
RTI Persistence Service

Release Notes

Version 5.2.0

© 2015 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
June 2015.

Trademarks
Real-Time Innovations, RTI, DataBus, and Connext are trademarks or registered trademarks of Real-Time
Innovations, Inc. All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license
agreement.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

https://support.rti.com/

Release Notes

1 Supported Platforms
RTI® Persistence Service is included with RTI Connext™ DDS. If you choose to use it, it must be
installed on top of RTI Connext DDS with the same version number.

Persistence Service is supported on the architectures listed in Table 1.1.

Table 1.1 Supported Architectures

Platforms Operating System Architecture

AIX®
AIX 5.3 (No external database support)

p5AIX5.3xlc9.0
64p5AIX5.3xlc9.0

AIX 7.1 (No external database support) 64p7AIX7.1xlc12.1

INTEGRITY®
INTEGRITY 10.0.2
(Supports Transient Durability Mode only.
Available as a library, not an executable)

pentiumInty10.0.2.pcx86

Linux®

CentOS 5.4, 5.5 (2.6 kernel)
i86Linux2.6gcc4.1.2
x64Linux2.6gcc4.1.2

CentOS 6.0, 6.2 - 6.4 (2.6 kernel)
(No external database support)

i86Linux2.6gcc4.4.5
x64Linux2.6gcc4.4.5

Red Hat Enterprise Linux 5.0 (2.6 kernel)
i86Linux2.6gcc4.1.1
x64Linux2.6gcc4.1.1

Red Hat Enterprise Linux 5.1, 5.2, 5.4, 5.5
(2.6 kernel)

i86Linux2.6gcc4.1.2
x64Linux2.6gcc4.1.2

Red Hat Enterprise Linux 6.0 - 6.5 (2.6 kernel)
(No external database support)

i86Linux2.6gcc4.4.5
x64Linux2.6gcc4.4.5

Red Hat Enterprise Linux 7.0 (2.6 kernel)
(No external database support)

i86Linux3gcc4.8.2
x64Linux3gcc4.8.2

SUSE® Linux Enterprise Server 11 SP2, SP3
(2.6 kernel)

x64Linux2.6gcc4.3.4

SUSE Linux Enterprise Server 11 SP2
(3.x kernel)

i86Linux3gcc4.3.4

Ubuntu® Server 12.04 LTS (3.x kernel)
(No external database support)

i86Linux3.xgcc4.6.3
x64Linux3.xgcc4.6.3

Ubuntu 14
i86Linux3gcc4.8.2
x64Linux3gcc4.8.2
1-1

2 Compatibility
Persistence Service is compatible with Connext DDS, as well as RTI Data Distribution Service 4.5[b-
e], 4.4d, 4.3e and 4.2e except as noted below.

❏ Prior to 5.2.0, service_cleanup_delay was not supported and Persistence Service did not
purge information regarding an instance after receiving a dispose for the instance.

Starting in 5.2.0, service_cleanup_delay is supported. This provides a way to cause dis-
posed instances to be immediately removed from Persistence Service.

• If you want disposed instances to be purged:

Set service_cleanup_delay = 0 (the default) and use_durability_service (in the
Persistence Service configuration) = 1

• If you want to keep the old behavior, so that disposed instances are not purged,
there are two options:

Set use_durability_service = 0 (the default)

or

Set use_durability_service = 1 and service_cleanup_delay = INFINITE

❏ Persistence Service is not compatible with applications built with RTI Data Distribution Ser-
vice 4.5e and earlier releases when communicating over shared memory. For more infor-
mation, please see the Transport Compatibility section in the RTI Connext DDS Core
Libraries Release Notes.

❏ In Connext DDS 5.1.0, the default message_size_max for the UDPv4, UDPv6, TCP, Secure
WAN, and shared-memory transports changed to provide better out-of-the-box perfor-
mance. Persistence Service 5.1.0 also uses the new value for message_size_max. Conse-
quently, Persistence Service 5.1.0 and higher is not out-of-the-box compatible with
applications running older versions of Connext DDS or RTI Data Distribution Service.
Please see the RTI Connext DDS Core Libraries Release Notes for instructions on how to
resolve this compatibility issue with older Connext DDS and RTI Data Distribution Service
applications.

❏ The types of the remote administration topics in 5.1.0 and higher are not compatible with
5.0.0, therefore:

• The 5.0.0 Record and Replay shells, Admin Console 5.0.0 and Connext DDS 5.0.0 user
applications performing administration are not compatible with Recording Service
5.1.0 and higher.

Mac OS X
OS X 10.8 x64Darwin12clang4.1

OS X 10.10 x64Darwin12clang6.0

Solaris™ Solaris 2.10 (No external database support)
sparcSol2.10gcc3.4.2
sparc64Sol2.10gcc3.4.2

Windows®
All Windows platforms listed in the RTI Connext DDS Core Libraries Release Notes except
those using Visual Studio 2008 on x64 platforms.

(No external database support on Windows 8, Windows 8.1, and Windows Server 2012 R2)

Table 1.1 Supported Architectures

Platforms Operating System Architecture
1-2

Compatibility
• The 5.1.0 and higher Record and Replay shells, Admin Console 5.1.0 and higher, and
Connext DDS 5.1.0 and higher user-applications performing administration are not
compatible with Recording Service 5.0.0.

2.1 Command-Line Options Compatibility
Starting with version 4.5b, the command-line parameter -srvName has been replaced with
-cfgName, which is a required parameter.

2.2 Library API Compatibility
The following fields in the RTI_PersistenceServiceProperty structure have new names (starting
in 4.5d Rev. 12):

❏ app_name has been replaced with application_name

❏ stack_size has been replaced with thread_stack_size

2.3 Persistent Storage

2.3.1 ODBC Compatibility

When Persistence Service is configured in PERSISTENT mode, you may choose between storing
the topic data in files or in an external relational database.

In principle, you can use any database that provides an ODBC driver, since ODBC is a standard.
However, not all ODBC databases support the same feature set. Therefore, there is no guarantee
that the persistent durability features will work with an arbitrary ODBC driver.

Persistence Service has been tested with the MySQL 5.1.44 with MySQL ODBC 5.1.6.

The usage of MySQL requires the separate installation of the MySQL ODBC 5.1.6 (or higher)
driver. For non-Windows platforms, the installation of UnixODBC 2.2.12 (or higher) is also
required.

2.3.2 Storage Schema Compatibility

In Connext DDS 5.2.0, the schema of the information persisted into files or into an external rela-
tional database changed. Consequently, you will not be able to open Connext DDS 5.1.0 and ear-
lier files and databases with Connext DDS 5.2.0.

2.4 Persistence Service Synchronization
Starting with version 5.0.0, the format of the <synchronization> tag value under
<persistence_service> tag has changed.

Before 5.0.0, the value of the tag was a boolean indicating whether or not sample synchroniza-
tion was enabled.

Starting with version 5.0.0, there are two different kinds of information that can be synchronized
independently: data samples and durable subscription state. The <synchronization> tag value
is no longer a boolean; now it is a complex value that may contain up to three new tags:

❏ <synchronize_data>

❏ <synchronize_durable_subscriptions>

❏ <durable_subscription_synchronization_period>

Any existing XML configuration files that use the old <synchronization> tag as follows:

<dds>
 <persistence_service>
 ...
1-3

 <synchronization>true</synchronization>
 </persistence_service>

must be changed to:

<dds>
 <persistence_service>
 ...
 <synchronization>
 <synchronize_data>true</synchronize_data>
 </synchronization>
 </persistence_service>

For more information on Persistence Service synchronization, see the RTI Persistence Service chap-
ters in the RTI Connext DDS Core Libraries User’s Manual.

3 Optional Database Components
When Persistence Service is used in PERSISTENT mode, you can configure it to store DDS sam-
ples into a relational database, such as MySQL.

In principle, you can use any database that provides an ODBC driver, since ODBC is a standard. How-
ever, not all ODBC databases support the same feature set. Therefore, there is no guarantee that
the persistent durability features will work with an arbitrary ODBC driver.

RTI has tested Persistence Service with MySQL 5.1.44 with MySQL ODBC 5.1.6.

The usage of MySQL requires the separate installation of the MySQL ODBC 5.1.6 (or higher)
driver. For non-Windows platforms, the installation of UnixODBC 2.2.12 (or higher) is also
required.

❏ To use MYSQL, you will need:

• MySQL 5.1.44 or higher (download from http://www.mysql.com)

• MySQL ODBC 5.1.6 driver or higher (download from
http://dev.mysql.com/downloads/connector/odbc)

• UnixODBC 2.2.12 or higher (download from http://www.unixodbc.org.)

The Durable Writer History and Durable Reader State features in RTI Connext DDS™ (formerly
RTI Data Distribution Service) also use a relational database. Therefore, the installation instruc-
tions for MySQL are provided in the RTI Core Libraries and Utilities Getting Started Guide Adden-
dum for Database Setup.

If you need help with the download or installation process, contact support@rti.com.

4 What’s New in 5.2.0

4.1 Ability to Immediately Purge Disposed Instances from Persistence Service
This release includes the ability to purge instances from Persistence Service. The
service_cleanup_delay field of the DurabilityServiceQosPolicy controls when Persistence Service
is able to remove all information regarding a data instance. The currently supported values for
service_cleanup_delay are zero or INFINITE. The default service_cleanup_delay value is 0,
meaning that when an instance is disposed, it will be purged from the persistence service imme-
1-4

http://www.mysql.com
http://dev.mysql.com/downloads/connector/odbc
http://www.unixodbc.org

What’s Fixed in 5.2.0
diately. This will only happen if Persistence Service has been configured with
use_durability_service=true. A value of INFINITE disables the purging of disposed instances.

4.2 Limited Support for Unbounded Sequences and Strings
This releases introduces limited support for unbounded sequences and strings.

Out-of-the-box, Persistence Service will not persist Topics for which the underlying type has one
or more unbounded members. In order to do that, you need to change the default value of
<persistence_group>/<memory_management>/<persistent_sample_buffer_max_size> from
UNLIMITED to a finite value that is big enough to hold the largest sample received from the
matching DataWriters.

4.3 New Default Value for <memory_management>/<pool_sample_
buffer_max_size> in Persistence Group
The default value for <memory_management>/<pool_sample_ buffer_max_size> in a persis-
tence group has changed from UNLIMITED to 4096.

This change reduces the out-of-the-box memory footprint when persisting Topics whose types
have a large maximum serialized size.

Notice that the change will not affect backward compatibility from a functional point of view,
but it may affect performance by increasing the time required to persist large samples with a size
greater than 4096 bytes.

5 What’s Fixed in 5.2.0

5.1 Samples not Sent to DataReader for which Liveliness was Previously Lost

Persistence Service would not send samples to a DataReader with which it had previously lost
liveliness. This may have occurred, for example, if the network connection between a DataReader
and Persistence Service was lost for a duration greater than
participant_liveliness_lease_duration (set in the DataReader’s DiscoveryConfigQosPolicy).

This problem has been resolved.

[RTI Issue ID PERSISTENCE-87]

5.2 Long Delay Receiving Data from Persistence Service

A late-joiner DataReader may have taken a long time to receive all historical data from Persistence
Service, even if there were few historical samples. For example, assume Persistence Service is con-
figured to keep the last sample for each instance (last-value cache). Consider the following
sequence of samples coming from the original DataWriter:

S1 (Instance 1), S2 (Instance 2),, S1000000 (Instance 2)

In this case, Persistence Service will keep only two samples: S1 (Instance 1) and S1000000
(Instance 2).

The problem was that when a late-joiner started up, it received S1 from Persistence Service imme-
diately, but it took a while to receive S1000000. Persistence Service did not manage sample GAP
messages efficiently. The service generated significant RTPS GAP traffic to declare that it did not
have samples S2 to S999999. This problem has been resolved.

[RTI Issue ID PERSISTENCE-89]
1-5

5.3 Unexpected Timeout from DataReader’s wait_for_historical_data() when using
Delegated Reliability

When a DataWriter and matching DataReader were configured for delegated reliability with Per-
sistence Service, the DataReader’s wait_for_historical_data() operation always returned a TIME-
OUT error, even if the DataReader had not received all historical data from Persistence Service.
This problem has been resolved.

[RTI Issue ID PERSISTENCE-95]

5.4 Potential Segmentation Fault when Running 64-bit Persistence Service in
PERSISTENT Mode
Persistence Service may have issued a segmentatiol fault when running in PERSISTENT mode on
64-bit architectures. This problem has been resolved.

[RTI Issue ID PERSISTENCE-105]

5.5 Setting <participant_id> in Persistence Service <participant> was not Supported
Setting an explicit <participant_id> for a Persistence Service <participant> was not supported.
For example:

<persistence_service name="HelloWorldFile">
 <participant name="HelloWorldParticipant">
 <domain_id>0</domain_id>
 <participant_qos>
 <wire_protocol>
 <participant_id>0</participant_id>
 </wire_protocol>
 </participant_qos>
 </participant>
 <participant name="HelloWorldParticipant2">
 <domain_id>0</domain_id>
 <participant_qos>
 <wire_protocol>
 <participant_id>2</participant_id>
 </wire_protocol>
 </participant_qos>
 </participant>
</persistence_service>

If you tried to use the above example, the second <participant> creation would have failed with
the following errors:

[D0000|ENABLE]DDS_DomainParticipantPresentation_reserve_participant_index_e
ntryports:!enable reserve participant index
[D0000|ENABLE]DDS_DomainParticipant_enableI:Participant index 0 is in use.
PLEASE SPECIFY A DIFFERENT PARTICIPANT INDEX.
PERSISTENCEServiceParticipant_initialize:!enable dds participant
PERSISTENCEServiceParticipant_new:!init PERSISTENCEServiceParticipant
object

This problem has been resolved.

[RTI Issue ID PERSISTENCE-108]

5.6 Potential Memory Leaks when Creation of Persistence Group Failed
When the creation of a persistence group failed, Persistence Service may have exited with mem-
ory leaks. This problem has been resolved.

[RTI Issue ID PERSISTENCE-111]
1-6

What’s Fixed in 5.2.0
5.7 Potential Valgrind Memory Error When Restoring Persisted Data
When Persistence Service restored persisted data, valgrind may have reported this error:

Source and destination overlap in memcpy

This error, which is benign, will no longer appear.

[RTI Issue ID PERSISTENCE-112]

5.8 Unexpected Memory Growth when Persisting Keyed Topics to Disk
There was potential for unbounded memory growth when running Persistence Service in PERSIS-
TENT mode and persisting keyed topics. This problem has been resolved.

[RTI Issue ID PERSISTENCE-116]

5.9 Error Restoring Multiple Persistence Groups on the Same Topic
Persistence Service only restored the first persistence group on a topic. If there were other persis-
tence groups on the same topic, they were not restored. For example:

 <persistence_service name="MyPersistence">
 <participant name="MyParticipant">
 <persistence_group name="MyGroup1">
 <filter>MyTopic</filter>
 <publisher_qos>
 <partition>
 <name>
 <element>A</element>
 </name>
 </partition>
 </publisher_qos>
 <subscriber_qos>
 <partition>
 <name>
 <element>A</element>
 </name>
 </partition>
 </subscriber_qos>
 </persistence_group>
 <persistence_group name="MyGroup2">
 <filter>MyTopic</filter>
 <publisher_qos>
 <partition>
 <name>
 <element>B</element>
 </name>
 </partition>
 </publisher_qos>
 <subscriber_qos>
 <partition>
 <name>
 <element>B</element>
 </name>
 </partition>
 </subscriber_qos>
 </persistence_group>
 </participant>
 </persistence_service>
1-7

In the above example, the second persistence group on partition B was not restored when Persis-
tence Service was restarted. This problem has been resolved.

[RTI Issue ID PERSISTENCE-118]

6 Known Issues

6.1 TCP Transport not Supported
Persistence Service does not support the TCP transport.

6.2 Coherent Changes not Propagated as Coherent Set
Persistence Service will propagate the samples inside a coherent change. However, it will propa-
gate these samples individually, not as a coherent set.

6.3 BLOBs not Supported by OBDC Storage
The ODBC storage does not support BLOBs. The maximum size for a serialized sample is 65535
bytes in MySQL.

7 Available Documentation
The following documentation is provided with the Persistence Service distribution. (The paths
show where the files are located after Persistence Service has been installed in <NDDSHOME>):

❏ General information on RTI Persistence Service

Open <NDDSHOME>/ReadMe.html, then select RTI Persistence Service.

❏ Example code

By default, the Persistence Service examples are copied here:

• Mac OS X systems:

/Users/your user name/rti_workspace/version/examples/persistence_service/
<language>/hello_world_persistence

• UNIX-based systems:

/home/your user name/rti_workspace/version/examples/persistence_service/
<language>/hello_world_persistence

• Windows systems:

<your home directory>\rti_workspace\version\examples\persistence_service\
<language>/hello_world_persistence

Additional documentation is provided with Connext DDS:

❏ Configuration, use cases, and execution of Persistence Service:
RTI Connext DDS Core Libraries User’s Manual
(<NDDSHOME>/doc/manuals/connext_dds/
RTI_ConnextDDS_CoreLibraries_UsersManual.pdf)

❏ Overview of persistence and durability features:
Open <NDDSHOME>/ReadMe.html, choose your desired API (C, C++, or Java), then
select Modules, RTI Connext DDS API Reference, Durability and Persistence.
1-8

	1 Supported Platforms
	2 Compatibility
	2.1 Command-Line Options Compatibility
	2.2 Library API Compatibility
	2.3 Persistent Storage
	2.3.1 ODBC Compatibility
	2.3.2 Storage Schema Compatibility

	2.4 Persistence Service Synchronization

	3 Optional Database Components
	4 What’s New in 5.2.0
	4.1 Ability to Immediately Purge Disposed Instances from Persistence Service
	4.2 Limited Support for Unbounded Sequences and Strings
	4.3 New Default Value for <memory_management>/<pool_sample_ buffer_max_size> in Persistence Group

	5 What’s Fixed in 5.2.0
	5.1 Samples not Sent to DataReader for which Liveliness was Previously Lost
	5.2 Long Delay Receiving Data from Persistence Service
	5.3 Unexpected Timeout from DataReader’s wait_for_historical_data() when using Delegated Reliability
	5.4 Potential Segmentation Fault when Running 64-bit Persistence Service in PERSISTENT Mode
	5.5 Setting <participant_id> in Persistence Service <participant> was not Supported
	5.6 Potential Memory Leaks when Creation of Persistence Group Failed
	5.7 Potential Valgrind Memory Error When Restoring Persisted Data
	5.8 Unexpected Memory Growth when Persisting Keyed Topics to Disk
	5.9 Error Restoring Multiple Persistence Groups on the Same Topic

	6 Known Issues
	6.1 TCP Transport not Supported
	6.2 Coherent Changes not Propagated as Coherent Set
	6.3 BLOBs not Supported by OBDC Storage

	7 Available Documentation

