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Chapter 1 Introduction
Connext DDS 5.2.3 is a maintenance release based on feature release 5.2.0. This document
includes the following:

l System Requirements (Chapter 2 on page 3)

l

l Compatibility (Chapter 3 on page 8)

l What's Fixed in 5.3.0 (Chapter 5 on page 35)

l Known Issues (Chapter 6 on page 68)

l Experimental Features (Chapter 7 on page 76)

For an overview of new features and improvements in 5.3.0, see the separateWhat’s New doc-
ument for 5.3.0.

This document discusses fixes included in 5.2.3. For what's new and fixed in 5.2.0, see theWhat's
New and Release Notes documents provided with 5.2.0, respectively.

Many readers will also want to look at additional documentation available online. In particular,
RTI recommends the following:

l Use the RTI Customer Portal (http://support.rti.com) to download RTI software, access
documentation and contact RTI Support. The RTI Customer Portal requires a username and
password. You will receive this in the email confirming your purchase. If you do not have
this email, please contact license@rti.com. Resetting your login password can be done dir-
ectly at the RTI Customer Portal.

l The RTI Community Forum (http://community.rti.com) provides a wealth of knowledge
to help you use RTI® Connext™ DDS, including:

1
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l Best Practices,

l Example code for specific features, as well as more complete use-case examples,

l Solutions to common questions,

l A glossary,

l Downloads of experimental software,

l And more.

l Whitepapers and other articles are available from http://www.rti.com/resources.

http://www.rti.com/resources


Chapter 2 System Requirements

2.1 Supported Operating Systems

Connext DDS requires a multi-threaded operating system. This section describes the supported
host and target systems.

In this context, a host is the computer on which you will be developing a Connext DDS applic-
ation. A target is the computer on which the completed application will run. A host installation
provides the RTI Code Generator tool (rtiddsgen), examples and documentation, as well as the
header files required to build a Connext DDS application for any architecture. You will also need a
target installation, which provides the libraries required to build a Connext DDS application for
that particular target architecture.

Connext DDS is available for the platforms in Table 2.1 Supported Platforms. If you want to use a
platform that is not on RTI's download portal, please contact RTI Support.

See the Connext DDS Core Libraries Platform Notes for more information on each platform.

Operating System Version

AIX® AIX 7.1

Android™ Android 2.3 - 4.4, 5.0, 5.1

INTEGRITY®

(target only)
INTEGRITY 5.0.11, 10.0.2, and 11.0.4

iOS® iOS 8.2

Linux® (ARM® CPU)
NI™ Linux 3

Raspbian Wheezy 7.0

Table 2.1 Supported Platforms

3
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Operating System Version

Linux

(Intel® CPU)

CentOS 6.0, 6.2 - 6.4, 7.0

Red Hat® Enterprise Linux 6.0 - 6.5, 6.7, 6.8, 7.0

Ubuntu® 12.04 LTS, 14.04 LTS, 16.04 LTS

SUSE 11a

LynxOS®

(target only)
LynxOS 4.0, 4.2, 5.0

OS X® OS X 10.10 - 10.12

QNX®

(target only)
QNX Neutrino® 6.4.1, 6.5

Solaris™ Solaris 2.10

VxWorks®

(target only)

VxWorks 6.9, 6.9.3.2, 6.9.4, 7.0

VxWorks 653 2.3

Windows®

Windows 7, 8, 8.1, 10

Windows Server 2008 R2

Windows Server 2012 R2

Windows Server 2016

Table 2.1 Supported Platforms

Table 2.2 Custom Supported Platforms lists additional target libraries available for Connext DDS, for
which RTI offers custom support. If you are interested in using one of these platforms, please contact your
local RTI representative or email sales@rti.com.

Other platforms not listed in this document may be supported through special development and
maintenance agreements. Contact your RTI sales representative for details.

Operating System Version

INTEGRITY INTEGRITY 5.0.11 on MPC 8349 CPU

Table 2.2 Custom Supported Platforms

aAvailable upon request.



2.2 Requirements when Using Microsoft Visual Studio

Operating System Version

Linux

Debian™ Linux 3.12 on ARMv7a Cortex-A9 CPU

Freescale™ Linux 3.8.13 on QorIQ or P4040/P4080/P4081 CPU

Red Hat Enterprise Linux 5.2 on x86 CPU with gcc 4.2.1

RedHawk™ Linux 6.0 on x64 CPU

Wind River Linux 7 on ARMv7 CPU

Xilinx® Zynq® Linux 3.8.11 on ARMv7 CPU

QNX
QNX 6.5 on PPC E500 v2 CPU

QNX 6.6 on ARMv7 and x86 CPUs

Table 2.2 Custom Supported Platforms

2.2 Requirements when Using Microsoft Visual Studio

Note: Debug versions of applications and the various Visual C++ DLLs are not redistributable. Therefore,
if you want to run debug versions, you must have the compiler installed.

When Using Visual Studio 2008 — Service Pack 1 Requirement

You must have Visual Studio 2008 Service Pack 1 or the Microsoft Visual C++ 2008 SP1 Redistributable
Package installed on the machine where you are running an application linked with dynamic libraries.

This includes dynamically linked C/C++ and all .NET and Java applications. The Microsoft Visual C++
2008 SP1 Redistributable Package can be downloaded from the following Microsoft websites:

For x86 architectures:

http://www.microsoft.com/downloads/details.aspx?familyid=A5C84275-3B97-4AB7-A40D-
3802B2AF5FC2&displaylang=en

For x64 architectures:

http://www.microsoft.com/downloads/details.aspx?FamilyID=ba9257ca-337f-4b40-8c14-157cf-
dffee4e&displaylang=en

When Using Visual Studio 2010 — Service Pack 1 Requirement

You must have Visual Studio 2010 Service Pack 1 or the Microsoft Visual C++ 2010 SP1 Redistributable
Package installed on the machine where you are running an application linked with dynamic libraries.

This includes dynamically linked C/C++ and all .NET and Java applications. To run an application built
with debug libraries of the above RTI architecture packages, you must have Visual Studio 2010 Service
Pack 1 installed.
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The Microsoft Visual C++ 2010 Service Pack 1 Redistributable Package can be obtained from the fol-
lowing Microsoft websites:

For x86 architectures:https://www.microsoft.com/en-us/download/details.aspx?id=8328

For x64 architectures: https://www.microsoft.com/en-us/download/details.aspx?id=13523

When Using Visual Studio 2012 — Update 4 Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2012 Update 4 installed on the machine
where you are running an application linked with dynamic libraries. This includes dynamically linked
C/C++ and all .NET and Java applications.

You can download Visual C++ Redistributable for Visual Studio 2012 Update 4 from this Microsoft web-
site: http://www.microsoft.com/en-ca/download/details.aspx?id=30679

When Using Visual Studio 2013 — Redistributable Package Requirement

You must have Visual C++ Redistributable for Visual Studio 2013 installed on the machine where you are
running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all
.NET and Java applications.

You can download Visual C++ Redistributable for Visual Studio 2013 from this Microsoft website:
https://www.microsoft.com/en-us/download/details.aspx?id=40784

When Using Visual Studio 2015 — Update 3 Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2015 Update 3 installed on the machine
where you are running an application linked with dynamic libraries. This includes C/C++ dynamically
linked and all .NET and Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2015 Update 3 from this Microsoft
website: https://www.microsoft.com/en-us/download/details.aspx?id=53840.

2.3 Disk and Memory Usage

Disk usage for a typical host-only installation is approximately 385 MB on Linux systems and 625 MB on
Windows systems. Each additional architecture (host or target) requires an additional 162 MB on Linux
systems and 402 MB on Windows systems.

We recommend that you have at least 256 MB RAM installed on your host development system. The tar-
get requirements are significantly smaller and they depend on the complexity of your application and hard-
ware architecture.

2.4 Networking Support

Connext DDS includes full support for pluggable transports. Connext DDS applications can run over vari-
ous communication media, such as UDP/IP over Ethernet, and local inter-process shared memory—

https://www.microsoft.com/en-us/download/details.aspx?id=8328
https://www.microsoft.com/en-us/download/details.aspx?id=13523
http://www.microsoft.com/en-ca/download/details.aspx?id=30679
https://www.microsoft.com/en-us/download/details.aspx?id=40784
https://www.microsoft.com/en-us/download/details.aspx?id=53840


2.4 Networking Support

provided the correct transport plug-ins for the media are installed.

By default, the Connext DDS core uses built-in UDP/IPv4 and shared-memorya transport plug-ins.

A built-in IPv6 transport is available (disabled by default) for some platforms.

A TCP transport is also available (but is not a built-in transport) for some platforms.

See the RTI Connext DDS Core Libraries Platform Notes for details on which platforms support the IPv6
and TCP transports.

aThe shared-memory transport is not supported on VxWorks 5.5 platforms.
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Chapter 3 Compatibility

3.1 Wire Protocol Compatibility

3.1.1 General Information on RTPS (All Releases)

Connext DDS communicates over the wire using the formal Real-time Publish-Subscribe (RTPS)
protocol. RTPS has been developed from the ground up with performance, interoperability and
extensibility in mind. The RTPS protocol is an international standard managed by the OMG. The
RTPS protocol has built-in extensibility mechanisms that enable new revisions to introduce new
message types, extend the existing messages, or extend the Quality of Service settings in the
product—without breaking interoperability.

RTPS 1.0 was introduced in 2001. The current version is 2.1. RTI plans to maintain inter-
operability between middleware versions based on RTPS 2.x.

3.1.2 Release-Specific Information for Connext DDS 5.x

3.1.2.1 Large Data with Endpoint Discovery

An endpoint (DataWriter or DataReader) created with Connext DDS 5.x will not be discovered
by an application that uses a previous release (4.5f or lower) if any of these conditions are met:

The endpoint’s TypeObject is sent on the wire and its size is greater than 65535 bytes. For inform-
ation on TypeObjects, see the RTI Connext DDS Core Libraries Getting Started Guide Addendum
for Extensible Types.

The endpoint’s UserDataQosPolicy value is greater than 65535 bytes.

TypeObjects and UserDataQosPolicy values with a serialized size greater than 65535 bytes require
extended parameterized encapsulation when they are sent as part of the endpoint discovery inform-
ation. This parameterized encapsulation is not understood by previous Connext DDS releases.
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3.1.3 Release-Specific Information for Connext DDS 5.3.x

3.1.3.1 Discovery Wire Compatibility with Applications using Connext DDS 5.2.x and Earlier

3.1.3.1.1 Discovery Wire Compatibility with Applications using Connext DDS 5.2.0 and Earlier

Starting with Connext DDS 5.3.0 (also in 5.2.7) the numbers of locators that can be announced by a
DomainParticipant has been increased from 4 to 16. If your Connext DDS application runs on a machine
with multiple interfaces, or if you have enabled multiple transports, the discovery information that is
announced to other participants may be incompatible with applications running Connext DDS 5.2.0. This
problem does not affect applications running Connext DDS 5.2.3.

When this happens, messages similar to these will appear on the remote participant:
PRESCstReaderCollator_storeSampleData:!deserialize
COMMENDSrReaderService_assertRemoteWriter:!create reachable destination

To ensure backwards compatibility with 5.2.0 and older releases, there is new property, dds.domain_par-
ticipant.max_announced_locator_list_size, in the DomainParticipant's Property QoS. This property lim-
its the maximum number of locators per locator list the local participant will announce to other
participants. The default value for this property is 16. The following snippet shows how to configure it:
<participant_qos>

<property>
<value>

<element>
<name>dds.domain_participant.max_announced_locator_list_size</name>
<value>16</value>

</element>
</value>

</property>
</participant_qos>

3.1.3.1.2 Discovery Wire Compatibility with Applications using Connext DDS 5.3.0 and Earlier

Starting with Connext DDS 5.3.0 (also in 5.2.7), a DomainParticipant is able to propagate changes to IP
addresses as part of the discovery traffic. Note that applications using Connext DDS 5.2.3 and earlier ver-
sions will report errors like the one below if they detect changes to IP addresses.
PRESParticipant_assertRemoteParticipant:!assert remote participant ac110001 3a33 1 due to
different ro area
DISCParticipantDiscoveryPlugin_assertRemoteParticipant:!assert remote participant:
0XAC110001,0X3A33,0X1,0X1C1
DISCSimpleParticipantDiscoveryPluginReaderListener_onDataAvailable:!assert remote participant

You can disable the notification and propagation of IP address changes to be compatible with 5.2.3 by set-
ting the following transport property: <<transport prefix>>.disable_interface_tracking.

For example, for UDPv4 the property name is: dds.transport.UDPv4.builtin.disable_interface_track-
ing.
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3.1.4 Release-Specific Information for Connext DDS 4.5 and 5.x

Connext DDS 4.5 and 5.x are compatible with RTI Data Distribution Service 4.2 - 4.5, except as noted
below.

3.1.4.1 RTPS Versions

Connext DDS 4.5 and 5.x support RTPS 2.1. Some earlier releases (see Table 3.1 RTPS Versions) sup-
ported RTPS 2.0 or 1.2. Because these RTPS versions are incompatible with each other, applications built
with Connext DDS/RTI Data Distribution Service 4.2e and higher will not interoperate with applications
built with RTI Data Distribution Service 4.2c or lower.

RTPS Version

Connext DDS 4.5f and higher 2.1

Data Distribution Service 4.2e - 4.5e 2.1

Data Distribution Service 4.2c 2.0

Data Distribution Service 4.2b and lower 1.2

Table 3.1 RTPS Versions

3.1.4.2 double, long long, unsigned long long or long double Wire Compatibility

If your Connext DDS application’s data type uses a ‘double,’ ‘long long,’ ‘unsigned long long,’ or ‘long
double,’ it will not interoperate with applications built with RTI Data Distribution Service 4.2e or lower,
unless you use the -use42eAlignment flag when generating code with rtiddsgen.

Starting with Connext DDS 5.2.3, you must also set the following DataWriter and DataReader QoS prop-
erties to "1":

l DataWriter QoS property: dds.data_writer.type_support.use_42e_alignment

l DataReader QoS property: dds.data_writer.type_support.use_42e_alignment

3.1.4.3 Sending ‘Large Data’ between RTI Data Distribution Service 4.4d and Older
Releases

The ‘large data’ format in RTI Data Distribution Service 4.2e, 4.3, 4.4b and 4.4c is not compliant with
RTPS 2.1. (‘Large data’ refers to data that cannot be sent as a single packet by the transport.)

This issue is resolved in Connext DDS and in RTI Data Distribution Service 4.4d-4.5e. As a result, by
default, large data in Connext DDS and in RTI Data Distribution Service 4.4d-4.5e is not compatible with
older versions of RTI Data Distribution Service. You can achieve backward compatibility by setting the
following properties to 1.
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dds.data_writer.protocol.use_43_large_data_format
dds.data_reader.protocol.use_43_large_data_format

The properties can be set per DataWriter/DataReader or per DomainParticipant.

For example:

<participant_qos>
<property>

<value>
<element>

<name>
dds.data_writer.protocol.use_43_large_data_format

</name>
<value>1</value>

</element>
<element>

<name>
dds.data_reader.protocol.use_43_large_data_format

</name>
<value>1</value>

</element>
</value>

</participant_qos>

3.2 Code and Configuration Compatibility

3.2.1 General Information (All Releases)

The Connext DDS core uses an API that is an extension of the OMG Data Distribution Service (DDS)
standard API, version 1.2. RTI strives to maintain API compatibility between versions, but will conform to
changes in the OMG DDS standard.

The Connext DDS core primarily consists of a library and a set of header files. In most cases, upgrading
simply requires you to recompile your source using the new header files and link the new libraries. In
some cases, minor modifications to your application code might be required; any such changes are noted in
this document.

RTI allows you to define the data types that will be used to send and receive messages. To create code for
a data type, Connext DDS includes RTI Code Generator (also known as rtiddsgen). For input, Code Gen-
erator takes a data-type description (in IDL, XML, XSD, or WSDL format); RTI Code Generator gen-
erates header files (or a class in Java) that can be used to send and receive data of the defined type. It also
generates code that takes care of low-level details such as transforming the data into a machine-inde-
pendent representation suitable for communication.

While this is not the common case, some upgrades require you to regenerate the code produced by RTI
Code Generator. The regeneration process is very simple; you only need to run the new version of RTI
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Code Generator using the original input IDL file. This process will regenerate the header and source files,
which can then be compiled along with the rest of your application.

3.2.2 Release-Specific Information for Connext DDS 5.x

This section points out important differences in Connext DDS 5.x compared to 4.5f that may
require changes on your part when upgrading from 4.5f (or lower) to 5.x

3.2.2.1 Required Change for Building with C++ Libraries for QNX Platforms—New in
Connext DDS 5.0.0

For QNX architectures, in release 5.x: The C++ libraries are now built without -fno-rtti and with -fex-
ceptions. To build QNX architectures with release 5.x, you must build your C++ applications without -
fno-exceptions in order to link with the RTI libraries. In summary:

Do not use -fno-exceptions when building a C++ application or the build will fail. It is not necessary to
use -fexceptions, but doing so will not cause a problem.

It is no longer necessary to use -fno-rtti, but doing so will not cause a problem.

3.2.2.2 Changes to Custom Content Filters API

Starting with Connext DDS 5.0.0, the ContentFilter’s evaluate() function now receives a new ‘struct
DDS_FilterSampleInfo *’ parameter that allows it to filter on meta-data.

The evaluate() function of previous custom filter implementations must be updated to add this new para-
meter.

3.2.2.3 Changes to FooDataWriter::get_key_value()

Starting with Connext DDS 5.2.0, the return value of the function FooDataWriter::get_key_value() has
changed from DDS_RETCODE_ERROR to DDS_RETCODE_BAD_PARAMETER if the instance
handle passed to the function is not registered.

This change in behavior was done to align with the DDS specification (RTI Issue ID CORE-6096).

3.2.2.4 Changes in Generated Type Support Code in Connext DDS 5.0.0

The rtiddsgen-generated type-support code for user-defined data type changed in 5.0.0 to facilitate some
new features. If you have code that was generated with rtiddsgen 4.5 or lower, you must regenerate
that code using the version of rtiddsgen provided with this release.

12



3.2.2.5  Changes in Generated Type Support Code in Connext DDS 5.1.0

13

3.2.2.5 Changes in Generated Type Support Code in Connext DDS 5.1.0

The rtiddsgen-generated type-support code for user-defined data type changed in 5.1.0 to facilitate some
new features. If you have code that was generated with rtiddsgen 5.0.0 or lower, you must regen-
erate that code using the version of rtiddsgen provided with this release.

3.2.2.6 New Default Value for DomainParticipant Resource Limit, participant_property_
string_max_length

Starting with Connext DDS 5.1.0, the default value of participant_property_string_max_length in the
DomainParticipantResourceLimitsQosPolicy has been changed from 1024 characters to 2048 to accom-
modate new system properties (see Section 8.7, System Properties, in the RTI Connext DDS Core Librar-
ies User’s Manual).

3.2.2.7 New Default Value for DomainParticipant’s participant_name.name

Starting with Connext DDS 5.1.0, the default value for participant_qos.participant_name.name has
been changed from the string “[ENTITY]” to NULL to provide consistency with the default name of other
entities such as DataWriters and DataReaders.

3.2.2.8 Constant DDS_AUTO_NAME_ENTITY no Longer Available

Starting with Connext DDS 5.1.0, the constant DDS_AUTO_NAME_ENTITY, which was used to
assign the name “[ENTITY]” to a participant, has been removed. References to DDS_AUTO_NAME_
ENTITY must be removed from Connext DDS applications.

3.2.2.9 Changes to Time_t and Duration_t Methods

Starting with Connext DDS 5.2.0, the signatures for some of the Time_t and Duration_t methods have
changed:

Traditional C++:

Old: from_micros(DDS_UnsignedLong microseconds);
New: from_micros(DDS_UnsignedLongLong microseconds);

Old: from_millis(DDS_UnsignedLong milliseconds);
New: from_millis(DDS_UnsignedLongLong milliseconds);

Old: from_nanos(DDS_UnsignedLong nanoseconds);
New: from_nanos(DDS_UnsignedLongLong nanoseconds);

Old: from_seconds(DDS_Long seconds);
New: from_seconds(DDS_UnsignedLong seconds);

Java:
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Old: from_seconds(long seconds)
New: from_seconds(int seconds)

.NET:

Old: from_micros(long microseconds)
New: from_micros(System::UInt64 microseconds)

Old: from_millis(System::UInt32 milliseconds)
New: from_millis(System::UInt64 milliseconds)

Old: from_nanos(long nanoseconds)
New: from_nanos(System::UInt64 nanoseconds)

3.2.2.10 Locator Reachability Configuration

Connext DDS 5.2.2 introduced a new feature that provides the ability to detect unreachable locators. In
Connext DDS 5.2.5, the QoS properties that were used to configure this feature have been replaced with
QoS values in DDS_DiscoveryConfigQosPolicy and they will be ignored if set.

Specifically, the properties:

l dds.domain_participant.locator_reachability_assert_period.sec

l dds.domain_participant.locator_reachability_assert_period.nanosec

l dds.domain_participant.locator_reachability_lease_duration_period.sec

l dds.domain_participant.locator_reachability_lease_duration_period.nanosec

l dds.domain_participant.locator_reachability_change_detection_period.sec

l dds.domain_participant.locator_reachability_change_detection_period.nanosec

Have been replaced with the following QoS values. The above properties will be ignored if set.
struct DDS_DiscoveryConfigQosPolicy {

....
struct DDS_Duration_t locator_reachability_assert_period;
struct DDS_Duration_t locator_reachability_lease_duration;
struct DDS_Duration_t locator_reachability_change_detection_period;
....

};

3.2.2.11 Memory Management Changes for Optional Members in Traditional C++

Starting with Connext DDS 5.2.5, the way memory is managed for optional members in traditional C++
has changed.
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In previous releases, applications were advised to allocate and release optional members using the fol-
lowing functions:

l DDS_Heap_malloc()

l DDS_Heap_free()

The type-support also used these, for example in FooTypeSupport::create_data() or FooTypeSup-
port::delete_data().

Besides being less intuitive than new() and delete(), these functions posed a problem allocating optional
sequences. Sequences have constructors, so DDS_Heap_malloc() simply reserved the memory but did not
initialize the object. Using new() would be inconsistent with the call to DDS_Heap_free() from
FooTypeSupport::delete_data(). The only solution left was to use DDS_Heap_malloc(), followed by a
call to operator placement new.

In Connext DDS 5.2.5, this problem has been resolved. Now all optional members should be created and
destroyed with new and delete.

Notice that this change may break user code since you may be using DDS_Heap_malloc() and DDS_
Heap_free() to work with optional members. This change requires you to replace calls to DDS_Heap_
malloc() with new, and calls to DDS_Heap_free() with delete.

3.2.2.12 Changes to the Sequence API in C and Traditional C++

Changes to length():

In Connext DDS 5.3 and 5.2.3.1, the semantic associated with the operation that sets the length of a C/tra-
ditional C++ sequence changed.

In previous releases, the length() setter in a C/C++ sequence returned an error (false) if the new length
exceeded the maximum of the sequence as returned by themaximum() operation.

In Connext DDS 5.3 and 5.2.3.1, the length()method behavior has changed to allow the sequences to be
resized and grow beyond the current maximum if necessary.

For unbounded sequences, the semantic is equivalent to the one provided by the ensure_length() oper-
ation.

For bounded sequences, the length()method allows resizing as long as the new length does not exceed the
sequence bound provided in IDL.

Changes to maximum():

In Connext DDS 5.3 and 5.2.3.1 (USACE), you cannot set the maximum of a bounded sequence to a
value greater than the value provided in the IDL. This was possible in previous releases.
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3.2.2.13 Change to ConfigLogger::set_ouput_device()

Starting with 5.3.0, the .NET API ConfigLogger::set_ouput_device() has been renamed to Con-
figLogger::set_output_device() to fix a typo in the previous name.

3.2.3 Release-Specific Information for RTI Data Distribution Service 4.x,
Connext DDS 4.5 and 5.x

3.2.3.1 Type Support and Generated Code Compatibility

long long Native Data Type Support:

In Connext DDS (and RTI Data Distribution Service 4.5c,d,e), we assume all platforms natively support
the ‘long long’ data type. This was not the case in older versions of RTI Data Distribution Service. There
is no longer a need to define RTI_CDR_SIZEOF_LONG_LONG to be 8 on some platforms in order to
map the DDS ‘long long’ data type to a native ‘long long’ type.

double, long long and unsigned long long Code Generation:

If your Connext DDS (or RTI Data Distribution Service 4.3-4.5e) application’s data type uses a ‘double,’
‘long long,’ ‘unsigned long long,’ or ‘long double,’ it will not be backwards compatible with applications
built with RTI Data Distribution Service 4.2e or lower, unless you use the -use42eAlignment flag when
generating code with rtiddsgen.

Changes in Generated Type Support Code:

The rtiddsgen-generated type-support code for user-defined data type changed in 4.5 to facilitate some
new features. If you have code that was generated using rtiddsgen 4.4 or lower, you must regenerate
that code using the version of rtiddsgen provided with this release.

Cross-Language Instance Lookup when Using Keyed Data Types:

This issue only impacts systems using RTI Data Distribution Service 4.3.

In RTI Data Distribution Service 4.3, keys were serialized with the incorrect byte order when using the
Java and .NETa APIs for the user-defined data type, resulting in incorrect behavior in the lookup_
instance() and get_key()methods when using keyed data-types to communicate between applications in
these languages and other programming languages. This issue was resolved in Java starting in RTI Data
Distribution Service 4.3e rev. 01 and starting in .NET in RTI Data Distribution Service 4.4b.

As a result of this change, systems using keyed data that incorporate Java or .NET applications using both
RTI Data Distribution Service 4.3 and this Connext DDS release could experience problems in the
lookup_instance() and get_key()methods. If you are affected by this limitation, please contact RTI Sup-
port.

aThe Connext DDS .NET language binding is currently supported for C# and C++/CLI.
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Data Types with Variable-Size Keys:

If your data type contains more than one key field and at least one of the key fields except the last one is of
variable size (for example, if you use a string followed by a long as the key):

RTI Data Distribution Service 4.3e, 4.4b or 4.4c DataWriters may not be compatible with RTI Data Dis-
tribution Service 4.4d or higher DataReaders.

RTI Data Distribution Service 4.3e, 4.4b or 4.4c DataReaders may not be compatible with RTI Data Dis-
tribution Service 4.4d or higher DataWriters.

Specifically, all samples will be received in those cases, but you may experience the following problems:

Samples with the same key may be identified as different instances. (For the case in which the DataWriter
uses RTI Data Distribution Service 4.4d-4.5e or Connext DDS, this can only occur if the DataWriter’s dis-
able_inline_keyhash field (in the DataWriterProtocolQosPolicy) is true (this is not the default case).

Calling lookup_instance() on the DataReader may return HANDLE_NIL even if the instance exists.

Please note that you probably would have had the same problem with this kind of data type already, even
if both your DataWriter and DataReader were built with RTI Data Distribution Service 4.3e, 4.4b or 4.4c.

If you are using a C/C++ or Java IDL type that belongs to this data type category in your RTI Data Dis-
tribution Service 4.3e, 4.4b or 4.4c application, you can resolve the backwards compatibility problem by
regenerating the code with version of rtiddsgen distributed with RTI Data Distribution Service 4.4d. You
can also upgrade your whole system to this release.

3.2.3.2 Other API and Behavior Changes

Code Compatibility Issue in C++ Applications using Dynamic Data:

If you are upgrading from a release prior to 4.5f and use Dynamic Data in a C++ application, you may
need to make a minor code change to avoid a compilation error.

The error would be similar to:
MyFile.cpp:1060: error: could not convert ‘{0u, 4294967295u, 4294967295u, 0u}’ to
‘DDS_DynamicDataTypeSerializationProperty_t
MyFile.cpp:1060: warning: extended initializer lists only available with -std=c++0x or -
std=gnu++0
MyFile.cpp:1060: warning: extended initializer lists only available with -std=c++0x or -
std=gnu++0x
MyFile.cpp:1060: error: could not convert ‘{0l, 65536l, 1024l}’ to ‘DDS_DynamicDataProperty_
t’
MyFile.cpp:1060: error: could not convert ‘{0u, 4294967295u, 4294967295u, 0u}’ to
‘DDS_DynamicDataTypeSerializationProperty_t

The code change involves using a constructor instead of a static initializer. Therefore if you have code like
this:



3.2.3.2  Other API and Behavior Changes

DDS_DynamicDataTypeProperty_t properties =
DDS_DynamicDataTypeProperty_t_INITIALIZER;

...
typeSupport = new DDSDynamicDataTypeSupport(typeCode, properties);

Replace the above with this:
DDS_DynamicDataTypeProperty_t properties;
...
typeSupport = new DDSDynamicDataTypeSupport(typeCode, properties);

New on_instance_replaced() method on DataWriterListener:

Starting with RTI Data Distribution Service 4.5c (and thereby included in Connext DDS), there is a new
DataWriterListener method, on_instance_replaced(), which supports the new instance replacement fea-
ture. This method provides notification that the maximum instances have been used and need to be
replaced. If you are using a DataWriterListener from an older release, you may need to add this new
method to your listener.

Counts in Cache Status and Protocol Status changed from Long to Long Long:

Starting with RTI Data Distribution Service 4.5c (and thereby included in Connext DDS), all the ‘count’
data types in DataReaderCacheStatus, DataReaderProtocolStatus, DataWriterCacheStatus and DataWriter-
ProtocolStatus changed from ‘long’ to ‘long long’ in the C, C++ and .NETAPIs in order to report the cor-
rect value for Connext DDS applications that run for very long periods of time. If you have an application
written with a previous release of RTI Data Distribution Service that is accessing those fields, data-type
changes may be necessary.

Changes in RtpsReliableWriterProtocol_t:

Starting with RTI Data Distribution Service 4.4c (and thereby included in Connext DDS), two fields in
DDS_RtpsReliableWriterProtocol_t have been renamed:

Old name: disable_positive_acks_decrease_sample_keep_duration_scaler
New name:disable_positive_acks_decrease_sample_keep_duration_factor

Old name: disable_positive_acks_increase_sample_keep_duration_scaler
New name: disable_positive_acks_increase_sample_keep_duration_factor

In releases prior to 4.4c, the NACK-only feature was not supported on platforms without floating-point
support. Older versions of RTI Data Distribution Service will not run on these platforms because floats
and doubles are used in the implementation of the NACK-only feature. In releases 4.4c and above, the
NACK-only feature uses fixed-point arithmetic and the new DDS_Long "factor" fields noted above,
which replace the DDS_Double "scaler" fields.

Tolerance for Destination-Ordering by Source-Timestamp:

Starting with RTI Data Distribution Service 4.4b (and thereby included in Connext DDS), by default, the
middleware is less restrictive (compared to older releases) on the writer side with regards to timestamps
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between consecutive samples: if the timestamp of the current sample is less than the timestamp of the pre-
vious sample by a small tolerance amount, write() will succeed.

If you are upgrading from RTI Data Distribution Service 4.4a or lower, and the application you are upgrad-
ing relied on the middleware to reject timestamps that ‘went backwards’ on the writer side (that is, when a
sample’s timestamp was earlier than the previous sample’s), there are two ways to keep the previous, more
restrictive behavior:

l If your DestinationOrderQosPolicy’s kind is BY_SOURCE_TIMESTAMP: set the new field in
the DestinationOrderQosPolicy, source_timestamp_tolerance, to 0.

l If your DestinationOrderQosPolicy's kind is BY_RECEPTION_TIMESTAMP on the writer side,
consider changing it to BY_SOURCE_TIMESTAMP instead and setting source_timestamp_tol-
erance to 0. However, this may not be desirable if you had a particular reason for using BY_
RECEPTION_TIMESTAMP (perhaps because you did not want to match readers with BY_
SOURCE_TIMESTAMP). If you need to keep the BY_RECEPTION_TIMESTAMP setting,
there is no QoS setting that will give you the exact same behavior on the writer side as the previous
release.

Starting with RTI Data Distribution Service 4.4b (and thereby included in Connext DDS), by default, the
middleware is more restrictive (compared to older releases) on the reader side with regards to source and
reception timestamps of a sample if DestinationOrderQosPolicy kind is set to BY_SOURCE_
TIMESTAMP: if the reception timestamp of the sample is less than the source timestamp by more than the
tolerance amount, the sample will be rejected.

If you are upgrading from RTI Data Distribution Service 4.4a or lower, your reader is using BY_
SOURCE_TIMESTAMP, and you need the previous less restrictive behavior, set source_timestamp_tol-
erance to infinite on the reader side.

New Location and Name for Default XML QoS Profiles File (formerly NDDS_QOS_
PROFILES.xml):

Starting with RTI Data Distribution Service 4.4d (and thereby included in Connext DDS) the default
XML QoS Profiles file has been renamed and is installed in a new directory:

l Old location/name: $NDDSHOME/resource/xml/NDDS_QOS_PROFILES.xml

l New location/name: $NDDSHOME/resource/xml/NDDS_QOS_PROFILES.example.xml

If you want to use this QoS profile, you need to set up your NDDSHOME environment variable at run
time and rename the file NDDS_QOS_PROFILES.example.xml to NDDS_QOS_PROFILES.xml
(i.e., by default, even if your NDDSHOME environment variable is set, this QoS profile is not used.) See
Section 17.2, How to Load XML-Specified QoS Settings, in the RTI Connext DDS Core Libraries User’s
Manual for details.
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Changes in the default value for max_objects_per_thread:

Starting with RTI Data Distribution Service 4.4d (and thereby included in Connext DDS), the default
value for themax_objects_per_thread field in the SystemResourceLimitsQosPolicy has been changed
from 512 to 1024.

Type Change in Constructor for SampleInfoSeq—.NET Only:

Starting with RTI Data Distribution Service 4.5c (and thereby included in Connext DDS), the constructor
for SampleInfoSeq has been changed from SampleInfoSeq(UInt32 maxSamples) to SampleInfoSeq(Int32
maxSamples). This was to make it consistent with other sequences.

Default Send Window Sizes Changed to Infinite:

Starting with RTI Data Distribution Service 4.5d (and thereby included in Connext DDS), the send win-
dow size of a DataWriter is set to infinite by default. This is done by changing the default values of two
fields in DDS_RtpsReliableWriterProtocol_t (min_send_window_size, max_send_window_size) to
DDS_LENGTH_UNLIMITED.

In RTI Data Distribution Service 4.4d, the send window feature was introduced and was enabled by
default in 4.5c (with min_send_window_size = 32, max_send_window_size = 256). For DataWriters
with a HistoryQosPolicy kind of KEEP_LAST, enabling the send window could cause writes to block,
and possibly fail due to blocking timeout. This blocking behavior changed the expected behavior of applic-
ations using default QoS. To preserve that preestablished non-blocking default behavior, the send window
size has been changed to be infinite by default starting in release 4.5d.

Users wanting the performance benefits of a finite send window will now have to configure the send win-
dow explicitly.

3.2.4 Deprecated <participant_library> XML Application Creation Tag

Starting with Connext DDS 5.3.0, the XML tag for the DomainParticipant library has been renamed to
<domain_participant_library> so it is compliant with the DDS-WEB OMG standard. The old tag, <par-
ticipant_library>, is still valid but it maybe removed in future versions of the product.

3.3 Application Binary Interface Compatibility

RTI does not guarantee Application Binary Interface (ABI) compatibility between different versions of
Connext DDS.

An application compiled using one version of Connext DDS must be recompiled when moving to a dif-
ferent Connext DDS version.
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3.4 Extensible Types Compatibility

3.4.1 General Compatibility Issues

Connext DDS 5.x includes partial support for the "Extensible and Dynamic Topic Types for DDS"
(DDS-XTypes) specificationa from the Object Management Group (OMG). This support allows systems
to define data types in a more flexible way, and to evolve data types over time without giving up port-
ability, interoperability, or the expressiveness of the DDS type system.

For information related to compatibility issues associated with the Extensible Types support, see the RTI
Connext DDS Core Libraries Getting Started Guide Addendum for Extensible Types.

3.4.2 Java Enumeration Incompatibility Issues

Connext DDS 5.2.0 fixed a bug (RTI Issue ID CODEGENII-397) in Java to resolve an interoperability
issue with other languages when using enumerations with unordered enumeration values. For example:

enum MyEnum{
THREE= 3,
TWO= 2,
ONE= 1

};

Because of this fix, a Java DataWriter built with Connext DDS 5.1.0 or lower will not match a
DataReader of Connext DDS 5.2.0 or higher if the Topic contains an enumeration of the previous kind
(with unordered enumeration values), and vice versa.

3.4.3 Interoperability Issues when Using Keyed Mutable Types

Starting with Connext DDS 5.2.2, the Keyhash calculation for a keyed, mutable type in Java or .NET
changed in order to fix a language-interoperability issue (RTI Issue ID CODEGENII-501). If your
Java/.NET application built with 5.2.2, 5.2.5, or 5.2.6 needs to communicate with a Java/.NET application
built with Connext DDS 5.2.3 or prior General Access Releases (GARs), use the -use52JavaKeyhash
flag (in 5.2.2, 5.2.5 and 5.2.6) or -use52Keyhash (in 5.2.7) to generate the code for your application.

Alternatively, applications built using Connext DDS 5.2.3 can use the flag -use52CKeyhash when gen-
erating code to be compatible with the 5.2.2, 5.2.5, and 5.2.6 releases.

Starting with Connext DDS 5.2.7 and Connext DDS 5.3.0, the Keyhash calculation for a keyed mutable
type inheriting from another keyed mutable type containing key fields in C/C++ and .NET changed in
order to fix a language-interoperability issue (RTI Issue ID CODEGENII-693). If your C/C++/.NET
application built with Connext DDS 5.2.7 or 5.3.0 needs to communicate with a C/C++/.NET application

ahttp://www.omg.org/spec/DDS-XTypes/

http://www.omg.org/spec/DDS-XTypes/
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built with 5.2.6, 5.2.5, or 5.2.2, use the -use526Keyhash flag to generate code for your application. Use
use52Keyhash to communicate with applications built with Connext DDS 5.2.3 or prior GARs.

The following tables clarify what flags to use to generate code for the versions in the first column in order
to be compatible with previous releases.

5.2.2/5.2.5/5.2.6 5.2.3 and Prior GARs

5.2.2/5.2.5/5.2.6 Compatible Compatible

5.2.7/5.3.0 and future GARs -use526Keyhash -use52Keyhash

Table 3.2 C/C++ Backward-Compatibility Flags for Keyed Mutable Types

5.2.2/5.2.5/5.2.6 5.2.3 and Prior GARs

5.2.2/5.2.5/5.2.6 Compatible -use52JavaKeyhash

5.2.7/5.3.0 and future GARs Compatible -use52Keyhash

Table 3.3 Java Backward-Compatibility Flags for Keyed Mutable Types

5.2.2/5.2.5/5.2.6 5.2.3 and Prior GARs

5.2.2/5.2.5/5.2.6 Compatible -use52JavaKeyHash

5.2.7/5.3.0 and future GARs -use526Keyhash -use52Keyhash

Table 3.4 .NET Backward-Compatibility Flags for Keyed Mutable Types

3.4.4 IDL String Wire Compatibility

Starting with Connext DDS 5.3.0, the expected wire encoding for IDL strings has changed from ISO-
8859-1 to UTF-8.

Because of this change, Java and .NET applications built using an older Connext DDS version may
receive wrong values for IDL strings if the strings contain non-ASCII characters and they are published by
applications built using 5.3.0 or higher. The opposite is also true.

To be backward compatible, you can configure the IDL wire encoding back to ISO-8859-1 as follows:

l For generated code TypePlugins and builtin types, set the value of the following properties to ISO-
8859-1.
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l DataReader: dds.data_reader.type_support.cdr_string_encoding_kind

l DataWriter: dds.data_writer.type_support.cdr_string_encoding_kind

l For DynamicData set the member string_character_encoding in DynamicDataProperty_t to the fol-
lowing value:

l For Java: StandardCharsets.ISO_8859_1

l For .NET: StringEncodingKind::ISO_8859_1

3.4.5 Compatibility Between IDL, XML, and XSD Generated with RTI Connext
DDS 5.3 and Previous Versions

l IDL

To be compliant with the "Extensible and Dynamic Topic Types for DDS" (DDS-XTypes)
specification, Connext DDS 5.3.0 adds support for prefix annotations. The IDL files obtained using
the -convertToIDL option using Code Generator 2.5.0 (the version included with Connext DDS
5.3.0) will fail to compile with previous versions of Code Generator if annotations are used.

For example, the following XML file will generate the IDL below

XML:
<?xml version="1.0" encoding="UTF-8"?>
<types xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="rti_dds_topic_types.xsd">

<struct name= "MyType">
<member name="m1" type="int32" key="true"/>

</struct>
</types>

IDL:
@appendable
struct MyType {

@key long m1;
};

The above IDL will fail to compile with previous versions of Code Generator.
l XML

XML files obtained using Code Generator 2.5.0 (the version included with Connext DDS 5.3.0)and
the -convertToXML option may fail to compile with previous versions of Code Generator due to
the following changes, which were made to align with the latest "Extensible and Dynamic Topic
Types for DDS" (DDS-XTypes)" specification.
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l Changes in the XML Type Representation for Basic Types (RTI Issue ID CODEGENII-493)

For example, for the above long member, Code Generator 2.5.0 generates:
<member name="m1" type="int32" key="true"/>

while previous versions generated:
<member name="m1" type="long" key="true"/>

l Changes in default value name for Extensibility annotation

In 2.5.0, rti_dds_topic_types.xsd specifies appendable as the default extensibility. This is not
recognized by earlier versions of Code Generator.

Important: In addition, the parsing of XML files generated by Code Generator 2.5.0 may fail in
infrastructure services (such as RTI Routing Service and RTI Recording Service) from previous
Connext DDS versions that accept XML type definitions.

l XSD

XSD files obtained using Code Generator 2.5.0 (the version included with Connext DDS 5.3.0) and
the -convertToXSD option may fail to compile or may produce invalid source code with previous
versions of the Code Generator because some of the annotations have changed the name to be com-
pliant with the latest "Extensible and Dynamic Topic Types for DDS" (DDS-XTypes)" spe-
cification.

For example, for a member type that is external (pointer) like this one in IDL:
@external long m1;

Code Generator 2.5.0 will generate the following:
<xsd:element name="m1" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @external true -->

while previous versions generated :
<xsd:element name="m1" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @pointer true -->

3.5 ODBC Database Compatibility

To use the Durable Writer History and Durable Reader State features, you must install a relational data-
base such as MySQL.

In principle, you can use any database that provides an ODBC driver, since ODBC is a standard.
However, not all ODBC databases support the same feature set. Therefore, there is no guarantee that the
persistent durability features will work with an arbitrary ODBC driver.
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We have tested the following driver: MySQL ODBC 5.1.44.

Starting with 4.5e, support for the TimesTen database has been removed.

To use MySQL, you also need MySQL ODBC 5.1.6 (or higher). For non-Windows platforms,
UnixODBC 2.2.12 (or higher) is also required.

To see if a specific architecture has been tested with the Durable Writer History and Durable Reader State
features, see the RTI Connext DDS Core Libraries Platform Notes.

For more information on database setup, please see the RTI Connext DDS Core Libraries Getting Started
Guide Addendum for Database Setup.

3.6 Transport Compatibility

3.6.1 Shared-Memory Transport Compatibility for Connext DDS 4.5f and 5.x

The shared-memory transport in Connext DDS 4.5f and higher does not interoperate with the shared-
memory transport in previous releases of RTI Data Distribution Service.

If two applications, one using Connext DDS and one using RTI Data Distribution Service, run on the
same node and they have the shared-memory transport enabled, they will fail with the following error:
[D0004|CREATE Participant|D0004|ENABLE]
NDDS_Transport_Shmem_is_segment_compatible:incompatible shared memory protocol detected.
Current version 1.0 not compatible with 2.0.

A possible workaround for this interoperability issue is to disable the shared-memory transport and use
local communications over UDPv4 by setting participant_qos.transport_builtin to DDS_
TRANSPORTBUILTIN_UDPv4.

If you have an interoperability requirement and you cannot switch to UDPv4, please contact sup-
port@rti.com.

3.6.2 Transport Compatibility for Connext DDS 5.1.0

3.6.2.1 Changes to message_size_max

In Connext DDS 5.1.0, the defaultmessage_size_max for the UDPv4, UDPv6, TCP, Secure WAN, and
shared-memory transports changed to provide better out-of-the-box performance. Consequently, Connext
DDS 5.1.0 is not out-of-the-box compatible with applications running older versions of Connext DDS or
RTI Data Distribution Service.

To guarantee that communication between two applications always occurs: for a given transport, keep a
consistent value formessage_size_max in all applications within a Connext DDS system.



3.6.2.2  How to Change Transport Settings in Connext DDS 5.1.0 Applications for Compatibility with

3.6.2.2 How to Change Transport Settings in Connext DDS 5.1.0 Applications for
Compatibility with 5.0.0

If you need compatibility with a previous release, you can easily revert to the transport settings used in
Connext DDS 5.0.0. The new built-in Baseline.5.0.0 QoS profile contains all of the default QoS values
from Connext DDS 5.0.0. Therefore, using it in a Connext DDS 5.1.0 application will ensure that Con-
next DDS 5.0.0 and 5.1.0 applications have compatible transport settings. Below is an example of how to
inherit from this profile when configuring QoS settings:
<qos_profile name="MyProfile"
base_name="BuiltinQosLib::Baseline.5.0.0">
...

</qos_profile>

3.6.2.3 How to Change message_size_max in Connext DDS 5.0.0 Applications for
Compatibility with 5.1.0

The transport configuration can be adjusted programmatically or by using XML configuration. The fol-
lowing XML snippet shows how to changemessage_size_max for the built-in UDPv4 transport to match
the Connext DDS 5.1.0 default setting of 65,507:
<participant_qos>
<property>
<value>
<element>
<name>
dds.transport.UDPv4.builtin.parent.message_size_max
</name>
<value>65507</value>

</element>
</value>

</property>
</participant_qos>

See Chapter 15, Transport Plugins, in the RTI Connext DDS Core Libraries User’s Manual for more
details on how to change a transport’s configuration.

To help detect misconfigured transport settings, Connext DDS 5.1.0 will send the transport information,
specifically themessage_size_max, during participant discovery. Sharing this information will also make
it easier for tools to report on incompatible applications in the system. 

If two Connext DDS 5.1.0 DomainParticipants that discover each other have a common transport with dif-
ferent values formessage_size_max, the Connext DDS core will print a warning message about that con-
dition. Notice that older Connext DDS applications do not propagate transport information, therefore this
checking is not done.

You can access a remote DomainParticipant’s transport properties by inspecting the new transport_info
field in the DDS_ParticipantBuiltinTopicData structure. See Chapter 16, Built-in Topics, in the RTI Con-
next DDS Core Libraries User’s Manual for more details about this field. There is a related new field,
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transport_info_list_max_length, in the DomainParticipantResourceLimitsQosPolicy. See Table 8.12 in
the RTI Connext DDS Core Libraries User’s Manual for more details about this field.

Table 3.5 UDPv4, UDPv6, WAN, and TCP and Table 3.6 Shared Memory show the new default trans-
port settings.

Old Default (bytes)
New Default (bytes)

Non-INTEGRITY Platforms INTEGRITY Platformsa

message_size_max 9,216 65,507b 9,216

send_socket_buffer_size 9,216 131,072 131,072

recv_socket_buffer_size 9,216 131,072 131,072

Table 3.5 UDPv4, UDPv6, WAN, and TCP

Old Default (bytes)
New Default (bytes)

Non-INTEGRITY Platforms INTEGRITY Platforms

message_size_max 9,216 65,536 9,216

received_message_count_max 32 64 8

receive_buffer_size 73,728 1,048,576 18,432

Table 3.6 Shared Memory

3.6.2.4 Changes to Peer Descriptor Format

In Connext DDS 5.1.0, the way in which you provide a participant ID interval changed from [a,b] to [a-
b].

aDue to limits imposed by the INTEGRITY platform, the new default settings for all INTEGRITY
platforms are treated differently than other platforms. Please see the RTI Connext DDS Core Libraries
Platform Notes for more information on the issues with increasing themessage_size_max default values
on INTEGRITY platforms. Notice that interoperation with INTEGRITY platforms will require updating
the transport property message_size_max so that it is consistent across all platforms.
bThe value 65507 represents the maximum user payload size that can be sent as part of a UDP packet.
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3.6.3 Transport Compatibility for Connext DDS 5.2.0

In Connext DDS 5.2.0, the UDPv6 and SHMEM transport kinds changed to address an RTPS-com-
pliance issue (RTI Issue ID CORE-5788).

Transport 5.1.0 and lower 5.2.0 and higher

UDPv6 5 2

SHMEM 2 0x01000000 (16777216)

Because of this change, out-the-box compatibility with previous Connext DDS releases using both
UDPv6 and SHMEM transports is broken. Connext DDS 5.1.0 and earlier applications will not com-
municate out-of-the-box with Connext DDS 5.2.0 applications over UDPv6 and SHMEM. (See below for
how to resolve this.)

3.6.3.1 Observed Error Messages

You may see the following error messages when the UDPv6 transport is not enabled:

5.1.0 Application:
can't reach:
locator:
transport: 16777216
address: 0000:0000:0100:0000:0000:0000:0000:0000
port: 21410
encapsulation:
transport_priority: 0
aliasList: ""

5.2.0 Application:
PRESParticipant_checkTransportInfoMatching:Warning:
discovered remote participant 'yyyyy' using the 'shmem'
transport with class ID 2.
This class ID does not match the class ID 16777216 of the
same transport in the local participant 'xxxxx'.
These two participants will not communicate over the 'shmem'
transport.
Check the value of the property
'dds.transport.use_510_compatible_locator_kinds' in the
local participant.
COMMENDBeWriterService_assertRemoteReader:Discovered remote
reader using a non-addressable locator for a transport with
class ID 2.
This can occur if the transport is not installed and/or
enabled in the local participant. See
https://community.rti.com/kb/what-does-cant-reach-locator-error-message-mean
for additional info.
can't reach:

28



3.6.3.2  How to Change Transport Settings in 5.2.0 Applications for Compatibility with 5.1.0

29

locator:
transport: 2
address: 0002:0000:0100:0000:0000:0000:0000:0000
port: 21412
encapsulation:
transport_priority: 0
aliasList: ""

3.6.3.2 How to Change Transport Settings in 5.2.0 Applications for Compatibility with 5.1.0

If you need compatibility with a previous release, there are two ways to do so:

l By setting the participant property dds.transport.use_510_compatible_locator_kinds to 1 in the
Connext DDS 5.2.0 applications. For example:

<participant_qos>
<property>

<value>
<element>

<name>
dds.transport.use_510_compatible_locator_kinds

</name>
<value>1</value>

</element>
</value>

</property>
</participant_qos>

l By using the new built-in Generic.510TransportCompatibility profile. Below is an example of how
to inherit from this profile when configuring QoS settings:

<qos_profile name="MyProfile"
base_name="BuiltinQosLib::Generic.510TransportCompatibility">
...
</qos_profile>

3.6.4 Transport Compatibility for Connext DDS 5.2.0 on Solaris Platforms
with Sparc CPUs

In Connext DDS 5.2.0, the SHMEM transport has changed to address a potential bus error on Solaris plat-
forms on Sparc 64-bit CPUsa (). The change is not backward compatible with previous Sparc Solaris
releases (32-bit or 64-bit).

If a 5.2.0 application tries to communicate with an older version using the shared memory transport, you
will see this error:

aRTI Issue ID CORE-6777
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[D0004|CREATE Participant|D0004|ENABLE]
NDDS_Transport_Shmem_is_segment_compatible:
incompatible shared memory protocol detected.
Current version 3.0 not compatible with x.0.

To avoid this error, disable the shared memory transport by setting the QoS policy participant_qos.trans-
port_builtin do that it does not contain the shared memory transport. For example:

<participant_qos>
<transport_builtin>

<mask>UDPv4</mask>
</transport_builtin>

</participant_qos>

3.7 Other Compatibility Issues

3.7.1 ContentFilteredTopics

l Starting with 5.1.0, Connext DDS includes a change in the generated typecode name when rtidds-
gen’s -package option is used in Java. This change introduces the following backward-com-
patibility issue.

DataWriters in 4.5x and below will not be able to perform writer-side filtering for Connext DDS
5.1.0 DataReaders using ContentFilteredTopics. You will get a ContentFilteredTopic (CFT) com-
pilation error message on the DataWriter side. Notice that this compatibility issue does not affect cor-
rectness, as the filtering will be done on the DataReader side.

3.7.2 Built-in Topics

Due to the addition of new values in the enumeration DDS::ServiceQosPolicyKind under DDS::Ser-
viceQosPolicy, Connext DDS 5.1.0 or lower applications will not be able to get information about
DataWriters and DataReaders created by Connext DDS 5.2.0 or higher Infrastructure Services by reading
from the Publication and Subscription built-in topic DataReaders.

These infrastructure services are affected:

l RTI Routing Service

l RTI Recording Service (Record and Replay tools)

l RTI Database Integration Service (formerly, RTI Real-Time Connect)

l RTI Queuing Service

The 5.1.0 applications monitoring the built-in topics will print the following error message:
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DDS_ServiceQosPolicy_from_presentation_service_kind:ERROR:
Failed to get service (unknown kind)

DDS_SubscriptionBuiltinTopicDataTransform:ERROR:
Failed to get service

PRESCstReaderCollator_addSample:!transform

Notice that this compatibility issue does not affect matching between the 5.1.0 DataReaders/DataWriters
and the corresponding 5.2.0 Infrastructure Service DataReader/DataWriters. Within the middleware, dis-
covery will still occur and these entities will communicate with each other.

3.7.3 Some Monitoring Types are not Backwards Compatible

Due to the way in which the type-assignability algorithm handled enumerations in Connext DDS 5.1.0,
some of the monitoring types are not compatible with newer versions of the types. This means Connext
DDS 5.1.0 applications using the monitoring library may fail to match with the newer versions of the mon-
itoring types. Newer versions of the monitoring library, however, will match with older versions of the
monitoring types because of updates that have been made to the type assignability algorithm.

The only incompatibility as of the release of 5.2.0 is with the DataReaderDescription and DataWriter-
Description monitoring types. Monitoring applications built with 5.1.0 will not be able to subscribe to the
DataReaderDescription and DataWriterDescription topics published by applications that are using version
5.2.0 and later.

[RTI Issue ID MONITOR-188]

3.7.4 Linking with Libraries for Windows Platforms

Starting with Connext DDS 5.2.5, all Connext DDS libraries for Windows platforms (static release/debug,
dynamic release/debug) now link with the dynamic Windows C Run-Time (CRT). Previously, the static
Connext DDS libraries statically linked the CRT.

If you have an existing Windows project that was linking with the Connext DDS static libraries, you will
need to change the RunTime Library settings:

l In Visual Studio, select C/C++, Code Generation, Runtime Library and use Multi-threaded DLL
(/MD) instead of Multi-threaded (/MT) for static release libraries, and Multi-threaded Debug DLL
(/MDd) instead of Multi-threaded Debug (/MTd) for static debug libraries.

l For command-line compilation, use /MD instead of /MT for static release libraries, and /MDd
instead of /MTd for static debug libraries.

In addition, you may need to ignore the static run-time libraries in their static configurations:

l In Visual Studio, select Linker, Input in the project properties and add libcmtd;libcmt to the
'Ignore Specific Default Libraries' entry.
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l For command-line linking, add /NODEFAULTLIB:"libcmtd" /NODEFAULTLIB:"libcmt" to
the linker options.

3.7.5 Time Conversion

In Connext DDS 5.1.0, the methods that convert the API time representations (DDS_Time_t and DDS_
Duration_t) to the internal time representation (NTP timestamp) changed to address a conversion issue
(CORE-5926).

Because of this change, in some cases, it is possible to get a QoS mismatch between publishing applic-
ations using Connext DDS 5.1.0 and later with subscribing applications using previous Connext DDS ver-
sions for the following QoS policies:

l DeadlineQosPolicy

l LivelinessQosPolicy

The QoS mismatch occurs when you set the time value of the above QoSs to be the same on the
DataWriter and DataReader sides. The workaround consists of setting the time value in the Publishing
application to be at least one nanosec smaller than the time value in the Subscribing application.

[RTI Issue ID CORE-7468]
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Chapter 4 Migration
4.1 Transitioning to Connext DDS 5.3

4.1.1 Code Generation

For applications defining types in IDL, XML, or XSD, moving from a previous Connext DDS ver-
sion to Connext DDS 5.3 requires code regeneration and recompilation of the applications using
Connext DDS.

4.1.2 Application Binary Interface Compatibility

Connext DDS 5.3 does not provide Application Binary Interface (ABI) compatibility with pre-
vious versions of Connext DDS.

An application compiled with a previous version of Connext DDS must be recompiled when mov-
ing to Connext DDS 5.3.

4.1.3 Compatibility

Connext DDS 5.3 breaks backward compatibility with previous Connext DDS releases for some
features. For information on backward-compatibility issues, see Compatibility (Chapter 3 on page
8).

4.2 Transitioning to Connext DDS 5.2 or Higher

Please read this before installing. If you are transitioning to 5.2 or higher, there are a few important
differences to be aware of.

l New Installation Procedure

This release is packaged in a different structure than previous releases. There are still host
and target bundles. However, the host bundle is a .run file and the target is a .rtipkg file.
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To install these bundles, you will run the host bundle (such as rti_connext_dds-5.2.0-core-host-
x64Linux.run). The installer will walk you through installation. After installing the host, you will
install your target(s). To do so, you can use the RTI Package Installer utility that's available in
RTI Launcher, or you can run the rtipkginstall script from <install directory>/bin.

For example, to install the target bundle, you would enter this command:

bin/rtipkginstall <target-bundle.rtipkg>

The Getting Started Guide has more details on installing.

l New Directory Structure

The second difference you will see is that the directory structure is different. This means you should
not install in the same place as your current RTI release. After you install both the host and target,
you can find the libraries in rti_connext_dds-5.2.0/lib/<target architecture> are the header files in
rti_connext_dds-5.2.0/include/ndds.

l New Location for Scripts

The scripts for all tools, services, and utilities are now in the /bin directory (these were in /scripts in
the previous release).



Chapter 5 What's Fixed in 5.3.0
Release 5.3.0 is a general access release based on the maintenance release 5.2.3.a. This section
describes bugs fixed in 5.3.0.

For an overview of new features and improvements in 5.3.0, please see the separateWhat’s New
document for 5.3.0.

5.1 Fixes Related to Content Filters and Query Conditions

5.1.1 Possible Segmentation Fault when Writer-Side Filtering for
DataReader with More Than Four Locators

A publisher application may have issued a segmentation fault when doing writer-side filtering for a
DataReader with more than 4 locators. This only occurred in best-effort configurations. This prob-
lem has been resolved.

[RTI Issue ID CORE-6947]

5.1.2 Possible Multi-Threaded Race Condition and Crash after
DataWriter Exceeds Resource Limits

A DDS application may have crashed due to a race condition when multiple threads called write()
on the same reliable, keep-all DataWriter communicating with a DataReader with a Con-
tentFilteredTopic.

The problem may have happened after one thread blocked on write() due to themax_samples or
max_instances resource limits, and a second thread attempted to call write() before the first one
had woken up.

aFor What's Fixed in 5.2.3, see the RTI Connext DDS Core Libraries Release Notes provided with
5.2.3.
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As an example, a .NET DDS application running into this problem could have thrown the following
exception:
Unhandled Exception: System.AccessViolationException: Attempted to
read or write protected memory. This is often an indication that other memory
is corrupt. at DDS.DataWriter.write_untyped(Object instance_data,
InstanceHandle_t& handle)

This problem has been resolved; the multi-threaded use of a DataWriter is now safe as described in the
API documentation.

[RTI Issue ID CORE-3336]

5.1.3 Content Filter Expression did not Provide Way to Check for Unset
Optional Members

Content filter expressions that included optional members could be used to check the value of those mem-
bers, but there was no way to check if the member was unset.

For example, ifmy_optional is an optional member in the topic being filtered, this is legal:
"my_optional = 5"

A ContentFilteredTopic defined with the above expression would filter out samples in which my_optional
was unset or was set to a value other than 5. There was, however, no syntax to simply verify ifmy_
optional was set or unset.

This release introduces a new keyword, null, which allows you to check if a member is set or unset. The
following expressions are now supported:
"my_optional = null"
"my_optional <> null"

[RTI Issue ID CORE-7265]

5.1.4 DataReader using ContentFilteredTopic may not have Matched with
DataWriter

In rare situations, a DataReader using a ContentFilteredTopic may not have matched with a DataWriter.
This behavior was more likely to occur in scenarios where a DataWriter was writing samples at a high fre-
quency and in the meantime matching DataReaders using ContentFilteredTopic were created/destroyed.

A workaround was to disable writer-side filtering on the DataWriter by setting writer_resource_lim-
its.max_remote_reader_filters to 0.

This problem has been resolved.

[RTI Issue ID CORE-7911]
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5.1.5 DataWriter Segmentation Fault when Matching DataReader using
ContentFilteredTopic Sets Long Filter Expression

A DataWriter matching with a DataReader using a ContentFilteredTopic (CFT) may segfault under this
scenario:

1. The DataReader is created using a CFT where the combination of the expression and parameters
does not exceed the DataWriter and DataReader Participants resource_limits.contentfilter_prop-
erty_max_length.

2. The DataReader changes the CFT expression and/or parameters so that the DataReader's Par-
ticipant resource_limits.contentfilter_property_max_length is not exceeded but the DataWriter's
Participant resource_limits.contentfilter_property_max_length is exceeded.

This problem has been resolved. When the resource_limits.contentfilter_property_max_length is
exceeded on the DataWriter's Participant, the DataWriter will not do writer-side filtering for the
DataReader; content filtering will be done on the DataReader side.

[RTI Issue ID CORE-7918]

5.1.6 Writer-Side Filtering did not Work when Using Durable History and
Setting writer_resource_limits.max_remote_reader_filters to Finite
Value

Writer side filtering did not work when using durable history and setting writer_resource_limits.max_
remote_reader_filters to a finite value.

If writer_resource_limits.max_remote_reader_filters was set to 32 or less, the results of the filter eval-
uation may have been wrong.

If writer_resource_limits.max_remote_reader_filters was set to 33 or more, the DataWriter may have
caused a segmentation fault when more than 33 DataReaders using ContentFilteredTopics were matching
with the DataWriter.

This problem has been fixed by not accepting finite values when using durable history. If you configure a
finite value, the value will be ignored and the middleware will print a warning message like this:
finite max_remote_reader_filters not supported with durable writer history.
The value will be changed to UNLIMITED.

[RTI Issue ID CORE-7964]

5.1.7 Possible Content Filter Failure

In some situations, a DataWriter applying a writer-side Content Filter may have failed to evaluate a data
sample, printing the following message:
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DDS_SqlFilter_grow_deserialization_buffer:!sample exceeds maximum total length
DDS_SqlFilter_evaluateOnSerialized:deserialization error: sample

This problem may have only happened in scenarios where the following three statements were true:

l The Java or .NET API was used, or the C++ API was used with an IDL type that used inheritance;

l The type contained at least one long long, unsigned long long, double or long double member;

l The DataWriter was communicating with two or more DataReaders at the time of writing the
sample.

This problem has been resolved.

[RTI Issue ID CORE-7977]

5.1.8 Incorrect Results if Query Condition Created while Samples have been
received but not committed to Reader Queue

In rare situations it may have been possible to receive incorrect results for a Query Condition. For this situ-
ation to occur the following conditions had to be met:

l The Topic associated with the Query Condition was created in Java or through the Dynamic Data
API.

l Samples were received out-of-order due to, for example, network congestion or a late-joining
DataReader receiving live data at the same time as historical data.

l The Query Condition was created at the same time that samples were being received out-of-order. If
the Query Condition was created before any samples were received by a DataReader, this issue
would not have been triggered.

This problem has been resolved.

[RTI Issue ID CORE-7976]

5.2 Fixes Related to Asynchronous Publishers

5.2.1 Partial Support for DataWriterProtocolStatus Statistics when Publishing
Asynchronously

Some DataWriterProtocolStatus statistics such as pushed_sample_count would not update when pub-
lishing data asynchronously. The following subset of DataWriterProtocolStatus statistics will now be
updated when publishing samples using the asynchronous publisher:



5.2.2  Samples Published with DataWriter using Asynchronous Publication Mode Possibly not Sent

1. pushed_sample_count

2. pushed_sample_count_change

3. pushed_sample_bytes

4. pushed_sample_bytes_change

5. pulled_sample_count

6. pulled_sample_count_change

7. pulled_sample_bytes

8. pulled_sample_bytes_change

pulled_sample_bytes will be updated when a whole fragmented sample, or a single fragment, gets
repaired. pulled_sample_count will ONLY be updated when the whole sample, and its fragments, are
repaired.

[RTI Issue ID CORE-7658]

5.2.2 Samples Published with DataWriter using Asynchronous Publication
Mode Possibly not Sent

A race condition may have caused the samples published with a DataWriter using Asynchronous pub-
lication mode to not be sent.

This only occurred if the affected DataWriter was created on an empty Publisher after all the DataWriters
that were contained on the Publisher were deleted. This problem has been resolved.

[RTI Issue ID CORE-7719]

5.2.3 Asynchronous Publisher's DDSThreadFactory::delete_thread() may
have Blocked when Using DDSThreadFactory

Using a user-defined DDSThreadFactory to manage internal threads created by Connext DDS may have
caused the DDSThreadFactory::delete_thread() operation for the Asynchronous Publisher thread to
block or timeout if within that operation the user tried to wait (for instance, using join()) for the thread to
finish.

[RTI Issue ID CORE-7886]
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5.3 Fixes Related to Discovery

5.3.1 DiscoveryConfig's SEDP Rely On SPDP Only Prevents Simple
Endpoint Discovery From Resuming

Simple Endpoint Discovery did not resume when calling the DomainParticipant's resume_endpoint_dis-
covery() API if the DiscoveryConfig QoS policy's sedp_rely_on_spdp_only field was set to true. This
problem has been resolved.

[RTI Issue ID CORE-7346]

5.3.2 No Communication Between Two Participants on Same Machine after
Change in Network Interfaces

There was an issue that may have prevented communication between two Participants in the same
machine when using shared memory and UDPv4 transports in the two Participants. In particular, this issue
may have been triggered when each Participant was created when a different set of network interfaces was
available in the system. This problem has been resolved.

[RTI Issue ID CORE-7680]

5.4 Fixes Related to DynamicData, TypeCode, and TypeObjects

5.4.1 TypeCode.equals() did not Check for Base Class Equality

The Java method TypeCode.equals() did not check the equality of the base class (if one existed). This res-
ulted in inaccurate return values if the base classes differed. This problem has been resolved.

[RTI Issue ID CORE-7987]

5.4.2 Non-Standard TypeObject Representation of Modules Broke
Interoperability

The serialized TypeObject that represents types inside a module is nonstandard. This may prevent Connext
DDS from delivering or receiving type information (that is used, for example, to determine the assignab-
ility of two topics) from applications using other DDS implementations. This problem has been resolved.

[RTI Issue ID CORE-7624]

5.4.3 Some Fields in Dynamic Data Types not Set Properly

Some fields of complex types were not set properly using the Dynamic Data API. This problem has been
resolved.

[RTI Issue ID CORE-6008]
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5.4.4 Default Member of Union not Always Correctly Initialized by
DynamicData API

If no default member is defined in a union, the default discriminator is the lowest value associated with any
member. The DynamicData API incorrectly always chose the first member of a union as the default,
regardless of the value of the discriminator.

You may have run into this problem when sending a sample containing a union that was not explicitly set.
In this scenario, the union was initialized to its default value and sent; this default may have been different
depending on whether generated code or DynamicData was used to send the data. This problem has been
resolved.

[RTI Issue ID CORE-6365]

5.4.5 Dynamic Data Print Operation did not Print Unset Members at End of a
Type

The DDS_DynamicData_print() operation did not display any data for members at the end of a data
structure that had not been explicitly set before the operation was called. This problem has been resolved.

[RTI Issue ID CORE-6503]

5.4.6 Error Unbinding Complex Member using DynamicData API

When unbinding a complex member using the DynamicData API, you may have encountered the fol-
lowing error:
DDS_DynamicData_unbind_complex_member:internal error 1 trying to stream

This may have occurred if members of the DynamicData object were set out of order. It may also have
occurred if the DynamicData object being unbound had a nested, complex member that had its members
set out of order. This problem has been resolved.

[RTI Issue ID CORE-6952]

5.4.7 Setting Members Out of Order in DynamicData Object may have
Caused Data Corruption

In a number of scenarios, if members of a DynamicData object were set out of order, further use of the
DynamicData object may have resulted in data corruption and undefined behavior. This situation was most
likely to occur if the DynamicData object had nested complex members and the DynamicData::bind_
complex_member() and DynamicData::unbind_complex_member() APIs were used. This problem
has been resolved.

[RTI Issue ID CORE-6964]
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5.4.8 Unable to Set Default Case in Union using DynamicData API

When setting a union member using the DynamicData API, it was not possible to set the member iden-
tified by the default label after any other member of the union had previously been set. This problem has
been resolved.

[RTI Issue ID CORE-6905]

5.4.9 Unbounded Memory Growth when Setting and Clearing Optional
Members in a DynamicData Object

There was unbounded memory growth if optional members within a DynamicData object were repeatedly
set and then cleared. This issue has been resolved.

[RTI Issue ID CORE-6971]

5.4.10 DDS_DynamicData_set_complex_member() could Corrupt
DynamicData Object

Calling the DDS_DynamicData_set_complex_member() API may have corrupted the contents of the
DynamicData object whose member was being set. This could cause subsequent calls that get the data val-
ues from the DynamicData object, or write the DynamicData object, to fail or provide incorrect results.

This behavior was most likely to occur if the complex member being set had previously been set or if a
member following the complex member in the type had been set before the complex member was set.

This problem has been resolved.

[RTI Issue ID CORE-7083]

5.4.11 DynamicType::member_kind() Returned Wrong Kind in Some Cases
(Modern C++ API only)

The gettermember_kind() returned the wrong kind if the member was a long long, unsigned long long,
or long double. This problem has been resolved.

[RTI Issue ID CORE-7428]

5.4.12 Memory Leak when Deleting TypeObject Associated with Empty
Valuetype Definition on Some Platforms

Using empty valuetypes produced a memory leak reported as follows by Valgrind™. This leak was repor-
ted only by certain platforms, including Windows and Linux.
==4287== 0 bytes in 2 blocks are definitely lost in loss record 1 of 1
==4287== at 0x4C2CC70: calloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-



5.4.13  Use of Java Custom Content Filter with DynamicData Caused Crash on DataWriter Side

linux.so)
==4287== by 0xBBC1D9: RTIOsapiHeap_reallocateMemoryInternal (heap.c:405)
==4287== by 0xB7D66B: RTICdrTypeObject_assertTypeFromTypeCode (typeObject.c:2226)
==4287== by 0xB7E038: RTICdrTypeObject_assertTypeFromTypeCode (typeObject.c:2360)
==4287== by 0xB7E038: RTICdrTypeObject_assertTypeFromTypeCode (typeObject.c:2360)
==4287== by 0xB7F8B6: RTICdrTypeObject_createFromTypeCode (typeObject.c:2708)
==4287== by 0xB75F83: RTICdrTypeObjectFactory_createTypeObjectFromTypeCode
(typeObjectFactory.c:340)
==4287== by 0xB76308: RTICdrTypeObjectFactory_createTypeObjectBufferFromTypeCode
(typeObjectFactory.c:384)
==4287== by 0x8EE40C: PRESParticipant_assertTypeObjectFromTypeCode
(TypeObjectTable.c:340)
==4287== by 0x8EAD20: PRESParticipant_registerType (Type.c:545)
==4287== by 0x551745: DDS_DomainParticipant_register_type
(DomainParticipant.c:8653)
==4287== by 0x44CE72: DDSDomainParticipant_impl::register_type(char const*,
PRESTypePlugin const*,

void*, int) (DomainParticipant.cxx:2838)

The memory leak corresponded to an array of 0 elements allocated during TypeObject construction. This
problem has been resolved.

[RTI Issue ID CORE-7467]

5.4.13 Use of Java Custom Content Filter with DynamicData Caused Crash
on DataWriter Side

Using a Java custom filter with DynamicData may have caused the application to crash on the DataWriter
side if writer-side filtering was enabled.

A workaround was to disable writer-side filtering by setting writer_qos.writer_resource_limits.max_
remote_reader_filters to 0.

This problem has been resolved.

[RTI Issue ID CORE-7876]

5.4.14 Unbinding from a Complex Member May Clear Optional Members

Under certain situations, calling DDS_DynamicData_unbind_complex_member()may have cleared the
value of any optional member that had been previously set in the complex member. This problem has been
resolved.

[RTI Issue ID CORE-7919]

43



5.4.15  Wrong Type Returned from DynamicData get_type(), get_member_type()—Java API Only

44

5.4.15 Wrong Type Returned from DynamicData get_type(), get_member_
type()—Java API Only

In previous releases, invoking the DynamicData APIs get_type() and get_member_type() on a Dynam-
icData object may have returned a type that did not correspond to the type associated with the Dynam-
icData object.

Specifically:

l Member IDs set explicitly by the user (using the ID annotation) were not provided.

l Information about optional members was not provided. A member that was optional was provided
as non-optional.

This problem has been resolved.

[RTI Issue ID CORE-7942]

5.4.16 Wrong Values from DDS::DynamicData::print() in Certain Cases—
C/C++ APIs Only

In some cases, the DynamicData::print()method may have printed incorrect values in C/C++. This
occurred whenDynamicData::print() was invoked in a DynamicData object built using the type code dis-
covered as part of the SubscriptionBuiltinTopicData or PublicationBuiltinTopicData. This problem has
been resolved.

[RTI Issue ID CORE-7595]

5.4.17 TypeCode Associated with Discovered DataWriters and DataReaders
was Wrong in Some Cases

The TypeCode associated with discovered DataWriters and DataReaders (accessible using Public-
ationBuiltinTopicData and SubscriptionBuiltinTopicData) may have been wrong. This only occurred
when the remote type contained a sequence, array, or alias whose elements referred directly or indirectly
(nested) to a type that was marked as MUTABLE, contained optional members, or used the //@ID annota-
tion to break default ID assignment.

For example:
struct test {

float c;
string<5> a; //@Optional

}; //@top-level false

struct MyType {
long theKey; //@key
long count;



5.4.18  Serialized Sample Size Calculation Incorrect for DynamicData Samples with Many Mutable

sequence<test, 30> test;
};

In the above example, the sequence test refers to a type containing an optional member. The discovered
TypeCode mistakenly did not report the member a as optional when it should have. This problem has been
resolved.

[RTI Issue ID CORE-7682]

5.4.18 Serialized Sample Size Calculation Incorrect for DynamicData
Samples with Many Mutable Members

The serialized sample size calculation for DynamicData samples with types that contained large numbers
of mutable members may have been too small. This may have caused errors in any operation that
depended on this calculated size (for example, DDS_DynamicData_to_cdr_buffer()) and a number of
internal operations. This problem has been resolved.

[RTI Issue ID CORE-7744]

5.4.19 Incorrect Results when using DynamicData and Arrays containing
Complex Members with Optional Members

There may have been incorrect results or segmentation faults when using a type with an array of complex
members that contained optional members. If only a subset of the complex members in the array were set,
the DDS_DynamicData_equal() and DDS_DynamicData_print() functions reported incorrect results.
Also, writing a Dynamic Data sample in which only a subset of the complex members in the array were
set resulted in a segmentation fault. All these problems have been resolved.

[RTI Issue ID CORE-7783]

5.4.20 Segmentation Fault when Deserializing Malformed TypeObject for
Module Types

Connext DDS may have crashed if it received an malformed TypeObject during the discovery phase. This
may have happened when a Connext DDS application discovered other DDS applications. The robustness
of TypeObject deserialization has been improved to prevent this problem.

[RTI Issue ID CORE-7648]

5.4.21 Unbinding from Empty Sequence may have Caused Data Corruption

In some situations when using the DynamicData API, unbinding from an empty sequence may have
caused data corruption. This could have led to incorrect or missing data. This problem has been resolved.

[RTI Issue ID CORE-8044]
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5.5 Fixes Related to Modern C++ API

5.5.1 Passing Incorrect Index to Some DynamicData Getters or Setters
caused Undefined Behavior—Modern C++ API Only

Some of the DynamicData::value<T>() getters and setters caused undefined behavior (likely crashing)
when they received an out-of-bounds index, instead of throwing dds::core::InvalidArgument.

For example:
DynamicData s = ...;
int member_index = 1000; // doesn't exist in the type
auto member_value = s.value<dds::core::string>(member_index); // undefined behavior, should
throw InvalidArgument

The problem only affected the overloads of value, and get_values for some types T, not all of them.

This problem has been resolved and now is handled by throwing an InvalidArgumentError.

[RTI Issue ID CORE-7627]

5.5.2 Conditions and WaitSets Missing Some Reference-Type Operations—
Modern C++ API Only

All reference types in the API (such as DomainParticipant, FlowController, ...) provide a set of common
operations (https://community.rti.com/static/documentation/connext-dds/5.2.3/doc/api/connext_dds/api_
cpp2/group__DDSCpp2Conventions.html#a_st_ref_type). However, Condition and its derived classes, as
well asWaitSet did not provide some of them, namely, the creation from, assignment from, and com-
parison to dds::core::null or nullptr. For example, the following code did not compile:
dds::core::cond::GuardCondition c = dds::core::null;

This prevented applications from declaring a Condition orWaitSet variable before initializing it.

This problem has been resolved and now Conditions and WaitSets provide all the expected operations of a
reference type.

[RTI Issue ID CORE-7749]

5.5.3 Renamed Verbosity Level—Modern C++ API Only

The 'ERRORY' enumerator in the rti::config::Verbosity enumeration was named incorrectly, it has been
renamed to 'EXCEPTION'.

[RTI Issue ID CORE-7718]

https://community.rti.com/static/documentation/connext-dds/5.2.3/doc/api/connext_dds/api_cpp2/group__DDSCpp2Conventions.html#a_st_ref_type
https://community.rti.com/static/documentation/connext-dds/5.2.3/doc/api/connext_dds/api_cpp2/group__DDSCpp2Conventions.html#a_st_ref_type
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5.5.4 Missing Functions to Get Discovered Participants—Modern C++ API
Only

The Modern C++ API did not provide the functions to retrieve information about discovered participants.
In the traditional C++ API, these functions are:

l DomainParticipant::get_discovered_participants()

l DomainParticipant::get_discovered_participant_data()

The following two standalone functions have been added to the modern C++ API:

l rti::domain::discovered_participants()

l rti::domain::discovered_participant_data()

(They are available by including dds/domain/discovery.hpp)

[RTI Issue ID CORE-7789]

5.5.5 Use of Deprecated std::auto_ptr Removed—Modern C++ Only

The C++ request-replyAPI  used a std::auto_ptr in one header, which may have caused deprecation warn-
ings on some compilers. This warning has been resolved.

[RTI Issue ID REQREPLY-38]

5.5.6 Publisher's wait_for_acknowledgments() did not Work in Modern C++

It was not possible to use dds::pub::Publisher::wait_for_acknowledgments() in the Modern C++ API.
This problem has been resolved.

[RTI Issue ID CORE-7901]

5.5.7 Function to_cdr_buffer() may have Returned Larger-than-Needed
Buffer—Modern C++ API Only

The function rti::topic::to_cdr_buffer()may have returned a vector with more bytes than needed. This
problem did not affect correctness, since a later call to from_cdr_buffer() with that vector as a parameter
would have correctly deserialized and created the correct data-sample.

This problem has been resolved. Now the returned vector will have the exact size needed to contain the
CDR buffer.

[RTI Issue ID CORE-7986]
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5.5.8 Incorrect dds::core::Error Copy Constructor did not Copy Exception
Message—Modern C++ API Only

This problem may have caused std::rethrow_exception to strip out the original message in the dds::-
core::Error being rethrown. This problem has been resolved.

[RTI Issue ID CORE-7978]

5.5.9 Memory Leak in Some Read/Take Operations—Modern C++ API Only

The DataReader's read and take operations that receive a sample as an argument may have leaked
memory when the following circumstances were true:

l The same sample was passed more than once.

l The DataReader's topic-type contained sequences of types that required dynamic memory alloc-
ation, such as strings and structs containing other sequences.

The same problem also affected the function rti::topic::from_cdr_buffer().

The other read and take operations (those that return a LoanedSamples collection or receive an iterator
range) were not affected.

This problem has been resolved.

[RTI Issue ID CORE-8084]

5.6 Fixes Related to Java API

5.6.1 Crash in Java API when Running Out of Space

When using the Java API, running out of memory during the creation of a DataReader resulted in a crash.
This problem has been resolved.

[RTI Issue ID CORE-3447]

5.6.2 'last_reason' in Status from DataReaderListener's on_sample_lost()
 Callback not Populated—Java API Only

When using the Java API, the last_reason field in the status provided by the DataReaderListener's on_
sample_lost() callback was not populated and always had the value NOT_LOST. This problem has been
resolved.

[RTI Issue ID CORE-6090]



5.6.3  Java Virtual Machine may have Hung on Shutdown

5.6.3 Java Virtual Machine may have Hung on Shutdown

A race condition may have caused applications using the Connext DDS Java API to hang during the Java
Virtual Machine shutdown. The application did not finish normally and had to be killed. This problem was
sporadic and more common in applications creating many DomainParticipants. This problem has been
resolved.

[RTI Issue ID CORE-7427]

5.6.4 Possible Crash in Java Application using IDL Type Defined as
Valuetype with No Members

Due to a regression from previous releases, the creation of TypeCode from an IDL type defined as (or con-
taining) a valuetype with no members may have crashed. This affected APIs such as TypeSup-
port::register_type().

This problem has been resolved and it is again possible to create DataWriters and DataReaders with this
kind of type.

[RTI Issue ID CORE-7659]

5.6.5 Unreported Exception after JVM Ran out of Memory while Creating
DataReader

In some circumstances, if the DataReader creation method failed due to memory exhaustion, it returned an
invalid object, instead of null. This could have led to undefined behavior in the application, which was
unaware of the error.

This problem has been resolved. Now if that failure occurs, Subscriber.create_datareader() returns null.

[RTI Issue ID CORE-7730]

5.6.6 Undefined Reference to "java.nio.charset.StandardCharsets" in Java
API

In Connext DDS 5.2.7, the Java API included a reference to java.nio.charset.StandardCharsets, which
was introduced in Java 1.7. Because of this, users could no longer run their Java applications with Java 1.5
or 1.6.

This problem has been resolved by replacing the use of java.nio.charset.StandardCharsets with
com.rti.dds.infrastructure.StandardCharsets.

[RTI Issue ID CORE-8071]
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5.6.7 Java Method to Configure Public-Key Infrastructure (PKI) Elements of
TLS Transport

Configuration of the TLS secure transport requires, among other things, the specification of Public-Key
Infrastructure (PKI) elements. These PKI elements include the CA certificates, the certificate chain, and
the private key. Configuration of a secure RTI Connext DDS transport is done with a set of properties in
the PropertyQosPolicy. There is a new method that configures the required PKI properties from the ele-
ments represented as objects in memory, instead of being manually specified as path to files. The new
method belongs to the PropertyQosPolicyHelper class:
public static void configure_pki_secure_transport_properties(

PropertyQosPolicy policy,
String transport_plugin_prefix,
java.security.cert.Certificate[] root_ca_certificates,
java.security.cert.Certificate[] certificate_chain,
java.security.PrivateKey private_key) {

To configure the PKI elements of a secure transport, call configure_pki_elements() and pass in the Prop-
ertyQosPolicy member of the DomainParticipantQos that is used to create a DomainParticipant.

The PKI objects are encoded in a set of properties. This may require you to modify the DomainPar-
ticipantResourceLimitsQosPolicy so it can support the required set of properties. In order to know the min-
imum required length, you can call the get_qos_resource_limits_property_string_max_length()
operation, which belongs to PropertyQosPolicyHelper.

[RTI Issue ID COREPLG-314]

5.6.8 Java Method to Compute Property String Maximum Length of a Given
PropertyQosPolicy Instance

If an application needs to add a set of properties to a PropertyQosPolicy, you can get the property string
length that is required to represent these properties from a new PropertyQosPolicy Helper operation:
int get_qos_resource_limits_property_string_max_length(PropertyQosPolicy property);

This is useful when the required value to represent the set of properties is bigger than the default value in
the ResourceLimits QoS of the entity. In this situation, you can guarantee correct operation by setting that
value to the amount returned by this operation.

[RTI Issue ID COREPLG-314]

5.7 Fixes Related to Transports

5.7.1 Multicast not supported on INTEGRITY 11 Platforms

Connext DDS did not support multicast on INTEGRITY 11 platforms. This problem has been resolved
and multicast is now supported.



5.7.2  Possible Segmentation Fault when using Shared Memory Transport

[RTI Issue ID PLATFORMS-930]

5.7.2 Possible Segmentation Fault when using Shared Memory Transport

Using the Shared Memory transport may have led to a rare segmentation fault. This occurred when there
were multiple DataWriters in a participant 'A' writing samples with a high frequency that must be received
by the DataReaders in a second participant 'B'. This problem has been resolved.

[RTI Issue ID CORE-7667]

5.7.3 UDPv4 Multicast Communication Interrupted if Physical NIC Disabled

The communication between two nodes was interrupted if the physical NIC was disabled in the following
scenario:

1. Use only a multicast address in the initial peers (for example: builtin.udpv4://239.255.0.1).

2. Start the publisher and subscriber on the same node.

3. Check that communication occurs.

4. Disable the NIC.

5. Communication will be interrupted after discovery liveliness expires because multicast traffic is not
received by the publisher or subscriber anymore.

This problem has been resolved.

[RTI Issue ID CORE-6908]

5.7.4 Participant may have Hung on Shutdown if Multicast Enabled or in
Presence of Some Firewalls/Antivirus—OS X and QNX Platforms Only

On an OS X or QNX platform, a DomainParticipantmay have hung on shutdown under one or a com-
bination of the following scenarios:

l The DomainParticipant and/or its entities received data over multicast.

l The system on which the DomainParticipant ran used a firewall.

This problem has been resolved.

[RTI Issue ID CORE-7188]
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5.7.5 Unexpected Non-Addressable Locator Messages when Starting Two
Participants in Same Machine

When starting two participants with different RTPS host IDs within the same machine, with the UDP and
SHMEM transports enabled, some unexpected non-addressable SHMEM locator error messages were
shown. For instance, if you started a publisher with only one network interface up, and started a subscriber
after tearing down the interface, you may have see the following messages:
COMMENDSrReaderService_assertRemoteWriter:Discovered remote writer using
a non-addressable locator for a transport with class ID 16777216.
This can occur if the transport is not installed and/or enabled in the local
participant.
See https://community.rti.com/kb/what-does-cant-reach-locator-error-message-mean
for additional info.
can't reach:
locator:
transport: 16777216
address: 0000:0103:0401:0000:0000:0000:0000:0000
port: 39910
encapsulation:

transport_priority: 0
aliasList: ""

This issue only occurred when participant_qos.wire_protocol.rtps_auto_id_kind not RTPS_AUTO_
ID_FROM_UUID. This issue has been resolved.

[RTI Issue ID CORE-7676]

5.7.6 Problems using Windows Machines with more than 20 Interfaces or IP
Addresses

If your Windows machine had more than 20 interfaces or IP addresses you may have seen this error:
NDDS_Transport_UDPv4_query_interfaces:error accessing Windows registry: operation:
RegQueryValueEx error: 234

In addition, Connext DDS may have been unable to use some of your interfaces, particularly if they were
DOWN when the application started. This problem has been resolved.

[RTI Issue ID CORE-7743]

5.7.7 Default Value for message_size_max Exceeded Maximum for UDPv6

The maximum payload size of a message sent using UDPv6 is 65,487 bytes. However, the default value
of the transport property message_size_max was incorrectly set to 65,507 bytes in previous releases.

In Connext DDS 5.2.5, when the UDPv6 transport was enabled with the default value formessage_size_
max, the following message was printed:



5.7.8  Transport Priority not Used for Unicast Traffic if Multicast also Used

Reducing message_size_max from 65507 to 65487.
The current value of message_size_max has been changed to 65487.

In other releases, an RTPS message with a size greater than 65,487 may have never been sent over the
UDPv6 transport. This problem has been resolved.

[RTI Issue ID CORE-7748]

5.7.8 Transport Priority not Used for Unicast Traffic if Multicast also Used

If discovery traffic or user traffic was sent over multicast and was marked with a transport priority using
themetatraffic_transport_priority field in the DiscoveryQosPolicy or the TransportPriorityQosPolicy,
any related heartbeats or ACKNACKs sent over unicast were not marked with a transport priority. This
problem has been resolved.

[RTI Issue ID CORE-7788]

5.7.9 Possible Shared Memory Communication Failure When Creating
DomainParticipants in Multiple Threads

When creating DomainParticipants in multiple threads, if the participants were configured to use shared
memory and another transport, it was possible for those participants to fail to communicate with each other
over shared memory. This problem was seen on a QNX system, but may have happened on any archi-
tecture. This problem has been resolved.

[RTI Issue ID CORE-7983]

5.7.10 TCP Transport Plugin Opened UDPv4 Sockets when Running in LAN
Mode

The TCP transport plugin created unnecessary UDPv4 sockets when running in LAN mode. This problem
has been resolved.

[RTI Issue ID COREPLG-246]

5.7.11 Wrong Connection Peer Address on TCP Server for Windows IOCP
Server Connections

There was an issue in the TCP transport plugin that may have caused an incorrect peer address to be used
on the TCP server side when using Windows IOCP. In particular, this issue affected the following TCP
Transport Plugin use cases:
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l Logging "Connection established from client at:" messages.

l Calling to NDDS_Transport_TCPv4_OnConnectionEstablishedCallback on_connection_estab-
lished.

l Calling to NDDS_Transport_ConnectionEndpoint_PeerEquals_Fcn peer_equals.

This problem, which did not affect communication between TCP Transport Plugins, has been resolved.

[RTI Issue ID COREPLG-352]

5.7.12 Potential Memory Corruption when Enabling or Disabling Interfaces
with UDPv4-Based Transports—Windows Platforms Only

This problem only affected Windows platforms and the following transports: UDPv4, TCPv4, DTLSv4,
LBRTPS, ZRTPS, and WAN when the transport property ignore_nonup_interfaces was set to 0 or
when using version 5.2.2.

When enabling or disabling interfaces, plugging or unplugging Ethernet cables, or disconnecting the
router, you may have seen the following error and in rare cases your application may have issued a seg-
mentation fault:
RTIOsapiHeap_freeBufferAligned:inconsistant free/alloc

The problem has been resolved.

[RTI Issue ID COREPLG-401]

5.7.13 Potential Misbehavior or Segmentation Fault in UDP-Based
Transports when Setting Allow/Deny Interface List Properties

Setting the allow/deny interface list properties in UDP-based transports may have led to misbehavior, and
a potential segmentation fault. This could have happened when you changed the status of the interfaces
(for example, enabling a disabled interface) after the DomainParticipant associated with the transport was
enabled.

The UDP-based transports are: UDPv4, WAN, DTLSv4 and the Limited Bandwidth Transport Plugins
LBRTPS, LBST, and ZRTPS.

The allow/deny interface list properties are:

l allow_interfaces_list

l deny_interfaces_list

l allow_multicast_interfaces_list

l deny_multicast_interfaces_list



5.7.14  TCP Transport not Robust Against Receiving Unexpected Logical Port Responses

With Connext DDS 5.2.2, you may have run into this problem at any time, unless you disabled interface
tracking using the property: disable_interface_tracking.

With other releases, you may have run into this issue only when the property ignore_nonup_interfaces
was explicitly to false set on Windows platforms.

This problem has been resolved.

[RTI Issue ID COREPLG-408]

5.7.14 TCP Transport not Robust Against Receiving Unexpected Logical
Port Responses

There was an issue affecting the TCP Transport Plugin that may have led to unexpected plugin behavior
or a crash. In particular, this issue may have triggered upon receiving a TCP Logical Port Response con-
trol message that did not match any of the TCP Logical Port Request control messages for which the local
TCP Transport Plugin was expecting a response. This problem has been resolved.

[RTI Issue ID COREPLG-415]

5.7.15 TCP Transport Clients Running in WAN Mode not Robust Against
Failed Connect while Enabling DomainParticipant

When using WAN modes, a failed connect() while enabling the DomainParticipantmay have prevented
communication from establishing forever (until the TCP Transport plugin was restarted). This problem has
been resolved.

[RTI Issue ID COREPLG-293]

5.7.16 Shared Memory Transport Mismatch Errors for Participants Running
on Different Machines

A local Participant may have incorrectly printed shared-memory mismatch errors for remote Participants
running on a different machine. An example of those errors is:
PRESParticipant_checkTransportInfoMatching:Warning: discovered remote participant
'key: c0a8ce01, a04c, 2' using the 'shmem' transport with class ID 2.
This class ID does not match the class ID 16777216 of the same transport in the local
participant 'testParticipant'. These two participants will not communicate over the 'shmem'
transport.
Check the value of the property 'dds.transport.use_510_compatible_locator_kinds' in the local
participant.
COMMENDBeWriterService_assertRemoteReader:Discovered remote reader using a non-addressable
locator for a transport with class ID 2.
This can occur if the transport is not installed and/or enabled in the local participant.
See https://community.rti.com/kb/what-does-cant-reach-locator-error-message-mean for
additional info.
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This problem has been resolved. Starting with this release, the local Participant will no longer print shared
memory mismatch errors for remote Participants running on a different machine if remote Participants are
announcing UDPv4/UDPv6 locators.

[RTI Issue ID CORE-6763]

5.7.17 Potential Deadlock upon Failed TCP Transport Plugin Client Initial
Connect

There was an issue that may have provoked a deadlock in the TCP Transport Plugin Client upon a failed
connect() during the plugin initialization. This problem has been resolved.

[RTI Issue ID COREPLG-386]

5.7.18 Participant may have Hung on Shutdown if Multicast Enabled or in
Presence of Some Firewalls/Antivirus—AIX, VxWorks, and INTEGRITY
Platforms Only

On an AIX, VxWorks, or INTEGRITY platform, a DomainParticipantmay have hung on shutdown
under one or a combination of the following scenarios:

l The DomainParticipant and/or its entities received data over multicast.

l The system on which the DomainParticipant ran used a firewall.

This problem has been resolved.

[RTI Issue ID CORE-7917]

5.8 Fixes Related to Wire Protocol

5.8.1 Receiving Multiple RTPS Messages on Same UDP Datagram not
Supported

If multiple RTPS messages were included as part of the same UDP datagram, only the first one was pro-
cessed; any subsequent messages were incorrectly ignored. This problem has been resolved.

[RTI Issue ID CORE-5974]

5.8.2 Valid RTPS Endpoint Object ID Skipped during Auto Assignment of
Object IDs

A participant may have skipped valid and unused endpoint RTPS Object-IDs during endpoint creation. In
particular, this issue was triggered when explicitly assigning an endpoint Object ID through the DataWriter-



5.8.3  Multicast Retransmissions not Effective

Protocol/DataReaderProtocol QoS policy's rtps_object_id. In this scenario, two object IDs were incor-
rectly marked as "in use"—instead of just one. This problem has been resolved.

[RTI Issue ID CORE-7253]

5.8.3 Multicast Retransmissions not Effective

Repair packets sent through multicast were set with a reader GUID. This prevented a single transmission
of multicast packets from being accepted by all matched DataReaders. This problem has been resolved by
leaving the reader GUID unset. This allows a single multicast retransmission to be accepted by all matched
DataReaders.

[RTI Issue ID CORE-7598]

5.8.4 Wrong RTPS GAP messages Emitted by Reliable DataWriters in Some
Cases

In previous releases, a Reliable DataWriter may have sent invalid GAP messages to a VOLATILE Reli-
able DataReader after receiving a preemptive ACK or after receiving a NACK for samples that the
DataReader has already received.

This message did not cause the DataReader to misbehave but it could have led to issues when inter-
operating with other DDS vendors.

[RTI Issue ID CORE-7836]

5.8.5 Unnecessary Periodic NACK Traffic

This issue only affected applications running Connext DDS 5.2.7.

In applications where the DiscoveryConfigQosPolicy.locator_reachability_lease_duration was left at
the default setting and no TopicQueries were created, NACK traffic was generated every 5 seconds from a
built-in ServiceRequest DataReader that had no matching DataWriter. This problem has been resolved.

[RTI Issue ID CORE-7930]

5.9 Fixes Related to Logging

5.9.1 Potential Segmentation Fault when Enabling Multichannel for
Distributed Logger or Monitoring Library DataWriters

When DataWriters for distributed logger or monitoring library were initialized using a QoS profile in
which multichannel was enabled, this may have caused a segmentation fault. This problem has been
resolved.
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[RTI Issue ID CORE-7187]

5.9.2 Distributed Logger Option echoToStdout not Copied with RTI_DL_
Options_copy()

RTI_DL_Options_copy() did not completely copy Distributed Logger options; it skipped the RTI_DL_
Option's member echoToStdout. This problem has been resolved.

[RTI Issue ID DISTLOG-160]

5.9.3 Warning Logged if Some Network Interfaces Disabled when Creating
DomainParticipant

In Connext DDS 5.2.7, you may have seen the following warning when creating a DomainParticipant in
a system where some of the networks interfaces were disabled:
RTIOsapiInterfaces_getIPv4Interfaces:skipped

The warning has been moved to a higher verbosity level.

[RTI Issue ID CORE-7974]

5.9.4 .NET ConfigLogger set_output_device() was Misspelled

Starting with Connext DDS 5.3.0, the name of this method has changed from set_ouput_device() to set_
output_device().

[RTI Issue ID CORE-7557]

5.9.5 Possible Deadlock in Distributed Logger during Finalization under High
Verbosity Settings

It was possible for a thread to deadlock while finalizing the Distributed Logger instance if messages were
logged at a high rate. This problem has been resolved.

[RTI Issue ID DISTLOG-174]

5.10 Fixes Related to Vulnerabilities

This release fixes some potential vulnerabilities and memory corruption when receiving malformed data
(including RTI Issue IDs CORE-7101, CORE-7556, CORE-7559, CORE-7872, CORE-7877, CORE-
7878, CORE-7879, CORE-7880, CORE-7882, CORE-7883, CORE-7884, CORE-7885, CORE-7902,
CORE-7912, CORE-7915, CORE-7926, CORE-7927, CORE-7929, CORE-7940, CORE-7948).



5.11 Other Fixes

5.11 Other Fixes

5.11.1 Connext DDS Thread Execution Interrupted by Signals

Execution of the threads created by Connext DDS, such as the event thread, could have been interrupted
by signals in POSIX-compliant operating systems. If you installed a signal handler and executed DDS
code within the handler, this may have lead to errors or deadlocks.

In POSIX-compliant operating systems, such as Linux or OS X, DDS threads are created now with all sig-
nals blocked except SIGINT (CTRL-C). The signal blocking affects DDS-created threads but not the user
threads that create the DDS entities. If you want to receive signals on a DDS thread such as a listener
thread, you need to unblock the signal and set a signal handler from the DDS thread.

[RTI Issue ID CORE-179]

5.11.2 Potential Segmentation Fault when Mixing Static and Dynamic
Versions of RTI Libraries

Mixing static and dynamic versions of the Connext DDS libraries may have caused an application to crash
when creating a DomainParticipant. This may have happened, for instance, when trying to load mon-
itoring libraries dynamically from a statically linked RTI Connext DDS application. This problem has been
resolved.

[RTI Issue ID CORE-7933]

5.11.3 Tolerance Check Incorrectly Applied in DestinationOrder QoS Policy

To enable systems with eventual consistency, DataWriters and DataReaders should be configured with
the DestinationOrderQosPolicy's kind field set to DDS_BY_SOURCE_TIMESTAMP_
DESTINATIONORDER_QOS.

Previously, the tolerance check at the DataWriter, while using DDS_BY_SOURCE_TIMESTAMP_
DESTINATIONORDER_QOS, was incorrectly applied across all instances instead of per instance. This
problem has been resolved.

[RTI Issue ID CORE-3571]

5.11.4 Shadow Warnings Reported while Compiling Generated Examples
with -Wshadow Switch

On UNIX-like systems, shadow warnings were reported while compiling generated examples with the -
Wshadow switch. The warnings reported by the compiler gcc 4.8.2 on x64 Red Hat Enterprise Linux 7.0
operating system are fixed.

[RTI Issue ID CORE-5098]
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5.11.5 Potential Assertion Raised when Using Debug Libraries on Windows
Systems

When using debug libraries on Windows platforms, a possible assertion could have been raised when pars-
ing a QoS XML file that contained a non-ASCII character. This problem has been resolved.

[RTI Issue ID CORE-5269]

5.11.6 Incorrect Warning Reported while Trying to Purge Unregistered
Instances Proactively

When autopurge_unregistered_instances_delay is not DURATION_INFINITE, Connext DDS will
attempt to purge unregistered instances proactively, independently of hitting resource limits.

The warning "WriterHistoryMemoryPlugin_dropFullyAckedUnregisteredInstance:unregistered instances
not fully acked” was logged during this process. However this warning is valid only when resource limits
are hit, not when instances are proactively removed. This problem has been resolved.

[RTI Issue ID CORE-6272]

5.11.7 DataReader's get_matched_publications() may not have Reported all
Matching Publications

The DataReader's get_matched_publications() did not report a publication as a matched publication if it
made a transition from incompatible to compatible. This problem has been resolved.

[RTI Issue ID CORE-7149]

5.11.8 Possible Deadlock when Using User-Defined DDSThreadFactory

Using a user-defined DDSThreadFactory to manage internal threads created by Connext DDS may have
caused a deadlock. An internal middleware thread being deleted via a user-defined DDSThreadFact-
ory::delete_thread(void* ddsThread)may have never finished and hung due because it needed a mutex
held by the thread calling DDSThreadFactory::delete_thread(). This only occurred if DDSThreadFact-
ory::delete_thread() blocked and waited for the thread it was deleting to finish, for instance via a join().
This problem has been resolved.

[RTI Issue ID CORE-7334]

5.11.9 Documentation for .NET API did not Include Enumerations

Documentation for enumeration data types did not show up in the .NET API Reference
HTML documentation in previous releases. This problem has been resolved.

[RTI Issue ID CORE-7447]



5.11.10  Operations to Look Up Entity by Name Could Cause Deadlock

5.11.10 Operations to Look Up Entity by Name Could Cause Deadlock

The following operations were not thread safe and may have caused a deadlock if they were called con-
currently:

l DomainParticipantFactory::lookup_participant_by_name()

l DomainParticipant::lookup_subscriber_by_name()

l DomainParticipant::lookup_publisher_by_name()

l DomainParticipant::lookup_datareader_by_name()

l DomainParticipant::lookup_datawriter_by_name()

This problem has been resolved so these operations are thread-safe.

[RTI Issue ID CORE-7458]

5.11.11 Heap_free() not Available under DDS Namespace in Traditional C++
API

The operation Heap_free() was not available under the DDS namespace in the traditional C++ API. This
problem has been resolved.

[RTI Issue ID CORE-7488]

5.11.12 DataWriterSeq Class not Available under DDS Namespace in
Traditional C++ API

The definition for DataWriterSeq could not be accessed from the DDS namespace in the traditional C++
API. Users had to use DDS_DataWriterSeq instead. This problem has been resolved.

[RTI Issue ID CORE-7510]

5.11.13 Segmentation Fault when Using Coherent Changes with Disabled
DataWriters

Your application may have crashed if you tried to write coherent data with enabled and disabled
DataWriters present simultaneously in your system. This problem has been resolved.

[RTI Issue ID CORE-7543]

5.11.14 Participant Creation Crashed if Specified XML Configuration was not
a Participant Configuration

The creation of a Participant from an XML configuration would crash if the specified configuration name
referenced an XML configuration (e.g., a QoS profile) that was not a participant configuration (that is, it
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did not have a <participant> element). This problem has been resolved. Now an error message will be dis-
played in the standard output in this situation.

[RTI Issue ID CORE-7544]

5.11.15 Errors Linking with mingw

In previous releases, DDS applications may have failed to link when using mingw. This problem has been
resolved.

[RTI Issue ID CORE-7577]

5.11.16 Interoperability Problems Between Connext DDS and CoreDX
DDS on Windows Systems

Interoperability between CoreDX DDS and Connext DDS was unreliable on some Windows systems due
to a port conflict. You may have noticed that applications either completely failed to communicate or only
did so if started in some particular order. RTI DDS Spy and Admin Console were sometimes unable to
detect CoreDX DDS entities.

This problem has been resolved. However, the interoperability problem affects both Connext DDS and
CoreDX DDS symmetrically, so make sure you are also using CoreDX DDS version 3.6.44 or higher.

[RTI Issue ID CORE-7646]

5.11.17 Memory Leak in DataWriter when Matching Reliable DataReader
Deleted

A DataWriter kept a small amount of memory around for a matching DataReader even if the DataReader
was deleted and unmatched. This may have lead to unbounded memory growth over time as new
DataReaders were created and destroyed. Notice that the leaked memory was returned to the heap after
the DataWriter was deleted. This problem has been resolved.

[RTI Issue ID CORE-7652]

5.11.18 Crash when Setting Topic QoS after Setting Publication or
Subscription Name

Creating two endpoints of the same kind (e.g., two DataWriters or two DataReaders) and setting a pub-
lication or subscription name in only one of them may have crashed the application. This has problem has
been resolved.

[RTI Issue ID CORE-7780]



5.11.19  Rare Potential Segmentation Fault after Deleting Subscriber

5.11.19 Rare Potential Segmentation Fault after Deleting Subscriber

There was an issue that in rare cases may have triggered a segmentation fault after the deletion of a Sub-
scriber. In particular, this issue may have only triggered when the Subscriber contained at least one reli-
able DataReader that had received at least one sample from a matched DataWriter, and only if the
ACK response delay's minimum and maximum were both non-zero. This problem has been resolved.

[RTI Issue ID CORE-7781]

5.11.20 WaitSet Unblocked Prematurely when QoS Changed such that a
Pair of Matching Entities No Longer Matched

If you had a WaitSet attached to a Status Condition, it may have unblocked prematurely in some cases,
which can cause high CPU usage. This issue occurred if the use of a WaitSet attached to a Status Condi-
tion was preceded by a change in QoS leading to a pair of matched entities to not match anymore (such as
a change to the DDS_PartitionQosPolicy). This problem has been resolved.

[RTI Issue ID CORE-7785]

5.11.21 Warning of Unsafe Functions when Compiling Examples for
Windows Platforms

When compiling the examples provided for Windows platforms, you may have seen warnings such as:
warning C4996: 'sprintf': This function or variable may be unsafe. Consider using sprintf_s
instead.
To disable deprecation, use _CRT_SECURE_NO_WARNINGS. See online help for details.
1> c:\program files (x86)\microsoft visual studio 12.0\vc\include\stdio.h(356) : see
declaration of 'sprintf

This problem has been resolved.

[RTI Issue ID CORE-7848]

5.11.22 DomainParticipant Creation Failure if Some Resource Limits were
Too Small

This issue only affected applications running Connext DDS 5.2.7.

If DomainParticipantResourceLimitsQosPolicy.reader_property_list_max_length was set to 0 or
DomainParticipantResourceLimitsQosPolicy.reader_property_string_max_length was set to a value
smaller than 74, the DomainParticipant creation would fail.

If DomainParticipantResourceLimitsQosPolicy.writer_property_list_max_length was set to 0 or
DomainParticipantResourceLimitsQosPolicy.writer_property_string_max_length was set to a value
smaller than 74 and security was enabled or DiscoveryConfigQosPolicy.locator_reachability_lease_dur-
ation was set to a finite value, the DomainParticipant creation would fail. If security was not enabled,
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DomainParticipant creation would have succeeded but any attempt to create a TopicQuery would have
failed.

All of these issues have been resolved.

[RTI Issue ID CORE-7849]

5.11.23 Incorrect DiscoveryConfigQoS Field Used to Create ServiceRequest
DataReader

This issue only affected applications running Connext DDS 5.2.7.

The wrong field from the DiscoveryConfigQosPolicy was used to populate the RtpsReli-
ableReaderProtocol values in the ServiceRequest DataReader's DataReaderProtocolQosPolicy. The Dis-
coveryConfigQosPolicy.publication_reader field was used instead of
DiscoveryConfigQosPolicy.service_request_reader. This problem has been resolved and the correct
field is now being used.

[RTI Issue ID CORE-7989]

5.11.24 Potential Segmentation Fault if System Running out of Resources

There was an issue that prevented Distributed Logger from recovering from an out-of-resources error dur-
ing initialization, potentially raising a segmentation fault. This problem has been resolved.

[RTI Issue ID DISTLOG-150]

5.11.25 Installer no Longer Fails when '.rtipkg' Filename Changed

The installer previously expected the name of the rtipkg file to be unchanged after download, and would
throw an error if it changed. Now the name of the .rtipkg file can be changed, and the installation will suc-
ceed.

[RTI Issue ID INSTALL-307]

5.11.26 Polluted Global Namespace in Traditional C++ Request-Reply API

Some API headers included using namespace DDS directives that may have caused name conflicts if the
applications defined symbols that also existed in the DDS namespace. This situation would have caused a
compilation error. This problem has been resolved by removing all visible 'using' directives from the global
namespace.

[RTI Issue ID REQREPLY-29]
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5.11.27 Disabling Positive ACKs with Batching could Cause Incorrect
Historical Data

In some cases, a DataWriter may have incorrectly sent very old samples to a late-joining DataReader that
was expecting the very latest samples. This occurred if a DataWriter set disable_positive_acks to true,
enabled batching, used keep-last history, and had a history depth not less than the number of samples that
can fit in max_batches. In this case, the DataWriter may have incorrectly sent very old samples, which
had already been sent to an early-joining, early-departing DataReader, to a late-joining DataReader that
was expecting the very latest samples. This problem has been resolved.

[RTI Issue ID CORE-6839]

5.11.28 Optional RTI Package for OpenSSL Run-Time Libraries

Connext DDS now provides an optional RTI Package with OpenSSL's run-time libraries. This provides
out-of-the-box support for RTI Security Plugins in infrastructure services and tools. The RTI Package
must be installed on top of an existing Connext DDS installation using either the rtipkginstall command-
line utility or RTI Launcher.

[RTI Issue ID INSTALL-283]

5.11.29 Backup Libraries

In previous releases, not all libraries were backed up during the patching process. This fix ensures that all
libraries get backed up in the correct place when patching.

[RTI Issue ID INSTALL-285]

5.11.30 Memory Leak when Registering Types

During type registration of both user and builtin types, some memory allocated during type registration
was not deallocated. This problem has been resolved.

[RTI Issue ID CORE-7910]

5.11.31 No Communication when Creating and Deleting Readers

In previous releases 5.2.5, 5.2.6, and 5.2.7, there was an issue that may have prevented communication
when creating and deleting Readers on a Participant.

This problem, which only affected QNX and Darwin architectures, has been resolved.

[RTI Issue ID CORE-7968]
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5.11.32 Potential Segmentation Fault on QNX Architectures

Previous releases may have issued a segmentation fault on QNX architectures due to the internal usage of
gethostbyname(), which is a non-reentrant function. This problem may have occurred when sim-
ultaneously creating DomainParticipants in multiple threads. This problem has been resolved by replacing
gethostbyname() with gethostbyname_r().

[RTI Issue ID CORE-7971]

5.11.33 Memory Leak when Failing to Enable DataReader due to
Unavailable receive_port

If enabling a DataReader failed because the desired unicast receive_port was not available, the
DataReader leaked memory in the function COMMENDFragmentedSampleTableResourcePool_new
(). The memory remained leaked even after deleting the DataReader. This problem has been resolved.

[RTI Issue ID CORE-8011]

5.11.34 .NET ThreadSettings_t::mask Field had Wrong Type

In the previous release, the type of the ThreadSettings_t::mask was wrong. In Connext DDS 5.3.0, the
type has changed from TheadSettingsKind to System::UInt32.

[RTI Issue ID CORE-8081]

5.11.35 Generic.ConnextMicroCompatibilty Built-in Profile not Compatible
with Latest Version of RTI Connext Micro

The built-in profile Generic.ConnextMicroCompatibility was incompatible with Micro releases 2.4.4 and
higher because the default LivelinessQosPolicy kind was changed to Automatic, making RTI Connext
Micro compatible with RTI Connext DDS out-of-the-box.

The Generic.ConnextMicroCompatibilty profile has been updated to reflect that there are currently no QoS
changes necessary for RTI Connext DDS and RTI Connext Micro to communicate out-of-the-box. Also,
two new profiles, Generic.ConnextMicroCompatibility.2.4.9 and Gen-
eric.ConnextMicroCompatibility.2.4.3, have been added. The names of these profiles identify the latest
known version of RTI Connext Micro that they are compatible with at the time of the most recent release
of Connext DDS.

[RTI Issue ID CORE-7925]

5.11.36 RTIEventJobDispatcher_updateAgentPriorities Errors when Using
EDF or HPF Scheduling Policy

In previous releases, a user creating multiple flow controllers with EDF or HPF scheduling policy may
have seen sporadic errors like these:



5.11.37  Publication of Entity Description Using Monitoring Library may have Failed in Some Cases

RTIEventJobDispatcher_updateAgentPriorities:!re-sorted job agent already exists
RTIEventJobDispatcher_updateAgentPriorities:could not remove re-sorting agent

After the errors, communication may have stopped.

This problem has been resolved.

[RTI Issue ID CORE-8074]

5.11.37 Publication of Entity Description Using Monitoring Library may have
Failed in Some Cases

This issue only affected Connext DDS 5.2.3.1, 5.2.3.18, and 5.2.3.21. In those releases, the entity descrip-
tion data may not have been published if the user changed some of the DomainParticipant resource limits
used by the monitoring library.

For example, if the user updated participant_qos.resource_limits.writer_user_data_max_length to be
greater than the default value 256, the publication of DataWriter description data when using the mon-
itoring library would have failed with an error like this:
[D0000|Pub(80000008)|T=Example MyType|CREATE Writer|D0000|Writer(80000003)|GET_QOS]DDS_
OctetSeq_set_maximum:!assert new max cannot be larger than absolute maximum
[D0000|Pub(80000008)|T=Example MyType|CREATE Writer|D0000|Writer(80000003)|GET_QOS]DDS_
UserDataQosPolicy_setup_presentation_policyI:ERROR: Failed to set maximum
[D0000|Pub(80000008)|T=Example MyType|CREATE Writer|D0000|Writer(80000003)|GET_QOS]DDS_
DataWriter_get_qos:!prepare QoS
[D0000|Pub(80000008)|T=Example MyType|CREATE Writer]RTIDefaultMonitorParticipantObject_
sampleAndPublishWriterDesc:!get qos
[D0000|Pub(80000008)|T=Example MyType|CREATE Writer]RTIDefaultMonitorPublisher_
onEventNotify:!publish writer desc

This problem has been resolved.

[RTI Issue ID MONITOR-224]
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Chapter 6 Known Issues
6.1 AppAck Messages Cannot be Greater than Underlying

Transport Message Size

A DataReader with acknowledgment_kind (in the ReliabilityQosPolicy) set to DDS_
APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_
EXPLICIT_ACKNOWLEDGMENT_MODE cannot send AppAck messages greater than the
underlying transport message size.

If a DataReader tries to send an AppAck message greater than the transport message size, Connext
DDS will print the following error message:
COMMENDFacade_sendAppAck:!add APP_ACK to MIG
COMMENDSrReaderService_sendAppAck:!send APP_ACK
PRESPsService_onReaderAppAckSendEvent:!send acknowledgment

To recover from the above error, the DataReader must acknowledge samples until the size of the
AppAck message goes below the transport message size threshold.

Why does an AppAck message increase its size? An AppAck message contains a list of sequence
number intervals where each interval represents a set of consecutive sequence numbers that have
been already acknowledged. As long as samples are acknowledged in order, the AppAck message
will always have a single interval. However, when samples are acknowledged out of order, the
number of intervals and the size of the AppAck will increase.

For more information, see Section 6.3.12, Application Acknowledgment, in the RTI Connext DDS
Core Libraries User’s Manual.

[RTI Issue ID CORE-5329]
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6.2 Cannot Open USER_QOS_PROFILES.xml in rti_
workspace/examples from Visual Studio

When trying to open the USER_QOS_PROFILES.xml file from the resource folder of one of the
provided examples, you may see the following error:
Could not find file : C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\connext_
dds\c\<example>\win32\USER_QOS_PROFILES.xml

The problem is that the Visual Studio project is looking for the file in a wrong location (win32 folder).

You can open the file manually from here:

C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\connext_dds\c\<example>\USER_QOS_
PROFILES.xml

This issue does not affect the functionality of the example.

[RTI Issue ID CODEGENII-743]

6.3 DataReader Cannot Persist AppAck Messages Greater Than
32767 Bytes

A DataReader using durable reader state, whose acknowledgment_kind (in the ReliabilityQosPolicy) is
set to DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_
EXPLICIT_ACKNOWLEDGMENT_MODE, cannot persist an AppAck message greater than 32767
bytes.

To recover from the previous error, the DataReader must acknowledge samples until the size of the
AppAck message goes below the transport message size threshold.

For more information, see Section 12.4, Durable Reader State, in the RTI Connext DDS Core Libraries
User’s Manual.

[RTI Issue ID CORE-5360]

6.4 DataReaders with Different Reliability Kinds Under Subscriber with
GROUP_PRESENTATION_QOS may Cause Communication
Failure

Creating a Subscriber with PresentationQosPolicy.access_scope GROUP_PRESENTATION_QOS
and then creating DataReaders with different ReliabilityQosPolicy.kind values creates the potential for
situations in which those DataReaders will not receive any data.



6.5 DataWriter's Listener Callback on_application_acknowledgment() not Triggered by Late-Joining

One such situation is when the DataReaders are discovered as late-joiners. In this case, samples are never
delivered to the DataReaders. A workaround for this issue is to set the AvailabilityQosPolicy.max_data_
availabilty_waiting_time to a finite value for each DataReader.

[RTI Issue ID CORE-7284]

6.5 DataWriter's Listener Callback on_application_acknowledgment()
not Triggered by Late-Joining DataReaders

The DataWriter's listener callback on_application_acknowledgment()may not be triggered by late-join-
ing DataReaders for a sample after the sample has been application-level acknowledged by all live
DataReaders (no late-joiners).

If your application requires acknowledgment of message receipt by late-joiners, use the Request/Reply
communication pattern with an Acknowledgment type (see Chapter 22, Introduction to the Request-Reply
Communication Pattern, in the RTI Connext DDS Core Libraries User’s Manual).

[RTI Issue ID CORE-5181]

6.6 Discovery with Connext DDS Micro Fails when Shared Memory
Transport Enabled

Given a Connext DDS 5.3.0 application with the shared memory transport enabled, a Connext
DDS Micro 2.4.x application will fail to discover it. This is due to a bug in Connext DDS Micro that pre-
vents a received participant discovery message from being correctly processed. This bug will be fixed in a
future release of Connext DDS Micro. As a workaround, you can disable the shared memory transport in
the Connext DDS application and use UDPv4 instead.

[RTI Issue ID EDDY-1615]

6.7 HighThroughput and AutoTuning built-in QoS profiles may cause
Communication Failure when Writing Small Samples

If you inherit from either the BuiltinQosLibExp::Generic.StrictReliable.HighThroughput or the Built-
inQosLibExp::Generic.AutoTuning built-in QoS profiles, your DataWriters and DataReaders will fail
to communicate if you are writing small samples.

In Connext DDS 5.1.0, if you wrote samples that were smaller than 384 bytes, you would run into this
problem. In version 5.2.0 onward, you might experience this problem when writing samples that are smal-
ler than 120 bytes.

This communication failure is due to an interaction between the batching QoS settings in the Gen-
eric.HighThroughput profile and the DataReader'smax_samples resource limit, set in the Built-
inQosLibExp::Generic.StrictReliable profile. The size of the batches that the DataWriter writes are
limited to 30,720 bytes (see max_data_bytes). This means that if you are writing samples that are smaller
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than 30,720/max_samples bytes, each batch will have more than max_samples samples in it. The
DataReader cannot handle a batch with more than max_samples samples and the batch will be dropped.

There are a number of ways to fix this problem, the most straightforward of which is to overwrite the
DataReader'smax_samples resource limit. In your own QoS profile, use a higher value that accom-
modates the number of samples that will be sent in each batch. (Simply divide 30,720 by the size of your
samples).

[RTI Issue ID CORE-6411]

6.8 Memory Leak if Foo:initialize() Called Twice

Calling Foo:initialize() more than once will cause a memory leak.

[RTI Issue ID CORE-7678]

6.9 Segmentation Fault when Creating DTLS DomainParticipants in
Multiple Threads—Solaris and QNX Platforms Only

On Solaris and QNX platforms, the creation of DTLS-enabled DomainParticipants is not thread-safe and
may lead to a segmentation fault in the function RTIOsapiSemaphore_take(). This issue has been
resolved for Windows, Linux, and Android systems.

[RTI Issue ID COREPLG-264]

6.10 Shared Memory Communication Requires Setting
dds.transport.shmem.builtin.hostid in Transport Mobility
Scenarios

On some platforms, to use the shared memory transport in a transport mobility scenario, you will also need
to set the dds.transport.shmem.builtin.hostid property in the DomainParticipant's Properties QoS
policy. Use this property to assign a unique hostid to the transport. In this release, that unique hostid (a 32-
bit integer) must be generated by the user and must be the same for all applications running on the same
host.

For instance, if you want to two Connext DDS applications to communicate using shared memory and one
application is started while no NICs are enabled, and after that you enable a NIC and start another Con-
next DDS application, your applications will not communicate by default on certain platforms. To make
both applications communicate, you need to set the property dds.transport.shmem.builtin.hostid to the
same value in both applications.

Affected platforms: AIX, Solaris.

[RTI Issue ID CORE-8040]



6.11 TopicQueries not Supported with DataWriters Configured to Use Batching or Durable Writer History

6.11 TopicQueries not Supported with DataWriters Configured to Use
Batching or Durable Writer History

Getting TopicQuery data from a DataWriter configured to use Batching or Durable Writer History is not
supported.

[RTI Issue IDs CORE-7405, CORE-7406]

6.12 Typecodes Required for Request-Reply Communication Pattern

Typecodes are required when using the Request-Reply communication pattern. To use this pattern, do not
use rtiddsgen's -noTypeCode flag. If typecodes are missing, the Requester will log an exception.

[RTI Issue ID REQREPLY-3]

6.13 Uninstalling on AIX Systems

To uninstall Connext DDS on an AIX system: if the original installation is on an NFS drive, the uninstaller
will hang and fail to completely uninstall the product. As a workaround, you can remove the installation
with this command:

rm -rf $INSTALL_PATH/rti_connext_dds-5.3.0

[RTI Issue ID INSTALL-323]

6.14 Writer-Side Filtering May Cause Missed Deadline

If you are using a ContentFilteredTopic and you set the Deadline QosPolicy, the deadline may be missed
due to filtering by a DataWriter.

[RTI Issue ID CORE-1634, Bug # 10765]

6.15 Wrong Error Code After Timeout on write() from Asynchronous
Publisher

When using an asynchronous publisher, if write() times out, it will mistakenly return DDS_RETCODE_
ERROR instead of the correct code, DDS_RETCODE_TIMEOUT.

[RTI Issue ID CORE-2016, Bug # 11362]
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6.16 Instance does not Transition to ALIVE when "live" DataWriter
Detected

The "Data Distribution Service for Real-time Systems" specification allows transitioning an instance from
the NO_WRITERS state to the ALIVE state when a "live" DataWriter writing the instance is detected.
Currently, this state transition is not supported in Connext DDS. The only way to transition an instance
from NO_WRITERS to ALIVE state is by receiving a sample for the instance from one of the
DataWriters publishing it.

Example:

1. A DataWriter writes a particular instance. The DataReader receives the sample. The DataWriter
loses liveliness with the DataReader, making the instance transition from ALIVE to NO_
WRITERS. The writer later becomes alive again, but it doesn't resume writing samples of the
instance. In this case, the instance will stay in a NO_WRITERS state.

2. The DataWriter publishes a new sample for the instance. Only then does the instance state change
on the DataReader from NO_WRITERS to ALIVE.

[RTI Issue ID CORE-3018]

6.17 Known Issues with Dynamic Data

l The conversion of data by member-access primitives (get_X() operations) is limited when con-
verting to types that are not supported on all platforms. This limitation applies when converting to a
64-bit long long type (get_longlong() and get_ulonglong() operations) and a 128-bit long double
type (get_longdouble()). These methods will always work for data members that are actually of the
correct type, but will only support conversion from values that are stored as smaller types on a sub-
set of platforms. Conversion to 64-bit long longs from a 32-bit or smaller integer type is supported
on all Windows, Solaris, and Linux architectures, and any additional 64-bit architectures. Con-
version to 128-bit long doubles from a float or double is only supported on Solaris SPARC archi-
tectures.

[RTI Issue ID CORE-2986]

l DynamicData may have problems resizing variable-size members that are >= 64k in size. In this
case, the method (set_X() or unbind_complex_member()) will fail with the error: "sparsely stored
member exceeds 65535 bytes." Note that it is not possible for a member of a sparse type to be >=
64k.

[RTI Issue ID CORE-3177]

l Types that contain bit fields are not supported by DynamicData. Therefore, when rtiddsspy dis-
covers any type that contains a bit field, rtiddsspy will print this message:



6.18 Known Issues in RTI Monitoring Library

DDS_DynamicDataTypeSupport_initialize:type not supported (bitfield member)

[RTI Issue ID CORE-3949]

l DynamicData does not support out-of-order assignment of members that are longer than 65,535
bytes. In this situation, the DynamicData API will report the following error:
sparsely stored member exceeds 65535 bytes

For example:
struct MyStruct {

string<131072> m1;
string<131072> m2;

};

With the above type, the following sequence of operations will fail because m2 is assigned before
m1 and has a length greater than 65,535 characters.
str = DDS_String_alloc(131072);
memset(str, 'x', 131072);
str[131071]= 0;
DDS_DynamicData_set_string(

data, "m2", DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, str);
DDS_DynamicData_set_string(

data, "m1", DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, str);

If member m1 is assigned before m2, the sequence of operations will succeed.

[RTI Issue ID CORE-3791, Bug # 13745]

6.18 Known Issues in RTI Monitoring Library

6.18.1 Problems with NDDS_Transport_Support_set_builtin_transport_
property() if Participant Sends Monitoring Data

If a Connext DDS application uses the NDDS_Transport_Support_set_builtin_transport_property()
API (instead of the PropertyQosPolicy) to set built-in transport properties, it will not work with Monitoring
Library if the user participant is used for sending all the monitoring data (the default settings). As a work-
around, you can configure Monitoring Library to use another participant to publish monitoring data (using
the property name rti.monitor.config.new_participant_domain_id in the PropertyQosPolicy).

[RTI Issue ID MONITOR-222]

6.18.2 Participant’s CPU and Memory Statistics are Per Application

The CPU and memory usage statistics published in the DomainParticipant entity statistics topic are per
application instead of per DomainParticipant.
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[RTI Issue ID CORE-7972]

6.18.3 XML-Based Entity Creation Nominally Incompatible with Static
Monitoring Library

If setting the DomainParticipant QoS programmatically in the application is not possible (i.e., when using
XML-based Application Creation), the monitoring create function pointer may still be provided via an
XML profile by using the environment variable expansion functionality. The monitoring property within
the DomainParticipant QoS profile in XML must be set as follows:

<participant_qos>
<property>

<value>
<element>

<name>rti.monitor.library</name>
<value>timonitoring</value>

</element>
<element>

<name>rti.monitor.create_function_ptr</name>
<value>$(MONITORFUNC)</value>

</element>
</value>

</property>
</participant_qos>

Then in the application, before retrieving the DomainParticipantFactory, the environment variable must be
set programmatically as follows:

...
sprintf(varString, "MONITORFUNC=%p", RTIDefaultMonitor_create);
int retVal = putenv(varString);
...
//DomainParticipantFactory must be created after env. variable setting

[RTI Issue ID CORE-5540]

6.18.4 ResourceLimit channel_seq_max_length must not be Changed

The default value of DDS_DomainParticipantResourceLimitsQosPolicy::channel_seq_max_length can't
be modified if a DomainParticipant is being monitored. If this QoS value is modified from its default value
of 32, the monitoring library will fail.

[RTI Issue ID MONITOR-220]



Chapter 7 Experimental Features
This software may contain experimental features. These are used to evaluate potential new features
and obtain customer feedback. They are not guaranteed to be consistent or supported and they
should not be used in production.

In the API Reference HTML documentation, experimental APIs are marked with <<exper-
imental>>.

The APIs for experimental features use the suffix _exp to distinguish them from other APIs. For
example:
const DDS::TypeCode * DDS_DomainParticipant::get_typecode_exp(

const char * type_name);

Experimental features are also clearly noted as such in the User’s Manual or Getting Started Guide
for the component in which they are included.

Disclaimers:

l Experimental feature APIs may be only available in a subset of the supported languages and
for a subset of the supported platforms.

l The names of experimental feature APIs will change if they become officially supported. At
the very least, the suffix, _exp, will be removed.

l Experimental features may or may not appear in future product releases.

l Experimental features should not be used in production.

Please submit your comments and suggestions about experimental features to support@rti.com or
via the RTI Customer Portal (https://support.rti.com/).
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