
Using Wireshark

with
RTI Connext DDS

Getting Started Guide

Version 1.99.1_RTI520

© 2015 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
June 2015.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS, the
RTI logo, 1RTI and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks
or service marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

Technical Support

Real-Time Innovations, Inc.

232 E. Java Drive

Sunnyvale, CA 94089

Phone: (408) 990-7444

Email: support@rti.com

Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Table of Contents
Chapter 1 Introduction

1.1 Available Documentation 2
1.2 Reading Guide 2
1.3 How to Get Support 2

Chapter 2 Installation

2.1 Before Installation 3
2.2 Installing Wireshark on Windows Systems 3
2.3 Installing Wireshark on Linux (Red Hat) Systems 3
2.4 Installing Wireshark on Linux (Debian) Systems 4
2.5 Installing Wireshark on OS X Systems 5
2.6 Uninstalling Wireshark 5

Chapter 3 Starting Wireshark 6
Chapter 4 Capturing RTPS Packets 7
Chapter 5 Analyzing RTPS Packets

5.1 RTPS Submessage Types 10
5.2 Displaying Packets 14

5.2.1 Using a Display Filter 14
5.2.2 Color-Coding Packets 20

5.3 Analyzing Packets from Connext DDS Applications 21
5.3.1 Analyzing the User-Data Sample Trace 22
5.3.2 Analyzing the Discovery-Data Sample Trace 25

Chapter 6 Practical Uses with RTI Applications

6.1 Debugging Discovery Problems 31
6.2 Visualizing Your System 32
6.3 Providing Information to RTI Support 35

Chapter 1 Introduction

Wireshark™ is a network-packet analyzer that supports many network protocols, including Real-
Time Publish-Subscribe (RTPS), the wire protocol used by RTI® Connext™ DDS.

Wireshark can be used to capture and analyze RTPS packets from Connext DDS applications. It
supports RTPS 2.1 (and lower) and is specifically tailored to make RTPS packet analysis easier by
including:

l A set of predefined filters to quickly select different groups of packets from the RTPS pro-
tocol.

l Coloring rules that highlight important RTPS packets. Packets not strictly related to Connext
DDS traffic are grayed-out.

l Support to dissect RTI TCP messages. This includes, RTI TCP Control messages as well as
RTPS over RTI TCP.

Network packet and traffic analyzers are used during application development and distributed sys-
tem configuration to monitor the packets over the network. You can use filters to capture specific
types of packets, then analyze the captured packets.

This manual will help you use Wireshark to analyze RTPS packets. This analysis will give you
information on two levels:

l A high-level look at the RTPS submessages that are flowing between your Connext DDS
applications.

l A detailed look at the contents of individual packets.

Wireshark’s main window makes it easy to see both views.

1

1.1 Available Documentation

2

1.1 Available Documentation

l RTI Wireshark Release Notes describes system requirements, installation instructions, and other
important information.

l RTI Connext DDS Core Libraries User’s Manual provides details on the Connext DDS API and
describes how RTPS packets are used by Connext DDS-based applications. In particular, you
should review the Discovery chapter. Open <NDDSHOME>/doc/manuals/connext_dds/RTI_
ConnextDDS_CoreLibraries_UsersManual.pdf, where <NDDSHOME> is where you installed
Connext DDS.

l RTPS Specification. Please see http://www.omg.org/spec/DDSI/2.1/.

l Wireshark online help. There is extensive online help included with Wireshark. Select Help, Con-
tents from the menu bar for a detailed user’s guide in HTML format.

l Wireshark User’s Guide describes how to use Wireshark’s features. It is not included in the install-
ation, but can be downloaded from Wireshark’s website (www.wireshark.org/docs). Note that it
may pertain to a slightly different version ofWireshark.

1.2 Reading Guide

We suggest that you read the documentation in the following order:

l Read this section to become familiar with the system requirements.

l Read the RTI Wireshark Release Notes.

l Follow the steps in Chapter 2 Installation.

l Read Chapter 4 Capturing RTPS Packets for a quick overview of how to capture RTPS packets.

l Read Chapter 5 Analyzing RTPS Packets to learn how to analyze each type of RTPS packet by
looking at sample files of captured RTPS packets. During this process, you will need to reference
the Real-Time Publish-Subscribe Wire Protocol Specification.

l Read Chapter 6 Practical Uses with RTI Applications for ideas on how to use Wireshark during
Connext DDS application development.

l Consult the Wireshark online help and user’s guide for information on other features.

1.3 How to Get Support

Technical support forWireshark is provided by RTI; send e-mail to support@rti.com.

Wireshark is an open source product. For information about Wireshark support, please visit www.wire-
shark.org.

http://www.omg.org/spec/DDSI/2.1/
http://www.wireshark.org/docs
http://www.wireshark.org/
http://www.wireshark.org/

Chapter 2 Installation

To install Wireshark, you need to login as super-user on Linux and OS X systems, or as admin-
istrator on Windows systems.

You may also need super-user/administrator access to capture packets. (With normal user access,
you may be able to run Wireshark, but only view previously saved capture files.)

2.1 Before Installation

If you have Ethereal or Wireshark already installed, we recommend that you remove them before
installing RTI’s distribution ofWireshark. See 2.6 Uninstalling Wireshark.

2.2 Installing Wireshark on Windows Systems

1. Right-click on the distribution file, Wireshark-<version>-Win32.exe, and select Run as
Administrator.

This will install Wireshark (QT-based GUI), Wireshark Legacy (GTK-based GUI) and
Tshark, a terminal-based (non-GUI) version of Wireshark. The default installation path is
C:\Program Files (x86)\Wireshark.

2. Wireshark requires WinPcap 4.1. If WinPcap 4.1 is not already installed, it will be installed
with Wireshark. If it is already installed, you will be asked if you want to re-install WinPcap
or skip the WinPcap installation. You can safely skip re-installing WinPcap.

2.3 Installing Wireshark on Linux (Red Hat) Systems

InstallWireshark using the Red Hat Package Manager (RPM):

1. Login as super-user.
2. cd <location of the distribution file>

3

2.4 Installing Wireshark on Linux (Debian) Systems

4

3. rpm -i wireshark-<version>-<architecture>.rpm

4. rpm -i wireshark-gnome<version>-<architecture>.rpm

For more information on installing RPMs, see http://www.rpm.org. For more information regarding the
dependencies and installation, see the Release Notes.

2.4 Installing Wireshark on Linux (Debian) Systems

Before Installation:

Make sure you have installed the required packages listed in the Release Notes.

Installation:

The Wireshark package installs the GUI (GTK-based GUI for Ubuntu 12.04 and QT-based GUI for
Ubuntu 14.04), while the Tshark package installs a terminal-based (non-GUI) version. For more inform-
ation on Debian packages, please see http://packages.debian.org.

1. Login as super-user.
2. cd <location of distribution files>

3. Install using dpkg the following libraries: wsutil, wiretap, wireshark-data, and wireshark.

4. Install the common package: dpkg -i wireshark_common-<version>-<archi-
tecture>.deb

5. To install Wireshark (GTK-based GUI), enter:

dpkg -i wireshark-gtk_<version>_<architecture>.deb

6. To install Wireshark (QT-based GUI), enter:

dpkg -i wireshark-qt_<version>_-<architecture>.deb

7. To install Tshark, enter:

dpkg -i tshark-<version>-<architecture>.deb

For more information regarding the dependencies and installation, see the Release Notes.

http://www.rpm.org/
http://packages.debian.org/

2.5 Installing Wireshark on OS X Systems

2.5 Installing Wireshark on OS X Systems

Before Installation:

l Make sure you have root privileges.

Installation:

l Double-click the installer and follow the installation process.

2.6 Uninstalling Wireshark

l To uninstall from a Linux (Red Hat) system, while logged in as root, enter:

rpm -e wireshark

l To uninstall from a Linux (Debian) system, while logged in as root:

Uninstall Wireshark:

dpkg -r wireshark_common wireshark

Uninstall Tshark:

dpkg -r wireshark_common tshark

Uninstall the common package:

dpkg -r wireshark wireshark-common

l To uninstall from an OS X system, while logged in as root, drag the Wireshark .app from /Ap-
plications to the bin.

l To uninstall from a Windows system: From the Start menu, select Control Panel, Add/Remove
Programs (or Programs and Features),Wireshark.

5

Chapter 3 Starting Wireshark
To capture packets from the network, you may need to run Wireshark as root/administrator.

l On Windows systems: Use the Startmenu to selectWireshark.

l

On Linux systems:

/usr/bin/wireshark &or /usr/bin/wireshark-gtk &

l On OS X systems: Wireshark will be available in /Applications

Alternatively on Linux and OS X systems, to capture with tshark, the terminal-based version of
Wireshark, run tshark from the same paths as above. On Windows systems, you can start tshark
from <installation directory>/tshark.

6

Chapter 4 Capturing RTPS Packets

This chapter describes how to capture RTPS packets that are sent across a network. After cap-
turing packets, use the information in Chapter 5 Analyzing RTPS Packets to analyze them.

Wireshark will automatically capture all RTPS packets from the wire.

You can create additional filters to refine the scope of your captures. For example, you can create
filters to capture packets from specific nodes, addresses, ports, protocols, etc. This chapter provides
basic instructions on using capture filters and a few examples. For more information, see the Wire-
shark User’s Guide or online documentation.

To capture all types of packets while running a Connext DDS application:

1. Login as super-user (on Linux/OSX systems) or administrator (on Windows systems).

2. StartWireshark.

3. Select Capture, Options... from the menubar. Figure 4.1 Starting a Capture Session shows
a sample Capture Options window.

The defaults in the Capture Option window may very well suit your needs—they will cap-
ture all packets sent to the selected interface. Then you can filter the displayed results with a
display filter, as described in 5.2.1 Using a Display Filter.

If you want to change any of the defaults for this window, see the Wireshark User’s Guide
or online help.

7

Chapter 4 Capturing RTPS Packets

8

Figure 4.1 Starting a Capture Session

Note:

The check boxes for "Update list of packets in real-time" and “Hide capture info dialog” are selected by
default. However, these features can slow down the capture process and increase the chance of missing
packets. We recommend deselecting these two check boxes to limit the risk of missing packets.

4. Click Start to start the capture session.

5. To stop the capture:

Chapter 4 Capturing RTPS Packets

l If “Hide capture info dialog” is selected, click Stop on the Capture window or use the but-
ton located on the far right of the main window’s tool bar (you may need to resize the main
window to see it).

l If “Hide capture info dialog” is not selected, click Stop in the Capture Dialog window.

With the above steps, you will capture all the packets that come through your selected interface. Such an
indiscriminate capture session may yield hundreds or thousands of packets. While modern computers are
amazingly fast, processing each captured packet does take a certain amount of time. Filtering out unin-
teresting packets can help you squeeze the most out of your computer. Therefore we suggest that you
apply a capture filter so thatWireshark only captures the type of packets you want to see.

Simply enter a valid capture filter string in the Capture Filter box (see Figure 4.1 Starting a Capture Ses-
sion) before you press Capture. Table 4.1 , Example Capture Filters provides some examples.

To Capture ... Enter ...

Capture only RTPS rtps

Only UDP packets udp

Only RTPS from 10.10.1.92 rtps && ip.src == 10.10.1.92

Only RTPS to 10.10.1.92 rtps && ip.dst == 10.10.1.92

Only RTITCP rtitcp

Only RTITCP Control Messages (not RTPS data) rtitcp && !rtps

Table 4.1 Example Capture Filters

For more information, seeWireshark’s documentation (Help, Wireshark Online, User’s Guide).

For help analyzing captured RTPS packets, see Chapter 5 Analyzing RTPS Packets.

9

Chapter 5 Analyzing RTPS Packets

This section will help you interpret the submessages within captured RTPS packets. There are two
levels of analysis that you may be interested in:

l A high-level understanding of what is transpiring during a sequence of captured RTPS pack-
ets.

This section will help you learn to “read” a sequence of packets by walking through the
provided sample capture files. You may also find it helpful to review the Discovery section
in the RTI Connext DDS Core Libraries User’s Manual.

l A more in-depth understanding of an individual packet’s contents.

This section will show you how to display the decoded contents of individual packets. Wire-
shark decodes each RTPS packet and shows you the value for each field in the packet’s
structure.

While the low-level details of a packet’s contents are beyond the scope of this manual, this
information is available in the Real-Time Publish-Subscribe Wire Protocol Specification (see
1.1 Available Documentation).

This section includes:

l 5.1 RTPS Submessage Types

l 5.2 Displaying Packets

l 5.3 Analyzing Packets from Connext DDS Applications

5.1 RTPS Submessage Types

Each RTPS packet (message) consists of a header and one or more submessages. When you dis-
play captured packets, the Info column (seen in) lists the types of submessages in each packet.

10

5.1 RTPS Submessage Types

11

The Info column shows you what submessages are in each packet. The highlighted packet contains a Reader announce-
ment.

Table 5.1 , RTPS 2.x Submessage Types lists the submessages you may see in the Info Column. The
details of each type of submessage are described in the Real-Time Publish-Subscribe Wire Protocol Spe-
cification.

Submessage
Type Description

ACKNACK Provides information on the state of a Reader to a Writer.

ACKNACK_
BATCH Provides information on the state of a Reader to a Writer for batched data.

ACKNACK_
SESSION Provides information on the state of a Reader to a multi-channel Writer

Table 5.1 RTPS 2.x Submessage Types

5.1 RTPS Submessage Types

Submessage
Type Description

DATA

Contains information regarding the value of an application Data-object. The information is a fixed
string with the following format:

(1[23])

Where:

1 = a letter representing the entity ID:

P (upper case) = DomainParticipant

t = Built-in topic writer

w = built-in publication writer

r = built-in subscription writer

p (lower case) = built-in participant writer

m = peer-to-peer participant message writer

? = unknown writer

2,3 = two letters that describe the last two bits of the statusInfo inline QoS:

Bit 1 Bit 0 Text

0 0 __

0 1 _D

1 0 U_

1 1 UD

Where bit 0="Disposed" flag, and bit 1 = Unregistered flag

For example, you may see:

DATA(p[__])

DATA(p[_D])

DATA_
BATCH Contains information regarding the values of a batch of application data objects.

DATA_FRAG
Contains a fragment of information regarding the value of an application Data-object.

In Connext DDS 4.2e and higher, and in Connext DDS 4.5f and higher: a new format is used;
captured submessages of the earlier format are displayed as DATA_FRAG_deprecated.

Table 5.1 RTPS 2.x Submessage Types

12

5.1 RTPS Submessage Types

13

Submessage
Type Description

DATA_
SESSION

Contains information regarding the value of an application Data-object when sent by a multi-channel
Writer.

GAP Describes the information that is no longer relevant to Readers.

HEARTBEAT Describes the information that is available in a Writer.

HEARTBEAT_
BATCH Describes the information that is available in a Writer for batched data.

HEARTBEAT_
SESSION Describes the information that is available in a multi-channel Writer.

HEARTBEAT_
VIRTUAL Describes the information that is available from virtual Writers.

INFO_
SOURCE Provides information about the source from which subsequent Entity submessages originated.

INFO_DST Provides information about the final destination of subsequent Entity submessages.

INFO_REPLY Provides information about where to reply to the entities that appear in subsequent submessages. The
locator provided is limited to contain a single UDPv4 address and port.

INFO_REPLY2 Provides information about where to reply to the entities that appear in subsequent submessages. The
list of locators provided allows for any transport type and can accommodate 16-byte addresses.

INFO_TSa Provides a source timestamp for subsequent Entity submessages.

NACK_FRAG Provides information on the state of a Reader to a Writer.

NOKEY_
DATA

Contains information regarding the value of an application Data-object that cannot be referenced by a
key.

In Connext DDS 4.5 and higher, as well as RTI Data Distribution Service 4.2e and higher, this
submessage is not used.

Table 5.1 RTPS 2.x Submessage Types

aINFO_TS is an abbreviation for INFOTIMESTAMP

5.2 Displaying Packets

Submessage
Type Description

NOKEY_
DATA_FRAG

Contains a fragment of information regarding the value of an application data-object that cannot be
referenced by a key.

In Connext DDS 4.5 and higher, as well as RTI Data Distribution Service 4.2e and higher, this
submessage is not used.

PAD Provides padding to meet any desired memory-alignment requirements.

Table 5.1 RTPS 2.x Submessage Types

5.2 Displaying Packets

Wireshark has two features that make it easy to focus on packets with a particular set of values:

l Display filters limit the display to just packets that meet a set of criteria. See 5.2.1 Using a Display
Filter.

l Coloring rules allow you to color-code packets based on a set of criteria so they stand out more in
the full packet list. See 5.2.2 Color-Coding Packets.

For more information on filters and colors, select Help, Wireshark Online, User’s Guide from the
menubar.

5.2.1 Using a Display Filter

A display filter only shows packets that match a certain set of criteria. You may want to start by showing
only RTPS packets. Wireshark provides a display filter for just this purpose. There are also predefined fil-
ters for displaying just discovery (meta) traffic, or just user data traffic.

To display RTPS packets only:

1. In the main window, clear anything you have in the filter text box with the Clear button, then click
the Filter button.

2. Select the preconfigured filter named “Only RTPS packets” as seen in Figure 5.1 Selecting a Dis-
play Filter.

3. Click OK to close the Display Filter window.

14

5.2.1 Using a Display Filter

15

Figure 5.1 Selecting a Display Filter

As another example, let’s look at how to display only RTPS packets that contain HEARTBEAT submes-
sages.

To display HEARTBEAT packets only:

1. Clear anything you have in the filter text box with the Clear button, then click the Expression... but-
ton.

2. In the new Filter Expression window, scroll down in the Field name list until you see RTPS.
Expand the RTPS tree (click the + sign) to see the choices for this protocol, as seen in Figure 5.2
Creating a Display Filter

3. In the Field name list, select rtps.sm.id.

4. In the Relation list, select ==.

5. In the Predefined values: list, selectHEARTBEAT.

6. Click OK to close the Filter Expression window.

5.2.1 Using a Display Filter

7. Click Apply in the main window to apply the new filter. Now you will see only RTPS messages
that contain a HEARTBEAT submessage, as shown in Figure 5.3 Filtering by Submessage Type

Figure 5.2 Creating a Display Filter

16

5.2.1 Using a Display Filter

17

Figure 5.3 Filtering by Submessage Type

Wireshark also allows you to save filter expressions for future use. For more information, see the Wire-
shark User’s Guide or online help.

Displaying RTPS Messages:

Table 5.2 , Display-Filter Fields for RTPS Messages briefly describes the meaning of each field that can
be used in a display filter for RTPS. For details on the meaning of these fields, see the Real-Time Publish-
Subscribe Wire Protocol Specification (see 1.1 Available Documentation).

Field Description

Header fields:

rtps.version Protocol version (major.minor)

rtps.version.minor Protocol minor version

rtps.version.major Protocol major version

Table 5.2 Display-Filter Fields for RTPS Messages

5.2.1 Using a Display Filter

Field Description

rtps.domain_id Domain ID of this communication (see note below)

rtps.participant_idx Participant index (see note below)

rtps.traffic_nature Nature of the traffic (see note below)

rtps.vendorId Vendor ID

rtps.guidPrefix GUID Prefix of the packet (this does NOT match a GUID Prefix from a
submessage)

rtps.hostId Host ID component of the packet GUID Prefix

rtps.appId App ID component of the packet GUID Prefix

rtps.appId.instanceId Instance ID of the App Id component of the packet GUID Prefix

rtps.appId.appKind App Kind of the App Id component of the packet GUID Prefix

Submessage-specific fields:

rtps.sm.id Submessage type (see Table 5.1 , RTPS 2.x Submessage Types)

rtps.sm.flags Byte representing the submessage flags

rtps.sm.octectsToTextHeader Value of the octetsToNextHeader from the submessage header

rtps.sm.guidPrefix Generic GUID Prefix that appears inside a submessage (this does not match the
GUID Prefix of the packet header)

rtps.sm.guidPrefix.hostId Host ID component of the submessage GUID Prefix

rtps.sm.guidPrefix.appId App ID component of the submessage GUID Prefix

rtps.sm.guidPrefix.appId.instanceId InstanceId component of the App ID of the submessage GUID Prefix

rtps.sm.guidPrefix.appId.appKind Object kind component of the App ID of the submessage GUID Prefix

rtps.sm.entityId Object entity ID as it appear in a DATA submessage (keyHashSuffix)

rtps.sm.entityId.entityKey 'entityKey' field of the object entity ID

rtps.sm.entityId.entityKind 'entityKind' field of the object entity ID

rtps.sm.rdentityId Reader entity ID as it appear in a submessage

Table 5.2 Display-Filter Fields for RTPS Messages

18

5.2.1 Using a Display Filter

19

Field Description

rtps.sm.rdentityId.entityKey 'entityKey' field of the reader entity ID

rtps.sm.rdentityId.entityKind 'entityKind' field of the reader entity ID

rtps.sm.wrentityId Writer entity ID as it appear in a submessage

rtps.sm.wrentityId.entityKey 'entityKey' field of the writer entity ID

rtps.sm.wrentityId.entityKind 'entityKind' field of the writer entity ID

rtps.sm.seqNumber Writer sequence number

Parameters:

rtps.param.id Parameter ID

rtps.param.length Parameter length

rtps.param.ntpTime Any generic ntpTime used in any parameter

rtps.param.ntpTime.sec Second part of a ntpTime

rtps.param.ntpTime.fraction Fraction part of a ntpTime

rtps.param.topicName Topic associated with a PID_TOPIC

rtps.param.strength Value of the strength parameter in a PID_STRENGTH

rtps.param.typeName Value of PID_TYPE_NAME

rtps.param.userData Raw data of PID_USER_DATA

rtps.param.groupData Raw data of PID_GROUP_DATA

rtps.param.topicData Raw data of PID_TOPIC_DATA

rtps.param.contentFilterName Value of the content filter as sent in a PID_CONTENT_FILTER_PROPERTY
parameter

rtps.param.relatedTopicName Value of the related topic name as sent in a PID_CONTENT_FILTER_PROPERTY
parameter

rtps.param.filterName Value of the filter name as sent in a PID_CONTENT_FILTER_PROPERTY
parameter

rtps.issueData Value of the issue data transferred in the packets

Table 5.2 Display-Filter Fields for RTPS Messages

5.2.2 Color-Coding Packets

Note: The domain_id, participant_idx, and traffic_nature are described in the latest RTPS 2 specification.
The values of traffic_nature correspond to the following kinds of traffic:

l 10 = Meta Traffic Unicast

l 11 = User Traffic Unicast

l 0 = Meta Traffic Multicast

l 1 = User Traffic Multicast

The packet decoder assumes the applications are using the default value for the receive_port.
Therefore, it is important to note that if the receive_port has been explicitly changed (in the
locators.receive_port field of the TransportUnicast or TransportMulticast QosPolicy), then the
domain_id, participant_idx, and traffic_nature values will be calculated incorrectly; in this case,
these three fields should not be used in display filters nor assumed to be correct in the decoded
packet view. We expect this (changing of the receive_port) to be a rare occurrence.

5.2.2 Color-Coding Packets

Wireshark allows you to display packets in different colors. Coloring rules are based on the same criteria
used to create display filters (described in 5.2.1 Using a Display Filter). For instance, you can show dis-
covery-related packets in blue and user-data packets in green. Unlike display filters, coloring rules do not
hide captured packets.

Wireshark includes RTPS-related coloring rules that are automatically enabled; they are listed in Table 5.3
, Default Coloring Rules. (You can turn them off, change the colors, or edit them in other ways. See the
Wireshark User’s Guide for details.) To understand the elements in the strings, refer to the Real-Time Pub-
lish-Subscribe Wire Protocol Specification (see 1.1 Available Documentation). Figure 5.4 Using Coloring
Rules shows a sample display.

Coloring Rule String

RTI TCP (purple) rtitcp && !rtps

RTI DDSPing (green) udp[16-23] == "nddsrtiddsping"

RTPS User traffic (red) (rtps.sm.wrEntityId.entityKind == 0x02) ||
(rtps.sm.wrEntityId.entityKind == 0x03)

RTPS Meta traffic (blue) (rtps.sm.wrEntityId.entityKind == 0xc2) ||
(rtps.sm.wrEntityId.entityKind == 0xc3)

Non-RTPS traffic (gray) !rtps && !rtps2

Table 5.3 Default Coloring Rules

20

5.3 Analyzing Packets from Connext DDS Applications

21

Figure 5.4 Using Coloring Rules

To create a coloring rule:

1. Select View, Coloring Rules..., then click the New button to open an Edit Color Filter window.

2. Enter a name for the color filter, such as HeartBeatPackets.

3. Enter a color filter expression using the same syntax as for a display filter. If you need help, click the
Expression... button. For examples, see Table 5.3 , Default Coloring Rules.

4. Select foreground (text) and background colors for packets that match the filter expression.

Tip: To select a color, click in the color-selection triangle; use the colored circle to quickly change
the contents of the triangle.

5. Click OK to close the Edit Color Filter window.

6. Click Apply in the Coloring Rules window.

Tip: The order of the coloring rules is important. The rules are applied in the order in which they
appear in the dialog box. So if there are two rules that are true for the same packet, the first will be
used and the second one ignored. You can use the Up and Down buttons on the dialog to change
the order of the rules.

5.3 Analyzing Packets from Connext DDS Applications

RTI’s distribution of Wireshark includes two files that contain packets captured from Connext DDS 4.5f
applications:

l userDataTrace.pkt A short trace of captured user data packets. This shows the flow of packets in
an established system (after all the objects have discovered each other).

l discoveryTrace.pkt A longer trace of the packets sent during the discovery (startup) process.

5.3.1 Analyzing the User-Data Sample Trace

The location of the sample files depends on your operating system:

l Linux: /usr/share/wiresharkor /usr/local/share/wireshark

l OSX: /Applications/Wireshark.app/Contents/Resources/share/wireshark/

l Windows: <installation directory>\RTI

By looking at these sample files, you will learn how to:

l Load a captured sequence of packets from a file.

l Understand the flow of RTPS messages by looking at a sample sequence.

l View the contents of individual RTPS packets.

5.3.1 Analyzing the User-Data Sample Trace

Use the File, Open... command to open the file, userDataTrace.pkt (see 5.3 Analyzing Packets from
Connext DDS Applications for its location).

The sample file contains a sequence of RTPS packets that illustrate the protocol when two applications use
reliable communications to send/receive data.

This scenario involves two hosts, each running a Connext DDS application:

l Host 1 (10.20.1.86) is running a Connext DDS publishing application, App1.

l Host 2 (10.10.30.100) is running a Connext DDS subscribing application, App2

l The QoS for the writer and the reader have been set up to use Reliable communications.

l App1 writes user data every 4 seconds.

To create the sample capture file, Wireshark started capturing packets on the subscribing host after the dis-
covery process completed, using the following capture filter:

rtps && (ip.src == 10.10.30.100 || ip.dst == 10.10.30.100)

Figure 5.5 User Data Sample Packets shows the packets captured by Wireshark, which includes three
types of RTPS packets:

l Data from the writer to the reader

l Acknowledgements from the reader to the writer

l Heartbeats sent regularly from the writer to the reader

22

5.3.1 Analyzing the User-Data Sample Trace

23

Figure 5.5 User Data Sample Packets

Table 5.4 , Analysis of User Data Sample Trace and Figure 5.6 User Data Sample Packet Flow describe
the trace shown in Figure 5.5 User Data Sample Packets.

Direction Packet
Description

App1 " App2
1

Data packet sent to the reader, containing both INFO_TS and DATA submessages.
Packet has sequence number = 2 (expand the protocol tree in the Packet Details pane
and check the writerSeqNumber value, as seen in Figure 5.7 Examining Packet Details).

2 HEARTBEAT from writer to reader.

App1 ! App2 3
ACKNACK to acknowledge all data packets up to, but not including, sequence number
3 (expand the protocol tree in the Packet Details pane and check the
readerSNState.bitmapBase value).

App1 " App2
4 Another data packet (sequence number 3).

5 HEARTBEAT from writer to reader.

App1 ! App2 6 ACKNACK to acknowledge packet #4.

App1 " App2
7 Another data packet (sequence number 4).

8 HEARTBEAT from writer to reader.

App1 ! App2 9 ACKNACK to acknowledge packet #7.

Table 5.4 Analysis of User Data Sample Trace

5.3.1 Analyzing the User-Data Sample Trace

Figure 5.6 User Data Sample Packet Flow

24

5.3.2 Analyzing the Discovery-Data Sample Trace

25

Figure 5.7 Examining Packet Details

5.3.2 Analyzing the Discovery-Data Sample Trace

Use the File, Open... command to open the file, discoveryTrace.pkt (see 5.3 Analyzing Packets from
Connext DDS Applications for its location).

5.3.2 Analyzing the Discovery-Data Sample Trace

The sample file contains a sequence of RTPS packets that illustrate the protocol when two applications use
best-effort communications to send/receive data.

This scenario involves two hosts, each running one Connext DDS application.

l Host 1 (10.10.100.65) is running a Connext DDS publishing application, App1.

l Host 2 (10.10.30.100) is running a Connext DDS subscribing application, App2.

l Both applications have a maximum participant index of 1 and have each other in their initial_peer_
list.

l All but one QoS are at default values; this default includes the use of automatic discovery via the
default UDPv4 transport. The one non-default QoS is having both applications’ initial_participant_
announcements set to 1, as this reduces the number of redundant announcements in the example
trace.

Wireshark was set up to start capturing packets before either application was started. The publishing applic-
ation was started first, followed (about 6 seconds later) by the subscribing application. Figure 5.8 Dis-
covery Data Sample File shows the packets captured by Wireshark.

Let’s walk through the RTPS packets to understand what occurred in this sequence. Table 5.5 , Analysis
of Sample File’s Packets describes what happened (non-RTPS packets are omitted). In the table, the term
“meta DATA” refers to DATA packets containing meta (discovery) data (as opposed to user data).

26

5.3.2 Analyzing the Discovery-Data Sample Trace

27

Direction Packet
Description

App1 " App2 1 - 12

When the writer participant starts, Connext DDS announces the creation of a
new participant to all potential participants in the initial_peer_list.

Potential participants are initially calculated as: for each peer in initial_peer_
list, peer/participant(i), where i <= maximum participant index.

Since the participant's maximum participant index is 1 and the initial_peer_list
contains only 10.10.30.100, the potential participant list is
{10.10.30.100/participant(0), 10.10.30.100/participant(1)}.

Since each participant gets its own receive locator, we send separate (but
identical) packets to each potential participant listening on its own locator.

Before sending packets with participant information, the participant sends to
each receive locator a PING packet (as packets #1 and #2). These packets serve
to prime ARP tables and to see if the locators are reachable destinations. Since
there is no other Connext DDS application in the system in the same domain,
these locators are unreachable (as packets #3 and #4).

Because the participant is newly created, it sends its information to each locator
(as packets #5 and #6). These are to unreachable destinations (packets #7 and
#8). It then again sends its information (packets #9 and #10), in accordance to
its initial_participant_announcement QoS of 1. Again these are to unreachable
destinations (packets #11 and #12).

App1 ! App2 13-18

Similar to the writer participant, when the reader participant starts, Connext
DDS announces the new participant.

Note: the destination of the writer participant is reachable, so no "unreachable
destination" packets are generated.

Table 5.5 Analysis of Sample File’s Packets

5.3.2 Analyzing the Discovery-Data Sample Trace

Direction Packet
Description

App1 " App2

19-20

When the writer participant learns about the new reader participant, it uses
HEARTBEATs and ACKNACKs from its builtin discovery endpoints to tell the
reader participant about the writer and readers it has. First, it tells the reader
participant about its builtin participant liveliness reader (packet #19) and writer
(packet #20).

21-22
Repeat announcements about the writer participant, which reduce the chance
that the newly created reader participant will drop the reply from the writer
participant.

23-24

HEARTBEATs telling the reader participant how many readers (0) and writers
(1) it has. The reader participant will know from this that it has to get a meta
DATA from the writer.

Note: to be precise, each meta DATA reflects a change to the state of the writer
or reader. The number of writer samples would increase if the writer was
changed or deleted.

25 Writer participant packet #22 for reader participant index 1 was not reachable,
because the reader participant was created with participant id 0.

26-27 ACKNACKs telling the reader participant that builtin discovery readers for
publications and subscriptions are created.

App1 ! App2

28
Reader participant begins to announce its builtin discovery endpoints after
having received the writer participant's announcements. ACKNACK from the
reader participant's builtin participant liveliness.

29-30 Re-announcements of reader participant info, triggered by receiving the writer
announcements.

31-35 Initial HEARTBEATs and ACKNACKs from the reader participant's builtin
discovery endpoints, indicating it has one reader and no writers.

36 ACKNACK in response to HEARTBEAT packet #24, requesting that the writer
participant's builtin publication writer resend the meta DATA for its writer

37-38 HEARTBEATs sent in response to writer ACKNACKs, announcing that the
reader participant has one reader and no writers.

Table 5.5 Analysis of Sample File’s Packets

28

5.3.2 Analyzing the Discovery-Data Sample Trace

29

Direction Packet
Description

App1 " App2 39 Initial HEARTBEAT from participant liveliness writer, of no samples written.

App1 ! App2 40 ACKNACK from participant liveliness reader, of no samples received.

App1 " App2
41 ACKNACK from writer participant for reader participant to resend the meta

DATA for its reader

42-43 Further HEARTBEATs from the reader participant

App1 ! App2 44 Resent meta DATA about the reader, sent in response to the ACKNACK of
packet 41

App1 " App2 45 A resent meta DATA about the writer, sent in response to the ACKNACK of
packet 36

App1 1 App2 46-49 ACKNACKs that all resent DATA was received successfully

App1 " App2
50 PING from the application writer to the application reader's locator

51-53 Writer finally sends user DATA to the reader

Table 5.5 Analysis of Sample File’s Packets

5.3.2 Analyzing the Discovery-Data Sample Trace

Figure 5.8 Discovery Data Sample File

30

Chapter 6 Practical Uses with RTI
Applications

This section offers a few suggestions on how you can useWireshark during Connext DDS applic-
ation development:

l 6.1 Debugging Discovery Problems

l 6.2 Visualizing Your System

l 6.3 Providing Information to RTI Support

6.1 Debugging Discovery Problems

While many object discovery problems are difficult to diagnose, others are quite obvious once you
use the right diagnostic tools. By inspecting all RTPS packets with Wireshark, you may be able to
narrow the problem down to one of the following:

The participants are not discovering each other. In this case, you will see periodic sending of
DATA packets, but no response from the other host that is not being discovered.

The participants have discovered each other, but their contained readers/writers are not getting
hooked up correctly. In this case, you may see HEARTBEAT and ACKNACK packets for the
reserved meta-data representing the reader and writer from one participant to another, but the other
participant is not responding back in accordance to the RTPS protocol.

The objects have all discovered each other, but the writer is not sending user-data. In this case, you
will see the discovery protocol complete successfully, but not see DATA packets containing user
data from the writer.

When a participant containing a writer sends meta data to other participants, and those other par-
ticipants respond with ACKNACK packets to acknowledge those discovery packets, all you can
say is that the declaration for that writer was received by all participants in the system. But just
because a participant is writing DATA packets does not necessarily mean it is writing your

31

6.2 Visualizing Your System

32

application’s user data. Connext DDS also uses DATA packets to propagate internal object information.
When in doubt, check the traffic_nature field in the decoded packet to see how the packet is being used.

A subscriber reciprocally declares its reader object with another DATA packet to all concerned par-
ticipants. This happens before the writer application starts publishing user data. Connext DDS uses sep-
arate built- in objects to announce and discover readers vs. writers, so it's important to check the
writerEntityId of the DATA packet to confirm that the participants in question have discovered the read-
er/writer correctly.

Lastly, it's important to check whether the topic and type declared in the meta data of the reader matches
that in the meta data of the writer. Assuming that neither party is deliberately ignoring certain Entities (e.g.
Participant, Topic, DataReader, DataWriter), if all these were acknowledged (with ACKNACK packets),
the reader participant should at this point be ready to accept user data from the writer, and the writer will
send the data to the reader. Exactly when the data will appear on the wire will depend on when the writer
writes the next sample, as well as the QoS of both the reader and writer.

The writer is writing your data, but the reader is not able to access that data when it calls read() or take().
In this case, you should check your QoS settings. Compare the writer's QoS against the reader's. Perhaps
the minimum_separation in the TimeBasedFilter QosPolicy of the reader is inadvertently filtering out
received issues.

Once a writer is writing user data to a data reader, the initial discovery phase is over. But there can be an
"anti-discovery" problem: depending on the Liveliness QoS, Connext DDS may purge a remote entity that
it considers to be stale. Regardless of what kind of liveliness setting you use, the main idea is to ensure that
your participant and its entities renew their liveliness (automatically or manually) within the declared dur-
ation. A classic symptom of communication ceasing due to a liveliness expiration is that a participant stops
sending its periodic participant DATA packet. (See the RTI Core Libraries and Utilities User’s Manual or
online documentation for information about the Liveliness QosPolicy.)

NOTE: Connext DDS can log more detailed information about what it is doing at higher verbosity set-
tings. See the RTI Connext DDS Core Libraries User’s Manual’s Troubleshooting chapter for more
information on setting verbosity.

6.2 Visualizing Your System

Once your applications are communicating, tuning Connext DDS to maximize performance may require
an in-depth understanding of your network. A visual understanding of Connext DDS network usage is
very valuable for system tuning.

For example, you may be sending data as fast as Connext DDS will allow and wonder why the reader can-
not keep up. Wireshark itself offers many statistical analysis tools under the Statistics menu.

As Figure 6.1 UDP Conversations through Figure 6.3 Protocol Hierarchy show, you can see how many
RTPS packets are being sent, what portion of total network bandwidth RTPS packets are taking up, which
hosts are talking to others, and how much bandwidth is being used to do so. In our “sending too fast”

6.2 Visualizing Your System

example, you may find that the RTPS packets are being dropped at a host with a relatively slow reader. In
some extreme cases, even Wireshark may not see all the packets sent, because the network card on the
sniffing machine itself dropped them.
Figure 6.1 UDP Conversations

33

6.2 Visualizing Your System

34

Figure 6.2 I/O Graph

6.3 Providing Information to RTI Support

Figure 6.3 Protocol Hierarchy

6.3 Providing Information to RTI Support

If you ever need to contact RTI Support for an issue related to Connext DDS, the captured packets will
help RTI support diagnose the problem faster (especially when accompanied by a Connext DDS log cre-
ated with a high verbosity setting).

See the RTI Connext DDS Core Libraries User’s Manual’s Troubleshooting section for more information
on setting verbosity.

35

	Chapter 1 Introduction
	1.1 Available Documentation
	1.2 Reading Guide
	1.3 How to Get Support

	Chapter 2 Installation
	2.1 Before Installation
	2.2 Installing Wireshark on Windows Systems
	2.3 Installing Wireshark on Linux (Red Hat) Systems
	2.4 Installing Wireshark on Linux (Debian) Systems
	2.5 Installing Wireshark on OS X Systems
	2.6 Uninstalling Wireshark

	Chapter 3 Starting Wireshark
	Chapter 4 Capturing RTPS Packets
	Chapter 5 Analyzing RTPS Packets
	5.1 RTPS Submessage Types
	5.2 Displaying Packets
	5.2.1 Using a Display Filter
	5.2.2 Color-Coding Packets

	5.3 Analyzing Packets from Connext DDS Applications
	5.3.1 Analyzing the User-Data Sample Trace
	5.3.2 Analyzing the Discovery-Data Sample Trace

	Chapter 6 Practical Uses with RTI Applications
	6.1 Debugging Discovery Problems
	6.2 Visualizing Your System
	6.3 Providing Information to RTI Support

