
RTI Security Plugins

Getting Started Guide

Version 5.3.0

© 2016-2017 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
September 2017.

Trademarks
Real-Time Innovations, RTI, DataBus, and Connext are trademarks or registered trademarks of Real-Time
Innovations, Inc. All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form (including
electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time Innovations, Inc.
The software described in this document is furnished under and subject to the RTI software license agreement. The
software may be used or copied only under the terms of the license agreement.

Securing a distributed, embedded system is an exercise in user risk management. RTI expressly disclaims all security
guarantees and/or warranties based on the names of its products, including RTI Connext DDS Secure, RTI Security
Plugins, and RTI Security Plugins SDK. Visit rti.com/terms for complete product terms and an exclusive list of
product warranties.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

https://support.rti.com/

Contents

1 Introduction ...1

2 Paths Mentioned in Documentation ..3

3 Download Instructions...4

4 Installation Instructions ...5
4.1 Installing an Evaluation Version ...5

4.1.1 UNIX-Based Systems ..5
4.1.2 Windows Systems ..6

4.2 Installing a Non-Evaluation Version...7
4.2.1 UNIX-Based Systems ..7
4.2.2 Windows Systems ..8

5 License Management...8
5.1 Installing the License File ...8
5.2 Adding or Removing License Management ...10

6 Restrictions when Using RTI Security Plugins ...10
6.1 When to Set Security Parameters..10
6.2 Mixing Libraries Not Supported...10

7 Authentication ...10
7.1 Configuration Properties Common to All Authentication Plugins15
7.2 Re-Authentication ...15

7.2.1 Supporting Re-Authentication in Custom Plugins...15
7.3 Protecting Participant Discovery ..16

7.3.1 Supporting TrustedState in Custom Plugins ..16

8 Access Control...16
8.1 Related Governance Attributes ...18

8.1.1 Default Attributes...18
8.1.2 enable_join_access_control ...18
8.1.3 enable_read/write_access_control ...18

9 Cryptography...18
9.1 Related Governance Attributes ...19

9.1.1 rtps_protection_kind ..19
iii

9.1.2 Other Protection Kinds...19
9.1.3 metadata_protection_kind..19
9.1.4 Endpoint Compatibility..19
9.1.5 discovery_protection_kind...20
9.1.6 enable_discovery_protection ...20
9.1.7 enable_liveliness_protection ..20

10 Logging..20

11 Support for OpenSSL Engines ..24

12 Support for RTI Persistence Service..24

13 RTPS-HMAC-Only Mode...25

14 What’s Different from the OMG Security Specification...26
14.1 Differences Affecting Builtin Plugins to be Addressed by Next DDS Security

Specification ...26
14.1.1 General ...26

14.1.1.1 BuiltinTopicKey_t Type Definition ... 26
14.1.2 Authentication ..26

14.1.2.1 SHA256 Applied to Derived Shared Secret 26
14.1.3 Cryptography ...26

14.1.3.1 Secure Volatile Endpoints Use Submessage Protection............. 26
14.1.3.2 Secure Volatile Endpoints Transformation Kind 26
14.1.3.3 Additional Authenticated Data ... 26

14.1.4 Logging ..27
14.1.4.1 Wrong Facility Value for Logging Plugin.................................. 27

14.2 Differences Affecting Builtin Plugins...27
14.2.1 General ...27

14.2.1.1 Support for Infrastructure Services... 27
14.2.1.2 Configuration.. 27

14.2.2 Access Control ...27
14.2.2.1 check_remote_topic.. 27
14.2.2.2 Protection Kinds ... 27
14.2.2.3 Immutability of Publisher Partition QoS in Combination

with Non-Volatile Durability Kind... 27
14.2.3 Cryptography ...27

14.2.3.1 Behavior when is_rtps_protected is Set to True 27
14.3 Differences Affecting Custom Plugins ...28

14.3.1 Authentication ..28
14.3.1.1 Revocation .. 28

14.3.2 Access Control ...28
14.3.2.1 check_local_datawriter_register_instance.................................. 28
14.3.2.2 check_local_datawriter_dispose_instance.................................. 28
14.3.2.3 check_remote_datawriter_register_instance............................... 28
14.3.2.4 check_remote_datawriter_dispose_instance............................... 28
14.3.2.5 Revocation .. 28
14.3.2.6 PermissionsToken... 28

14.3.3 Tagging ..28

A Quick Reference: Governance File Settings ...29
iv

Welcome to RTI Security Plugins

1 Introduction
RTI® Security Plugins introduces a robust set of security capabilities, including authentication, encryp-
tion, access control and logging. Secure multicast support enables efficient and scalable distribution of
data to many subscribers. Performance is also optimized by fine-grain control over the level of security
applied to each data flow, such as whether encryption or just data integrity is required.

This release of Security Plugins includes partial support for the DDS Security specification from the
Object Management Group (OMG)1. This support allows DomainParticipants to authenticate and autho-
rize each other before initializing communication, and then encode and decode the communication traffic
to achieve confidentiality, message authentication, and data integrity.
Specifically, these features are now supported:

 Authentication can now be done as part of the RTI Connext® DDS discovery process to ensure
that DomainParticipants validate each other’s identity.

 Access Control permissions checking can now be done as part of the Connext DDS discovery pro-
cess to ensure that DomainParticipants, DataWriters, and DataReaders have the appropriate per-
missions to exist and match with each other. Domain governance can now be done during entity
creation to ensure the right security attributes are applied to the right DomainParticipants,
DataWriters, and DataReaders.

 Cryptographic operations can now be done as part of Connext DDS steady-state communication to
ensure confidentiality, message authentication, and data integrity.

 Logging operations can now be done using the Logging Plugin. There are options to print the log
messages to standard output or a file, distribute log messages over a DDS topic, and control the
verbosity level of the log messages.

 The above features are supported in the RTI core middleware in the C, C++, Java, and .NET pro-
gramming languages.

The following DDS Security features are not supported:

 Revocation of identities and permissions

 Data tagging

 Instance-level permissions checking

1. http://www.omg.org/spec/DDS-SECURITY/1.0/
1-1

http://www.omg.org/spec/DDS-SECURITY/1.0/

For descriptions and examples of the security configuration in this release, please consult the
hello_security examples under the rti_workspace/version/examples/connext_dds/[c, cpp, java,
csharp] directory.

To use Security Plugins, you will need to create private keys, identity certificates, governance, and per-
mission files, as well as signed versions for use in secure authenticated, authorized, and/or encrypted com-
munications.
If you are new to the world of internet security, see this link:

 https://en.wikipedia.org/wiki/Public-key_cryptography

Fundamentally, if you want to deploy a secure system, your organization will need to have an in-house
security expert. Just using Security Plugins is not sufficient. It is a tool that can build secure systems, but
you do have to use it (configure it) to meet your requirements. If used incorrectly, systems deployed with
Security Plugins may not meet the security requirements of a project.
The Security Plugins bundle includes a set of builtin plugins that implement those defined by the DDS
Security specification. It is also possible to implement new custom plugins by using the Security Plugins
SDK bundle (for more information, please contact support@rti.com).
You should know that the Security Plugins use the same technology as most of the world's eCommerce, so
if you have ever purchased something on the internet, the same technology protecting your purchase is
used by Security Plugins to protect data exchange.
As an end user, you need to have the following files that an application using Security Plugins needs to
communicate in a secure DDS domain:

 Keys. Each participant has a Private Key and Identity Certificate pair that is used in the authenti-
cation process.

 Shared CA has signed participant public keys. Participants must also have a copy of the CA cer-
tificate (also known as Identity Certificate Authority Certificate).

 Permissions File specifies what domains/partitions the DomainParticipant can join, what topics
it can read/write, and what tags are associate with the readers/writers.

 Domain Governance specifies which domains should be secured and how.

 Permissions CA has a signed participant permission file, as well as the domain governance docu-
ment. Participants must have a copy of the permissions CA certificate (also known as Permissions
Authority Certificate).

Figure 1.1 Configuring & Deploying DDS Security
1-2

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography

Paths Mentioned in Documentation
2 Paths Mentioned in Documentation
The documentation refers to:

 <NDDSHOME>

This refers to the installation directory for Connext DDS.

The default installation paths are:

• Mac® OS X systems:

/Applications/rti_connext_dds-version

• UNIX™-based systems, non-root user:

/home/your user name/rti_connext_dds-version

• UNIX-based systems, root user:

/opt/rti_connext_dds-version

• Windows® systems, user without Administrator privileges:

<your home directory>\rti_connext_dds-version

• Windows systems, user with Administrator privileges:

C:\Program Files\rti_connext_dds-version (for 64-bit machines) or
C:\Program Files (x86)\rti_connext_dds-version (for 32-bit machines)

You may also see $NDDSHOME or %NDDSHOME%, which refers to an environment variable
set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users: When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:
“C:\Program Files\rti_connext_dds-version\bin\rtiddsgen”

or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

 RTI Workspace directory, rti_workspace
The RTI Workspace is where all configuration files for the applications and example files are
located. All configuration files and examples are copied here the first time you run RTI Launcher
or any script in <NDDSHOME>/bin. The default path to the RTI Workspace directory is:

• Mac OS X systems:

/Users/your user name/rti_workspace
• UNIX-based systems:

/home/your user name/rti_workspace
• Windows systems:

your Windows documents folder\rti_workspace
Note: 'your Windows documents folder' depends on your version of Windows.
For example, on Windows 7, the folder is C:\Users\your user name\Documents; on Win-
dows Server 2003, the folder is C:\Documents and Settings\your user name\Documents.
1-3

You can specify a different location for the rti_workspace directory. See the RTI Core Libraries
Getting Started Guide for instructions.

 <path to examples>

Examples are copied into your home directory the first time you run RTI Launcher or any script in
<NDDSHOME>/bin. This document refers to the location of these examples as <path to exam-
ples>. Wherever you see <path to examples>, replace it with the appropriate path.

By default, the examples are copied to rti_workspace/version/examples
So the paths are:

• Mac OS X systems:

/Users/your user name/rti_workspace/version/examples
• UNIX-based systems:

/home/your user name/rti_workspace/version/examples
• Windows systems:

your Windows documents folder\rti_workspace\version\examples
Note: 'your Windows documents folder' is described above.

You can specify that you do not want the examples copied to the workspace. See the RTI Connext
DDS Core Libraries Getting Started Guide for instructions.

3 Download Instructions
Download Security Plugins from the RTI Support Portal, accessible from https://support.rti.com/.

Security Plugins also requires OpenSSL®, which is available from RTI’s Support Portal, or you may
obtain it from another source.
You will need your username and password to log into the portal; these are included in the letter confirm-
ing your purchase or evaluation copy. If you do not have this letter, please contact license@rti.com.
Once you have logged into the portal, select the Downloads link, then select the appropriate version of
Security Plugins and OpenSSL for your platform.
If you need help with the download process, contact support@rti.com.

 Security Plugins can be downloaded in the following packages:

Non-Evaluation:

• rti_security_plugins-5.3.0-host-<host platform>.rtipkg,
which includes the compiler-independent Security Plugins dependencies (documentation,
headers, and the libraries used by RTI tools and services) for the host platform.

• rti_security_plugins-5.3.0-target-<target architecture>.rtipkg,
which contains the Security Plugins libraries you will link against.

Evaluation:

• rti_security_plugins-5.3.0-eval-<target architecture>.rtipkg,
which includes the compiler-independent Security Plugins dependencies (documentation,
headers, and the libraries used by RTI tools and services) for the host platform and the
Security Plugins evaluation libraries you will link against for your target platform.
1-4

http://www.rti.com/support
https://support.rti.com/

Installation Instructions
 OpenSSL
• OpenSSL distribution files for RTI tools and services follow the naming convention:

openssl-<version>-host-<host platform>.rtipkg.

• OpenSSL distribution files to link against your application follow the naming convention:
openssl-<version>-target-<target architecture>.tar.gz (or .zip on Windows systems).

The OpenSSL version number should be 1.0.2j or above (see the RTI Security Plugins Release
Notes for the currently supported version). Architecture names are described in the RTI Connext
DDS Core Libraries Platform Notes. For example:

• Bundle with distribution files for RTI tools and services:
openssl-1.0.2j-host-x64Win64.rtipkg

• Bundle with distribution files to link against your application:
openssl-1.0.2j-target-x64Win64VS2013.zip

4 Installation Instructions
You do not need administrator privileges. All directory locations are meant as examples only; adjust them
to suit your site.

These instructions assume you are installing Security Plugins 5.3.0 and OpenSSL 1.0.2j. See the RTI
Security Plugins Release Notes for the currently supported versions.

 Installing an Evaluation Version (Section 4.1)

 Installing a Non-Evaluation Version (Section 4.2)

4.1 Installing an Evaluation Version

4.1.1 UNIX-Based Systems

1. Install the RTI Connext DDS host and target bundles, as described the RTI Connext DDS Core
Libraries Getting Started Guide.

2. Install the Security Plugins package. Use the package installer, just as you did for the RTI Connext
DDS target bundles in step 1.

• rti_security_plugins-5.3.0-eval-<target architecture>.rtipkg
(Where <target architecture> is one of the supported platforms, see the RTI Connext DDS
Core Libraries Platform Notes).

After installation, the security header files and libraries will be under include/ndds/security and
lib/<target architecture>, respectively.

3. Install an OpenSSL host package from RTI: openssl-1.0.2j-host-<host platform>.rtipkg.

4. Install an OpenSSL target package from RTI: openssl-1.0.2j-target-<target architecture>.tar.gz.

a. Make sure you have GNU's version of the tar utility, gtar (which handles long file names), and
GNU's version of the unzip utility, gunzip.

b. Move the downloaded OpenSSL distribution file to a directory of your choice, such as /local/
rti, and change to that directory:

 > cd /local/rti

c. Use gunzip to uncompress the OpenSSL file. (This is not the same as the OpenSSL host pack-
age in the previous step.) For example (your filename may be different):

 > gunzip openssl-1.0.2j-target-armv7aQNX6.6.0qcc_cpp4.7.3.tar.gz
1-5

d. Use gtar to extract the distribution from the uncompressed file. For example:
 > gtar xvf openssl-1.0.2j-target-armv7aQNX6.6.0qcc_cpp4.7.3.tar

This will extract files into /local/rti/openssl-1.0.2j.
e. Include the resulting /bin directory in your PATH. For example, assuming you want to use the

"release" version of the OpenSSL libraries (enter the command all on one line):
 > setenv PATH
 /local/rti/openssl-1.0.2j/armv7aQNX6.6.0qcc_cpp4.7.3/release/bin:$ {PATH}

f. If linking dynamically, include the resulting /lib directory in your LD_LIBRARY_PATH. For
example, assuming you want to use the "release" version of the OpenSSL libraries (enter the
command all on one line):

 > setenv LD_LIBRARY_PATH
 /local/rti/openssl-1.0.2j/armv7aQNX6.6.0qcc_cpp4.7.3/release/lib:$PATH

g. To verify your installation, enter:
 > openssl version

 You should see a response similar to:
 OpenSSL 1.0.2j

5. Your Security Plugins distribution may require a license. See License Management (Section 5).

4.1.2 Windows Systems

1. Install RTI Connext DDS host and target bundles on top of each other, as described the RTI Con-
next DDS Core Libraries Getting Started Guide.

2. Install the Security Plugins package. Use the package installer, just as you did for the RTI Connext
DDS target bundles in step 1.

• rti_security_plugins-5.3.0-eval-<target architecture>.rtipkg
(Where <target architecture> is one of the supported platforms, see the RTI Connext DDS
Core Libraries Platform Notes).

After installation, the security header files and libraries will be under include/ndds/security and
lib/<target architecture>, respectively.

3. Install an OpenSSL host package from RTI: openssl-1.0.2j-host-<host platform>.rtipkg.

4. Install an OpenSSL target package from RTI: openssl-1.0.2j-target-<target architecture>.zip.

a. Right-click the distribution file and extract the contents in a directory of your choice.

b. Add the resulting bin directory to your Path environment variable:

c:\rti\openssl-1.0.2j\<target architecture>\release\bin
(If you need help with this process, please see the RTI Connext DDS Core Libraries Getting
Started Guide.)

c. To verify your installation, open a command prompt and enter:
 > openssl version

 You should see a response similar to:
 OpenSSL 1.0.2j

5. Your Security Plugins distribution may require a license. See License Management (Section 5).
1-6

Installation Instructions
4.2 Installing a Non-Evaluation Version

4.2.1 UNIX-Based Systems

1. Install the RTI Connext DDS host and target bundles on top of each other, as described the RTI
Connext DDS Core Libraries Getting Started Guide.

2. Install the Security Plugins host and target packages to enable security for your applications. The
security header files and libraries will be under include/ndds/security and lib/<target architec-
ture>, respectively:

• rti_security_plugins-5.3.0-host-<host platform>.rtipkg
• rti_security_plugins-5.3.0-target-<target architecture>.rtipkg
(Where <host platform> is i86Linux, x64Linux, or darwin and <target architecture> is one
of the supported platforms, see the RTI Security Plugins Release Notes).

3. If you want to enable security for RTI tools and services, install an OpenSSL host package from
RTI:

• openssl-1.0.2j-host-<host platform>.rtipkg
4. Install a supported version of OpenSSL:

a. Make sure you have GNU's version of the tar utility, gtar (which handles long file names), and
GNU's version of the unzip utility, gunzip.

b. Move the downloaded OpenSSL distribution file to a directory of your choice, such as /local/
rti, and change to that directory:

 > cd /local/rti

c. Use gunzip to uncompress the OpenSSL file. (This is not the same as the OpenSSL host pack-
age in the previous step.) For example (your filename may be different):

 > gunzip openssl-1.0.2j-target-armv7aQNX6.6.0qcc_cpp4.7.3.tar.gz

d. Use gtar to extract the distribution from the uncompressed file. For example:
 > gtar xvf openssl-1.0.2j-target-armv7aQNX6.6.0qcc_cpp4.7.3.tar

This will extract files into /local/rti/openssl-1.0.2j.
e. Include the resulting /bin directory in your PATH. For example, assuming you want to use the

"release" version of the OpenSSL libraries (enter the command all on one line):
 > setenv PATH
 /local/rti/openssl-1.0.2j/armv7aQNX6.6.0qcc_cpp4.7.3/release/bin:$ {PATH}

f. If linking dynamically, include the resulting /lib directory in your LD_LIBRARY_PATH. For
example, assuming you want to use the "release" version of the OpenSSL libraries (enter the
command all on one line):

 > setenv LD_LIBRARY_PATH
 /local/rti/openssl-1.0.2j/armv7aQNX6.6.0qcc_cpp4.7.3/release/lib:$PATH

g. To verify your installation, enter:
 > openssl version

 You should see a response similar to:
 OpenSSL 1.0.2j

This completes the installation process.
1-7

4.2.2 Windows Systems

1. Install RTI Connext DDS host and target bundles on top of each other, as described the RTI Con-
next DDS Core Libraries Getting Started Guide.

2. Install the Security Plugins host and target packages to enable security for your applications. The
security header files and libraries will be under include/ndds/security and lib/<target architec-
ture>, respectively:

• rti_security_plugins-5.3.0-host-<host platform>.rtipkg
• rti_security_plugins-5.3.0-target-<target architecture>.rtipkg
(Where <host platform> is i86Win32 or x64Win64, and <target architecture> is one of the
supported platforms, see the RTI Security Plugins Release Notes).

3. If you want to enable security for RTI tools and services, install OpenSSL host packages from
RTI:

• openssl-1.0.2j-host-<host platform>.rtipkg
4. Install a supported version of OpenSSL:

a. Right-click the distribution file and extract the contents in a directory of your choice.

b. Add the resulting bin directory to your Path environment variable:

c:\rti\openssl-1.0.2j\<target architecture>\release\bin
(If you need help with this process, please see the RTI Connext DDS Core Libraries Getting
Started Guide.)

c. To verify your installation, open a command prompt and enter:
 > openssl version

 You should see a response similar to:
 OpenSSL 1.0.2j

This completes the installation process.

5 License Management
Most package types (Professional, Basic, and Evaluation) require a license file in order to run.

If your distribution requires a license file, you will receive one from RTI via email.
If you have more than one license file from RTI, you can concatenate them into one file.
A single license file can be used to run on any architecture and is not node-locked. You are not required to
run a license server.

5.1 Installing the License File
Save the license file in any location of your choice; the locations checked by the plugin are listed below.
You can also specify the location of your license file in RTI Launcher's Installation tab. Then Launcher
can copy the license file to the installation directory or to the user workspace.

Each time your application starts, it will look for the license file in the following locations until it finds a
valid license. (The properties are in the PropertyQosPolicy of the DomainParticipant.)
1-8

License Management
1. A property called com.rti.serv.secure.license_string. The value for this property can be set to the
content of a license file. (This may be necessary if a file system is not supported on your plat-
form.)

2. A property called dds.license.license_string. (Only if you have an evaluation version of Connext
DDS Professional.)

The above two license_string properties can be set to the content of a license file. (This may be
necessary if a file system is not supported on your platform.) You can set the property either in
source code or in an XML file.

If the content of the license file is in XML, special characters for XML need to be escaped in the
license string. Special characters include: quotation marks (") (replace with "), apostrophes
(') (replace with '), greater-than (>) (replace with >), less-than (<) (replace with <),
and ampersands (&) (replace with &).

Example XML file:
<participant_qos>
 <property>
 <value>
 <element>
 <name>dds.license.license_string</name>
 <value>contents of license file</value>
 </element>
 </value>
 </property>
</participant_qos>

3. A property called com.rti.serv.secure.license_file.

4. A property called dds.license.license_file. (Only if you have an evaluation version of Connext
DDS Professional.)

The above two license_file properties can be set to the location (full path and filename) of a
license file. (This may be necessary if a default license location is not feasible and environment
variables are not supported.) You can set the property either in source code or in an XML file.

Example XML to set dds.license.license_file:
<participant_qos>
 <property>
 <value>
 <element>
 <name>dds.license.license_file</name>
 <value>path to license file</value>
 </element>
 </value>
 </property>
</participant_qos>

5. In the location specified in the environment variable RTI_LICENSE_FILE, which you may set to
point to the full path of the license file, including the filename.

Note: When you run any of the scripts in the <NDDSHOME>/bin directory, this automatically
sets the RTI_LICENSE_FILE environment variable (if it isn't already set) prior to calling the exe-
cutable. It looks for the license file in two places: your rti_workspace directory and the installa-
tion directory (NDDSHOME). (See Paths Mentioned in Documentation (Section 2).)
1-9

6. If you are running any of the tools/services as executables via NDDSHOME/bin/<executable
script> or through Launcher:

a. In your rti_workspace/<version> directory, in a file called rti_license.dat.
b. In your rti_workspace directory, in a file called rti_license.dat.
c. In <NDDSHOME> (the Connext DDS installation directory), in a file called rti_license.dat.

7. If you are running your own application linked with Connext DDS libraries:

a. In your current working directory, in a file called rti_license.dat.
b. In <NDDSHOME> (the Connext DDS installation directory), in a file called rti_license.dat.

As Connext DDS attempts to locate and read your license file, you may (depending on the terms of the
license) see a message with details about your license.
If the license file cannot be found or the license has expired, your application may be unable to initialize,
depending on the terms of the license. If that is the case, your application’s call to DomainParticipant-
Factory.create_participant() will return null, preventing communication.
If you have any problems with your license file, please email support@rti.com.

5.2 Adding or Removing License Management
If your license file changes—for example, you receive a new license for a longer term than your original
license—you do not need to reinstall.

However, if you switch from a license-managed distribution of to one of the same version that does not
require license management, or visa versa, RTI recommends that you first uninstall your original distribu-
tion before installing your new distribution. Doing so will prevent you from inadvertently using a mixture
of libraries from multiple installations.

6 Restrictions when Using RTI Security Plugins
6.1 When to Set Security Parameters

In RTI Connext DDS, you must set the security-related participant properties (see Table 7.1) before you
create a participant. You cannot create a participant without security and then call DomainPartici-
pant::set_qos() with security properties, even if the participant has not yet been enabled.

6.2 Mixing Libraries Not Supported
Mixing static and dynamic RTI libraries (e.g., using RTI static core libraries and dynamic Security Plugins
libraries) is not supported for user applications.

7 Authentication
Authentication is the process of making sure a DomainParticipant is who it claims to be. Loading any
security plugins will configure the DomainParticipant to authenticate a newly discovered remote partici-
pant before initiating endpoint discovery with that participant. Authentication is done via a series of inter-
participant challenge and response messages. These messages perform mutual authentication, so the end
result is that this participant authenticates the remote participant and vice-versa. If this participant fails to
authenticate the remote participant, the remote participant is ignored. Otherwise, this participant initiates
endpoint discovery with the remote participant and communication resumes as normal.

Table 7.1 lists the properties that you can set for Authentication and enabling security in general. These
properties are configured through the DomainParticipant’s PropertyQosPolicy.
1-10

Authentication
Table 7.1 Properties for Enabling Security and Configuring Authentication

Property Name
(prefix with ‘com.rti.serv.secure.’)1 Property Value Description

com.rti.serv.load_plugin
(note: this does not take a prefix)

Required The prefix name of the security plugin suite that will be loaded by Con-
next DDS. For example: com.rti.serv.secure. You will use this string as the prefix
to the property names. Setting this value to non-NULL will also configure the
DomainParticipant to attempt authentication with newly discovered remote partici-
pants. Note: you can load only one security plugin suite.
Default: NULL unless using the Generic.Security builtin profile

library

Only required if linking dynamically Must be set to the dynamic library that
implements the security plugin suite. If using Connext DDS’s provided security plu-
gin suite, you must set this value to nddssecurity.
This library and the dependent OpenSSL libraries must be in your library search
path (pointed to by the environment variable LD_LIBRARY_PATH on
UNIX/Solaris systems, Path on Windows systems, LIBPATH on AIX sys-
tems, DYLD_LIBRARY_PATH on Mac OS systems).
Default: NULL unless using Generic.Security builtin profile

create_function

Only required if linking dynamically Must be set to the security plugin suite cre-
ation function that is implemented by the library. If using Connext DDS’s provided
security plugin suite, you must set this value to RTI_Security_PluginSuite_create.
Default: NULL unless using Generic.Security builtin profile

create_function_ptr

Only required if linking statically Must be set to the security plugin suite creation
function implemented by the library. If using Connext DDS’s provided security plu-
gin suite, you must set this value to the stringified pointer value of
RTI_Security_PluginSuite_create, as demonstrated in the hello_security exam-
ples. Note: you cannot set this value in an XML profile. You must set it in code.
Default: NULL

authentication.
shared_secret_algorithm

Optional
The algorithm used to establish a shared secret during authentication. The options
are dh and ecdh for (Elliptic Curve) Diffie-Hellman.
If two participants discover each other and they specify different values for this
algorithm, the algorithm that is used is the one that belongs to the participant with
the lower-valued participant_key.
Note: ecdh does not work with static OpenSSL libraries when using Certicom
Security Builder Engine.
Default: ecdh
1-11

authentication.ca_file

Required A string that specifies the fully-qualified path and name of the file con-
taining Identity Certificate Authority certificates. The file should be in PEM format.
This Identity Certificate Authority is used for signing authentication certificate files.
OpenSSL should generate this file using commands such as the following. For an
example openssl.cnf file, refer to the example cert folder: rti_workspace/version/
examples/dds_security/cert. Note: You will need to modify this file to match your
certificate folder structure and Identity Certificate Authority desired configuration.
RSA:

% openssl genrsa -out cakey.pem 2048
% openssl req -new -key cakey.pem -out ca.csr -config
openssl.cnf
% openssl x509 -req -days 3650 -in ca.csr -signkey
cakey.pem -out cacert.pem
% echo 01 > ca.srl

DSA:
% openssl dsaparam 2048 > dsaparam
% openssl gendsa -out cakeydsa.pem dsaparam
% openssl req -new -key cakeydsa.pem -out dsaca.csr -config
openssldsa.cnf
% openssl x509 -req -days 3650 -in dsaca.csr -signkey
cakeydsa.pem -out cacertdsa.pem

ECDSA:
% openssl ecparam -name prime256v1 > ecdsaparam
% openssl req -nodes -x509 -days 3650 -newkey ec:ecdsaparam
-keyout cakeyECdsa.pem -out cacertECdsa.pem -config
opensslECdsa.cnf

Note: When running the above commands, you may run into these OpenSSL warn-
ings:
 WARNING: can't open config file: [default openssl built-

inpath]/openssl.cnf

To resolve this, set the environmental variable OPENSSL_CONF with the
path to the openssl.cnf file you are using.

 unable to write 'random state'

To resolve this, set the environmental variable RANDFILE with the path to
a writable file.

Two participants that want to securely communicate with each other must use the
same Identity Certificate Authority.
Default: NULL

Table 7.1 Properties for Enabling Security and Configuring Authentication

Property Name
(prefix with ‘com.rti.serv.secure.’)1 Property Value Description
1-12

Authentication
authentication.crl_file

Optional A string that specifies the fully qualified path and name of the file con-
taining a Certificate Revocation List. The file should be in PEM format. This Certif-
icate Revocation List keeps track of untrusted X.509 certificates.
OpenSSL should generate this file using commands such as the following. For an
example opensslECdsa.cnf file, refer to the example cert folder: rti_workspace/
version/examples/dds_security/cert. Note: You will need to modify this file to
match your certificate folder structure and Certificate Revocation List desired con-
figuration:
% touch indexECdsa.txt
% echo 01 > crlnumberECdsa
% openssl ca -config opensslECdsa.cnf -batch

-revoke peerRevokedECdsa.pem
% openssl ca -config opensslECdsa.cnf -batch -gencrl

-out democaECdsa.crl

In this example:
 crlnumberECdsa is the database of revoked certificates. This file should

match the crlnumber value in opensslECdsa.cnf.
 peerRevokedECdsa.pem is the certificate_file of a revoked DomainPar-

ticipant.
 democaECdsa.crl should be the value of the crl_file property.

If crl_file is set to NULL, no CRL is checked, and all valid certificates will
be considered trusted.
If crl_file is set to an invalid CRL file, the DomainParticipant creation will
fail.
If crl_file is set to a valid CRL file, the CRL will be checked upon
DomainParticipant creation and upon discovering other DomainPartici-
pants. Creating a DomainParticipant with a revoked certificate will fail. If
ParticipantA uses a certificate that does not appear in ParticipantA’s CRL
but does appear in ParticipantB’s CRL, then ParticipantB will reject and
ignore ParticipantA. Changes in the CRL will not be enforced until the
DomainParticipant using the CRL is deleted and recreated.

Default: NULL

authentication.private_key_file

Required A string that specifies the fully-qualified path and name of the file con-
taining a private key. The file should be in PEM format.
After generating the ca_file, OpenSSL should generate this file using commands
such as the following:
RSA:

% openssl genrsa -out peer1key.pem 2048

DSA:
% openssl dsaparam 2048 > dsaparam
% openssl gendsa -out peer1keydsa.pem dsaparam

ECDSA:
% openssl ecparam -name prime256v1 > ecdsaparam1
% openssl req -nodes -new -newkey ec:ecdsaparam1 -config
example1ECdsa.cnf -keyout peer1keyECdsa.pem -out
peer1reqECdsa.pem

peer1reqECdsa.pem will be used to generate the certificate file. This property
value should be set to peer1keyECdsa.pem.
Default: NULL

Table 7.1 Properties for Enabling Security and Configuring Authentication

Property Name
(prefix with ‘com.rti.serv.secure.’)1 Property Value Description
1-13

authentication.certificate_file

Required A string that specifies the fully-qualified path and name of the file con-
taining an Identity Certificate. The file should be in PEM format. An Identity Certif-
icate is required for secure communication.
To generate this file, first generate the ca_file and private_key_file. Then create a
blank index.txt file and a serial file whose contents are 01. The names of these files
will depend on the contents of the openssl*.cnf file. Then use OpenSSL to generate
the certificate file using commands such as the following. For example .cnf files,
refer to the example cert folder: rti_workspace/version/examples/dds_security/
cert. Note: You will need to modify this file to match your certificate folder
structure and Identity Certificate desired configuration:

RSA:
% openssl req -config example1.cnf -new -key peer1key.pem

-out user.csr
% openssl ca -config openssl.cnf -days 365 -in user.csr

-out peer1.pem

DSA:
% openssl req -config example1dsa.cnf -new -key

peer1keydsa.pem -out dsauser.csr
% openssl ca -config openssldsa.cnf -days 365

-in dsauser.csr -out peer1dsa.pem

ECDSA:
Generate peer1reqECdsa.pem using the instructions for private_key_file.
% openssl ca -batch -create_serial -config opensslECdsa.cnf

-days 365 -in peer1reqECdsa.pem -out peer1ECdsa.pem

Notes:
 openssl((EC)dsa).cnf must have the same countryName, stateOrProvin-

ceName, and localityName as the example .cnf files.
 Example .cnf files of different participants must have different common-

Names.
Default: NULL

1. Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used with
com.rti.serv.load_plugins. This prefix must begin with 'com.rti.serv.'

Table 7.1 Properties for Enabling Security and Configuring Authentication

Property Name
(prefix with ‘com.rti.serv.secure.’)1 Property Value Description
1-14

Authentication
7.1 Configuration Properties Common to All Authentication Plugins
Table 7.1 lists a set of properties that are not exclusive to the shipped Security Plugins, but that will affect
any Authentication Plugin.

7.2 Re-Authentication
The Security Plugins support securely re-authenticating remote Participants as an extension to the DDS
Security specification. This is needed in scenarios where there is an asymmetric liveliness loss.

Asymmetric liveliness loss occurs between two Participants A and B when Participant A loses liveliness
with B, and therefore cleans up all the associated state, while B still keeps the authenticated state. As B
keeps an authenticated state from A, it will not accept new authentication messages from A. Without the
ability to re-authenticate, asymmetric liveliness loss will lead to communication not recovering. The Secu-
rity Plugins address this problem by including re-authentication capability as an extension to the RTI
Security specification.
In Security Plugins, if Participant A that has not completed an ongoing authentication with a Participant B
after an specific period, it will send an com.rti.sec.auth.request message that includes a nonce1 to Partici-
pant B. This message will give a hint to Participant B that Participant A is pending Authentication with
Participant B. This specific period is configured by the property dds.partici-
pant.trust_plugins.authentication_request_delay.sec, see Table 7.1, “Properties for Configuring
Authentication Common to Any Authentication Plugin”.
When Participant B receives a com.rti.sec.auth.request message, it will check if it already has a valid com-
pleted authentication with Participant A. If that is the case, that could mean that an asymmetric liveliness
loss has occurred. In order to verify that the authentication request is legitimate, the two Participants will
now conduct a whole Authentication process that includes the nonce received as part of the triggering
com.rti.sec.auth.request. Only if this secondary authentication succeeds, the old state will be removed in
Participant B and replaced with the new one, allowing for discovery to complete again and communica-
tion to recover. If this secondary authentication fails, no change will be made in Participant B and the old
authenticated session will be kept.
Because the old authenticated state is kept until the new authentication has successfully completed, the
Security Plugins re-authentication is robust against attackers trying to bring down an existing authentica-
tion.

7.2.1 Supporting Re-Authentication in Custom Plugins

To support re-authentication in plugins other than Security Plugins, the following APIs must be imple-
mented by the custom plugin:

Table 7.1 Properties for Configuring Authentication Common to Any Authentication Plugin

Property Name (prefix with
'dds.participant.trust_plugins.') Property Value Description

authentication_timeout.sec

Optional Controls the maximum time in seconds that an ongo-
ing authentication can remain without completing. After this
timeout expires, the authentication process is cancelled, and
associated resources are released.
Default: 60 seconds

authentication_request_delay.sec

Optional Controls the delay in seconds before sending an
authentication_request to the remote participant. For more infor-
mation, please see Re-Authentication (Section 7.2).
Default: 5 seconds

1. Nonce: an arbitrary number used only once in a cryptographic communication, used to avoid replay attacks.
1-15

 begin_auth_request()
 process_auth_request()

For more details, see the RTI_SecurityPlugins_BuildableSourceCode_Instructions.txt file included
with Security Plugins SDK.

7.3 Protecting Participant Discovery
Participant discovery is sent through an unsecure channel. Consequently, additional mechanisms need to
be put in place to make sure the received information comes from a legitimate participant. In Security
Plugins, the mechanism for protecting the participant discovery information is known as TrustedState.

Security Plugins TrustedState is an RTI extension to the DDS Security Authentication specification that
covers two limitations in the DDS Security Specification:

 Vulnerability in the protocol: The lack of a standardized mechanism for validating that the Partic-
ipant Discovery information received by DDS actually matches the one authenticated.

 Participant Discovery Data is immutable after authentication. This prevents functionality such as
updating IP addresses.

Security Plugins TrustedState is a digest of the participant discovery data, plus information that unambig-
uously identifies the current local participant state, plus information that unambiguously identifies the cur-
rent authentication session. TrustedState is exchanged as part of the authentication process as a vendor
extension. Once the authentication completes, involved participants will validate received participant dis-
covery information against the received TrustedState. This way, participants can be sure that the received
participant discovery comes from the authenticated participant.
In order to securely propagate participant discovery changes after authenticating the remote participant,
the Security Plugins use the participant's identity private key to sign the participant discovery data plus
some additional information identifying the local participant state (and which is consistent with the one
serialized in the TrustedState). This signature is then serialized as a property in the participant discovery
data. This way, other participants can validate that the update is legitimate by verifying the received par-
ticipant discovery against the participant's public key.

7.3.1 Supporting TrustedState in Custom Plugins

To secure participant discovery updates through the TrustedState mechanism in plugins other than the
Security Plugins, the following APIs must be implemented by the custom plugin:

 set_local_participant_trusted_state()
 verify_remote_participant_trusted_state()
 get_max_signature_size()
 private_sign()
 verify_private_signature()

For more information, please see the RTI_SecurityPlugins_BuildableSourceCode_Instructions file
included in the Security Plugins SDK.

8 Access Control
Access Control consists of two components: governance and permissions checking. Governance is the
process of configuring locally created DomainParticipants, Topics, DataWriters, and DataReaders to per-
form the right amount of security for the right use case. Permissions checking is the process of making
sure locally created and remotely discovered entities are allowed to do what they want to do. Both gover-
nance and permissions checking are enforced by XML documents that are signed by a permissions certif-
icate authority that may or may not be the same as the identity certificate authority that signs identity
1-16

Access Control
certificates. The XSD definitions of these documents are in $(NDDSHOME)/resource/schema/
dds_security_governance.xsd and dds_security_permissions.xsd.

Examples of these documents are in rti_workspace/version/examples/dds_security/xml/, see Gover-
nance.xml and PermissionsA.xml. Use these files just as a reference, you will need to update their con-
tent/create new files to match your system configuration (domains, topics, and used identity certificates)
before signing them. To specify that you want to use these XML files, add the properties in Table 8.1,
“Properties for Configuring Access Control” to the DDS_DomainParticipantQos property:

Table 8.1 Properties for Configuring Access Control

Property Name
(prefix with

‘com.rti.serv.secure.’)1
Property Value Description

access_control.
permissions_authority_file

Required A string that specifies the fully-qualified path and name of the file containing
Permissions Certificate Authority certificates. The file should be in PEM format. This Per-
missions Certificate Authority is used for signing access control governance and permis-
sions XML files and verifying the signatures of those files. The Permissions Certificate
Authority file may or may not be the same as the Identity Certificate Authority file, but
both files are generated in the same way. See Table 7.1, “Properties for Enabling Security
and Configuring Authentication” for the steps to generate this file.
Two participants that want to securely communicate with each other must use the same
Permissions Certificate Authority.
Default: NULL

access_control.
governance_file

Required The signed file that specifies the level of security required per domain and per
topic.
To sign an XML document with a Permissions Certificate Authority, run the following
OpenSSL command (enter this all on one line):

openssl smime -sign -in Governance.xml -text
-out signed_Governance.p7s -signer cacert.pem
-inkey cakey.pem

Then set this property value to signed_Governance.p7s.
Default: NULL

access_control.
permissions_file

Required The signed file that specifies the access control permissions per domain and
per topic.
The <subject_name> element identifies the DomainParticipant to which the permissions
apply. Each subject name can only appear in a single <permissions> section within the
XML Permissions document.
The contents of the <subject_name> element should be the X.509 subject name for the
DomainParticipant, as given in the "Subject" field of its Identity Certificate.
A <permissions> section with a subject name that does not match the subject name given
in the corresponding Identity Certificate will be ignored.
To sign an XML document with a Permissions Certificate Authority, run the following
OpenSSL command (enter this all on one line):

openssl smime -sign -in PermissionsA.xml -text
-out signed_PermissionsA.p7s -signer cacert.pem
-inkey cakey.pem

Then set this property value to signed_PermissionsA.p7s.
The signed permissions document only supports validity dates between 1970010100 and
2038011903. Any dates before 1970010100 will result in an error, and any dates after
2038011903 will be treated as 2038011903. Currently, Connext DDS will not work if the
system time is after January 19th, 2038.
Default: NULL
1-17

8.1 Related Governance Attributes
The Access Control governance attributes follow the DDS Security specification as much as possible.
This section provides some clarifications that are not described in the specification.

8.1.1 Default Attributes

If no matching domain or topic rule is found, the default rules apply. The default rules have minimum
security, so all attributes are FALSE or NONE except for allow_unauthenticated_participants.

8.1.2 enable_join_access_control

This attribute controls whether or not remote participant permissions are checked when a remote partici-
pant is discovered.

8.1.3 enable_read/write_access_control

These attributes control whether or not DataReader or DataWriter permissions are checked. If
enable_read_access_control is TRUE for a given topic, the local permissions are enforced on locally cre-
ated DataReaders of that topic, and the remote permissions are enforced on remotely discovered
DataReaders of that topic. Similar logic applies to enable_write_access_control and DataWriters.

9 Cryptography
Cryptography is the process of making sure no adversaries can manipulate or eavesdrop on communica-
tion. To prevent manipulation of data, set the governance attribute rtps_protection_kind to SIGN. To
prevent eavesdropping of data, set the governance attribute metadata_protection_kind or
data_protection_kind to ENCRYPT.

The following properties in the DDS_DomainParticipantQos property configure Cryptography:

1. Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used with
com.rti.serv.load_plugins. This prefix must begin with 'com.rti.serv.'

Table 9.1 Property for Configuring Cryptography

Property Name
(prefix with

‘com.rti.serv.secure.’)1
Property Value Description

cryptography.
max_blocks_per_session

Optional The number of message blocks that can be encrypted with the same key
material. Whenever the number of blocks exceeds this value, new key material is com-
puted. The block size depends on the encryption algorithm. You can specify this value in
decimal, octal, or hex. This value is an unsigned 64-bit integer.
Default: 0xffffffffffffffff
1-18

Cryptography
9.1 Related Governance Attributes
This section provides some clarifications about the Cryptography governance attributes that are either not
described or described differently in the specification.

9.1.1 rtps_protection_kind

SIGN and NONE are the only supported values for rtps_protection_kind. Setting rtps_protection_kind
= NONE will cause the DomainParticipant to accept both encoded and unencoded incoming RTPS mes-
sages.

Setting rtps_protection_kind = SIGN will cause the DomainParticipant to append a GMAC to outgoing
RTPS messages and reject incoming RTPS messages that do not have such a GMAC.

9.1.2 Other Protection Kinds

ENCRYPT and NONE are the only supported values of other protection kinds besides
rtps_protection_kind.

9.1.3 metadata_protection_kind

Since metadata_protection_kind controls the EndpointSecurityAttribute is_submessage_protected,
and a submessage may consist of both metadata and data, metadata_protection_kind applies to both
metadata and data. An endpoint will accept both encoded and unencoded incoming submessages regard-
less of the setting of metadata_protection_kind.

9.1.4 Endpoint Compatibility

A DataWriter with metadata_protection_kind = NONE and data_protection_kind = NONE is not
compatible with a DataReader with metadata_protection_kind = ENCRYPT or data_protection_kind

cryptography.
encryption_algorithm

Optional The algorithm used for encrypting and decrypting data and metadata. The
options are aes-128-gcm, aes-192-gcm, and aes-256-gcm (“gcm” is Galois/Counter
Mode (GCM) authenticated encryption). The number indicates the number of bits in the
key and the block. Participants are not required to set this property to the same value in
order to communicate with each other.
In the Domain Governance document, a "protection kind" set to ENCRYPT will use
GCM, and a "protection kind" set to SIGN will use the GMAC variant of this algorithm.
Default: aes-128-gcm

cryptography.
max_receiver_specific_macs

Optional The maximum number of receiver-specific Message Authentication Codes
(MACs) that are appended to an encoded result.
For example, if this value is 32, and the Participant is configured to protect both RTPS
messages and submessages, there could be 32 receiver-specific MACs in the result of
encode_datawriter_submessage, and there could be another 32 receiver-specific
MACs in the result of encode_rtps_message. If there are more than 32 receivers, the
receivers will be assigned one of the 32 possible MACs in a round-robin fashion. Note
that in the case of encode_datawriter_submessage, all the readers belonging to the
same participant will always be assigned the same receiver-specific MAC. Setting this
value to 0 will completely disable receiver-specific MACs.
Default: 0.
Range: [0, 3275]

1. Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used with
com.rti.serv.load_plugins. This prefix must begin with 'com.rti.serv.'

Table 9.1 Property for Configuring Cryptography

Property Name
(prefix with

‘com.rti.serv.secure.’)1
Property Value Description
1-19

= ENCRYPT. A DataReader will not successfully receive samples from a DataWriter that has a different
data_protection_kind setting from the DataReader.

9.1.5 discovery_protection_kind

discovery_protection_kind is partially supported. Currently supported values are NONE and ENCRYPT.

9.1.6 enable_discovery_protection

Indicates if the meta information for the entities matching the associated topic rule shall be sent using
secure builtin topics or the regular builtin topics. This includes both builtin discovery topics and the ser-
vice request channel (used for sending Topic Queries and Locator Reachability Response messages).

9.1.7 enable_liveliness_protection

This is a Security Plugins extension to the DDS Security specification. If set, it determines if the liveliness
information for the entities matching the associated topic rule shall be sent using a secure liveliness topic
or the regular liveliness topic. If not set, the configuration for liveliness will be determined by the value set
for enable_discovery_protection.

10 Logging
Logging is the process of notifying the user of security events. This release supports printing log messages
to the standard output, printing log messages to a file, distributing log messages over DDS, and adjusting
the verbosity level of the log messages. By default, log messages are printed to the standard output, and
the verbosity level of the log messages is WARNING_LEVEL.

The following properties in the DDS_DomainParticipantQos property configure Logging:

Table 10.1 Properties for Configuring Logging

Property Name
(prefix with ‘com.rti.serv.secure.’)1 Property Value Description

logging.log_file
Optional The file that log messages are printed to.
Default: NULL

logging.log_level

Optional The logging verbosity level. All log messages at and below the
log_level setting will be logged. Possible values:

 0: emergency
 1: alert
 2: critical
 3 (default): error
 4: warning
 5: notice
 6: informational
 7: debug

Default: 3 (error)
1-20

Logging
Table 10.1 lists security-related events and the log messages they generate.

logging.distribute.enable

Optional Controls whether security-related log messages should be
distributed over DDS. To subscribe to the log messages, run rtiddsgen on
resource/idl/builtin_logging_type.idl.
Create a DataReader of type DDSSecurity::BuiltinLoggingType and topic
DDS:Security:LogTopic. The DataReader must be allowed to subscribe to
this topic according to its DomainParticipant’s permissions file.
Boolean.
Default: false.

logging.distribute.profile

Optional QoS Library and QoS profile used to create logging-related enti-
ties (Publisher, Topic and DataWriter). Must be a string of the format QosLi-
braryName::QosProfileName.
String.
Default: empty string (uses default QoS profile).

logging.distribute.writer_
history_depth

Optional History depth (in samples) of the logging DataWriter. Integer.
Default: 64.

logging.distribute.writer_timeout

Optional Number of milliseconds to wait before giving up trying to write a
log message. This property overwrites the max_blocking_time QoS of the
logging DataWriter.
Integer.
Default: 5000 milliseconds.

logging.distribute.queue.size
Optional Size of the logging thread queue, in bytes.
Integer.
Default: 50688.

logging.distribute.queue.message_
count_max

Optional Maximum number of log messages in the logging queue. Integer.
Default: 64.

logging.distribute.queue.message_
size_max

Optional Maximum serialized size of a log message in the logging queue.
Integer.
Default: 792.

logging.distribute.thread.message_
threshold

Optional Number of bytes to preallocate for the logging message string in
the logging thread, beyond which dynamic allocation will occur.
Integer.
Default: 256.

logging.distribute.thread.plugin_
method_threshold

Optional Number of bytes to preallocate for the plugin method string in the
logging thread, beyond which dynamic allocation will occur.
Integer.
Default: 256.

logging.distribute.thread.message_
threshold

Optional Number of bytes to preallocate for the plugin class string in the
logging thread, beyond which dynamic allocation will occur.
Integer.
Default: 256.

1. Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used with
com.rti.serv.load_plugins. This prefix must begin with 'com.rti.serv.'

Table 10.1 Properties for Configuring Logging

Property Name
(prefix with ‘com.rti.serv.secure.’)1 Property Value Description
1-21

Table 10.2 Log Messages

Event Log Level Message

Failed to allocate memory EMERGENCY insufficient memory

AllowUnauthenticatedParticipants = false, and discovered
remote participant that is unauthenticable, i.e. has not
enabled security

CRITICAL unauthenticated remote participant
[participant ID] denied

AllowUnauthenticatedParticipants = true, and discovered
remote participant that is either unauthenticable or fails
authentication

WARNING allowing unauthenticated participant
[participant ID]

Received invalid X509 certificate, from either remote or
local participant CRITICAL failed to decode certificate

Couldn't verify certificate's signature against neither the
certificate of the Identity Certificate Authority nor any
alternative CAs

CRITICAL failed to verify certificate

Certificate appears in Certificate Revocation List CRITICAL certificate revoked

Upon receiving HandshakeReplyMessageToken or Hand-
shakeFinalMessageToken, couldn't verify challenge's sig-
nature against peer's certificate. Peer likely has
mismatched private and public keys, so it’s an imposter.

CRITICAL failed to verify challenge signature

Couldn't verify permissions or governance file signature
against neither the certificate of the Permissions Authority
nor any alternative permissions authorities

CRITICAL
!PKCS7_verify: document signature verifi-
cation failed. Make sure document was
signed by the right permissions authority.

Received signed permissions or governance document
that is not an XML document ALERT received invalid signed [permissions or

governance] document

Couldn't parse the permissions file for some reason, such
as duplicate grants for the same subject name or no grant
for the intended subject name

ALERT failed to parse permissions file

Couldn't parse the governance file for some reason ALERT failed to parse governance file

Denied participant because there is a deny rule explicitly
prohibiting the participant CRITICAL participant not allowed: deny rule found

Denied participant because there is no rule for the
participant, and the default is to deny CRITICAL participant not allowed: no rule found;

default DENY

Denied writer or reader because there is a deny rule
explicitly prohibiting the writer or reader CRITICAL endpoint not allowed: deny rule found

Denied writer or reader because there is no rule for the
writer or reader, and the default is to deny CRITICAL endpoint not allowed: no rule found; default

DENY

Parsed publish/subscribe rule in permissions file that does
not apply to the writer/reader because no topic
expressions match the writer/reader's topic

WARNING

This publish/subscribe rule doesn't apply
because none of the rule's topic expressions
match the endpoint's topic name of [topic
name]

Parsed publish/subscribe rule in permissions file that does
not apply to the writer/reader because even though there's
a matching topic expression, there are no matching
partition expressions

WARNING

This publish/subscribe rule doesn't apply
because none of the rule's partition
expressions match with any of the
endpoint's partitions

Received authenticated content that has been tampered
with, i.e. EVP_DecryptFinal_ex failed because the GCM
or GMAC tag verification failed

ALERT DecryptFinal failed. Possible GCM
authentication failure.
1-22

Logging
Received submessage encrypted with a key whose
MasterKeyId hasn't yet been exchanged via CryptoToken DEBUG

received submessage from an endpoint that
discovered me but that I haven't discovered
yet; dropping submessage hoping it will be
repaired. It will not be repaired if the
endpoint did not properly share its
MasterKeyId in its CryptoToken

Writing a log message over the LogTopic fails due to
insufficient logging queue size LOCAL1

Failed to write log message of size =
[message size] because the logging queue is
full. Try to increase
logging.distribute.queue.
message_count_max, which is currently
[message_count_max].

1. This log message can be viewed by configuring the verbosity of the NDDS_Config_Logger.

Table 10.2 Log Messages

Event Log Level Message
1-23

11 Support for OpenSSL Engines
RTI Security Plugins support the option of using an OpenSSL engine. The following property in the
DDS_DomainParticipantQos property configures the usage of OpenSSL engines:

One example of an OpenSSL engine is Certicom Corp.’s Security Builder Engine for OpenSSL, which
supports the architecture armv7aQNX6.6.0qcc_cpp4.7.3. Usage of Certicom requires their dynamically-
loaded libraries (which RTI does not provide) and your LD_LIBRARY_PATH environment variable must
include:

$RTI_OPENSSLHOME/release/lib/:$CERTICOM_SBENGINEHOME/tools/sb/sb-$(CERTICO-
MOS)/lib/:$CERTICOM_SBENGINEHOME/lib/$(CERTICOMOS)

where RTI_OPENSSLHOME is the installation directory/armv7aQNX6.6.0qcc_cpp4.7.3 of the
OpenSSL distributed by RTI, CERTICOM_SBENGINEHOME is the installation directory of Certicom
Security Builder Engine, and CERTICOMOS is Certicom’s architecture corresponding to RTI’s
armv7aQNX6.6.0qcc_cpp4.7.3, e.g. qnx6.5_armv7. The authentication.shared_secret_algorithm ecdsa-
ecdh does not work with static OpenSSL libraries when enabling Certicom Security Builder Engine.

12 Support for RTI Persistence Service
RTI’s security solution may be used in conjunction with RTI Persistence Service. To store persisted data
encrypted, Persistence Service must use a configuration whose participant_qos includes security proper-
ties for 1) dynamically loading the security libraries and 2) using a Governance document that sets
data_protection_kind to ENCRYPT for the desired topics (or * for all topics). The %PATH% or
$LD_LIBRARY_PATH environment variable must include RTI and OpenSSL DLLs or libraries.

If Persistence Service stores encrypted data, it also stores the PRSTDataWriter’s encryption key along
with the rest of the writer’s metadata. If Persistence Service shuts down and restarts with the same config-
uration, the new PRSTDataWriter will discard its normally random key and use the old PRSTDataWriter’s
key, which it securely exchanges with user DataReaders to allow them to correctly decrypt the data. Key
rotation works seamlessly in this scenario because the stored encrypted data includes not only the payload
but also the metadata necessary to decrypt it, including the session_id used to derive the session key from

Table 11.1 Properties for Configuring OpenSSL Engines

Property Name
(prefix with

‘com.rti.serv.secure.’)1
Property Value Description

openssl_engine

Optional The dynamic library that implements an OpenSSL engine. If this property
value is not set, then the RTI Security Plugins will use native OpenSSL code with its
default engine. Otherwise, you must set this value to the filename, excluding the “lib” pre-
fix and the file extension, of the dynamic library that implements the engine, and you must
set your $LD_LIBRARY_PATH or %path% environment variable to include the dynamic
library and any of its dependent libraries. Failure to load the engine, due to an incorrect
$LD_LIBRARY_PATH or otherwise, will result in failure to create the DomainPartici-
pant. The engine will perform all security operations, including encryption, HMAC, and
Diffie-Hellman.
The value of this property for the first DomainParticipant of the application will be the
value for all other DomainParticipants in the application. Setting this property to a differ-
ent value for subsequent DomainParticipants will not be effective.
Default: not set

1. Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used with
com.rti.serv.load_plugins. This prefix must begin with 'com.rti.serv.'
1-24

RTPS-HMAC-Only Mode
the master key. When the encryption key is stored, it is stored encrypted. The key of this encryption is a
function of an optional user-specified property, and the Cryptography Plugin implementation determines
the encryption algorithm. In RTI’s default plugin implementation, the encryption algorithm involves
SHA-256 and AES-256-GCM.
Attempting to use an insecure Persistence Service to restore encrypted data or a secure Persistence Ser-
vice to restore plain-text data will result in a graceful failure to create Persistence Service.
The following properties in the Persistence Service participant_qos or
persistence_group.datawriter_qos property configure the Persistence Service’s usage of security:

13 RTPS-HMAC-Only Mode
The Security Plugins library includes an alternative set of "RTPS-HMAC-Only" plugins. These plugins
allow RTPS messages to be signed with a user-provided HMAC key while disabling all other security fea-
tures (authentication, access control and encryption). To set up the behavior of the RTPS-HMAC-Only
mode, refer to Table 13.1, “Properties for Configuring HMAC-Only Mode”.

Table 12.1 Properties for Configuring Secure Persistence Service

Property Name Property Value Description

dds.data_writer.
history.key_material_key

Optional The basis of the key material used to encrypt the PRSTDataWriter’s key mate-
rial. This property may be specified in either the DomainParticipantQos or the DataWriter-
Qos. Attempting to restore encrypted data using the wrong key_material_key will result in
an informative log message and failure to create Persistence Service.
Default: undisclosed non-NULL

Table 13.1 Properties for Configuring HMAC-Only Mode

Property Name
(prefix with

‘com.rti.serv.secure.’)1
Property Value Description

hmac_only.enabled
Optional Enables or disables the HMAC-only mode.
Default: false

hmac_only.cryptography.key

Required Sets the static HMAC key used to compute message signatures. The HMAC
key can be either a plain text string or an arbitrary binary string. Empty keys (either string
or binary) are not allowed.
The maximum HMAC key size is bounded by the maximum property size, controlled by
the DomainParticipant resource limit participant_property_string_max_length.

• Plain text HMAC keys are case sensitive, and must start with the prefix str: (e.g.:
str:Some secret key string)

• Binary HMAC keys must be provided as a sequence of upper- or lower-case hexa-
decimal digits prefixed by hex: (e.g.: hex:1489a95de3873df5).

Default: not set

hmac_only.cryptography.
max_blocks_per_session

Optional For signing RTPS messages, HMAC-only mode uses a key derived from the
HMAC key and a sessionId that is serialized as part of the signed RTPS message
representation. This property sets the number of message blocks that can be signed with
the same sessionId. The current message block size is fixed at 32 bytes.
Default: 0xffffffffffffffff)

1. Assuming you use ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used with
com.rti.serv.load_plugins. This prefix must begin with 'com.rti.serv.'
1-25

14 What’s Different from the OMG Security Specification
This section describes differences between RTI Security Plugins 5.3.0 and the latest OMG DDS Security
specification (Version 1.0).

14.1 Differences Affecting Builtin Plugins to be Addressed by Next DDS Security Specification

14.1.1 General

14.1.1.1 BuiltinTopicKey_t Type Definition

Section 7.2 in the specification defines BuiltinTopicKey_t as 16 octets. However, this will be revised in
the next DDS Security specification. In particular, BuiltinTopicKey_t will remain an array of unsigned
longs and the DDS Security specification will use a new type DDS_GUID_t (16 byte octet array) instead.
Security Plugins follow this convention.

14.1.2 Authentication

14.1.2.1 SHA256 Applied to Derived Shared Secret

Section 9.3.2.3.2 in the specification defines how to compute the shared secret. However, this will be
revised in the next DDS Security specification. In particular, the next version of the DDS Security specifi-
cation will state that, regardless of the key agreement algorithm, the SharedSecret (see Table 42) shall be
computed as the SHA256 hash of the derived shared secret computed by the key agreement algorithm.
Security Plugins follow this convention.

14.1.3 Cryptography

14.1.3.1 Secure Volatile Endpoints Use Submessage Protection

The current DDS Security Specification only protects the content (i.e., the keys) and not the metadata of
the Secure Volatile Endpoints. However, this will be revised in the next DDS Security specification. In
particular, the next version of the DDS Security specification will protect the whole Secure Volatile
submessages. Security Plugins follow this convention.

14.1.3.2 Secure Volatile Endpoints Transformation Kind

Table 52 in the specification defines CRYPTO_TRANSFORMATION_KIND_AES128_GCM and
CRYPTO_TRANSFORMATION_KIND_AES256_GCM as possible transformation kinds for the Secure
Volatile Endpoints. However, this will be revised in the next DDS Security specification. In particular, the
next version of the DDS Security specification will only use
CRYPTO_TRANSFORMATION_KIND_AES256_GCM as protection kind. Security Plugins follow this
convention.

14.1.3.3 Additional Authenticated Data

Sections 9.5.3.3.4.5 and 9.5.3.3.4.6 in the specification state that Additional Authenticated Data should be
populated with some specific bytes. However, this will be revised in the next DDS Security specification.
In particular, the next version of DDS Security specification will state that Additional Authenticated Data
should be empty. Security Plugins follow this convention.
1-26

What’s Different from the OMG Security Specification
14.1.4 Logging

14.1.4.1 Wrong Facility Value for Logging Plugin

Section 9.6 in the specification defines 0x10 as the Facility value for Logging Plugin. However, this will
be revised in the next DDS Security specification. In particular, the next version of DDS Security specifi-
cation will define 0x0A (10) as the Facility value to use. Security Plugins follow this convention.

14.2 Differences Affecting Builtin Plugins

14.2.1 General

14.2.1.1 Support for Infrastructure Services

Section 7.1.1.4 in the specification describes the mechanism for preventing unauthorized access to data by
infrastructure services. To support this capability, certain functions have an output parameter called
relay_only. Security Plugins does not implement this mechanism.

14.2.1.2 Configuration

Tables 35 and 45 in the specification describe the properties used to configure the builtin plugins. Security
Plugins support only a subset of these properties, and the properties have different names. For descriptions
of the supported properties, see these tables in this document:

 Table 7.1, “Properties for Enabling Security and Configuring Authentication”

 Table 8.1, “Properties for Configuring Access Control”

 Table 9.1, “Property for Configuring Cryptography”

 Table 10.1, “Properties for Configuring Logging”

 Table 11.1, “Properties for Configuring OpenSSL Engines”

 Table 12.1, “Properties for Configuring Secure Persistence Service”

14.2.2 Access Control

14.2.2.1 check_remote_topic

Section 8.4.2.6.12 in the specification describes the check_remote_topic() operation. RTI Security
Plugins do not implement this operation.

14.2.2.2 Protection Kinds

Section 9.4.1.2.1 in the specification describes the possible protection kinds as NONE, SIGN, and
ENCRYPT. The rest of section 9.4.1.2 describes the various Domain Governance Document protection
kind elements. In Security Plugins, rtps_protection_kind only supports NONE or SIGN; all other protec-
tion kinds only support NONE or ENCRYPT.

14.2.2.3 Immutability of Publisher Partition QoS in Combination with Non-Volatile Durability Kind

Section 7.3.5 in the specification states that for security reasons, the Publisher PartitionQos policy is
immutable under certain circumstances. Security Plugins do not implement this constraint.

14.2.3 Cryptography

14.2.3.1 Behavior when is_rtps_protected is Set to True

The current DDS Security Specification states that RTPS protection should only be enforced for authenti-
cated Participants. Security Plugins does not follow this convention; instead it enforces RTPS protection
for all received RTPS messages, regardless of the source participant's authentication state. Consequently,
1-27

if is_rtps_protected is set to true in the local participant, it will not accept RTPS messages from unau-
thenticated participants (being the only exception participant discovery messages), regardless of the value
for allow_unauthenticated_participants.

14.3 Differences Affecting Custom Plugins

14.3.1 Authentication

14.3.1.1 Revocation

Section 8.3.2.10.1 in the specification describes the mechanism for revoking identities. Security Plugins
do not implement this mechanism. This release supports looking up a certificate revocation list upon
DomainParticipant creation and discovery.

14.3.2 Access Control

14.3.2.1 check_local_datawriter_register_instance

Section 8.4.2.6.7 in the specification describes the check_local_datawriter_register_instance() opera-
tion. Security Plugins do not implement this operation.

14.3.2.2 check_local_datawriter_dispose_instance

Section 8.4.2.6.8 in the specification describes the check_local_datawriter_dispose_instance() opera-
tion. Security Plugins do not implement this operation.

14.3.2.3 check_remote_datawriter_register_instance

Section 8.4.2.6.15 in the specification describes the check_remote_datawriter_register_instance()
operation. Security Plugins do not implement this operation.

14.3.2.4 check_remote_datawriter_dispose_instance

Section 8.4.2.6.16 in the specification describes the check_remote_datawriter_dispose_instance() oper-
ation. Security Plugins do not implement this mechanism.

14.3.2.5 Revocation

Section 8.4.2.7.1 in the specification describes the mechanism for revoking permissions. Security Plugins
do not implement this mechanism.

14.3.2.6 PermissionsToken

Table 10 in the specification mentions PermissionsToken as a new parameter in ParticipantBuiltinTopic-
Data. Security Plugins 5.3.0 sends this parameter, but when receiving this parameter, it is not used in any
Access Control functionality. The built-in Access Control plugin does not use PermissionsToken, so this
issue only affects certain custom Access Control plugins.

14.3.3 Tagging

Section 8.7 in the specification defines the Data Tagging plugin. Security Plugins do not implement the
Data Tagging plugin.
1-28

29

Appendix A Quick Reference: Governance File Settings

This table shows common security objectives and the Governance file settings necessary to achieve them.
The highlighted cells indicate settings that increase security.

Legend:

G
ov

er
na

nc
e

Pa
ra

m
et

er

Ba
se

lin
e

En
ab

le
 A

ut
he

nt
ic

at
io

n
an

d
A

cc
es

s C
on

tro
l

M
A

C
an

d
En

cr
yp

t
D

isc
ov

er
y

D
at

a
*

M
A

C
Li

ve
lin

es
s M

es
sa

ge
s

(P
ro

te
ct

 B
ui

lti
n

To
pi

c)

M
A

C
an

d
En

cr
yp

t
Li

ve
lin

es
s M

es
sa

ge
s

(P
ro

te
ct

 B
ui

lti
n

To
pi

c)
 1

M
A

C
D

at
a

M
es

sa
ge

s

M
A

C
an

d
En

cr
yp

t
D

at
a

M
es

sa
ge

s 1

M
A

C
D

at
a

an
d

M
et

ad
at

a
M

es
sa

ge
s

M
A

C
an

d
En

cr
yp

t D
at

a
an

d
M

et
ad

at
a

M
es

sa
ge

s 1

M
A

C
En

tir
e

RT
PS

 p
ac

ke
t

(in
cl

ud
in

g
he

ad
er

)

M
A

C
En

tir
e

RT
PS

pa

ck
et

 (i
nc

lu
di

ng
 h

ea
de

r)
an

d
en

cr
yp

t-t
he

n-
M

A
C

da
ta

 1

M
A

C
En

tir
e

RT
PS

 p
ac

ke
t

(in
cl

ud
in

g
he

ad
er

) a
nd

en

cr
yp

t-t
he

n-
M

A
C

da
ta

 a
nd

 m
et

ad
at

a
1

A
ll

Po
ss

ib
le

 P
ro

te
ct

io
ns

 1

D
om

ai
n

allow_unauthenticated_
participants T F T — T — T — T T T T F

enable_join_access_
control F T F — F — F — F F F F T

discovery_protection_
kind N N E — N — N — N N N N E

liveliness_protection_
kind N N N — E — N — N N N N E

rtps_protection_kind N N N — N — N — N S S S S

To
pi

c

enable_discovery_
protection F T T — T 2 — F — F F F F T

enable_read_access_
control F T F — F — F — F F F F T

enable_write_access_
control F T F — F — F — F F F F T

metadata_protection_
kind N N N — N — N — E N N E E

data_protection_kind N N N — N — E — N N E N N

1. Assumes that aes-gcm is the encryption algorithm
2. Alternatively, RTI Security Plugins enable_liveliness_protection extension can be enabled

 T = TRUE  E = ENCRYPT
 F = FALSE  S = SIGN
 N = NONE  — = unsupported

	Contents
	Welcome to RTI Security Plugins
	1 Introduction
	2 Paths Mentioned in Documentation
	3 Download Instructions
	4 Installation Instructions
	4.1 Installing an Evaluation Version
	4.1.1 UNIX-Based Systems
	4.1.2 Windows Systems

	4.2 Installing a Non-Evaluation Version
	4.2.1 UNIX-Based Systems
	4.2.2 Windows Systems

	5 License Management
	5.1 Installing the License File
	5.2 Adding or Removing License Management

	6 Restrictions when Using RTI Security Plugins
	6.1 When to Set Security Parameters
	6.2 Mixing Libraries Not Supported

	7 Authentication
	7.1 Configuration Properties Common to All Authentication Plugins
	7.2 Re-Authentication
	7.2.1 Supporting Re-Authentication in Custom Plugins

	7.3 Protecting Participant Discovery
	7.3.1 Supporting TrustedState in Custom Plugins

	8 Access Control
	8.1 Related Governance Attributes
	8.1.1 Default Attributes
	8.1.2 enable_join_access_control
	8.1.3 enable_read/write_access_control

	9 Cryptography
	9.1 Related Governance Attributes
	9.1.1 rtps_protection_kind
	9.1.2 Other Protection Kinds
	9.1.3 metadata_protection_kind
	9.1.4 Endpoint Compatibility
	9.1.5 discovery_protection_kind
	9.1.6 enable_discovery_protection
	9.1.7 enable_liveliness_protection

	10 Logging
	11 Support for OpenSSL Engines
	12 Support for RTI Persistence Service
	13 RTPS-HMAC-Only Mode
	14 What’s Different from the OMG Security Specification
	14.1 Differences Affecting Builtin Plugins to be Addressed by Next DDS Security Specification
	14.1.1 General
	14.1.1.1 BuiltinTopicKey_t Type Definition

	14.1.2 Authentication
	14.1.2.1 SHA256 Applied to Derived Shared Secret

	14.1.3 Cryptography
	14.1.3.1 Secure Volatile Endpoints Use Submessage Protection
	14.1.3.2 Secure Volatile Endpoints Transformation Kind
	14.1.3.3 Additional Authenticated Data

	14.1.4 Logging
	14.1.4.1 Wrong Facility Value for Logging Plugin

	14.2 Differences Affecting Builtin Plugins
	14.2.1 General
	14.2.1.1 Support for Infrastructure Services
	14.2.1.2 Configuration

	14.2.2 Access Control
	14.2.2.1 check_remote_topic
	14.2.2.2 Protection Kinds
	14.2.2.3 Immutability of Publisher Partition QoS in Combination with Non-Volatile Durability Kind

	14.2.3 Cryptography
	14.2.3.1 Behavior when is_rtps_protected is Set to True

	14.3 Differences Affecting Custom Plugins
	14.3.1 Authentication
	14.3.1.1 Revocation

	14.3.2 Access Control
	14.3.2.1 check_local_datawriter_register_instance
	14.3.2.2 check_local_datawriter_dispose_instance
	14.3.2.3 check_remote_datawriter_register_instance
	14.3.2.4 check_remote_datawriter_dispose_instance
	14.3.2.5 Revocation
	14.3.2.6 PermissionsToken

	14.3.3 Tagging

	Appendix A Quick Reference: Governance File Settings

