOCOL 7-36
DATA_WRITER_CACHE 6-30
DATA_WRITER_PROTOCOL 6-30
for DataReaders 7-32, 7-35
for DataWriters 6-20, 6-29 to 6-30
for Subscribers 7-23
LIVELINESS_CHANGED 7-41
LIVELINESS_LOST 6-36
OFFERED_DEADLINE_MISSED 6-37
OFFERED_INCOMPATIBLE_QOS 6-37
plain communication status 4-19
PUBLICATION_MATCHED 6-38
read communication status 4-19
RELIABLE_READER_ACTIVITY_CHANGED 6-40

RELIABLE_WRITER_CACHE_CHANGED 6-39
REQUESTED_DEADLINE_MISSED 7-42
REQUESTED_INCOMPATIBLE_QOS 7-42
SAMPLE_LOST 7-42
SUBSCRIPTION_MATCHED 7-45

stock quote example 2-5 to 2-6
string data type 3-6
submessage bundling 10-5
Subscribers

creating 7-9
definition 2-8, 7-5
operations on 7-7
QoS for 7-11, 7-72
statuses for 7-23

SUBSCRIPTION_MATCHED status 7-45
subscription_reader (DiscoveryConfig QoS) 8-49
subscription_reader_resource_limits (DiscoveryConfig

QoS) 8-49
subscription_writer (DiscoveryConfig QoS) 8-50
subscription_writer_data_lifecycle (DiscoveryConfig

QoS) 8-50
subscriptions

notification timing 7-92
supported data types 3-4, 3-7

T
take_instance() 7-54
take() vs. read() 7-57
taking data 7-57
thread_safe_write (Batch QoS) 6-90
thread-pinning 17-6
threads 6-109

receive 8-64
shared/exclusive areas for 6-63, 6-68, 6-145
unblocking 6-110

throughput 7-81
TimeBasedFilter QoS 7-91

interaction with Deadline QoS 7-92
timestamp 6-43, 6-114
timestamp resolution 6-89, 6-92
timestamp tolerance 6-115
timestamps 8-78
to_string() 18-2
topic_name

definition 5-4
Topics 2-9

accessing discovered 8-32
copying QoS 6-15, 7-17
creating 5-4
definition 2-5 to 2-6
example code 6-12, 6-56, 7-13, 7-50 to 7-51, 8-25
Listeners for 5-10
operations on 5-3
purpose of 5-2
purpose of QoS 5-11
QoS for 5-6, 5-11
waiting for creation 8-29
Index-9

TRANSIENT_LOCAL (Durability QoS) 6-117, 6-119
transport plug-ins

for meta-traffic 8-42
TransportBuiltin QoS 8-66
TransportMulticast QoS 7-94
TransportPriority QoS 6-156
transports (TransportMulticast QoS) 7-95
transports (TransportUnicast QoS) 6-160
TransportSelection QoS 6-157
TransportUnicast QoS 6-159
trigger_value 4-36, 4-48
type_code_max_serialized_length

(DomainParticipantsResourceLimits QoS) 8-55
type_name

definition 5-4
typedef construct 3-71
typographical conventions i-xxii

U
unacknowledged samples 6-39
unicast 6-159

ports used 12-32
unregister_instance() 6-48 to 6-49

vs. dispose() 6-50
unregister() 6-167
unregistering instances

instance ownership after 6-49
unsigned types 3-71
use_shared_exclusive_area (ExclusiveArea QoS) 6-69
user data

ports for 12-32
user data types

definition 3-4
See also data types.

UserData QoS 6-163

V
valid_data (DDS_SampleInfo) 7-67
verbosity 18-3
version query 18-1
view state 7-68
view_state (DDS_SampleInfo) 7-67
virtual GUID 7-68, 11-6
virtual heartbeats 6-97, 6-106
virtual sequence number 7-68
virtual writers 6-109, 7-45, 7-85
virtual_guid (DataReaderProtocol QoS) 7-77
virtual_guid (DataWriterProtocol QoS) 6-95
virtual_heartbeat_period

(RtpsReliableWriterProtocol_t) 6-97
VOLATILE (Durability QoS) 6-117, 6-119

W
wait_for_acknowledgments() 6-19, 6-47
wait_for_historical_data() 7-34
waiting for data 7-3

WaitSets 4-36
creating and deleting 4-37
example code 4-42
operations on 4-39
properties for 4-37
purpose of 4-36

WARNING verbosity 18-4
wchar 3-71
weak references 8-40
well_known_ports 8-73
wildcard partition names 6-76
WireProtocol QoS 8-70
write_w_timestamp() 6-43
writing data 6-42

basic steps 6-1
blocked send queue 10-10
example with registration 6-49
liveliness assertion 6-44
registration of instance 6-48
Index-10

	Available Documentation
	Contents
	Welcome to RTI Connext
	Conventions
	Extensions to the DDS Standard
	Environment Variables
	Names of Supported Platforms

	Additional Resources

	Part 1: Introduction
	Chapter 1 Overview
	1.1 What is Connext?
	1.2 What is Middleware?
	1.3 Network Communications Models
	1.4 Features of Connext

	Chapter 2 Data-Centric Publish-Subscribe Communications
	2.1 What is DCPS?
	2.1.1 DCPS for Real-Time Requirements

	2.2 Data Types, Topics, Keys, Instances, and Samples
	2.2.1 Data Topics — What is the Data Called?
	2.2.2 Samples, Instances, and Keys

	2.3 DataWriters/Publishers and DataReaders/Subscribers
	2.4 Domains and DomainParticipants
	2.5 Quality of Service (QoS)
	2.5.1 Controlling Behavior with Quality of Service (QoS) Policies

	2.6 Application Discovery

	Part 2: Core Concepts
	Chapter 3 Data Types and Data Samples
	3.1 Introduction to the Type System
	3.1.1 Sequences
	3.1.2 Strings and Wide Strings
	3.1.3 Introduction to TypeCode
	3.1.3.1 Sending TypeCodes on the Network

	3.2 Built-in Data Types
	3.2.1 Registering Built-in Types
	3.2.2 Creating Topics for Built-in Types
	3.2.2.1 Topic Creation Examples

	3.2.3 Creating ContentFilteredTopics for Built-in Types
	3.2.3.1 ContentFilteredTopic Creation Examples

	3.2.4 String Built-in Type
	3.2.4.1 Creating and Deleting Strings
	3.2.4.2 String DataWriter
	3.2.4.3 String DataReader

	3.2.5 KeyedString Built-in Type
	3.2.5.1 Creating and Deleting Keyed Strings
	3.2.5.2 Keyed String DataWriter
	3.2.5.3 Keyed String DataReader

	3.2.6 Octets Built-in Type
	3.2.6.1 Creating and Deleting Octets
	3.2.6.2 Octets DataWriter
	3.2.6.3 Octets DataReader

	3.2.7 KeyedOctets Built-in Type
	3.2.7.1 Creating and Deleting KeyedOctets
	3.2.7.2 Keyed Octets DataWriter
	3.2.7.3 Keyed Octets DataReader

	3.2.8 Managing Memory for Built-in Types
	3.2.8.1 Examples—Setting the Maximum Size for a String Programmatically

	3.2.9 Type Codes for Built-in Types

	3.3 Creating User Data Types with IDL
	3.3.1 Variable-Length Types
	3.3.1.1 Sequences
	3.3.1.2 Strings and Wide Strings

	3.3.2 Value Types
	3.3.3 TypeCode and rtiddsgen
	3.3.4 rtiddsgen Translations for IDL Types
	3.3.5 Escaped Identifiers
	3.3.6 Referring to Other IDL Files
	3.3.7 Preprocessor Directives
	3.3.8 Using Custom Directives
	3.3.8.1 The @key Directive
	3.3.8.2 The @copy and Related Directives
	3.3.8.3 The @resolve-name Directive
	3.3.8.4 The @top-level Directive

	3.4 Creating User Data Types with Extensible Markup Language (XML)
	3.5 Creating User Data Types with XML Schemas (XSD)
	3.5.1 Primitive Types

	3.6 Using rtiddsgen
	3.6.1 rtiddsgen Command-Line Arguments
	3.6.1.1 Optimizing Typedefs (-optimization)

	3.7 Using Generated Types without Connext (Standalone)
	3.7.1 Using Standalone Types in C
	3.7.2 Using Standalone Types in C++
	3.7.3 Standalone Types in Java

	3.8 Interacting Dynamically with User Data Types
	3.8.1 Introduction to TypeCode
	3.8.2 Defining New Types
	3.8.3 Sending Only a Few Fields
	3.8.4 Type Extension and Versioning
	3.8.5 Sending Type Codes on the Network
	3.8.5.1 Type Codes for Built-in Types

	3.9 Working with Data Samples
	3.9.1 Objects of Concrete Types
	3.9.2 Objects of Dynamically Defined Types

	Chapter 4 Entities
	4.1 Common Operations for All Entities
	4.1.1 Creating and Deleting Entities
	4.1.2 Enabling Entities
	4.1.2.1 Rules for Calling enable()

	4.1.3 Getting an Entity’s Instance Handle
	4.1.4 Getting Status and Status Changes
	4.1.5 Getting and Setting Listeners
	4.1.6 Getting the StatusCondition
	4.1.7 Getting and Setting QosPolicies
	4.1.7.1 Changing the QoS Defaults Used to Create Entities: set_default_*_qos()
	4.1.7.2 Setting QoS During Entity Creation
	4.1.7.3 Changing the QoS for an Existing Entity
	4.1.7.4 Default Values

	4.2 QosPolicies
	4.2.1 QoS Requested vs. Offered Compatibility—the RxO Property
	4.2.2 Special QosPolicy Handling Considerations for C

	4.3 Statuses
	4.3.1 Types of Communication Status
	4.3.1.1 Changes in Plain Communication Status
	4.3.1.2 Changes in Read Communication Status

	4.3.2 Special Status-Handling Considerations for C

	4.4 Listeners
	4.4.1 Types of Listeners
	4.4.2 Creating and Deleting Listeners
	4.4.3 Special Considerations for Listeners in C
	4.4.4 Hierarchical Processing of Listeners
	4.4.4.1 Processing Read Communication Statuses

	4.4.5 Operations Allowed within Listener Callbacks

	4.5 Exclusive Areas (EAs)
	4.5.1 Restricted Operations in Listener Callbacks

	4.6 Conditions and WaitSets
	4.6.1 Creating and Deleting WaitSets
	4.6.2 WaitSet Operations
	4.6.3 Waiting for Conditions
	4.6.3.1 How WaitSets Block

	4.6.4 Processing Triggered Conditions—What to do when Wait() Returns
	4.6.5 Conditions and WaitSet Example
	4.6.6 GuardConditions
	4.6.7 ReadConditions and QueryConditions
	4.6.7.1 How ReadConditions are Triggered
	4.6.7.2 QueryConditions

	4.6.8 StatusConditions
	4.6.8.1 How StatusConditions are Triggered

	4.6.9 Using Both Listeners and WaitSets

	Chapter 5 Topics
	5.1 Topics
	5.1.1 Creating Topics
	5.1.2 Deleting Topics
	5.1.3 Setting Topic QosPolicies
	5.1.3.1 Configuring QoS Settings when the Topic is Created
	5.1.3.2 Changing QoS Settings After the Topic Has Been Created

	5.1.4 Copying QoS From a Topic to a DataWriter or DataReader
	5.1.5 Setting Up TopicListeners
	5.1.6 Navigating Relationships Among Entities
	5.1.6.1 Finding a Topic’s DomainParticipant
	5.1.6.2 Retrieving a Topic’s Name or Type Name

	5.2 Topic QosPolicies
	5.2.1 TOPIC_DATA QosPolicy
	5.2.1.1 Example
	5.2.1.2 Properties
	5.2.1.3 Related QosPolicies
	5.2.1.4 Applicable Entities
	5.2.1.5 System Resource Considerations

	5.3 Status Indicator for Topics
	5.3.1 INCONSISTENT_TOPIC Status

	5.4 ContentFilteredTopics
	5.4.1 Overview
	5.4.2 Where Filtering is Applied—Publishing vs. Subscribing Side
	5.4.3 Creating ContentFilteredTopics
	5.4.4 Deleting ContentFilteredTopics
	5.4.5 Using a ContentFilteredTopic
	5.4.5.1 Getting the Current Expression Parameters
	5.4.5.2 Setting Expression Parameters
	5.4.5.3 Appending a String to an Expression Parameter
	5.4.5.4 Removing a String from an Expression Parameter
	5.4.5.5 Getting the Filter Expression
	5.4.5.6 Getting the Related Topic
	5.4.5.7 ‘Narrowing’ a ContentFilteredTopic to a TopicDescription

	5.4.6 SQL Filter Expression Notation
	5.4.6.1 SQL Grammar
	5.4.6.2 Token Expressions
	5.4.6.3 Type Compatibility in the Predicate
	5.4.6.4 SQL Extension: Regular Expression Matching
	5.4.6.5 Composite Members
	5.4.6.6 Strings
	5.4.6.7 Enumerations
	5.4.6.8 Pointers
	5.4.6.9 Arrays
	5.4.6.10 Sequences
	5.4.6.11 Example SQL Filter Expressions

	5.4.7 STRINGMATCH Filter Expression Notation
	5.4.7.1 Example STRINGMATCH Filter Expressions
	5.4.7.2 STRINGMATCH Filter Expression Parameters

	5.4.8 Custom Content Filters
	5.4.8.1 Registering a Custom Filter
	5.4.8.2 Unregistering a Custom Filter
	5.4.8.3 Retrieving a ContentFilter
	5.4.8.4 Compile Function
	5.4.8.5 Evaluate Function
	5.4.8.6 Finalize Function

	Chapter 6 Sending Data
	6.1 Preview: Steps to Sending Data
	6.2 Publishers
	6.2.1 Creating Publishers Explicitly vs. Implicitly
	6.2.2 Creating Publishers
	6.2.3 Deleting Publishers
	6.2.3.1 Deleting Contained DataWriters

	6.2.4 Setting Publisher QosPolicies
	6.2.4.1 Configuring QoS Settings when the Publisher is Created
	6.2.4.2 Changing QoS Settings After the Publisher Has Been Created
	6.2.4.3 Getting and Setting the Publisher’s Default QoS Profile and Library
	6.2.4.4 Getting and Setting Default QoS for DataWriters
	6.2.4.5 Other Publisher QoS-Related Operations

	6.2.5 Setting Up PublisherListeners
	6.2.6 Finding a Publisher’s Related Entities
	6.2.7 Waiting for Acknowledgments
	6.2.8 Statuses for Publishers
	6.2.9 Suspending and Resuming Publications

	6.3 DataWriters
	6.3.1 Creating DataWriters
	6.3.2 Getting All DataWriters
	6.3.3 Deleting DataWriters
	6.3.4 Setting Up DataWriterListeners
	6.3.5 Checking DataWriter Status
	6.3.6 Statuses for DataWriters
	6.3.6.1 DATA_WRITER_CACHE_STATUS
	6.3.6.2 DATA_WRITER_PROTOCOL_STATUS
	6.3.6.3 LIVELINESS_LOST Status
	6.3.6.4 OFFERED_DEADLINE_MISSED Status
	6.3.6.5 OFFERED_INCOMPATIBLE_QOS Status
	6.3.6.6 PUBLICATION_MATCHED Status
	6.3.6.7 RELIABLE_WRITER_CACHE_CHANGED Status (DDS Extension)
	6.3.6.8 RELIABLE_READER_ACTIVITY_CHANGED Status (DDS Extension)

	6.3.7 Using a Type-Specific DataWriter (FooDataWriter)
	6.3.8 Writing Data
	6.3.8.1 Blocking During a write()

	6.3.9 Flushing Batches of Data Samples
	6.3.10 Writing Coherent Sets of Data Samples
	6.3.11 Waiting for Acknowledgments
	6.3.12 Managing Data Instances (Working with Keyed Data Types)
	6.3.12.1 Registering and Unregistering Instances
	6.3.12.2 Disposing of Data
	6.3.12.3 Looking Up an Instance Handle
	6.3.12.4 Getting the Key Value for an Instance

	6.3.13 Setting DataWriter QosPolicies
	6.3.13.1 Configuring QoS Settings when the DataWriter is Created
	6.3.13.2 Changing QoS Settings After the DataWriter Has Been Created
	6.3.13.3 Using a Topic’s QoS to Initialize a DataWriter’s QoS

	6.3.14 Navigating Relationships Among Entities
	6.3.14.1 Finding Matching Subscriptions
	6.3.14.2 Finding Related Entities

	6.3.15 Asserting Liveliness

	6.4 Publisher/Subscriber QosPolicies
	6.4.1 ASYNCHRONOUS_PUBLISHER QosPolicy (DDS Extension)
	6.4.1.1 Properties
	6.4.1.2 Related QosPolicies
	6.4.1.3 Applicable Entities
	6.4.1.4 System Resource Considerations

	6.4.2 ENTITYFACTORY QosPolicy
	6.4.2.1 Example
	6.4.2.2 Properties
	6.4.2.3 Related QosPolicies
	6.4.2.4 Applicable Entities
	6.4.2.5 System Resource Considerations

	6.4.3 EXCLUSIVE_AREA QosPolicy (DDS Extension)
	6.4.3.1 Example
	6.4.3.2 Properties
	6.4.3.3 Related QosPolicies
	6.4.3.4 Applicable Entities
	6.4.3.5 System Resource Considerations

	6.4.4 GROUP_DATA QosPolicy
	6.4.4.1 Example
	6.4.4.2 Properties
	6.4.4.3 Related QosPolicies
	6.4.4.4 Applicable Entities
	6.4.4.5 System Resource Considerations

	6.4.5 PARTITION QosPolicy
	6.4.5.1 Rules for PARTITION Matching
	6.4.5.2 Pattern Matching for PARTITION Names
	6.4.5.3 Example
	6.4.5.4 Properties
	6.4.5.5 Related QosPolicies
	6.4.5.6 Applicable Entities
	6.4.5.7 System Resource Considerations

	6.4.6 PRESENTATION QosPolicy
	6.4.6.1 Coherent Access
	6.4.6.2 Ordered Access
	6.4.6.3 Example
	6.4.6.4 Properties
	6.4.6.5 Related QosPolicies
	6.4.6.6 Applicable Entities
	6.4.6.7 System Resource Considerations

	6.5 DataWriter QosPolicies
	6.5.1 BATCH QosPolicy (DDS Extension)
	6.5.1.1 Synchronous and Asynchronous Flushing
	6.5.1.2 Batching vs. Coalescing
	6.5.1.3 Batching and ContentFilteredTopics
	6.5.1.4 Performance Considerations
	6.5.1.5 Maximum Transport Datagram Size
	6.5.1.6 Properties
	6.5.1.7 Related QosPolicies
	6.5.1.8 Applicable Entities
	6.5.1.9 System Resource Considerations

	6.5.2 DATA_WRITER_PROTOCOL QosPolicy (DDS Extension)
	6.5.2.1 High and Low Watermarks
	6.5.2.2 Normal, Fast, and Late-Joiner Heartbeat Periods
	6.5.2.3 Disabling Positive Acknowledgements
	6.5.2.4 Configuring the Send Window Size
	6.5.2.5 Propagating Serialized Keys with Disposed-Instance Notifications
	6.5.2.6 Virtual Heartbeats
	6.5.2.7 Resending Over Multicast
	6.5.2.8 Example
	6.5.2.9 Properties
	6.5.2.10 Related QosPolicies
	6.5.2.11 Applicable Entities
	6.5.2.12 System Resource Considerations

	6.5.3 DATA_WRITER_RESOURCE_LIMITS QosPolicy (DDS Extension)
	6.5.3.1 Example
	6.5.3.2 Properties
	6.5.3.3 Related QosPolicies
	6.5.3.4 Applicable Entities
	6.5.3.5 System Resource Considerations

	6.5.4 DEADLINE QosPolicy
	6.5.4.1 Example
	6.5.4.2 Properties
	6.5.4.3 Related QosPolicies
	6.5.4.4 Applicable Entities
	6.5.4.5 System Resource Considerations

	6.5.5 DESTINATION_ORDER QosPolicy
	6.5.5.1 Properties
	6.5.5.2 Related QosPolicies
	6.5.5.3 Applicable Entities
	6.5.5.4 System Resource Considerations

	6.5.6 DURABILITY QosPolicy
	6.5.6.1 Example
	6.5.6.2 Properties
	6.5.6.3 Related QosPolicies
	6.5.6.4 Applicable Entities
	6.5.6.5 System Resource Considerations

	6.5.7 DURABILITY SERVICE QosPolicy
	6.5.7.1 Properties
	6.5.7.2 Related QosPolicies
	6.5.7.3 Applicable Entities
	6.5.7.4 System Resource Considerations

	6.5.8 ENTITYNAME QosPolicy (DDS Extension)
	6.5.8.1 Properties
	6.5.8.2 Related QosPolicies
	6.5.8.3 Applicable Entities
	6.5.8.4 System Resource Considerations

	6.5.9 HISTORY QosPolicy
	6.5.9.1 Example
	6.5.9.2 Properties
	6.5.9.3 Related QosPolicies
	6.5.9.4 Applicable Entities
	6.5.9.5 System Resource Considerations

	6.5.10 LATENCYBUDGET QoS Policy
	6.5.10.1 Applicable Entities

	6.5.11 LIFESPAN QoS Policy
	6.5.11.1 Properties
	6.5.11.2 Related QoS Policies
	6.5.11.3 Applicable Entities
	6.5.11.4 System Resource Considerations

	6.5.12 LIVELINESS QosPolicy
	6.5.12.1 Example
	6.5.12.2 Properties
	6.5.12.3 Related QosPolicies
	6.5.12.4 Applicable Entities
	6.5.12.5 System Resource Considerations

	6.5.13 MULTI_CHANNEL QosPolicy (DDS Extension)
	6.5.13.1 Example
	6.5.13.2 Properties
	6.5.13.3 Related Qos Policies
	6.5.13.4 Applicable Entities
	6.5.13.5 System Resource Considerations

	6.5.14 OWNERSHIP QosPolicy
	6.5.14.1 How Connext Selects which DataWriter is the Exclusive Owner
	6.5.14.2 Example
	6.5.14.3 Properties
	6.5.14.4 Related QosPolicies
	6.5.14.5 Applicable Entities
	6.5.14.6 System Resource Considerations

	6.5.15 OWNERSHIP_STRENGTH QosPolicy
	6.5.15.1 Example
	6.5.15.2 Properties
	6.5.15.3 Related QosPolicies
	6.5.15.4 Applicable Entities
	6.5.15.5 System Resource Considerations

	6.5.16 PROPERTY QosPolicy (DDS Extension)
	6.5.16.1 Properties
	6.5.16.2 Related QosPolicies
	6.5.16.3 Applicable Entities
	6.5.16.4 System Resource Considerations

	6.5.17 PUBLISH_MODE QosPolicy (DDS Extension)
	6.5.17.1 Properties
	6.5.17.2 Related QosPolicies
	6.5.17.3 Applicable Entities
	6.5.17.4 System Resource Considerations

	6.5.18 RELIABILITY QosPolicy
	6.5.18.1 Example
	6.5.18.2 Properties
	6.5.18.3 Related QosPolicies
	6.5.18.4 Applicable Entities
	6.5.18.5 System Resource Considerations

	6.5.19 RESOURCE_LIMITS QosPolicy
	6.5.19.1 Configuring Resource Limits for Asynchronous DataWriters
	6.5.19.2 Configuring DataWriter Instance Replacement
	6.5.19.3 Example
	6.5.19.4 Properties
	6.5.19.5 Related QosPolicies
	6.5.19.6 Applicable Entities
	6.5.19.7 System Resource Considerations

	6.5.20 TRANSPORT_PRIORITY QosPolicy
	6.5.20.1 Example
	6.5.20.2 Properties
	6.5.20.3 Related QosPolicies
	6.5.20.4 Applicable Entities
	6.5.20.5 System Resource Considerations

	6.5.21 TRANSPORT_SELECTION QosPolicy (DDS Extension)
	6.5.21.1 Example
	6.5.21.2 Properties
	6.5.21.3 Related QosPolicies
	6.5.21.4 Applicable Entities
	6.5.21.5 System Resource Considerations

	6.5.22 TRANSPORT_UNICAST QosPolicy (DDS Extension)
	6.5.22.1 Example
	6.5.22.2 Properties
	6.5.22.3 Related QosPolicies
	6.5.22.4 Applicable Entities
	6.5.22.5 System Resource Considerations

	6.5.23 TYPESUPPORT QosPolicy (DDS Extension)
	6.5.23.1 Properties
	6.5.23.2 Related QoS Policies
	6.5.23.3 Applicable Entities
	6.5.23.4 System Resource Considerations

	6.5.24 USER_DATA QosPolicy
	6.5.24.1 Example
	6.5.24.2 Properties
	6.5.24.3 Related QosPolicies
	6.5.24.4 Applicable Entities
	6.5.24.5 System Resource Considerations

	6.5.25 WRITER_DATA_LIFECYCLE QoS Policy
	6.5.25.1 Properties
	6.5.25.2 Related QoS Policies
	6.5.25.3 Applicable Entities
	6.5.25.4 System Resource Considerations

	6.6 FlowControllers (DDS Extension)
	6.6.1 Flow Controller Scheduling Policies
	6.6.2 Managing Fast DataWriters When Using a FlowController
	6.6.3 Token Bucket Properties
	6.6.3.1 max_tokens
	6.6.3.2 tokens_added_per_period
	6.6.3.3 tokens_leaked_per_period
	6.6.3.4 period
	6.6.3.5 bytes_per_token

	6.6.4 Prioritized Samples
	6.6.4.1 Designating Priorities
	6.6.4.2 Priority-Based Filtering

	6.6.5 Creating and Configuring Custom FlowControllers with Property QoS
	6.6.5.1 Example

	6.6.6 Creating and Deleting FlowControllers
	6.6.7 Getting/Setting Default FlowController Properties
	6.6.8 Getting/Setting Properties for a Specific FlowController
	6.6.9 Adding an External Trigger
	6.6.10 Other FlowController Operations

	Chapter 7 Receiving Data
	7.1 Preview: Steps to Receiving Data
	7.2 Subscribers
	7.2.1 Creating Subscribers Explicitly vs. Implicitly
	7.2.2 Creating Subscribers
	7.2.3 Deleting Subscribers
	7.2.3.1 Deleting Contained DataReaders

	7.2.4 Setting Subscriber QosPolicies
	7.2.4.1 Configuring QoS Settings when the Subscriber is Created
	7.2.4.2 Changing QoS Settings After the Subscriber Has Been Created
	7.2.4.3 Getting and Settings the Subscriber’s Default QoS Profile and Library
	7.2.4.4 Getting and Setting Default QoS for DataReaders
	7.2.4.5 Subscriber QoS-Related Operations

	7.2.5 Beginning and Ending Group-Ordered Access
	7.2.6 Setting Up SubscriberListeners
	7.2.7 Getting DataReaders with Specific Samples
	7.2.8 Finding a Subscriber’s Related Entities
	7.2.9 Statuses for Subscribers
	7.2.9.1 DATA_ON_READERS Status

	7.3 DataReaders
	7.3.1 Creating DataReaders
	7.3.2 Getting All DataReaders
	7.3.3 Deleting DataReaders
	7.3.3.1 Deleting Contained ReadConditions

	7.3.4 Setting Up DataReaderListeners
	7.3.5 Checking DataReader Status and StatusConditions
	7.3.6 Waiting for Historical Data
	7.3.7 Statuses for DataReaders
	7.3.7.1 DATA_AVAILABLE Status
	7.3.7.2 DATA_READER_CACHE_STATUS
	7.3.7.3 DATA_READER_PROTOCOL_STATUS
	7.3.7.4 LIVELINESS_CHANGED Status
	7.3.7.5 REQUESTED_DEADLINE_MISSED Status
	7.3.7.6 REQUESTED_INCOMPATIBLE_QOS Status
	7.3.7.7 SAMPLE_LOST Status
	7.3.7.8 SAMPLE_REJECTED Status
	7.3.7.9 SUBSCRIPTION_MATCHED Status

	7.3.8 Setting DataReader QosPolicies
	7.3.8.1 Configuring QoS Settings when the DataReader is Created
	7.3.8.2 Changing QoS Settings After the DataReader Has Been Created
	7.3.8.3 Using a Topic’s QoS to Initialize a DataWriter’s QoS

	7.3.9 Navigating Relationships Among Entities
	7.3.9.1 Finding Matching Publications
	7.3.9.2 Finding a DataReader’s Related Entities
	7.3.9.3 Looking Up an Instance Handle
	7.3.9.4 Getting the Key Value for an Instance

	7.4 Using DataReaders to Access Data (Read & Take)
	7.4.1 Using a Type-Specific DataReader (FooDataReader)
	7.4.2 Loaning and Returning Data and SampleInfo Sequences
	7.4.3 Accessing Data Samples with Read or Take
	7.4.3.1 Read vs. Take
	7.4.3.2 General Patterns for Accessing Data
	7.4.3.3 read_next_sample and take_next_sample
	7.4.3.4 read_instance and take_instance
	7.4.3.5 read_next_instance and take_next_instance
	7.4.3.6 read_w_condition and take_w_condition
	7.4.3.7 read_instance_w_condition and take_instance_w_condition
	7.4.3.8 read_next_instance_w_condition and take_next_instance_w_condition

	7.4.4 The Sequence Data Structure
	7.4.5 The SampleInfo Structure
	7.4.5.1 Reception Timestamp
	7.4.5.2 Sample States
	7.4.5.3 View States
	7.4.5.4 Instance States
	7.4.5.5 Generation Counts and Ranks
	7.4.5.6 Valid Data Flag

	7.5 Subscriber QosPolicies
	7.6 DataReader QosPolicies
	7.6.1 AVAILABILITY QosPolicy (DDS Extension)
	7.6.1.1 Collaborative DataWriters
	7.6.1.2 Properties
	7.6.1.3 Related QosPolicies
	7.6.1.4 Applicable Entities
	7.6.1.5 System Resource Considerations

	7.6.2 DATA_READER_PROTOCOL QosPolicy (DDS Extension)
	7.6.2.1 Receive Window Size
	7.6.2.2 Round-Trip Time For Filtering Redundant NACKs
	7.6.2.3 Example
	7.6.2.4 Properties
	7.6.2.5 Related QosPolicies
	7.6.2.6 Applicable Entities
	7.6.2.7 System Resource Considerations

	7.6.3 DATA_READER_RESOURCE_LIMITS QosPolicy (DDS Extension)
	7.6.3.1 max_total_instances and max_instances
	7.6.3.2 Example
	7.6.3.3 Properties
	7.6.3.4 Related QosPolicies
	7.6.3.5 Applicable Entities
	7.6.3.6 System Resource Considerations

	7.6.4 READER_DATA_LIFECYCLE QoS Policy
	7.6.4.1 Properties
	7.6.4.2 Related QoS Policies
	7.6.4.3 Applicable Entities
	7.6.4.4 System Resource Considerations

	7.6.5 TIME_BASED_FILTER QosPolicy
	7.6.5.1 Example
	7.6.5.2 Properties
	7.6.5.3 Related QosPolicies
	7.6.5.4 Applicable Entities
	7.6.5.5 System Resource Considerations

	7.6.6 TRANSPORT_MULTICAST QosPolicy (DDS Extension)
	7.6.6.1 Example
	7.6.6.2 Properties
	7.6.6.3 Related QosPolicies
	7.6.6.4 Applicable Entities
	7.6.6.5 System Resource Considerations

	Chapter 8 Working with Domains
	8.1 Fundamentals of Domains and DomainParticipants
	8.2 DomainParticipantFactory
	8.2.1 Setting DomainParticipantFactory QosPolicies
	8.2.1.1 Getting and Setting the DomainParticipantFactory’s Default QoS Profile and Library

	8.2.2 Getting and Setting Default QoS for DomainParticipants
	8.2.3 Freeing Resources Used by the DomainParticipantFactory
	8.2.4 Looking Up a DomainParticipant
	8.2.5 Getting QoS Values from a QoS Profile

	8.3 DomainParticipants
	8.3.1 Creating a DomainParticipant
	8.3.2 Deleting DomainParticipants
	8.3.3 Deleting Contained Entities
	8.3.4 Choosing a Domain ID and Creating Multiple Domains
	8.3.5 Setting Up DomainParticipantListeners
	8.3.6 Setting DomainParticipant QosPolicies
	8.3.6.1 Configuring QoS Settings when the DomainParticipant is Created
	8.3.6.2 Changing QoS Settings After the DomainParticipant Has Been Created
	8.3.6.3 Getting and Setting the DomainParticipant’s Default QoS Profile and Library
	8.3.6.4 Getting and Setting Default QoS for Child Entities

	8.3.7 Looking up Topic Descriptions
	8.3.8 Finding a Topic
	8.3.9 Getting the Implicit Publisher or Subscriber
	8.3.10 Asserting Liveliness
	8.3.11 Learning about Discovered DomainParticipants
	8.3.12 Learning about Discovered Topics
	8.3.13 Other DomainParticipant Operations
	8.3.13.1 Verifying Entity Containment
	8.3.13.2 Getting the Current Time
	8.3.13.3 Getting All Publishers and Subscribers

	8.4 DomainParticipantFactory QosPolicies
	8.4.1 LOGGING QosPolicy (DDS Extension)
	8.4.1.1 Example
	8.4.1.2 Properties
	8.4.1.3 Related QosPolicies
	8.4.1.4 Applicable Entities
	8.4.1.5 System Resource Considerations

	8.4.2 PROFILE QosPolicy (DDS Extension)
	8.4.2.1 Example
	8.4.2.2 Properties
	8.4.2.3 Related QosPolicies
	8.4.2.4 Applicable Entities
	8.4.2.5 System Resource Considerations

	8.4.3 SYSTEM_RESOURCE_LIMITS QoS Policy (DDS Extension)
	8.4.3.1 Example
	8.4.3.2 Properties
	8.4.3.3 Related QoS Policies
	8.4.3.4 Applicable Entities
	8.4.3.5 System Resource Considerations

	8.5 DomainParticipant QosPolicies
	8.5.1 DATABASE QosPolicy (DDS Extension)
	8.5.1.1 Example
	8.5.1.2 Properties
	8.5.1.3 Related QosPolicies
	8.5.1.4 Applicable Entities
	8.5.1.5 System Resource Considerations

	8.5.2 DISCOVERY QosPolicy (DDS Extension)
	8.5.2.1 Transports Used for Discovery
	8.5.2.2 Setting the ‘Initial Peers’ List
	8.5.2.3 Adding and Removing Peers List Entries
	8.5.2.4 Configuring Multicast Receive Addresses
	8.5.2.5 Meta-Traffic Transport Priority
	8.5.2.6 Controlling Acceptance of Unknown Peers
	8.5.2.7 Example
	8.5.2.8 Properties
	8.5.2.9 Related QosPolicies
	8.5.2.10 Applicable Entities
	8.5.2.11 System Resource Considerations

	8.5.3 DISCOVERY_CONFIG QosPolicy (DDS Extension)
	8.5.3.1 Resource Limits for Builtin-Topic DataReaders
	8.5.3.2 Controlling Purging of Remote Participants
	8.5.3.3 Controlling the Reliable Protocol Used by Builtin-Topic DataWriters/DataReaders
	8.5.3.4 Example
	8.5.3.5 Properties
	8.5.3.6 Related QosPolicies
	8.5.3.7 Applicable Entities
	8.5.3.8 System Resource Considerations

	8.5.4 DOMAIN_PARTICIPANT_RESOURCE_LIMITS QosPolicy (DDS Extension)
	8.5.4.1 Configuring Resource Limits for Asynchronous DataWriters
	8.5.4.2 Configuring Memory Allocation
	8.5.4.3 Example
	8.5.4.4 Properties
	8.5.4.5 Related QosPolicies
	8.5.4.6 Applicable Entities
	8.5.4.7 System Resource Considerations

	8.5.5 EVENT QosPolicy (DDS Extension)
	8.5.5.1 Example
	8.5.5.2 Properties
	8.5.5.3 Related QosPolicies
	8.5.5.4 Applicable Entities
	8.5.5.5 System Resource Considerations

	8.5.6 RECEIVER_POOL QosPolicy (DDS Extension)
	8.5.6.1 Example
	8.5.6.2 Properties
	8.5.6.3 Related QosPolicies
	8.5.6.4 Applicable Entities
	8.5.6.5 System Resource Considerations

	8.5.7 TRANSPORT_BUILTIN QosPolicy (DDS Extension)
	8.5.7.1 Example
	8.5.7.2 Properties
	8.5.7.3 Related QosPolicies
	8.5.7.4 Applicable Entities
	8.5.7.5 System Resource Considerations

	8.5.8 TRANSPORT_MULTICAST_MAPPING QosPolicy (DDS Extension)
	8.5.8.1 Formatting Rules for Addresses
	8.5.8.2 Example
	8.5.8.3 Properties
	8.5.8.4 Related QosPolicies
	8.5.8.5 Applicable Entities
	8.5.8.6 System Resource Considerations

	8.5.9 WIRE_PROTOCOL QosPolicy (DDS Extension)
	8.5.9.1 Choosing Participant IDs
	8.5.9.2 Host, App, and Instance IDs
	8.5.9.3 Ports Used for Discovery
	8.5.9.4 Controlling How the GUID is Set (rtps_auto_id_kind)
	8.5.9.5 Example
	8.5.9.6 Properties
	8.5.9.7 Related QosPolicies
	8.5.9.8 Applicable Entities
	8.5.9.9 System Resource Considerations

	8.6 Clock Selection
	8.6.1 Available Clocks
	8.6.2 Clock Selection Strategy

	Chapter 9 Building Applications
	9.1 Running on a Computer Not Connected to a Network
	9.2 Connext Header Files — All Architectures
	9.3 UNIX-based Platforms
	9.3.1 Required Libraries
	9.3.2 Compiler Flags

	9.4 Windows Platforms
	9.4.1 Using Microsoft Visual C++ 6.0
	9.4.2 Using Visual Studio .NET, Visual Studio .NET 2003, or Visual Studio 2005

	9.5 Java Platforms
	9.5.1 Java Libraries
	9.5.2 Native Libraries

	Part 3: Advanced Concepts
	Chapter 10 Reliable Communications
	10.1 Sending Data Reliably
	10.1.1 Best-effort Delivery Model
	10.1.2 Reliable Delivery Model

	10.2 Overview of the Reliable Protocol
	10.3 Using QosPolicies to Tune the Reliable Protocol
	10.3.1 Enabling Reliability
	10.3.1.1 Blocking until the Send Queue Has Space Available

	10.3.2 Tuning Queue Sizes and Other Resource Limits
	10.3.2.1 Understanding the Send Queue and Setting its Size
	10.3.2.2 Understanding the Receive Queue and Setting Its Size

	10.3.3 Controlling Queue Depth with the History QosPolicy
	10.3.4 Controlling Heartbeats and Retries with DataWriterProtocol QosPolicy
	10.3.4.1 How Often Heartbeats are Resent (heartbeat_period)
	10.3.4.2 How Often Piggyback Heartbeats are Sent (heartbeats_per_max_samples)
	10.3.4.3 Controlling Packet Size for Resent Samples (max_bytes_per_nack_response)
	10.3.4.4 Controlling How Many Times Heartbeats are Resent (max_heartbeat_retries)
	10.3.4.5 Treating Non-Progressing Readers as Inactive Readers (inactivate_nonprogressing_readers)
	10.3.4.6 Coping with Redundant Requests for Missing Samples (max_nack_response_delay)
	10.3.4.7 Disabling Positive Acknowledgements (disable_postive_acks_min_sample_keep_duration)

	10.3.5 Avoiding Message Storms with DataReaderProtocol QosPolicy
	10.3.6 Resending Samples to Late-Joiners with the Durability QosPolicy
	10.3.7 Use Cases
	10.3.7.1 Importance of Relative Thread Priorities
	10.3.7.2 Aperiodic Use Case: One-at-a-Time
	10.3.7.3 Aperiodic, Bursty
	10.3.7.4 Periodic

	Chapter 11 Mechanisms for Achieving Information Durability and Persistence
	11.1 Introduction
	11.1.1 Scenario 1. DataReader Joins after DataWriter Restarts (Durable Writer History)
	11.1.2 Scenario 2: DataReader Restarts While DataWriter Stays Up (Durable Reader State)
	11.1.3 Scenario 3. DataReader Joins after DataWriter Leaves Domain (Durable Data)

	11.2 Durability and Persistence Based on Virtual GUIDs
	11.3 Durable Writer History
	11.3.1 Durable Writer History Use Case
	11.3.2 How To Configure Durable Writer History

	11.4 Durable Reader State
	11.4.1 Durable Reader State Use Case
	11.4.2 How To Configure a DataReader for Durable Reader State

	11.5 Data Durability
	11.5.1 RTI Persistence Service

	Chapter 12 Discovery
	12.1 What is Discovery?
	12.1.1 Simple Participant Discovery
	12.1.2 Simple Endpoint Discovery

	12.2 Configuring the Peers List Used in Discovery
	12.2.1 Peer Descriptor Format
	12.2.1.1 Locator Format
	12.2.1.2 Address Format

	12.2.2 NDDS_DISCOVERY_PEERS Environment Variable Format
	12.2.3 NDDS_DISCOVERY_PEERS File Format

	12.3 Discovery Implementation
	12.3.1 Participant Discovery
	12.3.1.1 Refresh Mechanism
	12.3.1.2 Maintaining DataWriter Liveliness for kinds AUTOMATIC and MANUAL_BY_PARTICIPANT

	12.3.2 Endpoint Discovery
	12.3.3 Discovery Traffic Summary
	12.3.4 Discovery-Related QoS

	12.4 Debugging Discovery
	12.5 Ports Used for Discovery
	12.5.1 Inbound Ports for Meta-Traffic
	12.5.2 Inbound Ports for User Traffic
	12.5.3 Automatic Selection of participant_id and Port Reservation
	12.5.4 Tuning domain_id_gain and participant_id_gain

	Chapter 13 Transport Plugins
	13.1 Builtin Transport Plugins
	13.2 Extension Transport Plugins
	13.3 The NDDSTransportSupport Class
	13.4 Explicitly Creating Builtin Transport Plugin Instances
	13.5 Setting Builtin Transport Properties of the Default Transport Instance—get/set_builtin_transport_properties()
	13.6 Setting Builtin Transport Properties with the PropertyQosPolicy
	13.6.1 Notes Regarding Loopback and Shared Memory
	13.6.2 Setting the Maximum Gather-Send Buffer Count for UDPv4 and UDPv6
	13.6.3 Formatting Rules for IPv6 ‘Allow’ and ‘Deny’ Address Lists

	13.7 Installing Additional Builtin Transport Plugins with register_transport()
	13.7.1 Transport Lifecycles
	13.7.2 Transport Aliases
	13.7.3 Transport Network Addresses

	13.8 Installing Additional Builtin Transport Plugins with PropertyQosPolicy
	13.9 Other Transport Support Operations
	13.9.1 Adding a Send Route
	13.9.2 Adding a Receive Route
	13.9.3 Looking Up a Transport Plugin

	Chapter 14 Built-In Topics
	14.1 Listeners for Built-in Entities
	14.2 Built-in DataReaders
	14.2.1 LOCATOR_FILTER QoS Policy (DDS Extension)

	14.3 Accessing the Built-in Subscriber
	14.4 Restricting Communication—Ignoring Entities
	14.4.1 Ignoring Specific Remote DomainParticipants
	14.4.2 Ignoring Publications and Subscriptions
	14.4.3 Ignoring Topics

	Chapter 15 Configuring QoS with XML
	15.1 Example XML File
	15.2 How to Load XML-Specified QoS Settings
	15.2.1 Loading, Reloading and Unloading Profiles

	15.3 How to Use XML-Specified QoS Settings
	15.4 XML File Syntax
	15.5 XML String Syntax
	15.6 How the XML is Validated
	15.6.1 Validation at Run-Time
	15.6.2 XML File Validation During Editing

	15.7 Configuring QoS with XML
	15.7.1 QosPolicies
	15.7.2 Sequences
	15.7.3 Arrays
	15.7.4 Enumeration Values
	15.7.5 Time Values (Durations)
	15.7.6 Transport Properties
	15.7.7 Thread Settings

	15.8 QoS Profiles
	15.8.1 QoS Profiles with a Single QoS
	15.8.2 QoS-Profile Inheritance
	15.8.3 Topic Filters
	15.8.4 Overwriting Default QoS Values
	15.8.5 Get Qos Profiles

	15.9 QoS Libraries
	15.9.1 Get Qos Profile Libraries

	15.10 URL Groups
	15.11 Configuring Logging Via XML

	Chapter 16 Multi-channel DataWriters
	16.1 What is a Multi-channel DataWriter?
	16.2 How to Configure a Multi-channel DataWriter
	16.2.1 Limitations

	16.3 Multi-channel Configuration on the Reader Side
	16.4 Where Does the Filtering Occur?
	16.4.1 Filtering at the DataWriter
	16.4.2 Filtering at the DataReader
	16.4.3 Filtering on the Network Hardware

	16.5 Fault Tolerance and Redundancy
	16.6 Reliability with Multi-Channel DataWriters
	16.6.1 Reliable Delivery
	16.6.2 Reliable Protocol Considerations

	16.7 Performance Considerations
	16.7.1 Network-Switch Filtering
	16.7.2 DataWriter and DataReader Filtering

	Chapter 17 Connext Threading Model
	17.1 Database Thread
	17.2 Event Thread
	17.3 Receive Threads
	17.4 Exclusive Areas, Connext Threads and User Listeners
	17.5 Controlling CPU Core Affinity for RTI Threads

	Chapter 18 Troubleshooting
	18.1 What Version am I Running?
	18.1.1 Finding Version Information in Revision Files
	18.1.2 Finding Version Information Programmatically

	18.2 Controlling Messages from Connext
	18.2.1 Format of Logged Messages
	18.2.1.1 Timestamps
	18.2.1.2 Thread identification
	18.2.1.3 Hierarchical Context
	18.2.1.4 Explanation of Context Strings

	18.2.2 Configuring Logging via XML

	Part 4: RTI Secure WAN Transport
	Chapter 19 Secure WAN Transport
	19.1 WAN Traversal via UDP Hole-punching
	19.1.1 Protocol Details

	19.2 WAN Locators
	19.3 Datagram Transport-Layer Security (DTLS)
	19.3.1 Security Model
	19.3.2 Liveliness Mechanism

	19.4 Certificate Support
	19.5 License Issues

	Chapter 20 Configuring RTI Secure WAN Transport
	20.1 Example Applications
	20.2 Setting Up a Transport with the Property QoS
	20.3 WAN Transport Properties
	20.4 Secure Transport Properties
	20.5 Explicitly Instantiating a WAN or Secure Transport Plugin
	20.5.1 Additional Header Files and Include Directories
	20.5.2 Additional Libraries
	20.5.3 Compiler Flags

	Part 5: RTI Persistence Service
	Chapter 21 Introduction to RTI Persistence Service
	Chapter 22 Configuring Persistence Service
	22.1 How to Load the XML Configuration
	22.2 XML Configuration File
	22.2.1 Configuration File Syntax
	22.2.2 XML Validation
	22.2.2.1 Validation at Run Time
	22.2.2.2 Validation During Editing

	22.3 QoS Configuration
	22.4 Configuring the Persistence Service Application
	22.5 Configuring Remote Administration
	22.6 Configuring the Persistent Storage
	22.7 Configuring Participants
	22.8 Creating Persistence Groups
	22.8.1 QoSs
	22.8.2 DurabilityService QoS Policy
	22.8.3 Sharing a Publisher/Subscriber
	22.8.4 Sharing a Database Connection
	22.8.5 Memory Management

	22.9 Using RTI Monitoring Library with Persistence Service

	Chapter 23 Running RTI Persistence Service
	23.1 Starting Persistence Service
	23.2 Stopping Persistence Service

	Chapter 24 Administering Persistence Service from a Remote Location
	24.1 Enabling Remote Administration
	24.2 Remote Commands
	24.2.1 start
	24.2.2 stop
	24.2.3 shutdown
	24.2.4 status

	24.3 Accessing Persistence Service from a Connext Application

	Part 6: RTI CORBA Compatibility Kit
	Chapter 25 Introduction to RTI CORBA Compatibility Kit
	Chapter 26 Generating CORBA-Compatible Code with rtiddsgen
	26.1 Generating C++ Code
	26.2 Generating Java Code

	Chapter 27 Supported IDL Types

	Part 7: RTI RTSJ Extension Kit
	Chapter 28 Introduction to RTI RTSJ Extension Kit
	Chapter 29 Using RTI RTSJ Extension Kit

	Part 8: RTI TCP Transport
	Chapter 30 Configuring the RTI TCP Transport
	30.1 TCP Communication Scenarios
	30.1.1 Communication Within a Single LAN
	30.1.2 Symmetric Communication Across NATs
	30.1.3 Asymmetric Communication Across NATs

	30.2 Configuring the TCP Transport
	30.2.1 Choosing a Transport Mode
	30.2.2 Explicitly Instantiating the TCP Transport Plugin
	30.2.2.1 Additional Header Files and Include Directories
	30.2.2.2 Additional Libraries and Compiler Flags

	30.2.3 Configuring the TCP Transport with the Property QosPolicy
	30.2.4 Setting the Initial Peers
	30.2.5 TCP/TLS Transport Properties

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

