
RTI Connext DDS

Core Libraries

What's New in Version 5.3.0

© 2017 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
June 2017.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS, the
RTI logo, 1RTI and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks
or service marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Table of Contents
What's New in 5.3.0

1 Support for RTI Security Plugins 1
2 Support for Locator Change At Run-Time 1
3 Ability to Detect Unreachable Locators 3
4 Automatic Way to Configure Host ID of SHMEM Transport Instance Friendly to IP-Mobility Scen-

arios 4
5 New GUID Prefix Generation Mode Based on UUID 4
6 Increased Maximum Locators a Participant can Announce 4
7 Support for Querying DataWriter Sample Cache Based on Selection Criteria 5
8 Ability to Configure Wire IDL String Encoding and Support for UTF-8 Encoding 6
9 Identification of Corrupted RTPS Messages by Using CRC 7
10 Identification of Corrupted RTI TCP Messages by Using CRC 8
11 AsyncWaitSet: Specialized WaitSet for Multi-Threaded Processing 8
12 Ability to Resize Sequences in C/C++ Beyond Defined Maximum 8
13 New QoS Policy to Identify DomainParticipants of RTI Infrastructure Services 9
14 Higher Precision in Print Function for Sample Members of type float and double in C/C++ Gen-

erated Examples 9
15 Increased Character Limit for Property Values in XML Configuration 9
16 Builtin Profile for Minimum Memory Footprint (Generic.MinimalMemoryFootprint) 10
17 Support for Deserializing Union with Unknown Discriminator Value 10
18 Support for Deserializing Enum Member with Unknown Enumerator 11
19 Higher Precision in DynamicData print Method for Sample Members of Type float and double 12
20 Faster Creation of DomainParticipants 12
21 Properties to Configure Verbosity of Security-Related Log Output from Secure Transports 12
22 Support for Configuring Distributed Logger Option echo_to_stdout via XML 12
23 Java Method to Configure Public-Key Infrastructure (PKI) Elements of TLS Transport 13

3

4

24 Java Method to Compute Property String Maximum Length of a Given PropertyQosPolicy Instance 13
25 Improved TCP Transport Logging 13
26 Platforms 14

26.1 New Platforms 14
26.2 Platforms on Legacy Operating Systems 14
26.3 Removed Platforms 15
26.4 Linking with Dynamic Windows C Run-Time (CRT) 15
26.5 Warning-Free Compilation with GCC 4.1.1 and GCC 4.8.2 16
26.6 Use of Real Time Clock instead of tickGet—VxWorks 6.3 and Higher Platforms 16
26.7 Changes to Thread-Priority Definitions for QNX and INTEGRITY Platforms 16
26.8 Priority Inheritance used when Creating Semaphores 17
26.9 Changes to Default Stack Size for INTEGRITY, LynxOS, and QNX Platforms 17

27 Language Bindings and APIs 17
27.1 Connext DDS Java Classes now Compiled to Target Java 1.5 17
27.2 New Operations to Convert BuiltinTopicKey to/from GUID 17
27.3 Condition Handler now Accepts Functions that Receive Condition as Parameter—Modern C++ API

Only 18
27.4 TypeCode.print_complete_idl() API Added—Java API Only 18
27.5 New API to Compare DDS_InstanceHandle_t 18
27.6 Ability to Subtract Two Times to Calculate Duration —Modern C++ Only 18
27.7 Strong-Name Signing of Request-Reply .NET DLLs 18

28 Changes to Default QoS Values 19
28.1 Default Value for writer_qos.writer_resource_limits.max_remote_reader_filters Changed to DDS_

LENGTH_UNLIMITED 19
28.2 Default Value for participant_property_string_max_length Changed to 4096 19
28.3 Default Value for participant_qos.resource_limits.max_gather_destinations Changed to 16 19

29 Debuggability 19
29.1 Ability to Monitor Heap Memory Usage 19
29.2 New Flag in LogMessage Structure Indicates Security-Related Message 20
29.3 Improved Consistency of Logging Messages 20
29.4 Improved Logging of Serialize and Deserialize Errors 20
29.5 Additional Log Information Provided during Disruption of Reliability Protocol 21
29.6 Support for Logging Infrastructure to Write into Multiple Files 21

30 XML-Based Application Creation 22
30.1 Support for EntityNameQosPolicy User Settings for Entities Created with XML-Based Application

Creation 22
30.2 XML Tag <register_type> is now Optional and its Attribute 'kind' is Deprecated 22

30.3 Renamed DomainParticipant Library XML Tag to <domain_participant_library> 23
30.4 Global Constant DDS_PARTICIPANT_CONFIG_PARAMS_DEFAULT Initialization did not Match

Documentation 23
30.5 XML-Based Application Creation Supports Different ContentFilteredTopic for DataReader Con-

figurations with Filter and Multiplicity 23
31 Packaging and Installer 24

31.1 Optional RTI Package for OpenSSL Run-Time Libraries 24
31.2 Renamed Host-Side OpenSSL Package 24
31.3 Add-ons Such as Secure WAN Transport have New Bundles that Install for Tools 24

32 Performance and Resource Consumption Improvements 24
32.1 Decreased Stack Size Requirement for Creating and Enabling a Participant 24
32.2 Decreased Heap Consumption 24

33 Experimental Features 24
33.1 RTI Connext DDS Professional now includes New Experimental Cloud Discovery Service 24

5

What's New in 5.3.0
Connext DDS 5.3.0 is a general access release. This document highlights new platforms and
improvements in 5.3.0. For what's fixed in 5.3.0, see the RTI Connext DDS Core Libraries
Release Notes.

1 Support for RTI Security Plugins

Connext DDS 5.3.0 provides a General Access Release (GAR) of RTI Security Plugins.

Security Plugins introduces a robust set of security capabilities, including authentication, encryp-
tion, access control and logging. Secure multicast support enables efficient and scalable distribution
of data to many subscribers. Performance is also optimized by fine-grained control over the level of
security applied to each data flow, such as whether encryption or just data integrity is required.

Security Plugins is available in a separate package from the RTI Support Portal, https://sup-
port.rti.com/. See the RTI Security Plugins Release Notes, as well as the RTI Security
Plugins Getting Started Guide.

2 Support for Locator Change At Run-Time

In Connext DDS 5.2.3 and earlier, the set of IP addresses associated with an RTPS endpoint
(DataWriter or DataReader) could not be changed after the RTPS endpoint was enabled. There-
fore, Connext DDS was not prepared to deal with IP addresses changes at run-time, including the
following use cases:

1. Starting without network connectivity and connecting to the network at run time.

2. Switching network interfaces. For example, going fromWired to WIFI.

3. Acquiring a new IP address after DHCP lease expiration.

4. Mobile devices roaming across network segments.

This release introduces support for IP-address changes at run-time for the following transports:

1

https://support.rti.com/
https://support.rti.com/

2 Support for Locator Change At Run-Time

2

l UDPv4 and DTLSv4

l UDPv6

l TCPv4 and TLSv4

l LBRTPS

l ZRTPS

The functionality is enabled out-of-the-box, except for the case where systems can be started without
enabled network interfaces. For this case, you must set participant_qos.wire_protocol.rtps_auto_id_
kind to DDS_RTPS_AUTO_ID_FROM_UUID.

When possible, the detection of IP address changes is done asynchronously using the APIs offered by the
underlying OS. If there is no mechanism to do that, the detection will use a polling strategy where the
polling period is 500 millisec by default.

The polling period can be configured using the following transport properties in the DomainParticipant's
PropertyQosPolicy: <<transport prefix>>.interface_poll_period.

For example, for UDPv4 the property name is: dds.transport.UDPv4.builtin.interface_poll_period.

Starting without Enabled Network Interfaces

This new feature supports the use case where an application that uses DDS is started with no network inter-
faces enabled or connected and subsequently connects to a network while the application is running.

If this is your case, you must change the GUID prefix generation algorithm to not be based on the IPv4
address of the first enabled interface, and use a UUID algorithm instead This is important to avoid col-
lisions on the GUID, which needs to be unique on the network. To enable the use of a UUID algorithm to
generate the GUID, you need to modify the DomainParticipant'sWireProtocol QoS policy. Specifically,
set participant_qos.wire_protocol.rtps_auto_id_kind to DDS_RTPS_AUTO_ID_FROM_UUID.

Disabling IP Mobility Support

Notice that Connext DDS 5.2.3 and earlier versions of the product will report errors if they detect locator
changes in an RTPS endpoint. You can disable the notification and propagation of these changes. This
way, an interface change in a 5.3.0 application will not trigger errors in an application running 5.2. Of
course, this will prevent the 5.3.0 application from being able to detect network interface changes.

To disable IP Mobility, you can set the following transport property in the DomainParticipant's Prop-
ertyQosPolicy: <<transport prefix>>.disable_interface_tracking.

For example, for UDPv4 the property name is: dds.transport.UDPv4.builtin.disable_interface_track-
ing.

3 Ability to Detect Unreachable Locators

3 Ability to Detect Unreachable Locators

It is possible that a destination RTPS Endpoint (DataWriter or DataReader) announces locators that are
temporarily or permanently unreachable.

For example, a destination RTPS endpoint may announce an IP address that is only valid within the LAN
where the endpoint is running. In such case, RTPS endpoints running outside the LAN should not use that
address to send information to the destination endpoint.

In previous releases, the middleware did not have the ability to detect unreachable locators. This had two
main consequences:

1. The middleware could waste CPU cycles and bandwidth sending RTPS messages to unreachable
locators.

2. If the unreachable locator was a multicast locator, the destination endpoint would never receive live
samples from the sender's endpoints. For best-effort communication, this would have resulted in
never receiving samples. For reliable communication, this would have resulted in sending samples
as repair traffic.

This release introduces a new locator REACHABILITY PING mechanism, which the middleware can
use to detect when an RTPS endpoint is not reachable at a locator; then it can stop using the locator to
send data to the endpoint. For temporary disconnections, the middleware will be able to detect and use an
RTPS endpoint’s locator that becomes reachable again. While data is not sent to an unreachable locator,
the middleware still sends periodic REACHABILITY PING messages to check if it is still unreachable.

The configuration of the REACHABILITY mechanism is done using the following DomainParticipant's
QosPolicy values:

l participant_qos.discovery_config.locator_reachability_assert_period

This value configures the period at which a DomainParticipant will ping all the locators that it has
discovered. This period should be strictly less than locator_reachability_lease_duration. Default:
20 seconds.

l participant_qos.discovery_config.reachability_lease_duration

This value configures a timeout announced to remote DomainParticipants. This timeout is used by
remote DomainParticipants as the maximum period by which a remote DomainParticipant locator
must be asserted (through a REACHABILITY PING message sent from the local DomainPar-
ticipant to that locator), or that locator will be considered "unreachable" from the local DomainPar-
ticipant. If the value is set to infinite, the feature is disabled. Default: infinite (disabled).

l participant_qos.discovery_config.locator_reachability_change_detection_period

3

4 Automatic Way to Configure Host ID of SHMEM Transport Instance Friendly to IP-Mobility Scenarios

4

This value determines the maximum period at which Connext DDS will check to see if remote
DomainParticipant locators are still alive. Default: 60 seconds.

4 Automatic Way to Configure Host ID of SHMEM Transport Instance
Friendly to IP-Mobility Scenarios

In Connext DDS, all the DomainParticipants within the same host must share a common shared-memory
(SHMEM) transport address. In previous releases, this address was automatically generated using the host
ID that was the IP address of the first available network interface.

This way of generating the transport address was not friendly to IP-mobility scenarios in which:

l A host may start without any network interface available.

l A host may change the IP address of its first enabled interface at run time.

This release introduces a better way to automatically generate the host ID used to build SHMEM
addresses. This new way does not depend on the IP address of an interface. This mechanism is based on
the MAC address of the first available interface.

This new host ID generation is only activated when you set participant_qos.wire_protocol.rtps_auto_
id_kind to DDS_RTPS_AUTO_ID_FROM_UUID.

Compatibility Note: Because the host ID generation mode for SHMEM changes depending on the value
of participant_qos.wire_protocol.rtps_auto_id_kind, to communicate over shared memory within a
node, all the DomainParticipants running within that node must use a consistent value for participant_
qos.wire_protocol.rtps_auto_id_kind.

5 New GUID Prefix Generation Mode Based on UUID

This release introduces a new GUID prefix generation mode for a DomainParticipant based on UUID.
This mode does not require having a network interface and is friendly to IP mobility scenarios in which a
Connext DDS application may start on a node that does not have a physical network interface enabled.

In addition, this new GUID generation makes the first two bytes equals to the RTPS VendorId to be com-
pliant with the latest RTPS specification.

To configure this generation mode set participant_qos.wire_protocol.rtps_auto_id_kind to DDS_
RTPS_AUTO_ID_FROM_UUID.

6 Increased Maximum Locators a Participant can Announce

Starting with this release, the maximum number of locators a participant can handle and announce has
been increased from four to 16.

7 Support for Querying DataWriter Sample Cache Based on Selection Criteria

For more information about this change, please see the Discovery Wire Compatibility section in the
RTI Connext DDS Core Libraries Release Notes and the sections on these QoS policies in the
RTI Connext DDS Core Libraries User's Manual: MULTI_CHANNEL, TRANSPORT_UNICAST, and
TRANSPORT_MULTICAST.

7 Support for Querying DataWriter Sample Cache Based on Selection
Criteria

This release provides a mechanism called TopicQuery, which allows a DataReader to query the sample
cache of its matching DataWriters.

To create a TopicQuery, use the following DataReader operation:

struct TopicQuerySelection {
....char * filter_class_name; /* SQL if NULL */
....char * filter_expression;
....StringSeq filter_parameters;
};
TopicQuery * DataReader::create_topic_query(const TopicQuerySelection &
selection);

Each TopicQuery is identified by a GUID, which can be accessed using the method:

void TopicQuery::get_guid(GUID_t & query_guid);

Connext DDS will propagate TopicQueries to other DomainParticipants and their DataWriters. When a
DataWriter receives the TopicQuery that was created by a matching DataReader, the DataWriter will
send the cached samples that pass the filter.

To configure how to dispatch a TopicQuery, there is a new QoS policy for
DataWriters: TopicQueryDispatchQosPolicy. By default, a DataWriter ignores TopicQueries unless they
are explicitly enabled using this policy.

TopicQuery samples are delivered in a separate RTPS channel. This allows DataReaders to receive Top-
icQuery samples and live samples in parallel. This is a key difference with respect to the Durability QoS
policy.

Late-joining DataWriters will also discover existing TopicQueries. To delete a TopicQuery, use the fol-
lowing DataReader operation:

void DataReader::delete_topic_query(TopicQuery * query);

After deleting a TopicQuery, new DataWriters won't discover it and existing DataWriters currently pub-
lishing cached samples may stop before delivering all of them.

5

8 Ability to Configure Wire IDL String Encoding and Support for UTF-8 Encoding

6

The samples received in response to a TopicQuery are stored in the associated DataReader's cache. The
existing read/take operations can retrieve TopicQuery samples. The field SampleInfo::topic_query_guid
associates each sample to its TopicQuery.

To read or take only TopicQuery samples, ReadConditions and QueryConditions provide two new oper-
ations:
typedef enum {

LIVE_STREAM,
TOPIC_QUERY_STREAM

} StreamKind;
struct ReadConditionParams {

SampleStateMask sample_states;
ViewStateMask view_states;
InstanceStateMask instance_states;
StreamKindMask stream_kinds;

};

struct QueryConditionParams : ReadConditionParams {
char *query_expression;

DDS_StringSeq query_parameters
};

ReadCondition * DataReader::create_readcondition_w_params(const ReadConditionParams &
params);
QueryCondition* DataReader::create_querycondition_w_params(const QueryConditionParams &
params);

For more information on TopicQueries, see the API Reference HTML documentation and the TopicQuery
examples (distributed separately).

8 Ability to Configure Wire IDL String Encoding and Support for UTF-8
Encoding

In previous releases, there was no a way to configure the wire encoding for IDL strings, string sequences,
and string arrays.

l In C, C++, and modern C++, the serialization routines put the bytes of the string on the wire with no
transformation.

l In Java, the serialization routines converted Java Strings characters to ISO-8859-1 encoding for code
generated TypePlugins and UTF-8 for DynamicData. There was no way to change this behavior.

l In .NET, the serialization routines converted .NET Strings characters to ISO-8859-1 encoding for
code generated TypePlugins and ANSI using the local code page for DynamicData.

This release allows you to configure the IDL wire string encoding and adds official support for UTF-8
encoding.

9 Identification of Corrupted RTPS Messages by Using CRC

For generated code TypePlugins and builtin types, the wire encoding can be set per endpoint by setting the
following properties:

l dds.data_reader.type_support.cdr_string_encoding_kind

l dds.data_writer.type_support.cdr_string_encoding_kind

These properties can be set at the endpoint level or the participant level. The only values currently sup-
ported are UTF-8 and ISO-8859-1. By default, the wire character encoding is assumed to be UTF-8.

Notice that in in C, C++, and modern C++, it is the user's responsibility to use the right character encoding
when populating the string values independently of the value of the properties. There is no automatic trans-
formation performed by the middleware.

In Java and .NET, the serialization routines will automatically convert between wire encoding and the VM
default character encoding based on the value of the properties.

For DynamicData TypePlugins, this release adds a new property, string_character_encoding, to Dynam-
icDataProperty_t for Java and .NET. This new property allows you to select the wire encoding for IDL
strings in a DynamicData object. The following values are supported:

l For Java: StandardCharsets.ISO_8859_1 and StandardCharsets.UTF_8

l For .NET: StringEncodingKind::ISO_8859_1 and StringEncodingKind::UTF_8

In C, C++, and modern C++, it is the user's responsibility to use the right character encoding when pop-
ulating the string values of the DynamicData object. There is no automatic conversion done by the mid-
dleware.

In Java and .NET, the set routines will automatically convert between wire encoding and the VM default
character encoding based on the value of string_character_encoding.

9 Identification of Corrupted RTPS Messages by Using CRC

Connext DDS 5.3.0 supports a new DomainParticipantProtocolStatus to identify and collect statistics
about corrupted RTPS messages. A four-byte CRC is computed over the DDS RTPS message, including
the RTPS Header. This CRC is sent as a new RTPS CRC32 submessage. The subscribing application
detects this new submessage and validates the contained CRC. When a corrupted message is detected, the
protocol status is updated and the message is dropped.

To enable the use of CRC in a DomainParticipant, there are two new fields in the WirePro-
tocolQosPolicy: compute_crc and check_crc. To send the CRC, enable compute_crc at the sending
application. To get the DomainParticipantProtocolStatus, enable check_crc at the receiving application
and use the new API DomainParticipant::get_participant_protocol_status().

7

10 Identification of Corrupted RTI TCP Messages by Using CRC

8

10 Identification of Corrupted RTI TCP Messages by Using CRC

This release introduces a new CRC validation mechanism for TCP Transport messages. When this feature
is enabled, a four-byte CRC is computed over the RTI TCP control and data messages, excluding the RTI
TCP header. This CRC is sent as part of an extended RTI TCP header. The receiving TCP Transport uses
this CRC to validate the received messages. If a corrupted message is detected, the message is dropped.

To enable this feature, two new TCP Transport properties have been added:

l send_crc: When set to 1, enables the computation of the CRC for sent RTI TCP messages.

Default: 0

l force_crc_check: When set to 1, forces the checking of the CRC for received RTI TCP messages.
By default, the TCP Transport plugin will only validate the CRC if the CRC is present in the
received message. If this property is set to 1, TCP Transport will drop messages not including the
CRC.

Default: 0

Note: Enabling send_crc or force_crc_check breaks backward-compatibility with previous versions of
TCP Transport Plugin.

11 AsyncWaitSet: Specialized WaitSet for Multi-Threaded Processing

An AsyncWaitSet is a new specialization ofWaitSet that provides a mechanism to perform the wait asyn-
chronously and dispatch the attached active Conditions using a thread pool.

The new component is released as an experimental feature and available for the C and C++ (traditional
and modern) APIs. For details, see the API Reference HTML documentation (under the Infrastructure
module, select Conditions and WaitSets, AsyncWaitSet).

12 Ability to Resize Sequences in C/C++ Beyond Defined Maximum

In previous releases, the length() setter in a C/C++ sequence returned an error if the new length exceeded
the maximum of the sequence as returned by themaximum() operation.

To provide a behavior that is more aligned with the IDL-to-C++ mapping, the length()method now
allows the sequence to be resized and grow beyond the current maximum if necessary. For unbounded
sequences, the semantic is equivalent to the one provided by the ensure_length() operation.

For bounded sequences, setting the length of the sequence to a value larger than the bound specified in
IDL will still return an error (false).

13 New QoS Policy to Identify DomainParticipants of RTI Infrastructure Services

13 New QoS Policy to Identify DomainParticipants of RTI Infrastructure
Services

This release adds a new QoS policy named ServiceQosPolicy to DomainParticipants. Also available for
DataWriters and DataReaders, the ServiceQosPolicy is used to mark an entity as part of an infrastructure
service.

The possible values for this policy are:

l DDS_NO_SERVICE_QOS

l DDS_PERSISTENCE_SERVICE_QOS

l DDS_QUEUING_SERVICE_QOS

l DDS_ROUTING_SERVICE_QOS

l DDS_RECORDING_SERVICE_QOS

l DDS_REPLAY_SERVICE_QOS

l DDS_DATABASE_INTEGRATION_SERVICE_QOS

l DDS_WEB_INTEGRATION_SERVICE_QOS

User applications should not modify this policy’s value.

An application can determine the kind of service associated with a discovered DomainParticipant,
DataWriter, and DataReader by looking at a new field called service in the ParticipantBuiltinTopicData,
PublicationBuiltinTopicData, and SubscriptionBuiltinTopicData, respectively.

14 Higher Precision in Print Function for Sample Members of type float
and double in C/C++ Generated Examples

In earlier releases, the print function used in generated C and C++ examples printed sample members of
type float and double with 6 decimal places of precision. This release prints float members up to 9 decimal
places, and double members up to 17 decimal places, on all platforms except QNX, INTEGRITY and
VxWorks. On these excluded platforms, the double members are printed up to 15 decimal places.

15 Increased Character Limit for Property Values in XML Configuration

In previous releases, property values in XML configuration files could not be longer than 2,047 characters.
This release increases the limit to 32,767 characters. For example:
<property>

<element>
<name>MyPropertyName</name>
<value>xxxxxxxxxx ...</value> <!-- New limit is 32,767 characters -->

9

16 Builtin Profile for MinimumMemory Footprint (Generic.MinimalMemoryFootprint)

10

</element>
</property>

16 Builtin Profile for Minimum Memory Footprint
(Generic.MinimalMemoryFootprint)

The new MinimumMemory Footprint profile establishes the QoS needed to reduce the memory footprint
of a Connext DDS application to its minimum. Since this profile drastically reduces several resource limits,
it is expected that some changes may need to be made when using this profile in a real environment to
account for system and application requirements.

To make your QoS profile extend this builtin profile, you just need to use the following line:
<qos_profile name="My_Profile" base_name="BuiltinQosLibExp::Generic.MinimalMemoryFootprint">

17 Support for Deserializing Union with Unknown Discriminator Value

By default, a DataReader cannot receive an unknown union discriminator value from a DataWriter. If this
situation does occur, the sample containing the unknown discriminator fails to be deserialized. For
example, the following two types are assignable:

Publisher Type:
union MyUnion switch(long) {

case 0:
long m1;

case 1:
short m2;

case 2:
double m3;

}; //@Extensibility (MUTABLE_EXTENSIBILITY)

Subscriber Type:
union MyUnion switch(long) {

case 0:
long m1;

case 1:
short m2;

}; //@Extensibility (MUTABLE_EXTENSIBILITY)

However, if the DataWriter sends a union with the discriminator set to 2, the DataReader will not be able
to deserialize the sample.

As of this release, there is a new property, dds.sample_assignability.accept_unknown_union_dis-
criminator, which allows samples containing an unknown discriminator to be successfully deserialized to
the default discriminator value. The default discriminator value is defined as the default element if one is

18 Support for Deserializing EnumMember with Unknown Enumerator

specified, otherwise the lowest value associated with any discriminator value. The member identified by
the default discriminator is also initialized to its default value.

The property can be set as part of the PropertyQos in either the DomainParticipantQos or the DataRead-
erQos. If it is set in both the DomainParticipant and DataReader, the value in the DataReader's QoS will
be applied.

This functionality is supported both in generated code as well as when using the DynamicData API.

18 Support for Deserializing Enum Member with Unknown Enumerator

By default, a DataReader cannot receive an unknown enumeration value from a DataWriter. If this situ-
ation does occur, the sample containing the unknown enumerator fails to be deserialized. For example, the
following two types are assignable:

Publisher Type:
enum MyEnum {

ONE = 1,
TWO = 2,
THREE = 3

};
struct MyType {

MyEnum m1;
};

Subscriber Type:
enum MyEnum {

ONE = 1,
TWO = 2

};
struct MyType {

MyEnum m1;
};

However, if the DataWriter sends m1 = THREE, the DataReader cannot deserialize the sample.

This release adds a new property, dds.sample_assignability.accept_unknown_enum_value, which
allows samples containing an unknown enumerator to be successfully deserialized to the default enu-
meration value. The default enumeration value is defined as the first declared member of the enumeration.

You can set dds.sample_assignability.accept_unknown_enum_value as part of the Property QoS for
either the DomainParticipant or the DataReader. If it is set in both the DomainParticipant and
DataReader, the value in the DataReader's QoS will be applied.

This functionality is supported both in generated code as well as when using the DynamicData API.

11

19 Higher Precision in DynamicData print Method for Sample Members of Type float and double

12

19 Higher Precision in DynamicData print Method for Sample
Members of Type float and double

In earlier releases, the DynamicData print method printed sample members of type float and double with 6
decimal places of precision. This release prints float members up to 9 decimal places; double members up
to 17 decimal places on all platforms except QNX, INTEGRITY and VxWorks. On these excluded plat-
forms, the double members are printed up to 15 decimal places.

20 Faster Creation of DomainParticipants

This release introduces improvements that make the creation of a DomainParticipant using the operation
DDS::DomainParticipantFactory::create_participant() faster. Specifically, it can decrease the creation
time by 250 ms.

21 Properties to Configure Verbosity of Security-Related Log Output
from Secure Transports

This release provides new configuration properties that allow you to configure the verbosity of the secur-
ity-related log output generated by the Secure Transports

l RTI Secure TCP Transport (nddstransporttcp)

There is a new property called security_logging_verbosity_bitmap. This property is a bitmap that
specifies the verbosity of security-related log messages generated by the transport.

l RTI Secure WAN Transport (nddstransportwan)

There is a new property called security_verbosity. This property specifies the verbosity of security-
related log messages generated by the transport.

l RTI Secure Transport (nddstransporttls)

There is a new property called security_verbosity. This property specifies the verbosity of security-
related log messages generated by the transport.

For more information, see Connext DDS Core Libraries User's Manual.

22 Support for Configuring Distributed Logger Option echo_to_stdout
via XML

RTI services that use Distributed Logger can use the new option, echo_to_stdout, to control if log mes-
sages should be echoed to standard output. The default value of this option is TRUE.

23 Java Method to Configure Public-Key Infrastructure (PKI) Elements of TLS Transport

23 Java Method to Configure Public-Key Infrastructure (PKI) Elements
of TLS Transport

Configuration of the TLS secure transport requires, among other things, the specification of Public-Key
Infrastructure (PKI) elements. These PKI elements include the CA certificates, the certificate chain, and
the private key. Configuration of a secure Connext DDS transport is done with a set of properties in the
PropertyQosPolicy. There is a new method that configures the required PKI properties from the elements
represented as objects in memory, instead of being manually specified as path to files. The new method
belongs to the PropertyQosPolicyHelper class:
public static void configure_pki_secure_transport_properties(

PropertyQosPolicy policy,
String transport_plugin_prefix,
java.security.cert.Certificate[] root_ca_certificates,
java.security.cert.Certificate[] certificate_chain,
java.security.PrivateKey private_key) {

To configure the PKI elements of a secure transport, call configure_pki_elements() and pass in the Prop-
ertyQosPolicy member of the DomainParticipantQos that is used to create a DomainParticipant.

The PKI objects are encoded in a set of properties. This may require you to modify the DomainPar-
ticipantResourceLimitsQosPolicy so it can support the required set of properties. In order to know the min-
imum required length, you can call the get_qos_resource_limits_property_string_max_length()
operation, which belongs to PropertyQosPolicyHelper.

24 Java Method to Compute Property String Maximum Length of a
Given PropertyQosPolicy Instance

If an application needs to add a set of properties to a PropertyQosPolicy, you can get the property string
length that is required to represent these properties from a new PropertyQosPolicy Helper operation:
int get_qos_resource_limits_property_string_max_length(PropertyQosPolicy property);

This is useful when the required value to represent the set of properties is larger than the default value in
the ResourceLimits QoS of the entity. In this situation, you can guarantee correct operation by setting that
value to the amount returned by this operation.

25 Improved TCP Transport Logging

This release introduces improvements to the TCP Transport logging. In particular, connect() and send()
related errors and relevant events now include the involved IP addresses and ports.

Example:
NDDS_Transport_TCPv4_Plugin_serverProcessConnect:accepted connection
from 127.0.0.1:41251
NDDS_Transport_TCPv4_Plugin_clientProcessControlConnect:connected to peer

13

26 Platforms

14

at 127.0.0.1:36131)
NDDS_Transport_TCPv4_Plugin_clientOpenDataConnectionSR:connect to RR at
127.0.0.1:36131 (destination: [S] 127.0.0.1:36131:23660) in progress
NDDS_Transport_TCPv4_Plugin_clientProcessDataConnect:connected to RR at
127.0.0.1:36131 (destination: [S] 127.0.0.1:36131:23660)
NDDS_Transport_TCPv4_Plugin_serverProcessConnect:accepted connection from
127.0.0.1:41252
NDDS_Transport_TCPv4_Plugin_serverProcessConnectionBindRequest:bound
connection from SR at 127.0.0.1:41252 (logical port: 23660)
NDDS_Transport_TCPv4_Plugin_clientOpenDataConnectionRR:connect to SR at
127.0.0.1:36131 (logical port: 23660) in progress
NDDS_Transport_TCPv4_Plugin_clientProcessDataConnect:connected to SR at
127.0.0.1:36131 (logical port: 23660)
NDDS_Transport_TCPv4_Plugin_serverProcessConnect:accepted connection from
127.0.0.1:41253
NDDS_Transport_TCPv4_Plugin_serverProcessConnectionBindRequest:bound
connection from RR at 127.0.0.1:41253 (destination:
[C] 0000:0000:0000:0000:25BB:5EC5:B9EB:610A:23660)

26 Platforms

26.1 New Platforms

This release adds support for the platforms in Table 1.1 New Platforms.

Operating System Version

Linux ®

Red Hat® Enterprise Linux 6.8

Ubuntu® 16.04 LTS

NI Linux 3 (was a custom support platform, now is standard)

Freescale™ Linux 3.8.13 on QorIQ or P4040/P4080/P4081 CPU (custom support)

Debian™ Linux 3.12 on ARMv7a Cortex-A9 CPU (custom support)

Wind River® Linux 7 on ARMv7 CPU (custom support)

Mac® OS X® OS X 10.12

VxWorks® VxWorks 7.0 on x64 CPU

Windows® Windows Server 2016

QNX® QNX 6.5 on PPC E500 v2 CPU (custom support)

Table 1.1 New Platforms

26.2 Platforms on Legacy Operating Systems

The following legacy operating systems have reached end-of-life from their corresponding vendors. Please
contact RTI support or your account manager if you require version 5.3 to run on these platforms:

26.3 Removed Platforms

l CentOS 5.x

l Red Hat Enterprise Linux 5.x

l VxWorks 6.3, 6.4, 6.6, 6.7, 6.8

l Wind River Linux 4

26.3 Removed Platforms

Platforms on the following operating systems are no longer supported:

l Freescale™ P2020RDB

l OS X 10.8

l Red Hat Enterprise Linux 4

l Red Hat Enterprise Linux 5.2 with Real-Time Extensions

l Solaris 2.9

l VxWorks 5.5, 6.5

l Wind River Linux 3

l Windows Vista, Windows XP Pro, Windows 2003

l Yellow Dog Linux 4.0

26.4 Linking with Dynamic Windows C Run-Time (CRT)

All Connext DDS libraries for Windows platforms (static release/debug, dynamic release/debug) now link
with the dynamic Windows C Run-Time (CRT). Previously, the static Connext DDS libraries statically
linked the CRT.

If you had an existing Windows project that was linking with the Connext DDS static libraries, you will
have to change the RunTime Library settings.

l In Visual Studio, select C/C++, Code Generation, Runtime Library and use Multi-threaded DLL
(/MD) instead of Multi-threaded (/MT) for static release libraries, and Multi-threaded Debug DLL
(/MDd) instead of Multi-threaded Debug (/MTd) for static debug libraries.

l For command-line compilation, use /MD instead of /MT for static release libraries, and /MDd
instead of /MTd for static debug libraries.

You may also have to ignore the static run-time libraries in your static configurations. In Visual Studio,
select Linker, Input in the project properties and add libcmtd;libcmt to the 'Ignore Specific Default Librar-
ies' entry. For command-line linking, add /NODEFAULTLIB:"libcmtd" /NODEFAULTLIB:"lib-
cmt" to the linker options.

15

26.5 Warning-Free Compilation with GCC 4.1.1 and GCC 4.8.2

16

26.5 Warning-Free Compilation with GCC 4.1.1 and GCC 4.8.2

All warnings have been fixed when compiling both the Connext DDS libraries and the rtiddsgen gen-
erated code using GCC 4.1.1 or GCC 4.8.2 with the following warning flags enabled:

l -Wall

l -Wno-unknown-pragmas

l -Werror=implicit-function-declaration

This applies only to C and C++ source code.

26.6 Use of Real Time Clock instead of tickGet—VxWorks 6.3 and Higher
Platforms

This release uses the Real Time Clock (instead of tickGet) to get the time from the System Clock on
VxWorks 6.3 and higher platforms.

26.7 Changes to Thread-Priority Definitions for QNX and
INTEGRITY Platforms

The thread-priority definitions for all QNX and INTEGRITY platforms have changed. The new defin-
itions are:

l QNX:
l High: 14

l Above normal: 12

l Normal: 10

l Below normal: 8

l Low: 6

l INTEGRITY
l High: 120

l Above normal: 100

l Normal: 90

l Below normal: 80

l Low: 60

26.8 Priority Inheritance used when Creating Semaphores

26.8 Priority Inheritance used when Creating Semaphores

Starting with this release, semaphores are created with priority inheritance on non-Linux POSIX platforms
that support it (e.g., QNX and Solaris). On VxWorks platforms, semaphores are created with priority inher-
itance, inversion-safe and delete-safe parameters (SEM_Q_PRIORITY | SEM_INVERSION_SAFE |
SEM_DELETE_SAFE).

26.9 Changes to Default Stack Size for INTEGRITY, LynxOS, and
QNX Platforms

The default stack size for middleware-created threads has changed for INTEGRITY, LynxOS, and QNX
platforms:

OS Thread New Value

INTEGRITY

Asynchronous Publisher, Asynchronous flushing thread 32*1024

Database thread 32*1024

Event thread 4*32*1024

ReceiverPool threads 4*32*1024

QNX and LynxOS

Asynchronous Publisher, Asynchronous flushing thread 64*1024

Database thread 64*1024

Event thread 4*64*1024

ReceiverPool threads 4*64*1024

See the RTI Connext DDS Core Libraries Platform Notes for more details.

27 Language Bindings and APIs

27.1 Connext DDS Java Classes now Compiled to Target Java 1.5

Connext DDS Java classes are now compiled to target java 1.5. It should therefore run on a java 1.5 or
later VM.

27.2 New Operations to Convert BuiltinTopicKey to/from GUID

This release adds the following new operations to convert from BuiltinTopicKey to GUID and vice versa:

l DDS::BuiltinTopicKey_to_guid()

l DDS::BuiltinTopicKey_from_guid()

17

27.3 Condition Handler now Accepts Functions that Receive Condition as Parameter—Modern C++ API

18

For details, see the API Reference HTML documentation.

27.3 Condition Handler now Accepts Functions that Receive Condition as
Parameter—Modern C++ API Only

Before this release, the handler of a Condition could only receive a no-argument functor. For example:
condition.handler([]() { /* do something */ });

The handler setter function has been overloaded to also accept a functor that receives the Condition as a
parameter. For example:
condition.handler([](dds::core::cond::Condition c) { /* condition == c */ });

27.4 TypeCode.print_complete_idl() API Added—Java API Only

A new API, TypeCode.print_complete_idl() has been added for the Java language. This new API will
print out the IDL that represents the TypeCode. This method will take into account dependent types (sub-
class, non-primitive fields) as well as include modules in the output.

27.5 New API to Compare DDS_InstanceHandle_t

A new method to compare instance handles has been added. This method will return a zero, positive, or
negative number depending on the contents of the instance handles. This new API makes it easier to store
instance handles in sorted lists.

Please see the API Reference HTML documentation for more details about this method.

27.6 Ability to Subtract Two Times to Calculate Duration —Modern C++ Only

This release includes a new subtraction operator that, given two Time instances, returns a Duration rep-
resenting the time elapsed.

For example:
using namespace dds::core;
Time initial_time = my_participant->current_time();
// ...
Time final_time = my_participant->current_time();
Duration elapsed = final_time - initial_time;

27.7 Strong-Name Signing of Request-Reply .NET DLLs

The Request-Reply .NET DLLs, which contain "rticonnextmsgdotnet" in their names, are now signed
with a strong name using RTI's private key. For more information, visit https://msdn.microsoft.com/en-
us/library/wd40t7ad(v=vs.110).aspx.

https://msdn.microsoft.com/en-us/library/wd40t7ad(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/wd40t7ad(v=vs.110).aspx

28 Changes to Default QoS Values

28 Changes to Default QoS Values

28.1 Default Value for writer_qos.writer_resource_limits.max_remote_
reader_filters Changed to DDS_LENGTH_UNLIMITED

The default value of writer_qos.writer_resource_limits.max_remote_reader_filters has been changed
from 32 to DDS_LENGTH_UNLIMITED.

This change was done for scalability reasons to favor writer-side filtering independently of the number of
matched DataReaders using Content Filters.

28.2 Default Value for participant_property_string_max_length Changed to
4096

The default value for the resource limit participant_property_string_max_length has been increased to
4096 to handle the requirements of RTI Security Plugins.

28.3 Default Value for participant_qos.resource_limits.max_gather_
destinations Changed to 16

The default value for participant_qos.resource_limits.max_gather_destinations has been includes from
8 to 16.

The minimum value for this QoS value has been changed from 4 to 16.

29 Debuggability

29.1 Ability to Monitor Heap Memory Usage

Connext DDS includes a new feature that allows you to monitor the memory allocations done by the mid-
dleware on native heap. This feature can be used to analyze and debug unexpected memory growth.

This feature includes the following APIs (available in all languages):

l NDDSUtility:enable_heap_monitoring()

l NDDSUtility::disable_heap_monitoring()

l NDDSUtility::pause_heap_monitoring()

l NDDSUtility::resume_heap_monitoring()

l NDDSUtility::take_heap_snapshot()

After NDDS_Utility_enable_heap_monitoring() is called, you may invoke NDDS_Utility_take_heap_
snapshot() to save the current heap memory usage to a file. By comparing two snapshots, you can tell if
new memory has been allocated and, in many cases, where.

19

29.2 New Flag in LogMessage Structure Indicates Security-Related Message

20

For more information, see the API Reference HTML documentation.

29.2 New Flag in LogMessage Structure Indicates Security-Related Message

This release provides a new boolean member of the LogMessage structure, is_security_message. This
flag indicates if a log message is a transport security-related message (e.g., SSL handshake failures or cer-
tificate validation failures). This member is exposed in C, C++, Java and .NET.

C/C++:

struct NDDS_Config_LogMessage {
/* ... */

DDS_Boolean is_security_message;
}

Java:

package com.rti.ndds.config;

class LogMessage {
// ...
public boolean is_security_message = false;

}

C++/CLI:

#include <managed_config_dotnet.h>

namespace NDDS {
public ref class LogMessage {

System::Boolean is_security_message;
}

}

29.3 Improved Consistency of Logging Messages

In previous releases, the format for printing the GUID of a participant was inconsistent for logging mes-
sages starting with the prefix "PRES". This release normalizes the format so all the participant GUIDs are
printed using a "%x %x %x" format.

29.4 Improved Logging of Serialize and Deserialize Errors

Starting with this release, serialization/deserialization errors now include the Topic and Type name.

29.5 Additional Log Information Provided during Disruption of Reliability Protocol

29.5 Additional Log Information Provided during Disruption of Reliability
Protocol

To aid in debugging large systems, additional log information is now provided at the remote status verb-
osity level. This information is provided when there is a disruption in the reliability protocol due to a writer
inactivating a reader, or when a writer times out. The information includes the involved local writer's
information such as its GUID, name if available, first available sequence number, and unacknowledged
sample count. Similar information about the remote reader that caused the disruption is also provided
including the remote reader GUID, name if available, lowest unacknowledged sequence number, max
samples, and locator information.

29.6 Support for Logging Infrastructure to Write into Multiple Files

The logging infrastructure now supports writing into multiple files via a new API, set_output_file_set().

C API:
DDS_Boolean NDDS_Config_Logger_set_ouput_file_set(
NDDS_Config_Logger *self,
const char *file_prefix,
const char *file_suffix,
int max_capacity,
int max_files)

Traditional C++ API:
bool NDDSConfigLogger::set_ouput_file_set(
const char *file_prefix,
const char *file_suffix,
int max_capacity,
int max_files)

Modern C++ API:
void rti::config::Logger::output_file_set(
const char * file_prefix,
const char * file_suffix,
int max_bytes,
int max_files)

Java API:
void set_ouput_file_set(
String file_prefix,
String file_suffix,
int max_capacity,
int maxFiles) throws IOException

.NET API:
System::Boolean NDDS::ConfigLogger::set_ouput_file_set(
System::String ^file_prefix,

21

30 XML-Based Application Creation

22

System::String ^file_suffix,
System::Int32 max_capacity,
System::Int32 max_files)

The logged output will be redirected to a set of files whose names are configured with a prefix and a suf-
fix. The maximum number of bytes configures how many bytes to write into a file before opening the next
file. After reaching the maximum number of files, the first one is overwritten.

For more information, see the API Reference HTML documentation.

30 XML-Based Application Creation

30.1 Support for EntityNameQosPolicy User Settings for Entities Created with
XML-Based Application Creation

When using XML-Based Application Creation, now you can explicitly configure the entity name through
the EntityNameQosPolicy settings. When explicitly specified, entities created through XML-Based Applic-
ation Creation will get their names from those settings. For example, see the following XML-snippet:
<data_writer name="MyWriter" topic_ref="MyTopic">

<datawriter_qos>
<publication_name>

<name>WriterNameFromQoS</name>
</publication_name>

</datawriter_qos>
</data_writer>

A DataWriter created from the above configuration will have an entity name ofWriterNameFromQoS.

This new functionality changes the previous behavior in which the default name overrode the
EntityNameQosPolicy settings. For more information, see the XML-Based Application Creation Getting
Started Guide.

30.2 XML Tag <register_type> is now Optional and its Attribute 'kind' is
Deprecated

The XML tag <register_type> is an optional element. Consequently, its attribute kind is no longer required
and its use is deprecated. This change does not affect the way XML-Application Creation registers types.

Connext DDS may still load configurations using the attribute, kind, and will log a warning similar to this:
DDS_XMLRegisterType_initialize:XML attribute 'kind' in tag <register_type> is deprecated and
will be ignored

See the XML-Application Creation Getting Started Guide for more details about type registration.

30.3 Renamed DomainParticipant Library XML Tag to <domain_participant_library>

30.3 Renamed DomainParticipant Library XML Tag to <domain_participant_
library>

The XML tag for the DomainParticipant library has been renamed to <domain_participant_library> so
it is compliant with the DDS-WEB OMG standard.

This version of Connext DDS can still load configurations containing the old value (<participant_lib-
rary>), but its use has been deprecated and may not be supported in future versions.

30.4 Global Constant DDS_PARTICIPANT_CONFIG_PARAMS_DEFAULT
Initialization did not Match Documentation

The global constant DDS_PARTICIPANT_CONFIG_PARAMS_DEFAULT was initialized with values
the led to a behavior different that the one specified. Namely, the fields participant_qos_library_name,
participant_qos_profile_name, domain_entity_qos_library_name, and domain_entity_qos_profile_
name were set to NULL, which specified to use the default QoS profiles for the entities created from con-
figuration. The constant initialization has changed so these fields have the value DDS_QOS_ELEMENT_
NAME_USE_XML_CONFIG, which specifies to use the QoS that the entity configuration specifies.
This matches the default behavior described in the documentation.

30.5 XML-Based Application Creation Supports Different
ContentFilteredTopic for DataReader Configurations with Filter and
Multiplicity

When using XML-Based Application Creation, a DataReader configuration that indicates a multiplicity
greater than one and a filter will cause the creation of each DataReader from an independent Con-
tentFilteredTopic whose name is composed to be unique and contains the topic and filter names.

For instance, consider the following XML snippet:
<data_reader name="reader" topic_ref="topic" multiplicity="3">

<filter name="filteredTopic2" kind="builtin.sql">
...

</filter>
</data_reader>

This XML will cause the creation of three DataReaders, each from a different ContentFilteredTopic
instance. This behavior provides a way to independently change the filter parameters for each individual
DataReader.

This is an improvement over the previous behavior, in which all the DataReaders shared only one Con-
tentFilteredTopic and thus filter parameter changes affected all the DataReaders.

23

31 Packaging and Installer

24

31 Packaging and Installer

31.1 Optional RTI Package for OpenSSL Run-Time Libraries

Connext DDS now provides an optional RTI package with OpenSSL's run-time libraries. This provides
out-of-the-box support for RTI Security Plugins in infrastructures services and tools. The RTI package
needs to be installed on top of an existing Connext DDS installation using either the rtipkginstall com-
mand-line utility or RTI Launcher.

31.2 Renamed Host-Side OpenSSL Package

The OpenSSL .rtipkg filename now includes both the version of OpenSSL contained within the package
and the version of Connext DDS it should be installed onto.

31.3 Add-ons Such as Secure WAN Transport have New Bundles that Install
for Tools

Add-on libraries, such as the Limited-Bandwidth Plugins and Secure WAN Transport, have new .rtipkg
files that automatically install the libraries to be used by RTI tools and infrastructure services.

32 Performance and Resource Consumption Improvements

32.1 Decreased Stack Size Requirement for Creating and Enabling a
Participant

With respect to Connext DDS 5.2.7, this release reduces the stack size required for creating and enabling a
Participant.

32.2 Decreased Heap Consumption

With respect to 5.2.7, this release reduces the heap consumption. For a detailed memory report, please
refer to https://www.rti.com/products/dds/benchmarks.

33 Experimental Features

33.1 RTI Connext DDS Professional now includes New Experimental Cloud
Discovery Service

RTI Connext DDS Professional now comes with an experimental new infrastructure service called Cloud
Discovery Service. Cloud Discovery Service enables discovery in cloud-based environments where mul-
ticast may not be available.

https://www.rti.com/products/dds/benchmarks

	What's New in 5.3.0
	1 Support for RTI Security Plugins
	2 Support for Locator Change At Run-Time
	3 Ability to Detect Unreachable Locators
	4 Automatic Way to Configure Host ID of SHMEM Transport Instance Friendly to IP-Mobility Scenarios
	5 New GUID Prefix Generation Mode Based on UUID
	6 Increased Maximum Locators a Participant can Announce
	7 Support for Querying DataWriter Sample Cache Based on Selection Criteria
	8 Ability to Configure Wire IDL String Encoding and Support for UTF-8 Encoding
	9 Identification of Corrupted RTPS Messages by Using CRC
	10 Identification of Corrupted RTI TCP Messages by Using CRC
	11 AsyncWaitSet: Specialized WaitSet for Multi-Threaded Processing
	12 Ability to Resize Sequences in C/C++ Beyond Defined Maximum
	13 New QoS Policy to Identify DomainParticipants of RTI Infrastructure Services
	14 Higher Precision in Print Function for Sample Members of type float and double in C/C++ Generated Examples
	15 Increased Character Limit for Property Values in XML Configuration
	16 Builtin Profile for Minimum Memory Footprint (Generic.MinimalMemoryFootprint)
	17 Support for Deserializing Union with Unknown Discriminator Value
	18 Support for Deserializing Enum Member with Unknown Enumerator
	19 Higher Precision in DynamicData print Method for Sample Members of Type float and double
	20 Faster Creation of DomainParticipants
	21 Properties to Configure Verbosity of Security-Related Log Output from Secure Transports
	22 Support for Configuring Distributed Logger Option echo_to_stdout via XML
	23 Java Method to Configure Public-Key Infrastructure (PKI) Elements of TLS Transport
	24 Java Method to Compute Property String Maximum Length of a Given PropertyQosPolicy Instance
	25 Improved TCP Transport Logging
	26 Platforms
	26.1 New Platforms
	26.2 Platforms on Legacy Operating Systems
	26.3 Removed Platforms
	26.4 Linking with Dynamic Windows C Run-Time (CRT)
	26.5 Warning-Free Compilation with GCC 4.1.1 and GCC 4.8.2
	26.6 Use of Real Time Clock instead of tickGet—VxWorks 6.3 and Higher Platforms
	26.7 Changes to Thread-Priority Definitions for QNX and INTEGRITY Platforms
	26.8 Priority Inheritance used when Creating Semaphores
	26.9 Changes to Default Stack Size for INTEGRITY, LynxOS, and QNX Platforms

	27 Language Bindings and APIs
	27.1 Connext DDS Java Classes now Compiled to Target Java 1.5
	27.2 New Operations to Convert BuiltinTopicKey to/from GUID
	27.3 Condition Handler now Accepts Functions that Receive Condition as Parameter—Modern C++ API Only
	27.4 TypeCode.print_complete_idl() API Added—Java API Only
	27.5 New API to Compare DDS_InstanceHandle_t
	27.6 Ability to Subtract Two Times to Calculate Duration —Modern C++ Only
	27.7 Strong-Name Signing of Request-Reply .NET DLLs

	28 Changes to Default QoS Values
	28.1 Default Value for writer_qos.writer_resource_limits.max_remote_reader_filters Changed to DDS_LENGTH_UNLIMITED
	28.2 Default Value for participant_property_string_max_length Changed to 4096
	28.3 Default Value for participant_qos.resource_limits.max_gather_destinations Changed to 16

	29 Debuggability
	29.1 Ability to Monitor Heap Memory Usage
	29.2 New Flag in LogMessage Structure Indicates Security-Related Message
	29.3 Improved Consistency of Logging Messages
	29.4 Improved Logging of Serialize and Deserialize Errors
	29.5 Additional Log Information Provided during Disruption of Reliability Protocol
	29.6 Support for Logging Infrastructure to Write into Multiple Files

	30 XML-Based Application Creation
	30.1 Support for EntityNameQosPolicy User Settings for Entities Created with XML-Based Application Creation
	30.2 XML Tag <register_type> is now Optional and its Attribute 'kind' is Deprecated
	30.3 Renamed DomainParticipant Library XML Tag to <domain_participant_library>
	30.4 Global Constant DDS_PARTICIPANT_CONFIG_PARAMS_DEFAULT Initialization did not Match Documentation
	30.5 XML-Based Application Creation Supports Different ContentFilteredTopic for DataReader Configurations with Filter and Multiplicity

	31 Packaging and Installer
	31.1 Optional RTI Package for OpenSSL Run-Time Libraries
	31.2 Renamed Host-Side OpenSSL Package
	31.3 Add-ons Such as Secure WAN Transport have New Bundles that Install for Tools

	32 Performance and Resource Consumption Improvements
	32.1 Decreased Stack Size Requirement for Creating and Enabling a Participant
	32.2 Decreased Heap Consumption

	33 Experimental Features
	33.1 RTI Connext DDS Professional now includes New Experimental Cloud Discovery Service

