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Chapter 1 Android Systems

This document provides instructions to install and configure RTI® Connext™ DDS for Android™
development and run Connext DDS applications on Android systems. Please refer to the doc-
umentation provided by Google® for more information on the Android operating system and
Android platform: https://developer.android.com/develop/index.html.

This section will guide you through the process of generating, compiling, and running a Hello
World application on an Android system by expanding on "Generating Code with rtiddsgen" in
the RTI Connext DDS Core Libraries Getting Started Guide.

Installing and Configuring for Android Development (Section Chapter 2 on page 3) describes how
to install and configure Connext DDS for Android development:

Android Development Model (Section Chapter 3 on page 5) gives an overview of the Android
development model:

If you want to use the Connext DDS Ping, Spy, or Prototyper utilities, please read Using Connext
DDS Utilities on an Android Platform (Section Chapter 4 on page 7)

The next sections guide you through the steps to generate, modify, build, and run an example Hel-
loWorld application on an Android target. You can do so build the App two ways: using Eclipse
or using a makefile created by RTI Code Generator (rtiddsgen). In both cases, you will use rtidds-
gen to generate example source code.

To build with Eclipse, see either:

l Using the Connext DDS Java Libraries with Eclipse (Section Chapter 5 on page 16)

l Using the Connext DDS C and C++ Libraries with Eclipse (Section Chapter 6 on page 30)

To build manually with a makefile, see:
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l Generating Example Code and a Makefile from IDL (Section Chapter 7 on page 44)

l Building and Running a Hello World Example with Java (Section Chapter 9 on page 56)

l Building and Running a Hello World Example with C/C++ (Section Chapter 8 on page 48)

The last section describes some additional considerations for Android development:

l Additional Considerations (Section Chapter 10 on page 63)



Chapter 2 Installing and Configuring for
Android Development

2.1 Prerequisites

1. Install an Android SDK (Software Development Kit), available from https://developer-
.android.com/sdk/index.html. The released Connext DDS libraries and applications were
built with r22. Later SDKs should also work. Use an ADT bundle, which includes the SDK
and a plug-in for Eclipse. Use of the Eclipse plug-in is optional. This document describes
development with and without Eclipse.

2. If you plan to develop an Android App in C or C++, install an Android NDK (Native Devel-
opment Kit), available from https://developer.android.com/tools/sdk/ndk/index.html. The
released Connext DDS libraries were built with r9. Later NDKs should also work. If you are
using a Windows machine as the host, Cygwin needs to be installed (available from
http://www.cygwin.com/) and <CYGWINHOME>/bin should be in your Path.

3. If you plan to build an Android App (.apk) using the SDK or you plan to use the Connext
DDS Java API, Java is required. Java JDK 1.6 was used to build this Connext DDS release.
Note that the Dalvik VM (used by the Android operating system) is partially Java 1.6 com-
pliant. Using Java 1.7 or 1.8 tools to compile class files may lead to problems if the Java
code uses language features that are not supported by the Dalvik VM. (See Android doc-
umentation for further and up-to-date information).

4. This document assumes you will use either Eclipse or SDK command-line tools for building
and running your Android App. Both Eclipse and the command-line builds with the SDK
require Ant. This Connext DDS release was built using Ant 1.8.2. (Eclipse includes Ant;
you can check the Ant version by selecting About Eclipse, Installation Details, Plug-ins.)

5. If you are using a Windows host and you plan to build an Android App (.apk) using a make-
file on the command line, you need to have Cygwin installed (available from
http://www.cygwin.com/).
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2.2 Installing Connext DDS for Android Development

You will need to install a host archive and a target archive. The host archive contains documentation,
header files, and other files you need for development; the target archive contains the libraries and other
files you need for deployment. Unpack them as described in the RTI Connext DDS Core Libraries Getting
Started Guide, Installing on a UNIX-Based System.

2.3 Setting Up a Virtual Device or Using Hardware Devices for
Connection

You can run the Android operating system either on an actual Android device or on an Android Virtual
Device (AVD). See Android documentation for details:

l http://developer.android.com/tools/devices/index.html

l http://developer.android.com/tools/device.html

To see if your Android device or emulator is attached to your host machine, run the following command:

$(ANDROID_SDK_HOME)/sdk/platform-tools/adb devices

where $(ANDROID_SDK_HOME) is the location of your Android SDK installation.

http://developer.android.com/tools/devices/index.html
http://developer.android.com/tools/device.html


Chapter 3 Android Development Model

The Android operating system (OS) was developed by Google and is available as open source. It
is based on the Linux OS. There are some omissions from common Linux distributions since the
Android OS is designed for mobile devices.

Users may build an Android OS for any suitable hardware. Connext DDS will run on such a "bare
Android OS" in the same way it runs on other Linux distributions—as static and shared libraries
and executable utilities. Executable utilities and user executables linked with Connext DDS lib-
raries can be passed arguments from the command-line and they will be effected by environment
variable settings.

The most common Android platforms are "consumer devices" such as smart phones and tablets.
For these devices, Android is more than an operating system. It provides a framework for Android
Apps. These Apps run in a container called the Dalvik VM (Virtual Machine), which in turn runs
as an operating system process. A Dalvik VM process starts whenever an Android App is
launched (by touching its icon on a consumer device). Importantly, the App has no control over the
environment variables defined when the Dalvik VM starts, nor can the App specify or receive com-
mand-line arguments.

The Android SDK comes with an emulator for running Android virtual devices. These virtual
devices can be configured to mimic many Android consumer devices. An emulator has relaxed
security requirements and so the remote shell ("adb shell") for an emulator does have root access.
An emulator can run Android Apps and also run executables.

The Android SDK "adb shell" command provides a connection from a host terminal to the emu-
lator and logs on as root. The emulator can be used for both modes of development: as a consumer
device for Apps and as a customer self-built bare OS.

A consumer device can be "rooted" to provide a shell with root access. Once a device has direct
access to the Android OS, it can run executables in the same way as a bare Android OS. A "rooted
device" can still run Android Apps, since the application framework is still available.

5



Chapter 3 Android Development Model

6

On Linux and other UNIX-like OSs, the root user can gain access to the entire operating system and can
do anything. By default, you do not have root access to your Android consumer device. It is possible to
"root" an Android consumer device. Due to the many differences in configuration, such a device is not offi-
cially supported. However, any problems that can be reproduced on the emulator can be addressed as a
support issue.

Some customers may have built their own Android OS from the Android open source. In this case,
Android will behave like a Linux variant and provide the usual access to a command-line shell with envir-
onment variables.

Connext DDS has been tested on a consumer device (Nexus 7) and on an emulator. These are the offi-
cially supported platforms. It is expected that it will also work for a rooted device and bare Android plat-
forms. The remainder of this document describes running Android Apps on consumer devices, and
running Android Apps and executables on an emulator.



Chapter 4 Using Connext DDS Utilities on
an Android Platform

You can use the Connext DDS rtiddsspy, rtiddsping and rtiddsprototyper utilities either as
Android Apps or as command-line programs. When running as Android Apps on a real Android
device, there is no command prompt for entering parameters and no shell for outputting data. So to
facilitate their use, the utilities come with a simple GUI.

For information on using rtiddsspy and rtiddsping from the command-line, see the Connext DDS
API Reference HTML documentation (underModules, select Programming Tools). For inform-
ation on Prototyper, see the Prototyper with Lua Getting Started Guide.

Before installing these utilities: The adb install command requires that you connect the
device to a host machine and enable USB debugging in the device. For details on how to
do this, see these instructions (http://developer.android.com/tools/device.html#setting-up).

4.1 RTI DDS Spy App

To install and use rtiddsspy on an Android device:

1. Install rtiddsspy with this command (replace <arch> with your architecture name):

adb install $NDDSHOME/resource/app/bin/<arch>/rtiddsspy.apk

2. Touch or click the rtiddsspy icon.

3. On the displayed screen, enter parameters exactly as they would be entered on the command
line when using rtiddsspy on other platforms.
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4. Click or touch Run. Data is displayed in the output panel.

You may need to scroll the panel to the right to see the full output.

Note that when running rtiddsspy as an App on Android, the -printSample option is not supported.
5. Note that the Run button will be disabled until the Spy process is finished (i.e., if you have specified

a -timeout value in the parameters). To stop a running Spy process gracefully, click or touch the
Stop button. Once the Spy process is finished, the Run button will be enabled again.

6. (Optional) Click or touch the Clear button to clear the current output.

To uninstall rtiddspy from the Android device through the adb shell, use this command:

adb uninstall com.rti.dds.rtiddsspy

4.2 RTI DDS Ping App

To install and use rtiddsping on an Android device:

1. Install rtiddsping with this command (replace <arch> with your architecture name)

adb install $NDDSHOME/resource/app/bin/<arch>/rtiddsping.apk

2. Touch or click the rtiddsping icon.

3. On the displayed screen, enter parameters exactly as they would be entered on the command line
when using rtiddsping on other platforms.



4.3 RTI DDS Prototyper App

4. Note that the Run button will be disabled until the Ping process is finished (i.e., if you have spe-
cified (in the parameters) a -numSamples value with the publisher, or a -timeout value with the sub-
scriber). To stop a running Ping process gracefully, click or touch the Stop button. Once the ping
process is finished, the Run button will be enabled again.

5. (Optional) Click or touch the Clear button to clear the current output.

To uninstall rtiddsping from the Android device through the adb shell, use this command:

adb uninstall com.rti.dds.rtiddsping

4.3 RTI DDS Prototyper App

To install and use rtiddsprototyper on an Android device:

1. Install rtiddsprototyper with this command (replace <arch> with your architecture name):

adb install $NDDSHOME/resource/app/bin/<arch>/rtiddsprototyper.apk

2. Enter the following (or you may specify your own configuration file). For example:

9
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adb push <path to examplesa>/prototyper/hello_world/USER_QOS_PROFILES.xml
\

/sdcard/pt.xml

Note that the configuration file should be put in the Android device’s external storage (see Loading
XML-Specified QoS Settings (Section 10.3 on page 67)).

3. Touch or click the rtiddsprototyper icon.

4. On the displayed screen, enter parameters exactly as they would be entered on the command line
when using rtiddsprototyper on other platforms. Note that -cfgFile must indicate a file pushed to the
device with adb, and -cfgName must indicate a configuration within that file. If -cfgName is not
given and there is more than one configuration in the file, all available configurations will be dis-
played to the output. (Please note that the interactive manner for selecting the configuration is not
supported when used as an Android App.)

For example, enter the following as the parameters:

-cfgFile /sdcard/pt.xml
-cfgName MyParticipantLibrary::PublicationParticipant

5. Touch or click Run. Data is displayed in the output panel.

6. Note that the Run button will be disabled until the Prototyper process is finished (i.e., if you have
specified the -runDuration value in the parameters). To stop a running Prototyper process grace-
fully, click or touch the Stop button. Once the Prototyper process is finished, the Run button will be
enabled again.

a



4.3 RTI DDS Prototyper App

7. Touch or click the Clear button to clear the current output.

When running rtiddsprototyper as an App on Android, the value of the sample that is received by
the reader will not be printed (not in the UI and not in logcat).

To uninstall rtiddsprototyper from the Android device through the adb shell, use this command:

adb uninstall com.rti.dds.rtiddsprototyper

11
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Chapter 4 Generating Example Code and a
Makefile from IDL

This section describes how to generate example code and a makefile from IDL using RTI Code Generator
(rtiddsgen). The generated code will run without modification. The generated makefiles contain recipes for
performing various Android SDK and NDK tasks to simplify the process of building and running a Hel-
loWorld example. They also contain default settings for certain variables. These defaults are chosen to get
the Hello World examples to run out of the box for as wide a range of SDK and NDK configurations as
possible. However for real development, these default values should be reviewed.

To create the example applications:

1. Set up the environment on your development machine: set the NDDSHOME environment variable
and update your PATH as described in the RTI Connext DDS Core Libraries Getting Started
Guide.

l The PATH environment variable should also include the SDK’s tools, build-tools and plat-
form-tools directories. For example:

setenv ANDROID_SDK_HOME <path where Android SDK is installed>
setenv PATH $(ANDROID_SDK_HOME)/tools:$(ANDROID_SDK_HOME)/

build-tools/<build tool version>:$(ANDROID_SDK_HOME)/
platform-tools:$(PATH)

(Replace <build tool version> to match the one in your installation.)
l When building Android Apps (*.apk), the PATH should include the bin directory of Ant
1.8.2. For example:

setenv ANT_HOME <path where Ant is installed>
setenv PATH <ANT_HOME>/bin:$(PATH)

l Check to make sure that you have executable permission to ant in <ANT_HOME>/bin/ant
or <ANT_HOME>/bin/ant.bat

l When building Java examples or Android Apps, the PATH should include JDK 1.6. For
example:

setenv JAVA_HOME <path where Java is installed>
setenv PATH $(JAVA_HOME)/bin:$(PATH)
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l When building C and C++ examples, both as executables and as Android Apps, the PATH
should include the Android NDK. For example:

setenv ANDROID_NDK_PATH <path where Android NDK is installed>
setenv PATH $(ANDROID_NDK_PATH)/toolchains/<tool chain name>/

prebuilt/<host name>/bin:${PATH}

(Replace <tool chain name> and <host name> to match those in your installation.)
l Note that the Dalvik VM (used by the Android operating system) is partially Java 1.6 com-
pliant. Using Java 1.7 or 1.8 tools to compile class files may lead to problems if the Java code
uses language features that are not supported by the Dalvik VM. (See Android documentation
for further and up-to-date information).

2. Create a directory to work in. In this example, we use a directory called myhello.

3. In themyhello directory, create (or copy, see below) a file called HelloWorld.idl that contains a
user-defined data type. For example:

const long HELLODDS_MAX_PAYLOAD_SIZE = 8192;
const long HELLODDS_MAX_STRING_SIZE = 64;
struct HelloWorld {

string<HELLODDS_MAX_STRING_SIZE> prefix;
long sampleId;
sequence<octet, HELLODDS_MAX_PAYLOAD_SIZE> payload;

};

The above example IDL file can be copied from <path to example>/connext_dds/java/hello_idl/s-
rc/HelloWorld.idl, which can be used to test against a matching publisher and subscriber for other
platforms, if desired.

4. Use RTI Code Generator to generate sample code and a makefile as described in the RTI Connext
DDS Core Libraries Getting Started Guide. Choose Java, C, or C++. For example:

$(NDDSHOME)/bin/rtiddsgen -language C -example <arch> HelloWorld.idl
$(NDDSHOME)/bin/rtiddsgen -language C++ -example <arch> HelloWorld.idl
$(NDDSHOME)/bin/rtiddsgen -language Java -example arch>

-package com.rti.hello.idl HelloWorld.idl

Replace <arch> (following -example) with a supported Android architecture name. For example,
<arch> may be armv7aAndroid2.3gcc4.8. See the RTI Connext DDS Core Libraries Platform
Notes or Release Notes for the supported Android architectures for each language.

Note that Android Apps (*.apk) require the Java code generated by rtiddsgen to be in a package.
You can achieve this by using either themodules keyword in IDL or the -package command-line

13
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option with rtiddsgen. The IDL used here does not have modules, so the –package option is used
instead.

5. See if you need to change any of the default settings in the generated makefile:

l DEVICE

The generated makefile assumes that computer on which you building and running these
examples only has a single Android device or emulator attached. If this is not the case, you
will need to set the DEVICE variable in the makefile. By default, this variable is not set. To
see what devices are attached and what value to set DEVICE to, execute "adb devices" from
the command line.

l TARGET_ID

If you are building an Android App (*.apk), TARGET_ID should be set to the "build target"
for your application. It corresponds to an Android platform library that you would like to
build your project against. Execute "android list targets" to print a list of available Android
platforms that you have downloaded for your SDK and the corresponding ID. By default, this
is set to 1.

l ANDROID_PACKAGE_PREFIX

If you are building an Android App (*.apk), this should be set to the Android package name
prefix for the application. By default, this is set to com.rti.example<language>.<IDL file-
name>, which will eventually be used to generate two Android applications: one with pack-
age name com.rti.<IDL filename>example.publisher and another one with the package
name com.rti.<IDL filename>example.subscriber (where <language> is Java, C, or C++;
<IDL filename> is the name of the IDL file that you used for your example).

If you change the ANDROID_PACKAGE_PREFIX value, you will need to update the
package name in these generated files:

l objs/<arch>/publisher/src/com/rti/example<language>/<IDL filename>/
publisher/<IDL filename>PublisherActivity.java

l objs/<arch>/subscriber/src/com/rti/example<language>/<IDL filename>/
subscriber/<IDL filename>SubscriberActivity.java

l objs/<arch>/publisher/AndroidManifest.xml

l objs/<arch>/subscriber/AndroidManifest.xml

l ANDROID_PUSH_DEST

If you want to run the example directly on the emulator or device shell, this should be set to
the location where files are copied to. By default, this is set to /data/data/-
com.rti.example<language>.<IDL filename>, where <IDL filename> is the name of the
IDL file that you are using.



Chapter 4 Generating Example Code and a Makefile from IDL

2. If you modify the publisher or subscriber code, the makefile, or QoS file, be careful if you re-run
rtiddsgen: do not use –replace in conjunction with –example, as that would overwrite those modi-
fications.
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Chapter 5 Using the Connext DDS Java
Libraries with Eclipse

The Android Developer Tools bundle can be downloaded from Google. It contains the SDK and
an Eclipse-based Android IDE. It is also possible to install an Android plug-in to an existing
Eclipse installation. This section will describe how to use Android within an existing Eclipse install-
ation to build a Connext DDS application.

5.1 Install the Android Plug-In

1. Make sure the Android SDK is installed and accessible from the machine running Eclipse.

2. From the Eclipse menu bar, click Help, then Install New Software …. In the resulting dia-
log, select the site to work with to ADT Plugin or add this URL: https://dl-ssl.-
google.com/android/eclipse. Check the items to install and click Next >.
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3. Complete the install procedure. It may be necessary to "OK" the installation of unsigned software. It
may also be necessary to point Eclipse to the Android SDK installation. At the end, restart Eclipse.
The Eclipse menus should now have the Android Development Tools items.

5.2 Create an Android Project

This example uses the same HelloWorld IDL file used in Generating Example Code and a Makefile from
IDL (Section Chapter 7 on page 44). The Android App built in this section can interoperate with those
built in other sections of the document. If a different IDL file is used, then note that the following steps will
need to be altered slightly as the IDL file name, "HelloWorld" is used in completing fields and naming
other files in this example. This example shows only the creation of the Publisher App.

These steps can be repeated to create a HelloWorldSubscriber App. If the subscriber and the publisher will
be installed on the same device, make sure the subscriber’s Application, Project, and Package names are
different than the publisher’s.

1. From the Eclipse menu bar, select File, New, Android Application Project.



5.2 Create an Android Project

If the menu option is not present, review Install the Android Plug-In (Section 5.1 on page 16).
2. In the displayed dialog, fill in the fields as below and select the SDK API level. Other choices for

API level are possible but for the first attempt use those below. When the fields are complete, click
Next.

3. Uncheck the Create custom launcher icon box, check the Create in Project Workspace box,
then click Next.

4. Choose Empty Activity since this example does not include any GUI elements, then click Next.

18
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5. Edit the Activity Name as shown below. There is no need to edit the Layout Name since this is
driven by the Activity Name. The layout will not be touched in this example. Click Finish.

6. After the project has been created, Eclipse will display the Package Explorer as shown below. At
this point, HelloWorldPublisherActivity.java is the only source file in the project. Examine it to
see the generated default code.



5.3 Edit the Project Source Code

5.3 Edit the Project Source Code

1. Edit the generated Java class by adding the two lines shown below. This will create the simplest
Android App with Connext DDS. More sophisticated Android code can and probably would be
used for a real App. Note that Eclipse shows HelloWorldPublisher with underlined red text
because that class does not yet exist in the project. Save the changes to Hel-
loWorldPublisherActivity.java.

20
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2. Create or copy the HelloWorld.idl file in the project's src folder. Right-click and "Refresh" the src
folder in the Eclipse Package Explorer to see the newly added HelloWorld.idl. For example, you
may create a HelloWorld.idl file with these contents:

struct HelloWorld {
string name;
long count;

}

3. From a terminal window/command prompt, ensure that the NDDSHOME environment variable is
set correctly to the Connext DDS installation directory and that the PATH environment variable
includes $NDDSHOME/bin. Change directory (cd) to the src folder of the Eclipse Android project
and execute this command (all on one line):

rtiddsgen -language Java -package com.rti.example.helloworld -example
armv7aAndroid2.3gcc4.8 HelloWorld.idl

Note that the -package argument is the same value as used when creating the project. If the rtidds-
gen-generated java classes are in a different package to that of the project then "import" statements
will need to be added to some java files and the Eclipse Package Explorer would look slightly dif-
ferent from the following screen shots.

4. Right-click and "Refresh" the src folder again.



5.4 Add Connext DDS Libraries

Note that the error in HelloWorldPublisherActivity.java is now resolved but that many of the gen-
erated files contain errors. These are symbols from Connext DDS that are not being resolved
because the Eclipse project has no knowledge of Connext DDS. The HelloWorldSubscriber.java
file is not needed for this project and may optionally be deleted. The USER_QOS_
PROFILES.xml file is not used by this project; it may be deleted or kept for future use. Themake-
file is not used by this project; it may be deleted or kept for reference.

5.4 Add Connext DDS Libraries

1. Resolve the Connext DDS symbols in the generated java files by adding the Connext DDS libraries
to the project.

2. Right-click the libs folder. Select New and File.

22
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3. Select the "Advanced >>" options, check the Link to file in the file system box, and Browse for
the nddsjava.jar file within the Connext DDS installation at $NDDSHOME/class/nddsjava.jar
(where NDDSHOME is the path to the Connext DDS installation), not the text in highlighted field
below.



5.4 Add Connext DDS Libraries

4. Click Finish.

Eclipse may try to display the added file. If it is unable to display a Jar file, you may see a noti-
fication that it "can't launch" it. It is safe to click OK for this notification if it occurs. The errors pre-
viously flagged against the generated Java files should now be cleared.

Connext DDS is not pure Java, it also consists of some native libraries. When building the project,
you will not see any complaints if these libraries are missing, but when you try to run the App, the
LogCat panel will show errors such as:

05-13 15:46:49.309: E/AndroidRuntime(764): FATAL EXCEPTION: main
05-13 15:46:49.309: E/AndroidRuntime(764):
java.lang.ExceptionInInitializerError
05-13 15:46:49.309: E/AndroidRuntime(764): at com.rti.example.helloworld.

HelloWorldPublisher.publisherMain(HelloWorldPublisher.java:127)

5. To add the necessary native libraries to the project, the files must be copied into the project tree.
Creating links to files in the file system, as was done for nddsjava.jar, does not work. The native
libraries do not appear in the APK file.

Right-click on the libs folder and select New and Folder. Name the new folder armeabi-v7a.
6. From a terminal/command shell, copy libnddsjava.so from $NDDSHOME/lib/arm-

v7aAndroid2.3gcc4.8 to the newly created folder.

7. Copy libnddsc.so from $NDDSHOME/lib/armv7aAndroid2.3gcc4.8 to the newly created folder.

8. Copy libnddscore.so from $NDDSHOME/lib/armv7aAndroid2.3gcc4.8 to the newly created
folder.

9. Right-click and "Refresh" the libs folder to see the added libraries.
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5.5 Update the Android Manifest

Connext DDS expects to use the Internet and Wi-Fi to access the Internet. It needs to be able to change
some of the Wi-Fi settings. Connext DDS also needs to access external storage if it is to read a USER_
QOS_PROFILES.xml file (although the current example doesn't make use of that).

1. In the Package Explorer, double-click the AndroidManifest.xml file to edit it. Edit the copy at the
outer-most level of the project, the third from bottom in the figure above.

2. Choose the Permissions tab at the bottom of the edit panel.

3. Click Add…

4. Select Uses Permission and click OK.



5.5 Update the Android Manifest

5. From the Name pull-down list, select android.permission.INTERNET.

6. Click the left pane (under "Uses Permission" in the figure above) to complete the selection. (The
dialog doesn't have an "OK" button.)

7. Repeat to add android.permission.CHANGE_WIFI_STATE.

8. Repeat to add android.permission.CHANGE_WIFI_MULTICAST_STATE.

9. Repeat to add android.permission.READ_EXTERNAL_STORAGE.

10. Save the changes to the Android Manifest.
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5.6 Set Up Before Running Example

1. Ensure that either an Android device (e.g., Nexus 7) is connected via USB to the computer running
Eclipse or that an Android Virtual Device (AVD) has been defined. See Android documentation for
details.

2. Connext DDS uses Android's logcat facility to output certain messages. To make sure these are cap-
tured before running the example the Eclipse LogCat panel needs to be set up:

a. From the Eclipse menu, selectWindow, Show View >, Other ….

b. From the resulting Show View dialog, select Android > and LogCat, then click OK.

Eclipse will open a panel as shown below. The messages contained here are from the various pro-
cesses running on a connected Android device or an AVD running on an emulator. The machine
running Eclipse will run an adb process to communicate with the emulator or device. (See Android
documentation for more detail on the Android Debug Bridge.) Eclipse should start this process impli-
citly if it isn't already running.



5.7 Run the Example

5.7 Run the Example

1. Before building the example, which happens implicitly as part of running it, note the contents of the
bin folder.

2. From the Eclipse toolbar, select Run As … and Android Application (or if run previously, select
HelloWorldPublisher from the launch history.

3. It can take quite a while for Eclipse to build the Android App (*.apk file), start the emulator, let the
AVD go through its start up, install the App on the device and run it. You can check the progress at
the bottom right corner of the Eclipse GUI.

4. After the build completes, the bin folder in the Package Explorer will be updated.
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5. When the emulator displays the AVD, unlock it by dragging the padlock to the right. This will
allow the App to be visible on the emulator.

6. A successfulHelloWorldPublisher App will display output to LogCat and put a minimal interface
up on the emulator.



Chapter 6 Using the Connext DDS C and
C++ Libraries with Eclipse

This section describes how to use Android within an existing Eclipse installation to build a Con-
next DDS application with C++. The process for building a Connext DDS application with C is
similar to that for C++. The following instructions and screenshots are for C++; any differences in
the instructions for C will be called out in the affected steps. Also note that when developing with
C, instructions that include the text “Cpp” should be replaced with “C”, such as in filenames, App
names, etc. For example, HelloCppSubscriber for C++ would be HelloCSubscriber for C.

The Android Developer Tools bundle can be downloaded from Google. It contains the SDK and
an Eclipse-based Android IDE. It is also possible to install an Android plug-in to an existing
Eclipse installation.

6.1 Install the Android Plug-In

1. Make sure both the Android SDK and Android NDK are installed and accessible from the
machine running Eclipse. Eclipse also needs to have the C++ Development Tools installed;
use version 8.0.2.

2. From the Eclipse menu, click Help, then Install New Software .... In the resulting dialog,
select the site to work with to ADT Plugin or add this URL: https://dl-ssl.-
google.com/android/eclipse.

3. Check the items to install and click Next >. Note that the NDK Plugin and Developer tools
are required.
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4. Complete the install procedure. It may be necessary to "OK" the installation of unsigned software. It
may also be necessary to point Eclipse to the Android SDK installation. At the end, restart Eclipse.
The Eclipse menus should now have the Android Development Tools items.

5. From the Eclipse menu bar, select Eclipse and Preferences (or depending on version of Eclipse,
selectWindow and Preferences). Within the Android preferences, set the SDK Location to point to
the Android SDK installation (this may already be set correctly). Within the Android preferences,
select NDK and set the NDK Location to the Android NDK installation from . Click OK.

6.2 Create an Android Project

This example uses the same HelloWorld IDL file used in Generating Example Code and a Makefile from
IDL (Section Chapter 7 on page 44). The Android App built in this section can interoperate with those
built in other sections of the document. If a different IDL file is used, then note that the following steps will
need to be altered slightly as the IDL file name, HelloWorld, is used in completing fields and naming
other files in this example. This example shows only the creation of the publisher App. The steps from
here can be repeated to create a HelloCppSubscriber App.

If the subscriber and publisher will be installed on the same device, make sure the subscriber's Application,
Project, and Package names are different than the publisher's.

1. Make sure Eclipse is in the Java perspective and not in C++. From the Eclipse menu, select File,
New, Android Application Project.



6.2 Create an Android Project

If the menu option is not present, review Install the Android Plug-In (Section 6.1 on page 30).
2. In the displayed dialog, fill in the fields as seen here and select the SDK API level. Other choices for

API level are possible, but for the first attempt use those seen below. When the fields are complete,
click Next.

3. Uncheck the Create custom launcher icon box, check the Create in Project Workspace box,
then click Next.

4. Choose Empty Activity since this example does not include any GUI elements, then click Next.

5. Edit the Activity Name as seen below. There is no need to edit the Layout Name since this is
driven by the Activity Name. The layout will not be touched in this example. Click Finish.
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6. After the project has been created, Eclipse will display the Package Explorer as seen below. At this
point, HelloCppPublisherActivity.java is the only source file in the project. Examine it to see the
generated default code.

7. Right-click on the Android project in the Package Explorer and select Android Tools and Add Nat-
ive Support.



6.3 Edit the Project Source Code

It is not possible to do this step if the Eclipse project already has a C++ nature (this is why put
Eclipse into the Java perspective before creating the project). Note that the project now has a jni
folder that contains HelloCppPublisher.cpp and Android.mk.

8. Accept the offered Library Name, HelloCppPublisher, and click Finish. Note the addition of the
jni folder with two files in it.

Note for C Development:

The library name will be shown as HelloCPublisher. The resulting file in the jni folder will have a .cpp
suffix. This can be left as C++ if desired, as the code placed here will not call Connext DDS. The code in
this file is easy to convert to C. Note that Eclipse shows a C++ perspective, even though this is a C project.

6.3 Edit the Project Source Code

1. Edit the generated Java class by adding the code shown below. The onCreate()method will make
the JNI call to the C++ code. The static block loads the library containing all the C++ code. Save the
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changes to HelloCppPublisherActivity.java.

package com.rti.example.hellocpp;
import android.app.Activity;
import android.os.Bundle;
public class HelloCppPublisherActivity extends Activity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_hello_cpp_publisher);
//added
final String parameters = null;
nativeCallMain(parameters);

}
//added
public static native int nativeCallMain(String parameters);
//added
static {

System.loadLibrary("HelloCppPublisher");
}

}

2. Edit the HelloCppPublisher.cpp file, replacing its contents with the code below. Note that in
extern "C" form, the method name, nativeCallMain(), is prepended by the Java package and class
name. If a different package or class is used, this name will need to be changed to be consistent.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <jni.h>
#define ARGV_MAX_SIZE 32
#define JNI_VERSION JNI_VERSION_1_2
/* the following must be implemented in native code */
extern "C" int main(int argc, char *argv[]);
extern "C" JNIEXPORT jint JNICALL

Java_com_rti_example_hellocpp_HelloCppPublisherActivity_
nativeCallMain
(JNIEnv *env, jclass self_class, jstring javaParamString) {

int returnVal = -1;
int argc = 0;
char *argv[ARGV_MAX_SIZE];
returnVal = main(argc, argv);
return returnVal;

}



6.3 Edit the Project Source Code

Note for C Development:

Omit extern “C” from the two lines above, so they appear as:

int main(int argc, char *argv[]);
JNIEXPORT jint JNICALL ...

3. Create or copy the HelloWorld.idl file in the project's jni folder. Right-click and "Refresh" the jni
folder in the Eclipse Package Explorer to see the newly added HelloWorld.idl.

4. Open a terminal window/command prompt on a machine with architecture compatible to the host
bundle for Connext DDS that was installed. If this is done on a different machine, the generated files
can be copied to the project's jni folder. Ensure that the NDDSHOME environment variable is set
correctly to the Connext DDS installation directory and that the PATH environment variable
includes $NDDSHOME/bin. Change directory (cd) to the jni folder of the Eclipse Android project
and execute this command (all on one line):

rtiddsgen -language C++ -example armv7aAndroid2.3gcc4.8 HelloWorld.idl

Note for C Development: Change the -language option to C:

rtiddsgen -language C -example armv7aAndroid2.3gcc4.8 HelloWorld.idl

The generated files names will have ".c" suffixes instead of ".cxx" suffixes.
5. Right-click and Refresh the jni folder again.

The HelloWorld_subscriber.cxx file is not needed for this project and may optionally be deleted.
The USER_QOS_PROFILES.xml file is not used by this project; it may be deleted or kept for
future use. The makefile is not used by this project; it may be deleted or kept for reference.
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6. Set the include paths for the project. Right-click on the project in the Package Explorer and select
Properties. Navigate to the C/C++ General section, then to the Paths and Symbols subsection. In
the Includes tab, add the following two entries:

${NDDSHOME}/include
${NDDSHOME}/include/ndds

Click OK.
7. If the actual path is used in place of the NDDSHOME variable, this step can be omitted. In project

Properties, navigate to C/C++ Build and Build Variables. Add variables for NDDSHOME and
RTI_ANDROID as seen below, but use your installation location for Connext DDS.

8. Right-click on the project and select Index and Rebuild. This should resolve any errors in the gen-
erated source files. If a handful of errors remain, this may be due to a bug in Eclipse. If these
"phantom" errors cause the build to fail when you perform in Configure the Build (Section 6.5 on
page 39), they can be suppressed (see in Run the Example (Section 6.7 on page 42)).

9. Edit the generated file, HelloWorld_publisher.cxx, to replace the #define with printf, as seen
below:



6.4 Update the Android Manifest

Change this:

#define printf Android_printf

To this:

#include <android/log.h>
#define printf(x...) __android_log_print(ANDROID_LOG_INFO,
"HelloCppPublisher", x)

This is the quickest way to redirect stdout to logcat.

Other ways are possible but they require more JNI code in HelloCppPublisher.cpp. (See the com-
mand-line example for C++ for the full source code for this approach).

6.4 Update the Android Manifest

Connext DDS expects to use the Internet and Wi-Fi to access the Internet. It needs to be able to change
some of the Wi-Fi settings. Connext DDS also needs to access external storage if it is to read a USER_
QOS_PROFILES.xml file (although the current example doesn't make use of that).

1. In the Package Explorer, double-click the AndroidManifest.xml file to edit it. Edit the copy at the
outer-most level of the project, the third from bottom in the figure below.

2. Choose the Permissions tab at the bottom of the edit panel.

3. Click Add…

4. Select Uses Permission and click OK.

38



6.5 Configure the Build

39

5. From the Name pull-down list, select android.permission.INTERNET.

6. Click the left pane (under "Uses Permission" in the figure above) to complete the selection. (The
dialog doesn't have an "OK" button.)

7. Repeat to add android.permission.CHANGE_WIFI_STATE.

8. Repeat to add android.permission.CHANGE_WIFI_MULTICAST_STATE.

9. Repeat to add android.permission.READ_EXTERNAL_STORAGE.

10. Save the changes to the Android Manifest.

6.5 Configure the Build

For the Java Connext DDS App for Android, the Connext DDS libraries have to be placed in the project
in the correct place and they then get added automatically to the App (the *.apk file). For native devel-
opment all native code and libraries are collected into a single shared library (see Android ndk-build doc-
umentation for further information).

To configure the build properly follow the steps below.

1. Edit the Android.mk file to have the contents shown below. The three local modules contain the
Connext DDS static libraries. NDDSHOME should be set to the Connext DDS installation (i.e., the
same as $NDDSHOME earlier). Note that the last LOCAL_SRC_FILES does not fit on one line,
so we use a continuation character "\".
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LOCAL_PATH := $(call my-dir)
#added
NDDSHOME := /path to rti_connext_dds-5.2.0/
RTI_SYSROOT := $(ANDROID_NDK_PATH)/platforms/$(APP_PLATFORM)/arch-arm
include $(CLEAR_VARS)
LOCAL_MODULE := nddscore
LOCAL_SRC_FILES := $(NDDSHOME)/lib/armv7aAndroid2.3gcc4.8/libnddscorez.a
include $(PREBUILT_STATIC_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := nddsc
LOCAL_SRC_FILES := $(NDDSHOME)/lib/armv7aAndroid2.3gcc4.8/libnddscz.a
include $(PREBUILT_STATIC_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := nddscpp
LOCAL_SRC_FILES := $(NDDSHOME)/lib/armv7aAndroid2.3gcc4.8/libnddscppz.a
include $(PREBUILT_STATIC_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := HelloCppPublisher
#was just HelloCppPublisher.cpp
LOCAL_SRC_FILES := HelloCppPublisher.cpp HelloWorld_publisher.cxx \

HelloWorld.cxx HelloWorldPlugin.cxx HelloWorldSupport.cxx
#added
LOCAL_C_INCLUDES := $(NDDSHOME)/include/ $(NDDSHOME)/include/ndds/
LOCAL_CFLAGS := -DRTI_UNIX -DRTI_ANDROID -mlong-calls
LOCAL_STATIC_LIBRARIES := nddscpp nddsc nddscore
LOCAL_LDLIBS := -L$(RTI_SYSROOT)/usr/lib -llog -landroid -lEGL -lGLESv1_
CM
include $(BUILD_SHARED_LIBRARY)

Notes for C Development:

Omit the four lines for the nddscpp module. The last section in the file should be replaced with:

LOCAL_MODULE := HelloCPublisher
#was just HelloCPublisher.c
LOCAL_SRC_FILES := HelloCPublisher.c HelloWorld_publisher.c \

HelloWorld.c HelloWorldPlugin.c HelloWorldSupport.c
#added
LOCAL_C_INCLUDES := $(NDDSHOME)/include/ $(NDDSHOME)/include/ndds/
LOCAL_CFLAGS := -DRTI_UNIX -DRTI_ANDROID -mlong-calls
LOCAL_STATIC_LIBRARIES := nddsc nddscore
LOCAL_LDLIBS := -L$(RTI_SYSROOT)/usr/lib -llog -landroid -lEGL -lGLESv1_
CM
include $(BUILD_SHARED_LIBRARY)

2. Add an Application.mk file to the jni folder.
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The contents of Application.mk should be as shown below. Note the use of static GNU STL lib-
rary. This is picked up from the NDK, it is not redistributed as part of Connext DDS.

APP_ABI := armeabi-v7a
APP_PLATFORM := android-9
APP_STL := gnustl_static
NDK_TOOLCHAIN_VERSION := 4.8

Note for C Development: Omit the line for APP_STL
3. Right-click the project in Package Explorer and select Build Project. This will create the libHel-

loCppPublisher.so file in the obj folder and copy it to the libs folder.
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6.6 Set Up Before Running Example

1. Ensure that either an Android device (e.g., Nexus 7) is connected via USB to the computer running
Eclipse or that an Android Virtual Device (AVD) has been defined. See Android documentation for
details.

2. Connext DDS uses Android's logcat facility to output certain messages. To make sure these are cap-
tured before running the example the Eclipse LogCat panel needs to be set up:

a. From the Eclipse menu, selectWindow, Show View >, Other ....

b. From the resulting Show View dialog, select Android > and LogCat, then click OK.

Eclipse will open a panel as shown below. The messages contained here are from the various pro-
cesses running on a connected Android device or an AVD running on an emulator. The machine
running Eclipse will run an adb process to communicate with the emulator or device. (See Android
documentation for more detail on the Android Debug Bridge.) Eclipse should start this process impli-
citly if it isn't already running.

6.7 Run the Example

1. From the Eclipse toolbar, select Run As ... and Android Application (or if run previously, select
HelloCppPublisher from the launch history.
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If Eclipse complains about needing to resolve problems before the App can launch and these prob-
lems have to do with the appcompat_v7 library project and/or other build path issues, try saving all
files, closing Eclipse, and re-opening Eclipse. At the time of writing, there is an Eclipse bug in this
area. Restarting Eclipse after attempting a build also appears to populate the Include directories in
the C/C++ General, Paths and Symbols properties.

2. It can take quite a while for Eclipse to build the Android App (*.apk file), start the emulator, let the
AVD go through its start-up process, install the App on the device, and run it. You can check the
progress at the bottom-right corner of the Eclipse GUI.

3. After the build completes, the bin folder in the Package Explorer will be updated.

4. When the emulator displays the AVD, unlock it by dragging the padlock to the right. This will
allow the App to be visible on the emulator.

A successful HelloCppPublisher App will display output to LogCat and put a minimal interface up
on the emulator.



Chapter 7 Generating Example Code and a
Makefile from IDL

This section describes how to generate example code and a makefile from IDL using RTI Code
Generator (rtiddsgen). The generated code will run without modification. The generated makefiles
contain recipes for performing various Android SDK and NDK tasks to simplify the process of
building and running a HelloWorld example. They also contain default settings for certain vari-
ables. These defaults are chosen to get the Hello World examples to run out of the box for as wide
a range of SDK and NDK configurations as possible. However for real development, these default
values should be reviewed.

To create the example applications:

1. Set up the environment on your development machine: set the NDDSHOME environment
variable and update your PATH as described in the RTI Connext DDS Core Libraries Get-
ting Started Guide.

l The PATH environment variable should also include the SDK’s tools, build-tools and
platform-tools directories. For example:

setenv ANDROID_SDK_HOME <path where Android SDK is installed>
setenv PATH $(ANDROID_SDK_HOME)/tools:$(ANDROID_SDK_HOME)/

build-tools/<build tool version>:$(ANDROID_SDK_HOME)/
platform-tools:$(PATH)

(Replace <build tool version> to match the one in your installation.)
l When building Android Apps (*.apk), the PATH should include the bin directory of
Ant 1.8.2. For example:

setenv ANT_HOME <path where Ant is installed>
setenv PATH <ANT_HOME>/bin:$(PATH)
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l Check to make sure that you have executable permission to ant in <ANT_HOME>/bin/ant
or <ANT_HOME>/bin/ant.bat

l When building Java examples or Android Apps, the PATH should include JDK 1.6. For
example:

setenv JAVA_HOME <path where Java is installed>
setenv PATH $(JAVA_HOME)/bin:$(PATH)

l When building C and C++ examples, both as executables and as Android Apps, the PATH
should include the Android NDK. For example:

setenv ANDROID_NDK_PATH <path where Android NDK is installed>
setenv PATH $(ANDROID_NDK_PATH)/toolchains/<tool chain name>/

prebuilt/<host name>/bin:${PATH}

(Replace <tool chain name> and <host name> to match those in your installation.)
l Note that the Dalvik VM (used by the Android operating system) is partially Java 1.6 com-
pliant. Using Java 1.7 or 1.8 tools to compile class files may lead to problems if the Java code
uses language features that are not supported by the Dalvik VM. (See Android documentation
for further and up-to-date information).

2. Create a directory to work in. In this example, we use a directory called myhello.

3. In themyhello directory, create (or copy, see below) a file called HelloWorld.idl that contains a
user-defined data type. For example:

const long HELLODDS_MAX_PAYLOAD_SIZE = 8192;
const long HELLODDS_MAX_STRING_SIZE = 64;
struct HelloWorld {

string<HELLODDS_MAX_STRING_SIZE> prefix;
long sampleId;
sequence<octet, HELLODDS_MAX_PAYLOAD_SIZE> payload;

};

The above example IDL file can be copied from <path to example>/connext_dds/java/hello_idl/s-
rc/HelloWorld.idl, which can be used to test against a matching publisher and subscriber for other
platforms, if desired.

4. Use RTI Code Generator to generate sample code and a makefile as described in the RTI Connext
DDS Core Libraries Getting Started Guide. Choose Java, C, or C++. For example:
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$(NDDSHOME)/bin/rtiddsgen -language C -example <arch> HelloWorld.idl
$(NDDSHOME)/bin/rtiddsgen -language C++ -example <arch> HelloWorld.idl
$(NDDSHOME)/bin/rtiddsgen -language Java -example arch>

-package com.rti.hello.idl HelloWorld.idl

Replace <arch> (following -example) with a supported Android architecture name. For example,
<arch> may be armv7aAndroid2.3gcc4.8. See the RTI Connext DDS Core Libraries Platform
Notes or Release Notes for the supported Android architectures for each language.

Note that Android Apps (*.apk) require the Java code generated by rtiddsgen to be in a package.
You can achieve this by using either themodules keyword in IDL or the -package command-line
option with rtiddsgen. The IDL used here does not have modules, so the –package option is used
instead.

5. See if you need to change any of the default settings in the generated makefile:

l DEVICE

The generated makefile assumes that computer on which you building and running these
examples only has a single Android device or emulator attached. If this is not the case, you
will need to set the DEVICE variable in the makefile. By default, this variable is not set. To
see what devices are attached and what value to set DEVICE to, execute "adb devices" from
the command line.

l TARGET_ID

If you are building an Android App (*.apk), TARGET_ID should be set to the "build target"
for your application. It corresponds to an Android platform library that you would like to
build your project against. Execute "android list targets" to print a list of available Android
platforms that you have downloaded for your SDK and the corresponding ID. By default, this
is set to 1.

l ANDROID_PACKAGE_PREFIX

If you are building an Android App (*.apk), this should be set to the Android package name
prefix for the application. By default, this is set to com.rti.example<language>.<IDL file-
name>, which will eventually be used to generate two Android applications: one with pack-
age name com.rti.<IDL filename>example.publisher and another one with the package
name com.rti.<IDL filename>example.subscriber (where <language> is Java, C, or C++;
<IDL filename> is the name of the IDL file that you used for your example).

If you change the ANDROID_PACKAGE_PREFIX value, you will need to update the
package name in these generated files:

l objs/<arch>/publisher/src/com/rti/example<language>/<IDL filename>/
publisher/<IDL filename>PublisherActivity.java
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l objs/<arch>/subscriber/src/com/rti/example<language>/<IDL filename>/
subscriber/<IDL filename>SubscriberActivity.java

l objs/<arch>/publisher/AndroidManifest.xml

l objs/<arch>/subscriber/AndroidManifest.xml

l ANDROID_PUSH_DEST

If you want to run the example directly on the emulator or device shell, this should be set to
the location where files are copied to. By default, this is set to /data/data/-
com.rti.example<language>.<IDL filename>, where <IDL filename> is the name of the
IDL file that you are using.

2. If you modify the publisher or subscriber code, the makefile, or QoS file, be careful if you re-run
rtiddsgen: do not use –replace in conjunction with –example, as that would overwrite those modi-
fications.



Chapter 8 Building and Running a Hello
World Example with C/C++

This section will guide you through the steps required to successfully run an rtiddsgen-generated
example application written in C or C++ on an Android target, as an Android App (*.apk) or as an
executable.

Note that the C and C++ Android App examples use a Java wrapper class with JNI. It is also pos-
sible to write pure C and C++ native code to build Android Apps; see the Android documentation
for details (https://developer.android.com/tools/sdk/ndk/index.html).

1. Compile the generated C or C++ code and link it into the executables HelloWorld_pub-
lisher and HelloWorld_subscriber in the objs/<arch>/ directory. For example:

make -f makefile_HelloWorld_armv7aAndroid2.3gcc4.8

Note that these executables are statically linked with the Connext DDS libraries:

For C: libnddscorez.a and libnddscz.a.

For C++: libnddscorez.a, libnddscz.a and libnddscppz.a, and with the GNU C++ run-
time static library, libgnustl_staticz.a.

2. Depending on what form the application is to take, follow the steps in one of these sub-
sections:

l Building and Running a C/C++ Application as an Executable (Section 8.1 on the next
page)

l Building and Running a C/C++ Application as an Android App (Section 8.2 on
page 50)

3. If you want to see DDS log messages or values of the samples being printed on the sub-
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scriber, run adb logcat with a filter in a host machine shell. For example:

adb logcat -v tag RTIConnextLog:I *:S

8.1 Building and Running a C/C++ Application as an Executable

This procedure will not work for a non-rooted Android consumer device, see Building and
Running a C/C++ Application as an Android App (Section 8.2 on the facing page) instead.

1. Push (via adb) the executables to the emulator, in a user-specified directory. For example:

make -f makefile_HelloWorld_armv7aAndroid2.3gcc4.8 HelloWorld.pushexes

This will push all the required files to the location specified by ANDROID_PUSH_DEST.

If you want to use USER_QOS_PROFILES.xml for your example, that should also be pushed to
the emulator. To do so, see the generated makefile and uncomment the command that pushes
USER_QOS_PROFILES.xml to the device in the HelloWorld.pushexes target rule before running
the above command.

2. To run the example on the emulator, open two adb shells. Run the publisher executable in one shell
and the subscriber executable in the other. For example:

To run the publisher:

adb shell
cd /data/data/com.rti.helloworldexample
./HelloWorld_publisher <args>

To run the subscriber:

adb shell
cd /data/data/com.rti.helloworldexample
./HelloWorld_subscriber <args>

Note: The <args> are optional. See the generated source code for usage.
3. Examine the adb shell output printed by the examples and the optional logcat output that shows the

value of the received samples.

The output in the adb shell should look like this:
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The logcat output should look like this:

8.2 Building and Running a C/C++ Application as an Android App

1. See in Generating Example Code and a Makefile from IDL (Section Chapter 7 on page 44) regard-
ing the ANDROID_PACKAGE PREFIX and TARGET_ID variables; if you want to change these
variables in the makefile, do so now.

2. Create separate Android projects for the publisher and subscriber. For example:

make -f makefile_HelloWorld_armv7aAndroid2.3gcc4.8 HelloWorld.projects
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The project will be placed in the ./objs/<arch> and ./objs/<arch>/subscriber directories (where
<arch> is the Android architecture that you are working with). Each project directory will have a dir-
ectory structure for an Android project, it will contain files that have been created from provided
Connext DDS templates. These files include the Java Activity class source file, where the pub-
lisher/subscriber example native code is called through JNI. The “android update project” com-
mand is run by the makefile to set the directory up as a correct Android project.

3. Create shared libraries (*.so) and build the Android projects with the resulting shared libraries. For
example:

gmake -f makefile_HelloWorld_armv7aAndroid2.3gcc4.8 HelloWorld.apks

The above command generates separate shared libraries for the publisher and subscriber examples.
This also generates separate JNI source code files for both the publisher and subscriber; it also com-
piles and links the JNI code into separate jni shared libraries, one for the publisher and one for the
subscriber. These shared libraries are packaged into Android Apps along with a classes.dex file for
the Java Activity class.

4. Install (via adb) the two Apps on a connected consumer device or an emulator. For example:

gmake -f makefile_HelloWorld_armv7aAndroid2.3gcc4.8 HelloWorld.installapks

5. Run the example on an emulator with a GUI (i.e., not started with the –no-window flag) or on a
consumer device:

a. Navigate to the Apps screen displaying icons, it should show HelloWorld_publisher and
HelloWorld_subscriber.
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b. Touch (on a device) or click (on an emulator) the HelloWorld_subscriber icon.

c. Optionally, enter a single number for the DDS Domain ID as a parameter.

d. Touch or click Run.

e. Navigate to the Apps icons (via the Home button) and launch HelloWorld_publisher
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f. Optionally, for parameters, enter the DDS Domain ID (use the same ID entered for the sub-
scriber in ) as the first number. Optionally, you can enter the number of samples to be pub-
lished as the second parameter.

g. Touch or click Run.

h. Navigate to the Apps icons and return to HelloWorld_subscriber. Note the samples
received.
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6. An Android App will continue to run in the background when the focus is given to another App.
How to stop a running Android App without uninstalling it depends on the device or the virtual
device within the emulator. For example, on the emulator hold the Home button until a list of applic-
ations is shown. Stop an App by swiping it left or right. On a Nexus 7 tablet, touch the Recent
Apps button (a soft key with an over-lapping rectangle) and swipe the App you want to stop. Altern-
atively, open Settings, choose Apps, in the subheadings swipe to Running, select Show cached
processes, and lastly touch and Stop the App.

On an emulator, press the Home button to see a list of running apps.
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Touch the desired app, then select Remove from list.



Chapter 9 Building and Running a Hello
World Example with Java

This section will guide you through the steps required to successfully run an rtiddsgen-generated
example application written in Java on an Android target as a Dalvik command or as an Android
App (*.apk).

1. Compile the generated Java code and archive it into HelloWorld.jar. For example:

make -f makefile_HelloWorld_armv7aAndroid2.3gcc4.8

2. Depending on what form the application is to take, follow the steps in one of these sub-
sections:

l Building and Running a Java Application as a Dalvik Command (Section 9.1 below)

l Building and Running a Java Application as an Android App (Section 9.2 on
page 58)

3. If you want to see DDS log messages, run ”adb logcat” with a filter in a host machine shell.
For example:

adb logcat -v tag RTIConnextLog:I *:S

9.1 Building and Running a Java Application as a Dalvik
Command

This procedure not work for a non-rooted Android consumer device, see Building and
Running a Java Application as an Android App (Section 9.2 on page 58) instead.
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1. Compile the Java class files into Dalvik executable format; archive that in HelloWorld.dex. For
example:

make -f makefile_HelloWorld_armv7aAndroid2.3gcc4.8 HelloWorld.dex

2. Push (via adb) the native libraries and HelloWorld.dex to the emulator or device to a specified user
directory. For example:

make -f makefile_HelloWorld_armv7aAndroid2.3gcc4.8 HelloWorld.pushexe

This will push all the required files to the location specified by ANDROID_PUSH_DEST.

If you want to use USER_QOS_PROFILES.xml for your example, that file should also be pushed
to the emulator or device. To do so, open the generated makefile and uncomment the command that
pushes USER_QOS_PROFILES.xml to the device in the HelloWorld.pushdex target rule before
running the above command.

3. To run the example on the emulator: Open two adb shells. In each adb shell, set up the LD_
LIBRARY_PATH variable to include the location of the native libraries that are copied. Run the
publisher in one shell and the subscriber in the other. For example:

To run the publisher:

adb shell
cd /data/data/com.rti.helloworldexample
export LD_LIBRARY_PATH=/data/data/com.rti.helloworldexample:$LD_LIBRARY_
PATH
dalvikvm -cp HelloWorld.dex com.rti.example.HelloWorldPublisher <args>

To run the subscriber:

adb shell
cd /data/data/com.rti.helloworldexample
export LD_LIBRARY_PATH=/data/data/com.rti.helloworldexample:$LD_LIBRARY_
PATH
dalvikvm -cp HelloWorld.dex com.rti.example.HelloWorldSubscriber <args>

Note: The optional <args> can be replaced with the arguments that you want to pass to your
example. See the generated source code for usage.

4. Examine the adb shell output printed by the examples.
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9.2 Building and Running a Java Application as an Android App

1. See Step 5 in Generating Example Code and a Makefile from IDL (Section Chapter 7 on page 44)
regarding the ANDROID_PACKAGE_PREFIX and TARGET_ID variables; if you want to
change these variables in the makefile, do so now.

2. Create separate Android projects for the publisher and subscriber. For example:

make -f makefile_HelloWorld_armv7aAndroid2.3gcc4.8 HelloWorld.projects

The project will be placed in the ./objs/<arch>/publisher and ./objs/<arch>/subscriber directories.
Each project directory will contain files that have been created from provided Connext DDS tem-
plates. These files include the Java Activity class source file, where the Java publisher/subscriber
example code is called. The “android update project” command is run by the makefile to set the
directory up as a correct Android project.

3. Using the created projects, build two Android Apps: one for the publisher and one for the sub-
scriber. For example:

gmake -f makefile_HelloWorld_armv7aAndroid2.3gcc4.8 HelloWorld.apks

4. Install (via adb) the two Apps on a connected consumer device or an emulator. For example:

gmake -f makefile_HelloWorld_armv7aAndroid2.3gcc4.8 HelloWorld.installapks

5. To run the example on an emulator with a GUI (i.e., not started with the –no-window flag) or on a
consumer device:
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a. Navigate to the Apps screen displaying icons, it should show HelloWorldPublisher and Hel-
loWorldSubscriber.

b. Touch (on a device) or click (on an emulator) the HelloWorldSubscriber icon.

c. Optionally, enter a single number for the DDS Domain ID as a parameter.

d. Touch or click Run.
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e. Navigate to the Apps icons (via the Home button) and launch HelloWorldPublisher.

f. Optionally, for parameters, enter the DDS Domain ID (use the same ID entered for the sub-
scriber in ) as the first number. Optionally, you can enter the number of samples to be pub-
lished as the second parameter.

g. Touch or click Run.
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h. Navigate to the Apps icons and return to HelloWorldSubscriber. Note the samples received.

6. An Android App will continue to run in the background when the focus is given to another App.
How to stop a running Android App without uninstalling it depends on the device or the virtual
device within the emulator. For example, on the emulator hold the Home button until a list of applic-
ations is shown. Stop an App by swiping it left or right. On a Nexus 7 tablet, touch the Recent
Apps button (a soft key with an over-lapping rectangle) and swipe the App you want to stop. Altern-
atively, open Settings, choose Apps, in the subheadings swipe to Running, select Show cached
processes, and lastly touch and Stop the App.
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On an emulator, press the Home button to see a list of running apps.

Touch the desired app, then select Remove from list.
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Chapter 10 Additional Considerations
10.1 Output when Running Connext DDS Applications on

Android Devices and Emulators

10.1.1 DDS Log Messages from Core Libraries

All DDS log messages from the provided core C and C++ libraries are printed using the Android
logging system as "information" using the RTIConnextLog tag. Log messages from the Connext
DDS Java files are printed to System.out and System.err. The adb logcat command without the -
v option will print all logged messages. To view any of the DDS log messages in real time, use the
Android logcat tool with the appropriate filter through adb. For example:

adb logcat -v tag RTIConnextLog:I System.out:I System.err:I *:S

Note that if you are calling the TypeSupport_print_data()method of any of the rtiddsgen-gen-
erated data type in C or C++, the value of the samples will also be logged using the Android log-
ging system as stated above.

Refer to the Android documentation for details: http://developer-
.android.com/tools/debugging/debugging-log.html.

10.1.2 Output from rtiddsgen-Generated Examples or User
Applications

For the rtiddsgen-generated Java publisher/subscriber examples, System.out.println() is used for
printing output.

For the rtiddsgen-generated C/C++ examples, printf() is used for printing output.

By default, Android systems send stdout and stderr output to /dev/null. If you are running the gen-
erated publisher/subscriber with the adb shell (typically on a device on which you have root
access), you should be able to see the example output directly in the shell.
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If you are using the Android project files generated by the rtiddsgen-generated makefile to compile the pub-
lisher and subscriber examples as Android Apps, the generated source code for the application is doing
something special to redirect the output to allow them to show up in the Android App.

For the Java example scenario, all the System.out output is redirected to the TextView in the GUI of the
Android App. Refer to the generated Java Activity class source code under the project src directory for
details on how this is done.

For the C/C++ example scenario, a special RTIAndroid_registerOnPrintf()method can be found in the
generated publisher and subscriber example source code to redirect all printf() calls to a function callback.
The RTIAndroid_registerOnPrintf()method is called when the example is run for the first time. Each
time printf() is called from the generated publisher and subscriber example source code, the registered
function callback, implemented in JNI, will be called. In the JNI method, we first attach the current thread
to the Dalvik VM if it has not been done, then we call a method in the Java Activity class to display the
message in the TextView UI. The native thread will be detached from the Dalvik VM, if necessary, before
we return to the native publisher/subscriber example code. Refer to the generated Java Activity class
source code under the project src directory, JNI code, and publisher/subscriber C/C++ code in the
example’s main directory for details on how this is done.

Note that when running the rtiddsgen-generated examples as an Android App, DDS logging messages
and the printing of the Samples in the C or C++ subscriber will still need to be viewed using logcat—they
will not show up in the GUI of the Android App.

Alternatively, you can change the generated example code to cause all the output to go to logcat. For C
and C++, replace all calls to printf() with __android_log_print() with your desired priority and tag. For
Java, use methods in the android.util.Log class instead of the System.out class.

Refer to Android SDK documentation for details: http://developer-
.android.com/tools/debugging/debugging-log.html.

10.1.3 Output from Connext DDS Utilities

The Connext DDS rtiddsspy, rtiddsping and rtiddsprototyper utilities are implemented with Connext DDS
core libraries. As a result, DDS log messages must be viewed with logcat.

If you run rtiddsping, rtiddsspy, and rtiddsprototyper in a shell, all the output from the utility will show up
in the shell (even though DDS log messages still need to be viewed with logcat).

If you run rtiddsping, rtiddsspy, and rtiddsprototyper as Android Apps, most of the utility output will
show up on the App UI, with the following exceptions. When running rtiddsspy with the
-printSample option as an Android App, and when running rtiddsprototyper as an Android App, the
value of the received sample is printed to stdout and therefore will not show up in either the UI or in
logcat. The rest of the output from the utility itself will show up in the App UI as expected. DDS log mes-
sages still need to be viewed with logcat.
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http://developer.android.com/tools/debugging/debugging-log.html


10.2 Communication between Connext DDS Applications on Emulator and Host

10.2 Communication between Connext DDS Applications on Emulator
and Host

The emulator has its own virtual LAN: 10.0.2.*. In particular, 10.0.2.15 is the emulator's address for the
host's NIC and 10.0.2.2 is the emulator's address for the host's loopback interface (localhost). To reach
addresses outside of its virtual LAN, the emulator will route packets through its virtual network interface,
10.0.2.15 (the host's NIC). For communication from host to emulator, packets must be sent to the host's
loopback interface, 127.0.0.1. The emulator can be directed to open ports on the host 127.0.0.1.

The emulator does not (for the version used at time of writing) support multicast. Therefore, discovery will
be over unicast UDP. The number of participants within the host + emulator is limited due to the need to
allocate ports for each participant. By default, that limit is five participants. In normal Connext DDS usage,
the participants would acquire ports automatically. (The assignment would be implicitly based on the order
of start up). The emulator that encapsulates one or more participants needs to explicitly acquire the ports
that its contained participants will use. Therefore, it is necessary to explicitly manage the ports used.

Connext DDS determines ports for unicast communication based on Domain and Participant IDs. (For the
algorithm used to calculate port numbers, see the RTI Connext DDS Core Libraries User Manual, Section
14.5).

Consider the following example: A Hello_simple subscriber on the host is communicating with a Hello_
simple publisher (Android) on an emulator.

Assuming Domain ID 0, the subscriber is given a Participant ID of 3. As there will be no contention, the
publisher can assume the Participant ID is 0. The publisher will use ports 7410 for meta-traffic and 7411
for user-traffic. The subscriber will use ports 7416 for meta-traffic and 7417 for user-traffic.

To cause the emulator to open ports 7410 and 7411 on behalf of the publisher, it is necessary to set up
some redirections. Use the “adb devices” command on the host to get the name of the emulator (e.g.,
"emulator-5554") and determine its control port (5554).

If the control port is 5554, enter this at the host to determine that no redirections are currently in place:

telnet localhost 5554
redir list

Then enter the following to set up redirections:

redir add udp:7410:7410
redir add udp:7411:7411

These redirections apply for 127.0.0.1 on the host, redirected to 10.0.2.2 in the emulator. The redir com-
mand causes the emulator to open the host port (the first of the two ports specified in the command) on the
127.0.0.1 interface. If another process already has that port, redir will report an error.
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The publisher, running in the emulator, requires the following settings, shown below in a snippet of a QoS
file’s participant_qos section:

<discovery>
<initial_peers>

<element>builtin.udpv4://10.0.2.2</element>
</initial_peers>

</discovery>
<property>

<value>
<element>

<name>dds.transport.UDPv4.builtin.public_address</name>
<value>127.0.0.1</value>

</element>
</value>

</property>

The above sets the locators provided by the publisher; these locators instruct the subscriber to direct traffic
to the host's loopback interface. The virtual LAN address that would otherwise be used is not accessible to
the subscriber running on the host.

Set the environment for the publisher (on the emulator) so that NDDS_QOS_PROFILES points to the
QoS file. Note that the initial_peers can alternatively be set via the NDDS_DISCOVERY_PEERS envir-
onment variable.

Note that for an Android App (*.apk), these settings can be made programmatically.

The subscriber, running on the host, requires the following settings, shown below in a snippet of a QoS
file’s participant_qos section:

<discovery>
<initial_peers>

<element>builtin.udpv4://127.0.0.1</element>
</initial_peers>

</discovery>
<transport_builtin>

<mask>UDPv4</mask>
</transport_builtin>
<wire_protocol>

<participant_id>3</participant_id>
</wire_protocol>

Explicitly attempting to communicate the participant ID prevents the subscriber from implicitly using par-
ticipant ID 0 (which would cause a later attempt to set redirections for the emulator to fail). Explicitly set-
ting the builtin transport to be UDPv4 only will prevent the host from communicating with the emulator
via shared memory.
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Set the environment for the subscriber (on the host) so that NDDS_QOS_PROFILES points to the QoS
file. Note that you can also set initial_peers via the NDDS_DISCOVERY_PEERS environment variable.
All these settings can also be made programmatically.

Finally, if you need to run rtiddsspy on the host to communicate with DDS applications running on the
emulator, be careful when specifying its transports, discovery addresses, and participant ID. For example:

$(NDDSHOME)/bin/rtiddsspy -peer 127.0.0.1 -transport 1 -index 1

There are many variation on this theme to achieve communication between host and emulator. This
example illustrates the issues that need to be addressed.

10.3 Loading XML-Specified QoS Settings

If you have root access to the device or you are running on an emulator, you can run your Connext DDS
application in the Android shell and set up environment variables in the shell just as you would for any
other Linux system. In this scenario, XML QoS profiles can be loaded in the usual ways.

If you want to run Connext DDS through an Android App, there is no support for environment variables,
which limits the ways that can be used to load XML-specified QoS settings. However, it can still be done
by specifying one of the following fields in the ProfileQosPolicy in DomainParticipantFactoryQos:

l url_profile

l string_profile

See the RTI Connext DDS Core Libraries User’s Manual for details.

When running an Android App on a non-rooted consumer device, if you want to use url_profile to spe-
cify the location of the file that contains the XML-specified QoS settings, it will work only if the file is in
Android external storage (for example, under /sdcard). You will also need to make sure the Android-
Manifest.xml file of the project has specified the correct permission to allow reading from external stor-
age.

For example, use the following command to put the file in external storage:

adb push <host-qos-file> /sdcard/<target-qos-file>

In the Connext DDS source code, specify the location of the file in the external storage in the url_profile
field of ProfileQosPolicy in DomainParticipantFactoryQos. For example, in Java, you can do the fol-
lowing before creating DDS entities:

DomainParticipantFactoryQos factoryQos = new DomainParticipantFactoryQos();
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DomainParticipantFactory factory = DomainParticipantFactory.get_instance();
factory.get_qos(factoryQos);
factoryQos.profile.url_profile.add("file:///sdcard/USER_QOS_PROFILES.xml");
factory.set_qos(factoryQos);

In the AndroidManifest.xml file of the project, add the following permission:

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

Refer to Android documentation for details regarding Android external storage.

10.4 Using DDS C++ Libraries for Android Applications

The DDS C++ libraries are built and linked against the GNU STL C++ shared library.

The rtiddsgen-generated makefile for C++ examples builds a shared library (.so) that is used by the
Android App. When building this shared library, we are linking against the GNU STL C++ static library.

The GNU STL C++ shared library and GNU STI C++ static library are both not included as part of the
Connext DDS bundle. You can obtain these libraries as part of the Android NDK, available from
https://developer.android.com/tools/sdk/ndk/index.html.

The GNU STL C++ static library can be used only if it is linked into a single binary. For example, our
rtiddsgen-generated C++ example only has one shared library that is linked with the GNU STL C++ static
library. For this use case, it is fine to use the GNU STL C++ static library.

If your project contains multiple shared-library modules that are linked with the GNU STL C++ runtime,
you should use the GNU STL C++ shared library instead.

If you use the GNU STL C++ shared library in the project for your Android App, you will not be able to
write pure native code by just using the Android NativeActivity class in your App’s manifest file. Instead,
you will need to write Java code and call System.loadLibrary() to explicitly load the GNU STL C++
runtime library first, before loading the shared library of your project. For example:

static {
System.loadLibrary(“gnustl_shared”);
System.loadLibrary(“HelloWorld_publisher”);

}

Please also pay attention to the license for GNU STL C++ libraries before using that in your project. Full
details can be found here: http://gcc.gnu.org/onlinedocs/libstdc++/manual/license.html.

Refer to the Android NDK documentation under "C++ support with the Android NDK" for more details.
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10.5 Android Threads

When an Android application is launched, the system creates a thread of execution for the application,
called "main." This main thread is also sometimes called the UI thread. Due to Android's single thread
model, one should never block the UI thread and one should not access the Android UI toolkit from out-
side the UI thread.

The project files generated by the rtiddsgen-generated makefile has taken care of this for you. If you click
the Run button to run the publisher/subscriber example, a new thread is created to handle the execution of
the example, so that the UI thread will not be blocked. Similarly, if the Android UI needs to be updated
(for example, to display output of the publisher/subscriber example in the TextView UI), run-
OnUiThread() is called to make sure the display is always updated in the UI thread.

See the generated Java Activity class source code under the project src directory for details. If you are
building from the command line, this source code was created in in Building and Running a Java Applic-
ation as an Android App (Section 9.2 on page 58). If you are building with Eclipse, you will not have this
file.

10.6 Setting Permission in App Manifest

When using Connext DDS on an Android platform as an App, you need to grant the proper permissions
for networking in AndroidManifest.xml for your project:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.CHANGE_WIFI_MULTICAST_STATE"
/>
<uses-permission android:name="android.permission.CHANGE_WIFI_STATE" />

If you want to use Android external storage to load XML-specified QoS settings for your Connext DDS
Android App, you also need to grant the proper permissions to read the external storage:

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

Refer to Android documentation for more details: http://developer-
.android.com/reference/android/Manifest.permission.html.
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