RTI Connext DDS

Core Libraries
XML-Based Application Creation
Getting Started Guide
Version 5.3.1

rt)

© 2018 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
February 2018.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS, the RTI logo,
IRTI and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks or service marks of
Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form (including
electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time Innovations,
Inc. The software described in this document is furnished under and subject to the RTI software license agreement.
The software may be used or copied only under the terms of the license agreement.

Third-Party Copyright Notices

Note: In this section, "the Software" refers to third-party software, portions of which are used in Connext DDS; "the
Software" does not refer to Connext DDS.

This product implements the DCPS layer of the Data Distribution Service (DDS) specification version 1.4 and the
DDS Interoperability Wire Protocol specification version 2.2, both of which are owned by the Object Management,
Inc. Copyright 2015 Object Management Group, Inc. The publication of these specifications can be found at the Cata-
log of OMG Data Distribution Service (DDS) Specifications. This documentation uses material from the OMG spe-
cification for the Data Distribution Service, section 2.

Reprinted with permission. Object Management, Inc. © OMG. 2013.

Portions of this product were developed using ANTLR (www.ANTLR.org). This product includes software
developed by the University of California, Berkeley and its contributors.

Portions of this product were developed using AspectJ, which is distributed per the CPL license. Aspect] source
code may be obtained from Eclipse. This product includes software developed by the University of California, Berke-
ley and its contributors.

Portions of this product were developed using MD5 from Aladdin Enterprises.

Portions of this product include software derived from Fnmatch, (c) 1989, 1993, 1994 The Regents of the University
of California. All rights reserved. The Regents and contributors provide this software "as is" without warranty.
Portions of this product were developed using EXPAT from Thai Open Source Software Center Ltd and Clark
Cooper Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper Copyright (c)
2001, 2002 Expat maintainers. Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The
above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

Copyright © 1994-2013 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated doc-
umentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Technical Support

Real-Time Innovations, Inc.
232 E. Java Drive

Sunnyvale, CA 94089

Phone: (408) 990-7444

Email: support(@rti.com
Website: https://support.rti.com/

mailto:support@rti.com

Chapter 1 Introduction

1.1 Paths Mentioned in Documentation 3
Chapter 2 A ‘Hello, World’ Example
2.1 Hello World using XML and Dynamic Data 5
2.1.1 Build the Application 6
2.1.2 Run the Application 7
2.1.3 Examine the XML Configuration Files Definition 8
2.1.3.1 QoS Definition .. iill. 9
2.1.3.2 Type Definition 10
2.1.3.3 Domain Definition .. 10
2.1.3.4 Participant Definition 11
2.1.4 Publisher Application 12
2.1.5 Subscriber Application 14
2.1.6 Subscribing with a Content Filter .. 16
2.2 Hello World using XML and Compiled Types ... oo 16
2.2.1 Define the Data Types using IDL or XML . i 17
2.2.2 Generate Type-Support Code from the Type Definition 17
2.2.3 Build the Application ... 18
2.2.4 Run the Application L 19
2.2.5 Examine the XML Configuration Files Definition 20
2.2.6 Examine the Publisher Application 22
2.2.7 Examine the Subscriber Application 24
Chapter 3 Using Connext Prototyper i 27
Chapter 4 Understanding XML-Based Application Creation
4.1 Important PoIntS 29
4.2 Loading XML Configuration Files 30
4.3 XML Syntax and Validation ... 31
4.3.1 Validation at Run Time 31
4.3.2 Validation during Editing 31
4.4 Accessing Entities Defined in XML Configuration from an Application 32
4.5 XML Tags for Configuring Entities 32
4.5.1 Domain Library il 34
4.5.2 Participant Library i 38
4.6 Names Assigned to Entities 44
4.6.1 Referring to Entities and Other Elements within XML Files 45

4.7 Creating and Retrieving Entities Configured in an XML File 47

4.7.1 Creating and Retrieving a DomainParticipant Configured in an XML File ... 47
4.7.2 Creating and Retrieving Publishers and Subscribers 49
4.7.3 Creating and Retrieving DataWriters and DataReaders 49
4.7.4 Creating Content Filters ... i 50

4.7.5 Using User-Generated Types ... L. 51

Chapter 1 Introduction

This document assumes you have a basic understanding of RTI® Connext® DDS application
development and concepts such as Domains, DomainParticipants, Topics, DataWriters and
DataReaders. For an overview of these concepts, please see the RTI Connext DDS Core Libraries
Getting Started Guide, which is part of your distribution, or you can find it online at https://-
community.rti.com/documentation.

XML-Based Application Creation is a mechanism to simplify the development and programming
of Connext DDS applications. Connext DDS supports the use of XML for the complete system
definition. This includes not only the definition of the data types and Quality of Service settings (as
was possible in previous versions of the product), but also the definition of the Topics,
DomainParticipants, and all the Entities they contain (Publishers, Subscribers, DataWriters and
DataReaders).

With the traditional approach an application developer must program explicitly into the code the
actions needed to join a domain, register the data types it will use, create the Topics and all the
Entities (Publishers, Subscribers, DataReaders and DataWriters) that the application uses. Even
for simple applications this “system creation” code can result in hundreds of lines of boiler-plate
code. Beyond being error prone, the traditional approach results in larger code-bases that are harder
to understand and maintain. Using XML-Based Application Creation can significantly simplify this
process.

XML-Based Application Creation is a simple layer that builds on top of the standard APIs.
Everything that you do with the XML configuration can also be done with the underlying APIs. In
this manner, an application can be initially developed using XML-Based Application Creation and
transitioned to the traditional API at a later time. This would be useful in case the application has to
be deployed on a platform without a file system or needs to be ported to a DDS-compliant library
that does not support XML-based configuration such as R77 Connext Micro.

Using XML-Based Application Creation is easy: simply edit USER_QOS_PROFILE.xml to
define:

https://community.rti.com/documentation
https://community.rti.com/documentation

Chapter 1 Introduction

o The data types that will be used to communicate information in the system
o The Topics that will be used in the domain, associating each Topic with a data type
o The DomainParticipants that can potentially be used, giving each a participant name

o The DataWriters and DataReaders present within each DomainParticipant, each associated with its
corresponding Topic.

The application code simply indicates the participant configuration name of the DomainParticipant that
the application wants to create. The XML-Based Application Creation infrastructure takes care of the rest:
creating the DomainParticipant, registering the types and Topics, and populating all the configured Entit-
ies.

When the application needs to read or write data, register listeners, or perform any other action, it simply
looks up the appropriate Entity by name and uses it.

XML-Based Application Creation enables several powerful work flows:

o Developers can describe all the Entities that a Connext DDS application will need in an XML file
and then create that application with a single function call, saving many hundreds of lines of setup
code.

» Application descriptions written in XML are usable from all programming languages.

o The complete domain (including the data types and Topics that can be in the domain) may be
defined in an XML file and shared amongst all the developers and applications.

o The Quality of Service (QoS) that should be used for each DomainParticipant, Topic, DataReader,
and DataWriter can be fully specified in the XML and shared amongst a group of developers and
applications.

o The XML description of the application can be used in combination with R77 Prototyper to design
and prototype application deployment scenarios, allowing quick testing and validation without the
need for programming.

To use the companion R77 Connext DDS Prototyper, see Using Connext Prototyper (Chapter 3 on
page 27).

1.1 Paths Mentioned in Documentation

1.1 Paths Mentioned in Documentation

The documentation refers to:

« <NDDSHOME>

This refers to the installation directory for Connext DDS. The default installation paths are:

e Mac OS X systems:
/Applications/rti_connext dds-5.3.1

o UNIX-based systems, non-root user:
/home/your user name/rti_connext dds-5.3.1

o UNIX-based systems, root user:
Jopt/rti_connext dds-5.3.1

o Windows systems, user without Administrator privileges:
<your home directory>\rti_connext dds-5.3.1

o Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-5.3.1 (64-bit machines)
C:\Program Files (x86)\rti_connext_dds-5.3.1 (32-bit machines)

Y ou may also see SNDDSHOME or %NDDSHOME%, which refers to an environment variable
set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users: When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:

“C:\Program Files\rti connext dds-5.3.1\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:

“$NDDSHOME%\bin\rtiddsgen”

o <path to examples>

By default, examples are copied into your home directory the first time you run R77 Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples as
<path to examples>.

Wherever you see <path to examples™>, replace it with the appropriate path.

1.1 Paths Mentioned in Documentation

Default path to the examples:
e Mac OS X systems: /Users/your user name/rti_workspace/5.3.1/examples

o UNIX-based systems: /home/your user name/rti_workspace/5.3.1/examples
o Windows systems: your Windows documents folder\rti_workspace\S.3.1\examples

Where 'your Windows documents folder' depends on your version of Windows. For example,
on Windows 10, the folder is C:\Users\your user name\Documents.

Note: You can specify a different location for rti_workspace. Y ou can also specify that you do not
want the examples copied to the workspace. For details, see Controlling Location for
RTI Workspace and Copying of Examples in the Connext DDS Getting Started Guide.

Chapter 2 A ‘Hello, World’ Example

This chapter assumes that you have installed RTI Connext DDS and configured your environment
correctly. If you have not done so, please follow the steps in the RTT Connext DDS Core Libraries
Getting Started Guide, specifically Chapter 2 “Installing RTI Connext” and Section 3.1 “Building
and running Hello World” in Chapter 3. The guide is part of your distribution; you can also find it
online at https://community.rti.com/documentation. The guide will assist you in the correct setting
of both your environment variable NDDSHOME and, depending on your architecture, the envir-
onment variable PATH (on Windows Systems), LD LIBRARY PATH (on Linux systems), or
DYLD_LIBRARY PATH (on MacOS Systems).

2.1 Hello World using XML and Dynamic Data

The files for this example are located in the directory <path to examples'>/connext_
dds/c++/hello_world_xml dynamic. This simple scenario consists of two applications, illustrated
in the figure below: HelloWorld_publisher.exe, which writes the Topic, HelloWorldTopic, and
HelloWorld_subscriber.exe, which subscribes to that Topic.

ISee Paths Mentioned in Documentation (Section 1.1)

https://community.rti.com/documentation

2.1.1 Build the Application

Figure 2.1 Hello World Domain

/

~ HelloWorld Domain
N
,""lHeIIoWorId |_publisher.exe HelloWarld_subscriber.exe \"|
_— | DomainParticipant DomainParticipant /
r ‘.
r / .

HelloWorld
‘ Topic

. Publisher

First we will run the application, then we will examine the configuration file and source code.

2.1.1 Build the Application

The example code is provided in C++, C#, and Java. The following instructions describe how to build it
on Windows and UNIX-based systems. If you will be using an embedded platform, see the RTI Connext
DDS Core Libraries Getting Started Guide Addendum for Embedded Systems for instructions specific to
these platforms.

To build the example C++ applications on a Windows System:

1. In Windows Explorer, go to <path to examples>\connext_dds\c++\hello world xml_dynam-
ic\win32 and open the Microsoft® Visual Studio® solution file for your architecture. For example,
the file for Visual Studio 2012 32-bit platforms is HelloWorld-vs2012.sln.

2. The Solution Configuration combo box in the toolbar indicates whether you are building debug or
release executables; select Release. Then select Build Solution from the Build menu.

2.1.2 Run the Application

To build the example C++ applications on a UNIX-based System:

1. From your command shell, change directory to <path to examples>/connext_dds/c++/ hello_
world_xml_dynamic.

2. Type:

gmake -f make/Makefile.<architecture>

where <architecture> is one of the supported architectures (e.g., Makefile.i86 Linux2.6gcc4.4.5);
see the contents of the make directory for a list of available architectures. This command will build a
release executable. To build a debug version instead, type:

gmake -f make/Makefile.<architecture> DEBUG=1

2.1.2 Run the Application

The previous step should have built two executables: HelloWorld_subscriber and HelloWorld_pub-
lisher. These applications should be in proper architecture subdirectory under the objs directory (for
example, objs\i86Win32VS2012 in the Windows example cited below and objs/i86Linux2.6gcc4.4.5 in
the Linux example).

To start the subscribing application on a Windows system:

From your command shell, go to <path to examples>\connext_dds\c++\ hello world xml_dynamic
and type:

objs\<architecture>\HelloWorld subscriber.exe
where <architecture> is the architecture you just built; look in the objs directory to see the name of the

architecture you built. For example, the Windows architecture name corresponding to 32-bit Visual
Studio 2012 is i86Win32VS2012.

To start the subscribing application on a UNIX-based systems:

From your command shell, change directory to <path to examples>/connext_dds/c++/ hello_world_
xml_dynamic and type:

objs/<architecture>/HelloWorld subscriber

where <architecture> is the architecture you just built; look in the objs directory to see the name of the
architecture you built. For example, i86Linux2.6gcc4.4.5.

2.1.3 Examine the XML Configuration Files Definition

You should immediately see some messages from the publishing application showing that it is writing data
and messages from the subscribing application showing the data it receives. Do not worry about the con-
tents of the messages. They are generated automatically for this example. The important thing is to under-
stand how the application is defined, which will be explained in the following sections.

2.1.3 Examine the XML Configuration Files Definition

A Connext DDS application is defined in the file USER_QOS_PROFILES.xml found in the directory
<path to examples>/connext_dds/c++/ hello_world xml dynamic. Let’s review its content to see how
this scenario was constructed. The main sections in the file are:

e 2.1.3.1 QoS Definition on the facing page
e 2.1.3.2 Type Definition on page 10

e 2.1.3.3 Domain Definition on page 10

e 2.1.3.4 Participant Definition on page 11

The entire file is shown below. We will examine the file section-by-section.

<?xml version="1.0"2>

-<dds version="5.2.0"

xsi:noNamespaceSchemalocation=
"http://community.rti.com/schema/5.2.0/rti dds profiles.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<!-- Qos Library -->

<gos_ library name="qosLibrary">
<gos profile name="DefaultProfile">
</gos_profile>

</gos_library>

<!-- types -->
<types>
<const name="MAX NAME LEN" value="64" type="long"/>
<const name="MAX MSG LEN" value="128" type="long"/>
<struct name="HelloWorld">
<member name="sender" type="string"
stringMaxLength="MAX NAME LEN" key="true"/>
<member name="message" type="string"
stringMaxLength="MAX MSG LEN"/>
<member name="count" type="long"/>

</struct>
</types>
<!-- Domain Library -->

<domain library name="MyDomainLibrary">
<domain name="HelloWorldDomain" domain id="0">

2.1.3.1 QoS Definition

<register type name="HelloWorldType"
type ref="HelloWorld"/>
<topic name="HelloWorldTopic"
register type ref="HelloWorldType">
<topic_gos name="HelloWorld gos"
base name="qgosLibrary::DefaultProfile"/>
</topic>
</domain>
</domain library>

<!-- Participant library -->
<domain participant library name="MyParticipantLibrary">
<domain participant name="PublicationParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<publisher name="MyPublisher">
<data writer name="HelloWorldWriter"
topic ref="HelloWorldTopic"/>
</publisher>
</domain participant>

<domain participant name="SubscriptionParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<subscriber name="MySubscriber">
<data reader name="HelloWorldReader"
topic ref="HelloWorldTopic">
<datareader gos name="HelloWorld reader gos"
base name="qgosLibrary::DefaultProfile"/>
</data_ reader>
</subscriber>
</domain participant>
</domain participant library>
</dds>

2.1.3.1 QoS Definition

The defined DDS Entities have an associated QoS. The QoS section of the XML file provides a way to
define QoS libraries and profiles, which can then be used to configure the QoS of the defined Entities.
The syntax of the QoS libraries and profiles section is described in Configuring QoS with XML, in the
RTI Connext DDS Core Libraries User's Manual and may also contain Entity configurations.

In this example, the QoS library and profile are empty, just to provide a placeholder where the QoS can be
specified. Using this empty profile results in the default DDS QoS being used:

<!-- QoS Library -->

<gos_ library name="qosLibrary">
<gos profile name="DefaultProfile">
</qgos_profile>

</qgos_library>

2.1.3.2 Type Definition

2.1.3.2 Type Definition

The data associated with the HelloWorld Topic consists of two strings and a numeric counter:

1. The first string contains the name of the sender of the message. This field is marked as “key” as sig-
nals the identity of the data-object.

2. The second string contains a message.

3. The third field is a simple counter which the application increments with each message.

This example uses the Dynamic Data API, so the data type must be defined in the XML configuration.
Y ou can do this by adding the type definition within the <types> tag:

<types>
<const name="MAX NAME LEN" type="long" value="64"/>
<const name="MAX MSG LEN" type="long" value="128"/>
<struct name="HelloWorld">
<member name="sender" type="string"
key="true" stringMaxLength="MAX NAME LEN"/>
<member name="message" type="string"
stringMaxLength="MAX MSG LEN"/>
<member name="count" type="long"/>
</struct>
</types>

The <types> tag may be used to define a library containing the types that the different applications will
need. However, for this simple example just one data-type, the HelloWorld type seen above, is included.

2.1.3.3 Domain Definition

The domain section is used to define the system’s Topics and the corresponding data types associated with
each Topic. To define a Topic, the associated data type must be registered with the domain, giving it a
registered type name. The registered type name is used to refer to that data type within the domain at the
time the Topic is defined.

In this example, the configuration file registers the previously defined HelloWorld type under the name
HelloWorldType. Then it defines a Topic named HelloWorldTopic, which is associated with the registered
type, referring to it by its registered name, HelloWorldType:

<!-- Domain Library -->
<domain library name="MyDomainLibrary" domain id="0" >
<domain name="HelloWorldDomain">
<register type name="HelloWorldType"
type ref="HelloWorld"/>
<topic name="HelloWorldTopic"

10

2.1.3.4 Participant Definition

register type ref="HelloWorldType"/>
</domain>
</domain library>

Notes:

o The attribute type_ref in the <register type> element refers to the same HelloWorld type defined in
the <types> section.

o A domain definition may register as many data types and define as many Topics as it needs. In this
example, a single data type and Topic will suffice.

e The domain_library can be used to define multiple domains. However, this example only uses one
domain.

2.1.3.4 Participant Definition

The participant section is used to define the DomainParticipants in the system and the DataWriters and
DataReaders that each participant has. DomainParticipants are defined within the <domain_participant
library> tag.

Each DomainParticipant:

« Has a unique name (within the library) which will be used later by the application that creates it.

« Is associated with a domain, which defines the domain_id, Topics, and data types the DomainPar-
ticipant will use.

o Defines the Publishers and Subscribers within the DomainParticipant. Publishers contain
DataWriters, Subscribers contain DataReaders.

o Defines the set of DataReaders it will use to write data. Each DataReader has a QoS and a unique
name which can be used from application code to retrieve it.

o Defines the set of DataWriters it will use to write data. Each DataWriter has a QoS and a unique
name which can be used from application code to retrieve it.

o Optionally the Participants, Publishers, Subscribers, DataWriters, and DataReaders can specify a
QoS profile that will be used to configure them.

The example below defines two DomainParticipants, called PublicationParticipant and Sub-
scriptionParticipant:

<domain participant library name="MyParticipantLibrary">

<domain participant name="PublicationParticipant"

domain ref="MyDomainLibrary::HelloWorldDomain">
<publisher name="MyPublisher">

11

2.1.4 Publisher Application

<data writer name="HelloWorldWriter"
topic ref="HelloWorldTopic"/>
</publisher>
</domain participant>
<domain participant name="SubscriptionParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<subscriber name="MySubscriber">
<data reader name="HelloWorldReader"
topic ref="HelloWorldTopic">
<datareader gos name="HelloWorld reader gos"
base name="qgosLibrary::DefaultProfile"/>
</data_ reader>
</subscriber>
</domain participant>
</domain participant library>

Examining the XML, we see that:

« PublicationParticipant is bound to the domain, MyDomainLibrary::HelloWorldDomain.

o The participant contains a single Publisher named MyPublisher, which itself contains a single
DataWriter named HelloWorldWriter.

o The DataWriter writes the Topic HelloWorldTopic, which is defined in the domain MyDo-
mainLibrary::HelloWorldDomain.

Similarly:

« SubscriptionParticipant is also bound to the domain MyDomainLibrary::HelloWorldDomain.

o The participant contains a single Subscriber named MySubscriber, which itself contains a single
DataReader named HelloWorldReader.

e The DataReader reads the Topic HelloWorldTopic, which is defined in the domain MyDo-
mainLibrary::HelloWorldDomain.

Since both participants are in the same domain and the HelloWorldWriter DataWriter writes the same
Topic that the HelloWorldReader DataReader reads, the two participants will communicate as depicted in
Figure 2.1 Hello World Domain on page 6.

2.1.4 Publisher Application

Open the file <path to examples>/connext_dds/c++/hello_world xml_dynamic/HelloWorld_pub-
lisher.cxx and look at the source code.

The logic of this simple application is contained in the publisher_main() function. The logic is composed
of two parts:

12

2.1.4 Publisher Application

« Entity Creation

The application first creates a DomainParticipant using the function create_participant_from_con-
fig(). This function takes the configuration name of the participant, MyPar-
ticipantLibrary::PublicationParticipant, which is the same name that was specified in the XML file.
Note that the name in the XML file, PublicationParticipant, has been qualified with the name of the
library it belongs to: MyParticipantLibrary.

DDSDomainParticipant * participant =
DDSTheParticipantFactory->create participant from config(
"MyParticipantLibrary::PublicationParticipant") ;

This single function call registers all the necessary data types and creates and the Topics and Entities
that were specified in the XML file. In this simple case, the participant only contains a Publisher,
MyPublisher, with a single DataWriter, HelloDataWriter. However, in more realistic scenarios, this
single call can create hundreds of entities (both readers and writers).

¢ Use of the Entities

The remaining part of the function uses the created Entities to perform the logic of the program.

This example writes data using the single DataWriter. So the application looks up the Hel-
loWorldWriter DataWriter using the fully qualified name MyPublisher::HelloWorldWriter and nar-
rows it to be a DynamicDataWriter:

DDSDynamicDataWriter * dynamicWriter =
DDSDynamicDataWriter: :narrow (participant->lookup datawriter by name (
"MyPublisher::HelloWorldWriter")) ;

Once the DataWriter s available, some data objects need to be created and used to send the data. As
this example uses dynamic data, and the type code is internally created, you can use the operations
create_data() and delete_data() in a DataWriter to create and delete a data object. This is achieved
with the calls seen below:

/* Create data */
DDS DynamicData *dynamicData =
dynamicWriter->create data (DDS DYNAMIC DATA PROPERTY DEFAULT) ;

/* Main loop to repeatedly send data */
for (count=0; count < 100 ; ++count) {
/* Set the data fields */
retcode = dynamicData->set string(
"sender", DDS_DYNAMIC DATA MEMBER ID UNSPECIFIED,
"John Smith") ;
retcode = dynamicData->set string(

13

2.1.5 Subscriber Application

"message", DDS DYNAMIC DATA MEMBER ID UNSPECIFIED,
"Hello World!");

retcode = dynamicData->set long(
"count", DDS DYNAMIC DATA MEMBER ID UNSPECIFIED,
count) ;

/* Write the data */
retcode = dynamicWriter->write (*dynamicData, DDS HANDLE NIL);

}

/* Delete data sample */
dynamicWriter->delete data (dynamicData

Note that operations such as set_long() are used to set the different attributes of the Dynamic Data
object. These operations refer to the attribute names (e.g., “count”) that were defined as part of the
data type.

2.1.5 Subscriber Application

Open the file <path to examples>/connext_dds/c++/hello_world_xml_dynamic/HelloWorld_sub-
scriber.cxx and look at the source code.

The logic of this simple application is contained in the subscriber_main() function. Similar to the pub-
lisher application, the logic is composed of two parts:

« Entity Creation

The application first creates a DomainParticipant using the function create participant_from_con-
fig(). This function takes the configuration name of the participant MyPar-
ticipantLibrary::SubscriptionParticipant, which is the same name that was specified in the XML
file. Notice that the name in the XML file, SubscriptionParticipant, has been qualified with the
name of the library it belongs to: MyParticipantLibrary.

DDSDomainParticipant * participant =
DDSTheParticipantFactory->create participant from config(
"MyParticipantLibrary: :SubscriptionParticipant”) ;

This single function call registers all the necessary data types and creates and the Topics and Entities
that were specified in the XML file. In this simple case, the participant only contains a Subscriber,
MySubscriber, with a single DataReader, HelloDataReader. However in more realistic scenarios,
this single call can create hundreds of Entities (both DataReaders and DataWriters).

14

2.1.5 Subscriber Application

o Use of the Entities

The remaining part of the function uses the entities that were created to perform the logic of the pro-
gram.

This example only needs to read data using the single DataReader. So the application looks up the
HelloWorldReader DataReader using the fully qualified name MySubscriber::HelloWorldReader
and narrows it to be a DynamicDataReader:

DDSDynamicDataReader * dynamicReader = DDSDynamicDataReader::narrow (
participant-> lookup datareader by name (
"MySubscriber: :HelloWorldReader")) ;

To process the data, the application installs a Listener on the DataReader. The HelloWorldListener,
defined on the same file implements the DataReaderListener interface, which the DataReader uses
to notify the application of relevant events, such as the reception of data.

/* Create a DataReaderListener */
HelloWorldListener * reader listener = new HelloWorldListener();

/* set listener */
retcode = dynamicReader->set listener (reader listener, DDS DATA AVAILABLE
STATUS) ;

The last part is the implementation of the listener functions. In this case, we only implement the on_
data_available() operation which is the one called when data is received.

The on_data_available() function receives all the data into a sequence and then uses the DDS
DynamicData::print() function to print each data item received.

void HelloWorldListener::on data available (DDSDataReader* reader)
{

DDSDynamicDataReader * ddDataReader = NULL;

DDS DynamicDataSeq dataSeq;

DDS SamplelInfoSeq infoSeq;

DDS_ReturnCode t retcode = DDS RETCODE_ ERROR;

DDS Long i = 0;

ddDataReader = DDSDynamicDataReader::narrow (reader) ;
retcode = ddDataReader->take (dataSeq, infoSeq,

DDS_LENGTH UNLIMITED, DDS_ANY SAMPLE STATE,

DDS_ANY VIEW STATE, DDS ANY INSTANCE STATE);
printf ("on data available:%$s\n",

ddDataReader->get topicdescription ()->get name ());
for (i = 0; i < dataSeqg.length(); ++i) {

if (infoSeq[i].valid data) {

15

2.1.6 Subscribing with a Content Filter

retcode = dataSeq[i].print (stdout, O0);

}

retcode = ddDataReader->return loan(dataSeqg, infoSeq);

2.1.6 Subscribing with a Content Filter

To use a content filter, modify the SubscriptionParticipant configuration to look like this:

<domain participant library name="MyParticipantLibrary">

<domain participant name="SubscriptionParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<subscriber name="MySubscriber">
<data reader name="HelloWorldReader"
topic_ref="HelloWorldTopic">
<datareader gos
name="HelloWorld reader gos"
base name="gosLibrary::DefaultProfile" />
<filter name="HelloWorldTopic"
kind="builtin.sgl">
<expression>count > 2</expression>
</filter>
</data_ reader>
</subscriber>
</domain participant>
</domain participant library>

The extra XML within the <filter> tag adds a SQL content filter which only accepts samples with the field
count greater than two.

Now run HelloWorld_subscriber without recompiling and confirm that you see the expected behavior.

2.2 Hello World using XML and Compiled Types

The files for this example are in the directory <path to examples>/connext_dds/c++/hello_world_xml_
compiled. This simple scenario consists of two applications identical in purpose to the one illustrated in
Figure 2.1 Hello World Domain on page 6: HelloWorld_publisher.exe, which writes to the Topic “Hel-
loWorldTopic,” and HelloWorld_subscriber.exe, which subscribes to that same Topic.

In contrast with 2.1 Hello World using XML and Dynamic Data on page 5, which uses the Dynamic Data
API, this example uses compiled types.

Compiled types are syntactically nicer to use from application code and provide better performance. The
drawback is that there is an extra step of code-generation involved to create that supporting infrastructure
to marshal and unmarshal the types into a format suitable for network communications.

16

2.2.1 Define the Data Types using IDL or XML

2.2.1 Define the Data Types using IDL or XML

The first step is to describe the data type in a programming language-neutral manner. Two languages are
supported by the Connext DDS tools: XML and IDL. These languages (XML and IDL) provide equi-
valent type-definition capabilities, so you can choose either one depending on your personal preference.
You can even transform between one and the other with the RTI tools. That said, as the rest of the con-
figuration files use XML, it is often more convenient to also use XML to describe the data types, so they
can be shared or moved to other XML configuration files.

The directory <path to examples>/connext_dds/c++/hello_world_xml_compiled contains the XML
description of the data type in the file HelloWorld.xml; it also contains the equivalent IDL description in
HelloWorld.idl.

Let’s examine the contents of the XML file:

<?xml version="1.0" encoding="UTF-8"?2>

<types xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"../../../resource/rtiddsgen/schema/rti dds topic types.xsd">
<const name="MAX NAME LEN" type="long" value="64"/>

<const name="MAX MSG LEN" type="long" value="128"/>

<struct name="HelloWorld">
<member name="sender" type="string" key="true"
stringMaxLength="MAX NAME LEN"/>
<member name="message" type="string"
stringMaxLength="MAX MSG LEN"/>
<member name="count" type="long"/>
</struct>
</types>

The file defines a structure type called “HelloWorld” consisting of a string (the sender), a string (the mes-
sage), and an integer count. Note that the type-declaration syntax is identical the one used within the
USER_QOS_PROFILES.xml file that we used for the dynamic example (2.1.3.2 Type Definition on

page 10).

2.2.2 Generate Type-Support Code from the Type Definition

This step produces code to support the direct use of the structure ‘HelloWorld” from application code. The
code is generated using the provided tool named rtiddsgen.

The Code Generator supports many programming languages. XML-Based Application Creation currently
supports C, C++, Java, and C#. We will use C++ in this example.

To generate code, follow these steps (replacing <architecture> as needed for your system; e.g.,
186Win32VS2012 or i86Linux2.6gcc4.4.5):

17

2.2.3 Build the Application

On a Windows system:

From your command shell, change directory to <path to examples>\connext _dds\c++\hello_world_
xml_compiled and type:

<NDDSHOME>\bin\rtiddsgen -language C++ -example <architecture> HelloWorld.xml

On a UNIX-based system:

From your command shell, change directory to <path to examples>/connext_dds/c++/hello_world_
xml_compiled and type:

<NDDSHOME>/bin/rtiddsgen -language C++ -example <architecture> HelloWorld.xml

As a result of this step you will see the following files appear in the directory HelloWorld_xml_dynamic:
HelloWorld.h, HelloWorld.cxx, HelloWorldPlugin.h, HelloWorldPlugin.cxx, HelloWorldSupport.h,
and HelloWorldSupport.cxx.

The most notable thing at this point is that the HelloWorld.h file contains the declaration of the C++ struc-
ture, built according to the specification in the XML file:

static const DDS Long MAX NAME LEN = 64;
static const DDS Long MAX MSG LEN = 128;

typedef struct HelloWorld
{

char* sender; /* maximum length = ((MAX NAME LEN)) */
char* message; /* maximum length = ((MAX MSG LEN)) */
DDS Long count;

} HelloWorld;

2.2.3 Build the Application

The example code is provided in C++, C#, and Java. The following instructions describe how to build it
on Windows and UNIX-based systems. If you will be using an embedded platform, see the RTI Connext
DDS Core Libraries Getting Started Guide Addendum for Embedded Systems for instructions specific to
these platforms.

C++ on Windows Systems:

In the Windows Explorer, go to <path to examples>\connext dds\c++\hello world_xml compiled and
open the Microsoft Visual Studio solution file for your architecture. For example, the file for Visual Studio
2012 for 32-bit platforms is HelloWorld-vs2012.sIn.

The Solution Configuration combo box in the toolbar indicates whether you are building debug or release
executables; select Release. Select Build Solution from the Build menu.

18

2.2.4 Run the Application

C++ on UNIX-based Systems:

From your command shell, change directory to <path to examples>/connext_dds/c++/hello_world_
xml_compiled.

Type:

gmake -f Makefile.<architecture>
where <architecture> is one of the supported architectures (e.g., Makefile.i86Linux2.6gcc4.4.5). This com-
mand will build a release executable. To build a debug version instead, type:

gmake -f Makefile.<architecture> DEBUG=1

2.2.4 Run the Application

The previous step built two executables: HelloWorld_subscriber and HelloWorld_publisher. These
applications should be in proper architecture subdirectory under the objs directory (for example,
0bjs\i86Win32VS2012 in the Windows example cited below and objs/i86Linux2.6gcc4.4.5 in the Linux
example).

1. Start the subscribing application:

On a Windows system:

From your command shell, go to <path to examples>\connext_dds\c++\hello world xml com-
piled and type:

objs\<architecture>\HelloWorld subscriber.exe
where <architecture> is the architecture you just built; see the contents of the objs directory to see

the name of the architecture you built. For example, the Windows architecture name corresponding
to 32-bit Visual Studio 2012 is i86Win32VS2012.

On a UNIX-based system:

From your command shell, change directory to <path to examples>/connext _dds/c++/hello_
world xml compiled and type:

objs/<architecture>/HelloWorld subscriber
where <architecture> is the architecture you just built of the supported architectures; examine the

contents of the objs directory to see the name of the architecture you built.

19

2.2.5 Examine the XML Configuration Files Definition

2. Start the publishing application:

On a Windows system:

From your command shell, go to <path to examples>\connext_dds\c++\hello_world_xml_com-
piled and type:

objs\<architecture>\HelloWorld publisher.exe

where <architecture> is the architecture you just built; see the contents of the objs directory to see
the name of the architecture you built.

On a UNIX-based system:

From your command shell, change directory to <path to examples>/connext _dds/c++/hello
world_xml_compiled and type:

objs/<architecture>/HelloWorld publisher

Y ou should immediately see some messages on the publishing application showing that it is writing data
and messages in the subscribing application indicating the data it receives. Do not worry about the contents
of the messages. They are generated automatically for this example. The important thing is to understand
how the application is defined, which will be explained in the following subsections.

2.2.5 Examine the XML Configuration Files Definition

This system is defined in the file USER_QOS_PROFILES.xml in the directory <path to examples>/-
connext_dds/ct++/hello_world_xml _compiled. Let’s look at its content and what are the elements
defined to construct this scenario.

<?xml version="1.0"?>

<dds version="5.2.0"

xsi:noNamespaceSchemalLocation=
"http://community.rti.com/schema/5.2.0/rti dds profiles.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<!-- Qos Library -->
<gos_library name="qgosLibrary">

<gos_profile name="DefaultProfile"> </gos profile>
</gos_library>

<!-- Domain Library -->
<domain library name="MyDomainLibrary">
<domain name="HelloWorldDomain" domain_ id="0">
<register type name="HelloWorldType"/>

20

2.2.5 Examine the XML Configuration Files Definition

<topic name="HelloWorldTopic" register type ref="HelloWorldType">
<topic_gos name="HelloWorld gos"
base name="qgosLibrary::DefaultProfile"/>
</topic>
</domain>
</domain library>

<!-- Participant library -->
<domain participant library name="MyParticipantLibrary">
<domain participant name="PublicationParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<publisher name="MyPublisher">
<data writer name="HelloWorldWriter"
topic ref="HelloWorldTopic"/>
</publisher>
</domain participant>
<domain participant name="SubscriptionParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<subscriber name="MySubscriber">
<data reader name="HelloWorldReader"
topic ref="HelloWorldTopic">
<datareader gos
name="HelloWorld reader gos"
base name="qgosLibrary::DefaultProfile"/>
</data_ reader>
</subscriber>
</domain participant>
</domain participant library>
</dds>

Notice that this file contains virtually the same information found in the hello_world_xml_dynamic
example. This is no surprise, since we are essentially trying to define the same system. Please see Examine
the XML Configuration Files Definition for a description of what each section in the XML does.

There are only two differences in the configuration file for the hello_world_xml compiled compared to
hello_world_xml_dynamic:

o The type definition “<types>" section does not appear in the configuration of the HelloWorld_xml
compiled example.

The type-definition section that appears between the tags “<types>" and “</types>" is not there
because in this case the data types are compiled in. So the type-definition has been moved to an
external file to facilitate the code generation described in Generate Type-Support Code from the
Type Definition.

o The registration of the data-type inside the domain uses the syntax:

<register type name="HelloWorldType" />

This contrasts with what was used in the HelloWorld xml dynamic example:

21

2.2.6 Examine the Publisher Application

<register type name="HelloWorldType" type ref="HelloWorld" />.

The difference between the two is easily observable from the type registration mechanism in XML-
Application Creation, which is a follows:
1. Ifa <register type> tag is not present, the value of the attribute register _type ref of a
{{<topic>}] is used as registered type name of a type support that must have been already
registered by the application.

2. If a<register type> tag is specified but its attribute type ref is not present, this is equivalent
to 1, but the registered type name is the one specified by the <register type> tag.

3. Ifa<register type> tag is specified and the type_ref is present, XML-Application Creation
will first search for a type support already registered. If no type support is found, it will auto-
matically register the type using DynamiData and with the TypeCode defined by the XML
type referenced by type ref.

This behavior enables the possibility of defining configurations that are independent of the how types are
register, leaving that decision up to the end application. That is, the same configuration can be used for
applications that generate a type or that rely on DynamicData.

2.2.6 Examine the Publisher Application

Open the file <path to examples>/connext_dds/c++/hello_world_xml compiled/HelloWorld_pub-
lisher.cxx and look at the source code.

The logic of this simple application is contained in the publisher main() function. The logic can be seen
as composed of three parts:

o Type registration (this step is new compared to HelloWorld xml dynamic)

The first thing the application does is register the data-types that were defined in the code-generation
step. This is accomplished by calling the register type support() function on the DomainPar-
ticipantFactory.

/* type registration */
retcode = DDSTheParticipantFactory->register type support (
HelloWorldTypeSupport::register type, "HelloWorldType");

The function register type support() must be called for each code-generated data type that will be
associated with the Topics published and subscribed to by the application. In this example, there is
only one Topic and one data type, so only one call to this function is required.

The function register _type_ support() takes as a parameter the TypeSupport function that defines
the data type in the compiled code. In this case, it is HelloWorld TypeSupport::register_type(),

22

2.2.6 Examine the Publisher Application

which is declared in HelloWorldSupport.h. However, you cannot see it directly because it is
defined using macros. Instead you will find the line:

DDS TYPESUPPORT CPP (HelloWorldTypeSupport, HelloWorld);

This line defines the HelloWorldTypeSupport::register_type() function.

In general, if you include multiple data-type definitions in a single XML (or IDL) file called
MyFile.xml (or MyFile.idl), you will have multiple TypeSupport types defined within the gen-
erated file MyFileTypeSupport.h. You can identify them searching for the DDS _
TYPESUPPORT_CPP() macro and you should register each of them (the ones the application
uses) using the operation register type support() as was shown above.

Entity creation

The steps to create the entities are the same as for the HelloWorld xml dynamic example. The
application first creates a DomainParticipant using the function create_participant_from_config(),
which takes the configuration name of the participant “MyPar-
ticipantLibrary::PublicationParticipant” (which is the same name that was specified in the XML
file). Note that the name in the XML file “PublicationParticipant” has been qualified with the name
of the library it belongs to: “MyParticipantLibrary”.

DDSDomainParticipant * participant =
DDSTheParticipantFactory->create participant from config(
"MyParticipantLibrary::PublicationParticipant") ;

This single function call registers all the necessary data types and creates the Topics and Entities that
were specified in the XML file. In this simple case, the participant only contains a Publisher
“MyPublisher” with a single DataWriter “HelloDataWriter”. However in more realistic scenarios,
this single call can create hundreds of entities (both readers and writers).

Use of the Entities

The remaining part of the function uses the entities that were created to perform the logic of the pro-
gram.

This example only needs to write data using the single DataWriter. So the application looks-up the
“HelloWorldWriter” DataWriter using the fully qualified name “MyPublisher::HelloWorldWriter”
and narrows it to be a HelloWorldDataWriter. Note the difference with the HelloWorld xml
dynamic example. Rather than the generic “DynamicDataWriter” used in that example, here we use
a DataWriter specific to the HelloWorld data type.

HelloWorldDataWriter * helloWorldWriter = HelloWorldDataWriter::narrow (
participant->lookup datawriter by name (

23

2.2.7 Examine the Subscriber Application

"MyPublisher::HelloWorldWriter"));
/* Create data */

HelloWorld * helloWorldData = HelloWorldTypeSupport::create data();

/* Main loop */

for (count=0; (sample count == 0) || (count < sample count); ++count)

{
printf ("Writing HelloWorld, count: %d\n", count);

/* Set the data fields */

helloWorldData->sender = "John Smith";
helloWorldData->message = "Hello World!";
helloWorldData->count = count;

retcode = helloWorldWriter->write (*helloWorldData,
DDS_HANDLE NIL);
if (retcode != DDS RETCODE OK) {
printf ("write error %d\n", retcode);
publisher shutdown (participant);
return -1;
}
NDDSUtility::sleep(send period);

Note that the data-object helloWorldData can be manipulated directly as a plain-language object.
Then to set a field in the object, the application can refer to it directly. For example:

helloWorldData->count = count;
This “plain language object” API is both higher performance and friendlier to the programmer than
the DynamicData API.

2.2.7 Examine the Subscriber Application

Open the file <path to examples>/connext_dds/c++/hello_world_xml_compiled/HelloWorld_sub-
scriber.cxx and look at the source code.

The logic of this simple application is in the subscriber _main() function. Similar to the publisher applic-
ation the logic can be seen as composed of three parts:

1. Type registration (this step is new compared to HelloWorld xml dynamic)
This step 1s identical to the one for the publisher application. The first thing the application does is

register the data types that were defined in the code-generation step. This is accomplished calling the
register_type support() function on the DomainParticipantFactory.

24

2.2.7 Examine the Subscriber Application

/* type registration */
retcode = DDSTheParticipantFactory->register type support (
HelloWorldTypeSupport::register type, "HelloWorldType"):;

Please refer to the explanation of the publishing application for more details on this step, regardless
of whether the application uses a type to publish or subscribe.

. Entity creation

The steps for creating the entities are the same as for the HelloWorld xml dynamic example. The
application first creates a DomainParticipant using the function create_participant_from_config()
this function takes the configuration name of the participant “MyPar-
ticipantLibrary::SubscriptionParticipant” which is the same name that was specified in the XML file.
Note that the name in the XML file “SubscriptionParticipant” has been qualified with the name of
the library it belongs to: “MyParticipantLibrary”.

DDSDomainParticipant * participant =
DDSTheParticipantFactory->create participant from config(
"MyParticipantLibrary::SubscriptionParticipant") ;

This single function call registers all the necessary data types, and creates the Topics and Entities
that were specified in the XML file. In this simple case, the participant only contains a Subscriber
“MySubscriber” with a single DataReader “HelloDataReader”. However in more realistic scen-
arios, this single call can create hundreds of entities (both DataReaders and DataWriters).

. Use of the Entities

The remaining part of the function uses the created entities to perform the logic of the program.

This example only needs to read data using the single DataReader So the application looks-up the
“HelloWorldReader” DataReader using the fully qualified name “MyPub-
lisher::HelloWorldReader” and narrows it to be a HelloWorldDataReader:

HelloWorldDataReader * helloWorldReader =
HelloWorldDataReader: :narrow (
participant->lookup datareader by name (
"MySubscriber::HelloWorldReader")) ;

To process the data, the application installs a Listener on the DataReader. The HelloWorldListener
defined in the same file implements the DataReaderListener interface. The DataReader uses that
interface to notify the application of relevant events, such as the reception of data.

/* Create a data reader listener */
HelloWorldListener *reader listener = new HelloWorldListener();

25

2.2.7 Examine the Subscriber Application

/* set listener */
retcode = helloWorldReader->set listener (reader listener,
DDS DATA AVAILABLE STATUS) ;

The last part is the implementation of the listener functions. In this case, we only implement the on_
data_available() operation, which is called when data is received.

The on_data_available() function receives all the data into a sequence, then uses the Hel-
loWorldTypeSupport::print() function to print each data item received.

void HelloWorldListener::on data available (DDSDataReader* reader)
{
HelloWorldDataReader *helloWorldReader = NULL;
HelloWorldSeqg dataSeq;
DDS SamplelInfoSeq infoSeq;
DDS ReturnCode t retcode = DDS RETCODE ERROR;
DDS Long i = 0;

helloWorldReader = HelloWorldDataReader::narrow (reader) ;

retcode = helloWorldReader->take (dataSeq, infoSeq,
DDS_LENGTH UNLIMITED, DDS ANY SAMPLE STATE,
DDS ANY VIEW STATE, DDS ANY INSTANCE STATE);

for (i = 0; i < dataSeqg.length(); ++1)
{
if (infoSeq[i].valid data) {
HelloWorldTypeSupport::print data(&dataSeq[i]);

}

retcode = helloWorldReader->return loan (dataSeq, infoSeq);

Note that the sequence received is of type HelloWorldSeq which contains the native plain language
objects of type HelloWorld. This can be manipulated directly by the application. For example the
fields can be dereferenced as shown in the code snippet below:

HelloWorld *helloWorldData = &dataSeq[i];
printf (“count= %$s\n”, helloWorldData->count) ;

26

Chapter 3 Using Connext Prototyper

RTI Connext DDS Prototyper is a companion tool for use with the XML-Based Application
Creation feature. This tool allows application developers to quickly try out scenarios directly from
their XML descriptions, without writing any code.

On a Windows system:

From your command shell, go to <path to examples>\connext_dds\c++\hello_world_xml_
dynamic. Open two console windows.

In one window, type (all on one line):

SNDDSHOME\bin\rtiddsprototyper -cfgName PublicationParticipant
"MyParticipantLibrary::PublicationParticipant"

In the other window, type (all on one line):

SNDDSHOME\bin\rtiddsprototyper -cfgName SubscriptionParticipant
"MyParticipantLibrary::SubscriptionParticipant"

On a UNIX-based system:

From your command shell, go to <path to examples>/connext_dds/c++/hello_world_xml_
dynamic. Open two console windows.

In one window, type (all on one line):
S {NDDSHOME} /bin/rtiddsprototyper -cfgName PublicationParticipant

"MyParticipantLibrary::PublicationParticipant"

In the other window, type (all on one line):

27

Chapter 3 Using Connext Prototyper

S{NDDSHOME} /bin/rtiddsprototyper -cfgName SubscriptionParticipant
"MyParticipantLibrary::SubscriptionParticipant"

You can run both of these on the same computer or on separate computers within the same (multicast
enabled) network. Y ou should immediately see the subscribing application receive and print the inform-
ation from the publishing side.

For more information, please read the RTI Connext DDS Core Libraries Protoyper with Lua Getting Star-
ted Guide.

28

Chapter 4 Understanding XML-Based
Application Creation

Figure 4.1 Using Both Connext API and XML Configuration File to Develop an Application
below depicts a Connext DDS application built with the aid of both the Connext DDS API and an
XML configuration file. Using the XML configuration file in combination with the XML-Based
Application Creation feature simplifies and accelerates application development.

The Entities defined in the XML configuration file can be created by a single call to the API. Once
created, all Entities can be retrieved from application code using standard “lookup” operations so
they can be used to read and write data.

Figure 4.1 Using Both Connext APl and XML Configuration File to Develop an
Application

Connext DD5
Application

XML Configuration

Connext DDS API
File

4.1 Important Points

« Applications can instantiate a DomainParticipant from a participant configuration described
in the XML configuration file. All the Entities defined by such a participant configuration

29

4.2 Loading XML Configuration Files

are created automatically as part of DomainParticipant creation. In addition, multiple participant con-
figurations may be defined within a single XML configuration file.

o All the Entities created from a participant configuration are automatically assigned an entity name.
Entities can be retrieved via “lookup” operations by specifying their name. Each Entity stores its
own name in the QoS policies of the Entity so that it can be retrieved locally (via a lookup) and com-
municated via discovery. This is described in 4.7 Creating and Retrieving Entities Configured in an
XML File on page 47.

o An XML configuration file is not tied to the application that uses it. Different applications may run
using the same configuration file. A single file may define multiple participant configurations. A
single application can instantiate as many DomainParticipants as desired.

o Changes in the XML configuration file do not require recompilation, even if Enfities are added or
removed, unless the logic that uses the Entities also needs to change.

4.2 | oading XML Configuration Files

Connext DDS loads its XML configuration from multiple locations. This section presents the various
approaches, listed in load order.

The following locations contain QoS Profiles (see Configuring QoS with XML, in the RTI Connext DDS
Core Libraries User's Manual) and may also contain Entity configurations.

o« SNDDSHOME!/resource/xml/NDDS_QOS_PROFILES.xml

This file contains the Connext DDS default QoS values; it is loaded automatically if it exists. When
present this is the first file loaded. (Where x.) represent version numbers.)

This file is loaded automatically if it exists (not the default case) and ignore resource profile in the
PROFILE QosPolicy is FALSE (the default). NDDS_QOS_PROFILES.xml does not exist by
default. However, NDDS QOS PROFILES.example.xml is shipped with the host bundle of the
product; you can copy it to NDDS QOS PROFILES.xml and modify it for your own use. The file
contains the default QoS values that will be used for all entity kinds. (First to be loaded)

o File specified in NDDS_QOS PROFILES Environment Variable

The files (or XML strings) separated by semicolons referenced in this environment variable, if any,
are loaded automatically. These files are loaded after the NDDS_QOS_PROFILES.xml and they
are loaded in the order they appear listed in the environment variable.

o <working directory>/USER_QOS_PROFILES.xml

This file is loaded automatically if it exists in the ‘working directory’ of the application, that is, the
directory from which the application is run. (Last to be loaded)

30

4.3 XML Syntax and Validation

4.3 XML Syntax and Validation

The configuration files uses XML format. Please see Examine the XML Configuration Files Definition
(Section 2.1.3) for an example XML file and a description of its contents.

4.3.1 Validation at Run Time

Connext DDS validates the input XML files using a built-in Document Type Definition (DTD). You can
find a copy of the built-in DTD in SNDDSHOME/resource/schema/rti_dds_profiles.dtd.

This is only a copy of the DTD that Connext DDS uses. Changing this file has no effect unless you spe-

cify its path with the DOCTYPE tag, described below.

You can overwrite the built-in DTD by using the XML tag, <IDOCTYPE>. For example, the following

indicates that Connext DDS must use a different DTD file to perform validation:

<!DOCTYPE dds SYSTEM
"/local/usr/rti/dds/modified rti dds profiles.dtd">

If you do not specify the DOCTYPE tag in the XML file, the built-in DTD is used. The DTD path can be
absolute or relative to the application's current working directory.

4.3.2 Validation during Editing

Connext DDS provides DTD and XSD files that describe the format of the XML content. We highly
recommend including a reference to the XSD in the XML file. This provides helpful features in code edit-
ors such as Visual Studio, Eclipse, or Netbeans, including validation and auto-completion while you are
editing the XML file.

To include a reference to the XSD file, use the noNamespaceSchemaLocation attribute inside the open-
ing <dds> tag, as illustrated below (replace ‘5.x.y’ with the current version number and replace
<NDDSHOME> as described in 4.3.2 Validation during Editing above):

<?xml version="1.0" encoding="UTF-8"?2>

<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=
"<NDDSHOME>/resource/schema/rti_dds profiles.xsd"
version="5.x.y">

You may use relative or absolute paths to the schema files. These files are provided as part of your dis-
tribution in the following location (replace <NDDSHOME> as described in 4.3.2 Validation during Edit-
ing above):

« <NDDSHOME>/resource/schema/rti_dds_ profiles.xsd
o <NDDSHOME>/resource/schema/rti_dds_profiles.dtd

If you want to use the DTD for syntax validation instead of the XSD, use the <IDOCTY PE> tag. Note,
however, that this validation is less strict and will offer far less help in terms of auto-completion. The use

31

4.4 Accessing Entities Defined in XML Configuration from an Application

of <IDOCTYPE> is shown below. Simply replace SNDDSHOME with your Connext DDS installation

directory:

<?xml version="1.0"

encoding="UTF-8"?>

<!DOCTYPE dds SYSTEM SNDDSHOME/resource/schema/rti dds profiles.dtd">

<dds>

</dds>

4.4 Accessing Entities Defined in XML Configuration from an
Application

Y ou can use the operations listed in Table 4.1 Operations Intended for Use with XML-Based Con-
figuration to retrieve and then use the Entities defined in your XML configuration files.

Table 4.1 Operations Intended for Use with XML-Based Configuration

Working with...

Configuration-Related
Operations

Reference

DomainParticipantFactory

create_participant_from_config
create_participant_from_config_w_params

lookup_participant_by name

4.7.1 Creating and Retrieving a DomainParticipant Configured in an XML
File on page 47

register_type_support

4.7.5 Using User-Generated Types on page 51

DomainParticipant

lookup_publisher_by_name
lookup_subscriber by name
lookup_datawriter_by_name

lookup_datareader_by_name

4.7.2 Creating and Retrieving Publishers and Subscribers on page 49

Publisher

lookup datawriter by name

Subscriber

lookup_datareader_by_name

4.7.3 Creating and Retrieving DataWriters and DataReaders on page 49

4.5 XML Tags for Configuring Entities

There are two top-level tags to configure Entities in the XML configuration files:

o <domain_library>: Defines a collection of domains. A domain defines a global data-space where
applications can publish and subscribe to data by referring to the same Topic name. Each domain
within the domain library defines the Topics and associated data-types that can be used within that
domain. Note that this list is not necessarily exhaustive. The participants defined within the
<domain_participant_library> might add 7opics beyond the ones listed in the domain library.

o <domain_participant library>: Defines a collection of DomainParticipants. A DomainPar-
ticipant provides the means for an application to join a domain. The DomainParticipant contains all

32

4.5 XML Tags for Configuring Entities

the Entities needed to publish and subscribe data in the domain (Publishers, Subscribers,
DataWriters, DataReaders, etc.).

Figure 4.2 Top-Level Tags in Configuration File below and Table 4.2 Top-Level Tags in Configuration
File describe the top-level tags that are allowed within the root <dds> tag.

Figure 4.2 Top-Level Tags in Configuration File

-

Table 4.2 Top-Level Tags in Configuration File

Tags Number of
within Description Tags
<dds> Allowed
Specifies a domain library. Set of <domain> definitions.
<domain_lib- | Attributes: 0 or more
rary>
name Domain library name
<domain_par- | Specifies a participant library. Set of <domain_participant> definitions.
ticipant_lib- 0 or more
rary> name Participant library name
Specifies a QoS library and profiles.
<qos_library> | e contents of this tag are specified in the same manner as for a Connext DDS QoS profile file—see | 0 or more
Configuring QoS with XML, in the RTI Connext DDS Core Libraries User's Manual
<types> Defines types that can be used for dynamic data registered types. Oorl

33

4.5.1 Domain Library

4.5.1 Domain Library

A domain library provides a way to organize a set of domains that belong to the same system. A domain
represents a data space where data can be shared by means of reading and writing the same Topics, each
Topic having an associated data-type. Therefore, in a <domain> tag you can specify Topics and their data
types.

Figure 4.3 Domain Library Tag

<damain_library>

<demain>

<register_typer

<topic>

Figure 4.3 Domain Library Tag above, Table 4.3 Domain Library Tags, and Table 4.4 Domain Tags
describe what tags can be in a <domain_library>.

o The <register type> tag specifies a type definition that will be registered in the DomainParticipants
whenever they specify a Topic associated with that data type.

« The <topic> tag specifies a Topic by associating it with a <register type> that contains the type
information.

In a domain, you can also specify the domain ID to which the DomainParticipant associated with this
domain will be bound.

34

4.5.1 Domain Library

Table 4.3 Domain Library Tags

Tags within <domain . Number of Tags
. - Description
library> allowed
Specifies a domain.
Attributes:
name Domain name
<domain> 1 or more
domain_id . .
.~ Domain ID (default id=0)
(optional)
base_name Base domain name. Specifies another domain from which prop-
(optional) erties will be inherited.
Table 4.4 Domain Tags
Tags Number of
within Description Tags
<domain> allowed
Specifies the kind of data type to be registered. These are as follows:
builtin.string (see String Builtin Type, in the RTI Connext DDS Core Libraries User's Manual)
builtin.keyedString (see Keyed String Builtin Type, in the RTI Connext DDS Core Libraries User's Manual)
builtin.octets (see Octets Builtin Type, in the RTI Connext DDS Core Libraries User's Manual)
builtin.keyedOctets (see Keyed Octets Builtin Type, in the RTI Connext DDS Core Libraries User's Manual)
dynamicData Data type is defined within the <types> tag.
<register R .
type> userGenerated Data is defined by the type support code created by the code generator, rtiddsgen. 1 or more
Attributes:
Name used to refer to this registered type within the XML file. This is also the name under which
name the type is registered with the DomainParticipants unless overridden by the <registered name>
tag.
type_ref (optional) Referer'lce (fully gualiﬁed nam'e)' toa deﬁn'ed t)fpe within <types>. Indicates to use DynamicData if
a type is not registered at participant creation time.

35

4.5.1 Domain Library

Table 4.4 Domain Tags

register_type_ref

o DDS::KeyedString
« DDS::Octets
« DDS::KeyedOctets

Tags Number of
within Description Tags
<domain> allowed
Specifies a topic associating its data-type and optionally QoS.
Attributes:
name Name of the topic if no <registered_name> is specified.
Name of a registered type support or reference (name) to a register_type within this domain with
which this topic is associated. A built-in registered type can be specified by using one of these spe-
<topic> cial values: 1 or more
« DDS::String

Note that a domain may inherit from another “base domain” definition by using the base name attribute.
A domain that declares a “base domain” might still override some of the properties in the base domain.
Overriding is done simply by including elements in the derived domain with the same name as in the base

domain.

The <register type> tag, described in Figure 4.4 Register Type Tag below and Table 4.5 Register Type
Tag, determines how a type is registered by specifying the type definition and the name with which it is

registered.

Figure 4.4 Register Type Tag

«<domain>

<ragister_typa>

Table 4.5 Register Type Tag

Tags within <register_type> Description

Number of tags allowed

<registered_name>

Name with which the type is registered.

Oorl

36

4.5.1 Domain Library

The <topic> tag, described in Figure 4.5 Topic Tag below and Table 4.6 Topic Tag, describes a Topic by

specifying the name and type of the Topic. It may also contain the QoS configuration for that Topic.

Figure 4.5 Topic Tag

Table 4.6 Topic Tag

cdamains

S i

Tags within <topic > Description Number of tags allowed
<registered_name> Name of the Topic. Oorl
<topic_qos> Topic QoS configuration. Oorl

Some elements may refer to already specified types and QoS tags. The definitions of these referenced tags

may appear either in the same configuration file or in a different one—as long as it is one of the ones

loaded by Connext DDS as described in 4.2 Loading XML Configuration Files on page 30.

If a QoS is not specified for an Entity, then the QoS will be set to a default value that is either the default

configured in the XML files, or if such default does not exist, then the Connext DDS QoS defaults. Please
see Configuring QoS with XML, in the RTI Connext DDS Core Libraries User's Manual for more details.

For example:

<!-- types -->
<types>

<struct name="MyType">

<member name="message" type="string"/>

<member name="count" type="long"/>

</struct>
</types>
<!-- Domain Library -->

<domain library name="MyDomainLibrary" >

<domain name="MyDomain" domain id="10">

<register type name="MyRegisteredType"

kind="dynamicData" type ref="MyType"/>

<topic name="MyTopic" register type ref="MyType">

</topic>

<topic gos base name="qgosLibrary::DefaultProfile"/>

37

4.5.2 Participant Library

</domain>
</domain library>

The above configuration defines a domain with name “MyDomain” and domain_id “10” containing a
Topic called “MyTopic” with type “MyType” registered with the name “MyRegisteredType™:

o <register type> defines the registration of a dynamic data type with name “MyRegisteredType” and
definition “MyType”—defined in the same file.

o <topic> with name “MyTopic” and whose corresponding type is the one defined above with the
name “MyRegisteredType” found within the same configuration. The Topic QoS configuration is
the one defined by the profile “qosLibrary::DefaultProfile”, which is defined in a different file.

Note that the DomainParticipant created from a configuration profile bound this domain will be crated
with domain_id=10, unless the domain_id is overridden in the participant configuration.

4.5.2 Participant Library

A participant library provides a way to organize a set of participants belonging to the same system. A par-
ticipant configuration specifies all the entities that a DomainParticipant created from this configuration will
contain.

Figure 4.6 Participant Library Tag

1 “participant_|ibrary®

<dpmaln_partizigants

<regivter_type®

<topic»

<publishar>

<data_reader>

|

1

1

i

i 1
“participant_gos> i
1

I

1

I

1

38

4.5.2 Participant Library

Figure 4.6 Participant Library Tag on the previous page, Table 4.7 Participant Library Tag, and Table 4.8
Domain Participant Tag show the description of a <domain_participant library> and the tags it contains.
A <domain_participant> can be associated with a domain where topics and their associated types are
already defined. The elements <register type> and <topic> may also be defined in a <domain_par-
ticipant>—the same way it is done in a <domain>. This makes it possible to add Topics, data-types, etc.
beyond the ones defined in the domain, or alternatively redefine the elements that are already in the
<domain>.

A <domain_participant> is defined by specifying the set of Entities it contains. This is done using tags
such as <publisher>, <subscriber>, <data writer> and <data reader>, which specify an Entity of their cor-
responding type. These Entities are created within the DomainParticipant instantiated from the con-
figuration profile that contains the definitions.

Table 4.7 Participant Library Tag

Tags within <domain . L. Number of Tags
. . . - Description
participant_library> Allowed
Specifies a participant configuration.
Attributes:
name Participant configuration name.
base_name Base participant name. It specifies another participant from
(optional) which to inherit the configuration.
<domain_participant> 1 or more

domain_ref [Reference (fully qualified name) to a defined <domain> in the
(optional) domain library.

Domain ID. If specified, overrides the id in the domain it refers

domain_id to.

(optional) If no domain_id is specified directly or in the referenced domain

then the default domain _id is 0.

A <domain_participant> may inherit its configuration from another “base participant” specified using the
base name attribute. In this case, overriding applies to the base <domain_participant> as well as to the
referred <domain>.

Note that in DataWriters always belong to a Publisher and DataReaders to a Subscriber. For this reason
the <data writer> and <data reader> typically appear nested inside the corresponding <publisher> and
<subscriber> tags. However, for convenience, it is possible to define <data writer> and <data reader>
tags directly under the <domain participant> tag. In this case, the DataWriters and DataReaders are cre-
ated inside the implicit Publisher and Subscriber, respectively.

39

4.5.2 Participant Library

Table 4.8 Domain Participant Tag

Tags
within Number
<domain_ Description of Tags
participant Allowed
>
Configures certain aspects of how Connext DDS allocates internal memory. The configuration is per DomainParticipant and
therefore affects all the contained DataReaders and DataWriters. For example:
<domain_ participant name="test">
<memory_management>
<sample buffer min size>
X
</sample_buffer min_size>
<sample_buffer trim to_size>
true
</sample buffer trim to size>
</memory management>
<memory_man- 0
. . T MOrt
agement> The <memory management> tag can include the following tags: or more
sample_buffer_min_size: For all DataReaders and DataWriters, the way Connext DDS allocates memory for samples is as
follows: Connext DDS pre-allocates space for samples up to size X in the reader and writer queues. If a sample has an actual size
greater than X, the memory is allocated dynamically for that sample. The default size is DDS_LENGTH_UNLIMITED (meaning
no dynamic memory is used; the maximum sample size is pre-allocated).
sample_buffer_trim_to_size: If set to true, after allocating dynamic memory for very large samples, that memory will be re-
leased when possible. If false, that memory will not be released but kept for future samples if needed. The default is false.
This feature is useful when a data type has a very high maximum size (e.g., megabytes) but most of the samples sent are much
smaller than the maximum possible size (e.g., kilobytes). In this case, the memory footprint is dramatically reduced, while still cor-
rectly handling the rare cases in which very large samples are published.
<register_type> | Specifies how a type is registered. Same as within the <domain> tag 0 or more
<topic> Specifies a topic. Same as within the <domain> tag 0 or more
Specifies a configuration.
Attributes:
<publisher> name Publisher configuration name. 0 or more
Number of Publishers that are created with this configuration.
multiplicity (optional)
Default is 1.
Specifies a Subscriber configuration.
Attributes:
<subscriber> name Subscriber configuration name. 0 or more
Number of Subscribers that are created with this configuration.
multiplicity (optional)
Default is 1.

40

4.5.2 Participant Library

Table 4.8 Domain Participant Tag

Tags
within Number
<domain_ Description of Tags
participant Allowed
>
Specifies a DataWriter configuration. The DataWriter will be created inside the implicit Publisher.
Attributes:
name DataWriter configuration name.
<data_writer> . o . 0 or more
- topic ref Reference (name) a <topic> within the <domain> referenced by
pIc_ its <participant> parent.
Number of DataWriters that are created with this configuration.
multiplicity (optional)
Default is 1.
Specifies a data reader configuration. The DataReader will be created inside the implicit subscriber.
Attributes:
name Data reader configuration name.
<data_reader> topic tef Reference (name) a <topic> within the <domain> referenced by | O or more
ple_ its <participant> parent.
Number of DataReaders that are created with this con-
multiplicity (optional) figuration.
Default is 1.
<partic:
q(p)):;tlclpanL DomainParticipant QoS configuration. Oorl

The <publisher>, <subscriber>, <data writer>, and <data reader> tags are described in Figure 4.7 Pub-
lisher and Subscriber Tags on the next page, Table 4.9 Publisher Tag, Table 4.10 Subscriber Tag, Table
4.11 DataWriter Tag and Table 4.12 DataReader Tags.

41

4.5.2 Participant Library

Figure 4.7 Publisher and Subscriber Tags

<domain_participant>

| <subscriber>

_______________ 1

| <publisher> | 1

1 | 1
_____________) T Ee s e

|
1 | <14
, | <data_writer> y :_<datareader_qos> | : |
1 [|
: F ~
I <fi I
| <filter> 1
L |
| i
1

<domain_participant>

B B R B L E L B B X |]
| <data_reader> 1

1 : :_<datawriter_qos> |
1

|
| ! <publisher_gos> 11
| e e —- ! : |:_<5ubscriber_qos>

The <publisher> tag defines by default a Publisher. It may contain a QoS configuration and a several
DataWriters. Likewise, the <subscriber> tag defines by default a Subscriber. It may contain a QoS con-
figuration and a several DataReaders.

Table 4.9 Publisher Tag

Tags within <publisher > Description Number of Tags Allowed
<data_writer> Specifies a DataWriter configuration. Same as within the <participant> tag. 0 or more
<publisher_qos> Publisher QoS configuration. Oorl

Table 4.10 Subscriber Tag

Tags within <subscriber> Description Number of Tags Allowed
<data_reader> Specifies a DataReader configuration. Same as within the <participant> tag. 0 or more
<subscriber_qos> Subscriber QoS configuration. Oorl

Table 4.11 DataWriter Tag

Tags within <data_writer > Description Number of Tags Allowed

<datawriter_qos> DataWriter QoS configuration Oorl

42

4.5.2 Participant Library

Table 4.12 DataReader Tags

Tags within . Number of
Description
<data_reader> Tags Allowed
<datareader_qos> DataReader QoS configuration. 0 or more
Enables the creation of DataReader with this configuration from a ContentFilteredTopic.
Attributes:
<filter> Name of the ContentFilteredTopic. The ContentFilteredTopic will be associated with | 0 of 1
name . ..
the same Topic referenced by the containing <data_reader>
filter kind Specifies which ContentFilter to use. It defaults to the builtin.sql filter.

The <filter> tag within a <data reader> enables content filtering. It causes the corresponding DataReader
to be created from a ContentFilteredTopic with the specified filter characteristics.

The ContentFilteredTopic name is generated as follows: xml_filter name::xml_topic_name.

Where xml_filter_name is the value of the attribute name of the <filter> tag, and xml_topic_name is the
value of the attribute name of the referred <topic> tag.

Table 4.13 Filter Tag

Tags within <filter > Description Number of Tags Allowed
<expression> Filter expression Oorl
List of parameters. Parameters are specified using <param> tags.
The maximum number of parameters is 100.
<parameter_list>
<parameter_list> Oorl

<param>param_ 0</param>
<param>param_ l</param>

</parameter list>

For example:

<domain participant name="MyParticipant"

domain ref="MyDomainLibrary::MyDomain">
<publisher name="MyPublisher">

<data writer name="MyWriter" topic ref="MyTopic"/>

</publisher>

<subscriber name="MySubscriber">
<data reader name="MyReader" topic ref="MyTopic">
<filter name="MyFilter" kind="builtin.sqgl">
<expression> count > %0 </expression>

<parameter list>
<param>10<param>

43

4.6 Names Assigned to Entities

</parameter list>
</filter>
</data_ reader>
</subscriber>
</domain participant>

The above configuration defines a <domain_participant> that is bound to the <domain> “MyDomain”.
A DomainParticipant created from this configuration will contain:

o A Publisher which has a DataWriter created from the Topic “MyTopic”.

o A Subscriber which has DataReader created from a ContentFilteredTopic whose related Topic,
“MyTopic”, uses a SQL filter. The ContentFilteredTopic has the name “MyTopic::MyFilter”.

4.6 Names Assigned to Entities

Each Entity configured in an XML file is given a unique name. This name is used to refer to it from other
parts of the XML configuration and also to retrieve it at run-time using the Connext DDS APL

In the context of XML-based configuration, we distinguish between two kinds of names:

« Configuration name: The name of a specific Entity’s configuration. It is given by the name attrib-
ute of the corresponding XML element.

o Entity name: The actual name of the Entity within the run-time system. The name assignment fol-
lows these rules of precedence:

1. An explicit name provided as a parameter in DomainParticipantConfigParams_t (applies only
to a DomainParticipant).

2. An explicit name, obtained from the specified EntityNameQosPolicy settings.

3. A default entity name, obtained from the name attribute of the corresponding configuration.

For example:
<domain participant library name="MyLibrary">
<domain participant name="MyParticipant">
<publisher name="MyPublisher">
<data writer name="MyWriter" topic ref="MyTopic"/>
<data writer name="MyWriter2" topic ref="MyTopic2">
<publication name>
<name>WriterNameFromQos</name>
</publication name>
</data writer>
</publisher>
</domain participant>
</domain participant library>

For the above XML configuration, the name assignments are:

44

4.6.1 Referring to Entities and Other Elements within XML Files

Entity Configuration Name Entity Name
DomainParticipant “MyParticipant" “MyParticipant”
Publisher “MyPublisher” “MyPublisher”
DataWriter “MyWriter” “MyWriter”
DataWriter “MyWriter2” “WriterNameFromQos”

For all the cases, the entity name is stored by Connext DDS using the EntityNameQosPolicy QoS policy
for DomainParticipants, Publishers, Subscribers, DataWriters and DataReaders. The policy is rep-
resented by the following C structure:
Struct DDS EntityNameQosPolicy {
char * name;

char * role name;

}

The mapping is:
Field Value
name Entity name
role_name Configuration name

For the above XML example, assuming the entities are created with create participant from config(con-
figuration):

Entity EntityNameQosPolicy

name = "MyParticipant"
DomainParticipant
role_name = “MyParticipant”

name = “MyPublisher”

Publisher

role_name = “MyPublisher”

name = “MyWriter”
DataWriter

role_name = “MyWriter”

name = “WriterNameFromQos”
DataWriter

role_name = “MyWriter2”

4.6.1 Referring to Entities and Other Elements within XML Files

Entities and other elements within the XML file are addressed using a hierarchical name that matches their
declaration hierarchy. This is summarized in the table below.

45

4.6.1 Referring to Entities and Other Elements within XML Files

Entity or . c
Y Hierarchical Name Example Use
Element
type [type name] type_ref="MyType"
qos [qos_library_name]::[qos_profile_name] base_name="qosLibrary::DefaultProfile"
. . . domain_ref=
domain [domain_libary name]::[domain_name] "MyDomainLibrary::MyDomain"
[domain_participant library name]:: base name=
participant -

[participant_name]

”MyParticipantLibrary::PublicationParticipant”

[topic_name]
topic topic_ref="MyTopic"
Must be defined within the scope of the Domain or the Participant that refers to it

[subscriber_name]
publisher base_name="MyPublisher”
Must be defined within the scope of the Participant that refers to it

[subscriber_name]
subscriber base name="MySubscriber”
Must be defined within the scope of the Participant that refers to it

[publisher_name]::[datawriter_name] base_name="MyPublisher::MyWriter”

data_writer If addressing from within the same Publisher, the “publisher name::” prefix may be

. base_name="MyWriter”
omitted -

[subscriber _name]::[datareader name] base_name="MySubscriber::MyR cader”

data_reader If addressing from within the same Subscriber, the “subscriber_name::” prefix may be

. base_name="MyReader”
omitted |

The example above corresponds to a configuration such as the one following:

<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation=
"../../../resource/schema/rti dds profiles.xsd" version="5.x.y">
<types>
<struct name="MyType">
<member name="mylong" type="long"/>
</struct>
</types>

<domain library name="MyDomainLibrary">
<domain name="MyDomain" domain_ id="0">
<register type name="MyRegisteredType"
kind="dynamicData" type ref="MyType"/>
<topic name="MyTopic"
register type ref="MyRegisteredType"/>
</domain>
</domain library>

<domain participant library name="MyParticipantLibrary">
<domain participant name="MyParticipant"

46

4.7 Creating and Retrieving Entities Configured in an XML File

domain ref="MyDomainLibrary::MyDomain">
<publisher name="MyPublisher">
<data writer name="MyWriter"
topic ref="MyTopic"/>
</publisher>
<subscriber name="MySubscriber">
<data reader name="MyReader"
topic ref="MyTopic"/>
</subscriber>
</domain participant>
</domain participant library>
</dds>

4.7 Creating and Retrieving Entities Configured in an XML File

There are two kinds of operations that affect Entities configured in an XML file:

o Create the defined entities. Only the operation create_participant_from_config() in the DomainPar-
ticipantFactory triggers the creation of a DomainParticipant and all its contained Entities given a
configuration name.

« Retrieve the defined entities: After creation, you can retrieve the defined Entities by using the
lookup by name() operations available in the DomainParticipantFactory, DomainParticipant, Pub-
lisher and Subscriber.

4.7.1 Creating and Retrieving a DomainParticipant Configured in an XML
File

To create a DomainParticipant from a configuration profile in XML, use the function create_par-
ticipant_from_config(), which receives the configuration name and creates all the entities defined by that
configuration.

For example :

<domain participant library = "MyLibrary">
<domain participant name="MyParticipant"
domain ref="MyDomainLibrary::MyDomain" domain_ id="1>

</domain participant>
</domain participant library>
Given the above configuration, a DomainParticipant is created as follows:
DDSDomainParticipant * participant =

DDSTheParticipantFactory->create participant from config
("MyLibrary: :MyParticipant") ;

47

4.7.1 Creating and Retrieving a DomainParticipant Configured in an XML File

if (participant == NULL) {
//handle error

}

The DomainParticipant is bound to the domain_id specified in either the <domain_participant> tag—this
has precedence—or the <domain> tag. In this example the domain_id is set to one.

When the DomainParticipant is created by means of create_participant_from_config(), a name will be
generated automatically based on the configuration name and the number of existing participants created
from the same configuration. The generation follows the same strategy explained in 4.6 Names Assigned
to Entities on page 44 for the domain entities where the multiplicity is replaced by the number of existing
participants. If this is number is identified by "N", the participant name for a new participant will be
assigned as follows:

Participant Name N

"configuration_name" 0

"configuration_name#N" [1,N-1]

For example, if we create three participants from the configuration "lib::participant", the names assigned as
the participants are created will be:

e -participant
o -participant#1
e -participant#2

Once a participant is created, it can be retrieved by its name at any other place in your program as follows,
based on the previous example and assuming that only one participant was created:

participant =
DDSTheParticipantFactory->lookup participant by name (
"MyParticipant") ;

if (participant == NULL) {

//handle error
}

To provide more flexibility, create participant_from_config w_params() allows you to specify the par-
ticipant name. Y ou can also override the specification in the configuration for the domain ID and QoS pro-
file for the participant and entites in the domain.

48

4.7.2 Creating and Retrieving Publishers and Subscribers

4.7.2 Creating and Retrieving Publishers and Subscribers

Publishers and Subscribers configured in XML are created automatically when a DomainParticipant is

created from the <domain_participant> that contains the <publisher> and <subscriber> configurations.
Given the following example:

<domain participant name="MyParticipant"
domain ref="MyDomainLibrary::MyDomain">
<publisher name="MyPublisher" multiplicity="2">

</publisher>
<subscriber name="MySubscriber">

</subscriber>
</domain participant>

Once a DomainParticipant is created as explained in 4.7.1 Creating and Retrieving a DomainParticipant
Configured in an XML File on page 47, Publishers and Subscribers can be retrieved from the created
DomainParticipant using their name as follows:

DDSPublisher * publisher =
participant->lookup publisher by name ("MyPublisher");
if (publisher == NULL) {
//handle error

DDSPublisher * publisher 1 =
participant->lookup publisher by name ("MyPublisher#1");
if (publisher == NULL) {
//handle error

DDSSubscriber * subscriber =
participant->lookup subscriber by name ("MySubscriber") ;
if (subscriber == NULL) ({
//handle error

4.7.3 Creating and Retrieving DataWriters and DataReaders

DataWriters and DataReaders configured in XML are created automatically when a DomainParticipant is

created from the <domain_participant> that contains the <data writer> and <data reader> configurations.
Given the following example:

<domain participant name="MyParticipant"
domain ref="MyDomainLibrary::MyDomain">
<publisher name="MyPublisher">
<data writer name="MyWriter" topic ref="MyTopic"/>
</publisher>

49

4.7.4 Creating Content Filters

<subscriber name="MySubscriber">
<data reader name="MyReader" topic ref="MyTopic"/>
</subscriber>
</domain participant>

Once a DomainParticipant is created as explained in 4.7.1 Creating and Retrieving a DomainParticipant

Configured in an XML File on page 47, DataWriters and DataReaders can be retrieved from the created

DomainParticipant using their fully qualified name seen below:

DDSDataWriter * dataWriter =
participant->lookup dataWriter by name (
“MyPublisher::MyWriter”) ;

if (dataWriter == NULL) {

//handle error

DDSDataReader * dataReader =
participant->lookup datareader by name (
“MySubscriber: :MyReader”) ;
if (dataReader == NULL) {
//handle error

Or from the created Publisher and Subscriber ,using their ‘unqualified’ name seen below:

DDSDataWriter * dataWriter =
publisher->lookup dataWriter by name (“MyWriter”);
if (dataWriter == NULL) {
//handle error

DDSDataReader * dataReader =
subscriber->lookup datareader by name (“MyReader”);

4.7.4 Creating Content Filters

To use a content filter, modify the “SubscriptionParticipant” configuration to look like this:

<domain participant library name="MyParticipantLibrary">

<domain participant name="SubscriptionParticipantWithFilter"
domain ref="MyDomainLibrary::HelloWorldDomain">
<subscriber name="subscriber">
<data reader name="HelloWorldReader"
topic ref="HelloWorldTopic">
<datareader gos name="HelloWorld reader gos"
base name="qgosLibrary::DefaultProfile"/>
<filter name="HelloWorldTopic" kind="builtin.sqgl">

50

4.7.5 Using User-Generated Types

<expression> count < 20 </expression>
</filter>
</data_ reader>
</subscriber>
</domain participant>
</domain participant library>

It adds a SQL content filter, which only accepts samples with the field count greater than two.

Now run the HelloWorld subscriber application without recompiling and check that it only receives data
when counter less than 20 as expected.

4.7.5 Using User-Generated Types

If a user-generated type by means of rtiddsgen is desired rather than dynamic data, the corresponding type
support must be registered with the DomainParticipantFactory before creating a DomainParticipant. To
register the type support, use the function register_type_support() in the DomainParticipantFactory,
which takes (a) a pointer to a function that registers a type and (b) the type name it is registered with. Then
the specified function will be called automatically by the middleware whenever the type registration is
needed.

The definition of this function is given by:

typdef DDS ReturnCode t (*DomainParticipantFactory RegisterTypeFunction)
(DDSDomainParticipant * participant,
const char * type name) ;

This “register type function” should be generated using the rfiddsgen command-line tool from the IDL or
XML definition of the data type. See 2.2 Hello World using XML and Compiled Types on page 16 for a
simple example of how to follow this process.

For example, the following XML snippet defines a data type registered under the name MyType with a
TypeSupport that is user-generated. To use this data type, the application must also generate the TypeSup-
port code for the appropriate language binding using rtiddsgen and associate the generated TypeSupport
with the name MyType. This association is made by calling the operation register _type support() on the
DomainParticipantFactory:

<domain name="MyDomain" domain id="13">
<register type name="MyType" kind="userGenerated"/>

</domain>

Continuing the example above, assume that the structure of "MyType" is described in the IDL file
MyType.idl. Also assume that you are using the C++ language API and you have already run rtiddsgen
and generated the type-support files: MyTypeSupport.h and MyTypeSupport.cxx. These files will con-
tain the declaration and implementation of the function MyTypeSupport::register type(). In this situ-
ation, you must associate the MyTypeSupport::register type() operation with the type name MyType

51

4.7.5 Using User-Generated Types

by calling DDSTheParticipantFactory->register _type support() from your application code prior to
creating the DomainParticipant as shown in the C++ snippet below:

DDS ReturnCode t * retCode =
DDSTheParticipantFactory->register type support (
FooTypeSupport::register type, "MyType");
if (retCode != DDS RETCODE OK) {
//handle error

}
You can find an example of using a user-generated type in <path to examples>/connext_dds/c++/hello_

world_xml _compiled. Also refer to the description of this example in 2.2 Hello World using XML and
Compiled Types on page 16.

52

	Chapter 1 Introduction
	1.1 Paths Mentioned in Documentation

	Chapter 2 A ‘Hello, World’ Example
	2.1 Hello World using XML and Dynamic Data
	2.1.1 Build the Application
	2.1.2 Run the Application
	2.1.3 Examine the XML Configuration Files Definition
	2.1.3.1 QoS Definition
	2.1.3.2 Type Definition
	2.1.3.3 Domain Definition
	2.1.3.4 Participant Definition

	2.1.4 Publisher Application
	2.1.5 Subscriber Application
	2.1.6 Subscribing with a Content Filter

	2.2 Hello World using XML and Compiled Types
	2.2.1 Define the Data Types using IDL or XML
	2.2.2 Generate Type-Support Code from the Type Definition
	2.2.3 Build the Application
	2.2.4 Run the Application
	2.2.5 Examine the XML Configuration Files Definition
	2.2.6 Examine the Publisher Application
	2.2.7 Examine the Subscriber Application

	Chapter 3 Using Connext Prototyper
	Chapter 4 Understanding XML-Based Application Creation
	4.1 Important Points
	4.2 Loading XML Configuration Files
	4.3 XML Syntax and Validation
	4.3.1 Validation at Run Time
	4.3.2 Validation during Editing

	4.4 Accessing Entities Defined in XML Configuration from an Application
	4.5 XML Tags for Configuring Entities
	4.5.1 Domain Library
	4.5.2 Participant Library

	4.6 Names Assigned to Entities
	4.6.1 Referring to Entities and Other Elements within XML Files

	4.7 Creating and Retrieving Entities Configured in an XML File
	4.7.1 Creating and Retrieving a DomainParticipant Configured in an XML File
	4.7.2 Creating and Retrieving Publishers and Subscribers
	4.7.3 Creating and Retrieving DataWriters and DataReaders
	4.7.4 Creating Content Filters
	4.7.5 Using User-Generated Types

