
RTI Connext DDS
Core Libraries

Release Notes

Version 5.2.0

© 2015 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
June 2015.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro
DDS, the RTI logo, 1RTI and the phrase, “Your Systems. Working as one,” are registered trade-
marks, trademarks or service marks of Real-Time Innovations, Inc. All other trademarks belong to
their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form (including electronic, mechanical, photocopy, and facsimile) without the prior written per-
mission of Real-Time Innovations, Inc. The software described in this document is furnished under
and subject to the RTI software license agreement. The software may be used or copied only under
the terms of the license agreement.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Chapter 1 Introduction 14
Chapter 2 System Requirements

2.1 Supported Operating Systems 1
2.2 Requirements when Using Microsoft Visual Studio 3
2.3 Disk and Memory Usage 4
2.4 Networking Support 4

Chapter 2 Transitioning from 5.1 to 5.2 6
Chapter 3 Compatibility

3.1 Wire Protocol Compatibility 7
3.1.1 General Information on RTPS (All Releases) 7
3.1.2 Release-Specific Information for Connext DDS 5.x 7

3.1.2.1 Large Data with Endpoint Discovery 7
3.1.3 Release-Specific Information for Connext DDS 4.5 and 5.x 8

3.1.3.1 RTPS Versions 8
3.1.3.2 double, long long, unsigned long long or long double Wire Compatibility 8
3.1.3.3 Sending ‘Large Data’ between RTI Data Distribution Service 4.4d and Older

Releases 8
3.2 Code Compatibility 9

3.2.1 General Information (All Releases) 9
3.2.2 Release-Specific Information for Connext DDS 5.x 10

3.2.2.1 Required Change for Building with C++ Libraries for QNX Platforms—New in Con-
next DDS 5.0.0 10

3.2.2.2 Changes to Custom Content Filters API 10
3.2.2.3 Changes to FooDataWriter::get_key_value() 10
3.2.2.4 Changes in Generated Type Support Code in Connext DDS 5.0.0 10
3.2.2.5 Changes in Generated Type Support Code in Connext DDS 5.1.0 10
3.2.2.6 New Default Value for DomainParticipant Resource Limit, participant_property_

string_max_length 11
3.2.2.7 New Default Value for DomainParticipant’s participant_name.name 11
3.2.2.8 Constant DDS_AUTO_NAME_ENTITY no Longer Available 11
3.2.2.9 Changes to Time_t and Duration_t Methods 11

3.2.3 Release-Specific Information for RTI Data Distribution Service 4.x, Connext DDS 4.5 and
5.x 12
3.2.3.1 Type Support and Generated Code Compatibility 12
3.2.3.2 Other API and Behavior Changes 13

3.3 Extensible Types Compatibility 16
3.3.1 General Compatibility Issues 16

3.3.2 Java Enumeration Incompatibility Issues 17
3.4 ODBC Database Compatibility 17
3.5 Transport Compatibility 17

3.5.1 Shared-Memory Transport Compatibility for Connext DDS 4.5f and 5.x 17
3.5.2 Transport Compatibility for Connext DDS 5.1.0 18

3.5.2.1 Changes to message_size_max 18
3.5.2.2 How to Change Transport Settings in Connext DDS 5.1.0 Applications for Com-

patibility with 5.0.0 18
3.5.2.3 How to Change message_size_max in Connext DDS 5.0.0 Applications for Com-

patibility with 5.1.0 18
3.5.2.4 Changes to Peer Descriptor Format 20

3.5.3 Transport Compatibility for Connext DDS 5.2.0 20
3.5.3.1 Observed Error Messages 21
3.5.3.2 How to Change Transport Settings in 5.2.0 Applications for Compatibility with

5.1.0 22
3.5.4 Transport Compatibility for Connext DDS 5.2.0 on Solaris Platforms with Sparc CPUs 22

3.6 Other Compatibility Issues 23
3.6.1 ContentFilteredTopics 23
3.6.2 Built-in Topics 23
3.6.3 Some Monitoring Types are not Backwards Compatible 24

Chapter 4 What’s Fixed in 5.2.0

4.1 Fixes Related to Application-Level Acknowledgement 25
4.1.1 Invalid Value for valid_response_data in AcknowledgmentInfo—.NET API Only 25
4.1.2 REDAInlineList_addNodeToBackEA:!precondition Error Message when Using Application-

Level Acknowledgment 25
4.1.3 Unable to Send Application-Level Acknowledgement Messages when Using Delegated Reli-

ability 26
4.1.4 Unexpected Memory Growth on DataWriter when Using Batching and Enabling Applic-

ation-Level Acknowledgement 26
4.1.5 Unexpected Memory Growth when using DataReader's acknowledge_sample() Operation 26
4.1.6 Unexpected Timeout Error in DataWriter’s wait_for_acknowledgments() when using Applic-

ation-Level Acknowledgment 26
4.2 Fixes Related to Batching 27

4.2.1 Last value Per Instance Not Guaranteed when Using Batching and No Resources to Satisfy
History Depth 27

4.2.2 Unexpected Precondition Error when Using Batching on DataWriter 27
4.3 Fixes Related to Conditions and Waitsets 27

4.3.1 Calling set_query_parameters() with Same Key-Only Expression in QueryCondition Caused
Waitset not to be Triggered 27

4.3.2 Disposal of Remote DataWriter may have Caused DataReader's Keyed QueryCondition not
to Trigger Anymore 28

4.3.3 Memory Leak when Using QueryConditions on Unkeyed DataReader 28
4.3.4 ReadCondition and Group Access Scope did not Work Correctly 28
4.3.5 ReadCondition not Always Triggered when Samples Available after Losing Remote Par-

ticipant Liveliness 28
4.3.6 WaitSet Operations get_conditions() and wait() were not Thread Safe 29

4.4 Fixes Related to ContentFilters 29
4.4.1 ContentFilteredTopics may not have Correctly Filtered Some C++ Types with Inheritance 29
4.4.2 Default Content Filter may have Failed to Filter Some Types with Optional Members—

DynamicData, Java, and C# APIs Only 29
4.4.3 Filter-Expression Parsing Errors for Variable Names Starting with Reserved Word 29
4.4.4 Invalid filter_data when ContentFilter’s writer_return_loan() Invoked 29
4.4.5 Memory Leak if a Custom Content Filter was not Unregistered 30
4.4.6 Memory Leak when Changing Expression Parameters on ContentFilteredTopic not Asso-

ciated with any Reader 30
4.4.7 Possible Crash when Using ContentFilteredTopic and Builtin SQL Filter 30
4.4.8 Possible Incorrect Filter Results in 'AND' Expressions with Optional Members, Sequences,

or Unions 30
4.4.9 Possible Segmentation Fault from ContentFilteredTopic Evaluation for Samples of Types

with wstrings 31
4.4.10 Segmentation Fault when Creating ContentFilteredTopic with Long Filter Expression 31
4.4.11 Segmentation fault when Using SQL ContentFilteredTopic on Type with Large Maximum

Serialized Size 31
4.4.12 Unexpected Memory Growth on DataWriter when Performing Writer-Side Filtering on

Metadata Fields 32
4.5 Fixes Related to Discovery 32

4.5.1 Discovery Failed on Publisher Side if contentfilter_property_max_length not Long Enough
to Deserialize Filter Information 32

4.5.2 Discovery Packets Sent over Unicast had Incorrect Priority 33
4.5.3 DomainParticipantResourceLimitsQosPolicy's ignored_entity_allocation.max_count had no

Effect 33
4.5.4 Memory Leak upon Remote Participant Discovery 33
4.5.5 Modified RTPS Wire Protocol Built-in Endpoint Mask to Match OMG Specification 33
4.5.6 No Communication with Peer that was Removed, Re-Added 34
4.5.7 ParticipantBuiltinTopicData was Missing Domain ID—.NET API Only 34
4.5.8 Possible Segmentation Fault upon Failure Asserting Remote Reader 34
4.5.9 Potential Bus Error when Discovering Remote Participants with Properties Set—Solaris Plat-

forms on 64-bit Sparc CPUs Only 34
4.5.10 Potential Unexpected Memory Growth when Asserting a Remote Reader 34

4.5.11 Unable to Set remote_participant_allocation with incremental_count of 0 35
4.5.12 Unbounded Memory Growth after Failed Attempt to Ignore Participant 35
4.5.13 Unexpected Memory Growth if Remote Endpoint Changed QoS that is Propagated with

Built-in Topics 35
4.5.14 Unexpected Memory Growth when Discovering Remote Participants 35
4.5.15 Unexpected Memory Growth when Discovering Remote Participants with Role Name 35
4.5.16 Unexpected "PRESPsService_destroyLocalEndpointWithCursor:!remove remote endpoint"

Warning Message 36
4.5.17 Unnecessary Participant Announcements after Participant Leaves the System 36

4.6 Fixes Related to Distributed Logger 36
4.6.1 Default Filter Level for Java 36
4.6.2 Deletion of C/C++ Distributed Logger's DataWriters not Propagated via Discovery 37
4.6.3 Possible Warning when Compiling Distributed Logger Examples on UNIX-Based Systems 37

4.7 Fixes Related to Durable Writer History 37
4.7.1 DataWriter Configured to Use Durable Writer History did not Communicate with Per-

sistence Service 37
4.7.2 Long Delay Receiving Data from DataWriter with Durable Writer History 38
4.7.3 Samples not Acknowledged after Restarting DataWriter in Some Cases 38
4.7.4 Unexpected Memory Growth when using Durable Writer History and Keyed Topics 38

4.8 Fixes Related to DynamicData 39
4.8.1 Cannot Create DynamicDataTypeSupport Object with Typecodes Larger than 64k—Java

API Only 39
4.8.2 DDS_DynamicData_copy() could Create Incorrect DynamicData Object 39
4.8.3 DDS::DYNAMIC_DATA_PROPERTY_DEFAULT, DDS::DYNAMIC_DATA_TYPE_

PROPERTY_DEFAULT Missing from C++ API 39
4.8.4 Failure when Printing DynamicData Object with Type that used Inheritance 39
4.8.5 Inconsistencies between DynamicData's set_char() and get_char() -- Java API Only 39
4.8.6 Incorrect Instance Handles on DynamicData DataReaders Subscribing to Topics with Mut-

able Types 40
4.8.7 Possible Crash when Calling DDS_DynamicData_equals() if Types Contained Arrays—C

and C++ APIs Only 40
4.8.8 Possible Crash when Calling DynamicData get_char_seq() if Sequence Passed In was Too

Small—Java API Only 40
4.8.9 Possible Memory Leak when using DynamicData with Java API 41
4.8.10 Potential Failure Writing DynamicData Object with Unset Optional Primitive Members 41
4.8.11 Potential Serialization Errors on DynamicData DataWriters Publishing Types Containing

Wide Strings 41
4.8.12 Segmentation Fault when Setting pool_buffer_max_size to Zero in DataWriter using

Dynamic Data 41

4.8.13 Some DynamicData Serialization Properties Missing—Java and .NET APIs Only 41
4.8.14 Some Operations on DynamicData Objects with Optional Members Failed 42
4.8.15 Some TypeCode Information Lost when Using DynamicData—Java API Only 42
4.8.16 Unset, Complex, Mutable Optional Members not Correctly Serialized using DynamicData 42
4.8.17 Unset, Complex, Optional Members not Correctly Printed in DynamicData 42
4.8.18 Wide String Support was Missing for DynamicData in Java API 43

4.9 Fixes Related to Instance Management 43
4.9.1 Errors after Reregistering an Instance and Exceeding max_total_instances 43
4.9.2 FooDataWriter::get_key_value() Reported Incorrect Error when Instance did not Exist 43
4.9.3 Invalid Instance Handle Provided by on_instance_replaced() Callback if Replacement of

Empty Instances was Enabled 44
4.9.4 Possible Segmentation Fault or Precondition Error when Reading Samples of Previously Dis-

posed Instance 44
4.10 Fixes Related to Linking 44

4.10.1 Failure when Linking with Other Libraries that Contain Expat-Based Parsers 44
4.10.2 Linker Errors in C Request-Reply API 44

4.11 Fixes Related to Request-Reply Communication 45
4.11.1 Requester's receiveReply() and Similar APIs Returned Immediately when Infinite Spe-

cified—C# API Only 45
4.11.2 Requesters may not have Received Replies of Some Types with Optional Members—Java

and C# APIs 45
4.11.3 Requester or Replier Write Timeout Caused Exception of Wrong Class—C++ API Only 45

4.12 Fixes Related to Transports 45
4.12.1 Bus Error when Using Shared Memory Transport on Sparc Solaris 64-bit Platforms 45
4.12.2 Data Corruption when Sending Large Data at a High Rate from a TCP Transport Plugin

with Windows IOCP 46
4.12.3 DataWriter's Transport Priority had no Effect in TCP Transport Plugin Server Sockets 46
4.12.4 DomainParticipant's add_peer and remove_peer not Supported by TCP Transport 46
4.12.5 Duplicated Transaction ID in TCP Transport Plugin Control Messages—Windows Plat-

forms Only 46
4.12.6 Error Establishing TCP Transport Client Connection could Cause Communication not to

Recover 47
4.12.7 Failure Enabling DomainParticipant when using UDPv6 Transport in Some Cases 47
4.12.8 Host Improperly Identified when no IPv4 Interfaces Available 47
4.12.9 Logging Level for TCP Transport Connect Errors Changed from Exception to Warning 47
4.12.10 Memory Issue upon TCP Transport Plugin Server Disconnection 48
4.12.11 Memory Leak when using UDPv4 Transport Plugin on VxWorks Architectures 48
4.12.12 Memory Leak in Applications using TCP Transport in Asymmetric Mode 48

4.12.13 Memory Issue upon TCP Transport Plugin Server Disconnection 48
4.12.14 Message Deserialization Errors in TCP Transport Plugin 48
4.12.15 Non RTPS-Compliant UDPv6 Locator kind 49
4.12.16 Participant Creation Failed if All Enabled Network Interfaces were IPv6—Non-Linux Sys-

tems Only 49
4.12.17 Participant Creation Failed if Shared Memory Resources could not be Allocated 49
4.12.18 Participant Creation Failed when All Enabled Network Interfaces were IPv6 49
4.12.19 Participant may have Hung on Shutdown if Multicast Enabled or in Presence of Some

Firewalls/Antivirus 50
4.12.20 Port Reservation did not Account for All Enabled Transports 50
4.12.21 Possible Inconsistent State in the TCP Transport Plugin after Remote Client Reconnection 51
4.12.22 Possible Segmentation Fault due to Race Condition in DTLS Transport 51
4.12.23 Possible Segmentation Fault during Clean Up of TCP Transport Plugin Allocated

Resources 51
4.12.24 Possible Segmentation Fault if TCP Transport Plugin Creation Failed 51
4.12.25 Possible Segmentation Fault on Outgoing Traffic Connection Initialization 51
4.12.26 Possible Segmentation Fault on TCP Transport Plugin Shutdown 52
4.12.27 Potential Segmentation Fault when Outstanding Asynchronous Writes Exceeded write_

buffer_allocation Limits 52
4.12.28 Potential Data Corruption when Using TCP Transport Plugin with force_asynchronous_

send Enabled 52
4.12.29 RTPS Auto ID from MAC did not Use MAC Address--Darwin and QNX Systems Only 52
4.12.30 Segmentation Fault on TCP Transport if TCP Client Connection Failed to Connect 52
4.12.31 Segmentation Fault when Creating DTLS DomainParticipants in Multiple Threads 53
4.12.32 Sockets not Completely Closed when Using TCP Transport Plugin with TLS Support 53
4.12.33 TCP Connections for Server Outgoing Traffic may not have Reopened After Short TCP

Client Disconnection 53
4.12.34 TCP Transport Communication Did not Recover after Client Disconnected 53
4.12.35 TCP Transport's enable_keep_alive Property had no Effect on Server Sockets 53
4.12.36 TCP Transport's enable_keep_alive Property had no Effect on Server Sockets when Using

TLS Support 54
4.12.37 TCP Transport’s ‘keep_alive_*’ Properties had no Effect—Linux Platforms Only 54
4.12.38 TCP Transport’s ‘keep_alive_*’ Properties had no Effect when Using TLS Support—

Linux Platforms Only 54
4.12.39 TCP Transport Plugin's Connection Liveliness Stopped Working 54
4.12.40 TCP Transport Plugin Opened UDPv4 Sockets when Running in WAN Mode 54
4.12.41 TCP Transport Plugin did not Send Large Samples when Using TLS, 'force_asyn-

chronous_send,' and Windows IOCP 55
4.12.42 TCP Transport Plugin Hangs when using Transport Priority 55

4.12.43 TCP Transport Plugin More Robust Against a Failure in SSL Handshake 55
4.12.44 TCP Transport Plugin Reconnection Problem after Disconnecting Network Interface—

Linux Systems Only 55
4.12.45 TCP Transport Plugin Reported Invalid-State Error when Running in Debug Mode 55
4.12.46 TCP Transport Plugin Stopped on Asynchronous Send Failure 56
4.12.47 TCP Transport Properties parent.allow_interfaces_list and parent.deny_interfaces_list prop-

erties had no Effect 56
4.12.48 TCP Transport SSL Handshake could Hang Forever 56
4.12.49 Transport Plugin Resources not Cleaned Up when Remote Endpoints Removed 56
4.12.50 Two Participants on Same Node did not Communicate when One Disabled Shared

Memory but still Used UDP Loopback 57
4.12.51 Unbounded Memory Growth upon I/O Failure when Using Windows IOCP 57
4.12.52 Unexpected Error Message when Enabling TCP Transport Connection-Liveliness 57
4.12.53 Unbounded Memory Growth during TCP Transport Plugin Execution 57
4.12.54 Unexpected Memory Growth in TCP Transport Client upon Connection Close 58
4.12.55 Unexpected Memory Growth in TCP Transport Server upon Connection Close 58
4.12.56 Unexpected Messages when Using TCP Transport's 'Force Asynchronous Send' 58
4.12.57 Unexpected TCP Transport Plugin Error on Packet Reception when Using IOCP Mode 58
4.12.58 Unexpected TCP Transport Plugin Error when TCP Server Sent Data Asynchronously 59
4.12.59 Unexpected TCP Transport Plugin WSAECONNABORTED Error on Packet Reception

when Using IOCP Mode 59
4.12.60 Unnecessary System Resources Allocated when Transport Priority Left at Default Value 59
4.12.61 Unreadable Characters in Log Messages After Some Errors in TCP Transport 60
4.12.62 Wrong Results for NDDS_Transport_Support_lookup_transport API 60

4.13 Fixes Related to Other Issues 60
4.13.1 Access Violation when Calling get() on Loaned Sequence if Provided Index Out of

Bounds of the Sequence—Java API Only 60
4.13.2 Built-in Profiles Overrode DomainParticipantFactoryQos Values Set in Application Code 60
4.13.3 Copy_from() Method in Bytes and KeyedBytes Built-in Types may have Thrown

Exception—.NET API Only 61
4.13.4 Crash when Using XML-based Application Creation for Multiple Participants 61
4.13.5 Custom Flow Controller on Built-in Discovery DataWriters caused Participant Deletion to

Fail 61
4.13.6 DataReader using GROUP_PRESENTATION_QOS Stopped Providing Samples to Applic-

ation in Some Cases 61
4.13.7 DDS_TypeCode_equals did not Compare Extensibility Kind of Two Types 62
4.13.8 Deleting Participants was not Thread Safe—C++ and .NET APIs Only 62
4.13.9 Deserialization of Samples with Sequences Took a Long Time in Java 62

4.13.10 Deserialization of ByteSeq using ObjectInputStream Failed if Longer than 1024 Bytes -
Java API Only 62

4.13.11 DomainParticipant.enable() Threw Exception with No Message when It Failed — Java
API Only 63

4.13.12 Error Printing Unsigned Longs with FooSupport_print_data() 63
4.13.13 Error When Enabling DomainParticipant 63
4.13.14 Error Writing Primitive Sequences with Maximum of Zero Elements --.NET API Only 63
4.13.15 Exception in Java while Using HashMap with DomainParticipantQos as a Key 64
4.13.16 Failure Copying Sample after Calling take/read not Reported as Error—.NET API Only 64
4.13.17 FlowController::set_property() Returned Wrong Error Codes in Some Cases 64
4.13.18 IDL Enum did not Implement java.io.Serializable Correctly—Java API Only 65
4.13.19 Incorrect Conversion of Time_t and Duration_t due to Overflow 65
4.13.20 Incorrect IDL char Deserialization by Java DataReaders 65
4.13.21 Initialize and Copy operations for DDS_WriteParams_t did not Process All Members—

C/C++ APIs Only 65
4.13.22 JVM Crash when Passing Null Type or Topic Names to Participant's create_topic() 66
4.13.23 Large Samples Never Repaired in Some Scenarios 66
4.13.24 Late-Joiner DataReader may not have Received All Historical Data 66
4.13.25 Logging sent Non-Printable (non-ASCII) Data to Console 66
4.13.26 Memory Leak in Unmanaged Code when Using .NET API 66
4.13.27 Monitoring Library Generated Incorrect Values for CPU and Memory Usage - OS X Plat-

forms Only 67
4.13.28 .NET Instances of Some Classes were not Garbage Collected 67
4.13.29 Non-Recoverable Inconsistent State in Participant after Failed Call to Enable Participant 67
4.13.30 Operations Involving StatusCondition::GetHashCode() may have Thrown Over-

flowException—C# API Only 67
4.13.31 Poor Performance of DataWriter's wait_for_acknowledgments()—Windows Platforms Only 67
4.13.32 Possible Crash when Calling take_next_sample() After Failed Registration of Builtin

Type—Java API Only 68
4.13.33 Possible Crash if Type Unregistered from Participant while Another Participant Still using

that TypeSupport—C++ API Only 68
4.13.34 Possible Failure of copy_from/copy_from_no_alloc in a .NET Loanable Sequence 68
4.13.35 Possible Failure when Registering Same Type Twice in Two Threads 68
4.13.36 Possible Memory Leak if Finalizing DomainParticipantFactory Failed 69
4.13.37 Possible Memory Leak upon Failed DomainParticipant Creation 69
4.13.38 Possible Segmentation Fault on Keyed Reader when Using Collaborative DataWriters or

Group Ordered Access 69
4.13.39 Possible Race Condition during Participant Deletion may have Caused "deadlock risk"

Error 69

4.13.40 Potential Segmentation Fault after Participant Deletion 70
4.13.41 Potential Segmentation Fault in Unkeyed DataReaders when Trying to Remove Expired

Samples 70
4.13.42 Potential Segmentation Fault when Creating DataWriters and DataReaders 70
4.13.43 Potential Segmentation Fault when Setting AvailabilityQosPolicy's required_matched_

endpoint_groups on a DataReader 70
4.13.44 Registering a Type Twice with Same Name, Different Type Plugin should have Failed 71
4.13.45 RTI DDS Ping did not Print Data Values when using -useKeys and Default Verbosity 71
4.13.46 Segmentation Fault in Java if Default name or role_name in EntityNameQosPolicy not

NULL 71
4.13.47 Segmentation Fault when DataWriter Creation Failed because System Running Out of

Memory 72
4.13.48 TypeCode::equal Considered TypeCodes with Arrays of Different Dimensions as Equal 72
4.13.49 Unbounded Memory Growth when Calling NDDS Config Logger Set Output APIs 72
4.13.50 Unbounded Memory Growth when Calling NDDS Config Logger Set Output APIs 72
4.13.51 Unexpected Error in Publishing Application when Writing Coherent Set of Samples 73
4.13.52 Unexpected Error when get_matched_subscriptions/publications() Called Right After

Ignoring Subscription/Publication 73
4.13.53 Unexpected Memory Growth When Using DDS_GROUP_PRESENTATION_QOS on a

DataReader 73
4.13.54 Unexpected Timeout from DataReader’s wait_for_historical_data() when using Delegated

Reliability 73
4.13.55 Unexpected Memory Growth when Setting Entity QoS name or role_name 74
4.13.56 Version Number was Missing from Libraries for Windows Platforms 74
4.13.57 XSD Validation Failed when type_object_max_deserialized_length was UNLIMITED 74

Chapter 5 Known Issues

5.1 AppAck Messages Cannot be Greater than Underlying Transport Message Size 75
5.2 DataReader Cannot Persist AppAck Messages Greater Than 32767 Bytes 76
5.3 DataWriter's Listener Callback on_application_acknowledgment() not Triggered by Late-Joining

DataReaders 76
5.4 Discovery with Connext DDS Micro Fails when Shared Memory Transport Enabled 76
5.5 Disabled Interfaces on Windows Systems 76
5.6 HighThroughput and AutoTuning built-in QoS profiles may cause Communication Failure when

Writing Small Samples 77
5.7 Segmentation Fault when Creating DTLS DomainParticipants in Multiple Threads—Solaris and

QNX Platforms Only 77
5.8 Typecodes Required for Request-Reply Communication Pattern 77
5.9 Uninstalling on AIX Systems 78
5.10 Writer-side Filtering Functions Can be Invoked Even After Filter Unregistered 78

5.11 Writer-Side Filtering May Cause Missed Deadline 78
5.12 Wrong Error Code After Timeout on write() from Asynchronous Publisher 78
5.13 Known Issues with Dynamic Data 79
5.14 Known Issues in RTI Monitoring Library 80

5.14.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Participant
Sends Monitoring Data 80

5.14.2 Participant’s CPU and Memory Statistics are Per Application 80
5.14.3 XML-Based Entity Creation Nominally Incompatible with Static Monitoring Library 80

Chapter 6 Experimental Features 82

Chapter 1 Introduction

This document includes the following:

l System Requirements (Section Chapter 2 on page 1)

l Compatibility (Section Chapter 3 on page 7)

l What’s Fixed in 5.2.0 (Section Chapter 4 on page 25)

l Known Issues (Section Chapter 5 on page 75)

l Experimental Features (Section Chapter 6 on page 82)

For an overview of new features, please see theWhat’s New document.

Many readers will also want to look at additional documentation available online. In particular, RTI recom-
mends the following:

l Use the RTI Customer Portal (http://support.rti.com) to download RTI software, access doc-
umentation and contact RTI Support. The RTI Customer Portal requires a username and password.
You will receive this in the email confirming your purchase. If you do not have this email, please
contact license@rti.com. Resetting your login password can be done directly at the RTI Customer
Portal.

l The RTI Community Forum (http://community.rti.com) provides a wealth of knowledge to help
you use RTI® Connext™ DDS, including:

l Best Practices,

l Example code for specific features, as well as more complete use-case examples,

l Solutions to common questions,

l A glossary,

l Downloads of experimental software,

l And more.

Whitepapers and other articles are available from http://www.rti.com/resources.

http://support.rti.com/
http://community.rti.com/
http://www.rti.com/resources

Chapter 2 System Requirements

2.1 Supported Operating Systems

Connext DDS requires a multi-threaded operating system. This section describes the supported
host and target systems.

In this context, a host is the computer on which you will be developing a Connext DDS applic-
ation. A target is the computer on which the completed application will run. A host installation
provides the RTI Code Generator tool (rtiddsgen), examples and documentation, as well as the
header files required to build a Connext DDS application for any architecture. You will also need a
target installation, which provides the libraries required to build a Connext DDS application for
that particular target architecture.

Table 2.1 Supported Platforms for Connext DDS 5.2.0 lists the supported platforms. See the RTI
Connext DDS Core Libraries Platform Notes for more information on each one.

Operating System Version

AIX® AIX 5.3, 7.1

Android™ Android 2.3 - 4.4

INTEGRITY®

(target only)
INTEGRITY 5.0.11, 10.0.2, and 11.0.4

Linux® (ARM® CPU) Raspbian Wheezy 7.0

Table 2.1 Supported Platforms for Connext DDS 5.2.0

1

2.1 Supported Operating Systems

2

Operating System Version

Linux

(Intel® CPU)

CentOS 5.4, 5.5, 6.0, 6.2 - 6.4

Red Hat® Enterprise Linux 4.0, 5.0-5.2, 5.4, 5.5, 6.0 - 6.5, 7

SUSE® Linux Enterprise Server 11 SP2, SP3

Ubuntu® Server 12.04 LTS, Ubuntu 14

Wind River® Linux 4

Linux

(PowerPC® CPU)

Freescale P2020RDB

Wind River Linux 3

Yellow Dog™ Linux 4.0

LynxOS®

(target only)
LynxOS 4.0, 4.2, 5.0

Mac OS® OS X 10.8, 10.10

QNX®

(target only)
QNX Neutrino® 6.4.1, 6.5

Solaris™ Solaris 2.9, 2.10

VxWorks®

(target only)

VxWorks 5.5, 6.3 - 6.9, 6.9.3.2, 6.9.4, 7.0

VxWorks 653 2.3

Windows®

Windows 7, 8, 8.1

Windows Server 2003, 2008 R2, 2012 R2

Windows Vista®

Windows XP Professional SP2

Table 2.1 Supported Platforms for Connext DDS 5.2.0

Table 2.2 Custom Supported Platforms lists additional target libraries available for Connext DDS, for
which RTI offers custom support. If you are interested in using one of these platforms, please contact your
local RTI representative or email sales@rti.com.

Other platforms not listed in this document may be supported through special development and
maintenance agreements. Contact your RTI sales representative for details.

Operating System Version

INTEGRITY INTEGRITY 5.0.11 on PPC 8349 CPU

Table 2.2 Custom Supported Platforms

2.2 Requirements when Using Microsoft Visual Studio

Operating System Version

Linux

Linux 3.8.13 on QorIQ or P4040/P4080/P4081 CPU

NI Linux Real-Time 3.2a on ARMv7 CPU

Red Hat Enterprise Linux 5.2 on x86 CPU with gcc 4.2.1

RedHawk Linux 6.0 on x64 CPU

VxWorks VxWorks 6.7 and 6.8 using JamaicaVM 6.2.1 with gcc 4.1.2

Table 2.2 Custom Supported Platforms

2.2 Requirements when Using Microsoft Visual Studio

When Using Visual Studio 2008 — Service Pack 1 Requirement

You must have Visual Studio 2008 Service Pack 1 or the Microsoft Visual C++ 2008 SP1 Redistributable
Package installed on the machine where you are running an application linked with dynamic libraries.

This includes dynamically linked C/C++ and all .NET and Java applications. The Microsoft Visual C++
2008 SP1 Redistribution Package can be downloaded from the following Microsoft websites:

For x86 architectures:

http://www.microsoft.com/downloads/details.aspx?familyid=A5C84275-3B97-4AB7-A40D-
3802B2AF5FC2&displaylang=en

For x64 architectures:

http://www.microsoft.com/downloads/details.aspx?FamilyID=ba9257ca-337f-4b40-8c14-157cf-
dffee4e&displaylang=en

When Using Visual Studio 2010 — Service Pack 1 Requirement

You must have Visual Studio 2010 Service Pack 1 or the Microsoft Visual C++ 2010 SP1 Redistributable
Package installed on the machine where you are running an application linked with dynamic libraries.

This includes dynamically linked C/C++ and all .NET and Java applications. To run an application built
with debug libraries of the above RTI architecture packages, you must have Visual Studio 2010 Service
Pack 1 installed.

The Microsoft Visual C++ 2010 Service Pack 1 Redistributable Package can be obtained from the fol-
lowing Microsoft websites:

aRequires a hardware FPU in the processor and are compatible with systems that have soft-float libc.

3

http://www.microsoft.com/downloads/details.aspx?familyid=A5C84275-3B97-4AB7-A40D-3802B2AF5FC2&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=A5C84275-3B97-4AB7-A40D-3802B2AF5FC2&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=ba9257ca-337f-4b40-8c14-157cfdffee4e&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=ba9257ca-337f-4b40-8c14-157cfdffee4e&displaylang=en

2.3 Disk and Memory Usage

4

l For x86 architectures:

http://www.microsoft.com/download/en/details.aspx?id=5555

l For x64 architectures:

http://www.microsoft.com/download/en/details.aspx?id=14632

When Using Visual Studio 2012 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2012 Update 3 installed on the machine
where you are running an application linked with dynamic libraries. This includes dynamically linked
C/C++ and all .NET and Java applications.

You can download Visual C++ Redistributable for Visual Studio 2012 Update 3 from this Microsoft web-
site: http://www.microsoft.com/en-ca/download/details.aspx?id=30679

When Using Visual Studio 2013 — Redistributable Package Requirement

You must have Visual C++ Redistributable for Visual Studio 2013 installed on the machine where you are
running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all
.NET and Java applications.

You can download Visual C++ Redistributable for Visual Studio 2013 from this Microsoft website:
http://www.microsoft.com/en-us/download/details.aspx?id=40784

2.3 Disk and Memory Usage

Disk usage for a typical host-only installation is approximately 385 MB on Linux systems and 625 MB on
Windows systems. Each additional architecture (host or target) requires an additional 162 MB on Linux
systems and 402 MB on Windows systems.

We recommend that you have at least 256 MB RAM installed on your host development system. The tar-
get requirements are significantly smaller and they depend on the complexity of your application and hard-
ware architecture.

2.4 Networking Support

Connext DDS includes full support for pluggable transports. Connext DDS applications can run over vari-
ous communication media, such as UDP/IP over Ethernet, and local inter-process shared memory—
provided the correct transport plug-ins for the media are installed.

By default, the Connext DDS core uses built-in UDP/IPv4 and shared-memorya transport plug-ins.

aThe shared-memory transport is not supported on VxWorks 5.5 platforms.

http://www.microsoft.com/download/en/details.aspx?id=5555
http://www.microsoft.com/download/en/details.aspx?id=14632
http://www.microsoft.com/en-ca/download/details.aspx?id=30679
http://www.microsoft.com/en-us/download/details.aspx?id=40784

2.4 Networking Support

A built-in IPv6 transport is available (disabled by default) for some platforms.

A TCP transport is also available (but is not a built-in transport) for some platforms.

See the RTI Connext DDS Core Libraries Platform Notes for details on which platforms support the IPv6
and TCP transports.

5

Chapter 2 Transitioning from 5.1 to 5.2

6

Chapter 2 Transitioning from 5.1 to 5.2

Please read this before installing. If you are transitioning from 5.1 to 5.2, there are a few important dif-
ferences to be aware of.

l New Installation Procedure

This release is packaged in a different structure than previous releases. There are still host and target
bundles. However, the host bundle is a .run file and the target is a .rtipkg file.

To install these bundles, you will run the host bundle (such as rti_connext_dds-5.2.0-core-host-
x64Linux.run). The installer will walk you through installation. After installing the host, you will
install your target(s). To do so, you can use the RTI Package Installer utility that's available in
RTI Launcher, or you can run the rtipkginstall script from <install directory>/bin. For example, to
install the target bundle, you would enter this command:

bin/rtipkginstall <target-bundle.rtipkg>

The Getting Started Guide has more details on installing.

l New Directory Structure

The second difference you will see is that the directory structure is different. This means you should
not install in the same place as your current RTI release. After you install both the host and target,
you can find the libraries in rti_connext_dds-5.2.0/lib/<target architecture> are the header files in
rti_connext_dds-5.2.0/include/ndds.

l New Location for Scripts

The scripts for all tools, services, and utilities are now in the /bin directory (these were in /scripts in
the previous release).

Chapter 3 Compatibility
3.1 Wire Protocol Compatibility

3.1.1 General Information on RTPS (All Releases)

Connext DDS communicates over the wire using the formal Real-time Publish-Subscribe (RTPS)
protocol. RTPS has been developed from the ground up with performance, interoperability and
extensibility in mind. The RTPS protocol is an international standard managed by the OMG. The
RTPS protocol has built-in extensibility mechanisms that enable new revisions to introduce new
message types, extend the existing messages, or extend the Quality of Service settings in the
product—without breaking interoperability.

RTPS 1.0 was introduced in 2001. The current version is 2.1. RTI plans to maintain inter-
operability between middleware versions based on RTPS 2.x.

3.1.2 Release-Specific Information for Connext DDS 5.x

3.1.2.1 Large Data with Endpoint Discovery

An endpoint (DataWriter or DataReader) created with Connext DDS 5.x will not be discovered
by an application that uses a previous release (4.5f or lower) if any of these conditions are met:

The endpoint’s TypeObject is sent on the wire and its size is greater than 65535 bytes. For inform-
ation on TypeObjects, see the RTI Connext DDS Core Libraries Getting Started Guide Addendum
for Extensible Types.

The endpoint’s UserDataQosPolicy value is greater than 65535 bytes.

TypeObjects and UserDataQosPolicy values with a serialized size greater than 65535 bytes require
extended parameterized encapsulation when they are sent as part of the endpoint discovery inform-
ation. This parameterized encapsulation is not understood by previous Connext DDS releases.

7

3.1.3 Release-Specific Information for Connext DDS 4.5 and 5.x

8

3.1.3 Release-Specific Information for Connext DDS 4.5 and 5.x

Connext DDS 4.5 and 5.x are compatible with RTI Data Distribution Service 4.2 - 4.5, except as noted
below.

3.1.3.1 RTPS Versions

Connext DDS 4.5 and 5.x support RTPS 2.1. Some earlier releases (see Table 3.1 RTPS Versions) sup-
ported RTPS 2.0 or 1.2. Because these RTPS versions are incompatible with each other, applications built
with Connext DDS/RTI Data Distribution Service 4.2e and higher will not interoperate with applications
built with RTI Data Distribution Service 4.2c or lower.

RTPS Version

Connext DDS 4.5f and higher 2.1

Data Distribution Service 4.2e - 4.5e 2.1

Data Distribution Service 4.2c 2.0

Data Distribution Service 4.2b and lower 1.2

Table 3.1 RTPS Versions

3.1.3.2 double, long long, unsigned long long or long double Wire Compatibility

If your Connext DDS application’s data type uses a ‘double,’ ‘long long,’ ‘unsigned long long,’ or ‘long
double,’ it will not interoperate with applications built with RTI Data Distribution Service 4.2e or lower,
unless you use the -use42eAlignment flag when generating code with rtiddsgen.

3.1.3.3 Sending ‘Large Data’ between RTI Data Distribution Service 4.4d and Older
Releases

The ‘large data’ format in RTI Data Distribution Service 4.2e, 4.3, 4.4b and 4.4c is not compliant with
RTPS 2.1. (‘Large data’ refers to data that cannot be sent as a single packet by the transport.)

This issue is resolved in Connext DDS and in RTI Data Distribution Service 4.4d-4.5e. As a result, by
default, large data in Connext DDS and in RTI Data Distribution Service 4.4d-4.5e is not compatible with
older versions of RTI Data Distribution Service. You can achieve backward compatibility by setting the
following properties to 1.

dds.data_writer.protocol.use_43_large_data_format
dds.data_reader.protocol.use_43_large_data_format

The properties can be set per DataWriter/DataReader or per DomainParticipant.

3.2 Code Compatibility

For example:

<participant_qos>
<property>

<value>
<element>

<name>
dds.data_writer.protocol.use_43_large_data_format

</name>
<value>1</value>

</element>
<element>

<name>
dds.data_reader.protocol.use_43_large_data_format

</name>
<value>1</value>

</element>
</value>

</participant_qos>

3.2 Code Compatibility

3.2.1 General Information (All Releases)

The Connext DDS core uses an API that is an extension of the OMG Data Distribution Service (DDS)
standard API, version 1.2. RTI strives to maintain API compatibility between versions, but will conform to
changes in the OMG DDS standard.

The Connext DDS core primarily consists of a library and a set of header files. In most cases, upgrading
simply requires you to recompile your source using the new header files and link the new libraries. In
some cases, minor modifications to your application code might be required; any such changes are noted in
this document.

RTI allows you to define the data types that will be used to send and receive messages. To create code for
a data type, Connext DDS includes RTI Code Generator (also known as rtiddsgen). For input, RTI Code
Generator takes a data-type description (in IDL, XML, XSD, or WSDL format); RTI Code Generator
generates header files (or a class in Java) that can be used to send and receive data of the defined type. It
also generates code that takes care of low-level details such as transforming the data into a machine-inde-
pendent representation suitable for communication.

While this is not the common case, some upgrades require you to regenerate the code produced by RTI
Code Generator. The regeneration process is very simple; you only need to run the new version of RTI
Code Generator using the original input IDL file. This process will regenerate the header and source files,
which can then be compiled along with the rest of your application.

9

3.2.2 Release-Specific Information for Connext DDS 5.x

10

3.2.2 Release-Specific Information for Connext DDS 5.x

This section points out important differences in Connext DDS 5.x compared to 4.5f that may
require changes on your part when upgrading from 4.5f (or lower) to 5.x

3.2.2.1 Required Change for Building with C++ Libraries for QNX Platforms—New in
Connext DDS 5.0.0

For QNX architectures, in release 5.x: The C++ libraries are now built without -fno-rtti and with -fex-
ceptions. To build QNX architectures with release 5.x, you must build your C++ applications without -
fno-exceptions in order to link with the RTI libraries. In summary:

Do not use -fno-exceptions when building a C++ application or the build will fail. It is not necessary to
use -fexceptions, but doing so will not cause a problem.

It is no longer necessary to use -fno-rtti, but doing so will not cause a problem.

3.2.2.2 Changes to Custom Content Filters API

Starting with Connext DDS 5.0.0, the ContentFilter’s evaluate() function now receives a new ‘struct
DDS_FilterSampleInfo *’ parameter that allows it to filter on meta-data.

The evaluate() function of previous custom filter implementations must be updated to add this new para-
meter.

3.2.2.3 Changes to FooDataWriter::get_key_value()

Starting with Connext DDS 5.2.0, the return value of the function FooDataWriter::get_key_value() has
changed from DDS_RETCODE_ERROR to DDS_RETCODE_BAD_PARAMETER if the instance
handle passed to the function is not registered.

This change in behavior was done to align with the DDS specification (RTI Issue ID CORE-6096).

3.2.2.4 Changes in Generated Type Support Code in Connext DDS 5.0.0

The rtiddsgen-generated type-support code for user-defined data type changed in 5.0.0 to facilitate some
new features. If you have code that was generated with rtiddsgen 4.5 or lower, you must regenerate
that code using the version of rtiddsgen provided with this release.

3.2.2.5 Changes in Generated Type Support Code in Connext DDS 5.1.0

The rtiddsgen-generated type-support code for user-defined data type changed in 5.1.0 to facilitate some
new features. If you have code that was generated with rtiddsgen 5.0.0 or lower, you must regen-
erate that code using the version of rtiddsgen provided with this release.

3.2.2.6 New Default Value for DomainParticipant Resource Limit, participant_property_string_max_

3.2.2.6 New Default Value for DomainParticipant Resource Limit, participant_property_
string_max_length

Starting with Connext DDS 5.1.0, the default value of participant_property_string_max_length in the
DomainParticipantResourceLimitsQosPolicy has been changed from 1024 characters to 2048 to accom-
modate new system properties (see Section 8.7, System Properties, in the RTI Connext DDS Core Librar-
ies User’s Manual).

3.2.2.7 New Default Value for DomainParticipant’s participant_name.name

Starting with Connext DDS 5.1.0, the default value for participant_qos.participant_name.name has
been changed from the string “[ENTITY]” to NULL to provide consistency with the default name of other
entities such as DataWriters and DataReaders.

3.2.2.8 Constant DDS_AUTO_NAME_ENTITY no Longer Available

Starting with Connext DDS 5.1.0, the constant DDS_AUTO_NAME_ENTITY, which was used to
assign the name “[ENTITY]” to a participant, has been removed. References to DDS_AUTO_NAME_
ENTITY must be removed from Connext DDS applications.

3.2.2.9 Changes to Time_t and Duration_t Methods

Starting with Connext DDS 5.2.0, the signatures for some of the Time_t and Duration_t methods have
changed:

Traditional C++:

Old: from_micros(DDS_UnsignedLong microseconds);
New: from_micros(DDS_UnsignedLongLong microseconds);

Old: from_millis(DDS_UnsignedLong milliseconds);
New: from_millis(DDS_UnsignedLongLong milliseconds);

Old: from_nanos(DDS_UnsignedLong nanoseconds);
New: from_nanos(DDS_UnsignedLongLong nanoseconds);

Old: from_seconds(DDS_Long seconds);
New: from_seconds(DDS_UnsignedLong seconds);

Java:

Old: from_seconds(long seconds)
New: from_seconds(int seconds)

11

3.2.3 Release-Specific Information for RTI Data Distribution Service 4.x, Connext DDS 4.5 and 5.x

12

.NET:

Old: from_micros(long microseconds)
New: from_micros(System::UInt64 microseconds)

Old: from_millis(System::UInt32 milliseconds)
New: from_millis(System::UInt64 milliseconds)

Old: from_nanos(long nanoseconds)
New: from_nanos(System::UInt64 nanoseconds)

3.2.3 Release-Specific Information for RTI Data Distribution Service 4.x,
Connext DDS 4.5 and 5.x

3.2.3.1 Type Support and Generated Code Compatibility

long long Native Data Type Support:

In Connext DDS (and RTI Data Distribution Service 4.5c,d,e), we assume all platforms natively support
the ‘long long’ data type. This was not the case in older versions of RTI Data Distribution Service. There
is no longer a need to define RTI_CDR_SIZEOF_LONG_LONG to be 8 on some platforms in order to
map the DDS ‘long long’ data type to a native ‘long long’ type.

double, long long and unsigned long long Code Generation:

If your Connext DDS (or RTI Data Distribution Service 4.3-4.5e) application’s data type uses a ‘double,’
‘long long,’ ‘unsigned long long,’ or ‘long double,’ it will not be backwards compatible with applications
built with RTI Data Distribution Service 4.2e or lower, unless you use the -use42eAlignment flag when
generating code with rtiddsgen.

Changes in Generated Type Support Code:

The rtiddsgen-generated type-support code for user-defined data type changed in 4.5 to facilitate some
new features. If you have code that was generated using rtiddsgen 4.4 or lower, you must regenerate
that code using the version of rtiddsgen provided with this release.

Cross-Language Instance Lookup when Using Keyed Data Types:

This issue only impacts systems using RTI Data Distribution Service 4.3.

In RTI Data Distribution Service 4.3, keys were serialized with the incorrect byte order when using the
Java and .NETa APIs for the user-defined data type, resulting in incorrect behavior in the lookup_
instance() and get_key()methods when using keyed data-types to communicate between applications in
these languages and other programming languages. This issue was resolved in Java starting in RTI Data
Distribution Service 4.3e rev. 01 and starting in .NET in RTI Data Distribution Service 4.4b.

aThe Connext DDS .NET language binding is currently supported for C# and C++/CLI.

3.2.3.2 Other API and Behavior Changes

As a result of this change, systems using keyed data that incorporate Java or .NET applications using both
RTI Data Distribution Service 4.3 and this Connext DDS release could experience problems in the
lookup_instance() and get_key()methods. If you are affected by this limitation, please contact RTI Sup-
port.

Data Types with Variable-Size Keys:

If your data type contains more than one key field and at least one of the key fields except the last one is of
variable size (for example, if you use a string followed by a long as the key):

RTI Data Distribution Service 4.3e, 4.4b or 4.4c DataWriters may not be compatible with RTI Data Dis-
tribution Service 4.4d or higher DataReaders.

RTI Data Distribution Service 4.3e, 4.4b or 4.4c DataReaders may not be compatible with RTI Data Dis-
tribution Service 4.4d or higher DataWriters.

Specifically, all samples will be received in those cases, but you may experience the following problems:

Samples with the same key may be identified as different instances. (For the case in which the DataWriter
uses RTI Data Distribution Service 4.4d-4.5e or Connext DDS, this can only occur if the DataWriter’s dis-
able_inline_keyhash field (in the DataWriterProtocolQosPolicy) is true (this is not the default case).

Calling lookup_instance() on the DataReader may return HANDLE_NIL even if the instance exists.

Please note that you probably would have had the same problem with this kind of data type already, even
if both your DataWriter and DataReader were built with RTI Data Distribution Service 4.3e, 4.4b or 4.4c.

If you are using a C/C++ or Java IDL type that belongs to this data type category in your RTI Data Dis-
tribution Service 4.3e, 4.4b or 4.4c application, you can resolve the backwards compatibility problem by
regenerating the code with version of rtiddsgen distributed with RTI Data Distribution Service 4.4d. You
can also upgrade your whole system to this release.

3.2.3.2 Other API and Behavior Changes

Code Compatibility Issue in C++ Applications using Dynamic Data:

If you are upgrading from a release prior to 4.5f and use Dynamic Data in a C++ application, you may
need to make a minor code change to avoid a compilation error.

The error would be similar to:
MyFile.cpp:1060: error: could not convert ‘{0u, 4294967295u, 4294967295u, 0u}’ to
‘DDS_DynamicDataTypeSerializationProperty_t
MyFile.cpp:1060: warning: extended initializer lists only available with -std=c++0x or -
std=gnu++0
MyFile.cpp:1060: warning: extended initializer lists only available with -std=c++0x or -
std=gnu++0x
MyFile.cpp:1060: error: could not convert ‘{0l, 65536l, 1024l}’ to ‘DDS_DynamicDataProperty_
t’

13

3.2.3.2 Other API and Behavior Changes

14

MyFile.cpp:1060: error: could not convert ‘{0u, 4294967295u, 4294967295u, 0u}’ to
‘DDS_DynamicDataTypeSerializationProperty_t

The code change involves using a constructor instead of a static initializer. Therefore if you have code like
this:
DDS_DynamicDataTypeProperty_t properties =

DDS_DynamicDataTypeProperty_t_INITIALIZER;
...
typeSupport = new DDSDynamicDataTypeSupport(typeCode, properties);

Replace the above with this:
DDS_DynamicDataTypeProperty_t properties;
...
typeSupport = new DDSDynamicDataTypeSupport(typeCode, properties);

New on_instance_replaced() method on DataWriterListener:

Starting with RTI Data Distribution Service 4.5c (and thereby included in Connext DDS), there is a new
DataWriterListener method, on_instance_replaced(), which supports the new instance replacement fea-
ture. This method provides notification that the maximum instances have been used and need to be
replaced. If you are using a DataWriterListener from an older release, you may need to add this new
method to your listener.

Counts in Cache Status and Protocol Status changed from Long to Long Long:

Starting with RTI Data Distribution Service 4.5c (and thereby included in Connext DDS), all the ‘count’
data types in DataReaderCacheStatus, DataReaderProtocolStatus, DataWriterCacheStatus and DataWriter-
ProtocolStatus changed from ‘long’ to ‘long long’ in the C, C++ and .NETAPIs in order to report the cor-
rect value for Connext DDS applications that run for very long periods of time. If you have an application
written with a previous release of RTI Data Distribution Service that is accessing those fields, data-type
changes may be necessary.

Changes in RtpsReliableWriterProtocol_t:

Starting with RTI Data Distribution Service 4.4c (and thereby included in Connext DDS), two fields in
DDS_RtpsReliableWriterProtocol_t have been renamed:

Old name: disable_positive_acks_decrease_sample_keep_duration_scaler
New name:disable_positive_acks_decrease_sample_keep_duration_factor

Old name: disable_positive_acks_increase_sample_keep_duration_scaler
New name: disable_positive_acks_increase_sample_keep_duration_factor

In releases prior to 4.4c, the NACK-only feature was not supported on platforms without floating-point
support. Older versions of RTI Data Distribution Service will not run on these platforms because floats
and doubles are used in the implementation of the NACK-only feature. In releases 4.4c and above, the

3.2.3.2 Other API and Behavior Changes

NACK-only feature uses fixed-point arithmetic and the new DDS_Long "factor" fields noted above,
which replace the DDS_Double "scaler" fields.

Tolerance for Destination-Ordering by Source-Timestamp:

Starting with RTI Data Distribution Service 4.4b (and thereby included in Connext DDS), by default, the
middleware is less restrictive (compared to older releases) on the writer side with regards to timestamps
between consecutive samples: if the timestamp of the current sample is less than the timestamp of the pre-
vious sample by a small tolerance amount, write() will succeed.

If you are upgrading from RTI Data Distribution Service 4.4a or lower, and the application you are upgrad-
ing relied on the middleware to reject timestamps that ‘went backwards’ on the writer side (that is, when a
sample’s timestamp was earlier than the previous sample’s), there are two ways to keep the previous, more
restrictive behavior:

l If your DestinationOrderQosPolicy’s kind is BY_SOURCE_TIMESTAMP: set the new field in
the DestinationOrderQosPolicy, source_timestamp_tolerance, to 0.

l If your DestinationOrderQosPolicy's kind is BY_RECEPTION_TIMESTAMP on the writer side,
consider changing it to BY_SOURCE_TIMESTAMP instead and setting source_timestamp_tol-
erance to 0. However, this may not be desirable if you had a particular reason for using BY_
RECEPTION_TIMESTAMP (perhaps because you did not want to match readers with BY_
SOURCE_TIMESTAMP). If you need to keep the BY_RECEPTION_TIMESTAMP setting,
there is no QoS setting that will give you the exact same behavior on the writer side as the previous
release.

Starting with RTI Data Distribution Service 4.4b (and thereby included in Connext DDS), by default, the
middleware is more restrictive (compared to older releases) on the reader side with regards to source and
reception timestamps of a sample if DestinationOrderQosPolicy kind is set to BY_SOURCE_
TIMESTAMP: if the reception timestamp of the sample is less than the source timestamp by more than the
tolerance amount, the sample will be rejected.

If you are upgrading from RTI Data Distribution Service 4.4a or lower, your reader is using BY_
SOURCE_TIMESTAMP, and you need the previous less restrictive behavior, set source_timestamp_tol-
erance to infinite on the reader side.

New Location and Name for Default XML QoS Profiles File (formerly NDDS_QOS_
PROFILES.xml):

Starting with RTI Data Distribution Service 4.4d (and thereby included in Connext DDS) the default
XML QoS Profiles file has been renamed and is installed in a new directory:

l Old location/name: $NDDSHOME/resource/xml/NDDS_QOS_PROFILES.xml

l New location/name: $NDDSHOME/resource/xml/NDDS_QOS_PROFILES.example.xml

15

3.3 Extensible Types Compatibility

16

If you want to use this QoS profile, you need to set up your NDDSHOME environment variable at run
time and rename the file NDDS_QOS_PROFILES.example.xml to NDDS_QOS_PROFILES.xml
(i.e., by default, even if your NDDSHOME environment variable is set, this QoS profile is not used.) See
Section 17.2, How to Load XML-Specified QoS Settings, in the RTI Connext DDS Core Libraries User’s
Manual for details.

Changes in the default value for max_objects_per_thread:

Starting with RTI Data Distribution Service 4.4d (and thereby included in Connext DDS), the default
value for themax_objects_per_thread field in the SystemResourceLimitsQosPolicy has been changed
from 512 to 1024.

Type Change in Constructor for SampleInfoSeq—.NET Only:

Starting with RTI Data Distribution Service 4.5c (and thereby included in Connext DDS), the constructor
for SampleInfoSeq has been changed from SampleInfoSeq(UInt32 maxSamples) to SampleInfoSeq(Int32
maxSamples). This was to make it consistent with other sequences.

Default Send Window Sizes Changed to Infinite:

Starting with RTI Data Distribution Service 4.5d (and thereby included in Connext DDS), the send win-
dow size of a DataWriter is set to infinite by default. This is done by changing the default values of two
fields in DDS_RtpsReliableWriterProtocol_t (min_send_window_size, max_send_window_size) to
DDS_LENGTH_UNLIMITED.

In RTI Data Distribution Service 4.4d, the send window feature was introduced and was enabled by
default in 4.5c (with min_send_window_size = 32, max_send_window_size = 256). For DataWriters
with a HistoryQosPolicy kind of KEEP_LAST, enabling the send window could cause writes to block,
and possibly fail due to blocking timeout. This blocking behavior changed the expected behavior of applic-
ations using default QoS. To preserve that preestablished non-blocking default behavior, the send window
size has been changed to be infinite by default starting in release 4.5d.

Users wanting the performance benefits of a finite send window will now have to configure the send win-
dow explicitly.

3.3 Extensible Types Compatibility

3.3.1 General Compatibility Issues

Connext DDS 5.x includes partial support for the "Extensible and Dynamic Topic Types for DDS"
(DDS-XTypes) specificationa from the Object Management Group (OMG). This support allows systems
to define data types in a more flexible way, and to evolve data types over time without giving up port-
ability, interoperability, or the expressiveness of the DDS type system.

ahttp://www.omg.org/spec/DDS-XTypes/

http://www.omg.org/spec/DDS-XTypes/

3.3.2 Java Enumeration Incompatibility Issues

For information related to compatibility issues associated with the Extensible Types support, see the RTI
Connext DDS Core Libraries Getting Started Guide Addendum for Extensible Types.

3.3.2 Java Enumeration Incompatibility Issues

Connext DDS 5.2.0 fixed a bug (CODEGENII-397) in Java to resolve an interoperability issue with other
languages when using enumerations with unordered enumeration values. For example:

enum MyEnum{
THREE= 3,
TWO= 2,
ONE= 1

};

Because of this fix, a Java DataWriter built with Connext DDS 5.1.0 or lower will not match a
DataReader of Connext DDS 5.2.0 or higher if the Topic contains an enumeration of the previous kind
(with unordered enumeration values), and vice versa.

3.4 ODBC Database Compatibility

To use the Durable Writer History and Durable Reader State features, you must install a relational data-
base such as MySQL.

In principle, you can use any database that provides an ODBC driver, since ODBC is a standard.
However, not all ODBC databases support the same feature set. Therefore, there is no guarantee that the
persistent durability features will work with an arbitrary ODBC driver.

We have tested the following driver: MySQL ODBC 5.1.44.

Starting with 4.5e, support for the TimesTen database has been removed.

To use MySQL, you also need MySQL ODBC 5.1.6 (or higher). For non-Windows platforms,
UnixODBC 2.2.12 (or higher) is also required.

To see if a specific architecture has been tested with the Durable Writer History and Durable Reader State
features, see the RTI Connext DDS Core Libraries Platform Notes.

For more information on database setup, please see the RTI Connext DDS Core Libraries Getting Started
Guide Addendum for Database Setup.

3.5 Transport Compatibility

3.5.1 Shared-Memory Transport Compatibility for Connext DDS 4.5f and 5.x

The shared-memory transport in Connext DDS 4.5f and higher does not interoperate with the shared-
memory transport in previous releases of RTI Data Distribution Service.

17

3.5.2 Transport Compatibility for Connext DDS 5.1.0

18

If two applications, one using Connext DDS and one using RTI Data Distribution Service, run on the
same node and they have the shared-memory transport enabled, they will fail with the following error:
[D0004|CREATE Participant|D0004|ENABLE]
NDDS_Transport_Shmem_is_segment_compatible:incompatible shared memory protocol detected.
Current version 1.0 not compatible with 2.0.

A possible workaround for this interoperability issue is to disable the shared-memory transport and use
local communications over UDPv4 by setting participant_qos.transport_builtin to DDS_
TRANSPORTBUILTIN_UDPv4.

If you have an interoperability requirement and you cannot switch to UDPv4, please contact sup-
port@rti.com.

3.5.2 Transport Compatibility for Connext DDS 5.1.0

3.5.2.1 Changes to message_size_max

In Connext DDS 5.1.0, the defaultmessage_size_max for the UDPv4, UDPv6, TCP, Secure WAN, and
shared-memory transports changed to provide better out-of-the-box performance. Consequently, Connext
DDS 5.1.0 is not out-of-the-box compatible with applications running older versions of Connext DDS or
RTI Data Distribution Service.

To guarantee that communication between two applications always occurs: for a given transport, keep a
consistent value formessage_size_max in all applications within a Connext DDS system.

3.5.2.2 How to Change Transport Settings in Connext DDS 5.1.0 Applications for
Compatibility with 5.0.0

If you need compatibility with a previous release, you can easily revert to the transport settings used in
Connext DDS 5.0.0. The new built-in Baseline.5.0.0 QoS profile contains all of the default QoS values
from Connext DDS 5.0.0. Therefore, using it in a Connext DDS 5.1.0 application will ensure that Con-
next DDS 5.0.0 and 5.1.0 applications have compatible transport settings. Below is an example of how to
inherit from this profile when configuring QoS settings:
<qos_profile name="MyProfile"
base_name="BuiltinQosLib::Baseline.5.0.0">
...

</qos_profile>

3.5.2.3 How to Change message_size_max in Connext DDS 5.0.0 Applications for
Compatibility with 5.1.0

The transport configuration can be adjusted programmatically or by using XML configuration. The fol-
lowing XML snippet shows how to changemessage_size_max for the built-in UDPv4 transport to match
the Connext DDS 5.1.0 default setting of 65,507:

3.5.2.3 How to Change message_size_max in Connext DDS 5.0.0 Applications for Compatibility with

<participant_qos>
<property>
<value>
<element>
<name>
dds.transport.UDPv4.builtin.parent.message_size_max
</name>
<value>65507</value>

</element>
</value>

</property>
</participant_qos>

See Chapter 15, Transport Plugins, in the RTI Connext DDS Core Libraries User’s Manual for more
details on how to change a transport’s configuration.

To help detect misconfigured transport settings, Connext DDS 5.1.0 will send the transport information,
specifically themessage_size_max, during participant discovery. Sharing this information will also make
it easier for tools to report on incompatible applications in the system.

If two Connext DDS 5.1.0 DomainParticipants that discover each other have a common transport with dif-
ferent values formessage_size_max, the Connext DDS core will print a warning message about that con-
dition. Notice that older Connext DDS applications do not propagate transport information, therefore this
checking is not done.

You can access a remote DomainParticipant’s transport properties by inspecting the new transport_info
field in the DDS_ParticipantBuiltinTopicData structure. See Chapter 16, Built-in Topics, in the RTI Con-
next DDS Core Libraries User’s Manual for more details about this field. There is a related new field,
transport_info_list_max_length, in the DomainParticipantResourceLimitsQosPolicy. See Table 8.12 in
the RTI Connext DDS Core Libraries User’s Manual for more details about this field.

UDPv4, UDPv6, WAN, and TCP (Section Table 3.2 on the next page) and Shared Memory (Section
Table 3.3 on the next page) show the new default transport settings.

19

3.5.2.4 Changes to Peer Descriptor Format

20

Old Default (bytes)
New Default (bytes)

Non-INTEGRITY Platforms INTEGRITY Platformsa

message_size_max 9,216 65,507b 9,216

send_socket_buffer_size 9,216 131,072 131,072

recv_socket_buffer_size 9,216 131,072 131,072

Table 3.2 UDPv4, UDPv6, WAN, and TCP

Old Default (bytes)
New Default (bytes)

Non-INTEGRITY Platforms INTEGRITY Platforms

message_size_max 9,216 65,536 9,216

received_message_count_max 32 64 8

receive_buffer_size 73,728 1,048,576 18,432

Table 3.3 Shared Memory

3.5.2.4 Changes to Peer Descriptor Format

In Connext DDS 5.1.0, the way in which you provide a participant ID interval changed from [a,b] to [a-
b].

3.5.3 Transport Compatibility for Connext DDS 5.2.0

In Connext DDS 5.2.0, the UDPv6 and SHMEM transport kinds changed to address an RTPS-com-
pliance issue (RTI Issue ID CORE-5788).

aDue to limits imposed by the INTEGRITY platform, the new default settings for all INTEGRITY
platforms are treated differently than other platforms. Please see the RTI Connext DDS Core Libraries
Platform Notes for more information on the issues with increasing themessage_size_max default values
on INTEGRITY platforms. Notice that interoperation with INTEGRITY platforms will require updating
the transport property message_size_max so that it is consistent across all platforms.
bThe value 65507 represents the maximum user payload size that can be sent as part of a UDP packet.

3.5.3.1 Observed Error Messages

Transport 5.1.0 and lower 5.2.0 and higher

UDPv6 5 2

SHMEM 2 0x01000000 (16777216)

Because of this change, out-the-box compatibility with previous Connext DDS releases using both
UDPv6 and SHMEM transports is broken. Connext DDS 5.1.0 and earlier applications will not com-
municate out-of-the-box with Connext DDS 5.2.0 applications over UDPv6 and SHMEM. (See below for
how to resolve this.)

3.5.3.1 Observed Error Messages

You may see the following error messages when the UDPv6 transport is not enabled:

5.1.0 Application:
can't reach:
locator:
transport: 16777216
address: 0000:0000:0100:0000:0000:0000:0000:0000
port: 21410
encapsulation:
transport_priority: 0
aliasList: ""

5.2.0 Application:
PRESParticipant_checkTransportInfoMatching:Warning:
discovered remote participant 'yyyyy' using the 'shmem'
transport with class ID 2.
This class ID does not match the class ID 16777216 of the
same transport in the local participant 'xxxxx'.
These two participants will not communicate over the 'shmem'
transport.
Check the value of the property
'dds.transport.use_510_compatible_locator_kinds' in the
local participant.
COMMENDBeWriterService_assertRemoteReader:Discovered remote
reader using a non-addressable locator for a transport with
class ID 2.
This can occur if the transport is not installed and/or
enabled in the local participant. See
https://community.rti.com/kb/what-does-cant-reach-locator-error-message-mean
for additional info.
can't reach:
locator:
transport: 2
address: 0002:0000:0100:0000:0000:0000:0000:0000
port: 21412
encapsulation:

21

3.5.3.2 How to Change Transport Settings in 5.2.0 Applications for Compatibility with 5.1.0

22

transport_priority: 0
aliasList: ""

3.5.3.2 How to Change Transport Settings in 5.2.0 Applications for Compatibility with 5.1.0

If you need compatibility with a previous release, there are two ways to do so:

l By setting the participant property dds.transport.use_510_compatible_locator_kinds to 1 in the
Connext DDS 5.2.0 applications. For example:

<participant_qos>
<property>

<value>
<element>

<name>
dds.transport.use_510_compatible_locator_kinds

</name>
<value>1</value>

</element>
</value>

</property>
</participant_qos>

l By using the new built-in Generic.510TransportCompatibility profile. Below is an example of how
to inherit from this profile when configuring QoS settings:

<qos_profile name="MyProfile"
base_name="Generic.510TransportCompatibility">
...
</qos_profile>

3.5.4 Transport Compatibility for Connext DDS 5.2.0 on Solaris Platforms
with Sparc CPUs

In Connext DDS 5.2.0, the SHMEM transport has changed to address a potential bus error on Solaris plat-
forms on Sparc 64-bit CPUsa (). The change is not backward compatible with previous Sparc Solaris
releases (32-bit or 64-bit).

If a 5.2.0 application tries to communicate with an older version using the shared memory transport, you
will see this error:

[D0004|CREATE Participant|D0004|ENABLE]
NDDS_Transport_Shmem_is_segment_compatible:
incompatible shared memory protocol detected.
Current version 3.0 not compatible with x.0.

aRTI Issue ID CORE-6777

3.6 Other Compatibility Issues

To avoid this error, disable the shared memory transport by setting the QoS policy participant_qos.trans-
port_builtin do that it does not contain the shared memory transport. For example:

<participant_qos>
<transport_builtin>

<mask>UDPv4</mask>
</transport_builtin>

</participant_qos>

3.6 Other Compatibility Issues

3.6.1 ContentFilteredTopics

l Starting with 5.1.0, Connext DDS includes a change in the generated typecode name when rtidds-
gen’s -package option is used in Java. This change introduces the following backward-com-
patibility issue.

DataWriters in 4.5x and below will not be able to perform writer-side filtering for Connext DDS
5.1.0 DataReaders using ContentFilteredTopics. You will get a ContentFilteredTopic (CFT) com-
pilation error message on the DataWriter side. Notice that this compatibility issue does not affect cor-
rectness, as the filtering will be done on the DataReader side.

3.6.2 Built-in Topics

Due to the addition of new values in the enumeration DDS::ServiceQosPolicyKind under DDS::Ser-
viceQosPolicy, Connext DDS 5.1.0 or lower applications will not be able to get information about
DataWriters and DataReaders created by Connext DDS 5.2.0 or higher Infrastructure Services by reading
from the Publication and Subscription built-in topic DataReaders.

These infrastructure services are affected:

l RTI Routing Service

l RTI Recording Service (Record and Replay tools)

l RTI Database Integration Service (formerly, RTI Real-Time Connect)

l RTI Queuing Service

The 5.1.0 applications monitoring the built-in topics will print the following error message:
DDS_ServiceQosPolicy_from_presentation_service_kind:ERROR:
Failed to get service (unknown kind)

DDS_SubscriptionBuiltinTopicDataTransform:ERROR:
Failed to get service

PRESCstReaderCollator_addSample:!transform

23

3.6.3 Some Monitoring Types are not Backwards Compatible

24

Notice that this compatibility issue does not affect matching between the 5.1.0 DataReaders/DataWriters
and the corresponding 5.2.0 Infrastructure Service DataReader/DataWriters. Within the middleware, dis-
covery will still occur and these entities will communicate with each other.

3.6.3 Some Monitoring Types are not Backwards Compatible

Due to the way in which the type-assignability algorithm handled enumerations in Connext DDS 5.1.0,
some of the monitoring types are not compatible with newer versions of the types. This means Connext
DDS 5.1.0 applications using the monitoring library may fail to match with the newer versions of the mon-
itoring types. Newer versions of the monitoring library, however, will match with older versions of the
monitoring types because of updates that have been made to the type assignability algorithm.

The only incompatibility as of the release of 5.2.0 is with the DataReaderDescription and DataWriter-
Description monitoring types. Monitoring applications built with 5.1.0 will not be able to subscribe to the
DataReaderDescription and DataWriterDescription topics published by applications that are using version
5.2.0 and later.

[RTI Issue ID MONITOR-188]

Chapter 4What’s Fixed in 5.2.0

This section describes bugs that have been fixed in this release.

4.1 Fixes Related to Application-Level Acknowledgement

4.1.1 Invalid Value for valid_response_data in
AcknowledgmentInfo—.NET API Only

In the .NET API, the valid_response_data member in the AcknowledgmentInfo parameter of the
DataWriterListener’s on_application_acknowledgment() callback was always false. This prob-
lem has been resolved.

[RTI Issue ID CORE-6592]

4.1.2 REDAInlineList_addNodeToBackEA:!precondition Error
Message when Using Application-Level Acknowledgment

When using the Connext DDS debug libraries, the application acknowledgment of samples out-of-
order for keyed topics may have generated the following precondition error on the DataWriter:

REDAInlineList_addNodeToBackEA:!precondition

The error message did not impact functional behavior.

When using the release libraries, this issue may have caused DISPOSE or UNREGISTER samples
to never be application-level acknowledged.

[RTI Issue ID CORE-6404]

25

4.1.3 Unable to Send Application-Level Acknowledgement Messages when Using Delegated Reliability

26

4.1.3 Unable to Send Application-Level Acknowledgement Messages when
Using Delegated Reliability

The user-specified response data of an explicit application-level acknowledgment was never removed
when the DataReader was configured to use delegated reliability. Consequently, the application-level
acknowledgment messages may have grown unbounded until they no longer fit in an RTPS packet. Users
would have seen errors indicating that the application-level acknowledgment messages could not be sent.
This problem has been resolved.

[RTI Issue ID CORE-6540]

4.1.4 Unexpected Memory Growth on DataWriter when Using Batching and
Enabling Application-Level Acknowledgement

The memory associated with DataWriters using batching and enabling application-level acknow-
ledgements may have grown unbounded over time if writer_qos.resource_limits.max_samples was set
to UNLIMITED.

Notice that when setting writer_qos.resource_limits.max_samples to UNLIMITED, this issue was not
reported as a memory leak because all the memory was reclaimed after the DataWriter was destroyed.

If writer_qos.resource_limits.max_samples was set to a finite number, you would have seen errors on the
write operation after writer_qos.resource_limits.max_samples was exceeded.

This problem has been resolved.

[RTI Issue ID CORE-6750]

4.1.5 Unexpected Memory Growth when using DataReader's acknowledge_
sample() Operation

Using the acknowledge_sample() operation to explicitly acknowledge samples in a DataReader resulted
in unbounded memory growth, which could eventually exhaust the available memory.

A potential workaround was to use the acknowledge_all() operation instead.

This problem has been resolved.

[RTI Issue ID CORE-6277]

4.1.6 Unexpected Timeout Error in DataWriter’s wait_for_acknowledgments
() when using Application-Level Acknowledgment

Calling wait_for_acknowledgments() on a VOLATILE DataWriter may have caused a DDS_
RETCODE_TIMEOUT error, even if all the samples in the DataWriter’s history were acknowledged by
the DataReaders that were alive when the samples were published.

4.2 Fixes Related to Batching

This issue was a race condition that only occurred when new DataReaders appeared after the samples had
been published.

The problem has been resolved.

[RTI Issue ID CORE-6670]

4.2 Fixes Related to Batching

4.2.1 Last value Per Instance Not Guaranteed when Using Batching and No
Resources to Satisfy History Depth

If a DataWriter is configured with a History kind of KEEP_LAST, max_samples >max_instances, and
max_samples < (max_instances * depth), the documentationa states that Connext DDS may discard
samples of some other instance, as long as at least one sample remains for such an instance. (max_
instances and max_samples are members of the ResourceLimitsQosPolicy; depth is a member of the His-
toryQosPolicy.)

In previous releases, when batching is enabled, Connext DDS may have discarded all the samples for an
instance. This problem has been resolved.

[RTI Issue ID CORE-6140]

4.2.2 Unexpected Precondition Error when Using Batching on DataWriter

You may have seen the following precondition errors on DataWriters using the batching feature:
PRESWriterHistoryDriver_finalizeBatchSample:!precondition

The error only occurred when individual samples were invalidated in a batch out-of-order. This error may
have prevented batches from being removed from the writer history. This problem has been resolved.

[RTI Usse ID CORE-6669]

4.3 Fixes Related to Conditions and Waitsets

4.3.1 Calling set_query_parameters() with Same Key-Only Expression in
QueryCondition Caused Waitset not to be Triggered

In some circumstances, a call to set_ query_ parameters ()may have caused a key- only QueryCondition
to no longer be triggered. In particular, this issue occurred for instances that had no samples to be read in
the DataReader when set_query_parameters() was called. This problem has been resolved.

aThis behavior is described in Section 6.3.8.1, Blocking During a write(), in the RTI Connext DDS Core
Libraries User’s Manual.

27

4.3.2 Disposal of Remote DataWriter may have Caused DataReader's Keyed QueryCondition not to

28

[RTI Issue ID CORE-6256]

4.3.2 Disposal of Remote DataWriter may have Caused DataReader's
Keyed QueryCondition not to Trigger Anymore

Receiving a ‘dispose’ sample as the first sample for an instance may have caused the associated instance
not to trigger the QueryCondition until there was a call to set_query_parameters(). This problem has
been resolved.

[RTI Issue ID CORE-6318]

4.3.3 Memory Leak when Using QueryConditions on Unkeyed DataReader

Using a QueryCondition on unkeyed DataReaders may have caused a memory leak. The problem only
occurred if the QueryCondition was created while there were samples in the DataReader's queue. In addi-
tion, this problem only affected the following language bindings:

l .NET

l Java

l DynamicData (regardless of the language)

This problem has been resolved.

[RTI Issue ID CORE-6734]

4.3.4 ReadCondition and Group Access Scope did not Work Correctly

When setting the PresentationQosPolicy’s access_scope to GROUP_PRESENTATION_QOS and using
a Waitset to wait on a ReadCondition to read historical data, the Waitset may have waited longer than
necessary because the ReadCondition was not triggered in a timely manner. This problem has been
resolved.

[RTI Issue ID CORE-6237]

4.3.5 ReadCondition not Always Triggered when Samples Available after
Losing Remote Participant Liveliness

A ReadCondition was not always properly triggered after loss of liveliness for a remote Participant. In par-
ticular, the ReadCondition may have not always triggered as expected in the presence of DDS_NOT_
ALIVE_NO_WRITERS_INSTANCE_STATE samples in the DataReader. This problem has been
resolved.

[RTI Issue ID CORE-6358]

4.3.6 WaitSet Operations get_conditions() and wait() were not Thread Safe

4.3.6 WaitSet Operations get_conditions() and wait() were not Thread Safe

Calling the WaitSet operation get_conditions() from two different threads at the same time, or having one
thread call get_ conditions() and another one call wait()may have resulted in undefined behavior. This
problem has been resolved and these operations can be safely called concurrently.

Note: Calling wait() concurrently from multiple threads is not permitted and returns PRECONDITION_
NOT_MET (as indicated in the API Reference HTML documentation).

[RTI Issue ID CORE-6143]

4.4 Fixes Related to ContentFilters

4.4.1 ContentFilteredTopics may not have Correctly Filtered Some C++
Types with Inheritance

C++ types with some specific memory layouts, generated with rtiddsgen from IDL types that use inher-
itance, may have not been filtered correctly. This could have caused dropped samples that should have
passed the filter. This problem has been resolved.

[RTI Issue ID CORE-6269]

4.4.2 Default Content Filter may have Failed to Filter Some Types with
Optional Members—DynamicData, Java, and C# APIs Only

The SQL content filter may have produced undefined behavior (typically non-fatal errors or incorrect eval-
uation of the sample being filtered) when filtering some non-mutable types containing optional members.
The problem affected content filters on IDL types in the Java and .NET APIs, and on DynamicData types
in all APIs. IDL types in the C and C++ APIs were not affected. Only some type definitions with a spe-
cific layout caused the failure. This problem has been resolved.

[RTI Issue ID CORE-6680]

4.4.3 Filter-Expression Parsing Errors for Variable Names Starting with
Reserved Word

Due to an issue in the SQL filter-expression parser, field names starting with a reserved keyword (e.g.,
ORdinal) were not parsed correctly. This problem has been resolved.

[RTI Issue ID CORE-3971]

4.4.4 Invalid filter_data when ContentFilter’s writer_return_loan() Invoked

If a user registers a C Custom Filter that contains a pointer to a user-defined writer_return_loan() func-
tion, Connext DDS should call the user's function, passing in three parameters: void *filter_data, void

29

4.4.5 Memory Leak if a Custom Content Filter was not Unregistered

30

*writer_filter_data, and struct DDS_CookieSeq *cookies.

In the previous release, the first parameter (void *filter_data) contained an invalid pointer. This could res-
ult in undefined behavior. This problem has been resolved.

[RTI Issue ID CORE-6201]

4.4.5 Memory Leak if a Custom Content Filter was not Unregistered

You are not required to unregister custom content filters before DomainParticipant destruction. However,
if a custom content filter was not unregistered, there was a memory leak. This problem has been resolved.
All still-registered custom content filters are now explicitly unregistered during DomainParticipant destruc-
tion, so there is no more memory leak.

[RTI Issue ID CORE-6390]

4.4.6 Memory Leak when Changing Expression Parameters on
ContentFilteredTopic not Associated with any Reader

Applications leaked memory when changing the parameters of a ContentFilteredTopic after creating it but
before creating a DataReader with it. The memory leak has been resolved.

[RTI Issue ID CORE-6156]

4.4.7 Possible Crash when Using ContentFilteredTopic and Builtin SQL
Filter

If an error occurred while creating the SQL filter for a ContentFilteredTopic, there was a possibility of a
crash. There are a number of reasons why the creation might fail, for example if there was a memory alloc-
ation failure. This problem has been resolved.

[RTI Issue ID CORE-6816]

4.4.8 Possible Incorrect Filter Results in 'AND' Expressions with Optional
Members, Sequences, or Unions

A problem evaluating AND expressions in the SQL content filter caused the following kinds of com-
parisons, which should be false, to be mistakenly evaluated as true:

l Comparisons involving unset (null) optional members

l Comparisons involving sequence members above the actual length

l Comparisons involving unselected union members

For example, given the following IDL type:

4.4.9 Possible Segmentation Fault from ContentFilteredTopic Evaluation for Samples of Types with

struct A {
string required_str;
string optional_str; //@Optional

};

The expression "required_str = 'Hi' AND optional_str = 'Bye'" would evaluate as true when required_str =
'Hi' and optional_str = NULL.

Only AND expressions had this problem. Expressions such as "required_str = 'Hi' OR optional_str =
'Bye'" and "optional_str = 'Bye'" were not affected.

This problem has been resolved and all those kind of comparisons will evaluate to false as expected.

[RTI Issue ID CORE-6684]

4.4.9 Possible Segmentation Fault from ContentFilteredTopic Evaluation
for Samples of Types with wstrings

The evaluation of a content filter may have caused a segmentation fault if all of these conditions were met:

l The DataReader was a DynamicDataReader, a DataReader in the Java API, or a DataReader expli-
citly configured to filter on serialized data (this last case is not common)

l The data type contained one or more wstrings

l The C memory layout of the data type and the wstring member had a specific alignment

This problem has been resolved and applications can now use wstrings normally.

[RTI Issue ID CORE-6287]

4.4.10 Segmentation Fault when Creating ContentFilteredTopic with Long
Filter Expression

There may have been a segmentation fault when using ContentFilteredTopics. In particular, this issue may
have occurred after creating a ContentFilteredTopic with an expression that resulted in a content-filter prop-
erty larger than the maximum specified by DomainParticipantResourceLimitsQosPolicy's contentfilter_
property_max_length. This problem has been resolved.

[RTI Issue ID CORE-5872]

4.4.11 Segmentation fault when Using SQL ContentFilteredTopic on Type
with Large Maximum Serialized Size

Using a SQL ContentFilteredTopic on a Type whose maximum serialized size was greater than 2^32/2-1
may have caused a segmentation fault.

31

4.4.12 Unexpected Memory Growth on DataWriter when Performing Writer-Side Filtering on Metadata

32

For example, this problem may have occurred when using a type with unbounded sequences for which the
code generation was done with the -unboundedSupport option:

struct MyType {
sequence<long> m1;

};

This problem has been resolved.

[RTI Issue ID CORE-6420]

4.4.12 Unexpected Memory Growth on DataWriter when Performing Writer-
Side Filtering on Metadata Fields

Performing writer-side filtering on metadata fields using the built-in SQL filter may have led to unbounded
memory growth when new DataReaders using ContentFilteredTopics on the metadata fields were created
or destroyed.

This bug affected two wrapper APIs:

l Request-Reply API: The Replier's DataReader installs a ContentFilteredTopic on the metadata field
related_sample_identity.

l Queuing API: The QueueProducer, QueueConsumer, QueueRequester, and QueueReplier
DataReaders install a ContentFilteredTopic on the new metadata fields related_source_guid and
related_source_guid.

Notice that this issue was not reported as a memory leak because all the memory was reclaimed after the
affected DataWriters were destroyed. This problem has been resolved.

[RTI Issue ID CORE-6738]

4.5 Fixes Related to Discovery

4.5.1 Discovery Failed on Publisher Side if contentfilter_property_max_
length not Long Enough to Deserialize Filter Information

Discovery failed if a publishing application set the contentfilter_property_max_length to a value too
small for deserializing the filter information from a matching DataReader of a subscriber application. No
communication would occur.

This situation has been solved by allowing discovery to occur in the publisher application. Since the filter
information cannot be retrieved, writer-side filtering will not be available and the filtering will occur in the
subscriber publication.

4.5.2 Discovery Packets Sent over Unicast had Incorrect Priority

[RTI Issue ID CORE-5875]

4.5.2 Discovery Packets Sent over Unicast had Incorrect Priority

Themetatraffic_transport_priority field of the DiscoveryQosPolicy was not being used to set the pri-
ority of discovery packets sent over unicast. (Instead, these packets used a priority of 0.) This problem has
been resolved; now metatraffic_transport_priority sets the transport priority of all discovery packets,
instead of just Heartbeat and Liveliness packets.

[RTI Issue ID CORE-6180]

4.5.3 DomainParticipantResourceLimitsQosPolicy's ignored_entity_
allocation.max_count had no Effect

Connext DDS provides a way to ignore remote entities by invoking any of the following DomainPar-
ticipant operations: ignore_participant(), ignore_publication(), and ignore_subscription(). When an
entity is ignored, Connext DDS adds it to an internal ‘ignore’ table whose resource limits are configured
using the DomainParticipantResourceLimitsQosPolicy's ignored_entity_allocation.max_count.

There was an issue that prevented ignored_entity_allocation.max_count from being enforced. Con-
sequently, allocated memory could grow to an unlimited size. This problem has been resolved.

[RTI Issue ID CORE-6176]

4.5.4 Memory Leak upon Remote Participant Discovery

If the DomainParticipantResourceLimitsQosPolicy’s transport_info_list_max_length was greater than
zero, receiving remote Participant announcements may have triggered a memory leak. This problem has
been resolved.

[RTI Issue ID CORE-6562]

4.5.5 Modified RTPS Wire Protocol Built-in Endpoint Mask to Match OMG
Specification

The builtin endpoint mask, serialized as part of the RTPS Wire Protocol Participant Data, has been mod-
ified to match the OMG specification. In particular, the bits BUILTIN_ENDPOINT_PARTICIPANT_
MESSAGE_DATA_WRITER and BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_DATA_
READER are now set to notify other peers about the Liveliness DataWriter and DataReader.

[RTI Issue ID CORE-6452]

33

4.5.6 No Communication with Peer that was Removed, Re-Added

34

4.5.6 No Communication with Peer that was Removed, Re-Added

If a peer was removed by calling the DomainParticipant’s remove_peer() operation and later re-added
with add_peer(), communication with that peer did not always resume. This was a timing issue that only
occurred in some cases. This problem has been resolved.

[RTI Issue ID CORE-6128]

4.5.7 ParticipantBuiltinTopicData was Missing Domain ID—.NET API Only

The field domain_id was missing from the ParticipantBuiltinTopicData type in the .NET API. This prob-
lem has been resolved; the domain_id has been added.

[RTI Issue ID CORE-6598]

4.5.8 Possible Segmentation Fault upon Failure Asserting Remote Reader

There may have been a segmentation fault upon discovery of a remote reader. This was only reproducible
when there was a failure asserting the remote reader. This problem has been resolved.

[RTI Issue ID CORE-6702]

4.5.9 Potential Bus Error when Discovering Remote Participants with
Properties Set—Solaris Platforms on 64-bit Sparc CPUs Only

Applications may have generated a bus error when discovering remote DomainParticipants if the Prop-
ertyQosPolicy was not empty. This only occurred on Solaris platforms using 64-bit Sparc CPUs. This
problem has been resolved.

[RTI Issue ID CORE-6749]

4.5.10 Potential Unexpected Memory Growth when Asserting a Remote
Reader

There may have been unexpected memory growth when a new remote reader was discovered. This
memory growth would only have occurred if the remote reader provided a locator that the local writer
could not reach.

This issue has been resolved.

[RTI Issue ID CORE-6701]

4.5.11 Unable to Set remote_participant_allocation with incremental_count of 0

4.5.11 Unable to Set remote_participant_allocation with incremental_count
of 0

If the incremental_count of remote_participant_allocation (in the DomainParticipantResourceLimits
QoS policy) was set to 0, participant creation failed. This problem has been resolved.

[RTI Issue ID CORE-6556]

4.5.12 Unbounded Memory Growth after Failed Attempt to Ignore
Participant

A failed attempt to ignore a remote Participant that had a DomainParticipantResourceLimitsQosPolicy
transport_info_list_max_length greater than zero may have triggered unbounded memory growth of the
transport info list. This problem has been resolved.

[RTI Issue ID CORE-6735]

4.5.13 Unexpected Memory Growth if Remote Endpoint Changed QoS that
is Propagated with Built-in Topics

If a remote endpoint changed any QoS values that are propagated as part of the built-in topics, this resulted
in unbounded memory growth in the matching local endpoint, which could eventually exhaust the avail-
able memory. This only happened if the remote endpoint had a non-NULL value for the EntityQosPolicy's
name or role_name fields. This problem has been resolved.

[RTI Issue ID CORE-6724]

4.5.14 Unexpected Memory Growth when Discovering Remote Participants

When a remote DomainParticipant was deleted from the discovery tables of the local DomainParticipant,
not all the memory associated with the remote DomainParticipant was released. This could have led to
unbounded memory growth if a lot of remote DomainParticipants were discovered and disappeared while
the local DomainParticipant was running.

Notice that all memory was properly reclaimed when the local DomainParticipant was deleted. This is
why tools such as valgrind did not report this issue as a memory leak.

This problem has been resolved.

[RTI Issue ID CORE-5589]

4.5.15 Unexpected Memory Growth when Discovering Remote Participants
with Role Name

The participant_name.role_name of a discovered remote DomainParticipant was not released when the
remote DomainParticipant was destroyed or disappeared. This could have led to unbounded memory

35

4.5.16 Unexpected "PRESPsService_destroyLocalEndpointWithCursor:!remove remote endpoint"

36

growth if a lot of remote DomainParticipants with participant_name.role_name set were discovered and
disappeared while the local DomainParticipant was running.

Notice that all memory was properly reclaimed when the local DomainParticipant was deleted. This is
why tools such as valgrind did not report this issue as a memory leak.

This problem has been resolved.

[RTI Issue ID CORE-6723]

4.5.16 Unexpected "PRESPsService_
destroyLocalEndpointWithCursor:!remove remote endpoint" Warning
Message

You may have seen the following warning message when using DomainParticipant::ignore_par-
ticipant() in a DomainParticipant to ignore itself:

PRESPsService_destroyLocalEndpointWithCursor:!remove remote endpoint

This warning message was misleading and it has been removed.

[RTI Issue ID CORE-6802]

4.5.17 Unnecessary Participant Announcements after Participant Leaves
the System

Under certain circumstances, a participant may have continued to send Participant Announcements to des-
tinations associated with remote participants that had already left the system, even if those destinations
were not part of the initial discovery peers.

In particular, this issue may have occurred for multicast or unicast destinations when the Dis-
coveryQosPolicy's accept_unknown_peers was set to true (the default).

This problem has been resolved.

[RTI Issue ID CORE-6555]

4.6 Fixes Related to Distributed Logger

4.6.1 Default Filter Level for Java

The default setting for Distributed Logger's filter level was TRACE, when it should have been INFO.
This problem has been resolved.

[RTI Issue ID DISTLOG-137]

4.6.2 Deletion of C/C++ Distributed Logger's DataWriters not Propagated via Discovery

4.6.2 Deletion of C/C++ Distributed Logger's DataWriters not Propagated
via Discovery

The deletion of the Distributed Logger's DataWriters after invoking the API RTI_DLDistLog-
ger::finalizeInstance() was not propagated via discovery. For example, if you ran RTI Monitor or
rtiddsspy, these tools still showed the DataWriters as alive. This issue only occurred with the C and C++
APIs.

These DataWriters were affected:

l Administration Command Response DataWriter

l Administration State DataWriter

l Log Message DataWriter

This problem has been resolved.

[RTI Issue ID DISTLOG-133]

4.6.3 Possible Warning when Compiling Distributed Logger Examples on
UNIX-Based Systems

You may have seen a warning when compiling Distributed Logger C and C++ examples on UNIX-based
systems. This problem has been resolved.

[RTI Issue ID DISTLOG-138]

4.7 Fixes Related to Durable Writer History

4.7.1 DataWriter Configured to Use Durable Writer History did not
Communicate with Persistence Service

A DataWriter using Durable Writer History could not communicate with Persistence Service. You may
have seen the following errors on the DataWriter side:
WriterHistoryRemoteReaderManager_assertRemoteReader:!precondition
[FATAL] WriterHistoryOdbcPlugin_assertRemoteReader:!assert virtual read
PRESWriterHistoryDriver_assertRemoteReader:!assert_remote_reader
PRESPsService_linkToRemoteReader:!whDriver->assertRemoteReader
PRESPsService_onLinkToRemoteEndpointEvent:!create linkToRemoteReader

This problem has been resolved.

[RTI Issue ID CORE-6426]

37

4.7.2 Long Delay Receiving Data from DataWriter with Durable Writer History

38

4.7.2 Long Delay Receiving Data from DataWriter with Durable Writer
History

A late-joiner DataReader may have taken a long time to receive all historical data from a durable
DataWriter, even if there were few historical samples. For example, assume the durable DataWriter is con-
figured to keep the last sample for each instance (last-value cache). Consider the following sequence of
samples:

S1 (Instance 1), S2 (Instance 2),, S1000000 (Instance 2)

In this case, the durable DataWriter will keep only two samples for late-joiners: S1 (Instance 1) and
S1000000 (Instance 2).

The problem was that when a late-joiner started up, it received S1 from the DataWriter immediately, but it
took a while to receive S1000000. The durable DataWriter did not manage sample GAP messages effi-
ciently; it generated significant RTPS GAP traffic to declare that it did not have samples S2 to S999999.
This problem has been resolved.

[RTI Issue ID CORE-6308]

4.7.3 Samples not Acknowledged after Restarting DataWriter in Some
Cases

In certain scenarios, some samples remained unacknowledged after restarting the DataWriter. This prob-
lem only occurred when all of the following conditions were true:

l The DataWriter was configured with application acknowledgments enabled

l The DataWriter was configured with durable subscriptions enabled

l The DataWriter used the ODBC sample history

l The sample history was restored from the database

In that situation, samples in the writer that met all the criteria to be considered acknowledged by the
DataReaders may not have been marked as such. This caused unnecessary data retransmissions and pre-
vented the release of those samples from the database if needed.

[RTI Issue ID CORE-6580]

4.7.4 Unexpected Memory Growth when using Durable Writer History and
Keyed Topics

In previous releases, there may have been unbounded memory growth when using Durable Writer History
on a keyed DataWriter. This problem has been resolved.

[RTI Issue ID CORE-6784]

4.8 Fixes Related to DynamicData

4.8 Fixes Related to DynamicData

4.8.1 Cannot Create DynamicDataTypeSupport Object with Typecodes
Larger than 64k—Java API Only

Attempting to create a DynamicDataTypeSupport object with a typecode with a size larger than 64k while
using the Java API would fail. This problem has been resolved. There is no longer a limit imposed on the
size of the typecode that can be used to created a DynamicDataTypeSupport object in the Java API.

[RTI Issue ID CORE-6427]

4.8.2 DDS_DynamicData_copy() could Create Incorrect DynamicData
Object

Under a few circumstances, a call to DDS_DynamicData_copy() created a misaligned DynamicData
object that could not be used. This problem has been resolved.

[RTI Issue ID CORE-6522]

4.8.3 DDS::DYNAMIC_DATA_PROPERTY_DEFAULT, DDS::DYNAMIC_
DATA_TYPE_PROPERTY_DEFAULT Missing from C++ API

Previous releases were missing the definitions for DDS::DYNAMIC_DATA_PROPERTY_DEFAULT,
DDS::DYNAMIC_DATA_TYPE_PROPERTY_DEFAULT constants. This issue has been resolved.

[RTI Issue ID CORE-6349]

4.8.4 Failure when Printing DynamicData Object with Type that used
Inheritance

Calling print on a DynamicData object whose underlying type used inheritance caused the print function
to print incorrect values for the members of the derived type or to fail with the error code DDS_
RETCODE_ERROR. This problem has been resolved.

[RTI Issue ID CORE-6455]

4.8.5 Inconsistencies between DynamicData's set_char() and get_char() --
Java API Only

The value that was set for a char using any of the following APIs in Java was not always the value that
was returned when using the DynamicData APIs to retrieve the set values:

l DynamicData.set_char()

l DynamicData.set_char_array()

39

4.8.6 Incorrect Instance Handles on DynamicData DataReaders Subscribing to Topics with Mutable

40

l DynamicData.set_char_seq()

The problem was due to the fact that a char in Java is a 16-bit, unsigned value, but the OMG IDL spe-
cification says that the char data type is 8 bits. Therefore, only char values between 0 and 255 are sup-
ported in Java. The problem has been resolved and the value set will be the same value that is returned
from the 'get' APIs as long as the values that are set fall within the valid range [0, 255].

[RTI Issue ID CORE-6639]

4.8.6 Incorrect Instance Handles on DynamicData DataReaders
Subscribing to Topics with Mutable Types

The instance handle obtained by invoking the DynamicData DataReader’s lookup_instance() operation,
or by accessing the field SampleInfo::instance_handle, may have been incorrect when DynamicData
DataReaders subscribed to a Topic using mutable types with keys containing non-primitive fields.

This issue affected users who tried to republish the samples received by a DynamicData DataReader using
the instance handles provided by the same DynamicData DataReader. The issue also affected RTI Routing
Service.

The consequence of using the instance handles provided by DynamicData DataReaders to publish new
samples is that the same instance may have been identified by two different instance handles in a DDS
domain. This would cause correctness issues when applying per-instance QoS policies, such as the His-
toryQosPolicy, DeadlineQosPolicy, and others.

The problem has been resolved.

[RTI Issue ID CORE-6674]

4.8.7 Possible Crash when Calling DDS_DynamicData_equals() if Types
Contained Arrays—C and C++ APIs Only

A rare crash may have occurred when calling DDS_DynamicData_equals() on samples of a type that
contained arrays. This problem has been resolved.

[RTI Issue ID CORE-6528]

4.8.8 Possible Crash when Calling DynamicData get_char_seq() if
Sequence Passed In was Too Small—Java API Only

When using the DynamicData get_char_seq()method in Java, if the sequence used to retrieve the value
of the char sequence was not large enough to hold the returned sequence, this caused a crash. This issue
has been resolved.

[RTI Issue ID CORE-6632]

4.8.9 Possible Memory Leak when using DynamicData with Java API

4.8.9 Possible Memory Leak when using DynamicData with Java API

There was a memory leak in applications that used the Java API to create DynamicData. This problem has
been resolved.

[RTI Issue ID CORE-6282]

4.8.10 Potential Failure Writing DynamicData Object with Unset Optional
Primitive Members

A write operation on a DynamicDataWriter with a type containing optional primitive members may have
failed if the written sample had unset optional primitive members. This problem has been resolved.

[RTI Issue ID CORE-6776]

4.8.11 Potential Serialization Errors on DynamicData DataWriters
Publishing Types Containing Wide Strings

Writing a sample with a DynamicData DataWriter may have failed in some cases if the associated type
contained members that were wide strings. For example:

struct MyStruct {
wstring<100> m1;

};

This problem has been resolved.

[RTI Issue ID CORE-6525]

4.8.12 Segmentation Fault when Setting pool_buffer_max_size to Zero in
DataWriter using Dynamic Data

Setting the DataWriter property dds.data_writer.history.memory_manager.fast_pool.pool_buffer_
max_size to zero when the DataWriter was using Dynamic Data may have caused a segmentation fault.
The problem has been resolved.

[RTI Issue ID CORE-6675]

4.8.13 Some DynamicData Serialization Properties Missing—Java and .NET
APIs Only

The DynamicData serialization propertiesmin_size_serialized and trim_to_size under DDS_Dynam-
icDataProperty_t::serialization were not present in the Java and .NET APIs; therefore they could not be
configured.

41

4.8.14 Some Operations on DynamicData Objects with Optional Members Failed

42

For more information on these properties, see Chapter 20, Sample-Data and Instance-Data Memory Man-
agement, in the RTI Connext DDS Core Libraries User’s Manual.

This problem has been resolved.

[RTI Issue ID CORE-6531]

4.8.14 Some Operations on DynamicData Objects with Optional Members
Failed

The DDS_DynamicData’s unbind_complex_member() or set_complex_member() operations may have
failed if the DynamicData object had unset optional members. This problem has been resolved.

[RTI Issue ID CORE-6594]

4.8.15 Some TypeCode Information Lost when Using DynamicData—Java
API Only

When using DynamicDataTypeSupport in the Java API, some of the TypeCode information was lost. Spe-
cifically, information about user-specified member IDs and optional members was lost, possibly causing
communication between Java applications and other language (C/C++/.NET) applications to fail due to
mismatched TypeCodes. This problem has been resolved.

[RTI Issue ID CORE-6177]

4.8.16 Unset, Complex, Mutable Optional Members not Correctly Serialized
using DynamicData

When sending a type with an unset optional member that was a struct with mutable extensibility, the seri-
alization to CDR was incorrect, causing incorrect values to be deserialized on the receiving side. This prob-
lem has been resolved.

[RTI Issue ID CORE-6498]

4.8.17 Unset, Complex, Optional Members not Correctly Printed in
DynamicData

Calling the print function on a DynamicData object with an unset, complex, optional member would print
incorrect values for all members following the unset member in the type. This problem has been resolved.

[RTI Issue ID CORE-6497]

4.8.18 Wide String Support was Missing for DynamicData in Java API

4.8.18 Wide String Support was Missing for DynamicData in Java API

The Java API lacked support for wide strings in the DynamicData type. The set_string() and get_string()
operations on wide string members failed with the following error:

DDS_DynamicData_set_wstring:type mismatch for field wstr (id=0)

where 'wstr' is the name of the wide string member.

Support for wide strings has been added. To map a Java String to a wide string, create a member of kind
WSTRING and use the existing set_string() and get_string() operations.

A wide character may contain more information than a String character. In this case, obtaining a value
with get_string()may result in a loss of information since each wide string character is truncated to fit a
Java String character.

For more information, see to API Reference HTML documentation.

[RTI Issue ID CORE-6235]

4.9 Fixes Related to Instance Management

4.9.1 Errors after Reregistering an Instance and Exceeding max_total_
instances

In some cases, after bringing a deleted instance back to the ALIVE instance state and then exceeding the
DataReaderResourceLimitmax_total_instances, you may have seen incorrect behavior and errors such
as:
"PRESCstReaderCollator_addInstanceEntry: unexpected error".

This problem has been resolved.

[RTI Issue ID CORE-6577]

4.9.2 FooDataWriter::get_key_value() Reported Incorrect Error when
Instance did not Exist

If the instance handle passed to FooDataWriter::get_key_value() was not registered, this function repor-
ted DDS_RETCODE_ERROR instead of DDS_RETCODE_BAD_PARAMETER. This problem has
been resolved. Now the function returns the more specific DDS_RETCODE_BAD_PARAMETER.

[RTI Issue ID CORE-6096]

43

4.9.3 Invalid Instance Handle Provided by on_instance_replaced() Callback if Replacement of Empty

44

4.9.3 Invalid Instance Handle Provided by on_instance_replaced() Callback
if Replacement of Empty Instances was Enabled

In certain circumstances, the instance handle provided by the DataWriter's on_instance_replaced() call-
back was invalid. In particular, this issue was triggered when the replacement of empty instances in the
DataWriter was enabled (that is, if the replace_empty_instances member of the DataWriter-
ResourceLimitsQosPolicy was true (which is not the default setting)). This problem has been resolved.

[RTI Issue ID CORE-6284]

4.9.4 Possible Segmentation Fault or Precondition Error when Reading
Samples of Previously Disposed Instance

When reading keyed samples of an instance that was previously disposed, a DataReader may have exper-
ienced a segmentation fault in the function PRESCstReaderCollator_removeNotAliveSample() when
using the release libraries, or the following error when using the debug libraries:
REDAInlineList_removeNodeEA:!precondition: list ==
((void *)0) || node == ((void *)0) || node->inlineList != list

This issue has been resolved.

[RTI Issue ID CORE-6261]

4.10 Fixes Related to Linking

4.10.1 Failure when Linking with Other Libraries that Contain Expat-Based
Parsers

In some scenarios, the RTI XML parser failed to initialize when linking with third-party libraries that
included the expat library, due a symbol conflict. This issue has been resolved by removing the symbol
conflicts.

[RTI Issue ID CORE-6043]

4.10.2 Linker Errors in C Request-Reply API

Several linker errors (undefined and/or duplicate symbols) may have occurred when using the C API of
the Request-Reply communication pattern when linking user-defined Requesters and Repliers.

For example, defining two Requesters or two Repliers of different types in the same object file would have
caused several duplicate-symbol errors. There were also some undefined symbols such as <MyReplier>_
return_loan (where <MyReplier> was the name given to a requester declared by using the macro RTI_
CONNEXT_REQUESTER_DECL and defined by including the file connext_c/generic/connext_c_
requestreply_TReqTRepReplier.gen).

4.11 Fixes Related to Request-Reply Communication

These problems have been resolved. Now it is possible to declare more than one Requester or Replier in
the same object file. The missing symbols have also been fixed.

[RTI Issue ID REQREPLY-18]

4.11 Fixes Related to Request-Reply Communication

4.11.1 Requester's receiveReply() and Similar APIs Returned Immediately
when Infinite Specified—C# API Only

C# Requester APIs that allow waiting for the reception of samples with a specified timeout would return
immediately if an infinite timeout was specified. This problem has been resolved.

[RTI Issue ID REQREPLY-15]

4.11.2 Requesters may not have Received Replies of Some Types with
Optional Members—Java and C# APIs

Some immutable reply types (for instance, extensible or final types) containing optional members and a spe-
cific memory layout may have caused a non-fatal error. This may have occurred when sending or receiv-
ing a reply sample. The non-fatal error prevented the application from receiving the sample. This problem
has been resolved.

[RTI Issue ID REQREPLY-23]

4.11.3 Requester or Replier Write Timeout Caused Exception of Wrong
Class—C++ API Only

If the Requester::send_request() or Replier::send_reply() operations failed because the write operation
timed out, they threw an AlreadyDeletedException instead of a TimeoutException.

This problem has been resolved; now they throw TimeoutException.

[RTI Issue ID REQREPLY-27]

4.12 Fixes Related to Transports

4.12.1 Bus Error when Using Shared Memory Transport on Sparc Solaris
64-bit Platforms

Connext DDS may have generated a bus error when using the shared memory transport on Sparc Solaris
64-bit platforms. This problem has been resolved. Notice that by doing this, out-the-box backward com-
patibility with previous releases on Sparc Solaris platforms (32-bit and 64-bit) using shared memory trans-
ports is broken.

45

4.12.2 Data Corruption when Sending Large Data at a High Rate from a TCP Transport Plugin with

46

[RTI Issue ID CORE-6777]

4.12.2 Data Corruption when Sending Large Data at a High Rate from a
TCP Transport Plugin with Windows IOCP

There may have been data corruption when sending large data at a high rate from a TCP Transport plugin
with Windows IOCP. You may have seen the following message from the remote TCP Transport plugin:

NDDS_Transport_TCPv4_Connection_nonBlockingRead:wrong msg signature:
recv=00010000, expected=dd54dd55

This problem has been resolved.

[RTI Issue ID COREPLG-313]

4.12.3 DataWriter's Transport Priority had no Effect in TCP Transport
Plugin Server Sockets

The DataWriter's Transport Priority had no effect on TCP Transport Plugin server sockets. This problem
has been resolved.

[RTI Issue ID COREPLG-298]

4.12.4 DomainParticipant's add_peer and remove_peer not Supported by
TCP Transport

The TCP transport plugin did not support the DomainParticipant’s add_peer() and remove_peer() oper-
ations, resulting in outstanding TCP connections that were not closed. This problem has been resolved.

[RTI Issue ID COREPLG-203]

4.12.5 Duplicated Transaction ID in TCP Transport Plugin Control
Messages—Windows Platforms Only

There was an issue that may have caused the TCP Transport plugin to send the same transaction ID in dif-
ferent control message exchanges. Consequently, this may have caused errors establishing new con-
nections. This issue, which only affected Windows platforms, has been resolved.

[RTI Issue ID COREPLG-341]

4.12.6 Error Establishing TCP Transport Client Connection could Cause Communication not to Recover

4.12.6 Error Establishing TCP Transport Client Connection could Cause
Communication not to Recover

There was an issue that may have caused communication between a TCP transport plugin client and server
not to recover. In particular, this issue may have occurred when a client dropped a connection before it
was fully established.

To address this issue, the TCP transport plugin now includes a new server connection negotiation timeout
feature. This feature will close server connections that have not completed the TCP transport negotiation
after a time period specified by the new TCP transport property, server_connection_negotiation_
timeout. By default, this property is set to 10 seconds.

[RTI Issue ID COREPLG-311]

4.12.7 Failure Enabling DomainParticipant when using UDPv6 Transport in
Some Cases

When using the built-in UDPv6 transport plugin, inclusion of a UDPv4 multicast address without an alias
(e.g., 239.255.0.1) in NDDS_DISCOVERY_PEERS (file or environment variable) or in themulticast_
receive_addresses list (in the DiscoveryQosPolicy) may have resulted in a failure during when enabling a
DomainParticipant. The following error may have been reported:

[D0000|ENABLE]DDS_DomainParticipant_enableI:Automatic participant index
failed to initialize. PLEASE VERIFY CONSISTENT TRANSPORT / DISCOVERY
CONFIGURATION.
[NOTE: On Windows, verify at least one network interface is enabled.]
DDSDomainParticipant_impl::createI:ERROR: Failed to auto-enable entity
DomainParticipantFactory_impl::create_participant():!create failure
creating participant
create_participant error

This problem has been resolved.

[RTI Issue ID CORE-2002]

4.12.8 Host Improperly Identified when no IPv4 Interfaces Available

The host identity was not properly determined when there were no IPv4 interfaces available. This typically
manifested when only IPv6 interfaces were available on the host. This problem has been addressed.

[RTI Issue ID MONITOR-170]

4.12.9 Logging Level for TCP Transport Connect Errors Changed from
Exception to Warning

When a TCP Transport plugin Client disconnected from the Server (for example, after a cable dis-
connection), the resulting error messages were too verbose. In this release, the logging verbosity for those

47

4.12.10 Memory Issue upon TCP Transport Plugin Server Disconnection

48

errors has been changed from Exception to Warning.

[RTI Issue ID COREPLG-307]

4.12.10 Memory Issue upon TCP Transport Plugin Server Disconnection

There was a race condition that may have provoked a segmentation fault in the TCP Transport Plugin
server upon a client disconnection. As a consequence of this race condition, the TCP Transport plugin
server may have also run into unbounded memory growth. This issue has been resolved.

[RTI Issue ID COREPLG-320]

4.12.11 Memory Leak when using UDPv4 Transport Plugin on VxWorks
Architectures

On a VxWorks system, a call to inet_ntoa() allocates memory. The Connext DDS core did not properly
release the allocated memory, which caused a memory leak. This problem has been resolved; allocated
memory is now properly released.

[RTI Issue ID CORE-6368]

4.12.12 Memory Leak in Applications using TCP Transport in Asymmetric
Mode

There was a memory leak in applications that used the TCP transport in asymmetric mode (server_bind_
port = 0). The size of the memory leak depended on the number of TCP connections opened by the trans-
port and the value of the transport property, parent.message_size_max. This problem has been resolved.

[RTI Issue ID COREPLG-96]

4.12.13 Memory Issue upon TCP Transport Plugin Server Disconnection

There was a race condition that may have provoked a segmentation fault in the TCP Transport Plugin
server upon a client disconnection. As a consequence of this race condition, the TCP Transport plugin
server may have also run into unbounded memory growth. This issue has been resolved.

[RTI Issue ID COREPLG-320]

4.12.14 Message Deserialization Errors in TCP Transport Plugin

There was an issue that may have caused errors when deserializing control messages sent by the TCP
Transport plugin. This problem has been resolved.

[RTI Issue ID COREPLG-297]

4.12.15 Non RTPS-Compliant UDPv6 Locator kind

4.12.15 Non RTPS-Compliant UDPv6 Locator kind

Connext DDS 5.1.0 and earlier releases used a UDPv6 locator kind that was not compliant with the value
provided by the RTPS specification. The value used in Connext DDS 5.1.0 was 5, while the RTPS spe-
cification specifies a value of 2. Because of this issue, Connext DDS could not interoperate with other
DDS vendors over UDPv6. This problem has been resolved. Notice that by doing this, out-the-box back-
ward compatibility with previous releases using both the UDPv6 and SHMEM transports is broken. See
Transport Compatibility for Connext DDS 5.2.0 (Section 3.5.3 on page 20) for additional details.

[RTI Issue ID CORE-5788]

4.12.16 Participant Creation Failed if All Enabled Network Interfaces were
IPv6—Non-Linux Systems Only

To determine part of a DomainParticipant's GUID, Connext DDS will, by default, use the host ID of one
enabled, non-loopback IPv4 network interface. If all the interfaces on a machine were configured with
IPv6 only, the participant creation failed.

Applications can alternatively use the MAC address to determine the GUID (DDS::WirePro-
tocolQosPolicy::rtps_auto_id_kind in the DomainParticipantQos). However, this mechanism also
required at least one enabled, non-loopback IPv4 interface. The only way to work around this situation
was to manually set the host ID (via the DDS::WireProtocolQosPolicy::rtps_host_id).

This problem was already resolved for Linux-systems. In this release, the problem is also resolved for non-
Linux systems. Now all the options to assign the GUID work in systems where only IPv6 interfaces are
available, although using the MAC address is recommended to increase uniqueness.

[RTI Issue ID CORE-6160]

4.12.17 Participant Creation Failed if Shared Memory Resources could not
be Allocated

If shared memory resources could not be allocated, participation creation failed.

This problem has been resolved. Now if this situation occurs, the participant will be successfully created
and will use other transports that have been installed, and the shared memory transport will be disabled.

[RTI Issue ID CORE-6518]

4.12.18 Participant Creation Failed when All Enabled Network Interfaces
were IPv6

To determine part of a DomainParticipant's GUID, Connext DDS uses by default the host ID of one
enabled, non-loopback IPv4 network interface. If all the interfaces on a machine were configured with
IPv6 only, the participant creation failed.

49

4.12.19 Participant may have Hung on Shutdown if Multicast Enabled or in Presence of Some

50

Applications can alternatively use the MAC address to determine the GUID (DDS::WirePro-
tocolQosPolicy::rtps_auto_id_kind in DomainParticipantQos). However, this mechanism also required
at least one enabled, non-loopback IPv4 interface.

The only way to work around this situation was to manually set the host id (via (DDS::WirePro-
tocolQosPolicy::rtps_host_id).

This problem has been resolved. Now all the options to assign the GUID work in systems where only
IPv6 interfaces are available, although using the MAC address is recommended to increase uniqueness.

[RTI Issue ID CORE-5955 and CORE-6160]

4.12.19 Participant may have Hung on Shutdown if Multicast Enabled or in
Presence of Some Firewalls/Antivirus

A DomainParticipantmay have hung on shutdown under one or a combination of the following scen-
arios:

l The DomainParticipant and/or its Entities received data over multicast

l The system on which the DomainParticipant ran used a firewall

This problem has been resolved.

[RTI Issue ID CORE-5954]

4.12.20 Port Reservation did not Account for All Enabled Transports

In previous releases, RTPS port reservation incorrectly used the DiscoveryQosPolicy's enabled_trans-
ports configuration for reserving user data ports (instead of using the TransportUnicastQosPolicy). As a
consequence, two applications running on the same machine may have failed to open receive ports.

When this issue was triggered, the following messages (or similar ones) were printed:
COMMENDLocalReaderRO_init:!create unicast entryPort
COMMENDSrReaderService_createReader:!init ro
PRESPsService_enableLocalEndpointWithCursor:!create Reader in srrService
PRESPsService_enableLocalEndpoint:!enable local endpoint

This problem has been resolved.

[RTI Issue ID CORE-6464]

4.12.21 Possible Inconsistent State in the TCP Transport Plugin after Remote Client Reconnection

4.12.21 Possible Inconsistent State in the TCP Transport Plugin after
Remote Client Reconnection

In some cases when reconnecting a TCP Transport plugin Client, the TCP Transport plugin Server may
have ended up in an inconsistent state. Consequently, it may have taken longer than expected to to rees-
tablish communication. This problem has been resolved.

[RTI Issue ID COREPLG-299]

4.12.22 Possible Segmentation Fault due to Race Condition in DTLS
Transport

DomainParticipants communicating with each other using the DTLS transport may have experienced
occasional segmentation faults in the function SSL_do_handshake(). This issue was due to a race con-
dition and has been resolved.

[RTI Issue ID COREPLG-250]

4.12.23 Possible Segmentation Fault during Clean Up of TCP Transport
Plugin Allocated Resources

Under certain circumstances, cleaning up resources in the TCP Transport plugin may have caused a seg-
mentation fault. For example, this issue may have been triggered during TCP Transport plugin destruction
or after the removal of a remote endpoint. This problem has been resolved.

[RTI Issue ID COREPLG-185]

4.12.24 Possible Segmentation Fault if TCP Transport Plugin Creation
Failed

Under certain conditions, a failure in the creation of the TCP transport plugin could have caused a seg-
mentation fault. This problem has been resolved.

[RTI Issue ID COREPLG-245]

4.12.25 Possible Segmentation Fault on Outgoing Traffic Connection
Initialization

Under certain circumstances, a failure when initializing resources associated with the TCP Transport plu-
gin’s outgoing traffic may have provoked a segmentation fault. In particular, this issue may have been
triggered if there was a failure opening a connection in a TCP Client. It may also have been triggered after
a failure allocating the queue used by a TCP Server running with force_asynchronous_send enabled.
This problem has been resolved content.

[RTI Issue ID COREPLG-289]

51

4.12.26 Possible Segmentation Fault on TCP Transport Plugin Shutdown

52

4.12.26 Possible Segmentation Fault on TCP Transport Plugin Shutdown

In the 5.1.0.38 release, a race condition may have lead to a segmentation fault. In particular, this issue may
have been triggered during TCP Transport plugin shutdown. This issue has been resolved.

[RTI Issue ID COREPLG-294]

4.12.27 Potential Segmentation Fault when Outstanding Asynchronous
Writes Exceeded write_buffer_allocation Limits

There was a potential segmentation fault when using TCP Transport plugin with Windows IOCP socket
monitoring kind. In particular, this issue may have triggered when the number of outstanding asyn-
chronous writes exceeded the limit set by the property write_buffer_allocation.max_count. This issue
only affected TCPv4_LAN and TCPv4_WAN modes; it did not affect TLS-over-TCP modes. This prob-
lem has been resolved.

[RTI Issue ID COREPLG-354]

4.12.28 Potential Data Corruption when Using TCP Transport Plugin with
force_asynchronous_send Enabled

There may have been data corruption if you enabled the TCP Transport plugin’s force_asynchronous_
send property while running in LAN or WAN-symmetric mode. This problem has been resolved.

[RTI Issue ID COREPLG-316]

4.12.29 RTPS Auto ID from MAC did not Use MAC Address--Darwin and
QNX Systems Only

There was an issue that prevented generation of the GUID from the MAC address on Darwin and QNX
systems. In particular, when the application set the WireProtocolQosPolicy's rtps_auto_id_kind to
RTPS_AUTO_ID_FROM_MAC, the middleware used to retrieve an incorrect value for the GUID that
incidentally matched the IP address and some garbage instead of the MAC address.

This problem has been resolved.

[RTI Issue ID CORE-6165]

4.12.30 Segmentation Fault on TCP Transport if TCP Client Connection
Failed to Connect

Under certain circumstances, a failed connection from a TCP Transport plugin client connection may have
resulted in a segmentation fault. In particular, this may have been triggered as a result of disabling all the
interfaces on the system while running the TCP Transport plugin. This problem has been resolved.

[RTI Issue ID COREPLG-278]

4.12.31 Segmentation Fault when Creating DTLS DomainParticipants in Multiple Threads

4.12.31 Segmentation Fault when Creating DTLS DomainParticipants in
Multiple Threads

The creation of DTLS-enabled DomainParticipants was not thread-safe and may have led to a seg-
mentation fault in the function RTIOsapiSemaphore_take(). This issue has been resolved for Windows,
Linux, and Android systems.

[RTI Issue ID COREPLG-264]

4.12.32 Sockets not Completely Closed when Using TCP Transport Plugin
with TLS Support

Sockets were not completely closed after a connection was disconnected. This issue only affected the TCP
transport plugin connections when using RTI TLS Support.

[RTI Issue ID COREPLG-331]

4.12.33 TCP Connections for Server Outgoing Traffic may not have
Reopened After Short TCP Client Disconnection

Under certain circumstances, a short disconnection of a TCP Transport plugin client from the server may
have caused communication not to recover. In particular, the connections associated with the traffic flow-
ing from the TCP server to the TCP client may have never been restablished. This problem has been
resolved.

[RTI Issue ID COREPLG-279]

4.12.34 TCP Transport Communication Did not Recover after Client
Disconnected

There was a timing issue that may have prevented the TCP Transport plugin Client from reestablishing
communication after a disconnection. This problem has been resolved.

[RTI Issue ID COREPLG-306]

4.12.35 TCP Transport's enable_keep_alive Property had no Effect on
Server Sockets

When the TCP Transport plugin’s enable_keep_alive property was set to 1, the sockets created by the
TCP server did not enable the TCP “keep alive” socket option. This issue did not affect TCP client sock-
ets. This problem has been resolved.

[RTI Issue ID COREPLG-254]

53

4.12.36 TCP Transport's enable_keep_alive Property had no Effect on Server Sockets when Using TLS

54

4.12.36 TCP Transport's enable_keep_alive Property had no Effect on
Server Sockets when Using TLS Support

When using TLS Support with the TCP transport, and the enable_keep_alive property was set to 1, the
sockets created by the TCP server did not enable the TCP “keep alive” socket option. This issue did not
affect TCP client sockets. This problem has been resolved.

[RTI Issue ID COREPLG-273]

4.12.37 TCP Transport’s ‘keep_alive_*’ Properties had no Effect—Linux
Platforms Only

When the TCP Transport plugin’s keep_alive_time, keep_alive_interval, and keep_alive_retry_count
properties (only supported on Linux platforms) were set, they were not properly applied to TCP sockets.
This problem has been resolved.

[RTI Issue ID COREPLG-255]

4.12.38 TCP Transport’s ‘keep_alive_*’ Properties had no Effect when
Using TLS Support—Linux Platforms Only

When using TLS Support with the TCP transport, and the TCP transport’s keep_alive_time, keep_alive_
interval, and keep_alive_retry_count properties (only supported on Linux platforms) were set, they were
not properly applied to TCP sockets. This problem has been resolved.

[RTI Issue ID COREPLG-274]

4.12.39 TCP Transport Plugin's Connection Liveliness Stopped Working

In the 5.1.0.38 release, under certain circumstances the connection-liveliness feature may have stopped
working after a random amount of time. This problem has been resolved.

[RTI Issue ID COREPLG-308]

4.12.40 TCP Transport Plugin Opened UDPv4 Sockets when Running in
WAN Mode

In previous releases, the TCP transport plugin created unnecessary UDPv4 sockets when running in WAN
mode. This problem has been resolved.

[RTI Issue ID COREPLG-174]

4.12.41 TCP Transport Plugin did not Send Large Samples when Using TLS, 'force_asynchronous_

4.12.41 TCP Transport Plugin did not Send Large Samples when Using
TLS, 'force_asynchronous_send,' and Windows IOCP

In the 5.1.0.5 release, when used with TLS Support, the TCP Transport plugin could not send large mes-
sages if the Windows IOCP socket_monitoring_kind and force_asynchronous_send properties were
both enabled. This problem has been resolved.

[RTI Issue ID COREPLG-312]

4.12.42 TCP Transport Plugin Hangs when using Transport Priority

The TCP Transport plugin would hang when the transport_priority_mask property was set to a value
higher than 0x7fffffff. This problem has been resolved.

[RTI Issue ID COREPLG-322]

4.12.43 TCP Transport Plugin More Robust Against a Failure in SSL
Handshake

When using TLS support, the TCP Transport plugin would shut down upon a failure in the SSL hand-
shake. In this release, the TCP Transport plugin is more robust. In particular, if the plugin fails to complete
the SSL handshake for a newly accepted connection, it will print an error message and close the associated
connection, but it will not trigger a shutdown.

[RTI Issue ID COREPLG-342]

4.12.44 TCP Transport Plugin Reconnection Problem after Disconnecting
Network Interface—Linux Systems Only

A disconnection of the network interface (e.g., unplugging the network cable) may have left the TCP
Transport plugin in an inconsistent state, preventing communication from reestablishing once the network
interface reconnected. This problem has been resolved.

[RTI Issue ID COREPLG-280]

4.12.45 TCP Transport Plugin Reported Invalid-State Error when Running
in Debug Mode

Under certain circumstances, a TCP Transport plugin running in debug mode may have erroneously
logged an error and failed to send data. In particular, this issue may have been triggered after a connection
was disconnected. The following error was printed:
NDDS_Transport_TCPv4_Plugin_verifySendResourceState_
clientEA:detected send resource in an invalid
state: SR=DISCONNECTED, CC=BOUND, DC=BOUND

55

4.12.46 TCP Transport Plugin Stopped on Asynchronous Send Failure

56

NDDS_Transport_TCPv4_send:sendresource state validation
failed

This problem has been resolved.

[RTI Issue ID COREPLG-290]

4.12.46 TCP Transport Plugin Stopped on Asynchronous Send Failure

When using RTI TLS Support and the force_asynchronous_send property (in NDDS_Transport_
TCPv4_Property_t), or when using TCP and a socket_monitoring_kind (also in NDDS_Transport_
TCPv4_Property_t) of SELECT, an error in the send was incorrectly treated as fatal. This could have
caused the TCP Transport plugin to shut down. This problem has been resolved.

[RTI Issue ID COREPLG-252]

4.12.47 TCP Transport Properties parent.allow_interfaces_list and
parent.deny_interfaces_list properties had no Effect

The TCP Transport plugin properties parent.allow_interfaces_list and parent.deny_interfaces_list had
no effect. This problem has been resolved.

[RTI Issue ID COREPLG-344]

4.12.48 TCP Transport SSL Handshake could Hang Forever

The TCP Transport plugin was not robust against failures in the negotiation of the initial handshake
required when enabling TLS Support. Consequently, a connection may have remained forever in a "hand-
shake in progress" state, thus preventing communication.

To address this issue, the TCP Transport plugin now supports a new property: initial_handshake_
timeout. This property controls the maximum time (in seconds) the initial handshake for a connection can
remain in progress. The default is 10 seconds. If the handshake has not completed after the specified
timeout, the connection will be closed. This way, the TCP Transport plugin can restart the process of estab-
lishing and handshaking that connection.

[RTI Issue ID COREPLG-303]

4.12.49 Transport Plugin Resources not Cleaned Up when Remote
Endpoints Removed

Transport plugins may not have cleaned up resources when remote endpoints were removed. For example,
with the TCP transport plugin this may have resulted in connections that were not closed. This problem,
which only occurred with reliable unicast communication, has been resolved.

[RTI Issue ID CORE-6083]

4.12.50 Two Participants on Same Node did not Communicate when One Disabled Shared Memory but

4.12.50 Two Participants on Same Node did not Communicate when One
Disabled Shared Memory but still Used UDP Loopback

Two participants on the same node may not have communicated under certain circumstances. In particular,
this issue was triggered when one of the participants had disabled shared memory and the other participant
had enabled both shared memory and a UDP transport with ignore_loopback_interface = -1 (auto). In
this scenario, the second participant ignored the loopback interface, therefore there was no communication.

Starting with this release, the behavior for UDP transports with ignore_loopback_interface = -1 has
changed. Specifically, Connext DDS will not longer ignore the loopback interface, even if shared memory
is enabled on the sender. Instead, in order to avoid redundant traffic, Connext DDS will not send traffic to
UDP loopback destinations that are reachable through shared memory.

[RTI Issue ID CORE-4052]

4.12.51 Unbounded Memory Growth upon I/O Failure when Using Windows
IOCP

An issue in the TCP Transport plugin may have caused unbounded memory growth after a failure when
calling I/O-related OS APIs. This issue only affected Windows architectures when the Windows IOCP
socket monitoring kind was enabled. This issue has been resolved.

[RTI Issue ID COREPLG-353]

4.12.52 Unexpected Error Message when Enabling TCP Transport
Connection-Liveliness

The following error message appeared when a static application loaded a TCP transport plugin through
QoS and the TCP transport plugin was configured to use the connection-liveliness feature:
[D0065|ENABLE]DDS_DomainParticipantGlobals_initializeWorkerFactoryI:
!Potential library mismatch.

This may have happened if your application used the static and shared RTI core libraries simultaneously
(such as using the shared RTI Monitoring library and linking statically with the RTI core libraries). This
problem has been resolved.

[RTI Issue ID COREPLG-319]

4.12.53 Unbounded Memory Growth during TCP Transport Plugin
Execution

There was an issue that may have provoked an unbounded memory growth during TCP Transport plugin
execution. In particular, this issue may have been triggered when the TCP Transport plugin reconnected to
a remote peer. This problem has been resolved.

57

4.12.54 Unexpected Memory Growth in TCP Transport Client upon Connection Close

58

[RTI Issue ID COREPLG-296]

4.12.54 Unexpected Memory Growth in TCP Transport Client upon
Connection Close

There may have been unexpected memory growth of ~160 bytes in the TCP Transport plugin upon clos-
ure of a client data connection. This issue affected the TCP Transport plugin running in WAN Asym-
metric mode as a client. Note this was not a leak, since the memory was properly returned upon TCP
Transport plugin destruction. This problem has been resolved.

[RTI Issue ID COREPLG-310]

4.12.55 Unexpected Memory Growth in TCP Transport Server upon
Connection Close

There may have been unexpected memory growth of ~160 bytes in the TCP Transport plugin upon clos-
ing a server connection. In particular, this was a timing issue that may have triggered in a scenario where a
TCP Transport plugin was accepting and closing connections at a very high rate. Note this was not a leak,
since the memory was properly returned upon TCP Transport plugin destruction. This problem has been
resolved.

[RTI Issue ID COREPLG-305]

4.12.56 Unexpected Messages when Using TCP Transport's 'Force
Asynchronous Send'

The TCP Transport plugin had an issue during the clean up of connections when force_asynchronous_
send was enabled. Consequently, the TCP Transport plugin Client may have delivered unexpected mes-
sages to the remote TCP Transport plugin Server. This problem has been resolved.

[RTI Issue ID COREPLG-304]

4.12.57 Unexpected TCP Transport Plugin Error on Packet Reception when
Using IOCP Mode

When enabling IOCP monitoring with the property socket_monitoring_kind, the TCP transport plugin
did not properly catch WSAECONNRESET errors. This may have caused a lost connection to never
recover.

When this problem occurred, the following messages were continuously printed:
NDDS_Transport_TCPv4_receive_rEA:SocketGroup.wait failed
NDDS_Transport_TCP_SocketGroup_waitForCompletionPacket:error
returned by GetQueuedCompletionStatus in SocketGroup wait
issuing recvZero: (errno: 10054) - An existing connection was
forcibly closed by the remote host.

4.12.58 Unexpected TCP Transport Plugin Error when TCP Server Sent Data Asynchronously

This problem has been resolved.

[RTI Issue ID COREPLG-241]

4.12.58 Unexpected TCP Transport Plugin Error when TCP Server Sent
Data Asynchronously

As a result of losing a TCP connection while sending a TCP packet, the TCP server may have ended up in
a state that was not properly handled. This was a timing issue that only occurred in some cases while using
asymmetric mode together with the property force_asynchronous_send.

When this problem occurred, the following message was continuously printed:
NDDS_Transport_TCPv4_Plugin_processControlEvent:control
protocol error: unexpected WRITE event on a NULL SR

This problem has been resolved.

[RTI Issue ID COREPLG-247]

4.12.59 Unexpected TCP Transport Plugin WSAECONNABORTED Error on
Packet Reception when Using IOCP Mode

When enabling IOCP monitoring with the property socket_monitoring_kind, the TCP transport plugin
did not properly catch WSAECONNABORTED errors. This may have caused a crash in the TCP Trans-
port plugin.

When this problem occurred, the following message was printed:
NDDS_Transport_TCP_SocketGroup_waitForCompletionPacket:
error returned by GetQueuedCompletionStatus in
SocketGroup wait issuing recvZero: (errno: 10053) -
An established connection was aborted by the software
in your host machine.

This problem has been resolved.

[RTI Issue ID COREPLG-291]

4.12.60 Unnecessary System Resources Allocated when Transport Priority
Left at Default Value

In the 5.0.0.35 release, there was an issue that may have caused unnecessary waste of system resources—
in particular, memory and sockets. This issue was triggered when the TransportPriorityQosPolicy of a
DataWriter or themetatraffic_transport_priority field in the DiscoveryQosPolicy was left at the default
value. This problem has been resolved.

[RTI Issue ID CORE-6774]

59

4.12.61 Unreadable Characters in Log Messages After Some Errors in TCP Transport

60

4.12.61 Unreadable Characters in Log Messages After Some Errors in TCP
Transport

Errors in the TCP transport may have generated log messages with unreadable characters. For example:
RTIOsapiUtility_getErrorString:!input buffer too small
NDDS_Transport_TCP_SocketGroup_modify_socket:error returned by
asynchronous operation recvZero in socket group: (errno: 10057)
- ╠╠╠╠╠╠╠╠╠╠╠╠╠╠╠╠╠╠╠╠╠
╠╠╠I'
NDDS_Transport_TCPv4_Plugin_clientProcessControlConnect:attempt
to modify state of socket 1012 in socket group 0574FD40 failed

This problem has been resolved.

[RTI Issue ID COREPLG-336]

4.12.62 Wrong Results for NDDS_Transport_Support_lookup_transport API

There was an issue that prevented NDDS_Transport_Support_lookup_transport() from returning a
transport that matched the passed in transport_in parameter. This issue has been resolved.

[RTI Issue ID CORE-6642]

4.13 Fixes Related to Other Issues

4.13.1 Access Violation when Calling get() on Loaned Sequence if Provided
Index Out of Bounds of the Sequence—Java API Only

Calling a loaned sequence's get() operation with a parameter of an invalid index (that is, an index out of
the bounds of the sequence), resulted in a crash when using the Java API. This problem has been resolved.
Now, instead of causing a crash, a java.lang.IndexOutOfBoundsException will be thrown.

[RTI Issue ID CORE-6198]

4.13.2 Built-in Profiles Overrode DomainParticipantFactoryQos Values Set
in Application Code

The values for the DomainParticipantFactoryQos may have been overridden by the built-in QoS profiles if
they were set in code before the DomainParticipantFactory was created and the default QoS profile inher-
ited from any of the built-in QoS profiles. This problem has been resolved. The DomainPar-
ticipantFactory's default QoS values are no longer set in the Baseline.Root built-in profile (but have been
kept as a comment in the profile for reference).

[RTI Issue ID CORE-6075]

4.13.3 Copy_from() Method in Bytes and KeyedBytes Built-in Types may have Thrown

4.13.3 Copy_from() Method in Bytes and KeyedBytes Built-in Types may
have Thrown Exception—.NET API Only

The .NET copy_from()method in the Bytes and KeyedBytes built-in types may have thrown an excep-
tion if the src parameter had a length of zero elements. This problem has been resolved.

[RTI Issue ID CORE-6560]

4.13.4 Crash when Using XML-based Application Creation for Multiple
Participants

If an application attempted to concurrently create two or more DomainParticipants using XML-based
Application Creation, a crash may have occurred. These operations were not thread-safe. This problem has
been resolved.

[RTI Issue ID CORE-6178]

4.13.5 Custom Flow Controller on Built-in Discovery DataWriters caused
Participant Deletion to Fail

Installing a custom flow controller on the built-in discovery DataWriters by setting the flow_controller_
name of the publication_writer_publish_mode and/or subscription_writer_publish_mode fields in the
DiscoveryConfigQosPolicy caused the call to DDS_DomainParticipant_delete_contained_entities() to
fail. The flow controllers could not be deleted because the built-in DataWriters had not been deleted yet.
All flow controllers are now deleted after the built-in DataWriters are deleted, allowing participant destruc-
tion to complete successfully.

[RTI Issue ID CORE-6511]

4.13.6 DataReader using GROUP_PRESENTATION_QOS Stopped
Providing Samples to Application in Some Cases

A DataReader using GROUP_PRESENTATION_QOS may have stopped providing samples to the
application in some cases. The issue occurred when the virtual heartbeat period (configured with writer_
qos.protocol.rtps_reliable_writer.virtual_heartbeat_period) was smaller than the RTPS heartbeat
period (configured with writer_qos.protocol.rtps_reliable_writer.(_fast.)heartbeat_period).

Workarounds to this problem included:

l Setting the virtual heartbeat period smaller than the RTPS fast heartbeat period

l Setting writer_qos.protocol.availability.max_data_availability_waiting_time to a finite value to
unblock the reader. This workaround introduced extra latency.

This problem has been resolved.

61

4.13.7 DDS_TypeCode_equals did not Compare Extensibility Kind of Two Types

62

[RTI Issue ID CORE-6499]

4.13.7 DDS_TypeCode_equals did not Compare Extensibility Kind of Two
Types

Given two types that are identical except in their extensibility kind (for example, one Mutable and one
Extensible), DDS_TypeCode_equals() returned true.

This problem has been resolved; now DDS_TypeCode_equals() will return false if two types have dif-
ferent extensibility kinds.

[RTI Issue ID CORE-6640]

4.13.8 Deleting Participants was not Thread Safe—C++ and .NET APIs Only

When using the C++ or .NET APIs, deleting multiple DomainParticipants from different threads was not
thread-safe. This may have caused System.AccessViolationExceptions when using the .NET API and seg-
mentation faults when using the C++ API. This problem has been resolved.

[RTI Issue ID CORE-6033]

4.13.9 Deserialization of Samples with Sequences Took a Long Time in
Java

The deserialization of samples with sequences took a long time in Java.

When a type is marked as EXTENSIBLE or MUTABLE, the deserialize function calls clear on a sample
before it is deserialized. If the sample type has a sequence, the clear method for the sequence is also called.

In previous releases, calling clear on a sequence took a long time because the implementation required a
quadratic time. This problem has been resolved.

[RTI Issue ID CORE-6222]

4.13.10 Deserialization of ByteSeq using ObjectInputStream Failed if
Longer than 1024 Bytes - Java API Only

Using an ObjectInputStream to deserialize a type with a ByteSeq failed if the sequence was longer than
1024 bytes. This use case may have applied, for example, when trying to write and read DDS samples to
and from a file. The error message read:

Exception in thread "main" java.io.IOException: unable to read all expected
data

This problem has been resolved.

4.13.11 DomainParticipant.enable() Threw Exception with No Message when It Failed — Java API Only

[RTI Issue ID CORE-5375]

4.13.11 DomainParticipant.enable() Threw Exception with No Message
when It Failed — Java API Only

If a failure occurred while attempting to enable() a DomainParticipant, the resulting Java Exception con-
tained an empty message instead of the description of the error. This problem has been resolved.

[RTI Issue ID CORE-6325]

4.13.12 Error Printing Unsigned Longs with FooSupport_print_data()

The FooSupport_print_data() operation may have printed incorrect values for unsigned long variables
on some platforms. For example, consider the following IDL type:

struct MyType {
unsigned long ul;

};

If you set ul to 1500, FooSupport_print_data()may have printed 0 instead. This problem has been
resolved.

[RTI Issue ID CORE-6154]

4.13.13 Error When Enabling DomainParticipant

A DomainParticipant could not be enabled if it was configured to use Secure WAN Transport. When this
issue occurred, the following message was displayed:
NDDS_Transport_WAN_plugin_property_from_DDS_property:Unexpected property:
dds.transport.wan_plugin.wan.parent.domain_participant_ptr.
Closest valid property:
dds.transport.wan_plugin.wan.parent.parent.domain_participant_ptr

This problem has been resolved.

[RTI Issue ID COREPLG-315]

4.13.14 Error Writing Primitive Sequences with Maximum of Zero Elements
--.NET API Only

In previous releases when using the .NET API, if you published a sample in which one of the members
was a primitive sequence with a maximum of zero elements, the write operation would have failed with an
error like this:

63

4.13.15 Exception in Java while Using HashMap with DomainParticipantQos as a Key

64

at DDS.CdrStream.serialize_primitive_sequence(Sequence`1 seq) in
dds_dotnet.1.0\srccpp\managed\managed_cdr.cpp:line 1870
PRESWriterHistoryDriver_initializeSample:!serialize
WriterHistoryMemoryPlugin_addEntryToSessions:!initialize sample
WriterHistoryMemoryPlugin_getEntry:!add virtual sample to sessions
WriterHistoryMemoryPlugin_addSample:!get entry
PRESWriterHistoryDriver_addWrite:!add_sample
PRESPsWriter_writeInternal:!collator addWrite
write error DDS.Retcode_Error: Exception of type 'DDS.Retcode_Error'
was thrown.

This problem has been resolved.

[RTI Issue ID CORE-6137]

4.13.15 Exception in Java while Using HashMap with
DomainParticipantQos as a Key

Use of the java.util.HashMap class with the DomainParticipantQos as a key produced a NullPoint-
erException. This problem has been resolved.

[RTI Issue ID CORE-6111]

4.13.16 Failure Copying Sample after Calling take/read not Reported as
Error—.NET API Only

After calling take() or read() on a DataReader, a failure when copying a sample was not reported as an
error. Consequently, the user may have received invalid data. This problem, which only affected the .NET
API, has been resolved.

[RTI Issue ID CORE-6118]

4.13.17 FlowController::set_property() Returned Wrong Error Codes in
Some Cases

FlowController::set_property() did not return the correct error codes in some cases.

l When attempting to modify an immutable property, FlowController::set_property() returned
DDS_RETCODE_INCONSISTENT_POLICY instead of DDS_RETCODE_IMMUTABLE_
POLICY.

l When attempting to pass inconsistent properties, it returned DDS_RETCODE_BAD_PARAM
instead of DDS_RETURN_CODE_INCONSISTENT_POLICY.

This problem has been resolved and the correct error codes will be returned.

4.13.18 IDL Enum did not Implement java.io.Serializable Correctly—Java API Only

[RTI Issue ID CORE-6483]

4.13.18 IDL Enum did not Implement java.io.Serializable Correctly—Java
API Only

The creation of an instance of a subclass of com.rti.dds.util.Enum by serializing it in Java yielded an object
whose equal() method would always return false when compared with other instances of the same Enum
subclass.

[RTI Issue ID CORE-6604]

4.13.19 Incorrect Conversion of Time_t and Duration_t due to Overflow

The Time_t and Duration_t conversion methods, such as from_micros(), from_nanos(), and from_millis
(), returned an incorrect value if the converted value was greater than the maximum value that can be
stored in the Time_t and Duration_t objects.

This problem has been resolved. The Time_t and Duration_t conversion methods will return TIME_MAX
and DURATION_INFINITE, respectively, if the passed in parameter produces an overflow.

[RTI Issue ID CORE-6438]

4.13.20 Incorrect IDL char Deserialization by Java DataReaders

A Java DataReader did not correctly deserialize members of type 'char' when the value was in the range
[128,255]. For example:

struct MyType {
char m1;

};

Consequently, the value sent by a DataWriter was not that same as the value the receiving DataReader
provided to the application. This problem has been resolved.

[RTI Issue ID CORE-6758]

4.13.21 Initialize and Copy operations for DDS_WriteParams_t did not
Process All Members—C/C++ APIs Only

Some members in the DDS_WriteParams_t structure were not initialized properly by the constructor in
C++ and by DDS_WriteParams_t_initialize() in C. Similarly, some members were not copied by the
copy operator in C++ and by DDS_WriteParams_t_copy() in C. This may have resulted in wrong beha-
vior when using the DataWriter's write_w_params() operation. This issue have been resolved.

[RTI Issue ID CORE-6134]

65

4.13.22 JVM Crash when Passing Null Type or Topic Names to Participant's create_topic()

66

4.13.22 JVM Crash when Passing Null Type or Topic Names to Participant's
create_topic()

If the DomainParticipant's create_topic() function passed a null value for the type name of topic name,
this caused a crash in the Java Virtual Machine. This problem has been resolved.

[RTI Issue ID CORE-5558]

4.13.23 Large Samples Never Repaired in Some Scenarios

In scenarios in which the transport property message_size_max was greater than DDS_RtpsReli-
ableWriterProtocol'smax_bytes_per_nack_response, historical data samples may not have been
delivered. When this issue was triggered, communication may have been blocked, so that the writer could
not send data to the reader. This issue has been resolved.

[RTI Issue ID CORE-6533]

4.13.24 Late-Joiner DataReader may not have Received All Historical Data

A late-joiner DataReader with Durability set to TRANSIENT_LOCAL, TRANSIENT, or
PERSISTENT may not have received all the historical data that was available from a matching
DataWriter. This problem has been resolved.

[RTI Issue ID CORE-6288]

4.13.25 Logging sent Non-Printable (non-ASCII) Data to Console

Under certain circumstances, some of the logging messages printed by Connext DDS included non-print-
able characters. In particular, this issue was triggered when logging verbosity was set to STATUS_ALL
and logging category was set to COMMUNICATION.

When this issue was triggered, the value for the key associated to certain events was not correctly printed,
as in the following example:

COMMENDAnonWriterService_onDomainBroadcastEvent:writing periodic
keyed data: SN=0x000000001, key=(16)
╙7, 0 bytes

This problem has been resolved.

[RTI Issue ID CORE-6181]

4.13.26 Memory Leak in Unmanaged Code when Using .NET API

Deleting a DataWriter, DataReader, or DomainParticipant in the .NET API caused memory leaks in
unmanaged code. These memory leaks were related to built-in types and type registration. This problem

4.13.27 Monitoring Library Generated Incorrect Values for CPU and Memory Usage - OS X Platforms

has been resolved.

[RTI Issue ID CORE-6780]

4.13.27 Monitoring Library Generated Incorrect Values for CPU and
Memory Usage - OS X Platforms Only

On OS X platforms, the CPU and memory usage values generated by RTI Monitoring Library were
always zero. This problem has been resolved.

[RTI Issue ID MONITOR-199]

4.13.28 .NET Instances of Some Classes were not Garbage Collected

Instances of certain classes were pinned in memory and could not be released by the garbage collector.
This may have caused memory growth if an application repeatedly created and deleted DDS entities dur-
ing the application’s life cycle. This problem has been resolved; no instances will remain pinned.

[RTI Issue ID CORE-6703]

4.13.29 Non-Recoverable Inconsistent State in Participant after Failed Call
to Enable Participant

If you called enable() on a disabled Participant and that call failed, the Participant may have ended up in an
unrecoverable state. That is, any further calls to enable the Participant would never succeed, even if the
conditions that provoked the initial failure were no longer present. This problem has been resolved.

[RTI Issue ID CORE-6264]

4.13.30 Operations Involving StatusCondition::GetHashCode() may have
Thrown OverflowException—C# API Only

The StatusCondition overrode the System.Object ::GetHashCode() in way that may have thrown an
OverflowException in 64-bit architectures. This issue has been resolved.

[RTI Issue ID CORE-6761]

4.13.31 Poor Performance of DataWriter's wait_for_acknowledgments()—
Windows Platforms Only

The DataWriter’s wait_for_acknowledgments() operation had poor performance poor on Windows plat-
forms. The performance was limited by the Windows timer resolution (which is 15 msec by default). This
problem has been resolved.

[RTI Issue ID CORE-6619]

67

4.13.32 Possible Crash when Calling take_next_sample() After Failed Registration of Builtin Type—Java

68

4.13.32 Possible Crash when Calling take_next_sample() After Failed
Registration of Builtin Type—Java API Only

Under certain circumstances, a call to a DynamicData DataReader's take_next_sample()may have
caused a JRE crash. In particular, this issue may have been triggered when take_next_sample() was
called for a built-in type after a failed call to register_type() for that same built-in type.

This problem has been resolved.

[RTI Issue ID CORE-6240]

4.13.33 Possible Crash if Type Unregistered from Participant while Another
Participant Still using that TypeSupport—C++ API Only

If the same TypeSupport was registered to more than one participant and it was unregistered from one of
the participants, any other participant that tried to use the TypeSupport would crash.

This scenario could also become a problem with built-in topics and types. If one participant was deleted
and another participant tried to access the built-in readers or use the built-in types, the application would
crash.

This problem has been resolved.

[RTI Issue ID CORE-6695]

4.13.34 Possible Failure of copy_from/copy_from_no_alloc in a .NET
Loanable Sequence

The operations copy_from() and copy_from_no_alloc() in a .NET Loanable sequence may fail in the
maximum number of elements in the source sequence is different than the maximum in the destination
sequence. A Loanable sequence is a sequence of a type that can be published with Connext DDS.

[RTI Issue ID CORE-6119]

4.13.35 Possible Failure when Registering Same Type Twice in Two
Threads

Registering a type for a second time on the same DomainParticipant is valid and doesn't have any effect.
For example:
FooSupport_register_type(participant, "Foo"); // returns DDS_RETCODE_OK\
FooSupport_register_type(participant, "Foo"); // returns DDS_RETCODE_OK (but doesn't do
anything)

However, if both calls to FooSupport_register_type() happened concurrently, sometimes one succeeded
and the other one failed.

4.13.36 Possible Memory Leak if Finalizing DomainParticipantFactory Failed

This problem has been resolved; now both calls will succeed, even if they are executed concurrently.

[RTI Issue ID CORE-6167]

4.13.36 Possible Memory Leak if Finalizing DomainParticipantFactory
Failed

If finalizing the DomainParticipantFactory failed, there may have been a memory leak (depending on why
the finalization failed). This problem has been resolved.

[RTI Issue ID CORE-6362]

4.13.37 Possible Memory Leak upon Failed DomainParticipant Creation

Under certain circumstances, a failed DomainParticipant creation may have caused a memory leak. This
problem has been resolved.

[RTI Issue ID CORE-6377]

4.13.38 Possible Segmentation Fault on Keyed Reader when Using
Collaborative DataWriters or Group Ordered Access

When using collaborative DataWriters or group ordered access, a DataReader reading keyed samples may
have experienced a segmentation fault in the function PRESCstReaderCollator_addCol-
latorEntryToVirtualWriterQueue().This problem has been resolved.

[RTI Issue ID CORE-6501]

4.13.39 Possible Race Condition during Participant Deletion may have
Caused "deadlock risk" Error

In limited scenarios, deletion of DomainParticipants may have caused a "deadlock risk" error message
and prevented completion of DDS operations that were being executed in other threads. This issue only
occurred in applications that had created multiple DomainParticipants. The specific error message was sim-
ilar to:

REDAWorker_enterExclusiveArea:worker U70f73cc0 deadlock risk:
cannot enter 0x10182a180 of level 30 from level 50

This problem has been resolved.

[RTI Issue ID CORE-6045]

69

4.13.40 Potential Segmentation Fault after Participant Deletion

70

4.13.40 Potential Segmentation Fault after Participant Deletion

Creating multiple DomainParticipants in parallel may have caused a segmentation fault when those
DomainParticipants were deleted. This problem has been resolved.

[RTI Issue ID CORE-6805]

4.13.41 Potential Segmentation Fault in Unkeyed DataReaders when
Trying to Remove Expired Samples

An unkeyed DataReader may have issued a segmentation fault when trying to remove expired samples
from its cache. Samples can be expired because the associated remote DataWriter set a lifespan or because
of delays set in ReaderDataLifecycleQosPolicy. The segmentation fault only occurred when the
DataReader tried to remove an expired sample while the user application was holding a loan on the
sample.

Notice that when using the debug libraries, the DataReader would not issue a segmentation fault, but
would enter an infinite loop printing the following message:

REDAInlineList_removeNodeEA:!precondition: list == ((void *)0) || node ==
((void *)0) || node->inlineList != list

This problem has been resolved.

[RTI Issue ID CORE-6775]

4.13.42 Potential Segmentation Fault when Creating DataWriters and
DataReaders

The creation of a DataWriter and/or DataReader may have caused a rare segmentation fault. This problem
has been resolved.

[RTI Issue ID CORE-6571]

4.13.43 Potential Segmentation Fault when Setting AvailabilityQosPolicy's
required_matched_endpoint_groups on a DataReader

Setting the AvailabilityQosPolicy's required_matched_endpoint_groups to a value other than empty on
a DataReader may have caused a segmentation fault. This problem has been resolved.

[RTI Issue ID CORE-6719]

4.13.44 Registering a Type Twice with Same Name, Different Type Plugin should have Failed

4.13.44 Registering a Type Twice with Same Name, Different Type Plugin
should have Failed

Registering a type twice with the same name and same type plugin is valid. However, using a different
type plugin is an application error and should return DDS_RETCODE_PRECONDITION_NOT_MET.
In previous releases, this sequence should have failed but didn't:

DDSDomainParticipant participant = ...;
FooTypeSupport_register_type(participant, "Foo");
BarTypeSupport_register_type(participant, "Foo");

This problem has been resolved. Now the second call to register_type() in the above example will return
DDS_RETCODE_PRECONDITION_NOT_MET.

[RTI Issue ID CORE-3962]

4.13.45 RTI DDS Ping did not Print Data Values when using -useKeys and
Default Verbosity

RTI DDS Ping (rtiddsping) did not print data values when using the -useKeys option and default verb-
osity. In addition, the output was not formatted correctly. You would have seen the following messages:

Sending data... key: 0000001Sending data... key: 0000002Sending data...
key: 0000003Sending data... key: 0000004Sending data... key: 0000005Sending
data... key: 0000006Sending data... key: 0000007Sending data...

This problem has been resolved.

[RTI Issue ID CORE-6820]

4.13.46 Segmentation Fault in Java if Default name or role_name in
EntityNameQosPolicy not NULL

A Java application may have produced a segmentation fault if the default name or role_name in the
EntityNameQosPolicy for a DDS Entity (DomainParticipant, Publisher, Subscriber, DataWriter, or
DataReader) was set to a non-NULL value and the user overwrote this value during entity creation to set
it to NULL. This problem has been resolved.

[RTI Issue ID CORE-6772]

71

4.13.47 Segmentation Fault when DataWriter Creation Failed because System Running Out of Memory

72

4.13.47 Segmentation Fault when DataWriter Creation Failed because
System Running Out of Memory

There was an issue that may have caused a segmentation fault when DataWriter creation failed as a con-
sequence of the system running out of memory. In particular, this issue may have occurred when using
unbounded strings. This problem has been resolved.

If a DataWriter could not be created because the system was running out of memory, this may have
caused a segmentation fault. In particular, this issue may have occurred when using unbounded strings.
This problem has been resolved.

[RTI Issue ID CORE-6728]

4.13.48 TypeCode::equal Considered TypeCodes with Arrays of Different
Dimensions as Equal

TypeCode::equal()may have returned true for two typecodes even if they were different. This occurred
when the TypeCodes contained arrays with the same type but different dimensions. This problem has been
resolved.

[RTI Issue ID CORE-6527]

4.13.49 Unbounded Memory Growth when Calling NDDS Config Logger Set
Output APIs

Calling the NDDS Config Logger APIs set_output_file(), set_output_file_name(), or set_output_
device()may have caused unbounded memory growth. The same issue also affected DDS_DomainPar-
ticipantFactory_set_qos(). Note that this issue was not a memory leak, since all the used memory was
released upon application shutdown. This problem has been resolved.

[RTI Issue ID CORE-6706]

4.13.50 Unbounded Memory Growth when Calling NDDS Config Logger Set
Output APIs

Calling the NDDS Config Logger APIs set_output_file(), set_output_file_name(), or set_output_
device()may have caused unbounded memory growth. The same issue also affected DDS_DomainPar-
ticipantFactory_set_qos(). Note that this issue was not a memory leak, since all the used memory was
released upon application shutdown. This problem has been resolved.

[RTI Issue ID CORE-6706]

4.13.51 Unexpected Error in Publishing Application when Writing Coherent Set of Samples

4.13.51 Unexpected Error in Publishing Application when Writing Coherent
Set of Samples

When piggyback heartbeats are enabled (this is, if the DataWriterProtocolQosPolicy's rtps_reliable_
writer.heartbeart_per_max_samples != 0), writing a coherent set of samples may have printed the fol-
lowing error upon a call to end_coherent_changes():

PRESPsService_writerSampleListenerOnQueueUpdate:!get pres psWriter

This error prevented the pruning of expired samples during the piggyback heartbeat send. In this sense, if
the LifespanQosPolicy’s duration was set to INFINITE, this problem had no consequences beyond print-
ing the error.

This problem has been resolved.

[RTI Issue ID CORE-6203]

4.13.52 Unexpected Error when get_matched_subscriptions/publications()
Called Right After Ignoring Subscription/Publication

A race condition may have caused the get_matched_subscriptions()/get_matched_publications() oper-
ations to fail if they were called right after ignoring an entity (with the ignore_publication()/ignore_sub-
scription() operations).

This problem has been resolved.

[RTI Issue ID CORE-6271]

4.13.53 Unexpected Memory Growth When Using DDS_GROUP_
PRESENTATION_QOS on a DataReader

DataReaders using DDS_GROUP_PRESENTATION_QOS failed to remove all the information about a
remote DataWriter when that DataWriter was deleted. This may have caused unbounded memory growth
over time as new DataWriters were created and deleted. Notice that this issue was not reported as a
memory leak because all the memory was reclaimed after the DataReader was destroyed. This problem
has been resolved.

[RTI Issue ID CORE-6721]

4.13.54 Unexpected Timeout from DataReader’s wait_for_historical_data()
when using Delegated Reliability

When a DataWriter and matching DataReader were configured for delegated reliability with RTI Per-
sistence Service, the DataReader’s wait_for_historical_data() operation always returned a TIMEOUT

73

4.13.55 Unexpected Memory Growth when Setting Entity QoS name or role_name

74

error, even if the DataReader had not received all historical data from RTI Persistence Service. This prob-
lem has been resolved.

[RTI Issue ID CORE-6351]

4.13.55 Unexpected Memory Growth when Setting Entity QoS name or
role_name

Calling set_qos() for an Entity that had a non-NULL EntityQosPolicy name or role_name resulted in
unbounded memory growth, which could eventually exhaust the available memory. This problem has
been resolved.

[RTI Issue ID CORE-6722]

4.13.56 Version Number was Missing from Libraries for Windows Platforms

Libraries for Windows platforms did not include the version number in the version field. This problem has
been resolved. The version number is now included.

To see the version number, run the DUMPBIN utility that comes with Visual Studio®. For example:

DUMPBIN/HEADERS nddscore.dll

You will find the version number encoded in the 'image version' in the ' OPTIONAL HEADER
VALUES ' section:

OPTIONAL HEADER VALUES
<snip>
50200.00 image version
<snip>

Since this field must be formatted as number.number, the format is <major_version><minor_ver-
sion><terciary_version>.<patch_version>. For example, Connext DDS version 5.2.1.3 would appear as
image version 50201.03.

[RTI Issue ID CORE-4010]

4.13.57 XSD Validation Failed when type_object_max_deserialized_length
was UNLIMITED

The XSD validation of QoS profiles using the file rti_dds_qos_profiles.xsd failed when type_object_
max_deserialized_length (under <participant_qos>/<resource_limits>) was set to UNLIMITED. This
problem has been resolved.

[RTI Issue ID CORE-6189]

Chapter 5 Known Issues
5.1 AppAck Messages Cannot be Greater than Underlying

Transport Message Size

A DataReader with acknowledgment_kind (in the ReliabilityQosPolicy) set to DDS_
APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_
EXPLICIT_ACKNOWLEDGMENT_MODE cannot send AppAck messages greater than the
underlying transport message size.

If a DataReader tries to send an AppAck message greater than the transport message size, Connext
DDS will print the following error message:
COMMENDFacade_sendAppAck:!add APP_ACK to MIG
COMMENDSrReaderService_sendAppAck:!send APP_ACK
PRESPsService_onReaderAppAckSendEvent:!send acknowledgment

To recover from the above error, the DataReader must acknowledge samples until the size of the
AppAck message goes below the transport message size threshold.

Why does an AppAck message increase its size? An AppAck message contains a list of sequence
number intervals where each interval represents a set of consecutive sequence numbers that have
been already acknowledged. As long as samples are acknowledged in order, the AppAck message
will always have a single interval. However, when samples are acknowledged out of order, the
number of intervals and the size of the AppAck will increase.

For more information, see Section 6.3.12, Application Acknowledgment, in the RTI Connext DDS
Core Libraries User’s Manual.

[RTI Issue ID CORE-5329]

75

5.2 DataReader Cannot Persist AppAck Messages Greater Than 32767 Bytes

76

5.2 DataReader Cannot Persist AppAck Messages Greater Than
32767 Bytes

A DataReader using durable reader state, whose acknowledgment_kind (in the ReliabilityQosPolicy) is
set to DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_
EXPLICIT_ACKNOWLEDGMENT_MODE, cannot persist an AppAck message greater than 32767
bytes.

To recover from the previous error, the DataReader must acknowledge samples until the size of the
AppAck message goes below the transport message size threshold.

For more information, see Section 12.4, Durable Reader State, in the RTI Connext DDS Core Libraries
User’s Manual.

[RTI Issue ID CORE-5360]

5.3 DataWriter's Listener Callback on_application_acknowledgment()
not Triggered by Late-Joining DataReaders

The DataWriter's listener callback on_application_acknowledgment()may not be triggered by late-join-
ing DataReaders for a sample after the sample has been application-level acknowledged by all live
DataReaders (no late-joiners).

If your application requires acknowledgment of message receipt by late-joiners, use the Request/Reply
communication pattern with an Acknowledgment type (see Chapter 22, Introduction to the Request-Reply
Communication Pattern, in the RTI Connext DDS Core Libraries User’s Manual).

[RTI Issue ID CORE-5181]

5.4 Discovery with Connext DDS Micro Fails when Shared Memory
Transport Enabled

Given a Connext DDS 5.2.0 application with the shared memory transport enabled, a Connext
DDS Micro 2.4.x application will fail to discover it. This is due to a bug in Connext DDS Micro that pre-
vents a received participant discovery message from being correctly processed. This bug will be fixed in a
future release of Connext DDS Micro. As a workaround, you can disable the shared memory transport in
the Connext DDS application and use UDPv4 instead.

[RTI Issue ID EDDY-1615]

5.5 Disabled Interfaces on Windows Systems

The creation of a DomainParticipant will fail if no interface is enabled and the Dis-
coveryQosPolicy.multicast_receive_addresses list (specified either programmatically, or through the

5.6 HighThroughput and AutoTuning built-in QoS profiles may cause Communication Failure when

NDDS_DISCOVERY_PEERS file or environment variable) contains a multicast address.

However, if NDDS_DISCOVERY_PEERS only contains unicast addresses, the DomainParticipant
will be successfully created even if all the interfaces are disabled. The creation of a DataReader will fail if
its TransportMulticastQosPolicy contains a UDPv4 or UPDv6 multicast address.

5.6 HighThroughput and AutoTuning built-in QoS profiles may cause
Communication Failure when Writing Small Samples

If you inherit from either the BuiltinQosLibExp::Generic.StrictReliable.HighThroughput or the Built-
inQosLibExp::Generic.AutoTuning built-in QoS profiles, your DataWriters and DataReaders will fail
to communicate if you are writing small samples.

In Connext DDS 5.1.0, if you wrote samples that were smaller than 384 bytes, you would run into this
problem. In version 5.2.0 onward, you might experience this problem when writing samples that are smal-
ler than 120 bytes.

This communication failure is due to an interaction between the batching QoS settings in the Gen-
eric.HighThroughput profile and the DataReader'smax_samples resource limit, set in the Built-
inQosLibExp::Generic.StrictReliable profile. The size of the batches that the DataWriter writes are
limited to 30,720 bytes (see max_data_bytes). This means that if you are writing samples that are smaller
than 30,720/max_samples bytes, each batch will have more than max_samples samples in it. The
DataReader cannot handle a batch with more than max_samples samples and the batch will be dropped.

There are a number of ways to fix this problem, the most straightforward of which is to overwrite the
DataReader'smax_samples resource limit. In your own QoS profile, use a higher value that accom-
modates the number of samples that will be sent in each batch. (Simply divide 30,720 by the size of your
samples).

[RTI Issue ID CORE-6411]

5.7 Segmentation Fault when Creating DTLS DomainParticipants in
Multiple Threads—Solaris and QNX Platforms Only

On Solaris and QNX platforms, the creation of DTLS-enabled DomainParticipants is not thread-safe and
may lead to a segmentation fault in the function RTIOsapiSemaphore_take(). This issue has been
resolved for Windows, Linux, and Android systems.

[RTI Issue ID COREPLG-264]

5.8 Typecodes Required for Request-Reply Communication Pattern

Typecodes are required when using the Request-Reply communication pattern. To use this pattern, do not
use rtiddsgen's -noTypeCode flag. If typecodes are missing, the Requester will log an exception.

77

5.9 Uninstalling on AIX Systems

78

[RTI Issue ID REQREPLY-3]

5.9 Uninstalling on AIX Systems

To uninstall Connext DDS on an AIX system: if the original installation is on an NFS drive, the uninstaller
will hang and fail to completely uninstall the product. As a workaround, you can remove the installation
with this command:

rm -rf $INSTALL_PATH/rti_connext_dds-5.2.0

5.10 Writer-side Filtering Functions Can be Invoked Even After Filter
Unregistered

If you install a ContentFilter that implements the writer-side filtering APIs, Connext DDS can call those
APIs even after the ContentFilter has been unregistered.

[RTI Issue ID CORE-5356]

5.11 Writer-Side Filtering May Cause Missed Deadline

If you are using a ContentFilteredTopic and you set the Deadline QosPolicy, the deadline may be missed
due to filtering by a DataWriter.

[RTI Issue ID CORE-1634, Bug # 10765]

5.12 Wrong Error Code After Timeout on write() from Asynchronous
Publisher

When using an asynchronous publisher, if write() times out, it will mistakenly return DDS_RETCODE_
ERROR instead of the correct code, DDS_RETCODE_TIMEOUT.

[RTI Issue ID CORE-2016, Bug # 11362]

5.13 Known Issues with Dynamic Data

5.13 Known Issues with Dynamic Data

l The conversion of data by member-access primitives (get_X() operations) is limited when con-
verting to types that are not supported on all platforms. This limitation applies when converting to a
64-bit long long type (get_longlong() and get_ulonglong() operations) and a 128-bit long double
type (get_longdouble()). These methods will always work for data members that are actually of the
correct type, but will only support conversion from values that are stored as smaller types on a sub-
set of platforms. Conversion to 64-bit long longs from a 32-bit or smaller integer type is supported
on all Windows, Solaris, and Linux architectures, and any additional 64-bit architectures. Con-
version to 128-bit long doubles from a float or double is only supported on Solaris SPARC archi-
tectures.

[RTI Issue ID CORE-2986]

l DynamicData cannot handle a union with a discriminator that is set to a value which is not defined
in the type.

[RTI Issue ID CORE-3142]

l DynamicData may have problems resizing variable-size members that are >= 64k in size. In this
case, the method (set_X() or unbind_complex_member()) will fail with the error: "sparsely stored
member exceeds 65535 bytes." Note that it is not possible for a member of a sparse type to be >=
64k.

[RTI Issue ID CORE-3177]

l Types that contain bit fields are not supported by DynamicData. Therefore, when rtiddsspy dis-
covers any type that contains a bit field, rtiddsspy will print this message:

DDS_DynamicDataTypeSupport_initialize:type not supported (bitfield member)

[RTI Issue ID CORE-3949]

l DynamicData does not support out-of-order assignment of members that are longer than 65,535
bytes. In this situation, the DynamicData API will report the following error:
sparsely stored member exceeds 65535 bytes

For example:
struct MyStruct {

string<131072> m1;
string<131072> m2;

};

With the above type, the following sequence of operations will fail because m2 is assigned before
m1 and has a length greater than 65,535 characters.

79

5.14 Known Issues in RTI Monitoring Library

80

str = DDS_String_alloc(131072);
memset(str, 'x', 131072);
str[131071]= 0;
DDS_DynamicData_set_string(

data, "m2", DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, str);
DDS_DynamicData_set_string(

data, "m1", DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, str);

If member m1 is assigned before m2, the sequence of operations will succeed.

[RTI Issue ID CORE-3791, Bug # 13745]

5.14 Known Issues in RTI Monitoring Library

5.14.1 Problems with NDDS_Transport_Support_set_builtin_transport_
property() if Participant Sends Monitoring Data

If a Connext DDS application uses the NDDS_Transport_Support_set_builtin_transport_property()
API (instead of the PropertyQosPolicy) to set built-in transport properties, it will not work with Monitoring
Library if the user participant is used for sending all the monitoring data (the default settings). As a work-
around, you can configure Monitoring Library to use another participant to publish monitoring data (using
the property name rti.monitor.config.new_participant_domain_id in the PropertyQosPolicy).

5.14.2 Participant’s CPU and Memory Statistics are Per Application

The CPU and memory usage statistics published in the DomainParticipant entity statistics topic are per
application instead of per DomainParticipant.

5.14.3 XML-Based Entity Creation Nominally Incompatible with Static
Monitoring Library

If setting the DomainParticipant QoS programmatically in the application is not possible (i.e., when using
XML-based Application Creation), the monitoring create function pointer may still be provided via an
XML profile by using the environment variable expansion functionality. The monitoring property within
the DomainParticipant QoS profile in XML must be set as follows:

5.14.3 XML-Based Entity Creation Nominally Incompatible with Static Monitoring Library

<participant_qos>
<property>

<value>
<element>

<name>rti.monitor.library</name>
<value>timonitoring</value>

</element>
<element>

<name>rti.monitor.create_function_ptr</name>
<value>$(MONITORFUNC)</value>

</element>
</value>

</property>
</participant_qos>

Then in the application, before retrieving the DomainParticipantFactory, the environment variable must be
set programmatically as follows:

...
sprintf(varString, "MONITORFUNC=%p", RTIDefaultMonitor_create);
int retVal = putenv(varString);
...
//DomainParticipantFactory must be created after env. variable setting

[RTI Issue ID CORE-5540]

81

Chapter 6 Experimental Features

Experimental features are used to evaluate potential new features and obtain customer feedback.
They are not guaranteed to be consistent or supported and they should not be used in production.

The APIs for experimental features use the suffix _exp to distinguish them from other APIs. For
example:
const DDS::TypeCode * DDS_DomainParticipant::get_typecode_exp(

const char * type_name);

In the API Reference HTML documentation, experimental APIs are marked with <<exper-
imental>>.

Experimental features are clearly documented as such in the RTI Connext DDS Core Libraries
What’s New document or the Release Notes for the component in which they are included, as well
as in the component’s User’s Manual.

Disclaimers:

l Experimental feature APIs may be only available in a subset of the supported languages and
for a subset of the supported platforms.

l The names of experimental feature APIs will change if they become officially supported. At
the very least, the suffix, _exp, will be removed.

l Experimental features may or may not appear in future product releases.

l Experimental features should not be used in production.

Please submit your comments and suggestions about experimental features to support@rti.com or
via the RTI Customer Portal (https://support.rti.com/).

82

https://support.rti.com/

	Chapter 1 Introduction
	Chapter 2 System Requirements
	2.1 Supported Operating Systems
	2.2 Requirements when Using Microsoft Visual Studio
	2.3 Disk and Memory Usage
	2.4 Networking Support

	Chapter 2 Transitioning from 5.1 to 5.2
	Chapter 3 Compatibility
	3.1 Wire Protocol Compatibility
	3.1.1 General Information on RTPS (All Releases)
	3.1.2 Release-Specific Information for Connext DDS 5.x
	3.1.2.1 Large Data with Endpoint Discovery

	3.1.3 Release-Specific Information for Connext DDS 4.5 and 5.x
	3.1.3.1 RTPS Versions
	3.1.3.2 double, long long, unsigned long long or long double Wire Compatibility
	3.1.3.3 Sending ‘Large Data’ between RTI Data Distribution Service 4.4d and Older Releases

	3.2 Code Compatibility
	3.2.1 General Information (All Releases)
	3.2.2 Release-Specific Information for Connext DDS 5.x
	3.2.2.1 Required Change for Building with C++ Libraries for QNX Platforms—New in Connext DDS 5.0.0
	3.2.2.2 Changes to Custom Content Filters API
	3.2.2.3 Changes to FooDataWriter::get_key_value()
	3.2.2.4 Changes in Generated Type Support Code in Connext DDS 5.0.0
	3.2.2.5 Changes in Generated Type Support Code in Connext DDS 5.1.0
	3.2.2.6 New Default Value for DomainParticipant Resource Limit, participant_property_string_max_length
	3.2.2.7 New Default Value for DomainParticipant’s participant_name.name
	3.2.2.8 Constant DDS_AUTO_NAME_ENTITY no Longer Available
	3.2.2.9 Changes to Time_t and Duration_t Methods

	3.2.3 Release-Specific Information for RTI Data Distribution Service 4.x, Connext DDS 4.5 and 5.x
	3.2.3.1 Type Support and Generated Code Compatibility
	3.2.3.2 Other API and Behavior Changes

	3.3 Extensible Types Compatibility
	3.3.1 General Compatibility Issues
	3.3.2 Java Enumeration Incompatibility Issues

	3.4 ODBC Database Compatibility
	3.5 Transport Compatibility
	3.5.1 Shared-Memory Transport Compatibility for Connext DDS 4.5f and 5.x
	3.5.2 Transport Compatibility for Connext DDS 5.1.0
	3.5.2.1 Changes to message_size_max
	3.5.2.2 How to Change Transport Settings in Connext DDS 5.1.0 Applications for Compatibility with 5.0.0
	3.5.2.3 How to Change message_size_max in Connext DDS 5.0.0 Applications for Compatibility with 5.1.0
	3.5.2.4 Changes to Peer Descriptor Format

	3.5.3 Transport Compatibility for Connext DDS 5.2.0
	3.5.3.1 Observed Error Messages
	3.5.3.2 How to Change Transport Settings in 5.2.0 Applications for Compatibility with 5.1.0

	3.5.4 Transport Compatibility for Connext DDS 5.2.0 on Solaris Platforms with Sparc CPUs

	3.6 Other Compatibility Issues
	3.6.1 ContentFilteredTopics
	3.6.2 Built-in Topics
	3.6.3 Some Monitoring Types are not Backwards Compatible

	Chapter 4 What’s Fixed in 5.2.0
	4.1 Fixes Related to Application-Level Acknowledgement
	4.1.1 Invalid Value for valid_response_data in AcknowledgmentInfo—.NET API Only
	4.1.2 REDAInlineList_addNodeToBackEA:!precondition Error Message when Using Application-Level Acknowledgment
	4.1.3 Unable to Send Application-Level Acknowledgement Messages when Using Delegated Reliability
	4.1.4 Unexpected Memory Growth on DataWriter when Using Batching and Enabling Application-Level Acknowledgement
	4.1.5 Unexpected Memory Growth when using DataReader's acknowledge_sample() Operation
	4.1.6 Unexpected Timeout Error in DataWriter’s wait_for_acknowledgments() when using Application-Level Acknowledgment

	4.2 Fixes Related to Batching
	4.2.1 Last value Per Instance Not Guaranteed when Using Batching and No Resources to Satisfy History Depth
	4.2.2 Unexpected Precondition Error when Using Batching on DataWriter

	4.3 Fixes Related to Conditions and Waitsets
	4.3.1 Calling set_query_parameters() with Same Key-Only Expression in QueryCondition Caused Waitset not to be Triggered
	4.3.2 Disposal of Remote DataWriter may have Caused DataReader's Keyed QueryCondition not to Trigger Anymore
	4.3.3 Memory Leak when Using QueryConditions on Unkeyed DataReader
	4.3.4 ReadCondition and Group Access Scope did not Work Correctly
	4.3.5 ReadCondition not Always Triggered when Samples Available after Losing Remote Participant Liveliness
	4.3.6 WaitSet Operations get_conditions() and wait() were not Thread Safe

	4.4 Fixes Related to ContentFilters
	4.4.1 ContentFilteredTopics may not have Correctly Filtered Some C++ Types with Inheritance
	4.4.2 Default Content Filter may have Failed to Filter Some Types with Optional Members—DynamicData, Java, and C# APIs Only
	4.4.3 Filter-Expression Parsing Errors for Variable Names Starting with Reserved Word
	4.4.4 Invalid filter_data when ContentFilter’s writer_return_loan() Invoked
	4.4.5 Memory Leak if a Custom Content Filter was not Unregistered
	4.4.6 Memory Leak when Changing Expression Parameters on ContentFilteredTopic not Associated with any Reader
	4.4.7 Possible Crash when Using ContentFilteredTopic and Builtin SQL Filter
	4.4.8 Possible Incorrect Filter Results in 'AND' Expressions with Optional Members, Sequences, or Unions
	4.4.9 Possible Segmentation Fault from ContentFilteredTopic Evaluation for Samples of Types with wstrings
	4.4.10 Segmentation Fault when Creating ContentFilteredTopic with Long Filter Expression
	4.4.11 Segmentation fault when Using SQL ContentFilteredTopic on Type with Large Maximum Serialized Size
	4.4.12 Unexpected Memory Growth on DataWriter when Performing Writer-Side Filtering on Metadata Fields

	4.5 Fixes Related to Discovery
	4.5.1 Discovery Failed on Publisher Side if contentfilter_property_max_length not Long Enough to Deserialize Filter Information
	4.5.2 Discovery Packets Sent over Unicast had Incorrect Priority
	4.5.3 DomainParticipantResourceLimitsQosPolicy's ignored_entity_allocation.max_count had no Effect
	4.5.4 Memory Leak upon Remote Participant Discovery
	4.5.5 Modified RTPS Wire Protocol Built-in Endpoint Mask to Match OMG Specification
	4.5.6 No Communication with Peer that was Removed, Re-Added
	4.5.7 ParticipantBuiltinTopicData was Missing Domain ID—.NET API Only
	4.5.8 Possible Segmentation Fault upon Failure Asserting Remote Reader
	4.5.9 Potential Bus Error when Discovering Remote Participants with Properties Set—Solaris Platforms on 64-bit Sparc CPUs Only
	4.5.10 Potential Unexpected Memory Growth when Asserting a Remote Reader
	4.5.11 Unable to Set remote_participant_allocation with incremental_count of 0
	4.5.12 Unbounded Memory Growth after Failed Attempt to Ignore Participant
	4.5.13 Unexpected Memory Growth if Remote Endpoint Changed QoS that is Propagated with Built-in Topics
	4.5.14 Unexpected Memory Growth when Discovering Remote Participants
	4.5.15 Unexpected Memory Growth when Discovering Remote Participants with Role Name
	4.5.16 Unexpected PRESPsService_destroyLocalEndpointWithCursor:!remove remote endpoint Warning Message
	4.5.17 Unnecessary Participant Announcements after Participant Leaves the System

	4.6 Fixes Related to Distributed Logger
	4.6.1 Default Filter Level for Java
	4.6.2 Deletion of C/C++ Distributed Logger's DataWriters not Propagated via Discovery
	4.6.3 Possible Warning when Compiling Distributed Logger Examples on UNIX-Based Systems

	4.7 Fixes Related to Durable Writer History
	4.7.1 DataWriter Configured to Use Durable Writer History did not Communicate with Persistence Service
	4.7.2 Long Delay Receiving Data from DataWriter with Durable Writer History
	4.7.3 Samples not Acknowledged after Restarting DataWriter in Some Cases
	4.7.4 Unexpected Memory Growth when using Durable Writer History and Keyed Topics

	4.8 Fixes Related to DynamicData
	4.8.1 Cannot Create DynamicDataTypeSupport Object with Typecodes Larger than 64k—Java API Only
	4.8.2 DDS_DynamicData_copy() could Create Incorrect DynamicData Object
	4.8.3 DDS::DYNAMIC_DATA_PROPERTY_DEFAULT, DDS::DYNAMIC_DATA_TYPE_PROPERTY_DEFAULT Missing from C++ API
	4.8.4 Failure when Printing DynamicData Object with Type that used Inheritance
	4.8.5 Inconsistencies between DynamicData's set_char() and get_char() -- Java API Only
	4.8.6 Incorrect Instance Handles on DynamicData DataReaders Subscribing to Topics with Mutable Types
	4.8.7 Possible Crash when Calling DDS_DynamicData_equals() if Types Contained Arrays—C and C++ APIs Only
	4.8.8 Possible Crash when Calling DynamicData get_char_seq() if Sequence Passed In was Too Small—Java API Only
	4.8.9 Possible Memory Leak when using DynamicData with Java API
	4.8.10 Potential Failure Writing DynamicData Object with Unset Optional Primitive Members
	4.8.11 Potential Serialization Errors on DynamicData DataWriters Publishing Types Containing Wide Strings
	4.8.12 Segmentation Fault when Setting pool_buffer_max_size to Zero in DataWriter using Dynamic Data
	4.8.13 Some DynamicData Serialization Properties Missing—Java and .NET APIs Only
	4.8.14 Some Operations on DynamicData Objects with Optional Members Failed
	4.8.15 Some TypeCode Information Lost when Using DynamicData—Java API Only
	4.8.16 Unset, Complex, Mutable Optional Members not Correctly Serialized using DynamicData
	4.8.17 Unset, Complex, Optional Members not Correctly Printed in DynamicData
	4.8.18 Wide String Support was Missing for DynamicData in Java API

	4.9 Fixes Related to Instance Management
	4.9.1 Errors after Reregistering an Instance and Exceeding max_total_instances
	4.9.2 FooDataWriter::get_key_value() Reported Incorrect Error when Instance did not Exist
	4.9.3 Invalid Instance Handle Provided by on_instance_replaced() Callback if Replacement of Empty Instances was Enabled
	4.9.4 Possible Segmentation Fault or Precondition Error when Reading Samples of Previously Disposed Instance

	4.10 Fixes Related to Linking
	4.10.1 Failure when Linking with Other Libraries that Contain Expat-Based Parsers
	4.10.2 Linker Errors in C Request-Reply API

	4.11 Fixes Related to Request-Reply Communication
	4.11.1 Requester's receiveReply() and Similar APIs Returned Immediately when Infinite Specified—C# API Only
	4.11.2 Requesters may not have Received Replies of Some Types with Optional Members—Java and C# APIs
	4.11.3 Requester or Replier Write Timeout Caused Exception of Wrong Class—C++ API Only

	4.12 Fixes Related to Transports
	4.12.1 Bus Error when Using Shared Memory Transport on Sparc Solaris 64-bit Platforms
	4.12.2 Data Corruption when Sending Large Data at a High Rate from a TCP Transport Plugin with Windows IOCP
	4.12.3 DataWriter's Transport Priority had no Effect in TCP Transport Plugin Server Sockets
	4.12.4 DomainParticipant's add_peer and remove_peer not Supported by TCP Transport
	4.12.5 Duplicated Transaction ID in TCP Transport Plugin Control Messages—Windows Platforms Only
	4.12.6 Error Establishing TCP Transport Client Connection could Cause Communication not to Recover
	4.12.7 Failure Enabling DomainParticipant when using UDPv6 Transport in Some Cases
	4.12.8 Host Improperly Identified when no IPv4 Interfaces Available
	4.12.9 Logging Level for TCP Transport Connect Errors Changed from Exception to Warning
	4.12.10 Memory Issue upon TCP Transport Plugin Server Disconnection
	4.12.11 Memory Leak when using UDPv4 Transport Plugin on VxWorks Architectures
	4.12.12 Memory Leak in Applications using TCP Transport in Asymmetric Mode
	4.12.13 Memory Issue upon TCP Transport Plugin Server Disconnection
	4.12.14 Message Deserialization Errors in TCP Transport Plugin
	4.12.15 Non RTPS-Compliant UDPv6 Locator kind
	4.12.16 Participant Creation Failed if All Enabled Network Interfaces were IPv6—Non-Linux Systems Only
	4.12.17 Participant Creation Failed if Shared Memory Resources could not be Allocated
	4.12.18 Participant Creation Failed when All Enabled Network Interfaces were IPv6
	4.12.19 Participant may have Hung on Shutdown if Multicast Enabled or in Presence of Some Firewalls/Antivirus
	4.12.20 Port Reservation did not Account for All Enabled Transports
	4.12.21 Possible Inconsistent State in the TCP Transport Plugin after Remote Client Reconnection
	4.12.22 Possible Segmentation Fault due to Race Condition in DTLS Transport
	4.12.23 Possible Segmentation Fault during Clean Up of TCP Transport Plugin Allocated Resources
	4.12.24 Possible Segmentation Fault if TCP Transport Plugin Creation Failed
	4.12.25 Possible Segmentation Fault on Outgoing Traffic Connection Initialization
	4.12.26 Possible Segmentation Fault on TCP Transport Plugin Shutdown
	4.12.27 Potential Segmentation Fault when Outstanding Asynchronous Writes Exceeded write_buffer_allocation Limits
	4.12.28 Potential Data Corruption when Using TCP Transport Plugin with force_asynchronous_send Enabled
	4.12.29 RTPS Auto ID from MAC did not Use MAC Address--Darwin and QNX Systems Only
	4.12.30 Segmentation Fault on TCP Transport if TCP Client Connection Failed to Connect
	4.12.31 Segmentation Fault when Creating DTLS DomainParticipants in Multiple Threads
	4.12.32 Sockets not Completely Closed when Using TCP Transport Plugin with TLS Support
	4.12.33 TCP Connections for Server Outgoing Traffic may not have Reopened After Short TCP Client Disconnection
	4.12.34 TCP Transport Communication Did not Recover after Client Disconnected
	4.12.35 TCP Transport's enable_keep_alive Property had no Effect on Server Sockets
	4.12.36 TCP Transport's enable_keep_alive Property had no Effect on Server Sockets when Using TLS Support
	4.12.37 TCP Transport’s ‘keep_alive_*’ Properties had no Effect—Linux Platforms Only
	4.12.38 TCP Transport’s ‘keep_alive_*’ Properties had no Effect when Using TLS Support—Linux Platforms Only
	4.12.39 TCP Transport Plugin's Connection Liveliness Stopped Working
	4.12.40 TCP Transport Plugin Opened UDPv4 Sockets when Running in WAN Mode
	4.12.41 TCP Transport Plugin did not Send Large Samples when Using TLS, 'force_asynchronous_send,' and Windows IOCP
	4.12.42 TCP Transport Plugin Hangs when using Transport Priority
	4.12.43 TCP Transport Plugin More Robust Against a Failure in SSL Handshake
	4.12.44 TCP Transport Plugin Reconnection Problem after Disconnecting Network Interface—Linux Systems Only
	4.12.45 TCP Transport Plugin Reported Invalid-State Error when Running in Debug Mode
	4.12.46 TCP Transport Plugin Stopped on Asynchronous Send Failure
	4.12.47 TCP Transport Properties parent.allow_interfaces_list and parent.deny_interfaces_list properties had no Effect
	4.12.48 TCP Transport SSL Handshake could Hang Forever
	4.12.49 Transport Plugin Resources not Cleaned Up when Remote Endpoints Removed
	4.12.50 Two Participants on Same Node did not Communicate when One Disabled Shared Memory but still Used UDP Loopback
	4.12.51 Unbounded Memory Growth upon I/O Failure when Using Windows IOCP
	4.12.52 Unexpected Error Message when Enabling TCP Transport Connection-Liveliness
	4.12.53 Unbounded Memory Growth during TCP Transport Plugin Execution
	4.12.54 Unexpected Memory Growth in TCP Transport Client upon Connection Close
	4.12.55 Unexpected Memory Growth in TCP Transport Server upon Connection Close
	4.12.56 Unexpected Messages when Using TCP Transport's 'Force Asynchronous Send'
	4.12.57 Unexpected TCP Transport Plugin Error on Packet Reception when Using IOCP Mode
	4.12.58 Unexpected TCP Transport Plugin Error when TCP Server Sent Data Asynchronously
	4.12.59 Unexpected TCP Transport Plugin WSAECONNABORTED Error on Packet Reception when Using IOCP Mode
	4.12.60 Unnecessary System Resources Allocated when Transport Priority Left at Default Value
	4.12.61 Unreadable Characters in Log Messages After Some Errors in TCP Transport
	4.12.62 Wrong Results for NDDS_Transport_Support_lookup_transport API

	4.13 Fixes Related to Other Issues
	4.13.1 Access Violation when Calling get() on Loaned Sequence if Provided Index Out of Bounds of the Sequence—Java API Only
	4.13.2 Built-in Profiles Overrode DomainParticipantFactoryQos Values Set in Application Code
	4.13.3 Copy_from() Method in Bytes and KeyedBytes Built-in Types may have Thrown Exception—.NET API Only
	4.13.4 Crash when Using XML-based Application Creation for Multiple Participants
	4.13.5 Custom Flow Controller on Built-in Discovery DataWriters caused Participant Deletion to Fail
	4.13.6 DataReader using GROUP_PRESENTATION_QOS Stopped Providing Samples to Application in Some Cases
	4.13.7 DDS_TypeCode_equals did not Compare Extensibility Kind of Two Types
	4.13.8 Deleting Participants was not Thread Safe—C++ and .NET APIs Only
	4.13.9 Deserialization of Samples with Sequences Took a Long Time in Java
	4.13.10 Deserialization of ByteSeq using ObjectInputStream Failed if Longer than 1024 Bytes - Java API Only
	4.13.11 DomainParticipant.enable() Threw Exception with No Message when It Failed — Java API Only
	4.13.12 Error Printing Unsigned Longs with FooSupport_print_data()
	4.13.13 Error When Enabling DomainParticipant
	4.13.14 Error Writing Primitive Sequences with Maximum of Zero Elements --.NET API Only
	4.13.15 Exception in Java while Using HashMap with DomainParticipantQos as a Key
	4.13.16 Failure Copying Sample after Calling take/read not Reported as Error—.NET API Only
	4.13.17 FlowController::set_property() Returned Wrong Error Codes in Some Cases
	4.13.18 IDL Enum did not Implement java.io.Serializable Correctly—Java API Only
	4.13.19 Incorrect Conversion of Time_t and Duration_t due to Overflow
	4.13.20 Incorrect IDL char Deserialization by Java DataReaders
	4.13.21 Initialize and Copy operations for DDS_WriteParams_t did not Process All Members—C/C++ APIs Only
	4.13.22 JVM Crash when Passing Null Type or Topic Names to Participant's create_topic()
	4.13.23 Large Samples Never Repaired in Some Scenarios
	4.13.24 Late-Joiner DataReader may not have Received All Historical Data
	4.13.25 Logging sent Non-Printable (non-ASCII) Data to Console
	4.13.26 Memory Leak in Unmanaged Code when Using .NET API
	4.13.27 Monitoring Library Generated Incorrect Values for CPU and Memory Usage - OS X Platforms Only
	4.13.28 .NET Instances of Some Classes were not Garbage Collected
	4.13.29 Non-Recoverable Inconsistent State in Participant after Failed Call to Enable Participant
	4.13.30 Operations Involving StatusCondition::GetHashCode() may have Thrown OverflowException—C# API Only
	4.13.31 Poor Performance of DataWriter's wait_for_acknowledgments()—Windows Platforms Only
	4.13.32 Possible Crash when Calling take_next_sample() After Failed Registration of Builtin Type—Java API Only
	4.13.33 Possible Crash if Type Unregistered from Participant while Another Participant Still using that TypeSupport—C++ API Only
	4.13.34 Possible Failure of copy_from/copy_from_no_alloc in a .NET Loanable Sequence
	4.13.35 Possible Failure when Registering Same Type Twice in Two Threads
	4.13.36 Possible Memory Leak if Finalizing DomainParticipantFactory Failed
	4.13.37 Possible Memory Leak upon Failed DomainParticipant Creation
	4.13.38 Possible Segmentation Fault on Keyed Reader when Using Collaborative DataWriters or Group Ordered Access
	4.13.39 Possible Race Condition during Participant Deletion may have Caused deadlock risk Error
	4.13.40 Potential Segmentation Fault after Participant Deletion
	4.13.41 Potential Segmentation Fault in Unkeyed DataReaders when Trying to Remove Expired Samples
	4.13.42 Potential Segmentation Fault when Creating DataWriters and DataReaders
	4.13.43 Potential Segmentation Fault when Setting AvailabilityQosPolicy's required_matched_endpoint_groups on a DataReader
	4.13.44 Registering a Type Twice with Same Name, Different Type Plugin should have Failed
	4.13.45 RTI DDS Ping did not Print Data Values when using -useKeys and Default Verbosity
	4.13.46 Segmentation Fault in Java if Default name or role_name in EntityNameQosPolicy not NULL
	4.13.47 Segmentation Fault when DataWriter Creation Failed because System Running Out of Memory
	4.13.48 TypeCode::equal Considered TypeCodes with Arrays of Different Dimensions as Equal
	4.13.49 Unbounded Memory Growth when Calling NDDS Config Logger Set Output APIs
	4.13.50 Unbounded Memory Growth when Calling NDDS Config Logger Set Output APIs
	4.13.51 Unexpected Error in Publishing Application when Writing Coherent Set of Samples
	4.13.52 Unexpected Error when get_matched_subscriptions/publications() Called Right After Ignoring Subscription/Publication
	4.13.53 Unexpected Memory Growth When Using DDS_GROUP_PRESENTATION_QOS on a DataReader
	4.13.54 Unexpected Timeout from DataReader’s wait_for_historical_data() when using Delegated Reliability
	4.13.55 Unexpected Memory Growth when Setting Entity QoS name or role_name
	4.13.56 Version Number was Missing from Libraries for Windows Platforms
	4.13.57 XSD Validation Failed when type_object_max_deserialized_length was UNLIMITED

	Chapter 5 Known Issues
	5.1 AppAck Messages Cannot be Greater than Underlying Transport Message Size
	5.2 DataReader Cannot Persist AppAck Messages Greater Than 32767 Bytes
	5.3 DataWriter's Listener Callback on_application_acknowledgment() not Triggered by Late-Joining DataReaders
	5.4 Discovery with Connext DDS Micro Fails when Shared Memory Transport Enabled
	5.5 Disabled Interfaces on Windows Systems
	5.6 HighThroughput and AutoTuning built-in QoS profiles may cause Communication Failure when Writing Small Samples
	5.7 Segmentation Fault when Creating DTLS DomainParticipants in Multiple Threads—Solaris and QNX Platforms Only
	5.8 Typecodes Required for Request-Reply Communication Pattern
	5.9 Uninstalling on AIX Systems
	5.10 Writer-side Filtering Functions Can be Invoked Even After Filter Unregistered
	5.11 Writer-Side Filtering May Cause Missed Deadline
	5.12 Wrong Error Code After Timeout on write() from Asynchronous Publisher
	5.13 Known Issues with Dynamic Data
	5.14 Known Issues in RTI Monitoring Library
	5.14.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Participant Sends Monitoring Data
	5.14.2 Participant’s CPU and Memory Statistics are Per Application
	5.14.3 XML-Based Entity Creation Nominally Incompatible with Static Monitoring Library

	Chapter 6 Experimental Features

