
RTI Connext DDS

Core Libraries

2

Getting Started Guide

Addendum for Embedded Systems

Version 5.3.0

© 2017 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
June 2017.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS, the
RTI logo, 1RTI and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks
or service marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Addendum for Embedded Platforms 1
Chapter 2 Getting Started on Embedded UNIX-like Systems

2.1 Building and Running a Hello World Example 2
2.2 Configuring Automatic Discovery 3

Chapter 3 Getting Started on INTEGRITY Systems

3.1 Building the Kernel 4
3.2 Building and Running a Hello World Example 5

3.2.1 Generate Example Code and Project File with rtiddsgen 6
3.2.2 Build the Publish and Subscribe Applications 6
3.2.3 Connect to the INTEGRITY Target from MULTI 7
3.2.4 Load the Application on the Target 7
3.2.5 Run the Application and View the Output 8

Chapter 4 Getting Started on VxWorks 6.x Systems

4.1 Building the Kernel 9
4.2 Building and Running a Hello World Example 15

4.2.1 Generate Example Code and Makefile with rtiddsgen 15
4.2.2 Building and Running an Application as a Kernel Task 15

4.2.2.1 Using the Command Line 16
4.2.2.2 Using Workbench 17

4.2.3 Building and Running an Application as a Real-Time Process 21
4.2.3.1 Using the Command Line 21
4.2.3.2 Using Workbench 22

Chapter 5 Getting Started on VxWorks 653 Platform v2.3 Systems

5.1 Setting up Workbench for Building Applications 27
5.1.1 Installing the Wind River Services Socket Library 27
5.1.2 Installing the RTI Socket Library 27

4

5

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms 28
5.3 Running Connext DDS Applications on an Sbc8641d Target 42

Chapter 6 Getting Started on VxWorks 653 v2.5.0.1 Systems

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1 45
6.2 Running Connext DDS Applications on a b4860 QDS Target 59

Chapter 7 Getting Started on Wind River Linux Systems 60
Chapter 8 Getting Started on Wind River VxWorks MILS 2.1.1 Systems

8.1 Step 1: Generate Support Files and Example with rtiddsgen 64
8.2 Step 2: Create a VxWorks GuestOS Application Project 64
8.3 Step 3: Create a VxWorks MILS Integration Project 70
8.4 Step 4: Integrate GuestOS Application Project and Generated rtiddsgen Files into MILS Integration Project 75
8.5 Step 5: Deploy MILS Image to Target 76

Chapter 1 Addendum for Embedded
Platforms

In addition to enterprise-class platforms like Microsoft Windows and Linux, RTI® Connext®
DDS supports a wide range of embedded platforms. This document is especially for users of those
platforms. It describes how to configure some of the most popular embedded systems for use with
Connext DDS and to get up and running as quickly as possible. The code examples covered in this
document can be generated for your platform(s) using RTI Code Generator (rtiddsgen), which
accompanies Connext DDS.

This document assumes at least minimal knowledge with the platforms it describes and is not a sub-
stitute for the documentation from the vendors of those platforms. For further instruction on the gen-
eral operation of your embedded system, please consult the product documentation for your board
and operating system.

1

Chapter 2 Getting Started on Embedded
UNIX-like Systems

This document provides instructions on building and running Connext DDS applications on embed-
ded UNIX-like systems, including QNX® and LynxOS® systems. It will guide you through the
process of generating, compiling, and running a Hello World application on an embedded UNIX-
like system by expanding on Generating Code with RTI Code Generator, in the RTI Connext
DDS Core Libraries Getting Started Guide. Please read the following alongside that section.

In the following steps:

l All commands must be executed in a command shell that has all the required environment
variables. For details, see Step 1, Set up the Environment, in the RTI Connext DDS Core
Libraries Getting Started Guide.

l You need to know the name of your target architecture (look in your NDDSHOME/lib dir-
ectory). Use it in place of <architecture> in the example commands. For example, your archi-
tecture might be ‘i86Lynx4.0.0gcc3.2.2’.

l We assume that you have gmake installed. If you have gmake, you can use the generated
makefile to compile. If you do not have gmake, use your normal compilation process. (Note:
the generated makefile assumes the correct version of the compiler is already in your path
and that NDDSHOME is set.)

2.1 Building and Running a Hello World Example

This section describes the basic steps for building and running an rtiddsgen-generated example on
an embedded UNIX-like target.

1. Create a directory to work in. In this example, we use a directory called myhello.

2. In themyhello directory, create a file called HelloWorld.idl that contains a user-defined data
type:

2

2.2 Configuring Automatic Discovery

3

struct HelloWorld {
string<128> msg;

};

3. Use the rtiddsgen utility to generate sample code and a makefile. Modify, build, and run the gen-
erated code as described in Using DDS Types Defined at Compile Time, in the Getting Started
Guide.

For C++:

rtiddsgen -language C++ -example <architecture> HelloWorld.idl
gmake -f makefile_HelloWorld_
<architecture>./objs/<architecture>/HelloWorld_
subscriber./objs/<architecture>/HelloWorld_publisher

For Java:

rtiddsgen -language Java -example <architecture> HelloWorld.idlgmake -f
makefile_HelloWorld_<architecture>
gmake -f makefile_HelloWorld_<architecture> HelloWorldSubscribergmake -f
makefile_HelloWorld_<architecture> HelloWorldPublisher

The generated makefile deduces the path to the java executable based on the APOGEE_HOME
environment variable1, which therefore must be set in order to run the example applications.

2.2 Configuring Automatic Discovery

In most cases, multiple applications—whether on the same host or different hosts—will discover each
other and begin communicating automatically. However, in some cases you must configure the discovery
service manually. For example, on LynxOS systems, multicast is not used for discovery by default; you
will need to configure the addresses it will use. For more information about these situations, and how to
configure discovery, see Automatic Application Discovery, in the RTI Connext DDS Core Libraries Get-
ting Started Guide.

1For example: $(APOGEE_HOME)/lynx/pcc/ive/bin/j9

Chapter 3 Getting Started on INTEGRITY
Systems

This section provides simple instructions on configuring a kernel and running Connext DDS applic-
ations on an INTEGRITY system. Please refer to the documentation provided by Green Hills Sys-
tems for more information about this operating system.

This process has been tested on INTEGRITY 5.0.11 and assumes that applications are down-
loaded dynamically.

For more information on using Connext DDS on an INTEGRITY system, please see the RTI Con-
next DDS Core Libraries Platform Notes.

The first section describes Building the Kernel (Section 3.1 below).

The next section guides you through the steps to build and run an rtiddsgen-generated example
application on an INTEGRITY target: Building and Running a Hello World Example (Section 3.2
on the next page).

Before you start, make sure that you know how to:

1. Boot/reboot your INTEGRITY target.

2. Get the serial port output of your target (using telnet, minicom or hyperterminal).

3.1 Building the Kernel

Before you start, you should be familiar with running a kernel on your target.

1. Launch MULTI.

2. Select File, Create new project.

3. Choose the INTEGRITY Operating System and make sure the path to your INTEGRITY
distribution is correct.

4

3.2 Building and Running a Hello World Example

5

4. Choose a processor family and board name.

5. Click Next.

6. Choose Language: C/C++.

7. Project type: INTEGRITY Kernel.

8. Choose a project directory and name.

9. Click Next.

10. In Kernel Options, choose at least: 'TCP/IP stack'. Everything else can be left to default.

11. In the Project Builder, you should see the following file:

<name of your project>_default.ld (under src/resource.gpj).
12. Right-click the file and edit it; the parameters of interest are the following:

CONSTANTS
{

INTEGRITY_DebugBufferSize = 0x10000
INTEGRITY_HeapSize = 0x100000
INTEGRITY_StackSize = 0x4000
INTEGRITY_DownloadSize = 0x400000
INTEGRITY_MaxCoreSize = 0x200000

}

Note that most Connext DDS applications will require the StackSize and HeapSize para-
meters to be increased from their default value. The values shown above are adequate to run
the examples presented in this document.

13. Once you have changed the desired values, right-click the top-level project and select Build.

14. Run the new kernel on your target.

3.2 Building and Running a Hello World Example

This section describes the basic steps for building and running an rtiddsgen-generated example on an
INTEGRITY target:

l Generate Example Code and Project File with rtiddsgen (Section 3.2.1 on the facing page)

l Build the Publish and Subscribe Applications (Section 3.2.2 on the facing page)

l Connect to the INTEGRITY Target fromMULTI (Section 3.2.3 on page 7)

l Load the Application on the Target (Section 3.2.4 on page 7)

l Run the Application and View the Output (Section 3.2.5 on page 8)

3.2.1 Generate Example Code and Project File with rtiddsgen

3.2.1 Generate Example Code and Project File with rtiddsgen

To create the example applications:

1. Create a directory to work in. In this example, we use a directory called myhello.

2. In themyhello directory, create a file called HelloWorld.idl that contains a user-defined data type:

struct HelloWorld
{

string<128> msg;
};

3. Use the rtiddsgen utility to generate sample code and a project file as described in Generating Code
with RTI Code Generator, in the RTI Connext DDS Core Libraries Getting Started Guide. Choose
either C or C++.

For C:

rtiddsgen -language C -example <architecture> HelloWorld.idl

For C++:

rtiddsgen -language C++ -example <architecture> HelloWorld.idl

In yourmyhello directory, you will see that rtiddsgen has created a number of source code files
(described in the RTI Connext DDS Core Libraries User’s Manual), additional support files (not lis-
ted here), and a project file:HelloWorld_default.gpj.

4. Edit the example code to modify the data as described in Generating Code with RTI Code Gen-
erator, in the RTI Connext DDS Core Libraries Getting Started Guide.

3.2.2 Build the Publish and Subscribe Applications

1. In a plain text editor, edit the top-level project file that was generated by rtiddsgen, HelloWorld_
default.gpj, so that it points to the path to your INTEGRITY distribution:

l For INTEGRITY 5 systems:

Under [Project], add the argument -os_dir=<path to your INTEGRITY distribution>
l For INTEGRITY 10 systems:

Setmacro __OS_DIR=<path to your INTEGRITY distribution>

2. Save your changes.

3. Launch MULTI.

6

3.2.3 Connect to the INTEGRITY Target fromMULTI

7

4. Open the top-level project file, HelloWorld_default.gpj, in MULTI:
l For INTEGRITY 5 systems:

Select File, Open Project Builder, then open the project file from there.
l For INTEGRITY 10 systems:

Select Components, Open Project Manager, then open the project file from there.

5. Right-click on the top-level project and build the project.

3.2.3 Connect to the INTEGRITY Target from MULTI

1. From the MULTI Launcher, click the Connection button and open the Connect option. Your mode
should be Download (Download and debug application).

2. Create a custom connection with the following line:

For targets that only support the older INDRT connection mechanism:

rtserv -port udp@<ip address of your INTEGRITY target>

For targets that support the newer INDRT2 connection mechanism:

rtserv2 -port udp@<ip address of your INTEGRITY target>

(You might be able to see the IP address of your target on the output of its boot sequence.)

You only have to create your connection once, MULTI will remember it.
3. Make sure your target has booted; then select Connect. You should see a new window with the Ker-

nel Tasks running on your target.

3.2.4 Load the Application on the Target

1. In the task window, select Target, Load module.

2. Browse for your executables; there should be 3 of them in your project directory:

l HelloWorld_publisherdd

l HelloWorld_subscriberdd

l posix_shm_manager

3. Load the posix_shm_manager first, it will appear in the Tasks window as a separate address space
and start running by itself once loaded. It will allow you to use the shared memory transport on your
target.

3.2.5 Run the Application and View the Output

Note: The default rtiddsgen-generated code tries to use shared memory, so unless you have manu-
ally disabled it, your application will crash if you do not load the shared memory manager before
running the application.

4. Load the publisher, subscriber, or both. They should appear in separate address spaces in the Tasks
window.

3.2.5 Run the Application and View the Output

1. Select the task called "Initial" in your application's address space in the Tasks window; you can
either click the play button to run it, or click the debug button to debug it.

Note that with some versions of INTEGRITY, it is difficult to pass arguments to applications. Argu-
ments can always be hard-coded in your application before compiling it. To quickly experiment
with multiple runs of the application with different arguments, one option is to run your application
within the debugger. Then you can set a breakpoint before the arguments are used and change them
at that point.

2. From the Tasks window, select Target, Show Target Windows. This will show you the standard
output of your target.

Some errors messages may still go through the serial port, so you should leave your serial port con-
nection open and monitor it as well.

To reboot the target:

Go to your serial port connection monitor and type 'reset'.

8

Chapter 4 Getting Started on VxWorks 6.x
Systems

This section provides simple instructions to configure a kernel and run Connext DDS applications
on VxWorks 6.x systems. Please refer to the documentation provided by Wind River Systems for
more information on this operating system.

This chapter will guide you through the process of generating, compiling, and running a Hello
World application on VxWorks 6.x systems by expanding on the VxWorks section of the
RTI Connext DDS Core Libraries Platform Notes; please read the following alongside that section.

The first section describes how to build the kernel:

l Building the Kernel (Section 4.1 below)

The next section guides you through the steps to generate, modify, build, and run the provided
example HelloWorld application on a VxWorks target:

l Building and Running a Hello World Example (Section 4.2 on page 15)

4.1 Building the Kernel

Before you start, you should be familiar with running a kernel on your target.

1. Launch Workbench.

2.
Select File, New, VxWorks Image Project

9

4.1 Building the Kernel

10

3. Select the desired operating system; click Next.

4. Give your project a name; click Next.

4.1 Building the Kernel

5. Choose the board support package (BSP) based on your hardware.

6. For VxWorks 6.9: Select the correct Address mode.

7. For the Tool chain option, selectGNU; click Next.

11

4.1 Building the Kernel

12

8. Select SMP support if your BSP supports it and you want to enable symmetric multi-processing cap-
ability in the kernel. To see if your architecture supports IPv6, consult the Platform Notes.

9. Select PROFILE_DEVELOPMENT.

4.1 Building the Kernel

10. Leave everything else at its default setting. Click Finish.

Your project will be created at this time.
11. From the Project Explorer, open Kernel Configuration.

12. Either:

a. For VxWorks 6.8 and higher:

Add Operating System Components, Kernel Components, _thread variables support.
b. For VxWorks 6.7, ONLY if you have enabled SMP support in the kernel:

13

4.1 Building the Kernel

14

Add Operating System Components, Kernel Components, _thread variables support.
13. Make sure you have the following components enabled: INCLUDE_TIMESTAMP, INCLUDE_

SHARED_DATA.

Note: If you are unwilling or unable to build shared-memory support into your kernel, see the
VxWorks section of the RTI Connext DDS Core Libraries Platform Notes.

14. If you plan to use the Request/Reply C++ API in kernel mode, you will need the following com-
ponents: FOLDER_CPLUS, FOLDER_CPLUS_STDLIB, and CPLUS_LANG.

If you plan to use the conventional Connext DDS C++ API, but not the Request/Reply C++ API ,
you can forego the STL includes, as well as the exceptions support, provided you don't use those
C++ features in your application.

15. If you want support for RTP shared libraries, you need to add the component INCLUDE_SHL.
Note that shared libraries are not supported in all VxWorks architectures.

16. For VxWorks 6.4 and below, add the following modules:

l ZBUF Socket (under Network Components, Network Socket Components)

The Connext DDS libraries for VxWorks Kernel Mode use ZBUF sockets. If you do not add
this module to the kernel, you will see undefined symbols when loading the Connext DDS
application on the target.

l IGMP v4 (under Network Components, Network Protocol Components, Network IPv4 Com-
ponents)

This will enable multicast for the target.
17. If you plan on accessing your target via the network, you may need the following modules:

l Telnet Server (under Network Components, Applications, Telnet Components)

This will allow you to telnet into the target.
l NFS client all (under Operating System Components, IO System Components, NFS com-
ponents)

This will allow you to see networked file systems from the target (contact your system admin-
istrator to find out if you have them set up).

If you are running applications in RTP mode, you may increase Operating System components, Real
Time Processes components, Number of entries in an RTP fd table from the default value of 20 to a
higher value such as 256. This will enable you to open more sockets from an RTP application.

Compile the Kernel by right-clicking the project and selecting Build project.

The Kernel and associated symbol file will be found in <your project directory>/default/.

4.2 Building and Running a Hello World Example

4.2 Building and Running a Hello World Example

This section will guide you through the steps required to successfully run an rtiddsgen-generated example
application on a VxWorks 6.x target using kernel mode or RTP mode.

4.2.1 Generate Example Code and Makefile with rtiddsgen

To create the example applications:

1. Set up the environment on your development machine: set the NDDSHOME environment variable
and update your PATH as described in Step 1, Set up the Environment, in the RTI Connext DDS
Core Libraries Getting Started Guide.

2. Create a directory to work in. In this example, we use a directory called myhello.

3. In themyhello directory, create a file called HelloWorld.idl that contains a user-defined data type:

struct HelloWorld
{

string<128> msg;
};

4. Use the Connext DDS (rtiddsgen) utility to generate sample code and a makefile as described in
Generating Code with RTI Code Generator, in the RTI Connext DDS Core Libraries Getting Star-
ted Guide. Choose either C or C++.

Note: The architecture names for Kernel Mode and RTP Mode are different.

For C:

rtiddsgen -language C -example <architecture> HelloWorld.idl

For C++:

rtiddsgen -language C++ -example <architecture> HelloWorld.idl

Edit the generated example code as described in Generating Code with RTI Code Generator, in the
RTI Connext DDS Core Libraries Getting Started Guide.

4.2.2 Building and Running an Application as a Kernel Task

There are two ways to build and run your Connext DDS application:

15

4.2.2.1 Using the Command Line

16

l Using the Command Line (Section 4.2.2.1 below)

l Using Workbench (Section 4.2.2.2 on the facing page)

4.2.2.1 Using the Command Line

1. Set up your environment with the wrenv.sh script or wrenv.bat batch file in the VxWorks base dir-
ectory.

2. Set the NDDSHOME environment variable as described in Step 1, Set up the Environment, in the
RTI Connext DDS Core Libraries Getting Started Guide.

3. Build the Publisher and Subscriber modules using the generated makefile. You may have to modify
the HOST_TYPE, compiler and linker paths to match your development setup.

4. To use dynamic linking, remove the Connext DDS libraries from the link objects in the generated
makefile.

(Note: steps 5-7 can be replaced by establishing a telnet connection to the VxWorks target. In that case,
Workbench does not need to be used and both the Host Shell and Target Console will be redirected to the
telnet connection. Once in the C interpreter (you will see the prompt '->' in the shell) you can type cmd
and then help for more information on how to load and run applications on your target.)

5. Launch Workbench.

6. Make sure your target is running VxWorks and is added to the Remote Systems panel. (To add a
new target, click the New Connection button on the Remote System panel, selectWind River
VxWorks 6.x Target Server Connection, click Next, enter the Target name or address, and click
Finish).

7. Connect to the target and open a host shell by right-clicking the connected target in the Target
Tools sub-menu.

8. In the shell:

If you are using static linking: Load the .so file produced by the build:

>cd "directory">
ld 1 < HelloWorld_subscriber.so

(Where ‘directory’ refers to the location of the generated object files.) If you are using dynamic link-
ing: load the libraries first, in this order: libnddscore.so, libnddsc.so, libnddscpp.so; then load the
.so file produced by the build.

9. Run the subscriber_main or publisher_main function. For example:

4.2.2.2 Using Workbench

>taskSpawn "sub", 255, 0x8, 150000, subscriber_main, 38, 10

In this example, 38 is the domain ID and 10 is the number of samples.

4.2.2.2 Using Workbench

1. Start Workbench.

2. Select File, New, VxWorks Downloadable Kernel Module Project.

3. Give your project a name; click Next.

4. Select the default options until you reach the dialog titled Build Specs. In this dialog, choose the
desired build spec.

17

4.2.2.2 Using Workbench

18

5. Leave everything else at its default setting; click Finish.

Your project will be created at this time.
6. Copy the source files and headers generated by rtiddsgen in Generate Example Code and Makefile

with rtiddsgen (Section 4.2.1 on page 15) into the project directory.

7. View the added files by right-clicking on the project in Project Explorer, then selecting Refresh to
see the files.

8. Open the project Properties by right-clicking on the project in Project Explorer and selecting Prop-
erties.

9. In the dialog box that appears, select Build Properties in the navigation pane on the left.

4.2.2.2 Using Workbench

10. In the Build Macros tab:

Add -DRTI_VXWORKS to DEFINES in the Build macro definitions.

If you are using static linking, in the Variables tab:

19

4.2.2.2 Using Workbench

20

l Add to LIBPATH: -L$(NDDSHOME)/lib/<architecture>

l Add to LIBS: -lnddscppz -lnddscz -lnddscorez (in that order)

(If you are using dynamic linking, there are no changes required to LIBPATH or LIBS.)
11. In the Build Paths tab, add both of these:

-I$(NDDSHOME)/include

-I$(NDDSHOME)/include/ndds

12. If you are using dynamic linking: In the Libraries tab, add the Library directives shown below:

4.2.3 Building and Running an Application as a Real-Time Process

13. Click Apply to save the changes, then click OK to exit the Properties menu.

14. Build the project by right-clicking on the project in Project Explorer, then selecting Build.

15. Run the application as described starting in Step 5 in the 'Using the Command Line' section, except
load HelloWorld.out instead ofHelloWorld_subscriber.so when you get to Step 8.

4.2.3 Building and Running an Application as a Real-Time Process

There are two ways to build and run your Connext DDS RTP application:

l Using the Command Line (Section 4.2.3.1 below)

l Using Workbench (Section 4.2.3.2 on the next page)

4.2.3.1 Using the Command Line

1. Generate the source files and the makefile with RTI Code Generator (rtiddsgen).

Note: The architecture names for Kernel Mode and RTP Mode are different.

Please refer to the RTI Code Generator User’s Manual for more information on how to use rtidds-
gen.

2. Set up your environment with the wrenv.sh script or the wrenv.bat batch file in the VxWorks base
directory.

3. Set the NDDSHOME environment variable as described in Step 1, Set up the Environment, in the
RTI Connext DDS Core Libraries Getting Started Guide.

4. Build the Publisher and Subscriber modules using the generated makefile. You may need to modify
the HOST_TYPE, compiler and linker paths to match your development setup.

21

4.2.3.2 Using Workbench

22

Notes:
l Steps 5-12 can be replaced by establishing a telnet connection to the VxWorks target. In that
case, Workbench does not need to be used and both the Host Shell and Target Console will
be redirected to the telnet connection. Once in the C interpreter (you will see a prompt '->' in
the shell) you can type cmd and then help for more information on how to load and run
applications on your target.)

l If you want to dynamically link your RTP to the RTI libraries (VxWorks 6.3 and above
only), make the following modifications the generated makefile:

LIBS = -L$(NDDSHOME)/lib/<architecture> -non-static -lnddscpp \-
lnddsc -lnddscore $(syslibs_<architecture>)

5. Add to the LD_LIBRARY_PATH environment variable the path to your RTI libraries as well as
the path to libc.so.1 of your VxWorks installation to launch your RTP successfully.

6. Launch Workbench.

7. Make sure your target is running VxWorks.

8. Connect to the target with the target manager and open a host shell and a Target Console Tool to
look at the output. Both are found by right-clicking the connected target in the Target Tools sub-
menu.

9. Right-click on your target in the Target Manager window, then select Run, Run RTP on Target.

10. Set the Exec Path on Target to the HelloWorld_subscriber.vxe or the HelloWorld_pub-
lisher.vxe file created by the build.

11. Set the arguments (domain ID and number of samples, using a space separator).

A Stack size of 0x100000 should be sufficient. If your application doesn't run, try increasing this
value.

12. Click Run.

4.2.3.2 Using Workbench

1. Start Workbench.

2. Select File, New, VxWorks Real Time Process Project.

3. Give your project a name; click Next.

4. You can select the default options until you reach the dialog titled Build Specs. In this dialog,
choose the desired build spec:

4.2.3.2 Using Workbench

5. Leave everything else at its default setting; click Finish.

Your project will be created at this time.
6. Copy the source and header files generated by rtiddsgen in Generate Example Code and Makefile

with rtiddsgen (Section 4.2.1 on page 15) into the project directory. There can only be onemain()
in your project, so you must choose either a subscriber or a publisher. If you want to run both, you
will need to create two separate projects.

7. View the added files by right-clicking on the project in Project Explorer, then selecting Refresh to
see the files.

8. Open the project Properties by right-clicking on the project in Project Explorer and selecting Prop-
erties.

9. In the dialog box that appears, select Build Properties in the navigation pane on the left.

23

4.2.3.2 Using Workbench

24

10. In the Build Macros tab: Add -DRTI_VXWORKS -DRTI_RTP to DEFINES in the Build macro
definitions.

If you are using static linking, in the Variables tab:

4.2.3.2 Using Workbench

l Add to LIBPATH: -L/(NDDSHOME)/lib/<architecture>

l Add to LIBS: -lnddscppz -lnddscz -lnddscorez (in that order)

If you are using dynamic linking, in the Variables tab:
l Add to LIBS: -non-static -lnddscpp -lnddsc -lnddscore (in that order)

11. In the Build Paths tab, add:

l -I$(NDDSHOME)/include

l -I$(NDDSHOME)/include/ndds

12. Click Apply to save the changes, then click OK to exit the Properties menu.

13. Build the project, by right-clicking on the project in Project Explorer, then selecting Build.

14. Run the application as described starting in Step 5 in the Command Line section above.

25

Chapter 5 Getting Started on VxWorks 653
Platform v2.3 Systems

This section provides simple instructions on how to configure a kernel and run Connext DDS
applications on a VxWorks 653 Platform v2.3 system. Please refer to the documentation provided
by Wind River Systems for more information, as well as the VxWorks section of the RTI Connext
DDS Core Libraries Platform Notes.

Developing a complete system typically involves the cooperation of developers who play the fol-
lowing principal roles:

l A platform provider, who develops the platform

l An application developer, who develops applications

l A system integrator, who designs and specifies the module, and integrates a set of applic-
ations with a platform to create a module

For more information on these roles, please see the VxWorks 653 Configuration and Build Guide.

This section assumes the above distribution of development responsibilities, with the Connext
DDS Core Libraries being a part of the application. This section is targeted towards platform pro-
viders, application developers, and system integrators.

For platform providers, this section indicates what your system must provide to Connext DDS.
Platform providers must provide a platform that application developers will use to create the applic-
ation. The provided platform must support worker tasks and the socket driver. For the actual list of
components, refer to the RTI Connext DDS Core Libraries Platform Notes.

For application developers, this section describes how to create Connext DDS applications.
Application developers must use the platform provided by the platform provider. To create a Con-
next DDS application, follow the steps to Generate example code with rtiddsgen. (Section on page
37) through Configure properties for the application. (Section on page 38)

26

5.1 Setting up Workbench for Building Applications

27

For system integrators, this section describes how to combine the platform from the platform provider,
and the application from the application developer, and create the system to be deployed. System integ-
rators must create an integration project using the module OS and partition OS provided by the platform
provider, and the application provided by the application provider. To create a system capable of running
Connext DDS applications, the system integrator needs to create a ConfigRecord considering the require-
ments noted in Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms (Section 5.2 on the
facing page).

For someone creating a Connext DDS application, this section provides an example from the ground
up.

5.1 Setting up Workbench for Building Applications

Follow the steps in one of the following sections, depending on which socket library you want to install:

Installing the Wind River Services Socket Library (Section 5.1.1 below)

or

Installing the RTI Socket Library (Section 5.1.2 below)

5.1.1 Installing the Wind River Services Socket Library

1. Install Workbench.

2. Install partition_socket_driver_v1.3. Follow instructions fromWind River for the installation.

For this example, the following steps were used for the installation:
a. Copy the socket driver files fromWind River to each BSP of interest. For example, for

sbc8641Vx653-2.3gcc3.3.2, copy the socket driver files into $(WIND_BASE)/tar-
get/config/wrSbc8641d.

b. Copy the socket library header files into $(WIND_BASE)/target/vThreads/h (no files
should be replaced or overwritten).

5.1.2 Installing the RTI Socket Library

1. Install Workbench.

2. Install vx_653_socket.<Connext DDS version>.

a. Copy the socket driver files from RTI to each BSP of interest. Once you extract the RTI
Socket Library zip file into your <NDDSHOME> installation directory, copy the contents of
vx_653_socket.<Connext DDS version>\bsp\src into $(WIND_BASE)
/target/config/<BSP> (choose your BSP of interest. For instance, wrSbc8641d).

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

b. Link the vx_653_socket.<Connext DDS version> library to the application. You can find
the libraries (release, debug, static, and dynamic) within your NDDSHOME installation dir-
ectory. For example, for the dynamic release library, you would link $NDDSHOME/-
partition_os/lib/<architecture>/libvx_653_socket_posWrapper.so.

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3
Platforms

This section contains instructions for creating Connext DDS applications for the VxWorks 653 2.3 plat-
forms (sbc8641Vx653-2.3gcc3.3.2 and simpcVx653-2.3gcc3.3.2). The screenshots show the process for
sbc8641Vx653-2.3gcc3.3.2.

1. Create an integration project with two partitions (one for the publisher, one for the subscriber). Fol-
low the instructions fromWind River for doing this. The following screenshots will guide you
through the process.

a. Create a new Workbench project.

b. For the Target operating system, select VxWorks 653 2.3.

28

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

29

c. For Build type, select Integration Project.

d. Create a project named helloWorld in the workspace.

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

e. Select the appropriate Board Support package. Make sure the debug Build spec is selected.
This example assumes the wrSbc8641d board support package is selected; alternatively, you
could select simpc.

f. Select the default options for adding the ConfigRecord, ModuleOS, and PartitionOS. Make
sure the “Add a reference to the corresponding project” checkbox is selected.

30

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

31

g. Create two partitions, helloWorld_publisher and helloWorld_subscriber, to create a Pub-
lisher and a Subscriber application, respectively. Make sure the “Add a reference to the cor-
responding project” checkbox is selected.

h. Now you are ready to create the Integration Project.

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

i. Click Finish to create the Integration project.

This will create an integration project with ConfigRecord,ModuleOS, PartitionOS and two
partitions, helloWorld_publisher and helloWorld_subscriber.

2. Depending on your platform, open either helloWorld_ConfigRecord/wrSbc8641d_default.xml or
simpc_default.xml and make the changes noted below. By default, the file opens in design mode.

32

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

33

You may wish to switch to source mode, which makes it easier to copy and paste sections, which is
required in later steps.

a. Under Applications:

l Change the application name from wrSbc8641d_part1 or simpc_part1 to hel-
loWorld_publisher.

Note: Your application name should not be greater than 30 characters.
l InMemorySize, make these changes, depending on your platform:

sbc8641Vx653-2.3gcc3.3.2 simpcVx653-2.3gcc3.3.2

MemorySizeBSS 0x5000 No change (keep default of 0x10000)

MemorySizeText 0x7F0000 0x640000

MemorySizeData 0x2000 No change (keep default of 0x10000)

MemorySizeRoData 0xE0000 0xf0000

For C++ only:

Change theMemorySize tag so it ends with ‘>’ (not ‘/>’).

For sbc8641Vx653-2.3gcc3.3.2: WithinMemorySize, add:

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

<AdditionalSection Name=".gcc_except_table" Size="0x2000"
Type="DATA"/>

For simpcVx653-2.3gcc3.3.2:WithinMemorySize, add:

<AdditionalSection Name=".gcc_except_table" Size="0x10000"
Type="DATA"/>

RemoveMemorySizePersistentData andMemorySizePersistentBss.

CloseMemorySize with </MemorySize>.

It should look like this when you are done:

For sbc8641Vx653-2.3gcc3.3.2:

<MemorySize MemorySizeBss="0x5000"
MemorySizeText="0x7F0000"
MemorySizeData="0x2000"
MemorySizeRoData="0xE0000">

<AdditionalSection Name=".gcc_except_table"
Size="0x2000" Type="DATA"/>

</MemorySize>

For simpcVx653-2.3gcc3.3.2:

<MemorySize MemorySizeBss="0x10000"
MemorySizeText="0x640000"
MemorySizeData="0x10000"
MemorySizeRoData="0xf0000">

<AdditionalSection Name=".gcc_except_table"
Size="0x10000" Type="DATA"/>

</MemorySize>

l Create a copy of the application helloWorld_publisher and rename it helloWorld_
subscriber.

b. Under Partitions:

l Change the partition name from wrSbc8641d_part1 or simpc_part1 to helloWorld_
publisher.

l Change the Application NameRef from wrSbc8641d_part1 or simpc_part1 to hel-

34

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

35

loWorld_publisher.

l Under Settings, make these changes, depending on your platform:

sbc8641Vx653-2.3gcc3.3.2 simpcVx653-2.3gcc3.3.2

RequiredMemorySize 0x2000000 0x2000000

numWorkerTasks 10 10

Create a copy of the partition application helloWorld_publisher and rename it helloWorld_
subscriber. Change its ID to 2 and its Application NameRef to helloWorld_subscriber.

c. Under Schedules:

l Rename PartitionWindow PartitionNameRef from wrSbc8641d_part1 or simpc_
part1 to helloWorld_publisher.

l Create a copy of the PartitionWindow, and change PartitionNameRef to hel-
loWorld_subscriber.

l Add another PartitionWindow, with PartitionNameRef “SPARE” and Duration
0.05. This partition window schedules the kernel, allowing time in the schedule for sys-
tem activities like network communications.

l Optionally:

i. If you want only one of the applications to run (helloWorld_publisher or hel-
loWorld_subscriber), then you only need a partition window for the one you
want to run.

ii. If you do not want the Connext DDS application to run immediately when the
system boots up, change the schedule ID to non-zero and add a SPARE schedule
with ID 0.

d. Under HealthMonitor:

l In PartitionHMTable Settings, change TrustedPartition NameRef from wrSb-
c8641d_part1 or simpc_part1 to helloWorld_publisher. This is an optional field, so
it can even be removed from the configuration.

l Optionally, change the ErrorActions from hmDefaultHandler to
hmDbgDefaultHandler, in case you want the partitions to stop and not restart on
exceptions.

e. Under Payloads:

l Change PartitionPayload NameRef from wrSbc8641d_part1 or simpc_part1 to hel-
loWorld_publisher.

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

l Create a copy of the PartitionPayload, and change NameRef to helloWorld_sub-
scriber.

f. Save the changes to wrSbc8641d_default.xml or simpc_default.xml, depending on your
platform.

3. For simpcVx653-2.3gcc3.3.2 only:

a. Open helloWorld_ConfigRecord/simpc.xml.

b. Change the PhysicalMemory Size to 0x04000000.

c. In the ramPayloadRegion tag, change Base_Address to 0x23000000.

d. Change the payloadMemory Size to 0x2000000.

e. Save the changes to simpc.xml. After the changes, it should look like this:

<PhysicalMemory Size="0x04000000" Base_Address="0x20000000">
<kernelMemoryRegion Size="0x00600000"/>
<kernelConfigRecordRegion Size="0x00010000"/>
<kernelPgPool Size="0x00200000"/>
<portRegion Size="0x00200000"/>
<hmLogRegion Size="0x00100000"/>
<ramPayloadRegion Size="0x00000000" Base_Address="0x23000000"/>
<aceMemoryRegion Size="0x00000000" Base_Address="0x20C00000"/>
<userMemoryRegion Size="0x0b000000" Base_Address="0x20C00000"/>

</PhysicalMemory>
<payloadMemory Size="0x2000000" Base_Address="0x0"/>

4. Under helloWorld_ModuleOS, Kernel Configuration:

a. Include the socket library component. Choose one of the following:

l Include the Wind River Socket Library from
hardware->peripherals->
BSP configuration variants->
Socket I/O Device [INCLUDE_SOCKET_DEV].

Or
l Include the RTI Socket Library from
hardware->peripherals->
BSP configuration variants->
RTI's Socket I/O Device [INCLUDE_RTI_SOCKET_DEV].

b. Include development tool components->
debug utilities [INCLUDE_DEBUG_UTIL]. This is needed to enable worker tasks.

36

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

37

c. Optionally, include target-resident shell components, and any other components you want to
include in the ModuleOS. Note that the target-resident shell component may be too large to
include in SimPC without additional memory tuning.

d. Save the changes to Kernel Configuration.

See the RTI Connext DDS Core Libraries Platform Notes for a complete list of required
kernel components for each platform.

5. Build the target helloWorld_ModuleOS->ADD_NEEDED.

6. Generate example code with rtiddsgen.

a. Create a directory to work in. In this example, we use a directory called myhello.

b. In themyhello directory, create a file called HelloWorld.idl that contains a user-defined data
type:

struct HelloWorld {
string<128> msg;

};

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

c. Use rtiddsgen to generate sample code and a makefile, as described in Generating Code with
RTI Code Generator, in the RTI Connext DDS Core Libraries Getting Started Guide. Choose
either C or C++.

For C:

rtiddsgen -language C -example <architecture> HelloWorld.idl

For C++:

rtiddsgen -language C++ -example <architecture> HelloWorld.idl

The supported values for <architecture> are listed in the Release Notes (RTI_ConnextDDS_
CoreLibraries_ReleaseNotes.pdf), such as sbc8641Vx653-2.3gcc3.3.2 or simpcVx653-
2.3gcc3.3.2.

d. Edit the generated example code as described in Generating Code with RTI Code Generator,
in the RTI Connext DDS Core Libraries Getting Started Guide.

7. Import the generated code into the application.

a. Right-click helloWorld_publisher and select Import.

b. In the Import wizard, selectGeneral, File System, then click Next.

c. Browse to themyhello directory.

d. Select the generated files, exceptHelloWorld_subscriber.

e. If and only if you are using the Wind River socket library: import sockLib.c from the socket
library into the project.

f. Right-click usrAppInit.c and delete it.

g. Repeat the same process for helloWorld_subscriber, this time importing HelloWorld_sub-
scriber instead ofHelloWorld_publisher.

8. Configure properties for the application.

a. Right-click helloWorld_publisher and select Properties.

i. Select Build Properties in the selection list on the left.

ii. In the Build Macros tab:

l Add a new macro, NDDSHOME, and set its value to the location where Con-
next DDS is installed. If this is in a directory with spaces in the path (such as Pro-
gram Files), put quotation marks around the whole path. For the path, use
forward slashes ("/"), not backslashes ("\").

38

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

39

l Change the BLACKBOX value to helloWorld_publisher.

iii. For C++ only:

l In the Build Tools tab, select Build tool: C++-Compiler.

l Change Suffixes to *.cxx.

iv. Click OK.

b.
For C: Right-click helloWorld_publisher.

For C++: Right-click helloWorld_publisher, Build Targets,
helloWorld_publisher-pm.

c. Select Properties.

d. In the Build Macros tab, add -DRTI_VXWORKS -DRTI_VX653 to DEFINES.

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

e. In the Build Paths tab, select the appropriate ‘Active Build Spec’ setting (such as PPC604gnu
or SIMNTgnu). Then add these include directories, depending on your platform:

l sbc8641Vx653-2.3gcc3.3.2:

-I$(WIND_BASE)/target/config/wrSbc8641d

-I$(NDDSHOME)/include

-I$(NDDSHOME)/include/ndds

l simpcVx653-2.3gcc3.3.2

-I$(WIND_BASE)/target/config/simpc

-I$(NDDSHOME)/include

-I$(NDDSHOME)/include/ndds

For sbc8641Vx653-2.3gcc3.3.2, the Build Paths tab will look like this:

40

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

41

f. In the Libraries tab:

Add the following files, depending on your platform and language:

sbc8641Vx653-2.3gcc3.3.2 simpcVx653-2.3gcc3.3.2

For C++ Only:

$(WIND_BASE)/target/vThreads/lib/objPPC604gnuvx/
vThreadsCplusComponent.o

For C++ Only:

$(WIND_BASE)/target/vThreads/lib/objSIMNTgnuvx/
vThreadsCplusComponent.o

For C++ Only:

$(WIND_BASE)/target/vThreads/lib/objPPC604gnuvx/
vThreadsCplusLibraryComponent.o

For C++ Only:

$(WIND_BASE)/target/vThreads/lib/objSIMNTgnuvx/
vThreadsCplusLibraryComponent.o

For all languages:

$(NDDSHOME)/lib/
sbc8641Vx653-2.3gcc3.3.2/libnddscore.so

$(NDDSHOME)/lib/
sbc8641Vx653-2.3gcc3.3.2/libnddsc.so

For all languages:

$(NDDSHOME)/lib/
simpcVx653-2.3gcc3.3.2/libnddscore.so

$(NDDSHOME)/lib/
simpcVx653-2.3gcc3.3.2/libnddsc.so

For C++ Only:

$(NDDSHOME)/lib/
sbc8641Vx653-2.3gcc3.3.2/libnddscpp.so

For C++ Only:

$(NDDSHOME)/lib/
simpcVx653-2.3gcc3.3.2/libnddscpp.so

Make sure you have added the libraries as fully qualified names (without -l or -L).

5.3 Running Connext DDS Applications on an Sbc8641d Target

If and only if you are using the RTI socket library: Add one of the following libraries to link
with. This is an example for sbc8641Vx653-2.3gcc3.3.2:

Dynamic release
$(NDDSHOME)/partition_os/lib/ sbc8641Vx653-2.3gcc3.3.2/

libvx_653_socket_posWrapper.so

Dynamic debug
$(NDDSHOME)/partition_os/lib/ sbc8641Vx653-2.3gcc3.3.2/

libvx_653_socket_posWrapperd.so

Static release
$(NDDSHOME)/partition_os/lib/ sbc8641Vx653-2.3gcc3.3.2/

libvx_653_socket_posWrapperz.a

Static debug
$(NDDSHOME)/partition_os/lib/ sbc8641Vx653-2.3gcc3.3.2/

libvx_653_socket_posWrapperzd.a

g.
Click OK.

For sbc8641Vx653-2.3gcc3.3.2 and the Wind River socket library, it should look like this:

For sbc8641Vx653-2.3gcc3.3.2 and the RTI socket library, it should look like the above
image plus the RTI socket library.

h. Repeat the same process for helloWorld_subscriber.

9. Build the Integration Project.

5.3 Running Connext DDS Applications on an Sbc8641d Target

1. Boot up your target board with the kernel created by the Integration project.

2. If the Connext DDS applications are in schedule 0, they will start up automatically, and you should
see the publisher and subscriber communicating with each other.

42

5.3 Running Connext DDS Applications on an Sbc8641d Target

43

3. If the Connext DDS applications are not in schedule 0, use this command to change to the desired
schedule: arincSchedSet <Schedule number>.

Chapter 6 Getting Started on VxWorks 653
v2.5.0.1 Systems

This chapter provides simple instructions on how to configure a kernel and run Connext DDS
applications on a VxWorks 653 version 2.5.0.1 system. Please refer to the documentation provided
by Wind River Systems for more information, as well as the RTI Core Libraries and Utilities Cus-
tom Support for VxWorks 653 Version 2.5.0.1 Platforms.

Developing a complete system typically involves the cooperation of developers who play the fol-
lowing principal roles:

l A platform provider, who develops the platform

l An application developer, who develops applications

l A system integrator, who designs and specifies the module, and integrates a set of applic-
ations with a platform to create a module

For more information on these roles, please see the VxWorks 653 Configuration and Build Guide.

This document assumes the above distribution of development responsibilities, with the Connext
DDS Core Libraries being a part of the application. This document is targeted towards platform
providers, application developers, and system integrators.

For platform providers, this chapter indicates what your system must provide to Connext DDS.
Platform providers must provide a platform that application developers will use to create the applic-
ation. The provided platform must support worker tasks and the socket driver. For the actual list of
components, refer to Table 9.3, “Building Instructions for VxWorks 653 Architectures,” in the Plat-
form Notes.

For application developers, this chapter describes how to create Connext DDS applications.
Application developers must use the platform provided by the platform provider. To create a Con-
next DDS application, follow the steps in Creating Connext DDS Applications for VxWorks 653

44

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

45

2.5.0.1 (Section 6.1 on the next page) (start with the step to Generate example code with rtiddsgen. (Sec-
tion on page 53), through the step to Configure properties for the application. (Section on page 54)).

For system integrators, this document describes how to combine the platform from the platform provider,
and the application from the application developer, and create the system to be deployed. System integ-
rators must create an integration project using the module OS and partition OS provided by the platform
provider, and the application provided by the application provider. To create a system capable of running
Connext DDS applications, the system integrator needs to create a ConfigRecord considering the require-
ments noted in the step to Edit the XML file in Creating Connext DDS Applications for VxWorks 653
2.5.0.1 (Section 6.1 below).

For someone creating a Connext DDS application, this document provides an example from the ground
up.

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

This section contains instructions for creating Connext DDS applications for the VxWorks 653 v2.5.0.1
platforms (ppce500v2Vx653-2.5gcc4.3.3). The screenshots show the process for this specific platform and
version of VxWorks. Note that these instructions will vary from those for other VxWorks 653 versions,
such as v2.3 and others.

1. Create an integration project with two partitions (one for the publisher, one for the subscriber). Fol-
low the instructions fromWind River for doing this. The following screenshots will guide you
through the process.

a. Create a new Workbench project.

b. For the Target operating system, select VxWorks 653 2.5.0.1.

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

c. For Build type, select Integration Project.

d. Create a project named helloWorld in the workspace.

e. Select the appropriate Board Support package. Make sure the debug Build spec is selected.
This example assumes the fsl_p2020_rdb_AMP_CORE0 board support package is selected.

46

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

47

f. Select the default options for adding the ConfigRecord, ModuleOS, and PartitionOS. Make
sure the “Add a reference to the corresponding project” check box is selected.

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

g. Create two partitions, helloWorld_publisher and helloWorld_subscriber, to create a Pub-
lisher and a Subscriber application, respectively. Make sure the “Add a reference to the cor-
responding project” check box is selected.

h. Now you are ready to create the Integration Project.

i. Click Finish to create the Integration project.

48

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

49

This will create an integration project with ConfigRecord,ModuleOS, PartitionOS and two
partitions, helloWorld_publisher and helloWorld_subscriber.

2. Edit the XML file. Depending on your platform, open fsl_b4860_qds_AMP_CORE0_default.xml
and make the changes noted below. By default, the file opens in design mode. You may want to
switch to source mode, which makes it easier to copy and paste sections, which is required in later
steps.

a. Under Applications:
i. Change the application name from fsl_b4860_qds_AMP_CORE0_part1 to hel-
loWorld_publisher.

ii. InMemorySize, make these changes:

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

l MemorySizeBss = "0x5000"

l MemorySizeText = "0xBFF000"

l MemorySizeData = "0xf000"

l MemorySizeRoData = "0xff000"

It should look like this when you are done:
<MemorySize MemorySizeBss="0x5000"

MemorySizeText="0xBFF000"
MemorySizeData="0xf000"
MemorySizeRoData="0xff000"/>

iii. Create a copy of the application helloWorld_publisher and rename it helloWorld_
subscriber.

iv. Change the application name from fsl_b4860_qds_AMP_CORE0_part1 to hel-
loWorld_publisher.

v. InMemorySize, make these changes:

l MemorySizeBss = "0x5000"

l MemorySizeText = "0xBFF000"

l MemorySizeData = "0xf000"

l MemorySizeRoData = "0xff000"

It should look like this when you are done:
<MemorySize MemorySizeBss="0x5000"

MemorySizeText="0xBFF000"
MemorySizeData="0xf000"
MemorySizeRoData="0xff000"/>

vi. Create a copy of the application helloWorld_publisher and rename it helloWorld_
subscriber.

b. Under Shared LibraryRegions, change MemorySize MemorySizeBss to 0x6000.

c. Under Partitions:
i. Change the partition name from fsl_b4860_qds_AMP_CORE0_part1 to hel-
loWorld_publisher.

ii. Change the Application NameRef from fsl_b4860_qds_AMP_CORE0_part2 to hel-
loWorld_publisher.

iii. Under Settings, make these changes:

50

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

51

l RequiredMemorySize = "0x1000000"

l numWorkers = "10"

l maxGlobalFDs = "50"

iv. Create a copy of the partition application helloWorld_publisher and rename it hel-
loWorld_subscriber. Change its ID to 2 and its Application NameRef to hel-
loWorld_subscriber.

d. Under Schedules:
i. Rename PartitionWindow PartitionNameRef from fsl_b4860_qds_AMP_CORE0_
part1 to helloWorld_publisher.

ii. Create a copy of the PartitionWindow and change PartitionNameRef to hel-
loWorld_subscriber.

iii. Add another PartitionWindow, with PartitionNameRef “SPARE” and Duration
0.05. This partition window schedules the kernel, allowing time in the schedule for sys-
tem activities like network communications.

iv. Optionally:

l If you want only one of the applications to run (helloWorld_publisher or hel-
loWorld_subscriber), then you only need a partition window for the one you
want to run.

l If you do not want the Connext DDS application to run immediately when the
system boots up, change the schedule ID to non-zero and add a SPARE schedule
with ID 0.

e. Under HealthMonitor:

i. In PartitionHMTable Settings, change TrustedPartition NameRef from fsl_b4860_
qds_AMP_CORE0_part1 to helloWorld_publisher. This is an optional field, so it
can even be removed from the configuration.

ii. Optionally, change the ErrorActions from hmDefaultHandler to
hmDbgDefaultHandler, in case you want the partitions to stop and not restart on
exceptions.

f. Under Payloads:

i. Change PartitionPayload NameRef from fsl_b4860_qds_AMP_CORE0_part1 to
helloWorld_publisher.

ii. Create a copy of the PartitionPayload, and change NameRef to helloWorld_sub-
scriber.

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

e. Save the changes to fsl_b4860_qds_AMP_CORE0_part1_default.xml.

3. Depending on the project example you are using, you may need to set the ramPayLoad size to
zero. If needed, go to the ConfigRecord project and modify the <BSP>.xml file (fsl_p2020_rdb_
AMP_CORE0.xml in this example) and set the rampPayloadRegion size to zero. It should look
like this after being modified:

4. Under helloWorld_ModuleOS, Kernel Configuration:

a. Include network components->network private components->FACE POSIX support
driver [INCLUDE_FACE_POSIX_SOCKET_DRV].

b. Include development tool components->
debug utilities [INCLUDE_DEBUG_UTIL]. This is needed to enable worker tasks.

52

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

53

c. Optionally, include target-resident shell components and any other components you want to
include in the ModuleOS. Note that the target-resident shell component may be too large and
you may need additional memory tuning.

d. Save the changes to Kernel Configuration.

See the RTI Core Libraries and Utilities Custom Support for VxWorks 652 Version 2.5.0.1
Platforms (RTI_CoreLibrariesAndUtilities_PlatformNotes_VxWorks653_v2.5.pdf) for
a complete list of required kernel components for each platform.

5. Build the target helloWorld_ModuleOS->ADD_NEEDED.

6. Generate example code with rtiddsgen.

a. Create a directory to work in. In this example, we use a directory called myhello.

b. In themyhello directory, create a file called HelloWorld.idl that contains a user-defined data
type:

struct HelloWorld {
string<128> msg;

};

c. Use rtiddsgen to generate sample code and a makefile, as described in Generating Code with
RTI Code Generator, in the RTI Connext DDS Core Libraries Getting Started Guide. Choose
either C or C++.

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

For C:

rtiddsgen -language C -example ppce500v2Vx653-2.5gcc4.3.3 HelloWorld.idl

For C++:

rtiddsgen -language C++ -example ppce500v2Vx653-2.5gcc4.3.3 HelloWorld.idl

For more information on the ppce500v2Vx653-2.5gcc4.3.3 architecture, please see the sep-
arate document, Custom Support for VxWorks 653 Version 2.5.0.1 Platforms.

d. Edit the generated example code as described in Generating Code with RTI Code Generator,
in the RTI Connext DDS Core Libraries Getting Started Guide.

7. Import the generated code into the application.
a. Right-click helloWorld_publisher and select Import.

b. In the Import wizard, selectGeneral, File System, then click Next.

c. Browse to themyhello directory.

d. Select the generated files, exceptHelloWorld_subscriber.

e. Right-click usrAppInit.c and delete it.

f. Repeat the same process for helloWorld_subscriber, this time importing HelloWorld_sub-
scriber instead ofHelloWorld_publisher.

8. Configure properties for the application.

a. Right-click helloWorld_publisher and select Properties.

i. Select Build Properties in the selection list on the left.

ii. In the Variables tab:

l Add a new variable, NDDSHOME, and set its value to the location where Con-
next DDS is installed. If this is in a directory with spaces in the path (such as Pro-
gram Files), put quotation marks around the whole path.

l Change the BLACKBOX value to helloWorld_publisher.

iii. For C++ only:

l In the Tools tab, select Build tool: C++-Compiler.

l Change Suffixes to *.cxx.

54

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

55

iv. Click OK.

b. For C: Right-click helloWorld_publisher.
For C++: Right-click helloWorld_publisher, Build Targets,
helloWorld_publisher-pm.

c. Select Properties.

d. In the Variables tab, add -DRTI_VXWORKS -DRTI_VX653 to DEFINES.

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

e. In the Paths tab, select the appropriate ‘Active Build Spec’ setting (such as PPCE6500gnu).
Then add these include directories:

l -I$(WIND_BASE)/target/config/fsl_p2020_rdb_AMP_CORE0

l -I$(NDDSHOME)/include

l -I$(NDDSHOME)/include/ndds

The Build Paths tab will look like this:

56

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

57

f. In the Libraries tab, add the following files, depending on your language. Note that in this
example we use RTI's dynamic libraries:

For C++:
$(WIND_BASE)/target/vThreads/lib/objPPCE6500gnuvx/vThreadsCplusComponent.o
$(WIND_BASE)/target/vThreads/lib/objPPCE6500gnuvx/vThreadsCplusLibraryComponent.o
$(WIND_BASE)/target/vThreads/lib/objPPCE6500gnuvx/vThreadsLocaleComponent.o
$(WIND_BASE)/target/vThreads/lib/objPPCE6500gnuvx/__ctype_tab.o
$(NDDSHOME)/lib/ppce500v2Vx653-2.5gcc4.3.3/libnddscore.so
$(NDDSHOME)/lib/ppce500v2Vx653-2.5gcc4.3.3/libnddsc.so
$(NDDSHOME)/lib/ppce500v2Vx653-2.5gcc4.3.3/libnddscpp.so

For C:
$(NDDSHOME)/lib/ppce500v2Vx653-2.5gcc4.3.3/libnddscore.so
$(NDDSHOME)/lib/ppce500v2Vx653-2.5gcc4.3.3/libnddsc.so

If you used RTI’s static libraries (rtiddscorez.a, rtiddscz.a, and/or rtiddscppz.a), make sure
to add this option to the linker command in the Tools tab within the Build Properties of your
partitions: "--whole-archive %Libraries% --no-whole-archive". You can see an example
in the following image:

g. Click OK.

For C++, it should look like this:

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1

h. Repeat the same process for helloWorld_subscriber.

9. Build the Integration Project.

10. Add the POSIX interfaces and objects to the partitionOS.

a. If you want to use POSIX API calls, you need to modify the following two files: hel-
loWorld_PartitionOS.xml andMakefile.vars from the partitionOS project.

58

6.2 Running Connext DDS Applications on a b4860 QDS Target

59

b. The XML file will look like this:

c. TheMakefile.vars file will look like this:

6.2 Running Connext DDS Applications on a b4860 QDS Target

1. Boot up your target board with the kernel created by the Integration project.

2. If the Connext DDS applications are in schedule 0, they will start up automatically, and you should
see the publisher and subscriber communicating with each other.

3. If the Connext DDS applications are not in schedule 0, use this command to change to the desired
schedule: arincSchedSet <Schedule number>.

Chapter 7 Getting Started on Wind River
Linux Systems

This section provides instructions on building and running Connext DDS applications on a Wind
River Linux system.

It will guide you through the process of compiling and running the Hello World application on a
Wind River Linux system.

In the following steps:

l Steps 1-5 must be executed on the host machine in a shell that has all the required envir-
onment variables. For details, see Step 1, Set up the Environment, in the RTI Connext DDS
Core Libraries Getting Started Guide.

l You need to know the name of your target architecture (look in your%NDDSHOME%\lib
directory). Use it in place of <architecture> in the example commands. Your architecture
might be ‘ppc85xxWRLinux2.6gcc4.3.2’.

l We assume that you have gmake installed. If you have gmake, you can use the generated
makefile to compile. If you do not have gmake, use your normal compilation process. (Note:
the generated makefile assumes the correct version of the compiler is already in your path
and that NDDSHOME is set.)

To create the example applications:

1. Create a directory to work in. In this example, we use a directory called myhello.

2. In the myhello directory, create a file called HelloWorld.idl that contains a user-defined data
type:

struct HelloWorld {

60

Chapter 7 Getting Started on Wind River Linux Systems

61

string<128> msg;
};

3. Use rtiddsgen to generate sample code and a makefile as described in Generating Code with RTI
Code Generator, in the RTI Connext DDS Core Libraries Getting Started Guide. Choose either C
or C++.

For C:

rtiddsgen -language C -example <architecture> HelloWorld.idl

For C++:

rtiddsgen -language C++ -example <architecture> HelloWorld.idl

Edit the generated example code as described in Generating Code with RTI Code Generator, in the
RTI Connext DDS Core Libraries Getting Started Guide.

4. Set up your environment with the wrenv.sh script in the Wind River Linux base directory.

wrenv.sh -p wrlinux-3.0

5. With the NDDSHOME environment variable set, build the Publisher and Subscriber modules using
the generated makefile.

make -f makefile_HelloWorld_<architecture>

After compiling, you will find the application executables in myhello/objs/<architecture>.
6. Connect to the Wind River Linux target (using telnet, ssh, serial console, connection manager, etc.)

and start the subscriber application, HelloWorld_subscriber.

HelloWorld_subscriber

In this shell, you should see that the subscriber is waking up every 4 seconds to print a message:

HelloWorld subscriber sleeping for 4 sec...
HelloWorld subscriber sleeping for 4 sec...
HelloWorld subscriber sleeping for 4 sec...

7. Connect to the Wind River Linux target and start the publisher application, HelloWorld_publisher.

Chapter 7 Getting Started on Wind River Linux Systems

HelloWorld_publisher

In this second (publishing) shell, you should see:

Writing HelloWorld, count 0
Writing HelloWorld, count 1
Writing HelloWorld, count 2

8. Look back in the first (subscribing) shell. You should see that the subscriber is now receiving mes-
sages from the publisher:

HelloWorld subscriber sleeping for 4 sec...
msg: “Hello World! {0}“
HelloWorld subscriber sleeping for 4 sec...
msg: “Hello World! {1}“
HelloWorld subscriber sleeping for 4 sec...

62

Chapter 8 Getting Started on Wind River
VxWorks MILS 2.1.1 Systems

To use Connext DDS on a VxWorks MILS 2.1.1 system, you must have the patch
provided by Wind River that corrects defect number WIND00343321. You can obtain this
patch through the regular Wind River support channel.

This section provides instructions to configure a complete MILS 2.1.1 system image with an applic-
ation that uses Connext DDS. Please refer to the documentation provided by Wind River for more
information on the MILS system; you should also refer to the RTI Connext DDS Core Libraries
Platform Notes.

This section will guide you through the process of generating, compiling, and running a “Hello,
World” application on VxWorks MILS 2.1.1 systems by expanding on Building and Running
Hello World, in the RTI Connext DDS Core Libraries Getting Started Guide; please read the fol-
lowing alongside that section.

The instructions in this chapter use Wind River Workbench to create the MILS system image. The
overview of the workflow includes:

l Step 1: Generate Support Files and Example with rtiddsgen (Section 8.1 on the next page)

l Step 2: Create a VxWorks GuestOS Application Project (Section 8.2 on the next page)

l Step 3: Create a VxWorks MILS Integration Project (Section 8.3 on page 70)

l Step 4: Integrate GuestOS Application Project and Generated rtiddsgen Files into MILS
Integration Project (Section 8.4 on page 75)

l Step 5: Deploy MILS Image to Target (Section 8.5 on page 76)

63

8.1 Step 1: Generate Support Files and Example with rtiddsgen

64

8.1 Step 1: Generate Support Files and Example with rtiddsgen

1. Given a sample file with an IDL definition, obtain the Connext DDS support files and example by
following the steps in Building and Running Hello World, in the RTI Connext DDS Core Libraries
Getting Started Guide”.

After you have completed this step, you will end up with source files and headers that implement the
type support for your IDL definition, as well as an example publisher and an example subscriber for
the type.

Eventually, when we create our MILS application, we will call the publisher_main or subscriber_
main functions from it, so make sure the publisher_main or subscriber_main functions are not
declared as "static" (modify the example publisher and subscriber if you need to by simply removing
the "static" qualifier from their function definitions if they have it).

2. If you are using C++, rename all .cxx files to .cpp.

8.2 Step 2: Create a VxWorks GuestOS Application Project

a. 1. From the File menu, select New, Wind River Workbench Project.

2. In the resulting dialog, select VxWorks MILS VxWorks Guest OS 2.2.3.1 and click Next.

8.2 Step 2: Create a VxWorks GuestOS Application Project

3. In the Build Type dialog, select Application and click Next.

4. For the project name, type guestapp, and click Finish.

5. Right-click on the project and select Properties.

6. In the left pane of the Properties dialog, select Build Properties.

7. In the Build Support and Specs tab, set the Default build spec and the Active build spec
to PPC85XXgnu.

65

8.2 Step 2: Create a VxWorks GuestOS Application Project

66

8. In the Build Macros tab:

a. Under Build Macro Definitions, set DEFINES to -DRTI_VXWORKS.

b. Define a new build macro named NDDSHOME (click New to add it). Set its value to
the path where Connext DDS is installed. If you are using a Windows system, use

8.2 Step 2: Create a VxWorks GuestOS Application Project

quotes around the path (for example, the value could be "C:\Program Files\rti_con-
next_dds-5.3.0").

c. Set Active build spec to PPC85XXgnu.

d. In CFLAGS_ARCH, add -mlongcall to the end (leave the rest of the flags in that cell
as is).

e. Set LIBPATH to -L$(NDDSHOME)/lib/<architecture>.

f.
If you will not be using C++: set LIBS to: -lnddscz -lnddscorez.

If you will be using C++: set LIBS to -lnddscppz -lnddscz -lnddscorez

g.
Set NET_OBJS to the following (all in one line):

$(WIND_BASE)/target/vThreads/lib/obj$(CPU)
gnuvx/vThreadsNetwrsComponent.o
$(WIND_BASE)/target/vThreads/lib/obj$(CPU)
gnuvx/vThreadsNetinetComponent.o
$(WIND_BASE)/target/vThreads/lib/obj$(CPU)
gnuvx/vThreadsNetCommonComponent.o
$(WIND_BASE)/target/vThreads/lib/obj$(CPU)
gnuvx/vThreadsNetBufCommonComponent.o
$(WIND_BASE)/target/vThreads/lib/obj$(CPU)
gnuvx/vThreadsNetUtilComponent.o
$(WIND_BASE)/target/vThreads/lib/obj$(CPU)gnuvx/avlLib.o

h. If you will not be using C++: no changes are needed to GOS_OBJS.

If you will be using C++: append the following to GOS_OBJS (all in one line):

$(WIND_BASE)/target/vThreads/lib/obj$(CPU)
gnuvx/vThreadsCplusComponent.o
$(WIND_BASE)/target/vThreads/lib/obj$(CPU)
gnuvx/vThreadsCplusLibraryComponent.o

1. In the Build Paths tab:

a. Add -I$(NDDSHOME)/include

b. Add -I$(NDDSHOME)/include/ndds.

67

8.2 Step 2: Create a VxWorks GuestOS Application Project

68

c. Click OK. If you see a prompt about rebuilding the C/C++ index, click Yes.

2. In the Project Explorer pane on the left, expand Build Targets, expand <project_name>-
pm, and finally expand <project_name>-recursive. Then right-click on the gnsSrc-
excluded item and remove the exclusion for it. Leave the rest in the default include/exclude
mode.

8.2 Step 2: Create a VxWorks GuestOS Application Project

3. Configure the network for your setup (open the top-level config directory of your VxWorks
GuestOS project and edit the gnsConfig.xml file to match your network setup).

4. Right-click on the project and build it. If you see a dialog asking if you want to set the include
search path, click Continue.

69

8.3 Step 3: Create a VxWorks MILS Integration Project

70

8.3 Step 3: Create a VxWorks MILS Integration Project

1. From the File menu, select New, Wind River Workbench project.

2. In the resulting dialog, select VxWorks MILS 2.1.1.

3. For Build Type, select Integration Project and click Next.

8.3 Step 3: Create a VxWorks MILS Integration Project

4. In the Project dialog: for Project name, typemilsimage and click Next.

5.
In the Project Setup dialog: for Board Support Package, select wrSbc85xx and click Finish.

6. Right-click on the newly created milsimage project and select Properties.

7. In the Project References section, add guestapp (the VxWorks GuestOS project that you created
earlier). Once you accept these changes, you should see yourmilsimage and guestapp projects
merge into a single entity in the Project Explorer.

71

8.3 Step 3: Create a VxWorks MILS Integration Project

72

8. In the Project Explorer pane on the left, navigate to the config directory of themilsimage project,
where you will find the file, milsKernel.xml.

9. Double-click on milsKernel.xml and use the XML editor to make these changes:

l Under MILS Kernel, set RamSize to 0x0A00000.

l Under RamPayload, set RamPayloadSize to 0x17000000.

l Under PcbMemPool, set PcbPoolAddr to 0xA00000.

l Under PayloadsMemPool, set PayloadsMemPoolAddr to 0xB00000.

l Under PayloadsMemPool, set PayloadsMemPoolSize to 0x8000000.

l Under SharedMemPool, set SharedMemPoolAddr to 0x8B00000.

l Under SharedMemPool, set SharedMemPoolSize to 0x4000.

Note: After changing the value of a cell, you must move to another cell so that your change will be
picked up.

10. In the Project Explorer pane on the left, navigate to the config directory of themilsimage Integration
project, where you will find the file, vb.xml.

8.3 Step 3: Create a VxWorks MILS Integration Project

11.
Double-click on vb.xml and use the XML editor to make these changes:

l Under VirtualBoard, set RamSize to 0x8000000.

l Under VirtualBoard, set ElfImage to guestapp.sm. Note that the file extension is .sm, not
.pm. Also, if you used a different name for the GuestOS application project, you will need to
modify this value accordingly.

l Right-click on the VirtualBoard element and select Add Child, Memory Map (because we
need to map in some devices).

12. In the newly created Memory-Map element:

l Set NumMemoryRegions to 3.

l Right-click on theMemory Map element and select Add Child, Region; do this three times
to add three regions.

Make the following changes in each region:

Region 1 Region 2 Region 3

Name Uart Tsec nvRam

MmuCacheAttr 0xF36 0xF36 0xF36

VirtualAddress 0xD0000000 0xE0024000 0xF8B00000

Length 0x1000 0x1000 0x01000

PhysicalAddress 0xE0004000 0xE0024000 0xF8B00000

13. Save your changes (be sure to switch to another cell after you edit each cell's contents and before
closing the file, so it registers all your changes).

73

8.3 Step 3: Create a VxWorks MILS Integration Project

74

14. Open the integration project’sMakefile (it should be under the top-levelmilsimage project; do not
confuse it with the guestapp project’sMakefile).

15. Update the VB_OBJDIR make variable to:

../guestapp/PPC85XXgnu/guestapp/Debug

This way we point to the output of the guestapp application project.
16. Update the allmake target to $(VB_OBJDIR)/guestapp.sm.

17. Update the rule after the all target so it also references guestapp.sm instead of hello.sm.

8.4 Step 4: Integrate GuestOS Application Project and Generated rtiddsgen Files into MILS Integration

8.4 Step 4: Integrate GuestOS Application Project and Generated
rtiddsgen Files into MILS Integration Project

1. Import the source files that you generated from your IDL file into the project:

a. Right-click on the guestapp project and select Import...

b. In the dialog, selectGeneral, File System. Navigate to the directory that contains your gen-
erated files.

c. Click on the directory's name in the left pane of the resulting dialog box and check all the
C/C++ source files and header files from that directory.

d. Click Finish.

2. If you are using C++, rename all imported .cxx files to .cpp if you haven't already done so.

3. Make sure you have removed the static qualifier from the signature of the functions publisher_
main and subscriber_main if they had it. These functions would be in the imported <idl_struct_
name>publisher.c and <idl_struct_name>subscriber.c files, respectively. The objective is to make
them callable from outside these files.

4. Using the Project Explorer in the left pane of WorkBench, navigate to the file usrAppInit.c in the
guestapp project. Double-click to edit the file and replace its entire contents with the following:

#include <stdio.h>
#include <taskVarLib.h>
#include <muxLib.h>
#include <bootLib.h>
#include <routeLib.h>
#include <netShow.h>
#include <usrLib.h>

/* defines */

75

8.5 Step 5: Deploy MILS Image to Target

76

#undef DEBUG

/* globals */
UINT32 boardNum = 0;
extern BOOT_PARAMS sysBootParams;
extern void usrNetworkInit (void);
extern int publisher_main(int domainId, int sample_count);

void usrAppInit (void)
{

char dev[END_NAME_MAX + 2]; /* device name + unit */
taskVarInit();
boardNum = vbConfig->boardID;
/* avoid startup messages in console */
taskDelay (sysClkRateGet () * 10);
printf ("\n\n*** MILS User Space RTI App.***\n\n");
printf ("On Virtual Board %d\n\n",boardNum);
/* start the network */
usrNetworkInit ();
routeAdd ("0.0.0.0", sysBootParams.ead);
taskDelay (sysClkRateGet () * 1);
printf("\n\n RTI App Starting \n\n");
sprintf(dev,"%s%d\n", sysBootParams.bootDev,

sysBootParams.unitNum);
printf("before ifShow\n");
ifShow(dev);
printf("after ifShow\n");
muxShow (sysBootParams.bootDev,sysBootParams.unitNum);
printf ("\nAPPLICATION: Launching\n\n");
taskSpawn ("pub", 75, 0, 0x20000, (FUNCPTR)publisher_main,

0, 100, 0, 0, 0, 0, 0, 0, 0, 0);
while (1){

taskDelay (sysClkRateGet () * 60);
printf ("\nVirtual Board %d is alive.\n", boardNum);
/*memShow(0);*/

}
}

5. Build the MILS Integration project: right-click themilsimage project and select Rebuild from the
context menu. The build should complete with no errors.

8.5 Step 5: Deploy MILS Image to Target

Once you have completed Step 4, you should have a MILS image file in your file system. The location
where you can find the image file relative to the MILS integration project is: obj_wrSb-
c85xx/milsKernel.elf.

8.5 Step 5: Deploy MILS Image to Target

Upload this .elf image file to your target. One way to do this is to upload the file to a tftpserver that is
accessible from your target board, then have the target board pull the image over the network. Boards with
a VxWorks boot loader can do this in a standard way; consult the board's documentation for further inform-
ation.

Once you have deployed the MILS image to your board, it will start publishing samples with your IDL
definition as a data type. It will print out to the target's console as it publishes samples. You can start a sub-
scriber in the same domain on other computers connected to the same network to verify the samples are
being sent.

77

	Chapter 1 Addendum for Embedded Platforms
	Chapter 2 Getting Started on Embedded UNIX-like Systems
	2.1 Building and Running a Hello World Example
	2.2 Configuring Automatic Discovery

	Chapter 3 Getting Started on INTEGRITY Systems
	3.1 Building the Kernel
	3.2 Building and Running a Hello World Example
	3.2.1 Generate Example Code and Project File with rtiddsgen
	3.2.2 Build the Publish and Subscribe Applications
	3.2.3 Connect to the INTEGRITY Target from MULTI
	3.2.4 Load the Application on the Target
	3.2.5 Run the Application and View the Output

	Chapter 4 Getting Started on VxWorks 6.x Systems
	4.1 Building the Kernel
	4.2 Building and Running a Hello World Example
	4.2.1 Generate Example Code and Makefile with rtiddsgen
	4.2.2 Building and Running an Application as a Kernel Task
	4.2.2.1 Using the Command Line
	4.2.2.2 Using Workbench

	4.2.3 Building and Running an Application as a Real-Time Process
	4.2.3.1 Using the Command Line
	4.2.3.2 Using Workbench

	Chapter 5 Getting Started on VxWorks 653 Platform v2.3 Systems
	5.1 Setting up Workbench for Building Applications
	5.1.1 Installing the Wind River Services Socket Library
	5.1.2 Installing the RTI Socket Library

	5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms
	5.3 Running Connext DDS Applications on an Sbc8641d Target

	Chapter 6 Getting Started on VxWorks 653 v2.5.0.1 Systems
	6.1 Creating Connext DDS Applications for VxWorks 653 2.5.0.1
	6.2 Running Connext DDS Applications on a b4860 QDS Target

	Chapter 7 Getting Started on Wind River Linux Systems
	Chapter 8 Getting Started on Wind River VxWorks MILS 2.1.1 Systems
	8.1 Step 1: Generate Support Files and Example with rtiddsgen
	8.2 Step 2: Create a VxWorks GuestOS Application Project
	8.3 Step 3: Create a VxWorks MILS Integration Project
	8.4 Step 4: Integrate GuestOS Application Project and Generated rtiddsgen Files into MILS Integration Project
	8.5 Step 5: Deploy MILS Image to Target

