RTI° DDS Toolkit for LabVIEW™

Getting Started Guide

Version 1.4.0

r t ' Your systems. Working as one.

© 2013-2016 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
May 2016.

Trademarks

Real-Time Innovations, RTT, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS, the RTI
logo, 1RTI and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks or
service marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license
agreement.

Technical Support

Real-Time Innovations, Inc.
232 E. Java Drive

Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: labview@rti.com

Website: https:/ /support.rti.com/

https://support.rti.com/

CONTENTS

1 Installation

1.1 INETOAUCHON .o s 1-1
1.2 INSEALNE ..ceoeeeee e 1-1
1.2.1 Installing RTI DDS Toolkit for LabVIEW Support Files on a Targetcccccooovruiiiinncnes 1-3

1.3 Verifying INStallationccccciiiiiiiiiiiiiiiiierrecee e 1-6
1.3.1 LabVIEW Functions Palette ..o 1-7
1.3.2 LabVIEW Controls Palette...........ccoooiiiiiiiiiiiiicc e 1-8

1.4 License Managementccociiuiiiiiiiiiiiininicieieicie s 1-8
1.4.1 Activating the Add-on License on Windows Systems............ccccceueuiiiiiiciiiinciiciicnens 1-8
1.4.2 License Management on LabVIEW RT Targetsccccccciiiiiiiiicicceiccceeneenenenens 1-11
1.4.2.1 Installing a New License File on NI Linux Targets........c.c.cocoevevrrnecnncncrcnncnne. 1-11

1.5 UPGLading c.cevveieieiiieicei et 1-11
1.5.1 Additional Steps when Upgrading from a Release Older than 1.2.0.90.............ccccccoeee. 1-11
1.5.2 Additional Steps when Upgrading from a Release Older than 1.3.0.91ccccccc.co.. 1-14

1.6 UNINSTALLINE ..ot 1-15
1.6.1 Uninstalling RTI DDS Toolkit for LabVIEW Support Files from LabVIEW RT Targets. 1-16

1.7 LabVIEW EXQMPLEScocuiiimiiiiiiiiiiiiii s 1-17
1.8 Product SUPPOTT ...c.c.cviiiiiiiiiiiiiciicicicc s 1-18

2 Communication Models
2.1 Publish/Subscribe — A Simple ANaAlOZYccccooiiiiiiiiiiiicieecee e 2-2
2.2 The DDS Paradigmcc.ouoiiuriiiiiiiieiicie et 2-3
2.3 Quality of Service (QOS)covuviiiiiiiiiiiii 2-4
2.4 DDS—Example APPLCAtiONcccoiiuiiiiiiiiiiiiiiiiiicccceeee e 2-5
3 A Simple Read/Write Example

3.1 Publishing a String in DDS ... 3-2
3.2 Subscribing to a String in DDS.........cooiii s 3-2
3.3 What is HapPening? ..ot 3-3
34 USAEE NOTES ..ottt s 3-5
3.4.1 Preventing ‘Application Failed to Start’ Error when Opening Example VIs..................... 3-5
3.4.2 Communicating Unbounded Entities.ccccooviiiiiiiiiiii e 3-5
3.4.3 Preventing "Type Code Incorrect' Error when Working with Arrays........cccccoooniiinnnnn. 3-5
3.4.4 Troubleshooting with Ping and Spy ... 3-6

iii

4

Tutorial
4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)cccevvevruennnee. 4-1
4.1.1 Developing a VI to Publish Simple Data (NUMETIC)ccovvvrvririririniiiicccccccccceeee 4-2
41.11 Create a Writer Object to Publish a Numeric (DBL).......cccccccoeoeiiicicccicenenas 4-2
4.1.1.2 Publish a Numeric (DBL)cccccooeiiiiiniiiciceceretetetee ettt e et ses 4-3
41.1.3 Release the Writer ObJECE.......ccceueuiuiiiiiiiiiiiiiiiieiceecccee et 4-4
4.1.2 Creating a VI to Subscribe to Simple Data (NUMETiC).......ccovuvuvirnirininiririniecccceeeee 4-5
4121 Create a Reader Object to Subscribe to a Numeric (DBL).......ccccccceoeeeeiiecnnes 4-5
4.1.2.2 Subscribe to a NUmMeric (DBL)......ccccioiriirierierieieieteieieeeeeee e esees 4-6
4123 Release the Reader ODJectccccevuririiiiiririiiiiiiiiieecceceeeeeeeeeeee e 4-7
413 TESHIIE . ceivieieiiiiitiiiti ettt 4-8
4.2 Lesson 2—Using Templates to Publish and Subscribe to Complex Data (Clusters)................... 4-9
4.2.1 Creating a VI to Publish @ CIUSEETcccociiiiiiiiiiicccccccccs 4-10
4.2.2 Creating a VI to Subscribe to @ CIUSEETc.ccoiiiiiiiiiciccccccecece s 4-12
4.2.3 TESHIG..coooviriiiiiiitiiitcee s 4-15
4.3 Lesson 3—Filtering Data.......cccccoiiiiiiiiiiice s 4-15
4.4 Lesson 4—Reading Only New Samples ... 4-18
4.5 Lesson 5—Using Keyed Types (RTI Shapes DEMO)ccccccueueuiueiiiciicmiinieieeiceeecieeeieieienenennes 4-21
4.5.1 Working with Shapes Demo..........ccccueuiiririiiiicic e 4-21
4.5.2 Publishing a Shape (SQUATe)..........cccoouiiiiiirieiiiicic e 4-22
4.5.3 Subscribing t0 ShAPEScccoeiiiiii s 4-24
4.6 Lesson 6—Used Nested and Multiple Keys........cccccciiiiiiiiiiiiiiiceceecceeeeieenenennes 4-27
4.6.1 Adding Multiple Top-Level Fields as Keyscccccccceiuiiiiinnnniicrrcccrreeeeereeeeens 4-27
4.6.2 Adding Internal Cluster Fields as Keys (Nested Keys)........c.cccocouoreiniiiiiiiiiiii, 4-28
4.7 Lesson 7—Reading All Samples (Reliable Communication).........cccceeeeeieiiincieieiccieeccie, 4-29
4.7.1 Writing and Reading Reliably Using the Default Configurationcccccccevuvuriininenes 4-29
4711 Writing Reliablyocooiiiiiiiiiiiiiiiieec e 4-29
4712 Reading Reliably ... 4-30
4.7.2 Writing and Reading using Strict Reliabilitycccoioioiiiiiiiiiiiiccccccceeceeeeee 4-32
4721 Writing in Strictly Reliable MOdeccccoceuiiiiiiiiiiicccccciccccceeeeeenennes 4-33
4722 Reading in Strictly Reliable Modec.ccccociiiiiiiiiiicccccccrceeceee 4-34
4.8 Lesson 8—Debugging Your RTI Connext DDS Application..........ccccouerieiiiineiciniicieice, 4-36
4.8.1 Debugging an Application Using the Administration Panel.............cccccocooiiinnn. 4-36
4.8.1.1 Logging Messages Manuallyccccoooiiiiiiiiiiiiicc 4-37
4.8.1.2 Output Provided by RTI Monitor using Distributed Logger-...........c.cccccece.... 4-39
4.8.2 Adapting a VI to Use RTI Monitoring Libraryccccccevvvvnnninnnninniiiinneen 4-39
4.82.1 Output Provided by RTI MONItOLccoiiiiiiiiiiiiiiiiiiiciccciciceicceeeeeeeiae 4-40
49 Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example).........cccccccoeeueucucrcueunnnne 4-42
4.10 Reviewing Completed SOIUtIONS..........coviuriiiiiiciciec s 4-45

Loading Quality of Service Profiles

Advanced Concepts and Settings

6.1
6.2
6.3
6.4

Default Configuration: DDS Entities Created by Simple Create subVlIsc.cccooerivniiriennnee. 6-1
How to Configure Advanced Writer Settings...........coooeveviiiiiiiiiiiicicc 6-3
How to Configure Advanced Reader Settings...........cocoueuiiiriiiiiiiiiiiicce 6-4
How to Debug an RTI Connext DDS LabVIEW Application ..o, 6-5
6.4.1 RTIDDS Toolkit Administration Panel (for Windows Systems only)cccoceeverrenenne. 6-6

6.4.1.1 Configuration SECHOM......cccceiiirieiii e 6-8

6.4.1.2 DDS State INfO.......ccooiiiiiiiiiiiiicc s 6-9

iv

6.4.1.3 Debugging Tablec.cccccoooriiiiiiiiiiii s 6-10

6.4.2 Debugging SubVIs on Real-Time Targets and Windows Systemsccccecevvnrininnnnn 6-10
6.4.2.1 Get Configuration Parameterscccocoooiriiiiiiiiccc 6-10
6.4.2.2 Set Configuration Parametersccoooeuoioiirioiiiicceccc e, 6-11
6.4.2.3 Get DL Configuration Parameters..............cooooeuiiniiieiiiiiiiiicce, 6-11
6.4.2.4 Configure Distributed LOgger...........ooormiiiiiiii e, 6-11
6.4.2.5 DDS State INfO......ccooiiiiriieiicc s 6-12
6.4.2.6 Reading Logged MesSagescccoeeuirueieiiinieiiiicee s 6-12
6.4.3 Logging Messages from LabVIEWcccooiiiiiiii e 6-13

VI Descriptions
A1 Controls Palette TYPES ... A-1
A2 FUNCHONS Palettec.coiiviiiiiiiiic s A-2
AT WIIET ottt et A-2
A2.2 REAAET ...ttt A-4
A.2.3 Complex-Type Templatesccooiieiiiiiiiiiiiee e A-6
A3 TOOILS oot A-6
A.3.1 DDS Debugging SUDPaletteccccceuiiiiiiiiiiiiciciiceeccreeeeeeeeeee e A-7

Creation and Release of DDS Entities

Supported Data Types and Corresponding IDL

C.1 Corresponding IDL for Complex Data TYPes ..o C-4
CLLT CIUSEEIS ..o C-4
C1.2 BIUINS ..ot C-5

File Folders Installed within LabVIEW

D.1 File Folders on Windows SYStemMSc.ccrueiiiiriiieiiicieece s D-1

D.2 File Folders on NI Linux Targets........ccccoveiviiiiiniiniiiiiiiiicccccccccecssee e D-2

Troubleshooting

E.1 Enabling Debugging MOde...........cccoeuiuiuiimimiiiiiiiiiiiiciieeieieeeeieieiete et seseseseesanenas E-1

E.2 Error Codes and Possible SOIUtIONS..........cccceiviiiiiiiiiiiiiiiiiic s E-1

E.3 Running without an Active Network Interface...........cccocoooviiiniiniiie E-8

E.4 Error Installing RTI DDS Toolkit for LabVIEW RT SUPPOTt.....c.cccceuiuiimimiiiiiciceceieicieeieeeeees E-8

Chapter 1 Installation

1.1

1.2

Infroduction

Developing heterogeneous distributed systems is a complex challenge. Individual subsystems
are often developed by independent teams, third parties, and legacy systems. These complexi-
ties can be substantially reduced by leveraging the combined power of RTI® Connext™ DDS
and National Instruments® LabVIEW™,

By using LabVIEW and Connext DDS together, you can develop advanced and unique system
architectures to simplify system integration, data communication, network bandwidth manage-
ment, and redundancy.

\

Bl
[
3

n— =

\

Real-Time Real-Time

= |Publish/Subscribe, Publish/subscribe |
~ - Real-Time - '

Publish/Subscribe
NET 9
Application N :
m “ o
LabVIEW - Application

This document will help you install and get started with RTI DDS Toolkit for LabVIEW. The
instructions assume you are already familiar with the basics of using LabVIEW.

J

EE

Installing
Note: If you are upgrading RTI DDS Toolkit for LabVIEW, skip to Upgrading (Section 1.5).
To Install RTI DDS Toolkit for LabVIEW:

1. Verify you have a supported version of LabVIEW already installed (see the Release Notes
for supported versions).

2. Login with administrator privileges.

1-1

Installing

3. Install the JKI LabVIEW VI Package Manager (VIPM) if you have not done so already
(available here: http://jkinet/vipm/download). It is typically installed in C:\Program

Files (x86)\JKI\ VI Package Manager.
. Ensure that LabVIEW is not running.

5. Launch the VIPM, then:

a. From the File menu, select Open Package File(s).

b. Locate and open the RTI DDS Toolkit for LabVIEW .vip file provided by RTIL, such

as real-time_innovations_lvdds-<version>.vip.

. Install RTI DDS Toolkit for LabVIEW:

a. Select the LabVIEW ver-
sion for which you want to
install RTI DDS Toolkit for
LabVIEW.

If you have more than one
version of LabVIEW
installed, you will be able
to select a version from a
drop-down list.

b. Select Install.

- VIPM - RTI DDS Toolkit for LabVIEW

File Help

Package Information

Select an action to perform on the package.

RTI DDS Toolkit for LabVIEW

Product Homepage

#52092 [+
(B e

7. The VIPM will start the installation process and display a window similar to the one
below. Select Continue to proceed.

|| VIPM - RTI DDS Toolkit for LabVIEW

Fie Help

Package Information

Product

Select an action to perform on the package.

[#] RT1 DDS Toolkt for LabVIEW v0.10.2.76 upgrade

(/] Select [Deselect Al

Here is & list of tasks that VIPM will perform. Chck the chedkbox to enable or disable the action on the item.
Action Status \/
user selected
e | (R ot

Note: When running the VIPM for the first time, the VIPM will test the connection to
LabVIEW and display the default port for LabVIEW. Select Test and allow the test to

complete.

1-2

http://jki.net/vipm/download
http://jki.net/vipm/download
http://jki.net/vipm/download

Installing

During this step, the VIPM launches the LabVIEW version selected for the RTI DDS Tool-
kit for LabVIEW installation. The LabVIEW application will appear in the Windows Task
Bar at the bottom of your screen. You may need to open the LabVIEW application from
the Task Bar and select Launch LabVIEW before the VIPM test times out.

8. If offered, select Finish when the installation is complete.

1.2.1 Installing RTI DDS Toolkit for LabVIEW Support Files on a Target

Notes:

(J You need administrator privileges to install the toolkit.

(d Your target will be rebooted as part of the installation process.
To install Real-Time target support for RTI DDS Toolkit for LAbVIEW:

RTI DDS Toolkit for LabVIEW support files allow you to deploy VIs using the RTI DDS Toolkit for
LabVIEW into your target. The following instructions assume you have JKI VIPM and LabVIEW
installed.

1. Ensure that LabVIEW is not running.
2. Launch the VIPM as administrator, then:

a. If you downloaded the RTI DDS Toolkit for LabVIEW support files, open them from the
File menu by selecting Open Package File(s). Then locate and open the file provided
by RTI, such as real-time_innovations_lvdds_rt_support-<version>.vip.

b. If you do not have a .vip file, select System in the VIPM drop-down box to select Lab-
VIEW version. Search for RTI DDS and you will see the package called RTI DDS
Toolkit for LabVIEW (RT Support). Double-click on it.

JKIVIPM - RTI DDS5 Toolkit for LabVIEW (ARM-support) -

File Help

Package Information

Select an action to perform on the package.

HSystem ||| ™™ RTI DDS Toolkit for LabVIEW (ARM-support)

R
wr

Product Homepage
% Install

RTI DDS Toolkit for LabVIEW (ARM-support) v1.3.0.91 by Real-Time Innovations

3. Install RTI DDS Toolkit for LabVIEW (RT support) by selecting Install.
a. VIPM will start the installation process. Select Continue to proceed.
b. Once installed, you can close VIPM.
c¢. Make sure the installation has been done correctly. After the package has been

installed, the Action should be installed and the Status should be No Errors.

JKIVIPM - RTI DDS Toolkit for LabVIEW (RT-support)
File Help

Package Information

Select an action to perform on the package.

Here are the results of the last action,

Product Action Status b/
i3 Instal o/ RTLDDS Tookit for LabWIEW (RT-support) w1.3.2.93 instaled Mo Errors

Note: If the Status is Error, make sure you run VIPM as administrator.

1-3

Installing

4. Launch NI MAX (Measurement & Automation Explorer).

5. Navigate to Remote Systems and select your target.

6. Go to Software and click on Add/Remove Software to launch the LabVIEW Real-Time

Software Wizard.

e oo egon | o

| File Edit View Tools Help

4 E3 My System Add/Remove Soﬂwaa <% Show Help
1+ [@ Data Neighborhood
»» B Devices and Interfaces i
> 44 Scales Software
b 51 SO&w_are Software displays the Mational Instruments software components installed on a LabVIEW Real-
> [l M Drivers Time target.

a4 EA Remote Systems
a MI-cRIO-3068
3 ﬁ’ Devices and Interfaces

[> |5 Software |

What do you want to do?

& View my software information
& Install software

For maore information about using your M1 products, refer to your product-specific help, located on the
Help»Help Topics menu item. You can also access NI product help from within MAX help, which you
can launch from the Help menu or by pressing <F1=.

EI Submit feedback on this topic.

8 Visit ni.com/support for technical support.

% Help |

7. Login with administration privileges in your target.

8. In the LabVIEW Real-Time Software Wizard, select Custom software installation. A dia-
log will ask if you are sure you want to install customized software. Click yes.

Select the recommended software set to install. National Instruments

recommends the following software sets for your target.

¥ LabVIEW Real-Time 14.0.0

Click Mext to manually select the individual features you want

'V LabVIEW Real-Time 13.0.1
i NI CompactRIO 14.0.1 - August 2014

L3 Uninstall all software

0 NI CompactRIO 14.0.1 - August 2014 to install,

Custom software installation (currently installed)

Contents of current installation: -

CompactRIO Support 13.1

LabVIEW Real-Time 13.0.1

NI System Configuration Remote Support 5.6.0

NI Web-based Configuration and Monitoring 13.5.0
NI-RIO 13.1

NI-VISA 5.4.1

Run-Time Engine for Web Services 13.5.0

S5L Support for LabVIEW RT 13.5.0

WebDAV Server 13.5.0

dR o ¥

Update BIOS... |

Next>> | [canel | | Help

1-4

Installing

9. Navigate to the RTI DDS Toolkit for LabVIEW feature, click on the icon to the left of the
name and select Install the feature.

{3 LabVIEW Real-Time Software ¥

Select the features to install and installed components to uninstall.

I: NI-cRIO-9068 (10.10.30.198]

e oo

S el

9;

g MI-Serial 9870 and 9871 Scan Engine Support »

MI-VISA 5.4.1

| MI-VISA ENET Passport

MI-VISA ENET-ASRL Passport

MI-VISA Remote Passport

MI-VISA USE Passport

MNI-VISA Server 14.0.0

MNI-Watchdog 14.0.0

OPC UA Client APT 14.0.0

OPC UA Server API 14.0.0

Remote Panel Server for LabVIEW RT 14.0.0

RTI DDS Toolkit for LabVIEW (EAR) 1.1.2
| the feature.

notinstall the feature.

S5L Support for LabVIEW RT 13.5.0

System State Publisher 3.3.0

Variable Client Support for LabVIEW RT 14.0.0

Variable Legacy Protocol Support 5.6.0 E

_>'<J Variable Legacy Server Support 5.6.0

Variable Web Service 14.0.0

WebDAV Client with 551 Support 14.0.0

WebDAV Server 13.5.0

X
X
X
X

<]

I] +

Early Access Release of the RTI DDS Toolkit for the cRIO-
9068, More information in www.rti.com/products/dds/
labview. html,

Component is not installed on the remote
target.

Available version(s) on the host:

W 7

This feature will be installed on the remote target.

112 [+]

|

<< Back

][Mext =>] [

Cancel] [Help

]

Note: If you are upgrading to a newer release, make sure you select the newest version

from the drop-down list on the right side (Available version(s) on the host).

10. Click Next and verify RTI DDS Toolkit for LabVIEW is selected to be installed.

11. Click Next. The installation will start, then the target will automatically reboot.

After installation, RTI DDS Toolkit for LabVIEW will appear in the installed Software

list of your target.

#7 Software - Measurement & Automation Explorer

Fil= Edit View Tools Help

= E3 My System

ﬂ Devices and Interfaces

&1 software
=] ﬂ Remote Systems

= [HI-cRIO-9065

ﬁﬂ Devices and Interfaces

= & Software

MI-RIC 13,1

=
EEEEEEEEE

LsbVIEW Real-Time 13.0.1
MI System Configuration Remote Support 5.6,0
NI web-based Configuration and Monitaring 13.5.0

MI-WISA 5.4.1

RTI DD5 Toolkit for LabVIEW (EAR) 1.1.2
Run-Time Engine For Web Services 13.5.0
551 Support for LabYIEW RT 13.5.0
WebDAaY Server 13.5.0

1-5

Verifying Installation

1.3 Verifying Installation

1. Launch LabVIEW.

Functions

2. Select File, New V1.

| q Search I @5 Customize™ I :_|-| I

3. From the Block Diagram’s View (|}
menu, open the Functions Palette.
From this palette, select the down
arrows at the bottom. Select Data
Communication and verify that
you see RTI DDS Toolkit for Lab-
VIEW.

Programming
» Measurement I/0
» Instrument /O

» Mathematics

» Signal Processing
w

Data Communication

L .
For details, see LabVIEW Func- RTIDDS Toolkit for LabVIEW

tions Palette (Section 1.3.1). @| ‘ @‘

4. From the Front Panel’s View

Writer Reader Complex-Ty... Tools

menu, open the Controls Palette. From
this palette, select the down arrows at the
bottom. Select Addons and verify that
you see RTI DDS Toolkit for LabVIEW.

For details, see LabVIEW Controls Pal-
ette (Section 1.3.2).

See also: Appendix D: File Folders Installed
within LabVIEW.

Controls

(5]

| Cg Search I), Customize™ I

* Modern

Silver

Systemn

Classic

Express

Control 8 Simulation

JMET 8 ActiveX

Signal Processing

Addons

L RTI DDS Toolkit for LabVIEW

4 w| v w w|w - -

L Types

a1 a1 a1
Ty '-ifm '-ij:I}

RTIDDS Adv... RTIDDS Adw... DDSSample ...

DDOS State Info

1-6

Verifying Installation

LabVIEW Functions Palette

RTI DDS Toolkit for LabVIEW adds the following to the Data Communication section of the Block

Diagram’s Functions Palette:
(d RTI DDS Toolkit for LabVIEW
® Writer
e Simple Create Writer
® Advanced Create Writer
Write
Release Writer
Set Writer QoS

Reader

Simple Create Reader
® Advanced Create Reader
Read

Release Reader

Set Reader QoS

Complex-Type Templates
(to publish or subscribe to
complex data)

e Simple Reader Template
® Advanced Reader Template
® Simple Writer Template
® Advanced Writer Template
e Tools
® DDS Release Unused Entities
® DDS Time to LV Time
e DDS Debugging

® Get Configuration Parameters

® Set Configuration Parameters

Get DL Configuration
Parameters

Configure Distributed Logger
Get DDS State

Read One Logged Message
Log New Message

L RTIDDS Toolkit for LabVIEW

L Writer

RTI

el
Simple Creat... Advanced Cr... Write Release Writer Set Writer Qo5

L RTI DDS Toolkit for LabVIEW

L Reader

il
En 2 =
o = S Bos &

Simple Creat... Advanced Cr... Release Reader Set Reader (...

“ RTIDDS Toolkit for LabVIEW
L Complex-Type Templates

RTI
[=06] E5] g%g
& = =
Simple Read... Advanced Re... Simple Write... Advanced W...
¥ Data Communication
L RTI DDS Toolkit for LabVIEW
L Toals
18] O "R
DDS Release .. DDSTimeto ... DDSDebug..

¥ Data Communication
L RTI DDS Toolkit for LabVIEW
LTools
L bps Debugging

ETI
o Sum $g
Get Configur... Set Configur... Get DL Confi.
;Io-j &2 =+
Configure Di... Get DDS State Log Mew Me.
&E
=
Read One Lo...

1-7

License Management

1.3.2 LabVIEW Controls Palette
RTI DDS Toolkit for LabVIEW adds the following to the Addons section of the Front Panel’s Con-

trols Palette:
(RTI DDS Toolkit for LabVIEW S M
e Types L E'I-'Ir)r[:j[:Toolkitfor LabVIEW
e RTIDDS Advanced Reader Configuration — — —
e RTIDDS Advanced Writer Configuration . Df:f;d . Df:f;d s j:j;l
® DDS Sample Info EN
® DDS State Info ErSSERIE

1.4 License Management

1.4.1 Activating the Add-on License on Windows Systems

RTI DDS Toolkit for LabVIEW comes with a 30-day license. You can easily obtain a permanent
license; which has a $0 cost for 32-bit LabVIEW users.

To purchase and activate your permanent license follow these steps:
1. Open the Third Party Add-ons dialog. This dialog opens automatically when LabVIEW
opens. You can also open it from LabVIEW by selecting Help, Activate Add-ons....
2. Select RTI DDS Toolkit for LabVIEW, then click on Activate Add-ons.

! Third Party Add-ons

= NATIONAL
Third Party Add-ons INSTRUMENTS™
Add-on Mame | Ackivation Status | Days Remaining :I
Real-Time Innovations RTI DDS Toolkit For LabYIEW 1.0.C Evaluation 30 davs remaining
=
[Do not show this dialog again """ Continue to LabVIEW Activate Add-ons | Help |

1-8

License Management

3. If you don't have a licenselD, click on Purchase. A web browser will open this URL:
https:/ /softwarekey.ni.com/solo/products/ProductOption.aspx?ProdOptionID=1443.

B! Third Party Add-on Activation Wizard [x]

Activate Add-ons Womows

Select the add-ons you wankt bo activate, You may be required to purchase the sdd-on before activating.
Click the Purchase link next bo the add-on you wish bo buy ta lsunch the add-on's purchase page.

Real-Time Inncvations RTI DDS Toolk for LabWIE Evaluation) Purchase

<< Back Next =5 | Cancel Help |

4. Click on Order Now! and follow the instructions on the website. You will need to register
and provide some customer information. Then you will receive a License ID and Pass-
word, which you will need to activate your license:

r t ' Your systems. Working as one.

Order Complete

Real-Time Innovations Date: 00/00/0000
Invoice #00000000000

Customer Information:

Billing Information:

Terms: Prepaid

Order Information:
Description Quantity Unit Price Extended Price

RTI DDS Toolkit for
LabVIEW License
(| License 1p:00000000 P d:

The application will ask for a License ID and Password to enable it. Use the values
above to activate your purchase.

1 $0.00 $0.00

Total: $o0.00

Product support is provided by
Real-Time Innovations

232 E Java Dr

Sunnyvale, CA 94089

UNITED STATES

Support Email: support@rti.com
Sales Email: |labview@rti.com
Phone: 4089907400

Fax: 4085507402

\2 Print

https://softwarekey.ni.com/solo/products/ProductOption.aspx?ProdOptionID=1443

License Management

5. Go back to the Activation Wizard and click on Next>>.

Activate Add-ons) -

Select the add-ons you wank bo activate. You may be required to purchase the add-on before activating.
Click the Purchase link next bo the add-on you wish bo buy to launch the add-on's purchase page.

Real-Time Innovati

6. Select an activation method:

Third Party Add-on Activation Wizard

Activate Add-ons TV iNsTRUMENTS-

Select vour preferred activation method,

& Automatically activate through an Internet connection
€ Use a Web browser on this or another computer to acquire an activation code

" Use a telephone to acquire an activation code

<« Back | Cancel | Help |

7. Use the LicenselD and Password from Step 4 to complete the activation process. Follow
the instructions in the wizard.

Third Party Add-on Activation Wizard

Activate Add-ons TV iNsTRUMENTS-

Enter your License ID and password For each add-on in the fields below, If vou do not have a License ID and
password For an add-on, contact the vendor For more information,

Add-on Mame License ID Passwaord -
Real-Time Innovations RTI DDS Toolkit _

El

<« Back Ackivate == Cancel | Help |

1-10

Upgrading

1.4.2

1.4.2.1

1.5

1.5.1

License Management on LabVIEW RT Targets

In general, RTI DDS Toolkit for LabVIEW requires a license file to run on a LabVIEW RT target.
Our target licenses are associated to the target's MAC address, so each board requires its own
license. This is why you will need to provide that MAC address as part of the license request
process.

After purchasing the RTI DDS Toolkit for LabVIEW support files for your target, you will receive
an email containing a Product Activation Code. Use this code and your target’'s MAC address to
request a license file in this website: www.rti.com/go/labview-license-request.

Installing a New License File on NI Linux Targets

After requesting your license as explained above, you will receive a new license file by email.
Copy the license file to the following folder in your NI Linux target:

/home/lvuser/rti/rti_license.dat

You can copy the file using Secured FTP directly to your target. Use any FTP Client that sup-
ports sftp protocol such as Filezilla and connect directly to your target’s IP. You will be prompt to
introduce your user name and password.

If an old license file is already installed in the above folder, please replace it with the new one.

Upgrading

If you have already installed RTI DDS Toolkit for LabVIEW and are upgrading to a newer release:

1. Login with administrator privileges.
2. Ensure that LabVIEW is not running.
3. Launch the VIPM, then:
a. Select File, Open Package File(s)
b. Find and open the latest RTI DDS Toolkit for LabVIEW .vip file
4. Upgrade RTI DDS Toolkit for LabVIEW

a. Select the LabVIEW version for which you want to upgrade RTI DDS Toolkit for Lab-
VIEW.

® If you have more than one version of LabVIEW installed, you will be able to select
the LabVIEW version from the LabVIEW version drop down list.

® The VIPM allows you to view all versions of RTI DDS Toolkit for LabVIEW available
to your system by selecting *Browse All Versions in the lower-left corner.

b. Select Upgrade.
5. The VIPM will start the installation process. Select Continue to proceed.

6. If prompted, select Finish when the installation is complete.
Additional Steps when Upgrading from a Release Older than 1.2.0.90

If you have upgraded from a version previous to 1.2.0.90, you will need to follow these steps to
upgrade your VIs to a newer version. Follow these instructions after upgrading the toolkit.

1-11

www.rti.com/go/labview-license-request

Upgrading

1. The VIs that use simple types (which currently call the Create Reader/Writer subVIs) need
no additional changes to work. However, the Create Reader/Writer subVIs have been dep-
recated; their icons have changed to reflect this:

ATl
exlVa

We strongly recommend that you upgrade the VIs to use the Simple Create Reader/Writer
or Advanced Create Reader/Writer. The old Create Reader/Writer subVIs will be removed in
future releases. See Chapter 6: Advanced Concepts and Settings for details.

2. For each VI using complex types (clusters, enums or arrays)
a. Open the VI. A window searching for a missing DLL will appear.

2 RTI Connext DDS Cluster Example Reader.vi = |

Loading: 2 Loaded
<vilib>:_RTI DDS Toolkit for LabVIEW internal_deps\lvdds.1.0.dll

Searching:
C:\Program Files (x86)\National Instruments'\LabVIEW 2014\instr.lib\niTClk

[Ignore Item] [Ignore All] [Browse...] [Stop...] ‘

Starting in version 1.2.0.90, the RTI DDS Toolkit for LabVIEW library name changed
from lvdds.1.0.d1l to rtilvdds.dll. Thus, LabVIEW cannot find that library.

b. A file browser will appear. Click Cancel and Ignore All

c. Your VI will be loaded with a broken arrow.

d. For each Call Library Function node (CLF) in the Block Diagram,
® Open the CLF by double-clicking on it.

® C(lick on the folder icon to the left of the Library name or path box in the Function
tab.

2 Call Library Function r— j x

Function | Parameters | Callbacks | Error Checking |

Library name or path

C:\Program Files (x86)\National Instruments' LabVIEW i i
2013\vi.lib_RTI DDS Toolkit for LabVIEW internal_deps',) Runin Ul thread
ledds1.0.dll

Thread

@) Run in any thread
Ll Specify path on diagram

| Function name

LVDDS_ReaderMode_create |E| Calling convention
() stdcall (WINAPT)
@ C

Function prototype

int32_t LVDD5_ReaderMode_create(InstanceDataPtr *Instance Data Ptr, uint32_t domain id, CStr topic name, CStrtype
name, C5tr key name, C5tr qos profile, void *dds ebject ref, ILVData **data type, void *error);

Consider using a wizard instead... [0K H Cancel H Help]

Upgrading

® Navigate to <LabVIEW folder>\vilib_RTI =~ DDS Toolkit for
LabVIEW_internal_deps. Select the library rtilvdds.dll.

Bopen g o
@Uv| i <« LabVIEW 2014 » wilib » _RTIDDS Toolkit for LabVIEW internal_deps
Organize = MNew folder
il Recent Places # MName Date modified Type Size
.] Desktop - o > S
(%] nddsc.dll 11-Mov-14 06:36 Application extens... 3,270 KB
(%] nddscore.dll 11-Nov-14 06:36 Application extens... 3,588 KB
B Desktop = = = =
= | ihran (% rtibvdds.dll 13-Nov-1417:31 Application extens... 146 KB
ibraries
ﬁ-_a_ (%] rtimonitoring.dil 11-MNov-14 06:36 Application extens... 3,445 KB
|%| Documents |E
dt’ Music
|& Pictures
A Sara Granados
- Computer
G‘j Metwaork i
File name: rtilvdds.dil ~ [hared Libraries (~.dll) -
| 0K iv] I Cancel |

e.

See also:

® The resulting CLF should look like this:

2 Call Library Function 2 |
Function | Parameters | Callbacks | Error Checking |
Library name or path Thread
C:\Program Files (x86)\National Instruments\LabVIEW .
2014w lib_RTI DDS Toolkit for LabVIEW_internal_deps', (@ Runin Ulthread
rtilvdds.dll @) Run in any thread
[} Specify path on diagram
Function name
LVDDS_ReaderMode_create B Calling convention
() stdcall (WINAPT)
@ C
Function prototype
int32_t LYDDS_ReaderMode_create(InstanceDataPtr *Instance Data Ptr, uint32_t domain id, C5trtopic name, CStrtype
name, C5tr key name, C5tr qos profile, void *dds object ref, ILVData **data type, void *error);
Consider using a wizard instead... [0K] [Cancel] [Help]

e (Click OK.

If you are updating a Reader subVI, the data output pin of the Read CLF may look bro-
ken. Wire a complex type of the same type as the data output as input of the Read CLF.
After LabVIEW recognizes the type, the error will be correct. Then you should delete
the type in the input and verify that the connected wire is still valid.

(J Additional Steps when Upgrading from a Release Older than 1.2.0.90 (Section 1.5.1)
(J Additional Steps when Upgrading from a Release Older than 1.3.0.91 (Section 1.5.2)

Upgrading

1.5.2 Additional Steps when Upgrading from a Release Older than 1.3.0.91

If you are upgrading from a version older than 1.3.0.91, you must follow these steps to upgrade
your VIs to the newer version. Follow these instructions after upgrading the toolkit.

(J If you are using RTI subVIs: In the writer application, delete the “DDS Write Object Ref-
erence” indicator seen below.

DDS Write Object Reference

Published Yalue

—d
} RTI RTI
) 7

Stop Writing

[If you are using the template for Complex Types (or the CLF node directly) follow
these steps (for Readers and Writers applications):

1. Delete the “DDS Write/Read Object Reference” for readers and writers.

|Create a DD5 Reader for the type defined by the Clust

Domain Id
E D05 Read
Topic Mame Object Ref

HelleComplex

ieader Configuration

error in (no error)

2. Modify the Call Library Function Node:
a. Double-click on the node.
b. Select the Parameters tab.

c. Choose “dds object ref”.

o

. Change the Type from “Adapt to Type” to ‘Numeric’.
e. Choose the Data Type “Unsigned Pointer-sized Integer”.

1-14

Uninstalling

f. Set the Pass to “Pointer to Value”.

g Call Library Function P

Function | Parameters | Callbacks | Error Checking

Current parameter
return type -
InstanceDataPtr ;
M dds object ref

domain id ame| dds oyectr
topic name : Type Mumeric
advanced writer cenfigu
dds object ref] Constant [
:?rtoartype Data type | Unsigned Pointer-sized Integer IZ|

Pass Pointer to Value |z|

Function prototype

int32_t LVDDS_WriterNode_create_advanced(InstanceDataPtr *InstanceDataPtr, uint32_t domain id, C5tr topic name,
ILVData *“advanced writer configuration, uintptr_t *dds object ref, ILVData " data type, void *error);

Consider using a wizard instead... ’ QK][Cancel l[Help]

3. Repeat steps 1 and 2 for every Call Library Function Node that calls any of these func-
tions:

e LVDDS_ReaderNode_create_simple

e LVDDS_ReaderNode_create_advanced

e LVDDS_ReaderNode_read_w_sample_info
e LVDDS_WriterNode_create_simple

o [VDDS WriterNode create_advanced

e [VDDS_WriterNode_write

1.6 Uninstalling
To uninstall RTI DDS Toolkit for LabVIEW:

1. Login with administrator privileges.
2. Ensure that LabVIEW is not running.
3. Launch the VIPM, then:
a. Scroll down to locate RTI DDS Toolkit for LabVIEW.

b. Double-click on RTI DDS Toolkit for LabVIEW to open the Package Information
screen.

4. Select the LabVIEW version you want to work with from the LabVIEW version drop-
down list.

1-15

Uninstalling

Note: The VIPM allows you to
view all versions of RTI DDS
Toolkit for LabVIEW available
to your system by selecting
*Browse All Versions in the
bottom left-hand corner.

VIPM - RTI DDS Toolkit for LabVIl

File Help

Package Information

Select an action to perform on the package.

RTI DDS Toolkit for LabVIEW

TOOLKIT

#2092 [+ E-I

5. Select Uninstall. Product Homepage
Uninstal
6. Select Continue. I
7. If offered, select Finish when the VIPM finishes uninstalling RTI DDS Toolkit for Lab-

1.6.1

VIEW.

Uninstalling RTI DDS Toolkit for LabVIEW Support Files from LabVIEW RT Targets

To uninstall LabVIEW RT support files for RTI DDS Toolkit for LabVIEW:

L N

o

Make sure no LabVIEW application is using the libraries on the target.
Launch NI MAX.
Navigate to Remote Systems and select your target.

Go to Software and click on Add/Remove Software to launch the LabVIEW Real-Time
Software Wizard.

Login with administrator privileges to your target.

In the LabVIEW Real-Time Software Wizard, select Custom software installation. A dia-
log will ask if you are sure you want to install customized software. Click yes.

Select the features to install and installed components to uninstall.

NATIONAL
WS s

MI-RIO IO Scan 13.0.1 |
MI-¥IS4 5.4.1
MI-VISA ENET Passport
MI-¥IS4 EMET-ASRL Passport
MI-VISA Remote Passport
MI-VISA USE Passport
L) NI-VISA Server 5.4.0
- %| NIwatchdog 5.3.0
>'< OPC UA Client APT 13.0.0

>'< OPC U4 Server APT 13.0.0
Remote Panel Server For LabYIEW RT 13.0.0
RTI DDS Toolkit for LabYIEW (EAR) 1.1.2
"
-] Leave the Feature installed.
B Uninstall the Feature,
Syskem State Publisher 3.1.0
Wariable Client Support for LabYIEW RT 13.0.0
‘ariable Legacy Protocol Support 5.5.0
_>'<J ‘ariable Legacy Server Support 5.5.0
Variable Web Service 13.0.0
WwebDaY Client with S5L Support 13.0.0
WebDAaY Server 13.5.0

ododedd

focx

Eatly Access Release of the RTI DDS Toolkit For the cRIO-
9068, More information in v, ki, comyproductsfddsf
labeiew, bl

‘ersion on the remaote target:

Available version(s) on the host:

S X

The feature will be removed from the remote target.

IL|<I

4 |

Update BIOS... |

<« Back | Mext == | Cancel | Help |

Navigate to the RTI DDS Toolkit for LabVIEW feature, click on the icon to the left of the
name and select Uninstall the feature.

Click Next and verify RTI DDS Toolkit for LabVIEW is selected to be uninstalled.

Click Next. The uninstallation will start, then the target will automatically reboot.

1-16

LabVIEW Examples

1.7

LabVIEW Examples

RTI DDS Toolkit for LabVIEW includes several examples which are used in later chapters. To
access these examples:

1. Select the LabVIEW Help menu.

B NI Example Finder

2. Select Find Examples...
Browse | Search Double-click an example to open it.
3. In the Browse tab, select the radio _) Mathematics
. Browse according to: 3 measure
button to browse according to -
. L) Task 2 NI-Embedded CAN for RIO
Directory Structure: J nican
@ Directory Structure = nisyscfg
4. Scroll down and open the RTI DDS £ Numerics
Toolkit for LabVIEW folder 2 NXT Robotics
2 Object-Oriented Programming
You will find the following examples: g peformence
[d ClusterDemo: Shows how to handle) Real-Time Module
= Report Generation
complex types (such as clusters). It "2 RT1DDS Toolki for LaVIEW |
was created by following the lessons 3 ClusterDemo
in Chapter 4: Tutorial: —J MonitoringDemo

—d MumberDemo
® Lesson 2—Using Templates to
Publish and Subscribe to Complex Data (Clusters) (Section 4.2)

® Lesson 3—TFiltering Data (Section 4.3)
® Lesson 4—Reading Only New Samples (Section 4.4)

(d cRIOProject: Shows how to use RTI DDS Toolkit for LabVIEW on a cRIO 9068. It is
explained in Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example) (Sec-
tion 4.9).

(J LogMessagesDemo: Shows how to log debugging messages into the internal queue. It
was created by following Logging Messages Manually (Section 4.8.1.1).

(d MonitoringDemo: Uses a QoS profile that enables RTI Monitoring Library. It was created
by following Adapting a VI to Use RTI Monitoring Library (Section 4.8.2).

(d NumberDemo: Shows how to read and write a simple type (such as a numeric one). It
was created by following Lesson 1—Using DDS to Publish and Subscribe to Simple Data
(N'umeric) (Section 4.1).

[ReadAllDemo: Shows how to read all available data by calling the Read function several
times and storing the data in an array without adding already existing samples. It is
explained in Lesson 7—Reading All Samples (Reliable Communication) (Section 4.7).

[d ShapesDemo: Shows how to publish and subscribe to an already existing DDS applica-
tion: RTI Shapes Demo. It is explained in Lesson 5—Using Keyed Types (RTI Shapes
Demo) (Section 4.5).

[StringsDemo: Shows how to write a string. It is explained in Chapter 3: A Simple Read/
Write Example.

Note: If you see an error after opening one of the examples (such as “This application has failed to
start because its side by side configuration is incorrect”), see Section 3.4.3.

1-17

Product Support

1.8

Product Support
For technical support or questions about RTI DDS Toolkit for LabVIEW, please visit the RTI Com-
munity portal (http://community.rti.com).

If you have an RTI support subscription, please contact support@rti.com. If you do not have an
RTI support subscription, you can acquire one by contacting labview@rti.com.

1-18

http://community.rti.com

Chapter2 Communication Models

This section provides an overview of middleware communication paradigms, including pub-
lish-subscribe, along with details of the OMG Data Distribution Service (DDS) standard.

Software applications are becoming increasingly distributed. A node in a distributed system
must access the right data, know where to send it, and deliver it to the right place at the right
time. Simplifying the access to this data would enable a whole new class of distributed applica-
tions. The challenge, especially in mission-critical and time-critical networks, is to quickly access
and disseminate information to many nodes.

Three major middleware communication paradigms have emerged to meet this need:
J Client/Server
(J Message passing
[Publish/Subscribe

Client/Server is fundamentally a many-to-one design that works well for systems with central-
ized information, such as databases, transaction processing systems, and central file servers.
However, if multiple nodes generate information, client/server architectures require all the
information be sent to the server for later redistribution to the clients, resulting in inefficient cli-
ent-to-client communication.

The central server is a potential bottleneck and single-point of failure. It also adds inefficiencies
and unknown delay (and therefore indeterminism) to the system, because the receiving client
does not know when it has a message waiting, so it has to keep polling periodically.

Message Passing architectures work by implementing queues of messages. Processes can create
queues, send messages, and service messages that arrive. Message passing makes it easier to
exchange information between many nodes in the system. However, applications remain cou-
pled. Each message placed in a queue goes to a single consumer and the addition of new con-
sumers impacts the network.

In practice, applications find data indirectly by targeting specific sources (e.g., by process 1D,
"channel", or queue name) on specific nodes. So this architecture does not address how applica-
tions know the location of a process/channel, what happens if that process/channel does not
exist, etc. The application must determine where to get data, where to send it, and when to per-
form the transaction. A message-passing architecture provides a model for the transfer of data,
but no model for the data itself.

Publish/Subscribe decouples the producers and consumers of the information. Producer pub-
lishes data they have and consumers subscribe to data based on their interests. The publish/
subscribe middleware infrastructure is responsible for delivering each message published to all
interested consumers. Applications remain decoupled because the presence of new consumers

2-1

Publish/Subscribe — A Simple Analogy

2.1

does not perturb existing consumers. Existing consumer’s requirements are met, regardless of
how many other consumers subscribe to the same data.

The fundamental communications model implies both discovery (i.e., what data should be sent)
and delivery (i.e., when and where to send the data). This design mirrors time-critical and mis-
sion-critical information delivery systems in everyday life (e.g., television, radio, magazines and
newspapers). The publish/subscribe network architecture is excellent at distributing large
quantities of time-critical information quickly, even in the presence of unreliable delivery mech-
anisms.

The publish/subscribe architecture maps well to high-performance and real-time communica-
tion challenges. Finding the right data becomes straightforward; nodes just declare their interest
once and the middleware handles all the details of the network and delivery. Sending the data
quickly is also inherent; publishers send data when the data is available. Publish/subscribe is
highly efficient because the data flows directly from source (publisher) to destination (sub-
scriber) without requiring intermediate servers, brokers, or daemons. Multiple sources and des-
tinations are easily defined within the model, providing inherent redundancy and fault
tolerance.

Data-Centric Publish/Subscribe (DCPS) middleware, such as the OMG Data Distribution Ser-
vice (DDS), defines a data model on top of the publish/subscribe infrastructure, allowing the
data to be structured. The schema of the data being published is declared by the application and
known to the middleware. Similar to the relational model in databases, each data type (a DDS
Topic) has an associated schema and a set of attributes that identify the ‘key” for that Topic. Data
published on that Topic is understood by the middleware, allowing advanced capabilities such
as content-based filtering, last value (or history) caching, and applying fine-grained Quality of
Service (QoS) separately for each data-object written to the Topic.

In summary,

(J Client/server middleware is best for centralized data designs and for systems where the
dominant communication patter is request-reply, such as file servers and transaction sys-
tems.

(J Message passing, with its "send that there" semantics, maps well to systems with clear
and simple data-flow requirements, and requires the application to discover where data
resides.

[Publish/subscribe, by providing both discovery and messaging, decouples the produc-
ers and consumers effectively. DCPS middleware provides publish/subscribe services to
an application-defined data-model, allowing fine-grained control of QoS, enabling the
infrastructure to do smart-caching of the information and provide content and time fil-
tering at the source and destination. The data-centric architecture provides the best
decoupling between application components and is best suited for time-critical and mis-
sion critical distributed applications.

Publish/Subscribe - A Simple Analogy

The publish/subscribe communications model is analogous to that of a traditional magazine or
newspaper business model. A Topic represents the kind of publication (data or information), for
example “Newspaper” or “Magazine”. If we use the Newspaper as the model, the Key is used to
identify each different news corporation (“New York Times”, “San Francisco Chronicle”, “La
Strada”, “Le Monde”, etc.). The type specifies the format of the information (how it is encoded).
The user data is the contents (text and graphics) of each sample (weekly or daily issues). The
middleware is the distribution service (US Postal Service or a paper delivery service) that deliv-

2-2

The DDS Paradigm

Figure 2.1

2.2

ers the publication from where it is created (a printing house) to the individual subscribers (peo-
ple's homes). This analogy is illustrated in Figure 2.1.

Note that by subscribing to a publication, subscribers are requesting current and future samples
of that publication, so that as new samples are published, they are delivered without having to
submit another request for data. By specifying a content-filter on the value of the Key (the peri-
odical name in this case) a subscriber may indicate he only wants certain periodicals (e.g., yes to
the “New York Times” and “La Strada”, but no to others). Content filters could also select based
on other attributes in the data (e.g., select the ones written in a specific language, or coming from
a specific region). Time-based filters can be used to request only a subset of the samples (e.g.,
only the Sunday edition).

An Example of Publish-Subscribe

<Topic ="New York TimesD (Topic ="New York Times")
’ Sample
Publisher ‘ Issue for Feb. 15 ‘ Subscriber

M

Send Receive
Delivery Service

The publish/subscribe model is analogous to publishing magazines or newspapers. The
Publisher sends samples of a particular Topic to all Subscribers of that Topic.

In this example, Quality of Service (QoS) parameters can be linked to delivery requirements;
only deliver the Sunday edition, the paper must be delivered by 7:00am, the paper must be in
the mailbox or on the porch, or delivered by certified mail with the subscriber signing receipt of
delivery.

QoS parameters specify how, where, and when the data is to be delivered, controlling not only
transport-level delivery properties, but also application-level concepts of fault tolerance, order-
ing, and reliability.

The DDS Paradigm

The Object Management Group (OMG) Data Distribution Service (DDS) standard the compre-
hensive specification available for publish/subscribe data-centric designs. The DDS publish/
subscribe model connects anonymous information producers (publishers) with information
consumers (subscribers). The overall distributed application is composed of processes called
"Participants," each running in a separate address space, and often on different computer or sys-
tem nodes. A Participant may simultaneously publish and subscribe to typed data-streams iden-
tified by a string name, these streams are called Topics in DDS. The model allows publishers and
subscribers to present type-safe interfaces to the application.

DDS defines a communications relationship between publishers and subscribers. The communi-
cations are decoupled in space (nodes can be anywhere—same node, a local node, or a geo-
graphically remote node), time (delivery may be immediate or controlled), and flow (delivery
may be reliable with a controlled bandwidth). To increase scalability, Topics may contain multi-
ple independent data channels identified by "Keys." This allows system nodes to subscribe too
many, possibly thousands, of similar data streams with a single subscription. When the data

2-3

Quality of Service (QoS)

2.3

arrives, the middleware can cache and sort data using the Key and deliver it for efficient pro-
cessing.

Additionally, DDS is fundamentally designed to work over unreliable transports, such as UDP,
wireless, or disadvantaged networks without the requirement for central servers or special
nodes. Direct, peer-to-peer communications, and support for reliable multicasting, enable a
highly efficient data distribution model.

Quality of Service (Qo0S)

Fine-grained control over QoS is a powerful feature of DDS. Each publisher/subscriber pair can
establish independent QoS agreements. Thus, DDS designs can support extremely sophisticated
and flexible data-flow requirements.

QoS parameters control most aspects of the DDS paradigm and the underlying communication
mechanisms. Many QoS parameters are implemented as “contracts” between publishers and
subscribers; publishers offer and subscribers request levels of service. The middleware is
responsible for determining if the offerer can satisfy the subscriber’s request, thereby establish-
ing communication, or indicating an incompatibility error. Ensuring that publish/subscribe
pairs meet the level-of-service contracts guarantees predictable operation. Information about
some common QoS parameters is presented below.

[d Deadline: Periodic publishers can indicate the speed at which they can publish by offer-
ing guaranteed update deadlines. By setting a deadline, a compliant publisher promises
to send a new update on each key at a minimum rate. Subscribers may then request data
at that or any slower rate.

(J Reliability: Publishers may offer levels of reliability, parameterized by the number of
past issues they can store for the purpose of retrying transmissions. Subscribers may then
request differing levels of reliable delivery, ranging from fast-but-unreliable "best effort"
to highly reliable in-order delivery. This provides per-data stream reliability control.

(J Strength: The middleware can automatically arbitrate between multiple publishers of
the same data with a parameter called "strength." For each keyed data-object the sub-
scriber receives data only from the strongest active publisher of that key. This provides
automatic failover; if a strong publisher fails, all subscribers immediately receive updates
from the backup (weaker) publishers.

(J Durability: Publishers can declare "durability," a parameter that determines how long
previously published data is saved. Late-joining subscribers to durable publications can
then be updated with a snapshot containing the most current set of values for each Key.

Other QoS parameters control when the middleware detects nodes that have failed, suggest
latency budgets, set delivery order, attach user data, prioritize messages, set resource utilization
limits, partition the system into namespaces, and more. The DDS QoS facilities offer extensive
flexibility and communications control.

RTI DDS Toolkit for LabVIEW includes a set of predefined QoS profiles. These profiles are embed-
ded in RTI DDS Toolkit for LabVIEW and cannot be modified. You can inherent from them. For
your convenience, you can find an XML file that shows you these profiles in C:/Program Files'/
National Instruments/LabVIEW 20xx/vi.lib/_RTI DDS Toolkit for LabVIEW_internal_deps/
RTI_LABVIEW_CONFIG.documentationONLY.xml (where 20xx depends on your LabVIEW
version). As the filename suggests, this file is for documentation purposes only. This file is not

1. On 64-bit systems, the folder is “Program Files (x86)”

2-4

DDS—Example Application

2.4

loaded by the RTI DDS Toolkit for LabVIEW, so updating it will not affect the embedded QoS pro-
files.

On RTI's Community Forum (http://community.rti.com), you can find more information about
QoS properties and XML configuration, as well as the XSD schema.

DDS—Example Application

An air traffic control system provides sufficient details and requirements for as example applica-
tion. An air traffic control system may monitor and direct all flights over an entire continent. The
data distributed in such a system is in the form of aircraft tracks, which provides positional
information (e.g., course, speed, etc.) about an airplane. Components of an air traffic control sys-
tem would include radar systems, airplanes and air traffic control centers that provide current
flight status information through real-time displays.

Managing the correct distribution of data in such a system can be complex. Each radar system
can track many different airplanes, and each airplane may be tracked by more than one radar
system. Real-time access to this information is needed for displays at air-traffic control centers so
that air traffic controllers can make informed decisions. Air traffic controllers in the north-east
may only want aircraft track information in their area, so only a subset of data needs to be pro-
vide to them. Based on current local conditions (e.g., air traffic, weather, etc.) air traffic control-
lers may issue flight plan updates to the pilot in order to route around inclement weather and
other airplanes. Though a specific plane does not need flight plans from all other air planes, it
would be useful to have information about planes in the immediate vicinity.

Defining the air traffic control system in terms of publishers, subscribers and QoS parameters
reveals that DDS is a natural fit to address this data distribution problem. Each radar system can
be thought of as a publisher that publishes the "tracks" Topic which describes an airplane's posi-
tional information. Each airplane that the radar system is tracking can be thought of as an
"instance" of the track Topic identified by a unique Key attribute (e.g., the Airline name and
flight number). The real-time controller displays subscribe to the tracks Topic and publish "flight
plan" Topic updates back to the specific airplane. QoS parameters can be used to manage and
control deterministic behaviors and fault tolerance capabilities of the system.

2-5

http://community.rti.com

Chapter 3 A Simple Read/Write Example

The best way to learn about RTI DDS Toolkit for LabVIEW is to begin building example applica-
tions. The following example VIs provide a quick introduction to the capabilities:

(d RTI Connext DDS Read String Example.vi
(d RTI Connext DDS Write String Example.vi

After reading this chapter, we recommend completing the lessons in Chapter 4: Tutorial for a
more in-depth look at the capabilities of RTI DDS Toolkit for LabVIEW.

Note: The instructions for this example assume you are already familiar with LabVIEW.
Before continuing, please make sure you have the following software installed:

[LabVIEW (32-bit) for Windows (see the Release Notes for supported versions)

(RTI DDS Toolkit for LabVIEW
If you are using a computer that does not have an active network interface, see Appendix A.

We will start with the StringsDemo example VIs. To access the examples:

Launch LabVIEW.
From the LabVIEW Help menu, select Find Examples...

Select the Browse according to: Directory Structure radio button

L

Scroll down and open the RTI DDS Toolkit 5 RTIDDS Toolkit for LabVIEW
for LabVIEW folder 2 ClusterDemo
—) cRIO-9068Project

5. Open the StringsDemo folder = MonitoringDemo

Notes: . NumberDemo
. . ReadAllDemo
[If you see an error after opening one of the = ShapesDemo
examples (such as “This application has | EEECETrEETEE
failed to start because its side by side config- RTI Cannext DDS Read String Examplevi [
uration is incorrect”), see Section 3.4.4. RTI Connext DDS Write String Bxamplevi [3

(J If the example VI seems blocked (the stop
button toggles, data does not transfer, etc.), you may have a linking issue in the VI. This
issue is very likely for LabVIEW 2010 users. Section 3.4.1 explains how to resolve this.

3-1

Publishing a String in DDS

3.1 Publishing a String in DDS

1.

Open the RTI Connext DDS Write String Example.vi by double-clicking on it in the NI
Example Finder (select Help, Find Examples...).

Click the Run $ button in the LabVIEW toolbar.

Elojed Operate Tools Window Help
2| @] | 15pt Application Font |~ || 3| Tpa~ || 28~ | [0~]+ oo cr Q @

From the LabVIEW Front Panel, enter some text (such as Hello DDS) in the Text field
and click the Enter Text button in the LabVIEW toolbar.

Hello DDS

You are now writing (publishing) the string using DDS. Next we will read it from the RTI
Connext DDS Read String Example.vi.

3.2 Subscribing to a String in DDS

1.

2.

Open the RTI Connext DDS Read String Example.vi by double-clicking on it in the NI
Example Finder (select Help, Find Examples...).

Click on the Run button in the LabVIEW toolbar.

File Edit View Project Operate Tools Window Help {:I
I 5 @]] | 15pt Application Font |~ || %o~ Ta~] -Q, | 2 E‘*I

3-2

What is Happening?

3.3

3. Verify that it is reading the same string that is being published from the RTI Connext
DDS Write String Example.vi.

-
43 RTI Connext DDS Read String Examplei = | [E| & {3 RTI Connext DDS Write String Example.vi =18 %
File Edit View Project Operate Tools Window Help D Ele Edit View Project Operate Jools Window Help
i gt I ge
=i = »[&|[®n]
o -
Start this application to display the text published by the Write Start this application to publish the text entered in the box
String Examplewi in the text box below, below using RTI DDS. You can use the Read String Examplevi
to read the string from the network and display it in LabVIEW.
ext
Text
Hello DDS -
Hello DDS -
Stop Reading Stop Writing
STOP STOP
< r < 3

While both VIs are running, verify that if you change the text in the Text control of the RTI Con-
next DDS Write String Example.vi, you will read the new text in the RTI Connext DDS Read
String Example.vi. Remember to use the LabVIEW Enter Text button in the toolbar (rather
than pressing Enter or Return on your keyboard).

Note: Under the DDS publish/subscribe paradigm, knowing the location of the distributed
applications is handled by the middleware. In this example, we are running both the RTI Con-
next DDS Write String Example.vi and the RTI Connext DDS Read String Example.vi on the
same computer, using the Shared Memory transport for inter-application communication. How-
ever, if you were to run these examples on different computers (with a functional LAN connec-
tion), DDS would automatically handle the communication across the network.

What is Happening?

To better understand how this demonstration is implemented, let’s review the code for these
two Vls:

[Publisher side

The RTI Connext DDS Write String Example.vi uses three RTI DDS Toolkit for LabVIEW
subVlIs:

e Simple Create Writer: Creates a Writer object for text (strings) and initializes it
according to the VI configuration parameters.

® Write: Receives as input: the reference from the Writer object (Create Writer) and
the text to be published (the Text control). It will continue publishing the text
within a LabVIEW loop until an error occurs or the Stop Writing control is pressed.

¢ Release Writer: When the Stop Writing control is pressed, the Release Writer subVI
will execute and release the Writer object.

For details on these subVlIs, see Writer (Section A.2.1).

3-3

What is Happening?

If you open the Block Diagram (in the RTI Connext DDS Write String Example window,
select Window, Show Block Diagram), it will look like this:

Publish string in Text onto Release the Writer
the network using RTI DDS MNode when finished

. e

Create a Writer Node with
Topic name "Hello LV String”

O

error in (no error)

! A -

[See more details in <LabVIE folder=\help\RTI DDS Toolkit fpr LabVIEW\RTI_DDS_Toolkit_for_LabVIEW_GeftingStarted.pdf]

SimpleCreateWriter_String Write_String Release Writer

[Subscriber side

The RTI Connext DDS Read String Example.vi uses three RTI DDS Toolkit for LabVIEW
subVls:
e Simple Create Reader: Creates a Reader object for text (strings) and initializes it
according to the VI configuration parameters.

* Read: Receives as input the reference from the Reader object (Create Reader). Out-
puts the Text indicator. It continues subscribing to the text within a LabVIEW loop
until an error occurs or the Stop Reading control is pressed.

* Release Reader: When Stop Reading control is pressed, the Release Reader subVI
will execute and release the Reader object.

For details on these subVlIs, see Reader (Section A.2.2).

If you open the Block Diagram (in the RTI Connext DDS Read String Example window,
select Window, Show Block Diagram), it will look like this:

Read the string from DDS in a loop

and display it in the text field MNode when finished
Text
. I
Helle LV String I

Create a Reader Node with
Topic name "Hello LV String”

&)

B¢

error in (no error)

[| -

|See more details in <LabVIEW folder>\help\RTI DDS Toolkit for LabVIEWARTL_DDS_Toolkit_for_LabVIEW_Gettin Started.pdfl

SimpleCreateReader_String ~ Read_String Release Reader

Usage Notes

3.4

3.4.1

3.4.2

3.4.3

Usage Notes

Preventing ‘Application Failed to Start’ Error when Opening Example Vs

If you see an error when LabVIEW tries to load the RTI DDS Toolkit for LabVIEW DLL (such as
“This application has failed to start because its side by side configuration is incorrect.”) after
opening any of the example VIs, you need to install the Microsoft Visual C++ 2008 Redistributable
Package (x86). This package provides the run-time components of the Visual C++ Libraries that
are required to run applications developed with Visual C++ on a computer that does not have
the Visual C++ 2008 development environment. You can download this package from http://
www.microsoft.com/download/en/details.aspx?displaylang=en&id=29

Communicating Unbounded Entities.

By default, strings in the RTI DDS Toolkit for LabVIEW are bounded so their maximum length is
1024 characters. However, if you set the Advanced Reader/Writer Configuration flag forceUn-
boundedString to true, they are created with a length equivalent to the maximum integer
(2,147,483,647) (see Lesson 6—Used Nested and Multiple Keys (Section 4.6)). Despite that, DDS
only sends the actual data the string contains, automatically reducing the sample size.

However, if you create a DataWriter of an unbounded type, it will not communicate with a
DataReader of a bounded type out of the box. RTI DDS Toolkit for LabVIEW sets the following
property in all its DomainParticipants:

<participant_ gos>
<property_ goss>
<values>
<elements>
<name>
dds.type_ consistency.ignore_sequence_ bounds
</name>
<values>l</value>
</element>
</values>
</property goss>
</participant goss>

This property allows bounded DataReaders to communicate with unbounded DataWriters. Set
this property in your external DDS applications that need to communicate with RTI DDS Toolkit
for LabVIEW applications.

To Achieve Backward Compatibility:

If you need to create a bounded string, do not set to true the flag forceUnboundedString in the
Advanced Reader/Writer Configuration controls. Setting this flag will force all strings to be
unbounded.

Preventing 'Type Code Incorrect' Error when Working with Arrays

If you are forcing the usage of arrays, you may get an error when reading/writing them. To pre-
vent this error, use sequences instead. Sequences, as well as LabVIEW arrays, can be resized and
will not cause this error. Sequences are the default mapping of LabVIEW arrays.

If you must use arrays:

3-5

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29

Usage Notes

3.4.4

When using an array as the input or output for one of the RTI DDS Toolkit for LabVIEW subVls,
you will need to initialize the array to its maximum size. Arrays within clusters must also be ini-

tialized to their maximum size. The resize functionality available in LabVIEW is not compatible
with RTI DDS Toolkit for LabVIEW.

To increase the size of an array, drag down on the bottom of the last element until you've
reached the largest number of elements you need. Then assign a default value to each new ele-
ment. It is usually sufficient to add one element at the end of the array.

Troubleshooting with Ping and Spy

If data is not flowing between the writer and reader, we suggest running the Connext DDS Ping
and Spy utilities; they can show you what data is flowing through the network. These utilities
are provided with the Connext DDS core’.

If you do not have Connext DDS installed, you can download RTI Connext DDS Professional from
www.rti.com/downloads. Once you've installed RTI Connext DDS Professional, you can access
DDS Ping and DDS Spy from RTI Launcher? (in the Utilities tab).

For help using Ping and Spy, see the Connext DDS API Reference HTML documentation. For
5.1.0 and lower versions, open <Connext DDS core installation directory>/ndds.<version>/
ReadMe.html. However if you are using 5.2.0 or a higher version, look for the file <Connext
DDS core installation directory>\ReadMe.html. The documentation is also available here:
http:/ /community.rti.com/documentation. Choose an API (C, C++, .NET, or Java), then select
Modules, Programming Tools.

You can also use RTI Distributed Logger to help debug your applications. Distributed Logger
enables applications to publish their log messages to Connext DDS. The log message data can be
visualized with RTI Monitor, a separate GUI application that can run on the same host as your
application or on a different host. Since the data is provided in a Topic, you can also use DDS
Spy or even write your own visualization tool.

RTI Monitor is included in RTI Connext DDS Professional. You can download a free trial from
http:/ /www.rti.com/downloads/index.html. For information about RTI Monitor, see http://
www.rti.com/products/tools/monitor.html.

1. In the <Connext DDS installation directory>/ndds.<version>/scripts (5.1.0 or lower) or <Connext DDS installa-
tion directory>/bin (5.2.0 or higher), look for rtiddsping and rtiddsspy.

2. RTI Launcher is a GUI-based tool provided with RTI Connext DDS Professional.

3-6

http://community.rti.com/documentation
www.rti.com/downloads
http://www.rti.com/downloads/index.html
http://www.rti.com/products/tools/monitor.html
http://www.rti.com/products/tools/monitor.html

Chapter 4 Tutorial

4.1

This tutorial will help you become familiar with several key capabilities of RTI DDS Toolkit for
LabVIEW. The tutorial assumes you have the following software installed:

[National Instruments LabVIEW 2012 (32-bit) or later for Windows

(d RTI DDS Toolkit for LabVIEW for National Instruments LabVIEW 2012 (32-bit) or higher
for Windows

The tutorial includes these lessons:

(J Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric) (Section 4.1)

[Lesson 2—Using Templates to Publish and Subscribe to Complex Data (Clusters) (Sec-
tion 4.2)

(d Lesson 3—Filtering Data (Section 4.3)

(d Lesson 4—Reading Only New Samples (Section 4.4)

(d Lesson 5—Using Keyed Types (RTI Shapes Demo) (Section 4.5)

(J Lesson 6—Used Nested and Multiple Keys (Section 4.6)

(J Lesson 7—Reading All Samples (Reliable Communication) (Section 4.7)

(J Lesson 8—Debugging Your RTI Connext DDS Application (Section 4.8)

(d Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example) (Section 4.9)

We encourage you to follow along and perform the steps in each lesson yourself—there is no
better teacher than hands-on experience. However, completed solutions are provided; see
Section 4.10.

Notes:
[These lessons assume you are familiar with LabVIEW.

(d For debugging information, see Enabling Debugging Mode (Section E.1)

Lesson 1—Using DDS to Publish and Subscribe to Simple Data
(Numeric)

In this first lesson, you will become familiar with the RTI DDS Toolkit for LabVIEW functions and
capabilities by creating two LabVIEW VIs that can publish and subscribe to data. You can run
these VIs on the same computer or separate computers connected to the same local area net-

4-1

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)

4.1.1

4.1.1.1

work. RTI DDS Toolkit for LabVIEW will automatically discover the location of each application
and handle communication in either scenario without any changes to the VIs.

Developing a VI to Publish Simple Data (Numeric)

Let’s start by developing a VI to publish a simple data type: the value of a double-precision
numeric control, a LabVIEW Numeric (DBL).

Create a Writer Object to Publish a Numeric (DBL)

1. Launch LabVIEW and create a new VI. Select File, New VI. Save the new VI with the

name Tutorial Write_Double.vi.

. Open the Block Diagram’s Functions Palette

(right-click on an open area) and select Data
Communication, RTI DDS Toolkit for Lab-
VIEW, Writer; drag and drop the Simple Create
Writer subVI &5 into the Block Diagram.

. The Simple Create Writer subVI has the following

input parameters:
® domain id
® topic name
® data type
® error in (no error)

For details on these parameters, see Writer (Sec-
tion A.2.1).

We will use this subVI to create a Writer object
that can publish a data type of Numeric (DBL).
We will use domain ID 0 and our Topic Name
will be Hello LV Double. To begin:

File Edit View Project Operate Tools

[Untitled 1 Block Diagram _

Window H

@E.. L.ul_’ 4 | 15pt Applic

Functions

(5]

| Q Search I 2, Customize* I -f |

Programming

Measurement I/O
Instrument I/O
Mathematics

Signal Processing

4| v v |

Data Communication

L RTI DDS Toolkit for LabVIEW
I‘Writer

(2] &7 s

Simple Creat... Advanced Cr... Write

Release Writer Set Writer QoS

a. Right-click on the Create Writer subVI and select Select Type, Numeric (DBL)

b. Right-click on each input node (except error in (no error)) and select Create, Con-
stant. This will create a default constant for that input parameter. Set each input
parameter as follows (right-click on each and select Edit...):

® domainid =0
® topic name = Hello LV Double
® datatype=0

c. For error in, right-click and select Create, Control.

4-2

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)

The resulting Block Diagram should look similar to this:

. B

[Hello LV Double} —

2
; &

error in (no errar)

[S=ck

4.1.1.2 Publish a Numeric (DBL)

The next step is to add the functionality to publish values to the DDS network. We will use the
Write subVI.

1. Open the Functions Palette and select Data Communication, RTI DDS Toolkit for Lab-
VIEW, Writer, Write; drag and drop the Write subVI ?ﬂ into the Block Diagram.

The Write subVI has the following input parameters:

e ref num in

e data

® errorin

For details on these parameters, see Writer (Section A.2.1).

2. Wire the ref num out output of the Create Writer subVI (from Section 4.1.1.1) to the ref
num in input of the Write subVI.

3. We will publish the value of a Horizontal Pointer Slide control
(numeric control). Drop a Horizontal Pointer Slide control onto
the Front Panel from the Controls Palette. In the Block Dia-
gram, wire the Pointer Slide to the Write subVI's Data input
node. Rename the slide control to Data.

Data

4. To continuously publish the Pointer Slide value, add a While Loop around the Write subVI
in the Block Diagram. From the Functions Palette:

a. Select Programming, Structures, While Loop.

b. Use the left mouse button to drag and include both the Write subVI and the Horizontal
Pointer Slide control in the While Loop.

c. You may also add a Wait Until Next ms Multiple subVI (under Programming, Timing
from the Functions Palette) inside the While Loop if you want to specify a rate at which
Write will publish the value.

4-3

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)

4.1.1.3

5. Add a Stop Button boolean to the Front Panel and wire it to the While Loop stop function

in the Block Diagram. The resulting Block Diagram should look similar to this:

Publizshed Value

error in (no errar)

Release the Writer Object

The final step in our Tutorial_Write_Double.vi is to release the DDS entities and reclaim the sys-
tem resources when the While Loop is terminated. To do this, we use the Release Writer subVI in
the Block Diagram.

1. From the Functions Palette, select Data Communication, RTI DDS Toolkit for Lab-

VIEW, Writer, Release Writer; drag and drop the Release Writer subVI into the Block
Diagram.

. Configure its input parameters:

e ref num
® errorin
For details on these parameters, see Writer (Section A.2.1).

Wire the Write subVI's output to the Release Writer’s inputs. The resulting Block Diagram
should look similar to this:

Published Value

[DEL K

i

i status]
Stop Writing

3. Save the file Tutorial_Write_Double.vi.

4. We recommend including error handling in your VIs. Take the above figure as an exam-

ple: we use error handler’s status to control the loop exit condition.

4-4

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)

4.1.2.1

Creating a VI to Subscribe to Simple Data (Numeric)

In Section 4.1.1, you learned how to develop a LabVIEW VI to use DDS to publish a simple data
type, the value of a numeric (DBL). In the second part of the lesson, you will see how to develop
an equivalent VI to read the published data.

Create a Reader Object to Subscribe to a Numeric (DBL)

1. Launch LabVIEW and create a new VI. (In LabVIEW 2012, select File, New VI1.) Save the

new VI with the name Tutorial Read_Double.vi.

2. Open the Functions Palette (right-click on an open area in the Block Diagram), then select
Data Communication, RTI DDS Toolkit for LabVIEW, Reader, Create Reader. Drag
and drop the Simple Create Reader subVI @ into the Block Diagram.

File Edit View Project Operate Tools Window Help

o [@E|hu|lﬁ’ . |15ptAppIication F

Functions

(5]

| Q Search I 2, Customize* I -f |
» Programming

Measurement I/O

Instrument I/O

Mathematics

Signal Processing

4| v v |

Data Communication
L RTI DDS Toolkit for LabVIEW
L Reader
|_r1i | il

FTI
En 2

foo] ol [9]
Simple Creat... Advanced Cr... Read

Releaze Reader Set Reader ...

3. The Simple Create Reader subVI has the following input parameters:

topic name

error in (no error)

For details on these parameters, see Reader (Section A.2.2).

We will use this subVI to create a Reader object that can subscribe to a data type of
Numeric (DBL). We will use domain ID 0 and our Topic Name will be Hello LV Double.

To begin:

a. Right-click on the Create Reader subVI and select Select Type, Numeric (DBL).

b. Right-click on each input node (except error in (no error)) and select Create, Con-

domainid =0

e datatype=0

e topic name = Hello LV Double

Right-click on error in and select Create, Control.

stant. This will create a default constant for that input parameter. Set each input
parameter as follows (by right-click on each and select Edit...):

4-5

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)

4.1.2.2

The resulting Block Diagram should look similar to this:

o

[Hello LV Double} L mrmm—

I:I = =]

error in (no errar)
I Fak

Subscribe to a Numeric (DBL)

The next step is to add the functionality to subscribe to the values from the DDS network. We
will use the Read subVI.

1. To insert the Read subVI into your Block Diagram, open the Functions Palette and:

a. Select Data Communication, RTI DDS Toolkit for LabVIEW, Reader, Read; drag
and drop the Read subVI into the Block Diagram.

b. Right-click on the Read subVI and select Select Type, Numeric (DBL).
Read takes the following input parameters.

e refnum in

® query condition

* only_new_samples

e error in (no error)
For details on these parameters, see Writer (Section A.2.1).

2. Wire the Create Reader subVI’s ref num output node to the Read subVI's ref num in input
node.

3. In this example, we will subscribe to the Numeric
(DBL) published by the Tutorial Write_Double.vi. To Read Value
display the data, drop a Vertical Fill Slide control onto b
the Front Panel from the Controls Palette. In the Block —jpmr=s
Diagram, right-click on the Vertical Fill Slide control and &
select Change to Indicator, then wire the Read subVI's P
data output node to the Vertical Fill Slide.

4. We want to continuously subscribe to the Numeric (DBL). To do so, add a While Loop
around Read in the Block Diagram. From the Functions Palette:

a. Select Programming, Structures, While Loop.

b. Use the left mouse button to drag and include both the Read subVI and the Vertical Fill
Slide control in the While Loop.

¢. You may also add a Wait Until Next ms Multiple function (in the Functions Palette,
under Programming, Timing) inside the While Loop if you want to specify a rate at
which Read will subscribe to the data.

4-6

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)

4.1.2.3

5. Add a Stop Button boolean to the Front Panel and wire the boolean to the While Loop stop

function in the Block Diagram. The resulting Block Diagram should look similar to this:

100
E Read Value

FOEL |
IHE”D LY Du:uul::llel""“; i Rl [
B |

Stop Reading_

Release the Reader Object

The final step in our Tutorial_Read_Double.vi is to release the DDS entities and reclaim the sys-
tem resources when the While Loop execution is terminated. To do this, we use the Release Reader
subVI in the Block Diagram.

1.

El— Read Value

From the Functions Palette, select Data Communication, RTI DDS Toolkit for Lab-
VIEW, Reader, Release Reader; drag and drop the Release Reader subVI into the
Block Diagram.

Configure its input parameters:

e ref num

® errorin

For details on these parameters, see Reader (Section A.2.2).

Wire the Read subVI’s outputs to corresponding inputs in the Release Reader subV1.
The resulting Block Diagram for Tutorial_Read_Double.vi should look similar to this:

100

—p]

error in (no error)

3. Save the file Tutorial_Read_Double.vi.

4. We recommend including error handling to your VIs. Please see Section 4.2 and

Section 4.3 for further details.

4-7

Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)

4.1.3 Testing
Now that both VlIs are ready, we can verify that they work as expected.

1. Open both VIs, Tutorial Write_Double.vi and Tutorial Read_Double.vi, and click the
Run arrow button in the toolbar in each.

2. Verify that you are reading exactly the same Numeric (DBL) value in
Tutorial_Read_Double.vi that is being published from Tutorial_Write_Double.vi.

T ICD] | £ Red Double ample. [SEE)
File Edit View Project Operate Tools Window Help u

»&®)

Tvdds1.0_proj hvproj/My Computer] «

While both VIs are running, you can change the value of the Horizontal Fill Slide control in
Tutorial_Write_Double.vi and see how the Vertical Fill Slide indicator displays the new values in
Tutorial _Read_Double.vi.

These VIs might execute in the same computer or on separate computers connected to the same
local area network. Either way, RTI DDS Toolkit for LabVIEW will allow the VIs communicate
without any changes to the application VIs. This capability is known as ‘location transparency.”

4-8

Lesson 2—Using Templates to Publish and Subscribe to Complex Data (Clusters)

4.2 Lesson 2—Using Templates to Publish and Subscribe to
Complex Data (Clusters)

Figure 4.1 Complex Type

complexType

(7
¥
| T
r
| T
r
.-

In this lesson, you will become familiar with the RTI DDS
Toolkit for LabVIEW functions and capabilities to publish
and subscribe to complex types such as clusters or enumer-
ators.

Note: Only 32-bit enumerators are supported. To change
the representation, right-click in the enum and select Repre-
sentation—>32.

We are going to focus on the cluster use-case. Let’s begin by
developing a VI that can publish the cluster defined in
Figure 4.1.

First, we will define a new type (a LabVIEW Type-Def) for
this cluster:

1.Launch LabVIEW and create a new Custom Control:
Select File, New..., Other Files, Custom Control.

2.Choose Type Def. from the Control drop-down list in the
toolbar:

3. Draw an empty cluster. From the Controls Palette:

a. Select Modern

b. Select Array, Matrix & Cluster

¢. Select Cluster

d. Rename the cluster complexType (right-click and select Properties).

Note: See Preventing Type Code Incorrect' Error when Working with Arrays (Section

34.3).

49

Lesson 2—Using Templates to Publish and Subscribe to Complex Data (Clusters)

lowing controls from the Palette:

i _‘: Cont | e S y 5 h-. SV ERRICE! B8] EE 130 151 B 1S 1 IS ST JERCH N I A
i-[1 Controls Q,’ Earc " o
|

4. Fill the complexType cluster as shown in Figure 4.1. This process is simple: drag the fol-

System } <1 Modemn
.i Classic) Array, Matrix & Cluster
» M M
Express) ! labe)
P {= L) e
Ep = b M
. [‘ Numeric Boolean String & Path
; B 1 E i
Num Ctrls Buttons Text Ctrls clem o —== R
‘ = : - 5 < 421 Array, Matrix & Cluster
J170 I 9._—5;,10 o Array, Matrix... Cluster
LN [@
User Ctrls Num Inds LEDs g .E
fEmm] [&]
» » .

i! Ring & Enum Array Cluster
e . n O 4 XN Xew
Textinds Graph Indica...) :::] [: i:]

. . - |’ — —-
Control Design & Simulation ' Variant & Cl.... RealMatrizctl ComplexMat...
MNET & ActiveX) @ » ’W |W
| Signal Processing ! [#% 7
Addons | Refnum ErrorIn3D.ctl Error Out 3D...,

a. String Control labeled as Text.

b. Numeric Control with Representation 132 labeled as I32_Num (once you have
selected a Numeric Control, right-click on it and select Representation and change it
to I32).

¢. Numeric Control with Representation 164 labeled as 164_Num.
d. Numeric Control with Representation U16 labeled as U16_Num.
e. Array of Numeric Controls with Representation SGL labeled as Sgl_Array.

Note: LabVIEW arrays are mapped as bounded DDS sequences (or arrays if the flag
forceArrayMapping is marked in the Advanced Reader/Writer Configuration con-
trol). The sequence bound or length is calculated from the LabVIEW array size. Make
sure you declare your array to be the maximum size you will need.

f. Cluster inside the first one labeled as innercluster. Fill innercluster as shown in
Figure 4.1.

5. When the cluster
Tutorial_Cluster.ctl.

definition is complete, save this new control

type as

4.2.1 Creating a VI to Publish a Cluster

Next we will develop a VI to publish this cluster.
1. In the Block Diagram’s Functions Palette, select Data Communication, RTI DDS Toolkit

for LabVIEW, Complex-Type Templates, Advanced Writer Template. Drop the tem-
plate into the Block Diagram.

4-10

Lesson 2—Using Templates to Publish and Subscribe to Complex Data (Clusters)

For details on these complex-type templates, see Complex-Type Templates (Section
A223).

[Create a Writer Node for the type defined by the cluster, array, or enum|
domain id |Write the data contained in the complex type |

o
topic name
P 00
Advan:
T 4
[
Connect a cluster, array, VE
or enum with the same ! Connect a cluster,
structure that you want & i array, or enum of '
to use and wire it here. | - --------- ¥ the same type that |
R you created the
error in (no error) \Writer,
== : stop |
m 0

2. Save this template as a new VI with the name Tutorial Write_Cluster.vi.

3. Although there are several parameters already set with default values, there are also two
input parameters which must be specified to complete the Block Diagram code:

¢ Data type input for the Create Call Library Function (CLF)
¢ Data input for the Write CLF

Both of these inputs need to be connected to a control of the type created at the beginning
of this lesson: complexType. To do so:

a. In the Front Panel, right-click on an empty spot of the panel and select Select a Con-
trol....

b. Navigate until you find Tutorial Cluster.ctl, which was saved earlier in this lesson.
Drop the control into the Front Panel.

c. Copy the new control to create a second instance.

d. In the Block Diagram, connect one of the newly created controls to Data Type in the
Create CLF and connect the other new control to Data in the Write CLE.

Note: Make sure the LabVIEW arrays have the correct length. By default, only the
cluster connected to the Create subVI needs to have the maximum length. If you are
using mapping your arrays as DDS Arrays, you will also need the cluster connect to
the Write subVI to have the maximum length (see Preventing "Type Code Incorrect’
Error when Working with Arrays (Section 3.4.3)).

4. Change the advanced setting using the Advanced Writer Configuration control.
a. Disconnect the Advanced Writer Configuration from the Call Library Function.

b. Right-click on the Advanced Writer Configuration and select 'Cluster,Class,& Vari-
ant Palette' --> 'Bundle by Name'.

c. Create three fields in Bundle by Name. And select values typeName, keyName and,
optionally, dataWriterQoSProfile.

4-11

Lesson 2—Using Templates to Publish and Subscribe to Complex Data (Clusters)

4.2.2

d. Set typeName to ComplexType and keyName to Text. Optionally, set the QoS Profile
to be LabVIEWLibrary::DefaultProfile.

Type Mame

Advanced Writer Configuration

LE=ck

Key Mame

typeMame |

[rex]

Qos Profile

keyMame =

[LabVIEWLibrary:DefaultProfile

I_f dataWriterQoSProfile |

Note: For details on Advanced Settings, see Chapter 6: Advanced Concepts and Settings.

5. Change the Topic Name to HelloComplex.

The resulting Block Diagram should look similar to this:

Type Name

Key Name

(Qos Profile

Advanced Writer Cenfiguration
St |

Create a DD5 Writer

Domain [d

Topic Name

HelloComplex

|Writetha data contained in the Cluster

typeMame

keyMame o

dataWriterQoSProfile

[LabVIEWLibrary:DefaultProfile

ul

complexType 2
=7

error in (no error)

|IE»

6. Save the file Tutorial_Write_Cluster.vi.

Creating a VI to Subscribe to a Cluster

complexType

In Section 4.2.1, we developed a LabVIEW VI to publish a complex data type (cluster), using
DDS. In this section, we will demonstrate how to develop an equivalent VI to subscribe to that

cluster using DDS

1. Launch LabVIEW. In the Block Diagram from the Functions Palette, select Data Commu-
nication, RTI DDS Toolkit for LabVIEW, Complex-Type Templates, Advanced Reader
Template. Drop the template into the Block Diagram.

4-12

Lesson 2—Using Templates to Publish and Subscribe to Complex Data (Clusters)

For details on these complex-type templates, see Complex-Type Templates (Section
A223).

[Create a Reader Node for the type defined by the complex type| [Read the data and fill in the complex type|

domain id
el

topic name

[

[OnIyNewSampIes

Connect the

== " |complex type that
1 [you want to fill

when reading.

Advanced Reader Configuration =

g___

Connect a cluster,
array, or enum with the A
same structure that you 5
want to use laterwhen | -----------
reading.

You might need to
connect the complex
type with the same
structure you want to
read.

dds sample info

Error

0

2. Save it as a new VI named Tutorial_Read_Cluster.vi.

3. Although there are several parameters already set with default values, there are also an
input and an output parameters which must be specified to complete the Block Diagram
code:

¢ data type input for the Create CLF
¢ data input for the Read CLF
e data output for the Read CLF

Both of these parameters need to be connected to an indicator/control of the type created
at the beginning of this lesson: complexType. To do so:

a. In the Front Panel, right click in an empty spot of the panel and select Select a Con-
trol....

b. Navigate until you find Tutorial Cluster.ctl, which was saved earlier in this lesson.
Drop the control into the Front Panel.

c. Copy the new control to create a second instance. Select it and change it to be an indi-
cator by right-clicking on it and selecting Change to Indicator.

d. In the Block Diagram; connect the new control to Data Type in the Create CLF and the
new indicator to Data in the Read CLE.

Note: Make sure the LabVIEW arrays have the correct length. By default, only the
cluster connected to the Create subVI needs to have the maximum length. If you are
using mapping your arrays as DDS Arrays, you will also need the cluster connect to
the Write subVI to have the maximum length (see Preventing "Type Code Incorrect’
Error when Working with Arrays (Section 3.4.3)).

4. Change the advanced setting using the Advanced Reader Configuration control. Set
typeName to ComplexType and set keyName to Text.

4-13

Lesson 2—Using Templates to Publish and Subscribe to Complex Data (Clusters)

Note: For details on Advanced Settings, see Chapter 6: Advanced Concepts and Set-

tings.

5. Change the Topic Name to HelloComplex.

Type Name Advanced Reader Configuration

ComplexType[~y [

Key Name typeMame |
keyMame
Qos Profile u:IataFiE.au:IEl'Qu:SPru:fiIE|

[LabVIEWLibrary:DefaultProfile

|5

6. Optionally, wire a DDS Sample Info indicator to the Read subVI.

The resulting Block Diagram should look similar to this:

[Create a DDS Reader for the type defined by the Cluster]

DomainId

Topic Name

Tvoelt _Hel\oCom\ex

yperame Advanced Reader Configuration

:

Key Name R Tab|van
keyMame e A
Qos Profile dataReaderQoSProfile

ILab\u‘IF_‘.l\i’Librar).r::Da‘au\tProﬁIef“‘i

complexType 2

[Read the data and fill in the Cluster]

10

7. Save the file Tutorial_Read_Cluster.vi.

Note: If LabVIEW displays a wiring error, you will need to create a new constant for this
cluster type. Wire the constant as the input of the Read subVI’s Data input node (on the
left hand side of the Read function block). After LabVIEW recognizes the type, the error
will be correct. Then you should delete the constant and verify that the wire connected

remains valid.

4-14

Lesson 3—Filtering Data

423 Testing
Now that both VlIs are ready, you are ready to verify they work as expected.

1. Open Tutorial _Read_Cluster.vi and Tutorial Write_Cluster.vi and run each VL

2. Verify that you can read exactly the same values for each member of the cluster in the
Tutorial_Read_Cluster.vi being published from Tutorial Write_Cluster.vi.

= RTI Connext DDS Cluster Example Writer.vi =B R 3 RTI Connext DDS Cluster Example Readervi L= | &1 | & |
File Edit View Project Operate Tools Window Help File Edit View Project Operate Tools Window He
#|=/|@n] i ;

With both VIs running, you can change the value of the published cluster in
Tutorial_Write_Cluster.vi and see the values update.

3. Modify Read CLEN input only new samples to be false. Then modify the value in Text
on the Writer. You will see it flicker in the Reader side between the previous and current
values. This is the expected behavior because Text is the key of our cluster. This means
that a new sample is created for each Text value provided. Even after reading the sample,
it is still alive, so it can be reached from the Reader. See Section 4.4 to learn more about
this.

4.3 Lesson 3—rFiltering Data

In this lesson you will learn how a subscriber can filter data available on the DDS network. This
lesson assumes you have successfully completed Lesson 2—Using Templates to Publish and

4-15

Lesson 3—Filtering Data

Subscribe to Complex Data (Clusters) (Section 4.2).

1. Open Tutorial Read_Cluster.vi from Lesson 2 and save it as a new VI named
Tutorial_Filter_Cluster.vi.

The Block Diagram should look similar to this:

[Create a DDS Reader for the type defined by the Cluster]

Domain Id

Topic Name [Read the data and fillin the Cluster] 100
Type Name
A::nanced Reader Configuration
Key Name T | ———— Em complexType
keyMame e
Qos Profile dataReaderQoSProfile DDS Sample Info

ILab\u‘IEWLibrary::Defau\tProﬁIeH

complexType 2

With DDS, you can filter network data by subscribing to only the Topics of interest.
Additionally, DDS provides the capability to filter data within a Topic by specifying a
query condition for the data to match. The syntax of this query condition is similar to
standard SQL queries. We will demonstrate how to filter data with various query condi-
tions.

2. Replace the Read subVI's query condition input constant with a text control that we can
modify while executing the VI. Right-click on the constant wired to the query condition
input of the Read subVL

3. Select Change to Control.

DDS Read
Query condition
n
- =< [
abe J3bc compliexiype
7] e il i _—

DDS Sample Info

4-16

Lesson 3—Filtering Data

4. Verify that the new Query condition text control is
available on the Front Panel, as seen in the figure
on the right.

5. Save to file Tutorial_Filter_Cluster.vi.

Now we can use filters to specify a Query condition at run
time and subscribe to only the Topic data we desire. Let’s
test how it works:

6. Run Tutorial_Write_Cluster.vi to begin publish-
ing the complex data type (cluster).

7. Run Tutorial_Filter_Read.vi. As you will see, all
the published data is read by the
Tutorial_Read_Cluster.vi. This is because the
Query condition text control is blank and no query
condition is being applied.

Note: DDS is content aware. That is, each Topic and its
data type(s) are known by the middleware. This provides
robust application support through capabilities such as
content filtering, queries, and advanced tooling.

We will now filter data by content; for example, only read
those samples where the cluster field is equal to “valid
text”:

8. With the VIs running, enter the following filter text
in the Query condition text control

“Text = ‘valid text’”

Note: See the screenshot below for exact Query condition entry.

4-17

Lesson 4—Reading Only New Samples

9. Change the Text data in Tutorial_Write_Cluster.vi to “valid text” and modify the value

of some of the other types. Verify that you are reading “valid text” and get updated val-
ues of the other types in the reader VL

[B 9
£3 RTI Connext DDS Cluster Example Readervi L= | = | % | T 18 11 Connext DDS Cluster Example Writerai - l=l=]| = |
. 5

File Edit View Project Operate Tools Window File Edit View Project Operate Tools Windnw Help
2

B@|@n|

B@|@n|

Main Application Instance| «

Main Application Instance| «

10. Verify that when you enter any other text in the Writer VI Text field, you do not see “valid
text” or the updated values of other types in the Reader VI.

11. Here are a few other example query conditions you can try:
e “I32_Num > 0"

¢ “innercluster.Boolean = TRUE”
¢ “innercluster.Boolean = TRUE and Text = ‘valid text””

e “innercluster.Boolean = TRUE or Text = ‘valid text’”

44 Lesson 4—Reading Only New Samples

In this lesson you will learn how a subscriber can read every received data or only those that
have not been read yet. This lesson assumes you have successfully completed Lesson 2—Using

4-18

Lesson 4—Reading Only New Samples

Templates to Publish and Subscribe to Complex Data (Clusters) (Section 4.2).

1. Open Tutorial_Read_Cluster.vi from Lesson 2—Using Templates to Publish and Sub-
scribe to Complex Data (Clusters) (Section 4.2) and save as a new VI with the name
Tutorial_Only_New_Read.vi. The Block Diagram should look similar to this:

|Create a DDS Reader for the type defined by the Cluster|

Domain Id
[o}
Topic Name |Read the data and fill in the Cluster|
IHeIIoComEIex= L
Type Name Advanced Reader Configuration & ”;; w i oa
-
[NEFN D tuzz fuszy
Key Name typelame o } %%
usz jusz F - S
A s -
. - - 550 5 =S =H 5
Qos Profile dataReaderQoSProfile
LabVIEWLibrary:DefaultProfil
ILa ibrary: aultPro |e|"“i complexType 2
Fan
error in (no error)
||E

With DDS, you can select whether you want to subscribe to all the available samples in
the Reader queue or just to the new ones. Using the Read subVI's Only New Sample's
input, we can modify this behavior. When set to true, only those samples that have not
been read before are returned. When set to false, this indicates we want to re-read old
samples, even if we read them in the past. This lesson will demonstrate how this feature
may affect your system.

2. Replace the Read subVI's Only New Samples input constant with a boolean control that we
can modify while executing the VI. Right-click the constant wired to the Only New Sam-
ples input of the Read subVL

a. Select Change to Control.
b. Verify that the new Only New Samples boolean control is available on the Front Panel.
c. Save to file Tutorial_Only_New_Read.vi.

Now you can specify whether you want to subscribe to new samples or to any available
one. Let’s test how it works:

3. If the DDS Sample Info is not visible on the Front Panel, make it visible by right-clicking
on it in the Block Diagram and selecting Show indicator.

4. Set Only New Samples to false.

5. Run Tutorial_Only New_Read.vi and Tutorial _Write_Cluster.vi. As you will see, all the
published data is read by Tutorial_Read_Cluster.vi.

6. Modify the Text field, which is a key, in the Writer. The values in the Reader will flicker
from the new value to the previous one. In fact, in the DDS Sample Info control, you will
see that the data that is no longer published has its DDS_SampleStateKind set to
DDS_READ_SAMPLE_STATE, while the new one value is set to
DDS_NOT_READ_SAMPLE_STATE. Now we are reading any alive sample published
by the Writer, even if we had already read it.

4-19

Lesson 4—Reading Only New Samples

| T T =ls! 5
Fil

le Edit View Project Operate Tools Window Help

RTI Connext DDS Cluster Example Reader.vi
—

File Edit View Project Operste Tools Window Help

#[=][@n]

Main Application Instance] ¢

Wain Apghcation intance] e .

7. Change the Only New Samples control to True. Now we are only reading the latest pub-
lished value. Take into account that only one data sample is read each time we call the

4-20

Lesson 5—Using Keyed Types (RTI Shapes Demo)

4.5

4.5.1

Read subVlI (see Lesson 7—Reading All Samples (Reliable Communication) (Section 4.7)).

Note: A different approach is to use Exclusive Readers and 'take' to guarantee that the
data will only be read once (see Default Configuration: DDS Entities Created by Simple
Create subVIs (Section 6.1) and Writing and Reading using Strict Reliability (Section
4.7.2)).

T T —eEs

[File Edit View Project Operate Tools Window Help
2

DDS_NOT_READ_SAMPLE_STATE

DDS_NOT_NEW_VIEW_STATE

DDS_ALIVE INSTANCE STATE

Main Application Instance

Lesson 5—Using Keyed Types (RTI Shapes Demo)

In this lesson, we will explain the value of Keys in our data-type definition and introduce the
powerful concept of DDS Topic instances.

We will use RTI Shapes Demo in this lesson. RTI Shapes Demo is a powerful example application to
demonstrate the many capabilities of DDS as well as an easy way to quickly communicate with
an external DDS application.

Shapes Demo can publish and subscribe to colored, moving shapes (squares, circles, and trian-
gles). It supports a wide range of QoS parameters.

To complete this lesson, you need to install Shapes Demo, which you can download from
www.rti.com/downloads. The Shapes Demo User’s Manual is included with the installation.

Note: Shapes Demo uses a default domain ID of 0, which is the same domain ID used by the
example VIs in this document. If you use a different domain ID for the VIs, you will also need to
change the domain ID for Shapes Demo (see the Shapes Demo User’s Manual for instructions).

Working with Shapes Demo

Shapes Demo allows you to publish and subscribe different shapes (the DDS Topic for this exam-
ple). A ‘ShapeType’ data type is defined as a structure with four members:

([color (string) — it will also be used as the Key for the ShapeType

4-21

www.rti.com/downloads

Lesson 5—Using Keyed Types (RTI Shapes Demo)

4.5.2

J x (Long, an 132 in LabVIEW)
d y (Long, an 132 in LabVIEW)
[shapesize (Long, an 132 in LabVIEW)
Shapes Demo can publish three different Topics of type ShapeType:

(d Square
1 Circle
(J Triangle
Publishing a Shape (Square)
We will use LabVIEW to publish a square in domain 0. Additionally, we will generate two sine
functions for the ShapeType X and Y coordinates in order to move the square in a circular or
elliptical pattern.
1. Open RTI Connext DDS Shapes Writer.vi from the LabVIEW examples ShapesDemo
directory under RTI DDS Toolkit for LabVIEW. (Instructions for finding the examples
are in Section 1.7.)
2. Open the Block Diagram and note that the VI is creating a Writer object to publish a Sha-
peType data with Topic Square. The VI uses Simulate Signal functions to generate the X
and Y coordinates of each square before the square is published.
Create a Writer Node for type ShapeType and topic Square
[We need to set advanced settings
35 the type name, the key name See more details in <LabVIEW folder>\help\RTI DDS Toolkit for LabVIEW\RTL DDS_Teolkit_for_LabVIEW-GettingStarted.pdf]
and the DataWriter QoS Demainld e
%md WnlerCunﬁgurat\un:pKName :“m:‘:’:' 100 b
Type Name Square| EE E o
b
Key Name typelame —
keyName Offeetx
QoS Profile dataWiriterQoSProfile L
] 1 il
constant needed to| [0] !
(NrDE;t: the Reader E Frqu:Ency
errorin (no error) Offsety
@ : Bundle the
oty R
. bublished stop
o o=

(Note: This example uses LabVIEWLibrary::NoTypeCodeProfile in order to make it
compatible with RTI Shapes Demo, which uses a different string length. See the Compati-
bility section of the Release Notes for further details.)

3. On the Front Panel, you can change these

. . . hapesi: color
parameters of the Simulate Signal function: ;jzspme =
shapesize, color, Amplitude y, Amplitude Xx, F—
Frequency, Offset x and Offset y. 100- o Ty
5 Amplitude x 04 0506
5% 03y 07
50= . g 08
i v W gae) ~09
-] 1
D_
Offsetx Offsety Step

4-22

Lesson 5—Using Keyed Types (RTI Shapes Demo)

4. Launch Shapes Demo and select the Square option under the Subscribe heading. You will
see the dialog below. Select OK.

P——— e

Color (Key) Initial Size Apply QoS from Profile
PURPLE = Choose the profile:
. 3
©BLUE [Defauit::Defauit =
i Partitions
GREEN = QoS Values
o A Ownership Liveliness
- : [Exclusive AUTOMATIC =
HaeETs D Strength Lease Duration (ms)
ORANGE 1 NE
Durabili History
VOLATILE 6
Time based Filter (ms) Dezdiine (ms)
0 NF
Extended Attributes Lifespan (ms)
Shape fill style [Reliability
@) Solid
Transparent Content Filter Topic Read method to use
Horizontal hatch [use filter @ Read() () Take(
Vertical hatch
Rotation Speed
ok || cancel
Slower Faster

5. Run RTI Connext DDS Shapes Writer.vi and verify that Shapes Demo displays a blue

square moving in circles.

Delete All

Hide History
Configuration

Pause Publishing

m

6. Use the Front Panel to make changes to the X and Y amplitude and the frequency control.
You should see the effects in the Shapes Demo window. The X and Y amplitude control the
square’s trajectory, the frequency varies the square’s speed.

4-23

Lesson 5—Using Keyed Types (RTI Shapes Demo)

4.5.3

7. Change the shape size and color to vary all the parameters. While the size can be any
value, we suggest using values between 0 and 100. The color can be: PURPLE, BLUE,
RED, GREEN, YELLOW, CYAN, MAGENTA, or ORANGE.

!J RTI Shapes Demo - Domain =l

File View Publish Subscribe Controls Help

»

Publish

Square
Circle

Triangle

Subscribe

Square
Circle

Triangle

m

Controls
Delete All
Pause Publishing

Hide History
Configuration ™

Note: When you change the square’s color, you will still see the blue square. This is because we
defined Square as the Topic and Color as the Topic Key (instance). Using Keys allows the defini-
tion of a single Topic with multiple instances. When you change the color, you are publishing a
new instance of the Square Topic of the type ShapeType.

Subscribing to Shapes

Instead of using Shapes Demo to subscribe to the published shapes, let’s create our own RTI Con-
next DDS Shapes Reader in LabVIEW.

1. Open RTI Connext DDS Shapes Reader.vi from the LabVIEW examples ShapesDemo
directory under RTI DDS Toolkit for LabVIEW.

2. On the Front Panel, you will see two parts:

* On the left, the VI shows a table, DDS Data, in which the read shapes will be shown.
We also see a switch (DDS Stopped). By clicking on that switch, the VI will start read-
ing samples from DDS and add them to the table. In addition, we can see the informa-
tion of the currently read sample using Sample Info. We can use the Query condition
text box on top to filter data, as explained in Lesson 3—Filtering Data (Section 4.3).
Finally, we have the Stop button that stops the whole VL

4-24

Lesson 5—Using Keyed Types (RTI Shapes Demo)

¢ On the right, we have a text box in which we can select one of the shapes using its key,
that is, its color. To select the shape, just add the color as shown in the color column in
DDS Data. Once selected, the position of the shape will be shown in XY Graph in real

time, while its size will be shown in Shape size.

Query condition

DDS Data

color

=
<

shapesize 4|

.J

DDS Stopped

Stop

Sl

Sample Info

DDS_SampleStateKind
DDS_INVALID_SAMPLE STATE
DDS_ViewStateKind
DDS. INVALID_SAMPLE STATE

DDS_InstanceStateKind

DDS. INVALID_STATE

Enter a shape ‘color' to see the square moving in 'XY Graph' and its size in ‘shapesize’

|

Plot0

XY Graph

shapesize

O s U s Vit SRS
0 25 50 75 100 125 150 175 200 225
Time

3. Open the Block Diagram and review the three different processes:

a. Creating the Reader object and reading:

® A Reader object is created to subscribe to the type ShapeType and the Topic
Square, also providing a correct ShapesDemo cluster in the data type pin.

* Once created, the Reader object reads data from DDS using the Query Condition
introduced in the Front Panel.

* Those data, however, are only read if the DDS Stopped switch is changed to DDS
Running by clicking on it (i.e., if it is true).

¢ Sample Info is filled with the information of the currently read sample.

Create a Reader Node for the Shape Type defined in the Cluster]

[We need to set advanced settings as the type name,
[the key name and the DataReader Qo5

Advanced Reader Configuration

Type Name

K i

Domai

n Id
Return value 2

Topic Name

ey Name

typellame

keyhame

T True Vt

[Read the Shape and fill in the Cluster|

Return value

QoS Profile

dataReaderQoSProfile

LabVIEWLibrary:NoTypeCodeProfile,

MNode.

Shapes cluster
constant needed to
create the Reader

[ETY:

b. Storing data in the table:

* Each read datum is unbundled to extract the individual components. Each of these
components goes in a different column in the DDS Data table.

Inm L

SampleInfo

Note: Due to a known issue in 'Set Cell Value' calls, plot properties cannot be mod-
ified at run time. See more details here: http:/ /www.ni.com/product-documenta-
tion/52188/en/#407633_by_Date.

e Since each row corresponds to a unique instance, we select the table row using the
cluster’s key, i.e., the color.

4-25

http://www.ni.com/product-documentation/52188/en/#407633_by_Date
http://www.ni.com/product-documentation/52188/en/#407633_by_Date

Lesson 5—Using Keyed Types (RTI Shapes Demo)

* When you push the Stop button, the Reader object is released.

shapesize

Select table row

X [Fill row data

D05 Data

DS Data

] (7! — /] E— 71] 7 S — 1}
Set Cell Value (Deprecate| Set Cell Value (Deprecated Set Cell Value (Deprecated) | Set Cell Value (Deprecated)

Color) XIndex , KIndex) HIndex) KIndex
¥ Index v Y Index ’ W Index ’ ¥ Index
Cod* Value v Value ' Value v Value

|X (00rdmate| |Y (oordmate|

Note: This example uses LabVIEWLibrary::NoTypeCodeProfile in order to make it
compatible with RTI Shapes Demo, which uses a different string length. See the Com-
patibility section of the Release Notes for further details.

c. Showing selected instance in the XY Graph:

If a color is selected in the text box on the right of the Front Panel, any read sample of
that color will appear in the correct X and Y positions in XY Graph. Valid colors are:
PURPLE, BLUE, RED, GREEN, YELLOW, CYAN, MAGENTA, and ORANGE.

The size of that shape will be shown in shapesize.

Draw selected shape
™[True ‘t
Enter a shape 'color' to see the square moving in ‘XY Graph' and its size in 'shapesize’ 3
I:'E] ; N]
—L!> ; Build XY Graph
r XInput XY Graph
Compare the string with the * Y Input
value provided to see if we need| {7 XY Graph »p=
color to draw it k2]
X .
nd shapesize
y —
shapesize m
I3

4-26

Lesson 6—Used Nested and Multiple Keys

4.6

4.6.1

Lesson 6—Used Nested and Multiple Keys

The previous lesson highlighted the value of using keys in your type definitions. Now let’s see
how to provide multiple keys for a single data type. This lesson assumes you have successfully
completed Lesson 2—Using Templates to Publish and Subscribe to Complex Data (Clusters)
(Section 4.2). You can also use the provided example, RTI Connext DDS Cluster Example

Reader/Writer.vi.

Adding Multiple Top-Level Fields as Keys

1. Open Tutorial_Read_Cluster.vi from Lesson 2 and save it as a
new VI named Tuturial _MultipleKey_Read_Cluster.vi.

As you can see in the figure to the right, our cluster is quite
complex and includes many fields. In Lesson 5—Using Keyed
Types (RTI Shapes Demo) (Section 4.5), we marked Text as a
key. Depending on the application, we may want to mark
other fields as key. Suppose we want I32_Num to be a key too.
That will make Text and I32_Num keys.

2. To mark both Text and 132_Num as keys,
modify the Key Name string to include both fields,
separated by a semicolon (*;’).

Key Mame

Tod32_Num|
3. Click Run.

If you use one of the RTT tools such as RTI Monitor to view the
published /subscribed type, you can see that the equivalent
IDL for this use case would be:

struct superinnerClusterType
double Dbl Num;
ultrainnerClusterType ultrainnerCluster;
struct ultrainnerClusterType({
sequence<short, 2> I16_Array;

struct ComplexType
string<1024> Text; //ekey
long I32 Num; //e@key
long long I64 Num;
unsigned short Ulé_Num;
sequence<float, 4> Sgl Array;
innerclusterType innercluster;
}i
struct innerclusterType({
float Sgl Num;
boolean Boolean;
superinnerClusterType superinnerCluster;

Vi

Note: The key name specification is case sensitive.

complexType

Text

B2 _Num

164_Mum
0

Ul6_MNum
Iﬂ

innercluster

Ly

Sgl_Num

superinnerCluster

o Boolean ‘

Dbl_Num

—_—

ultrainnerCluster

4-27

Lesson 6—Used Nested and Multiple Keys

4. Repeat this process using Tutorial_Write_Cluster.vi, so they can communicate with each
other.

4.6.2 Adding Internal Cluster Fields as Keys (Nested Keys)

For a field inside a cluster, use its fully qualified name. This name consists of the cluster name
followed by a period ('.") and then the field name. For instance, to refer to Sgl_Num, use the
string innercluster.Sgl_Num. For Dbl_Num, its fully qualified name is innercluster.superin-
nerCluster.Dbl_Num.

1. Open Tutorial Read_Cluster.vi from Lesson 2—Using Templates to Publish and Sub-
scribe to Complex Data (Clusters) (Section 4.2) and save it as a new VI named
Tutorial_NestedKey_Read_Cluster.vi.

2. Replace the Key Name string with the following value:

Key Mame
ITE:ct;BE_Num;innercluster.Sgl_Num;innercluster.superinnerCIuster.DI::ll_NumI‘

3. Click Run.

If you use one of the RTI tools such as RTI Monitor to view the published/subscribed
type, you can see that the equivalent IDL for this use case would be:

struct superinnerClusterType{
double Dbl Num; //e@key
ultrainnerClusterType ultrainnerCluster;
struct ultrainnerClusterType
sequence<short, 2> I16_ Array;

struct ComplexType
string<1024> Text; //ekey
long I32 Num; //@key
long long I64_Num;
unsigned short Ulé_Num;
sequence<float,4> Sgl Array;
innerclusterType innercluster; //@key
}i
struct innerclusterType{
float Sgl Num; //@key
boolean Boolean;
superinnerClusterType superinnerCluster; //@key

bi

Notice that innercluster and superinnercluster are both marked as keys. This is done automati-
cally by the toolkit and is needed for a correct key specification.

Remember that the key name specification is case sensitive.

4-28

Lesson 7—Reading All Samples (Reliable Communication)

4.7

4.7.1

4.7.1.1

Lesson 7—Reading All Samples (Reliable Communication)

This lesson explains how to use LabVIEW to read all the available samples in our Reader. This
lesson focuses on sending information reliably. There are two different approaches: using the
default RTI DDS Toolkit behavior (see Default Configuration: DDS Entities Created by Simple
Create subVlIs (Section 6.1)) or using exclusive Reader nodes.

The first approach is explained in Writing and Reading Reliably Using the Default Configura-
tion (Section 4.7.1). The latter approach is explained in Writing and Reading using Strict Reliabil-
ity (Section 4.7.2).

Writing and Reading Reliably Using the Default Configuration

In our QoS file, there is an already prepared profile to enable this kind of communication: Reli-
ableProfile.

Writing Reliably

1. Open a blank VI and open the Block Diagram. Advanced Writer Configuration

Add an Advanced Create Writer subVI and fill in j
the parameters to create a Writer object of dou- [rEntmeyres e dm....‘j'ﬁ:,rgcn;;,Cmem
bles, as shown in the figure. Pay attention to the
new QoS Profile.

For details on the Advanced Create Writer subVI,
see Chapter 6: Advanced Concepts and Set-
tings.

S & Hproeoreornernerre ;

emorin (no eror)

2. Create a While Loop and put a Write subVI
inside it. We are going to send the loop counter through DDS,so =~ |]
attach that counter to the Writer’s data field. You can also visual- & L
ize that value by attaching an indicator to the counter. Make
sure that the working type of data is DBL, if it is not, the error
5002 can be triggered. In order to modify the data type, right- [l Data Sent
click on the VI / Select Type / Numeric (DBL). Besides, if you
want to delete the coercion point (the red one), you can also add
a casting from INT32 to DBL with the function Mathematics / Numeric /Conversion / To
Double Precision Float.

3. Add a Release Writer subVI and complete the VI as shown in the following figure. Pay
special attention to the Wait function.

Advanced Writer Configuration

IMETE;:: 1 @mﬁ

typeMame g Writer goes
; Reli - Writer of 100 i
ILab\u"IEWLlbrary..ReIlabIeProﬁIeI‘“ dataWriterQoSProfile = slower than
Reader

57 I 17

&nror in (o error)

!

Data Sent

4. Save it as Tutorial_Write_Reliable.vi.

4-29

Lesson 7—Reading All Samples (Reliable Communication)

4.7.1.2 Reading Reliably

1. Open a blank VI and create an indicator of an array of doubles. Show the vertical scroll
bar of the array in the array properties, i.e., right-click in the array, select Properties and
check the Show Vertical Scroll Bar option.

2. Add an Advanced Create Reader subVI and fill in the parameters to create a Reader of
doubles, as shown in the following figure. Pay close attention to the new QoS Profile.

Advanced Reader Configuration

IMETEE\#
typeMame

lLabVIEWLibrary::ReliableProfile [dataReaderQoSProfile

rror in (mo en E:\
|IE] 70 "+ 1"”:
Default Vals.Reinit All

For details on the Advanced Create Reader subVl, see Chapter 6: Advanced Concepts
and Settings.

3. Optionally, add an Invoke note to call the method Reinitialize All to Default. This func-
tion resets all the controls and indicators in the VI to the default value. To include it, fol-
low this steps:

a. Find Invoke Node under Programming, Application Control.
b. Right-click on the invoke node and go to Select Class, VI Server, VI, VI.

c. Click on the method label and navigate to Default Values, Reinitialize All to
Default.

4. Now we need to read data and discard those values that are not valid. For that:
a. Add a Read subVI inside a While Loop.

b. Connect the Read subVI to the Create
Reader subVI.

c. Set Only New Samples to true.

d. Attach an unbundle function to the DDS
Sample Info cluster and select valid_data.
This field will be true if the data is a valid one.

-
g

ey [valid_data]

ﬂ

e. If the type of the output data wire is not DBL, you need to modify it manually. To do
so, right click on the "Read" VI / Select Type / Numeric (DBL).

For details on the Read subVlI, see Reader (Section A.2.2).

4-30

Lesson 7—Reading All Samples (Reliable Communication)

5. If the data is valid, insert it in the array. Otherwise, ignore the data:

f.

8.

Array Array
FDEL] FDEL]

[If data, add it to Array|

=

m.
u]

Create a Case Structure from Programming, Structures and connect the output of
valid_data to the question mark.

. Create an array indicator and connect it to the output of the Case Structure.

Connect the Read subVI outputs as inputs of the Case Structure, except Sample_info
cluster.

. Create an empty array outside the While loop and connect it as input to the Case

Structure.

In the True case, add a Insert into Array subVI. Connect the empty array and read
value inputs as shown above. Connect the output array to the output of the Case
Structure and to Array.

In the False case, just wire the array input to the output array and to Array.

Make sure that ref num out and error wires are also forwarded by connecting them as
shown in the image above.

6. Attach the exit of the Case Structure to the While Loop. Then replace it with a shift regis-
ter by right-clicking on it and selecting Replace with Shift Register. Place the input shift
register on the left side of the loop and connect it as an input in the Case Structure as
shown below.

It's important that
the reading rate is faster
than the writer one.

Valid data = FALSE
means MO VALID DATA

4-31

Lesson 7—Reading All Samples (Reliable Communication)

4.7.2

7. Add a Release Reader subVI and an Error Dialog. The final Block Diagram should look
like the following figure. Pay attention to the reading ratio, it needs to be faster than the
writer one or increase Reader History Depth in the XML Configuration File.

It's important that
the reading rate is faster

than the writer one, Array

== valid_data [

in (n0 e Valid dats = FALSE i
L | S i means NO VALID DATA | heerroceeermecerrrec]

) Default Vals.Reinit All
stop

For details on the Release Reader subVI, see Reader (Section A.2.2).

8. Save it as Tutorial_Read_Reliable.vi.

{;TUIDriaI_F‘.EIial:la_Wriler‘vi E@l&] ETutunaI_Reliable_REadel‘w =B = l
Eile Edit View Project Operate Tools @5 Eile Edit View Project Operate JTools Window Help @’
Data Sent Array
30 '-)0 l;_e,_ B
IZﬂ =
STOP [z
p—
26
5 R
Ilni E
IB
ID
’n_' STOP
20
19
.18
7 i1
4 b « n b g

9. Run the Reader and Writer. You will see how all the data transferred by the Writer
arrives at the Reader.

Writing and Reading using Strict Reliability

Writing and Reading Reliably Using the Default Configuration (Section 4.7.1) assumes you are
using the default configuration of RTI DDS Toolkit for LabVIEW. As explained in Chapter 6:
Advanced Concepts and Settings, this configuration uses shared DataReaders, so a more strict
reliability (KEEP_ALL History QoS kind and History QoS depth > 1), is not allowed.

4-32

Lesson 7—Reading All Samples (Reliable Communication)

If you need strict reliability on your system, you can do it using exclusive readers and the builtin
QoS profile: BuiltinQosLibExp::Generic.StrictReliable. This profile is defined internally in RTI
Connext DDS (for details on Built-in profiles, see the RTI Community Forum: http://commu-
nity.rti.com/examples/built-qos-profiles).

4.7.2.1 Writing in Strictly Reliable Mode

1. Open a blank VI and open the Block Diagram.
2. Add a Create Advanced Writer subVI and fill in the parameters to create a Writer object of
doubles. Make sure you set the QoS profiles as shown in the following figure:

Advanced Writer Configuration
I

ﬂ
m typeMame |

IBuiItinQu:usLiI::lExp::Generic.StrictREIiahIe}"t dataWriterQo5
domainParticipantJos

rror in (o error)

For details on the Create Advanced Writer subVI, see Chapter 6: Advanced Concepts and
Settings.
3. Create a While Loop and put it inside a Write subVI. We are going to oo

send the loop counter through DDS, so attach that counter to the et |
Writer’s data field. You can also visualize that value by attaching an
indicator to the counter. -

Data Sent

4. Add a Release Writer subVI and complete the VI as shown in the fol-
lowing figure. Pay special attention to the Wait function.

Advanced Writer Configuration
;

My T: - :
I_E typeMame I I g Writer goes
IBuiItinQosLibExp::Generic.StrictReIiabIe}"t dataWriterQo5 jmmy &5 slower than
domainParticipantQos Reader
error in (no emor}
-------------------------- o) =
Data Sent on

5. Save it as Tutorial_Write_StrictReliable.vi.

4-33

http://community.rti.com/examples/built-qos-profiles
http://community.rti.com/examples/built-qos-profiles

Lesson 7—Reading All Samples (Reliable Communication)

4.7.2.2 Reading in Strictly Reliable Mode

1. Open a blank VI and create an indicator of an array of doubles. Show the vertical scroll
bar of the array in the array properties, i.e., right-click in the array, select Properties and
check the Show Vertical Scroll Bar option.

2. Add an Advanced Create Reader subVI and fill in the parameters to create a Reader of dou-
bles, as shown in the following figure. Make sure you set the QoS profiles and the force-
ExclusiveReader? as shown in the following figure.

Advanced Reader Configuration
;

IMYTWEI typeMame

IBuiItinQu:usLiI::lExp::Generic.StrictReIiablel—t dataReaderQoS
domainParticipantJos

| forceExclusiveReader?

EITr in (o g
-
Default Valz.Reinit All

For details on the Create Advanced Writer subVI, see Chapter 6: Advanced Concepts and
Settings.

3. Optionally, add an Invoke note to call the method Reinitialize All to Default. This func-
tion resets all the controls and indicators in the VI to the default value. To include it, fol-
low this steps:

a. Find Reinitialize All to Default under Programming, Application Control.

b. Right click in the invoke node and go to Select Class, VI Server, VI, VL.

c. Click in the method label and navigate to Default Values, Reinitialize All to Default.
d. Connect it as shown in the previous figure.

4. Add a Read subVI inside a While Loop. Connect the
Read subVI to the Create Reader subVI. Set Only
New Samples to True. Then attach an unbundle
function to the DDS Sample Info cluster to check
whether the data is valid or not.

-
g

el Tualid]

ﬂ

For details on the Read subVI, see Reader (Section
A22).

4-34

Lesson 7—Reading All Samples (Reliable Communication)

5. If the data is valid, insert it in the array. Otherwise, ignore the data:

Array Array
FDEL] FDEL]

[If data, add it to Array|

=

m.
u]

6. Attach the exit of the If Case to the Loop Case. Then replace it with a shift register by right-
clicking on it and selecting Replace with Shift Register. Place the input shift register on
the left side of the loop and connect it as an input in the If Case as shown below.

It's important that
the reading rate is faster
than the writer one.

hd
T |
[T] &cﬁ”&:mp valid_data

Valid data = FALSE
means MO VALID DATA

4-35

Lesson 8—Debugging Your RTI Connext DDS Application

4.8

4.8.1

7. Add a Release Reader subVI and an Error Dialog. The final Block Diagram should look like
the following figure. Pay attention to the reading ratio, it needs to be faster than the
writer one or increase Reader History Depth in the XML Configuration File.

[than the writer one. Array

i 0
[MyType] pellame =
IBui\tinQosL\bExp::Geﬂeric.Stri(tReI\ab\el—t dataReaderQoS 0
domainParticipantQoS =
-| forceExclusiveReader?

0 Jjlo]
o [It's important that
0 the reading rate s fast
Advanced Reader Configuration ‘ ._! SIS S
"= h

T T S = o TR 1 S S W S

For details on the Release Reader subVI, see Reader (Section A.2.2).
8. Save it as Tutorial_Read_StrictReliable.vi.

9. Run the Reader and Writer. You will see how all the data transferred by the Writer arrives
at the Reader.

Lesson 8—Debugging Your RTI Connext DDS Application

In this lesson, you will become familiar with the RTI DDS Toolkit for LabVIEW QoS profiles and
debugging capabilities. RTI DDS Toolkit for LabVIEW provides several predefined QoS profiles.
You can see the contents of these profiles in the file:

C:/Program Files'/National Instruments/LabVIEW 20xx/vi.lib/_RTI DDS Toolkit for
LabVIEW_internal_deps/RTI_LABVIEW_CONFIG.documentationONLY.xml
(where 20xx depends on your LabVIEW version).

In this lesson, we will use two different debugging tools:
(J The administration panel to show internal messages about the current execution.
Debugging an Application Using the Administration Panel (Section 4.8.1)
[d The monitoring profile, which enables RTI Monitoring Library.
Adapting a VI to Use RTI Monitoring Library (Section 4.8.2)

For more details about RTI Monitoring Library, see the RTI website (www.rti.com/prod-
ucts/tools/index.html).

Debugging an Application Using the Administration Panel

Let’s begin by opening the Reader and Writer VIs creation in Lesson 1—Using DDS to Publish
and Subscribe to Simple Data (Numeric) (Section 4.1). We are going to get debugging messages
from them:

1. On 64-bit systems, the folder is “Program Files (x86)”

4-36

www.rti.com/products/tools/index.html
www.rti.com/products/tools/index.html

Lesson 8—Debugging Your RTI Connext DDS Application

4.8.1.1

Open the Administration Panel. Then in the Tools menu, select RTI DDS Toolkit for
LabVIEW, RTI DDS Administration Panel. For more details, see RTI DDS Toolkit
Administration Panel (for Windows Systems only) (Section 6.4.1).

Note: The Administration Panel may not work on RT Targets. If you want to read mes-
sages from a RT Target, you can deploy the VI described in Reading Logged Messages
(Section 6.4.2.6).

Run the VI.

3. Set the Filter Level to be DEBUG LEVEL. This will cause all messages with log level of

Debug or higher to appear in the Debugging table.

Press Update to commit the change in the filter level.

Now we need to generate some messages. Open the Reader and Writer VIs from Lesson
1—Using DDS to Publish and Subscribe to Simple Data (Numeric) (Section 4.1) and click
Run.

Go back to the Administration Panel. You will see the generated debugging messages in
the Debugging table:

Time Level Message

01:25:17 PM Tue01/26/2016 | DL Debug | LVDDS_WriterNode_create: Saving the WriterNode in the Instance Data Pir
01:25:17 PM Tue01/26/2016 | DL Debug | LVDDS_Whiterhlode_create: Data Writer created succesfully!

01:25.17 PM Tue01/26/2016 | DL Debug | LVDDS_DdsManager_sssert_ i ing the generic

01:25:17 PM Tue01/26/2016 | DL Debug | LVDDS_DdsManager_assert_datawriter: Creating the DataWriter

01:2517 PM Tue01/26/2016 | DL Debug | LVDDS_WriterNode_set_typecode: Wri setting the TypeCode

01:25:17 PM Tue 01/26/2016 | DL Debug | LVDDS_DdsManager_assert_participant: Asserted Participant with default QoS setting
01:25:17 PM Tue 01/26/2016 | DL Debug | LVDDS_WriterNode_create: Creating the WriterhNode

01:25:14 PM Tue 01/26/2016 | DL Debug | LYDDS_ReaderMode_create: Saving the ReaderNode in the Instance Data Ptr

01:25:14 PM Tue01/26/2016 | DL Debug | LVDDS_ReaderMode_create: Data Reader created succesfully!

01:25:14 PM Tue 01/26/2016 | DL Debug | LVDDS_DdsManager_assert_datareader: Narrowing the generic data reader.

Logging Messages Manually

Now that we can debug our application, let’s create our own debugging application. We are
going to modify the Writer VI from Lesson 1—Using DDS to Publish and Subscribe to Simple
Data (Numeric) (Section 4.1) to generate our own logging messages.

1.

Save the VI with a different name, such as DebuggingWriter.vi by selecting Save as... in
the File menu.

Add the Log New Message subVI from the Tools” Debugging subpalette in the Toolkit pal-
ette.

4-37

Lesson 8—Debugging Your RTI Connext DDS Application

. Create a Log Level control by right-clicking on the Log Level input in the Log New Mes-
sage VI. Then choose Create, Control.

. Add the Format into String function for building a debugging string. Our debugging
string will be Published the value x, where x is a double number. To do that:

a. Connect a string constant with the text Published the value at the initial value pin.
b. Connect a string constant with the text %lIf to the format string pin.
c. Wire the Published Value control to the input 1 pin.

d. Connect the resulting string to the Message input of the Log New Message subV], as
seen here:

100

lPublished the value | Log the message to the
T debugging table with the

published value,

Log Level

Published Value =

[DELH———+

Publish the data onto the

network using RTI DDS stop Writing

=

. Run the Writer VL.
6. Click on the Log Level control and select DEBUG LEVEL.

. Run the RTI DDS Administration Panel: from the Tools menu, select RTI DDS Toolkit
for LabVIEW, RTI DDS Administration Panel.

. Set the Administration Panel’s Filter Level to DEBUG LEVEL as explained in Debugging
an Application Using the Administration Panel (Section 4.8.1).

. Run this new VI and you will see these messages on the administration panel debugging
table. The output will be similar to this:

l PR wr rupes g

Debugging table
Time Level Message j
04:14:21 PM Wed 01/13/2016 | DL Debug | Published the value 0.512987

04:14:21 PM Wed 01/13/2016 | DL Debug | Published the value 0448052
04:14:21 PM Wed 01/13/2016 | DL Debug | Published the value 0.435065
04:14:20 PM Wed 01/13/2016 | DL Debug | Published the value 0435065
04:14:20 PM Wed 01/13/2016 | DL Debug | Published the value 0.428571
04:14:20 PM Wed 01/13/2016 | DL Debug | Published the value 0.279221
04:14:20 PM Wed 01/13/2016 | DL Debug | Published the value 0.272727
04:14:20 PM Wed 01/13/2016 | DL Debug | Published the value 0.201299
04:14:20 PM Wed 01/13/2016 | DL Debug | Published the value 0.201299
04:14:20 PM Wed 01/13/2016 | DL Debug | Published the value 0.162338 L‘

4-38

Lesson 8—Debugging Your RTI Connext DDS Application

4.8.1.2

4.8.2

Output Provided by RTI Monitor using Distributed Logger

If Distributed Logger is enabled, these messages have been sent through the network and they
can be received and shown in RTI Monitor as well.

RTI Monitor is included in RTI Connext DDS Professional. You can download a free trial from
http:/ /www.rti.com/downloads/index.html. For information about RTI Monitor, see http://
www.rti.com/products/tools/monitor.html.

To send these messages using Distributed Logger and receive them with RTI Monitor.

Enable Distributed Logger (see Configuration Section (Section 6.4.1.1) for details).
Open RTI Monitor and join to the domain in which Distributed Logger has been enabled.

Create a New Distributed Logger Panel (push this button: |:|).

Use the State and Controls tab to set the Filter Level to Trace. This allows you to receive
all these messages:

1.
2.
3. Select the current process from the list on the left.
4.
5.

I:‘ Distributed Logger Panel EBB
.; System > Host : barad-dur.rti.com > Process - 5440
J Messages T State and Controls T File Logger]

Find | Row Count 50 B View F\Iter:_Trace v

Seq.# ¥|Time | Level | Category | Message @
132 | 05/04/2016 03:14:23 222 PM | Warning LVDD:S_DdsManager_delete_topic: Unable to del... |4
131 | 05/04/2016 03:14:23 222 PM | Warning LYDDS_DdsManager_delete_datawriter: Unable t.. ™y
130 | 05/04/2016 03:14:23 222 PM | Debug LYDDS_DdsManager_delete_unused_entitiesl: D...
129 | 05/04/2016 03:14:23 222 PM | Warning LYDDS_DdsManager_unregister_type: Unable to ..
128 | 05/04/2016 03:14:23 222 PM | Warning LVDDS_DdsManager_delete_datawriter: Unable t.
127 | 05/04/2016 03:14:23 220 PM | Debug LYDDS_Writerhode_dispose: Cleaning Writer Mo...
126 | 05/04/2016 03:14:23 120 PM | Trace Published the value 0.000000
125 | 05/04/2016 03:14:23 020 PM | Debug Published the value 0.000000
124 | 05/04/2016 03:14:22 920 PM | Info Published the value 0.000000
123 | 05/04/2016 03:14:22 820 PM | Notice Publizhed the value 0.000000
122 | 05/04/2016 03:14:22 720 PM | Warning Published the value 0.000000
121 | 05/04/2016 03:14:22 620 PM | Error Published the value 0.000000 'q
120 | 05/04/2016 03:14:22 520 PM | Severe Published the value 0.000000
119 | 05/04/2016 03:14:22 420 PM | Fatal Publizhed the value 0.000000
118 | 05/04/2016 03:14:22 327 PM | Debug LYDDS_WriterMode_create: Saving the WriterMod...
117 | 05/04/2016 03:14:22 327 PM | Debug LYDDS_WriterMode_create: Data Writer created 5.
116 | 05/04/2016 03:14:22 327 PM | Debug LvDD:S_DdsManager_asser_datawriter: Narrowi...
115 | 05/04/2016 03:14:22 326 PM | Debug LYDDS_DdsManager_assert_datawriter: Gota co..
114 | 05/04/2016 03:14:22 326 PM | Debug LYDDS_WriterMode_set_typecode: WriterNode: s...
113 | 05/04/2016 03:14:22 325 PM | Debug LYDDS_DdsManager_assert_participant Asserte..
112 | 05/04/2016 03:14:22 325 PM | Debug LVDDS_\WriterMode_create: Creating the Writerl...
111 | 05/04/2016 03:14:10 222 PM | Warning LYDDS_DdsManager_delete_topic: Unable to del...
110 | 05/04/2016 03:14:10 222 PM | Warning LVDDS_DdsManager_delete_datawriter: Unable t.. |
109 [05/04/2016 03:14:10 221 PM | Debug LYDDS_DdsManager_delete_unused_entities: D... [¥

Message Details

Publication Sequence Number: 126

Time: 05/04/2016 03:14:23 120 PM

Level: Trace

Category:

Message:

Published the value 0.000000

Adapting a VI to Use RTI Monitoring Library

Let's begin by opening the Reader VI created in Lesson 2—Using Templates to Publish and Sub-
scribe to Complex Data (Clusters) (Section 4.2): Tutorial_Read_Cluster.vi. Or you can use the
solution to that lesson mentioned in Section 4.10.

4-39

http://www.rti.com/downloads/index.html
http://www.rti.com/products/tools/monitor.html
http://www.rti.com/products/tools/monitor.html

Lesson 8—Debugging Your RTI Connext DDS Application

4.8.2.1

1. Save the VI with a different name, such as MonitoringReader.vi, by selecting Save as...
in the File menu.

2. In the Block Diagram, change the qos profile input of the Create Reader subVI to
LabVIEWLibrary::MonitoringProfile.

Using Monitoring
Profile to debug

Domain Id

[}

Topic Mame
Type Name Advanced Reader Configuration # EE'I::

[IEFH HTET)

Key Name typeMarne F j
IE keyMame e -==s-=f: é L.
Qos Profile - dataReaderQo5Profile sl

|LabVIEWLibrary:MonitoringProfile |

complexType 2

G

error in (no error)
[Sask

3. Save the VI again.

Output Provided by RTI Monitor

Now that we have the Monitoring profile loaded in our VI, we can run RTI Monitor to debug our
application.

RTI Monitor is included in RTI Connext DDS Professional. You can download a free trial from
http:/ /www.rti.com/downloads/index.html. For information about RTI Monitor, see

http:/ /www.rti.com/products/tools/monitor.html.

Important: Your Path environment variable must include the location of the RTI Monitoring
Library DLL, rtimonitoring.dll, that is noted in Appendix D. Make sure you are not loading RTI
Monitoring Library from another location.

1. Start RTI Monitor; when prompted, join domain 0.

2. Run the original Tutorial _Read_Cluster.vi. This example does not enable the monitoring
libraries, so Monitor will not show useful information. The following snapshot shows the
output from Monitor when the monitoring libraries are not enabled.

J‘mm]Wime-| .| L
33 o 3 Batim> bost Monofcom > Eracess 7373 » e

(Enity DHvmenn - Tioe Daspiay Mode: s Bassc) deanosd
v A, spmem |
» M My_compoter i Jeformarne
* SlPracens |o=7am2 iraian LT
* & DomaenPaticieant | 0| ENTITY] WLind1 Uit
(irpTae Peinsa
« [Ofer_computer
Cnrakd Samac
Samgple Deaizten Hearftmal Brateiyss
Receresd Cogrt e sl gl
Receivd Byles e B
Cosphicaten Crunt DNy Faomt
Eoopirestes Bites E:B-"‘"
Filleraa Lot l:!m:“l
Fimasard Brid [
b e Coart Piatx (il
D ey Sawaancs
Samypile Babisticy Hensiivenl Satisiocs
Pushad Comrt Heareal Count
Hustta bas
r'unw:nru- it
g ot Gag Bytes
Fuied Byies s Cound
Filured Coantt Ak Byl
Hack Coamt
F:
g Briey hack Butat
Reecied Cogrd g Windom ew

3. Stop Tutorial_Read_Cluster.vi and make sure that all the entities are released. To do so,
close all VIs containing RTI DDS Toolkit for LabVIEW subVlIs. You can also run the Release

4-40

http://www.rti.com/downloads/index.html
http://www.rti.com/products/tools/monitor.html.

Lesson 8—Debugging Your RTI Connext DDS Application

Unused Entities subVI ten seconds after stopping all the VIs running in the same domain
as Tutorial_Reader_Cluster.vi.

. Run MonitoringReader.vi and go back to Monitor. Now you can see more information
such as the topic name, the number of subscribers and publishers, the QoS profile, etc.

L3 Lol '
LX) B
* L, Spsen
v [y compatw
¥ [Procann 07T

v A DomainPatcipant | O ENTITY]

1 _ P
* (S ey

]

) mam_bioexing_ b

7 asiAcwAsagemenSing
= [seansance_ordet
» [hisary
= [resoerce_mas
* @ uner_data

5 vt
v [swnanitg

s et
= [wne_taned_ ke

% manermum_ssgparaion
= [reaer_cuta_Wecrcie
* [boe,_conuntncy

L g
o [PR _paRue_kiven
= [l peoicond
* (@ anape_nssscion

T weabied_ranagorta
" E"“-"

- Wik

|-l st

ODagiang

AUTOUATC LVELMESS 008
e

BEST_EFFORT_RELISBLITY_ 009
130 el rongy
PROTOCOL_ACKNOWLEDGEMENT oDl

BHERED_ChAERSHF_ Q0%

00 spoanse

Ao _TPE_COERCION

s

4-41

Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)

4.9

Lesson 9—Using RTI DDS Toolkit on NI Targets (CRIO-9068

Example)

1. Make sure the cRIO is up and running. You can use NI MAX to do so.

g{l NI-cRIC-9068 - Measurement & Autemation Explorer

File Edit View Tools Help
4 E1 My System
>[5l Data Neighborhood
. &' Devices and Interfaces
> 44 Scales
> & Software
> [i] V1 Drivers
4 B3 Remote Systems
[NI-cRI0-0068

(D Restart |

3 Refresh | £ SetPermissions = LogIn

System Settings

Hostname NI-cRIQ-9068

IP Address 0.0.0.0 (Ethernet)
0.0.0.0 {Ethernet)

DNS Name NI-cRIO-9068

Vendar National Instruments

Model cRIO-9068

Serial Number

Firmware Revision 1.0.1f0
Operating System
Status Connected - Running
System Start Time 10/6/2014 5:22:18 PM

Comments

Locale English

Startup Settings

Safe Mode

Console Qut

IP Reset

Disable RT Startup App
Disable FPGA Startup App

Enable Secure Shell Server
(sshd)

OooEO

' g Help|

System Settings ‘ EF Network Setting Time Settings

NI Real-Time Linux-ARMv7-A 3.2.35-rt52-1.0.0f1

m

Update Firmware

+= Connected - Running

E Back

LabVIEW Real-
Time Target
Configuration

Complete the folloving
steps to configure your
remote system for use
with the LabVIEW Real-
Time Module. For a
more complete
explanation of these
steps, refer to the
LabWIEW Real-Time
Target Configuration
Tutorial.

into LabVIEW
me

2. Configure Network
Settings

3. Install Software
4. Confiqure 1/0

5. Confiqure System
Settings

6. Configure Time
Settings

7. Transfer User Files

When you complete
these steps, your
remote system is ready
to be targeted from
LabVIEW Real-Time.

%I Submit feedback
on this topic.

S

ni.com/support for
technical support.

2. Follow the installation instructions in Installing RTI DDS Toolkit for LabVIEW Support
Files on a Target (Section 1.2.1).

4-42

Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)

3. Create an empty project in LabVIEW by choosing File, New Project or File, Create Proj-

ect, depending on your LabVIEW version.

[} Untitled Project 1 - Project Explorer i [E=NEER™=)
File Edit View Project Operate Tools Wimiow Help
[t S % IECYEEY |

Items | Files |

- & Project Unfitled Project 1
£ B My Computer
i~ % Dependencies
’% Build Specifications

4. Right-click the top-level project item in the Project Explorer window, seen in blue in the
above image. Select New, Targets and Devices from the shortcut menu to display the

Add Targets and Devices dialog box.

2 Add Targets and Devices on Untitled Project 1

Targets and Devices
i@ Existing target or device

(0) Discover an existing target(s) or

(7) New target or device

address
0.0.00

device(s)

(@ Specify a target or device by IP address

_Target and Device Types

- fath cRIO-9030
cRIO-9031
cRIO-9033
- fath cRIO-9034
- fath cRIO-9038
- [} cRI0-9066
cRIO-9067
cRIO-9072
cRIO-9073
cRIO-9074
cRIO-9075

-9 cR10-9081

4 | i

m

3

[Refresh ”

OK ” Cancel ”

Help

]

5. Select Existing target or device and Specify a target or device by IP address. Set the cor-
rect IP address. Select your device from the list. You can find a list of supported platforms
in the 'Supported Platforms' section of the Release Notes. Click OK.

Note: To use the "Discover an existing target(s) or device(s)" option, your host machine

must be in the same subnet as your target.

4-43

Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)

6. Right-click on your new target and select New, VI. You can also add an existing one by

selecting Add, File....

File

(% Untitled P | * (] o]

Edit View Project Operate Tools Window Help

ltems | Files |

= &l Project: Untitled Project 1
= B My Computer

S Dependencies

= Build Specifications

W@ Chassis (cRIO-9068)
S Dependencies
= Build Specifications

VI

Add D Virtual Folder
Connect f_:ntlol
Disconnect VI Taz
Utilities 3

/O Server
Deploy Class
Deploy All Web Service
Find Project Itemns... Targets and Devices...
Arrange By »
Expand All
Collapse All
Remove from Project
Rename... F2
Help...
Properties

7. Create your application using RTI DDS Toolkit for LabVIEW as mentioned in the previous
lessons. Save it and the project.

8. Once you are finished, run your VI as usual by clicking on the white arrow.

File

Edit View Project Operate Tools Window Help

>

Untitled Project 1/RT CompactRIO Target| «

@[] [15pt Applction Fort |- [7]

4-44

Reviewing Completed Solutions

9. LabVIEW will show the Deployment Progress window and will send the VI to your tar-
get. This process may take a while, depending on your VI's complexity.

"EF Deployment Progress A A—==n | s<

Deployment Status

Initializing...

Calculating dependencies...

Checking items for conflicts. This operation could take a while...

Deployment Progress

[7] Close on successful completion Close Cancel
\ d

Note: If you get an error related to not being able to find rtilvdds.dll, reinstall the RTI
DDS Toolkit for LabVIEW cRIO support files.

10.Once deployed, you will see a window like this:

Deployment Status

e e e e e o P o=y
Deploying XDNodeRunTimeDep.Ivlib(already deployed)

Deploying XDNedeRunTimeDep.vlib:nitl_modes.ctl(already deployed)
Deploying XDNodeRunTimeDep.Ivlib(already deployed)

Deploying XDNodeRunTimeDep.Ivlib(already deployed)

Deploying XDNodeRunTimeDep.vlib:wakeup.ctl{already deployed)
Deploying XDNodeRunTimeDep.vlib:timing_clust.ctl (5.61 K)
Deploying Sum.vi (14.28 K)

Deploying Tutorial.lvproj

Deployment completed successfully

.|

1

Deployment Progress

Free Memory: 403240 K of 497092 K Total (81%)

[7] Close on successful completion Close Cancel

11. Click Close and work with your VI as you normally would.

4.10 Reviewing Completed Solutions

You can find completed solutions to many of the lessons in this chapter here:
(d Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric) (Section 4.1)
\LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\Examples\NumberDemo

[d Lesson 2—Using Templates to Publish and Subscribe to Complex Data (Clusters) (Sec-
tion 4.2)

\LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW \Examples\ClusterDemo
(J Lesson 3—Filtering Data (Section 4.3)
\LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW \Examples\ClusterDemo

4-45

Reviewing Completed Solutions

[J Lesson 4—Reading Only New Samples (Section 4.4)

\LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\Examples\ClusterDemo
(d Lesson 5—Using Keyed Types (RTI Shapes Demo) (Section 4.5)

\LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\Examples\ShapesDemo
(J Lesson 7—Reading All Samples (Reliable Communication) (Section 4.7)

\LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\Examples\Read AllDemo
(J Lesson 8—Debugging Your RTI Connext DDS Application (Section 4.8)

\LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\ Examples\LogMessagesDemo
\LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\Examples\MonitoringDemo
(d Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example) (Section 4.9)

\LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\cRIO-9068Project
(Note: This project is compatible with LabVIEW 2013 and higher)

There is also a GitHub repository with several LabVIEW examples. This repository includes
examples that demonstrate single features, as well as real-world examples. The link to the
GitHub repository is: https:/ /github.com/rticommunity/rticonnextdds-labview-examples.

4-46

https://github.com/rticommunity/rticonnextdds-labview-examples

Chapter 5 Loading Quality of Service Profiles

This chapter describes how to load personalized QoS profiles in RTI DDS Toolkit for LabVIEW.

QoS profiles provide a way to configure your DDS application and define most aspects of the
DDS paradigm and the underlying communication mechanisms.

(d RTI DDS Toolkit for LabVIEW includes a set of predefined QoS profiles. These profiles
solve general use-cases such as a Reliable Communication or including RTI Monitoring
Library. These profiles are embedded in RTI DDS Toolkit for LabVIEW and cannot be mod-
ified. You can inherent from them.

For your convenience, you can find an XML file that shows you these profiles in C:/Pro-
gram Files!/National Instruments/LabVIEW 20xx/vilib/_RTI DDS Toolkit for
LabVIEW_internal_deps/RTI_LABVIEW_CONFIG.documentationONLY.xml (where
20xx depends on your LabVIEW version). As the filename suggests, this file is for docu-
mentation purposes only. This file is not loaded by the RTI DDS Toolkit for LabVIEW, so
updating it will not affect the embedded QoS profiles.

(d RTI Connext DDS also includes several predefined QoS profiles. You can use these
directly from LabVIEW as starting points when creating your own QoS profiles. To
access these builtin profiles, use their library name and profile name (for instance, Built-
inQosLib::Generic.Monitoring.Common). For more information, consult the RTI Connext
DDS Core Libraries User’s Manual (see the chapter on Configuring QoS with XML).

For information on the format and contents of a QoS profile, consult the RTI Connext DDS Core
Libraries User’s Manual (see the chapter on Configuring QoS with XML).

The provided profiles are illustrative and might not fulfill all the desired functionalities. To
adjust them to your needs, you can create your own XML configuration file (for instance,
USER_QOS_PROFILES.xml). You can define several libraries and profiles in each unique XML
file, then refer to their names in subVI calls. For instance, LabVIEWLibrary::DefaultProfile ref-
erences the DefaultProfile, which you can see in RTI_LABVIEW_CONFIG.documentation-
ONLY.xml.

Once you have defined your desired QoS settings and stored them in a file (or files), RTI DDS
Toolkit for LabVIEW will load the settings automatically if you point it to the correct file; there are
two ways to do this. We strongly recommend the first approach, which provides a more versa-
tile solution.

1. On 64-bit systems, the folder is “Program Files (x86)”

5-1

[Environment variable NDDS_QOS_PROFILES (recommended):

You can define the environment variable NDDS_QOS_PROFILES and have it point to the
XML file that you want to load. You can specify multiple locations for a single XML doc-
ument via URL groups. The syntax of a URL group is: [URL1 | URL2 | URL2 | ... |
URLn].

For example:

[file://C:/DDS_config/USER_QOS_ PROFILES.xml |
file://C:/DDS_config/ alternative default_ dds.xml]

(J Working directory (not recommended):

You can save a file called USER_QOS_PROFILES.xml in the working directory of Lab-
VIEW.

The working directory in LabVIEW depends on the application kind. If you are running
a VI from LabVIEW, the working directory is the one where the LabVIEW.exe file is, such
as C:/Program Files (x86)/National Instruments/LabVIEW 2012/. However, if your
application is an independent one, it will use the Run-Time Engine to execute and the
working directory will be C:/Program Files (x86)/National Instruments/Shared/Lab-
VIEW Run-Time/2012/.

5-2

Chapter 6 Advanced Concepts and Settings

6.1

This chapter explains some advanced concepts and describes how to configure advanced
parameters in RTI DDS Toolkit for LabVIEW.

When configuring an RTI Connext DDS application, there are many parameters that allow you to
customize your application. Some of them can be configured by executing using QoS profiles
(see Chapter 5: Loading Quality of Service Profiles). Others need to be configured at compile
time, such as the topic name and domain ID.

When using RTI DDS Toolkit for LabVIEW, you can decide to hide some of that customization to
simplify your application, or adapt your settings to match your needs. The first approach
requires you to use the Simple Create subVIs.! These subVIs only need the mandatory parame-
ters needed for the creation of DataReaders and DataWriters: domain id, topic name and data

type.

LVDDS _library.lvlib:Simple Create Writer.vi LVDDS _library.lvlib:5imple Create Reader.vi
domain id ref num domain id T ref num
2z . “le
topic name ~* ;- y topic name - ;- ¥
data type - error out data type - error out

error in (no error) errar in (no error)

The second approach is to use a more versatile create subVI: Advanced Create Reader/Writer. In the
following sections we will explain the different parameters that can be provided to customize
your application.

Default Configuration: DDS Entities Created by Simple Create
subVis

RTI DDS Toolkit for LabVIEW has been designed to reduce the number of DDS Entities created
and, therefore, minimize the memory and CPU overloads. For example:

(d Only one DomainParticipant is created per domain.
(d The implicit Publisher and Subscriber are reused, avoiding the creation of new ones.

(d Only one DataReader/DataWriter is created per Topic.

1. When creating complex-type Readers and Writers, you will need to use the Simple Create Reader/Writer Tem-
plates that can be found in the Function palette: Data Communication, RTI DDS Toolkit for LabVIEW, Complex-Type
Templates.

6-1

Default Configuration: DDS Entities Created by Simple Create subV1Is

When you call the Simple Create subVIs or templates, we internally search for an existing
DomainParticipant in the domain, an existing Topic with the correct topic name, and an existing
DataReader or DataWriter of the correct data type.

As an example, consider this scenario.

/E LabVl EW\ Domain Participant

—

Topic

Data
Writer

Creates new —_—

Asserts (reuses) —..—., >

First we create a Writer VI. Internally, we are creating a DomainParticipant (1), a Topic, and a
DataWriter (2). Then, if we create a Reader VI in the same LabVIEW instance, the DomainPartic-
ipant and the Topic are reused (3) and only a DataReader is created (4). When a second or third
DataReader VIs are created, the DomainParticipant (5), the Topic AND the DataReader are
reused (6). This way, all Reader VIs share the same queue.

For most applications, this configuration is sufficient. However, there are several considerations
when using shared Entities that may force you to create additional ones:

1 If you set the flag ONLY_NEW_SAMPLES to 'true' when reading, only one of the Reader
nodes will get the data. This is due to all the Readers sharing the same DataReader.

(J Shared DataReaders use 'read’ instead of 'take' when getting new data. This prevents
shared DataReaders from using Strict Reliable QoS profile.

O If your application have several Writer nodes for the same Topic, the DataWriter
resources need to be adapted to handle the data produced by all the Writer nodes.

(J If you need to create DomainParticipants, DataReaders or DataWriters with different
QoS properties, you will need to use the Advanced Create subVIs and force the creation
of those Entities.

(J If you need to set different transport properties, you will need to create different
DomainParticipants.

Take into account that having a larger number of DDS Entities requires more resources and will
affect performance. So we strongly recommend that you avoid using additional entities when-
ever possible.

6-2

How to Configure Advanced Writer Settings

6.2

How to Configure Advanced Writer Settings

In the Writer subpalette you can find an Advanced Create Writer.? This subV1 is similar to the Sim-
ple Create Writer, but it has an additional parameter: the Advanced Writer Configuration cluster.
You can find this cluster in the Control Palette: Addons, RTI DDS Toolkit for LabVIEW, Types,
RTI DDS Advanced Writer Configuration.

Advanced Create Writer.vi
advanced writer configuration
domain id ref num
topic name
error out

data type
error in (no error)

As you can see in this figure, the cluster allows you to config-

. Advanced Writer Configuration
ure the following parameters:

Ma
(d typeName: Name used to register the type in the wire. Lo
If this parameter is not provided, a default one is I
assigned (see default values in Appendix C). keyName
[keyName: List of fields of a data type that will be I
marked as key (see Lessons 5 and 6 of the Chapter 4, domainParticipant(o5Profile
Tutorial). |
[domainParticipantQoSProfile: Fully qualified name dataWriterQoSProfile

(Library::Profile) that will be used as QoS profile when I
creating the DomainParticipant. If there is an existing
DomainParticipant in the domain and no new Domain-
Participant is forced (forceNewDomainParticipant C b
equals false), this setting has no effect. Therefore, the
DomainParticipant QoS properties remain unchanged.

(J dataWriterQoSProfile: ~ Fully qualified name Q _
(Library::Profile) that will be used as QoS profile when forcenboundedstring?

creating the DataWriter. C p§

(J forceNewDomainParticipant?: If this flag is true, a new
DomainParticipant is created even if a valid one existed for the domain. This may affect
the performance.’

forceMewDomainParticipant?

forceArrayMapping?

(J forceArrayMapping?: By default, LabVIEW arrays are mapped as DDS sequences. If you
need your data to use DDS arrays, set this flag to true. This will affect to all LabVIEW
arrays in the data.

(d forceUnboundedString?: By default, strings are created with a length of 1024 characters.
If this flag is set to true, all strings are created as unbounded (their maximum length cor-
responds to the maximum 32-bit integer). This configuration optimizes the sample size,
sending only the actual data while removing the 1024-character limitation in previous
versions of the RTI DDS Toolkit for LabVIEW. This will affect all strings in the data.

2. For complex types, use the Advanced Reader Template in the function palette: Data Communication, RTI DDS
Toolkit for LabVIEW, Complex-Type Templates.

3. Read this article on the creation of multiple DomainParticipants: http:/ /community.rti.com/best-practices/cre-
ate-few-domainparticipants-possible

6-3

http://community.rti.com/best-practices/create-few-domainparticipants-possible
http://community.rti.com/best-practices/create-few-domainparticipants-possible

How to Configure Advanced Reader Settings

6.3

How to Configure Advanced Reader Settings

In the Reader subpalette, you can find an Advanced Create Reader.* This subVI is similar to the
Simple Create Reader, but it has an additional parameter: the Advanced Reader Configuration clus-
ter. You can find this cluster in the Control Palette: Addons, RTI DDS Toolkit for LabVIEW,
Types, RTI DDS Advanced Reader Configuration.

Advanced Create Reader.vi
advanced reader configuration
domain id ref nurm
topic name "
data type rroer ou

error in (no error)

As you can see in the figure, the cluster allows you to configure the following parameters:

Advanced Reader Configuration

typeMame

keyMame

domainParticipantQoSProfile

dataReaderQoS5Profile

forceNewDomainParticipant?

(

forcefrrayMapping?

{

forceExclusiveReader?

(

forceRead? (only ExclusiveReader)

{

forceUnboundedString?

{

[d typeName: The name used to register the type in the wire. If this parameter is not pro-
vided, a default one is assigned (see default values in Appendix C).

(J keyName: List of fields in a data type that will be marked as key (see Lesson 5—Using
Keyed Types (RTI Shapes Demo) (Section 4.5) and Lesson 6—Used Nested and Multiple
Keys (Section 4.6)).

4. For complex types, use the Advanced Reader Template in the function palette: Data Communication, RTI DDS
Toolkit for LabVIEW, Complex-Type Templates.

6-4

How to Debug an RTI Connext DDS LabVIEW Application

6.4

(J domainParticipantQoSProfile: The fully qualified name (Library::Profile) that will be
used as the QoS profile when creating the DomainParticipant. If there is an existing
DomainParticipant in the domain and no new DomainParticipant is forced (forceNew-
DomainParticipant equals false), this setting has no effect. Therefore, the DomainPartici-
pant QoS properties remain unchanged.

(] dataReaderQoSProfile: The fully qualified name (Library::Profile) that will be used as
the QoS profile when creating the DataReader.

(d forceNewDomainParticipant?: If this flag is true, a new DomainParticipant is created
even if a valid one existed for the domain. This may affect performance.’

[forceArrayMapping?: By default, LabVIEW arrays are mapped as DDS sequences. If you
need your data to use DDS arrays, set this flag to true. This will affect all LabVIEW arrays
in the data.

[d forceExclusiveReader?: By default, Reader Nodes of the same topic (and with the same
QoS profile) share a DataReader. To avoid this behavior, set this flag to true and a new
DataReader will be created. If you need all your Reader Nodes to have their own
DataReader, make sure all of them are created setting this flag to true.

(J forceRead?: By default, exclusive Readers call to the function take when getting the data.
This allows you to use Strict Reliable QoS profile. If you want to use read instead, set this
flag to true.

(J forceUnboundedString?: By default, strings are created with a length of 1024 characters.
If this flag is set to true, all strings are created as unbounded (their maximum length cor-
responds to the maximum 32-bit integer). This configuration optimizes the sample size,
receiving only the actual data while removing the 1024-character limitation in previous
versions of the RTI DDS Toolkit for LabVIEW. This will affect all strings in the data.

If you need to use Strict Reliability QoS profile, make sure your Reader node is exclusive and for-
ceRead is set to false (the default value).

How to Debug an RTI Connext DDS LabVIEW Application

In the Tools” DDS Debugging subpalette you can find several subVlIs to debug your application.
All applications that use the RTI DDS Toolkit for LabVIEW will create log messages that can be
read from the queue in which they are stored. These messages are composed of three parame-
ters:

1. Timestamp, which is the date and time when the message was logged. It is automatically
taken from the system clock.

2. Log Level, which is an indicator of the severity of the message. The available levels, from
highest severity to lowest are:

e Fatal
® Severe
® FError

® Warning

5. Read this article on the creation of multiple DomainParticipants: http://community.rti.com/best-practices/ cre-
ate-few-domainparticipants-possible

6-5

http://community.rti.com/best-practices/create-few-domainparticipants-possible
http://community.rti.com/best-practices/create-few-domainparticipants-possible

How to Debug an RTI Connext DDS LabVIEW Application

6.4.1

® Notice

e Info

® Debug

® Trace

® Silent: This level means that the message will never be stored on the queue.

3. Message, which is a string containing useful information.

Time Level Message
12:23:19 PM Tue 11/03/2015 DL Fatal This is a Fatal test message,

As mentioned before, all messages are stored in a queue. In addition to the automatically gener-
ated messages, you can create and store your own messages (see Logging Messages from Lab-
VIEW (Section 6.4.3)). The queue has associated two configuration parameters:

[Filter Level. Messages with a log level less severe than this Filter Level are not logged.
Default value: Warning level.

[Maximum number of elements. If a new message is added to the queue and it is full, the
oldest message is deleted. Default value: 512 elements.

Let’s see how the filter level restriction works with an example: the filter level is Warning Level
and my application stores the following messages:

[Message 1 with Error level. It is logged.
[Message 2 with Warning level. It is logged.
(d Message 3 with Debug level. It is not logged.
Which kinds of messages can be logged?
There are three different ways to log new messages into the queue:

(d From the internal RTI Logger.
These messages are automatically generated by the internal DDS functionality.

(d From RTI DDS Toolkit for LabVIEW.
These messages are generated for the LabVIEW integration with DDS.

[Explicitly from your LabVIEW application.
These messages are generated manually using the subVI Log New Message.vi (Logging
Messages from LabVIEW (Section 6.4.3)).

However, once they are in the queue, all messages are treated equally.

RTI DDS Toolkit Administration Panel (for Windows Systems only)

The RTI DDS Toolkit Administration Panel is a set of subVIs which allow to administer your
DDS applications running on LabVIEW. Furthermore, it shows diverse DDS information or
debugging messages.

The Administration Panel is only supported on Windows systems. This VI uses System Events,
which are not supported on Real-Time (RT) targets; therefore the VI is not supported on RT tar-
gets. For details on how to debug RT targets, see Debugging SubVIs on Real-Time Targets and
Windows Systems (Section 6.4.2).

6-6

How to Debug an RTI Connext DDS LabVIEW Application

You can open the Administration Panel from the Tools menu (RTI DDS Toolkit for LabVIEW,
RTI DDS Administration Panel).

File Operate

Help

L

Let’s take a look at the Administration Panel:

M, t 8 A ion Expl

Instrumentation

Real-Time Module

Merge
Security
User Name...

Convert Build Script...
Source Control
VI Analyzer

LLB Manager...

Import

Shared Variable

Distributed System Manager

Find VIs on Disk...

Prepare Example VIs for NI Example Finder...

Remote Panel Connection Manager...
Web Publishing Tool...

Actor Framework Message Maker...
Control and Simulation

Create Data Link...

| Recert Vis - =

RTl Connext DDS Read Double Example vi
RTI Connext DOS Monitoring Reader.vi

simpler_reproducer_|V2014.vi

RTI DDS Administration Panel...

reproducer_subcrber vi e
reproducer_LV2014.vi
DDS test.vi
DD Slnit vi b
and Support ; @ Welcome to LabVIEW
discussion forums or Leam to use LabVIEW and upgrade

Level

Message

DL Debug

LVDDS_ReaderMode_create: Saving the ReaderMlode in the Instance Data Pir

DL Debug

LVDDS_ReaderMode_create: Data Reader created succesfully!

DL Debug

LVDDS_DdsM: _assert_ ing the generic data reader.

DL Debug

LVDDS_DdsM: _assert_ds der: Creating the DataRead

DL Debug

LVDDS_ReaderNode_set_typecode: ReaderNode: setting the TypeCode

DL Debug

LVDDS_DdsManager_assert_participant: Asserted Participant with default QoS selting

DL Debug

LVDDS_ReaderMNode_create: Creating the ReaderMode

DL Debug

LVDDS_Writerblode_create: Saving the WriterMode in the Instance Data Pir

DL Debug

LVDDS_Writerblode_create: Data Wiiter created succesfully!

DL Debug

LVDDS_DdsManager_assert_d

ing the generic D

(d The Configuration section allows you to modify the internal behavior of the toolkit and
the Administration Panel itself.

(J The DDS state cluster shows information about the internal DDS entities created using
the RTI DDS Toolkit for LabVIEW.

(d The Debugging table prints the messages stored in the internal logging queue.

How to Debug an RTI Connext DDS LabVIEW Application

6.4.1.1

Configuration Section

This part of the Administration Panel lets you modify differ-
ent data:

Administration panel refresh period (ms)

Caonfiguration Section

"\I—
(J Administration panel refresh period: Refreshing E :
time to update the shown data. Default: 100 ms. Local Logger | Distributed Logger |
Note: The following values will not be updated until
you press the Update button. s e e s
\;,:|512

(d Logger Tab Menu:

window enabled?

® Local Logger Tab: All the information about the Is Deb

Local Logger: D)

® Max number table rows: The maximum num-
ber of table rows, as well as the maximum

queue size. Default: 512 elements. There are Timeout to delete inactive DDS entities (s}
different actions depending of the value of this 5}|10
parameter: Filter level

WARNING LEVEL <

® If 0: The internal queue is deleted.

® If positive and larger than the previous one:
Increase the top queue limit.

Update

® If positive and lower than the previous one:

Delete the oldest elements until the size reaches the new maximum size.

¢ Is debugging window enabled?: Allows you to enable/disable the “old” debug-

ging window shown by LabVIEW. Default: disabled.

If you enable the Debugging window, messages will be printed in both the debug-

ging table (an internal queue) and the debugging window.

Note: The order in which the messages are presented is not the same in these two
windows. In the Debugging window (right), the new messages are printed in

order (oldest on top), while in the Debugging table (left),

the new messages are

printed in reverse order (newest on top), as you can see below:

' — I

Debugging table

Time Level Message

43 Debugging window

12:38:26 PM Wed 01/13/2016 | DL Debug Saving the WriterNode in the Instance Data Ptr

12:38:26 PM Wed 01/13/2016 | DL Debug Data Writer created succesfully!

12:38:26 PM Wed 01/13/2016 | DL Debug LVDDS_DdsManager_assert_datawriter: Narrowing the generic DataWriter.
12:38:26 PM Wed 01/13/2016 | DL Debug LVDDS_DdsManager_assert_datawriter: Got a compatible DataWriter

ELCOME TO THE DEBUK
g RTI Connext DI

™

12:38:26 PM Wed 01/13/2016 | DL Debug | WriterNede: setting the TypeCode
12:38:26 PM Wed 01/13/2016 | DL Debug LVDDS_DdsManager_assert_participant: Asserted Participant with default QoS setting
12:38:26 PM Wed 01/13/2016 | DL Debug Creating the WriterNode

Full message Click on a message to visualize its full content.

LVDDS_DdsManager_assert_datawriter: Got a compatible DataWriter -

The Debugging window is a tool for printing text information from a LabVIEW
application. On Windows systems, the Debugging windows looks like the above
figure. However, on NI Linux systems, setting this boolean parameter to True

enables messages to be logged to the console out port.

® Distributed Logger Tab: Distributed Logger will be created with the current values of
these parameters when you press Update. Then the parameters will be grayed out. To
modify these values, first you need to disable Distributed Logger (and click Update).

6-8

How to Debug an RTI Connext DDS LabVIEW Application

6.4.1.2

® Distributed Logger DomainParticipantQoSProfile: The QoS Profile that will be
used by the Distributed Logger DomainParticipant. This should follow the next
pattern Library::Profile. The default QoS profile will be used if the DomainPartici-

pantQoSProfile is empty.
¢ Distributed Logger DomainParticipant ID: The domain ID to be used when creat-
ing the next Distributed Logger DomainParticipant. The default is 0.

e Distributed Logger Queue Size: The number of messages Distributed Logger will
be able to store without dropping any of them. The default is 512 (the same default
as Max number table rows).

® Enable Distributed Logger: Allows you to enable/disable Distributed Logger.
Note: Disabling Distributed Logger will delete all the internal DDS entities that have

been created, so it could take a while.

Local Logger Distributed Logger l | Local Logger Distributed Logger

DistributedLogger DomainParticipantCoSProfile DistributedLogger DomainParticipantQoSProfile
Distributed Logger DomainParticipant ID Distributed Logger DomainParticipant ID

"\'I .

UIG of 0
Distributed Logger Queue Size Distributed Logger Queue Size

;J:|512 4512

Enable Distributed Logger Enable Distributed Logger

- -

[d Timeout to delete inactive DDS entities: Delay (in seconds) that internal DDS entities
are kept as “active” after releasing them. After this period, the next release call will defi-
nitely delete them. If you set it to 0, DDS entities will be deleted as soon as Release subVIs
are called. Default: 10 seconds.

[Filter level: Determines the minimum log-level that messages must have in order to be
added to the internal queue. The default value is WARNING LEVEL.

DDS State Info
This cluster shows the entities created by the RTI

DDS Toolkit for LabVIEW, as well as the internal DDS oDs stte
entities: Last number of LabVIEW DDS Nodes |2
[Last number of LabVIEW DDS Nodes: Current number of LabVIEW DDS Nodes |0
Number of nodes (Readers and Writers) that Peak number of LabVIEW DDS Nodes |9
were created in the last execution. Nurmber of DomainParficipants J1
[Current number of LabVIEW DDS Nodes: Number of DataReaders |1
Number of nodes (Readers and Writers) that Mumber of DataWriters |1
are currently running in the system. Mumber of Topics |1

[Peak number of LabVIEW DDS Nodes:
Maximum number of nodes that has been created in the current execution.

(d Number of DomainParticipants: Number of DDS DomainParticipants currently active.
[Number of DataReaders: Number of active DDS DataReaders.
[Number of DataWriters: Number of active DDS DataWriters.

A
)

How to Debug an RTI Connext DDS LabVIEW Application

(d Number of Topics: Number of active DDS Topics.

6.4.1.3 Debugging Table

This table prints the logged messages stored in the internal queue. There are several actions are
available to manage this table:

[Clear Table: Deletes all the printed information.

[Save as... : Saves the current state of the debugging table.

[Clicking on a cell: Shows the message contained on the pressed cell in the “Full mes-

sage” box.
Save as.. | Clear table ‘
Debugging table
Time Level Message I
01:25:17 PM Tue 01/26/2016 DL Debug LVDDS_WriterMNode_create: Saving the WriterNode in the Instance Data Ptr
01:25:17 PM Tue 01/26/2016 DL Debug LVDDS_WriterMode_create: Data Writer created succesfully!
01:25:17 PM Tue 01/26/2016 DL Debug LVDDS_DdsManager_assert_datawriter: Marrowing the generic DataWriter.
01:25:17 PM Tue 01/26/2016 DL Debug LVDDS_DdsManager_assert_datawriter: Creating the DataWriter
01:25:17 PM Tue 01/26/2016 DL Debug LVDDS_WriterMNode_set_typecode: WriterMode: setting the TypeCode
01:25:17 PM Tue 01/26/2016 DL Debug LVDDS_DdsManager_assert_participant: Asserted Participant with default QoS setting
01:25:17 PM Tue 01/26/2016 DL Debug LVDDS_WriterMNode_create: Creating the WriterNode
01:25:14 PM Tue 01/26/2016 DL Debug LVDDS_ReaderMode_create: Saving the ReaderMNode in the Instance Data Ptr
01:25:14 PM Tue 01/26/2016 DL Debug LVDDS_ReaderMode_create: Data Reader created succesfully!
01:25:14 PM Tue 01/26/2016 DL Debug LVDDS_DdsManager_assert_datareader: MNarrowing the generic data reader. L‘
Full message Click on a message to see its full content.
LVDDS_DdsManager_assert_datareader: Narrowing the generic data reader. &
STOP

6.42 Debugging SubVls on Real-Time Targets and Windows Systems

As mentioned in Section 6.4.1, the Administration Panel is not supported on RT Targets. Instead,
you can use the following subVlIs to debug and administer RTI DDS applications deployed on
RT targets. These subVlIs are in the DDS Debugging subpalette under the Tools category. For
Windows applications, you can use the Administration Panel, as well as the following subVlIs.

6.4.2.1 Get Configuration Parameters

This subVI returns the current configuration parameters explained in Configuration Section

(Section 6.4.1.1):

[Timeout to delete inactive DDS entities

[Filter level

(d Maximum size of the local queue

(J Is debugging window enabled?

6-10

How to Debug an RTI Connext DDS LabVIEW Application

These parameters are global to all RTI DDS Toolkit for LabVIEW VIs and remain the same as long
as rtilvdds.dll is loaded in memory.

LVDDS_library.lvlib:Get Configuration Parameters.vi

Timeout to delete inactive ...
Filter lewvel

Maxirnurm number of rows in t...
Iz debugging window enabled
error out

error in (no error)

6.4.2.2 Set Configuration Parameters

This subVI updates the configuration parameters explained above. Similarly, as these parame-
ters are global, this modification will affect to all VIs using the RTI DDS Toolkit for LabVIEW
under the same LabVIEW instance.

LVDDS_library.vlib:Set Configuration Parameters.vi

Timeout to delete inactive...
Filter level

Max number of table rows

Is Debugging window enabled
error in (no error)

error out

6.42.3 Get DL Configuration Parameters

This subVI returns the current configuration of the Distributed Logger parameters described in
Configuration Section (Section 6.4.1.1):

(d Whether Distributed Logger is enabled
(J Domain ID used to create Distributed Logger
(J Distributed Logger Queue Size

This subVI will return the default parameters if Distributed Logger is not created.

LVDDS_library.hvlib:Get DL Configuration Parameters.vi

RTl_ | Is Distirbuted Logger Enabled?
: %1% Domain Id
error in (no error) Distributed Logger Queue Size
error out

6.42.4 Configure Distributed Logger

This subVI allows you to configure Distributed Logger. If you enable Distributed Logger, it will
use the current parameters to create an instance of Distributed Logger. If you disable it (that is,
“Enable Distributed Logger” is False), the instance will be deleted (the other parameters are not
used). Only one Distributed Logger instance can be created per instance of the toolkit.

These parameters are used when creating an instance of Distributed Logger:

(J Enable Distributed Logger: If True, enables Distributed Logger. If False, disables Distrib-
uted Logger.

(d Domain Id: The ID of domain in which an instance of Distributed Logger will be created.

6-11

How to Debug an RTI Connext DDS LabVIEW Application

J Distributed Logger Queue Size: How many messages can be stored in the Distributed
Logger Queue.

Note: The Distributed Logger Queue Size shouldn’t be lower than the Local Logger
Queue Size, because this could make that several messages logged in the Local Logger
won't be sent through Distributed Logger.

(d DomainParticipant QoSProfile: The QoS Profile that will be used to create the Domain-
Participant. The format of this profile will be “Library::Profile”.

LVDDS_library.vlib:Configure Distributed Logger.vi

Enable Distributed Logger - RTI
Domain Id

Distributed Legger Queue Size
DomainParticipant QoS Profile
error in (no error)

error out

6.4.2.5 DDS State Info

This subVI visualizes the DDS entities created by LabVIEW is controlled by the error wire. The
data shown is the same as explained in DDS State Info (Section 6.4.1.2).

LVDDS_library.lvlib:Get DDS State.vi

G [J[)5 State cutput

Ed

error in (no error) error out

6.4.2.6 Reading Logged Messages

This subVI reads the oldest non-printed message from the internal queue and appends it to the
beginning of the “Debugging table out”.

LVDDS_library.lvlib:Read One Logged Message.vi

Debugging table in
Clear table? -

Max number of rows
error in (no error)

IGT=emnn [lebugging table out
& ‘.- Print table?
error out

There are pins connected to it:
1 Inputs

® Debugging table in: Specifies the debugging table in which to append the new sam-
ple if it exists.

® (lear table?: Clears the table. Default: disabled.

® Max number of rows: Sets a new maximum number of rows in the table. Default: 512
TOWS.

® error in (no error): error input
d Outputs

® Debugging table out: The “debugging table in” with a new message appended if it
existed.

6-12

How to Debug an RTI Connext DDS LabVIEW Application

6.4.3

® Print table?: Indicates whether a new data was added to the table or the table has
been cleared, so the table needs to be printed.

® error out: Error standard output.

This subVI is designed to be used within a loop that will periodically read the messages one by
one. To get a table updated, the correct use of this subVI is seen the following figure. As you can
see, the input of this subVI is a shift register, which allows you to keep the previous printed mes-
sages.

Finally, the flag Print table? improves the performance by only updating the table control if a
new message was read (or if the table has been cleared).

You can find this subVI under https://github.com/rticommunity/rticonnextdds-labview-
examples/tree/master/examples/read_logging messages.

Logging Messages from LabVIEW

As we have seen, there are different ways to log a new message into the internal queue. In the
Debugging subpalette you can find Log New Message.vi, which allows you to log messages
explicitly. This subVI requires the following data:

[Message: A string with a meaningful message.

(d Log Level: The log level with which the message will be registered.

Log New Message.vi

Message |__FTL |

Log Level =l =+
. °3 error out
error in (no error)

Logging Messages Manually (Section 4.8.1.1) explains with an example how to use this subVI to
log your own messages.

6-13

https://github.com/rticommunity/rticonnextdds-labview-examples/tree/master/examples/read_logging_messages
https://github.com/rticommunity/rticonnextdds-labview-examples/tree/master/examples/read_logging_messages

Appendix A VI Descriptions

A.1 Controls Palette Types

In the Front Panel’s Controls Palette, in the Addons section, under RTI DDS Toolkit for Lab-
VIEW, you will find the following:

DDS Sample Info: This cluster is returned by the Read subVI and shows information about the
current sample. valid_data is 1 if the read data is valid, otherwise it is 0.

DDS_SampleStateKind U32 Enum
DDS_ViewStateKind U32 Enum
DDS_InstanceStateKind U32 Enum
sec 132
nanosec u32
valid_data Boolean

DDS State Info: This cluster contains general statistics from RTI DDS Toolkit for LabVIEW. Tt
includes the current number of nodes (both Reader and Writer ones), DomainParticipants,
DataReaders, DataWriters, and Topics. It also provides historical information such as the last
execution's nodes.

Last number of LabVIEW DDS Nodes 132
Current number of LabVIEW DDS Nodes 132
Peak number of LabVIEW DDS Nodes 132

Number of DomainParticipants 132
Number of DataReaders 132
Number of DataWriters 132
Number of Topics 132

RTI DDS Advanced Reader Configuration: This cluster contains the advanced parameters for
the Reader Creation. Use this control with the Create Advanced Reader subVI to provide optional
parameters when creating a new Reader.

typeName String
keyName String
domainParticipantQoS String

A-1

Functions Palette

dataReaderQos String

forceNewDomainParticipant? Boolean
forceArrayMapping? Boolean
forceExclusiveReader? Boolean

forceRead? (only ExclusiveReader) Boolean
forceUnboundedString? Boolean
RTI DDS Advanced Writer Configuration: This cluster contains the advanced parameters for

the Writer Creation. Use this control with the Create Advanced Writer subVI to provide optional
parameters when creating a new Writer.

typeName String
keyName String
domainParticipantQoS String
dataWriterQos String
forceNewDomainParticipant? Boolean
forceArrayMapping? Boolean
forceUnboundedString? Boolean

A.2 Functions Palette

In the Block Diagram’s Functions Palette, in the Data Communication section, under RTI DDS
Toolkit for LabVIEW, you will find the following:

[Writer (Section A.2.1)
[Reader (Section A.2.2)
(d Complex-Type Templates (Section A.2.3)

A.2.1 Writer

Simple Create Writer: Creates a Writer node able to write data to the DDS network. Use the ref-
erence generated by this subVI as input to the Write subVI to send data using DDS. Use the
Release Writer subVI to release the allocated memory.

(d Input parameters

domain id ID of the domain the application intends to join

topic name Name of Topic for which the application will write data
data type Control of the data type to be published

error in (no error) LabVIEW Error cluster in (optional)

(d Output parameters

ref num Reference (pointer) to new Writer object

error out LabVIEW Error cluster out (optional)

Advanced Create Writer: This subVI creates a Writer node able to write data to the DDS net-
work. Introduce advanced configurations by using the control RTI DDS Advanced Writer Con-

A-2

Functions Palette

figuration.ctl. Use the reference generated by this subVI as input to the Write subVI to send data
using DDS. Use the Release Writer subVI to release the allocated memory.

(d Input parameters

advanced writer configuration ~ Controls of type RTI DDS Advanced Writer Configu-
ration that contains the optional parameters

domain id ID of the domain the application intends to join

topic name Name of Topic for which the application will write
data

data type Control of the data type to be published

error in (no error) LabVIEW Error cluster in (optional)

(d Output parameters

ref num Reference (pointer) to new Writer object
error out LabVIEW Error cluster out (optional)
Write: Publishes data into a DDS network. It takes a Writer node (generated by Advanced/Simple

Create Writer) as an input parameter. The data type of the data to be written must be the same as
the data type attached to the Advanced/Simple Create Writer subVI.

(1 Input parameters

ref num in Reference (pointer) to Writer object to be used

data Control with the data to be published by DDS. Must be of the same type
as specified in the Data Type input for the Advanced/Simple Create Writer.

error in LabVIEW Error cluster in (optional)
(1 Output parameters

ref num out Reference (pointer) to Writer object used

error out LabVIEW Error cluster out (optional)

Release Writer: Releases the memory allocated for a Writer node and prepares the contained
entities to be deleted if nothing else is using them. To force the release of the contained entities,
use 'Release Unused Entities' when the defined timeout has been reached after releasing the
Writer node.

(1 Input parameters

ref num Reference (pointer) to Writer object to be released

error in LabVIEW Error cluster in (optional)
(d Output parameters

error out LabVIEW Error cluster out (optional)

A-3

Functions Palette

A2.2

Set Writer QoS: Applies a new QoS profile to an existing Writer node. If the current QoS cannot
be modified at run time, the Writer node remains unchanged.

(d Input parameters

ref num in Reference (pointer) to Writer object whose QoS Profile will be changed

qos profile QoS profile to be applied. The expected value is a string providing the
QoS library and profile to be read from the XML file (see Appendix D for
details on where this file is located).

error in LabVIEW Error cluster in (optional)
(1 Output parameters

ref num out Reference (pointer) to Writer object used

error out LabVIEW Error cluster out (optional)

Reader

Simple Create Reader: Creates a Reader node that is able to read data from the DDS network.
Use the reference generated by this subVI as input to the Read subVI to get data from DDS and
store it in the appropriate LabVIEW data. Use the Release Reader subVI to release the allocated
memory.

J Input parameters

domain id ID of the domain the application intends to join

topic name Name of the topic for which the application will read data
data type Control of the same data type to be read

error in (no error) LabVIEW Error cluster in (optional)

(1 Output parameters

ref num Reference (pointer) to new Reader object

error out LabVIEW Error cluster out (optional)

Advanced Create Reader: This subVI creates a Reader node able to read data from the DDS net-
work. Introduce advanced configurations by using the control RTI DDS Advanced Reader
Configuration.ctl. Use the reference generated by this subVI as input to the Read subVI to get
data from DDS and store it in the appropriate LabVIEW data. Use the Release Reader subVI to
release the allocated memory.

(d Input parameters

advanced reader configuration =~ Control of type RTI DDS Advanced Reader Configu-
ration that contains the optional parameters

domain id ID of the domain the application intends to join

topic name Name of the topic for which the application will read
data

data type Control of the same data type to be read

error in (no error) LabVIEW Error cluster in (optional)

A-4

Functions Palette

(d Output parameters

ref num Reference (pointer) to new Reader object

error out LabVIEW Error cluster out (optional)

Read: Gets data from the DDS network. It takes a Reader node (generated by the Advanced/Sim-
ple Create Reader subVI) as an input parameter. The data is stored in the appropriate LabVIEW
data, which is provided as an output parameter.

(Input parameters

ref num in Reference (pointer) to Reader object to be used

query condition Query expression to use when filtering the read samples;
empty means no filtering

only_new_samples Specifies whether to read only the new (unviewed) samples
(true) or all the available ones (false)

error in (no error) LabVIEW Error cluster in (optional)
(1 Output parameters

ref num out Reference (pointer) to Reader object used

data Indicator that will be filled with the data read from DDS.
Must be of the same type as the one specified in the Data Type
input of the Advanced/Simple Create Reader subVI

dds sample info DDS Sample Info cluster containing information about the
sample read.

error out LabVIEW Error cluster out (optional)

Release Reader: Releases memory allocated for a Reader node and prepares the contained enti-
ties to be deleted if nothing else is using them. To force the release of the contained entities, use
‘Release Unused Entities' when the defined timeout has been reached after releasing the Reader
node.

(d Input parameters

ref num Reference (pointer) to Reader object to be released

error in LabVIEW Error cluster in (optional)
(d Output parameters
error out LabVIEW Error cluster out (optional)

Set Reader QoS: Applies a new QoS profile to an existing Reader node. If the current QoS can-
not be modified at run time, the Reader node remains unchanged.

(1 Input parameters

ref num in Reference (pointer) to Reader object whose QoS Profile will be
changed
qos profile QoS profile to be applied. The expected value is a string pro-

viding the QoS library and profile to be read from the XML
file (see Appendix D for details on where this file is located).

error in LabVIEW Error cluster in (optional)

A-5

Tools

A.2.3

A3

(d Output parameters

ref num out Reference (pointer) to Reader object used

error out LabVIEW Error cluster out (optional)

Complex-Type Templates

Simple Reader Template: Use this template to subscribe (read) to a complex type (cluster, array
or enum) from a DDS network using RTI DDS Toolkit for LabVIEW. Follow the information in the
Block Diagram and attach the cluster, array, or enum in the appropriate locations.

Advanced Reader Template: Use this template to subscribe (read) to a complex type (cluster,
array or enum) from a DDS network using RTI DDS Toolkit for LabVIEW. Follow the information
in the Block Diagram and attach the cluster, array, or enum in the appropriate locations.

Use the RTI DDS Advanced Reader Configuration control to provide additional configuration.

Simple Writer Template: Use this template to publish (write) a complex type (cluster, array, or
enum) into a DDS network using RTI DDS Toolkit for LabVIEW. Follow the information in the
Block Diagram and attach the cluster, array, or enum in the appropriate locations.

Advanced Writer Template: Use this template to publish (write) a complex type (cluster, array,
or enum) into a DDS network using RTI DDS Toolkit for LabVIEW. Follow the information in the
Block Diagram and attach the cluster, array, or enum in the appropriate locations.

Use the RTI DDS Advanced Writer Configuration control to provide additional configuration.

Tools

DDS Release Unused Entities: Releases all the entities generated by the Create Reader/Writer
subVIs that are not currently in use. An entity is considered ‘not in use” if no nodes have linked
it within the defined timeout period. This is a useful way to resolve some of the errors produced
when creating new Reader/Writer nodes.

J Input parameters
error in LabVIEW Error cluster in
(d Output parameters

error code RTI DDS Toolkit for LabVIEW Error Code (optional)
error out LabVIEW Error cluster out (optional)

DDS Time to LV Time: Converts a UNIX timestamp (in seconds) to a LabVIEW Time Stamp.

(1 Input parameters
X DBL
(1 Output parameters

time stamp Cluster

A-6

Tools

A3.1

DDS Debugging SubPalette

Get configuration parameters: Returns the current values of the configuration parameters of
the RTI DDS Toolkit for LabVIEW: timeout to release unused DDS entities, filter level, maximum
size of the internal queue, and a boolean which indicates whether the debugging window is

enabled.

(Input parameters:
error in

(d Output parameters:

Timeout to delete inactive DDS entities
Filter level

Max number of table rows

Is debugging window enabled

error out

LabVIEW Error cluster in

132

I32 Ring

U32

Boolean

LabVIEW Error cluster out

Set configurations parameters: Updates the configuration parameters of the RTI DDS Toolkit for
LabVIEW: timeout to release unused DDS entities, filter level, maximum size of the internal
queue and a boolean to enable/disable the debugging window.

(d Input parameters:

Timeout to delete inactive DDS entities
Filter level

Max number of table rows

Is debugging window enabled

error in
(d Output parameters:

error out

132 - Default: 10

132 Ring - Default: WARNING LEVEL
U32 - Default: 512

Boolean - Default: False

LabVIEW Error cluster in

LabVIEW Error cluster out

Get DL configurations parameters: Returns the current configuration values of the Distributed
Logger: a boolean which indicates if Distributed Logger is enabled, the domain ID where the
Distributed Logger Domain Participant has been created, and the Distributed Logger Queue

Size.

(d Input parameters:
error in
(d Output parameters:

Is Distributed Logger enabled?
Domain ID

Distributed Logger Queue Size
error out LabVIEW Error

LabVIEW Error cluster in

Boolean
U32

132

cluster out

A-7

Tools

Configure Distributed Logger: Enables and disables Distributed Logger. When this subVI is
enabling Distributed Logger, all the other parameters will be used to create it. These parameters
are: enable Distributed Logger, Domain Id, Distributed Logger Queue Size, DomainParticipant
QoS Profile.

(d Input parameters:
Enable Distributed Logger Boolean - Default: False
Domain Id U32 - Default: 0
Distributed Logger Queue Size 132 - Default: 512
DomainParticipant Qos Profile ~ String - Default: empty string
error in LabVIEW Error cluster in

(d Output parameters:
error out LabVIEW Error cluster out

Get DDS State: Returns general statistics from RTI DDS Toolkit for LabVIEW. This includes the
current number of nodes (both Reader and Writer ones), DomainParticipants, DataReaders,
DataWriters, and Topics. It also provides historical information such as the last execution's

nodes.
(d Input parameters:

error in LabVIEW Error cluster in

(d Output parameters:
DDS State output DDS State Info Cluster

error out LabVIEW Error cluster out

Read One Logged Message: Appends a logging message to the table provided as input. It also
allows you to limit the maximum number of table rows; and finally, it returns a flag indicating
when the table has been modified, so it could be printed just if it has been modified.

(Input parameters:

Debugging table in 2D String table

Clear table? Boolean

Max number of rows u32

error in LabVIEW Error cluster in

(d Output parameters:

Debugging table out String 2D table
Print table? Boolean
error out LabVIEW Error cluster out

Log New Message: Logs a new message into the internal queue.

(d Input parameters:

Message String
Log level U32 Ring
error in LabVIEW Error cluster in

(J Output parameters:

error out LabVIEW Error cluster out

A-8

Appendix B Creation and Release of DDS Entities

The table below explains when RTI DDS Toolkit for LabVIEW creates and releases DDS entities.

When an entity is released, RTI DDS Toolkit for LabVIEW deletes all ‘unused’ entities in the sys-
tem. An entity is considered ‘unused’ if no nodes have linked it within the defined timeout
period since the last subVI using it was released.

All entities (including the DomainParticipant) are created with the QoS values specified in the
QoS Profile input to the Create Writer / Reader functions.

Note: You can see when entities are created and released in the Debugging window. See

Enabling Debugging Mode (Section E.1).

DDS Entity Is Created When... Is Released When...
e A ti ds and DDS Reader
The Create Writer/Reader functions are T oXECHTOn EICS and o .
lled LabVIEW and th . or Writer objects have used the Domain-
called irom La ' and t €re 15 I?O,t Participant within the defined timeout
. . already another valid DomainPartici- .
DomainPartici- pant period.
t ' it -
pan If the forceNewDomainParticipant flag ¢ The I?DS lfeéeafse unzsegvfgst fiunc
is true in the Advanced Create subVls, tion 1s calle rom Lab’ and no
a new Domain Participant is created. DDS Reader or Writer objects are using
the DomainParticipant.
* An execution ends and no DDS Reader
. . or Writer objects have used the Topic
. The Create Writer/Reader functlor}s are within the defined timeout period.
Topic X’ called from LabVIEW and there is not o
already another valid Topic. * The DDS Release function is called from
LabVIEW and there are no DDS Reader
or Writer objects using the Topic.
Never. RTI DDS Toolkit for LabVIEW
Subscriber uses an implicit subscriber for each | Never.
DomainParticipant.
Never. RTI DDS Toolkit for LabVIEW
Publisher uses an implicit publisher for each | Never.
DomainParticipant.

B-1

DDS Entity

Is Created When...

Is Released When...

DataReader for
Topic ‘x’

The Create Reader function is called and
there is not already another valid
DataReader.

If the forceExclusiveReader flag is true

in the Advanced Create Reader, a new
Data Reader is created.

An execution ends and no DDS Reader
or Writer objects have used the
DataReader within the defined timeout
period.

The DDS Release Unused Entities func-
tion is called from LabVIEW and no
DDS Reader or Writer objects are using
the DataReader.

DataWriter for
Topic X’

The DDS Create Writer function is
called from LabVIEW and there is not
already another valid DataWriter.

An execution ends and no DDS Reader
or Writer objects have used the DataW-
riter within the defined timeout period.

The DDS Release Unused Entities func-
tion is called from LabVIEW and no
DDS Reader or Writer objects are using
the DataWriter.

B-2

Appendix C Supported Data Types and Corresponding

IDL

RTI DDS Toolkit for LabVIEW supports these simple and complex data types:

(4 NUMERIC
e INT8? e UINTS?
e INT16 e UINTI16
e INT32 e UINT32
o INT64 o UINT64
e FLOAT/SINGLE
e DOUBLE

a. INT8 and UINTS are both mapped as octets. We recommend using UINTS, since octets are not signed.

(d BOOLEAN
(TEXT (STRING)
d ENUM

UINT 32

(1 ARRAYS OF TYPE

NUMERIC (INTS8, INT16, INT32, INT64, UINTS, UINT16, UINT32, UINT64, FLOAT,
DOUBLE)

BOOLEAN
ENUM

(d CLUSTER WITH ANY COMBINATION OF:

NUMERIC
BOOLEAN
TEXT (STRING)
ENUM

ARRAY
CLUSTER

For other DDS applications to communicate with VIs that use RTI DDS Toolkit for LabVIEW, you
need to use compatible data types in both applications.

C-1

(J Simple types have fixed IDLs that are listed in Table C.1.

[Clusters use a direct mapping of their configuration into a C struct, see Corresponding
IDL for Complex Data Types (Section C.1).

Table C.1 Simple Data Types and Corresponding IDL

Data Type Sample Entry in IDL Default TypeName?®

INTS

struct Int8Struct(
octet value; DDS::Octets

}i

struct IntléStruct(
short value; DDS_Short

}i

struct Int32Struct(
long value; DDS_Long

}i

struct Inté64Struct(
long long value; DDS_LongLong
}i

struct UnsignedInt8Struct(
octet value; DDS::Octets

}i

struct UnsignedIntléStruct{
unsigned short value; DDS_UnsignedShort
Vi

struct UnsignedInt32Struct({
unsigned long value; DDS_UnsignedLong
}i

UINT64
struct UnsignedInté4Struct{
R unsigned long long value; | DDS_UnsignedLongLong
o) b
FLOAT
struct FloatStruct(
.ﬁng float value; DDS_Float
k o };
DOUBLE
struct DoubleStruct{
ﬁng double value; DDS_Double
] 7 S };
BOOLEAN

struct BooleanStruct{

@ r . boolean value; DDS_Boolean
TF TF !

C-2

Table C.1 Simple Data Types and Corresponding IDL

Data Type Sample Entry in IDL Default TypeName?®

Default:
struct DDS_String{

STRING string<l024> value;
}i

T DDS::String
Forcing use of unbounded string:

struct DDS_String{
string value;

}i

Default:

struct ArrayStruct {
sequence<short, nDim>

value;
ARRAY of the above types }
(This example uses INT16 and DDS_Default_TypeName
nDim elements.) Forcing use of array:

struct ArrayStruct

{
}

short value [nDim] ;

a. If you do not provide a TypeName, a “Default TypeName” is assigned depending on the type. This may cause con-
flicts if several cluster types are defined in the same DomainParticipant.

Corresponding IDL for Complex Data Types

C.1

C.1.1

Corresponding IDL for Complex Data Types

Clusters

The IDL representation for a cluster depends on its structure and the type name provided in the
Create subVI. If the type name is not provided, we assign DDS_DefaultTypeName as the type
name. This may cause conflicts if several cluster-types are defined in the same DomainPartici-

pant.

complexType

Text

B2_Num

oIS
.ﬂ_ﬂum
< :] 0

: 16 Num
;!n

innercluster

superinnerCluster

Dbl_Num

ultrainnerCluster

%lu

116_Array

0
;IU

For example, using the cluster in the figure on the left,
assume the type name is MyTypeName. The corresponding
IDL would be as follows:

struct MyTypeName {
string<1024>' Text; //ekey
long I32 Num; //@key
long long I64_ Num;
unsigned short Ulé Num;
sequence<float, 4> Sgl Array;
innerclusterType innercluster;
}i
struct superinnerClusterType(
double Dbl Num;
ultrainnerClusterType ultrainnerCluster;

}i

struct ultrainnerClusterType(
sequence<short,2> I16_Array;

struct innerclusterType
float Sgl Num;
boolean Boolean;
superinnerClusterType superinnerCluster;

}i

Note that inner clusters add “Type” to their name to avoid
repeating the same name in both type and member. Also note
that all the names of the components are joined by under-
scores instead of using spaces. This prevents compiling
errors in other languages such as C, C++, Java or .Net. Please
consider interoperability with these languages and avoid
invalid names in the cluster components.

1. If forceUnboundedString? is set to true, IDL correspondence will be string Text;. And you will need to run the
rtiddsgen with the option —unboundedSupport.

Corresponding IDL for Complex Data Types

C.1.2

Enums

The IDL representation for an enum depends on the elements it is composed of. Remember that
only 32-bit enums are supported. Also, if no type name is provided, we use DDS_Enum as type
name. This may cause conflicts if different enum-types are defined in the same DomainPartici-

pant.

For example, the enum in the figure
on the right would have the following
IDL representation for a Type Name
"MyType":

MyEnum

'
o example_value_0

struct EnumStruct{
MyTypeEnum MyType;
}

enum MyTypeEnum {
example value 0 = 0,
example value 1
example value N

}i

When the enum is inside a cluster, the representation is slightly
different, so several enums can be contained in the same cluster.
For the cluster on the right (containing two instances of the enum
used in the previous example), the corresponding IDL would be:

mn
N -

struct MyType({
MyEnum_ 1Enum MyEnum_1;
MyEnum 2Enum MyEnum 2;

}i

enum MyEnum 2Enum {
example value 0
example value 1 = 1,

I}
o

example value N = 2
bi
enum MyEnum_ 1Enum {
example value 0 = 0,
example value 1 = 1,

example value N = 2

}i

MyEnum
:_' J example_value_0
example_value 1

example_value_N

Cluster
MyEnum_1
;J:I example_value 0
MyEnum_2

;:I example_value_0

C-5

Appendix D File Folders Installed within LabVIEW

D.1

File Folders on Windows Systems

RTI DDS Toolkit for LabVIEW adds the following files to LabVIEW'’s folders.
In the paths shown below, LabVIEW 20xx is:

[C:\Program Files!\National Instruments\LabVIEW 20xx
Where xx represents the LabVIEW version number (LabVIEW 2015, etc.)

(J DLLs
e \LabVIEW 20xx\vi.lib_RTI DDS Toolkit for LabVIEW_internal_deps

(4 Control Types and VIs
e \LabVIEW 20xx\vi.lib\RTI DDS Toolkit for LabVIEW\Types
e \LabVIEW 20xx\vi.libARTI DDS Toolkit for LabVIEW\VIs

(J QoS Profile (for documentation purposes only)

e \LabVIEW 20xx\vi.lib_RTI DDS Toolkit for
LabVIEW_internal_deps\RTI_LABVIEW_CONFIG.documentationONLY.xml

(d Examples
¢ \LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\ClusterDemo
e \LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\cRIO-9068Project
e \LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\LogMessagesDemo
e \LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW \MonitoringDemo
¢ \LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\NumberDemo
¢ \LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\Read AllDemo
¢ \LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW \ShapesDemo
e \LabVIEW 20xx\examples\RTI DDS Toolkit for LabVIEW\StringsDemo

1. On 64-bit systems, the folder is “Program Files (x86)”

D-1

File Folders on NI Linux Targets

D.2 File Folders on NI Linux Targets

(1 Libraries
e [usr/local/rti/lib
(1 License
¢ /home/lvuser/rti/rti_license.dat
(1 QoS profile
¢ /home/lvuser/rti/RTI_LABVIEW_CONFIG.documentationONLY.xml

D-2

Appendix E Troubleshooting

E.1

E.2

Enabling Debugging Mode

To debug your VI, you can use the administration panel or the debugging subpalette, which pro-
vides information about several different types. For more information, see How to Debug an RTI
Connext DDS LabVIEW Application (Section 6.4).

Error Codes and Possible Solutions

Table 3.2 shows error codes and possible solutions.

Table 3.2 Error Codes

DomainParticipantFactory.

Close all the instances before trying to
delete it.

21:32 Error Message Possible Reason(s) Additional Information
. oo RTI DDS Toolkit for LabVIEW found an
Something failed in a pre- . .
. . error status in the input error cluster. It
5001 |vious stage (wired error| . . .
input) might be due to an error in the previous
P stage.
Check that the type of all transferred/ |LabVIEW data connected to the data
5002 Error handling the pro-|received data is the same and is similar | type pin in the Create Reader or Create
vided LabVIEW Data to the one connected to the data type in | Writer does not correspond with the type
the Create Reader/Writer subVls. sent/received or is missing.
Unable to delete the con- It is likely thfit another appl.lc.atlon is still
5003 |tained entities of a partici- using an entity of that Participant. Close v Iso delete th d i
t all the instances before trying to delete ou can also delete the unused con
pan the contained entities. tained entltlle.s by usmg the DDS Release
Tt is likelv that anoth Tication Is still Unused Entities subVI (in RTI DDS Tool-
i |1t is likely that another application is still | y ¢ ¢ [abVIEW, Tools
5004 U:r?tb le to delete a partici using that Participant. Close all the)
P instances before trying to delete it.
It is likely that another application is still
5005 Unable to finalize the|using the DomainParticipantFactory.

E-1

Error Codes and Possible Solutions

Table 3.2 Error Codes

Error
Code

Error Message

Possible Reason(s)

Additional Information

5006

Bad QoS
(Library::Profile)

settings

QoS setting format is incorrect or does
not match with any of the ones existing
in the XML file. Check that format is cor-
rect (Library:Profile), the XML file
exists, and it contains a correct configu-
ration.

5007

Unable to assert (find or
create) a Participant.

Possible error in the QoS configuration.
You can also use the default configura-
tion by attaching an empty string as
input to the Create Reader/Writer subVI.
This may be caused by not having an
active network interface in the system.

If the monitoring library is being used, it
needs to be in the PATH.

Review the QoS profile for the Partici-
pant. Modify the QoS profile to work
without an active network interface as
explained in Running without an Active
Network Interface (Section E.3).

Unable to register the type

This might be caused by an unused
entity that has not been released.
Close the current VI and release unused

create) a Topic.

You can also use the default configura-
tion by attaching an empty string as
input to the Create Reader/Writer subVL

b th ist:
5008 areg’z;i: entit er:/ith i);lriz entities using the DDS Release Unused
e uraﬁony Entities subVI (in RTI DDS Toolkit for
& LabVIEW, Tools). Then re-open the cur-
rent VL.
Possible error in the QoS configuration.
Check that format is correct
Unable to get the Partici- | (Library::Profile), the XML file exists
5009 |pant QoS for a given pro-|and it contains that profile. You can also R:;ﬁew the QoS profile for the Partici-
file. use the default configuration by attach- pant.
ing an empty string as input to the Create
Reader/Writer subVI.
Unable to update the num-
ber of applications access- | This might cause a memory leak when
5010 |. - . -
ing to the Participant|releasing the participant.
(client count property).
Check that the QoS configuration pro-
Unable to set the QoS Prop- vided is cor}'ect. You can also use the Review the QoS profile for the Partici-
5011 erties to the participant default configuration by attaching an ant
P pant. empty string as input to the Create pant.
Reader/Writer subVI.
Unable to get the descrip-|Check that the Reader/Writer was cor-
5012 | . .
tion of the topic. rectly created (no previous errors).
Type connected to the |Check that the correct type is connected | If you recently modified the type, releas-
Read/Write function is|to the Create subVI. A correct Type Defi- | ing the unused entities or reopening the
5013 incompatible with the cur-|nition is (Library::Type). String length | VI might solve the problem. Remember
rent implementation or dif- |and array size need to be compatible | that LabVIEW arrays of more than one
ferent than the one in the | between the Create and the Read/Write | dimension cannot be mapped as
Create subVI subVls. sequences.
Check that the QoS profile exists in the
: X.M L fﬂe and that configuration pro- Review the QoS profile for the Topic.
Unable to assert (find or|vided is correct. .
5014 Make sure you are selecting the correct

settings (Library::Profile).

Error Codes and Possible Solutions

Table 3.2 Error Codes

publisher.

uration is correct and that there are no
previous errors.

lélgg: Error Message Possible Reason(s) Additional Information
Review the QoS profile for the Publisher.
Implicit publisher is needed to create the | Make sure you are selecting the correct
5015 Unable to get the implicit | Writer. Check that the participant config- | settings (Library::Profile).

You can also use the default QoS setting
by attaching an empty string to the qos
profile pin of the Create Writer subVL

Unable to get all the Data

It might be due to a memory restriction
(not enough memory available to
recover the existing Data Writers).

pant.

Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit for Lab-
VIEW, Tools) might fix this.

1 iters in the oi -
5016 V\;itters in the given particl Using the DDS Release Unused Entities
pant. subVI (in RTI DDS Toolkit for Lab-
VIEW, Tools) might fix this problem.
5017 Unable to create the Data |Check that the QoS configuration pro-
Writer. vided for the Data Writer is correct.
Check that Create Writer was successful
Unable to get the QoS and that the reference pas?,ed to the Write Review the QoS profile for the Data
. function is the one provided as output :
5018 |Properties from a Data : . Writer.
: from the Create function. It might also be .
Writer. . . . Make sure you are selecting the correct
a problem in the QoS setting provided . . .
: settings (Library::Profile).
(use default ones as a safest option). .
, You can also use the default QoS setting
Check that Create Writer was successful by attaching an empty string to the qos
and that the reference passed to the | 1ofile pin of the Create Writer subVL.
5019 Unable to set the QoS Prop- | Write/Set_QoS_Setting function is the
erties for a Data Writer. correct one. It might also be a problem in
the QoS setting provided (use default
ones as a safest option).
Unable to u.pda.lte the MU This might cause a memory leak when
5020 |ber of applications using a . .
- releasing the Data Writer.
Data Writer.
This is an unexpected error. Contact lab-
Unable to narrow the view@rti.com or visit our Commumty
5021 . . Portal at http://community.rti.com to
Dynamic Data Writer. . .
view current solutions and forum
entries.
Review the QoS profile for the Sub-
iber.
Implicit subscriber is needed to create IS\SII;:keersure ou are selecting the correct
Unable to get the implicit | the Reader. Check that the participant . Y . 8
5022 - . L settings (Library::Profile).
subscriber. configuration is correct and that there are .
. You can also use the default QoS setting
no previous errors. i X
by attaching an empty string to the qos
profile pin of the Create Reader subV1.
It might be due to a memory restriction
t h ilable t
Unable to get all the Data (not enoug _ memoty avatable o
o . . . |recover the existing Data Writers).
5023 | Writers in the given partici-

http://community.rti.com

Error Codes and Possible Solutions

Table 3.2 Error Codes

Reader.

vided for the Data Reader is correct.

Unable to get the QoS

]élgg: Error Message Possible Reason(s) Additional Information
5004 Unable to create the Data |Check that the QoS configuration pro-

Review the QoS profile for the Data
Reader).

Make sure you are selecting the correct

subVI (in RTI DDS Toolkit for Lab-
VIEW, Tools) might fix this.

5025 |Properties from a Data|Check that Create Reader was successful settings (Library:Profile).
Reader. and that the reference passed to the Read :
.. . You can also use the default QoS setting
function is the correct one. It might also b hi - h
be a problem in the QoS setting provided y attaching an empty string to the qos
Unable to set the QoS Prop- }; fault fost g’tp profile pin of the Create Reader or Create
5026 erties for the Data Reader. (use default ones as a safest option). Writer subVL
Unable to update the num- |, . .
5007 | ber of appli}c):a tions using a This might cause a memory leak when
Data Reader releasing the Data Reader.
This is an unexpected error. Contact lab-
view@rti.com or visit our Community
5028 gn?\l;}'iic gatar;z/i?;: the Portal at http://community.rti.com to
y ' view current solutions and forum
entries.
It is likely that another instance of Lab-
. VIEW is still using that Topic. Close all
5029 | Unable to delete a Topic. LabVIEW instances before trying to
delete it.
Unable to delete a Data It is likely that another instance of Lab-|You can also delete the unused con-
5030 |Reader (or its contained VIEW is still using that Data Reader or | tained entities by using the DDS Release
entities) ! its entities. Close all LabVIEW instances | Unused Entities subVI (in RTI DDS Tool-
HEEs): before trying to delete it. kit for LabVIEW, Tools).
It is likely that another instance of Lab-
5031 I\;]Vr;?tzie (t(;)r difletecoita?r?etda VIEW is still using that Data Writer or its
entities) entities. Close all LabVIEW instances
' before trying to delete it.
There was a problem when allocating
5032 Unable to initialize the | memory. Using the DDS Release Unused
DDS Dynamic Data. Entities subVI (in RTI DDS Toolkit for
LabVIEW, Tools) might fix this.
There was a problem when allocating
5033 Unable to initialize the|memory. Using the DDS Release Unused
Reader Node. Entities subVI (in RTI DDS Toolkit for
LabVIEW, Tools) might fix this.
Unable to initialize the Check that the DLL was correctly loaded
5034 DDS Manager (a message can be found in the Debug
ger Window).
Invalid reference to a Please use the appropriate Create subVI
5035 Reader or Writer Node to generate a correct reference and con- | Pay special attention to the data type.
' nect it to the Read/Write subVL
* will ret thing.
Unable to read data from |Check that the Query Condition is cor- Wi TEHIIn EVETyEing.
5036 A regular expression will also work (for
Data Reader. rectly set. .) ,
instance: Text="hello’).
There was a problem when allocating
o memory.
1 1 h
5037 %rr‘f‘tzreNgge mitiatize € Using the DDS Release Unused Entities

http://community.rti.com

Error Codes and Possible Solutions

Table 3.2 Error Codes

LabVIEW, Tools) might fix this.
Check that you attached a valid indica-
tor/storage to the write output.

]élgg: Error Message Possible Reason(s) Additional Information
Data Writer timed out or ran out of
resources. Using the DDS Release Unused

5038 | Unable to write data. Entities subVI (in RTI DDS Toolkit for

5039

Unable to initialize the

semaphore for the DLL.

There was a problem when allocating
memory.

Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit for Lab-
VIEW, Tools) might fix this.

5040

Unable to create the Query
Condition to filter Read
subVL.

Check that the Query Condition is cor-
rectly set. To read everything, set it to *
or leave it empty.

A regular expression will also work (for
instance: Text="hello’).

5041

The type connected to the
Create subVI is not sup-
ported in the current ver-
sion.

The Getting Started Guide provides more
information about the supported types.

See Appendix C: Supported Data Types
and Corresponding IDL.

5042

Unable to unregister the
Type Code.

Other applications might be using it.
Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit for Lab-
VIEW, Tools) might fix this.

5043

The LabVIEW Data Type
connected has changed.

The LabVIEW Type changed but wasn't
correctly initialized (using Create subVI).
You might need to close the VI and re-
open it to removed unused entities.

This error happens if you created and
run the Reader/Writer and then you
modified the type connected to the cre-
ate subVIL

Close and re-open the VI or use the DDS
Release Unused Entities subVI (in RTI
DDS Toolkit for LabVIEW, Tools).

5044

Unable to get all the avail-
able Topics.

It might be due to a memory restriction
(not enough memory available to
recover the existing Topics).
Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit for Lab-
VIEW, Tools) might fix this.

5045

Warning: Unable to delete
one or several DDS Enti-
ties.

Other instances of LabVIEW are cur-
rently using one or several of the DDS
Entities.

This is not an error, just a warning. Clos-
ing all running VIs should release all the
remaining DDS Entities.

5046

Unable to get the Topic's
QoS.

5047

Unable to set the Topic's
QoS.

Check that the Topic's QoS provided was
correct and that the Topic was initialized
using the Create Reader or Create Writer
subVI.

Review the QoS profile for the Topic.
Make sure you are selecting the correct
settings (Library::Profile).

You can also use the default QoS setting
by attaching an empty string to the qos
profile pin of the Create Reader or Create
Writer subVL.

5048

Unable to access library
handler.

On LabVIEW RT targets, please verify
the license file under /home/lvuser/rti.
The RTI DDS Toolkit for LabVIEW
dynamic library was not loaded cor-
rectly.

For details on the license file, see License
Management on LabVIEW RT Targets
(Section 1.4.2).

5049

Unable to take the sema-
phore

Another thread may already be using the
DLL.

Error Codes and Possible Solutions

Table 3.2 Error Codes

pant's default QoS

community.rti.com to view current solu-
tions and forum entries.

lélgg: Error Message Possible Reason(s) Additional Information
Internal error due to default configura-
Unable to recover partici- tion issues. Contact labview@rti.com or
5050 VEer parti visit our Community Portal at http://

Unable to load QoS profiles

Error in QoS properties. Verify all pro-

Make sure you are selecting the correct
settings (Library::Profile).

allowed in the system.

VIEW, Tools) might fix this.

5051 from the embedded config- | files loaded by the | You can also use the default QoS setting
uration or external XML |NDDS_QOS_PROFILES environment by attaching an empty string to the qos
files variable. profile pin of the Create Reader or Create

Writer subVL
5052 | Incorrect tvpe name Usual format is Library:Type. Avoid
yp ' using spaces.
One of the required param- Requlf'ed. parame‘t ers for Create subVls: These pins are also required for the clus-
. e domain_id, topic_name, type_name, . . g

5053 |eters of the subVI is miss . .| ters even if you use Call Library Func
. data_type; for Read/Write subVlIs: ref_in | . .
ing . . . tion (CLF) calls instead of a subVL.

and data; for Release: ref_in.
Another application has finalized the

5054 }rJna;JlCeoc’lcg cm(::‘f(frss to the TypeCode Factory and there was an

P ¥ error while reinitializing it. Retry.
The cluster used is incompatible. Make
Unable to add a new mem- | 4T all field labels exist and are compat-

5055 ber to the Type Code. ible with text-based languages: no | See Appendix C: Supported Data Types
spaces. Make sure all used types are sup- | and Corresponding IDL for details on
ported. the supported types.

5056 Unable to create the Type | The attached cluster is incompatible with

Code. the supported one and cannot be created.
. | Check that the correct data type is con-
5057 ggs:)le to set the Dynamic nected to the subVI (pay special atten-
’ tion to Create Reader/Writer ones).
. | Check that the correct data type is con-
5058 ggjable to get the Dynamic nected to the subVI (pay special atten-
’ tion to Read/Write ones).
Review the QoS profile for the Reader/
There may be an incompatible QoS Pol- Writer.
. y patt .1 | Some QoS setting cannot be applied
. . . icy. Check that the provided profile L
Invalid profile provided to| . . once the Reader/Writer is created unless
5050 exists. Once created, some QoS settings .
the Set QoS subVL. . . you completely delete it. Close and
cannot be modified. Try using that QoS
Policy in the Create subVI reopen the VI or use the DDS Release
y : Unused Entities subVI (in RTI DDS Tool-
kit for LabVIEW, Tools).
Unable to give the sema- This might block another thread from

5060 hor & using the RTI DDS Toolkit for LabVIEW

phote. APL
Another application was already delet-|You can also delete the unused con-
5061 g;iilie ;ﬁtlos(l)(/ 2;1;(;1(:EE ing the Participant. tained entities by using the DDS Release
Rea def Removing unused entities or closing the | Unused Entities subVI (in RTI DDS Tool-
' VIs might fix this problem. kit for LabVIEW Tools).
Reached the maximum |Using the DDS Release Unused Entities
5062 |number of participants|subVI (in RTI DDS Toolkit for Lab-

http://community.rti.com
http://community.rti.com

Error Codes and Possible Solutions

Table 3.2 Error Codes

clock.

view current solutions and forum

entries.

lélgg: Error Message Possible Reason(s) Additional Information
This is an unexpected error. Contact lab-
view@rti.com or visit our Community

5063 Unable to create the system Portal at http://community.rti.com to

5064

Unable to create the Type
Support needed to register

a type.

There was a problem when allocating
memory.

Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit for Lab-
VIEW, Tools) might fix this.

5065

Unable to assign that type
name to the Topic because
it is currently in use.

The type name provided is already regis-
tered and used by some entities.

Using the DDS Release Unused Entities
subVI (in RTI DDS Toolkit for Lab-
VIEW, Tools) might fix this.

5066

The attached enum is not a
32-bit one. Only 32-bit enu-
merators are supported.

The current implementation only sup-
ports 32-bit enumerators. Change the
enumerator representation or use an
8-bit or 16-bit integer.

To change the representation, right-click
in the indicator/control and select Rep-
resentation—>U32.

5067

Unable to create the key
with the provided string.
Might be a memory alloca-
tion problem.

KeyName should be a string containing
the key names separated by semicolons
(;). The fields inside a cluster can be pro-
vided in the form 'cluster.field'.

See Section 4.6 for further details.

5068

Unable to create Data
Reader with KEEP_ALL
history kind. Use case not
supported.

Use the shipped profile 'LabVIEWLi-
brary::ReliableProfile' to use Reliable
Communication with Shared Readers. If
you need Strict Reliability, use Exclusive
Readers.

The current implementation of a non-
exclusive Reader uses 'read' instead of
'take’, so strictly reliable communication
is not compatible with non-exclusive
Readers.

5069

Incompatible configura-
tion: History depth > 1
needs 'only_new_samples'
flag in the Read subVI to be
'true’.

Using a depth bigger than 1 for the his-
tory property and not setting the
‘'only_new_samples' could cause that
samples stayed unread. Change the QoS
configuration or set the flag to 'true’.

Review the QoS profile for the Data
Reader.

5070

Unable to extract informa-
tion from the Advanced
Writer Configuration con-
trol.

Make sure you are using the cluster 'RTI
DDS Advanced Writer Configura-
tion.ctl' contained in LVDDS_Library.

5071

Unable to extract informa-
tion from the Advanced
Reader Configuration con-
trol.

Make sure you are using the cluster 'RTI
DDS Advanced Reader Configura-
tion.ctl' contained in LVDDS_Library.

5072

The Local Logger is not
correctly initialized.

Make sure the size of the Local Logger is
not a negative number.

5073

Unable to create a new
message into the Local
Logger.

Make sure there is enough memory to
log a new message. You could need to
use a lower queue size.

http://community.rti.com

Running without an Active Network Interface

Table 3.2 Error Codes

El:g: Error Message Possible Reason(s) Additional Information
Check that the Distributed Logger
Unable to create Distrib- Queue Slzeils a positive number and the
5074 uted Logeer QoS setting format is correct
B&er (Library::Profile), the XML file exists,
and it contains a correct configuration.
Unable to delete Distrib-|Make sure Distributed Logger has not
5075 .
uted Logger. been previously deleted.

E.3 Running without an Active Network Interface

To use RTI DDS Toolkit for LabVIEW on a computer that does not have an active network interface,
you have two choices:

[Change the QoS profile to use only the Shared Memory transport. As described in the RTI
Connext DDS Core Libraries User’s Manual (see the chapter on Configuring QoS with XML), you
need to set up this QoS properties in all your profiles:

<participant gos>
<transport builtins>
<mask>SHMEM< /mask>
</transport_builtin>
<discovery>
<initial peers>
<element>builtin.shmem://</element>
</initial peerss
</discovery>
</participant goss>

[Another option is to install the Microsoft Loopback Adapter, which simulates the exis-
tence of a network interface. For an example on how to install the Loopback Adapter for
Windows XP, see http://support.microsoft.com/kb/839013.

E.4 Error Installing RTI DDS Toolkit for LabVIEW RT Support

If the RTI DDS Toolkit for LabVIEW Real-Time Support Files installation has not completed suc-
cessfully, make sure the VI Package Manager has been run as Administrator.

JKIWIPM - BTI DDS Toolkit for LabWIEW (RT-support)

File Help

Package Information

Select an action to perform on the package,

Here are the resulks of the last action.

Product Action Status '/
i3 Instal ¥ RTIDDS Toolkit For LabYIEW {RT-support) w1.5.2.93 Mot instaled YIPM could not install the package real_time_in

E-8

http://support.microsoft.com/kb/839013
http://support.microsoft.com/kb/839013
http://support.microsoft.com/kb/839013

	CONTENTS
	Chapter 1 Installation
	1.1 Introduction
	1.2 Installing
	1.2.1 Installing RTI DDS Toolkit for LabVIEW Support Files on a Target

	1.3 Verifying Installation
	1.3.1 LabVIEW Functions Palette
	1.3.2 LabVIEW Controls Palette

	1.4 License Management
	1.4.1 Activating the Add-on License on Windows Systems
	1.4.2 License Management on LabVIEW RT Targets

	1.5 Upgrading
	1.5.1 Additional Steps when Upgrading from a Release Older than 1.2.0.90
	1.5.2 Additional Steps when Upgrading from a Release Older than 1.3.0.91

	1.6 Uninstalling
	1.6.1 Uninstalling RTI DDS Toolkit for LabVIEW Support Files from LabVIEW RT Targets

	1.7 LabVIEW Examples
	1.8 Product Support

	Chapter 2 Communication Models
	2.1 Publish/Subscribe – A Simple Analogy
	2.2 The DDS Paradigm
	2.3 Quality of Service (QoS)
	2.4 DDS—Example Application

	Chapter 3 A Simple Read/Write Example
	3.1 Publishing a String in DDS
	3.2 Subscribing to a String in DDS
	3.3 What is Happening?
	3.4 Usage Notes
	3.4.1 Preventing ‘Application Failed to Start’ Error when Opening Example VIs
	3.4.2 Communicating Unbounded Entities.
	3.4.3 Preventing 'Type Code Incorrect' Error when Working with Arrays
	3.4.4 Troubleshooting with Ping and Spy

	Chapter 4 Tutorial
	4.1 Lesson 1—Using DDS to Publish and Subscribe to Simple Data (Numeric)
	4.1.1 Developing a VI to Publish Simple Data (Numeric)
	4.1.2 Creating a VI to Subscribe to Simple Data (Numeric)
	4.1.3 Testing

	4.2 Lesson 2—Using Templates to Publish and Subscribe to Complex Data (Clusters)
	4.2.1 Creating a VI to Publish a Cluster
	4.2.2 Creating a VI to Subscribe to a Cluster
	4.2.3 Testing

	4.3 Lesson 3—Filtering Data
	4.4 Lesson 4—Reading Only New Samples
	4.5 Lesson 5—Using Keyed Types (RTI Shapes Demo)
	4.5.1 Working with Shapes Demo
	4.5.2 Publishing a Shape (Square)
	4.5.3 Subscribing to Shapes

	4.6 Lesson 6—Used Nested and Multiple Keys
	4.6.1 Adding Multiple Top-Level Fields as Keys
	4.6.2 Adding Internal Cluster Fields as Keys (Nested Keys)

	4.7 Lesson 7—Reading All Samples (Reliable Communication)
	4.7.1 Writing and Reading Reliably Using the Default Configuration
	4.7.2 Writing and Reading using Strict Reliability

	4.8 Lesson 8—Debugging Your RTI Connext DDS Application
	4.8.1 Debugging an Application Using the Administration Panel
	4.8.2 Adapting a VI to Use RTI Monitoring Library

	4.9 Lesson 9—Using RTI DDS Toolkit on NI Targets (cRIO-9068 Example)
	4.10 Reviewing Completed Solutions

	Chapter 5 Loading Quality of Service Profiles
	Chapter 6 Advanced Concepts and Settings
	6.1 Default Configuration: DDS Entities Created by Simple Create subVIs
	6.2 How to Configure Advanced Writer Settings
	6.3 How to Configure Advanced Reader Settings
	6.4 How to Debug an RTI Connext DDS LabVIEW Application
	6.4.1 RTI DDS Toolkit Administration Panel (for Windows Systems only)
	6.4.2 Debugging SubVIs on Real-Time Targets and Windows Systems
	6.4.3 Logging Messages from LabVIEW

	Appendix A VI Descriptions
	A.1 Controls Palette Types
	A.2 Functions Palette
	A.2.1 Writer
	A.2.2 Reader
	A.2.3 Complex-Type Templates

	A.3 Tools
	A.3.1 DDS Debugging SubPalette

	Appendix B Creation and Release of DDS Entities
	Appendix C Supported Data Types and Corresponding IDL
	C.1 Corresponding IDL for Complex Data Types
	C.1.1 Clusters
	C.1.2 Enums

	Appendix D File Folders Installed within LabVIEW
	D.1 File Folders on Windows Systems
	D.2 File Folders on NI Linux Targets

	Appendix E Troubleshooting
	E.1 Enabling Debugging Mode
	E.2 Error Codes and Possible Solutions
	E.3 Running without an Active Network Interface
	E.4 Error Installing RTI DDS Toolkit for LabVIEW RT Support

