RTI Routing Service

Getting Started Guide

Version 5.3.1

r t ' Your systems. Working as one.

© 2009-2018 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.

February 2018.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS, the RTT logo,
IRTT and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks or service marks of
Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form (including
electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time Innovations, Inc.
The software described in this document is furnished under and subject to the RTI software license agreement. The
software may be used or copied only under the terms of the license agreement.

Technical Support

Real-Time Innovations, Inc.

232 E. Java Drive

Sunnyvale, CA 94089

Phone: (408) 990-7444

Email: support@rti.com
Website: https://support.rti.com/

https://support.rti.com/

Contents

1 Welcome to RTI Routing Service

1.1 Available DOCUIMENTATIONoeiirieeeeeeeeeeeeeteeeeeeeeeeee e et e e eaeee e aaeeeeaeeeeeseeeeseeeeesseseesseseeneeeseseeeensreeanes 1-2
1.2 Paths Mentioned in DOCUMENTATIONooiuviiiieeieiieeeeeiiieeeeeeeeteee e e e eeeeeeeeeesaeeeeeeesaaaeeeeessareeseessnnrereesaan 1-3

2 Running Routing Service

2.1 Starting ROULING SETVICEeotieiiiieieieeiee ettt sttt ettt e bt et ea e bt et e ebeeneesbeenees 2-1
2.2 StOPPING ROULING SEIVICE ...oevieiieiieieiieieeit ettt ettt et eeseeetesaeesaesseesaesseessesseensesseensenseensesseensesseanses 2-2
2.3 Linking the Routing Service Library into Your Application..........cccceeeererrieninieneeienieeneeee e 2-4

3 Using the Examples

3.1 Example 1 - Routing All Data from One Domain to ANOThercccoceeviiiiniiiiiinieee e 3-2
3.2 Example 2 - Changing Data to a Different Topic of Same TYPeccoecveererininininenirieieceieence 3-2
3.3 Example 3 - Changing Some Values in Dataccccooiiiiiiiiiiiiet e 3-3
3.4 Example 4 - Transforming the Data’s Type and Topic with an Assignment Transformation................... 3-4
3.5 Example 5 - Transforming Data with a Custom Transformation..............ccceecverciierveenciienieeiee e 3-4
3.6 Example 6 - Using Remote AdminiStrationccueruerieieriesieniertesiesieseesteseesieeae e eeaesseeseesseensesseennes 3-6
3.7 EXAMPIE 7 - MONILOTINEZ ...eeuvreiiieiieeeieeteesieeeiieeteesteestteeteessaesbeessseesseeseessseesseessseesseasssesseesssesssessssensseenses 3-8
3.8 Example 8 - Using the TCP Transport with Routing Serviceccecirieriecieniiieneeie e 3-12
3.9 Example 9 - USiNg @ File AQAPLET......cccuiiiiieiieiiecieeie ettt e sveeteeseaeeve e taesseeseesesaensnennseens 3-15
3.10 Example 10 - USing @ SOCKEt AdQPLErooveiieeieiieeieie ettt s eesae e bessaesbeenaenee e 3-18

il

Chapter 1 Welcome to RTI Routing Service

Welcome to RTI® Routing Service, an out-of-the-box solution for integrating disparate and geographi-
cally dispersed systems. It scales RTI Connext® DDS applications across domains, LANs and WANSs,
including firewall and NAT traversal. Routing Service also supports DDS-to-DDS bridging by allowing
you to make transformations in the data along the way. This allows unmodified DDS applications to com-
municate even if they were developed using incompatible interface definitions. This is often the case
when integrating new and legacy applications or independently developed systems. Using RTI Routing
Service Adapter SDK, you can extend Routing Service to interface with non-DDS systems using off-the-
shelf or custom developed adapters, including to third-party JMS implementations and legacy code writ-
ten to the network socket API.

Traditionally, RTI® Connext® applications can only communicate with applications in the same domain.
With Routing Service, you can send and receive data across domains. You can even transform and filter
the data along the way! Not only can you change the actual data values, you can change the data’s type. So
the sending and receiving applications don’t even need to use the same data structure. You can also control

which data is sent by using allow and deny lists.
[COnnext Application]
Routing /

[COnnext Application]
\ Routing o
Service Service
[JMS Application]/ \[JMS Application]

Simply set up Routing Service to pass data from one domain to another and specify any desired data filter-
ing and transformations. No changes are required in the Connext DDS applications.

v

Key benefits of Routing Service:

e [t can significantly reduce the time and effort spent integrating and scaling Connext DDS applica-
tions across Wide Area Networks and Systems-of-Systems.

Many systems today already rely on Connext DDS to distribute their information across a Local
Area Network (LAN). However, more and more of these systems are being integrated in Wide
Area Networks (WANs). With Routing Service, you can scale Connext DDS real-time publish/
subscribe data-distribution beyond the current local networks and make it available throughout a
WAN—without making any changes to existing Connext DDS applications. You can take an exist-
ing, even deployed system and integrate it with new applications or other existing systems without
changing those existing systems.

e With Routing Service, you can build modular systems out of existing systems. Data can be con-
tained in private domains within subsystems and you can designate that only certain “global top-
ics” can be seen across domains. The same mechanism controls the scope of discovery. Both
application-level and discovery traffic can be scoped, facilitating scalable designs.

1-1

Available Documentation

1.1

® Routing Service provides secure deployment across multiple sites. You can partition networks and
protect them with firewalls and NATS and precisely control the flow of data between the network
segments.

e It allows you to manage the evolution of your data model at the subsystem level. You can use
Routing Service to transform data on the fly, changing topic names, type definitions, QoS, etc.,
seamlessly bridging different generations of topic definitions.

* Routing Service provides features for development, integration and testing. Multiple sites can each
locally test and integrate their core application, expose selected topics of data, and accept data
from remote sites to test integration connectivity, topic compatibility and specific use-cases.

¢ [t connects remotely to live, deployed systems so you can perform live data analytics, fault condi-
tion analysis, and data verification.

e RTI Routing Service Adapter SDK allows you to quickly build and deploy bridges to integrate
DDS and non-DDS systems. This can be done in a fraction of the time required to develop com-
pletely custom solutions. Bridges automatically inherit advanced DDS capabilities, including
automatic discovery of applications; data transformation and filtering; data lifecycle management
and support across operating systems; programming languages and network transports.

Real-Time
Applications

% .}vz“'ﬁ l

Plug-in Adapters

Socket I :‘_::‘

Routing
Service

IMS Socket LINK11 “\ CANbus

Quickly build and deploy bridges between natively incompatible protocols and technologies using Connext DDS.

Available Documentation

Routing Service documentation includes:

e Getting Started Guide (RTI Routing Service GettingStarted.pdf)—Highlights the benefits of
Routing Service. It provides installation and startup instructions, and walks you through several
examples so you can quickly see the benefits of using Routing Service.

e Release Notes (RTI Routing Service ReleaseNotes.pdf)—Describes system requirements and
compatibility, as well as any version-specific changes and known issues.

Paths Mentioned in Documentation

e User’s Manual (RTI Routing_Service UsersManual.pdf)—Describes how to configure Routing
Service and use it remotely.

1.2 Paths Mentioned in Documentation

The documentation refers to:

e <NDDSHOME>
This refers to the installation directory for Connext DDS.
The default installation paths are:
® Mac OS X systems:
/Applications/rti_connext_dds-version
® UNIX-based systems, non-root user:
/home/your user name/rti_connext_dds-version
® UNIX-based systems, root user:
/opt/rti_connext_dds-version
® Windows systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-version
® Windows systems, user with Administrator privileges:

C:\Program Files\rti_connext_dds-version (for 64-bits machines) or
C:\Program Files (x86)\rti_connext_dds-version (for 32-bit machines)

You may also see SNDDSHOME or %NDDSHOME%, which refers to an environment variable
set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users: When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:

“C:\Program Files\rti connext dds-version\bin\rtiddsgen”

or if you have defined the NDDSHOME environment variable:

“$NDDSHOME%\bin\rtiddsgen”

e RTI Workspace directory, rti_workspace

The RTI Workspace is where all configuration files for the applications and example files are
located. All configuration files and examples are copied here the first time you run R77 Launcher
or any script in <NDDSHOME>/bin. The default path to the RTI Workspace directory is:

® Mac OS X systems:

/Users/your user name/rti_workspace
® UNIX-based systems:

/home/your user name/rti_workspace

* Windows systems:

1-3

Paths Mentioned in Documentation

your Windows documents folder\rti_workspace

Note: 'vour Windows documents folder' depends on your version of Windows.
For example, on Windows 7, the folder is C:\Users\your user name\Documents; on Win-
dows Server 2003, the folder is C:\Documents and Settings\your user name\Documents.

You can specify a different location for the rti_workspace directory. See the RTI Connext DDS
Core Libraries Getting Started Guide for instructions.
<path to examples>

Examples are copied into your home directory the first time you run RT7 Launcher or any script in
<NDDSHOME>/bin. This document refers to the location of these examples as <path to exam-
ples>. Wherever you see <path to examples>, replace it with the appropriate path.

By default, the examples are copied to rti_workspace/version/examples
So the paths are:
® Mac OS X systems:
/Users/your user name/rti_worKkspace/version/examples
® UNIX-based systems:
/home/your user name/rti_workspace/version/examples
® Windows systems:
your Windows documents folder\rti_workspace\version\examples
Note: 'vour Windows documents folder' is described above.

You can specify that you do not want the examples copied to the workspace. See the RTI Connext
DDS Core Libraries Getting Started Guide for instructions.

1-4

Chapter 2 Running Routing Service

2.1

Routing Service is installed by the Connext DDS package installer.

Starting Routing Service
Routing Service runs as a separate application. The script to run the executable is in <NDDSHOME>/
bin.!

Routing Service supports loading Java adapters. If your configuration is set up to load a Java adapter, fol-
low these steps:

1. On Windows Systems: To use a Java adapter, you must have the appropriate Visual Studio redis-
tributable libraries installed on the target system. You can obtain this package from Microsoft or
RTI (see the RTI Connext DDS Core Libraries Release Notes for details).

2. Make sure Java 1.7 or higher is available.

3. Make sure you add the directory of the Java Virtual Machine dynamic library to your environment
variable: LD LIBRARY PATH (on UNIX-based systems) or Path (on Windows systems). For
example:

setenv LD LIBRARY PATH
${LD_LIBRARY PATH}:/local/java/jdkl.7.0/jre/1lib/i386/client

To start Routing Service, enter:
<NDDSHOME>/bin/rtiroutingservice [options]
For example (note: you would enter this all on one line):

<NDDSHOME>/bin/rtiroutingservice
-cfgFile <path to examplesl>/routing_service/shapes/topic_bridge.xml \
-cfgName example

Table 2.1 describes the command-line options.

1. See Paths Mentioned in Documentation (Section 1.2)

2-1

Stopping Routing Service

2.2 Stopping Routing Service

To stop Routing Service, press Ctrl-c. Routing Service will perform a clean shutdown.

Table 2.1 RTI Routing Service Command-line Options

Option

Description

-appName <name>

Assigns a name to the execution of the Routing Service.

Remote commands and status information will refer to the routing service using
this name. See the Routing Service User’s Manual for more information.

In addition, the name of DomainParticipants created by Routing Service will be
based on this name.

Default: The name given with -cfgName, if present, otherwise it is “RTI_Rout-
ing_Service”.

-cfgFile <name>

Specifies a configuration file to be loaded.
See How to Load the XML Configuration (Section 2.2).

-cfgName <name>

Specifies a configuration name. Routing Service will look for a matching <rout-
ing_service> tag in the configuration file.

This parameter is required unless you use
-remoteAdministrationDomainld and -noAutoEnable.

-domainldBase <ID>

Sets the base domain ID.

This value is added to the domain IDs in the configuration file. For example, if
you set -domainldBase to 50 and use domain IDs 0 and 1 in the configuration
file, then the Routing Service will use domains 50 and 51.

Note: -domainldBase only affects the domain IDs of DomainRoute partici-
pants; it does not affect the domain IDs of participants used for monitoring or
administration.

Default: 0

-heapSnapshotPeriod

Enables heap monitoring.
Routing Service will generate a heap snapshot every <sec>.

Default: heap monitoring is disabled.

-heapSnapshotDir

When heap monitoring is enabled, this parameter configures the directory
where the snapshots will be stored. The snapshot filename format is RTI_<con-
figurationName><processld><index>.log.

Default: current working directory

-help

Displays help information.

-identifyExecution

Appends the host name and process ID to the service name provided with the -
appName option. This helps ensure unique names for remote administration
and monitoring.

For example: MyRoutingService_myhost 20024

-licenseFile <file>

Specifies the license file (path and filename). Only applicable to licensed ver-
sions of Routing Service.

If not specified, Routing Service looks for the license as described in the Get-
ting Started Guide.

-maxObjectsPerThread <int>

Parameter for the DomainParticipantFactory.

Stopping Routing Service

Table 2.1 RTI Routing Service Command-line Options

Option

Description

-noAutoEnable

Starts Routing Service in a disabled state.

Use this option if you plan to enable Routing Service remotely, as described in
the User’s Manual.

This option overwrites the value of the enable attribute in the <routing_ser-
vice> tag.

-remoteAdministrationDomainld <ID>

Enables remote administration and sets the domain ID for remote communica-
tion.

When remote administration is enabled, Routing Service will create a Domain-
Participant, Publisher, Subscriber, DataWriter, and DataReader in the desig-
nated domain. The QoS values for these entities are described in the Routing
Service User’s Manual.

This option overwrites the value of the tag <domain_id> within a <adminis-
tration> tag. (See the Routing Service User’s Manual for information on con-
figuring remote access).

Default: Remote administration is not enabled unless it is enabled from the
XML file.

-remoteMonitoringDomainld <ID>

Enables remote monitoring and sets the domain ID for status publication.

When remote monitoring is enabled, Routing Service will create one Domain-
Participant, one Publisher, five DataWriters for data publication (one for each
kind of entity), and five DataWriters for status publication (one for each kind of
entity). The QoS values for these entities are described in the Routing Service
User’s Manual.

This option overwrites the value of the tag <domain_id> within a <monitor-
ing> tag. (See the Routing Service User’s Manual for information on configur-
ing remote monitoring).

Default: Remote monitoring is not enabled unless it is enabled from the XML
file.

-stopAfter <sec>

Stops the service after the specified number of seconds.

-use42eAlignment

Enables compatibility with RT7 Data Distribution Service 4.2e.

This option should be used when compatibility with 4.2¢ is required and the
topic data types contain double, long long, unsigned long long, or long double
members.

Default: Disabled

-verbosity <n>

Controls what type of messages are logged:

0 - Silent

1 - Exceptions (Connext DDS and Routing Service) (default)
2 - Warnings (Routing Service)

3 - Information (Routing Service)

4 - Warnings (Connext DDS and Routing Service)

5 - Tracing (Routing Service)

6 - Tracing (Connext DDS and Routing Service)

Each verbosity level, n, includes all the verbosity levels smaller than 7.

-version

Prints the Routing Service version number.

Linking the Routing Service Library into Your Application

2.3

Linking the Routing Service Library into Your Application

Routing Service can be deployed as a C library linked into your application on select architectures (see the
Release Notes). This allows you to create, configure and start Routing Service instances from your appli-
cation. The following code shows the typical use of the API:

struct RTI RoutingServiceProperty property =
RTI RoutingServiceProperty INITIALIZER;
struct RTI RoutingService * service = NULL;

property.cfg file = "my routing service cfg.xml";
property.service name = "my routing service";

service = RTI RoutingService new (&property);
if (service == NULL) {

printf ("Error...");

return -1;

}

if (!RTI_RoutingService start(service)) {
printf ("Error...");
RTI RoutingService delete (service);
return -1;

}
while (keep running) {
sleep();

}
RTI RoutingService delete(service);
return 0;

To build your application, link it with the Routing Service library in <NDDSHOME>/bin/<architec-
ture>/.! Replace <architecture> with an architecture string from the Release Notes. (Note: This process
cannot be used on all architectures; see the Release Notes for details.)

If you are using the C API, see the example in <path to examples1>/routing_service/routing_ser-
vice_lib.

Example makefiles and project files for several architectures are provided.

Also see the README.txt file in the routing_service_lib/src directory.

1. See Paths Mentioned in Documentation (Section 1.2)

Chapter 3 Using the Examples

This chapter describes several examples, all of which use RTI Shapes Demo to publish and subscribe to
topics which are colored moving shapes (squares, circles, triangles):

e Example | - Routing All Data from One Domain to Another (Section 3.1)
e Example 2 - Changing Data to a Different Topic of Same Type (Section 3.2)
e Example 3 - Changing Some Values in Data (Section 3.3)

e Example 4 - Transforming the Data’s Type and Topic with an Assignment Transformation (Sec-
tion 3.4)

e Example 5 - Transforming Data with a Custom Transformation (Section 3.5)
e Example 6 - Using Remote Administration (Section 3.6)

e Example 7 - Monitoring (Section 3.7)

e Example 8 - Using the TCP Transport with Routing Service (Section 3.8)

e Example 9 - Using a File Adapter (Section 3.9)

e Example 10 - Using a Socket Adapter (Section 3.10)

In each example, you can start all the applications on the same computer or on different computers in your
network.

If you don't have Shapes Demo installed already, you should download and install it from RTI’s Down-
loads page (www.rti.com/downloads) or the RTI Support Portal, accessible from https://support.rti.com/
(the latter requires an account name and password). If you are not already familiar with how to start
Shapes Demo and change its domain ID, please see the Shapes Demo User's Manual for details.

Important Notes:

¢ Please review Paths Mentioned in Documentation (Section 1.2) to understand where to find the
examples (referred to as <path to examples>).

e The following instructions include commands that you will enter in a command shell. These
instructions use forward slashes in directory paths, such as bin/rtiroutingservice. If you are using
a Windows platform, replace all forward slashes in such paths with backwards slashes, such as
bin\rtiroutingservice.

e If you run Shapes Demo and Routing Service on different machines and these machines do not
communicate over multicast, you will have to set the environment variable NDDS DISCOVERY-
_PEERS to enable communication. For example, assume that you run Routing Service on Host 1
and Shapes Demo on Host 2 and Host 3. In this case, the environment variable would be set as fol-
lows:

Host 1: set NDDS_DISCOVERY PEERS= <host2>, <host3> (on Windows systems)

3-1

www.rti.com/downloads
https://support.rti.com/

Example 1 - Routing All Data from One Domain to Another

setenv NDDS DISCOVERY PEERS <host2>, <host3> (on UNIX-based systems)
Host 2: set NDDS DISCOVERY PEERS=<hostl>

Host 3: set NDDS_DISCOVERY PEERS=<hostl>

3.1 Example 1 - Routing All Data from One Domain to Another

This example uses the default configuration file! for Routing Service, which routes all data published on
domain 0 to subscribers on domain 1.

Start Shapes Demo. We'll call this the Publishing Demo. It uses domain ID 0.
Start a second copy of Shapes Demo. We'll call this the Subscribing Demo. Then:
a. Open its Configuration dialog (under Controls).

b. Press Stop.

c. Change the domain ID to 1.

d. Press Start.

3. In the Publishing Demo, publish some Squares, Circles, and Triangles.

In the Subscribing Demo, subscribe to Squares, Circles and Triangles.

Notice that the Subscribing Demo does not receive any shapes. Since we haven’t started Routing
Service yet, data from domain 0 isn’t routed to domain 1.

Start Routing Service by entering the following in a command shell:
cd <NDDSHOME>
bin/rtiroutingservice -cfgName default

Now you should see all the shapes in the Subscribing Demo.

Stop Routing Service by pressing Ctrl-c.

You should see that the Subscribing Demo stops receiving shapes.

Additionally, you can start Routing Service (Step 5) with the following parameters:

-verbosity 3, to see messages from Routing Service, including events that have triggered the cre-
ation of routes.

-domainldBase X, to use domains X and X+1 instead of 0 and 1 (in this case, you need to change
the domain IDs used by Shapes Demo accordingly). This option adds X to the domain IDs in the
configuration file. (Note: -domainldBase only affects the domain IDs of DomainRoute partici-
pants; it does not affect the domain IDs of participants used for monitoring or administration.)

3.2 Example 2 - Changing Data to a Different Topic of Same Type

In this example, the routing service receives samples of topic Square and republishes them as samples of
topic Circle.

1. <NDDSHOME>/resource/xml/RTI_ROUTING_SERVICE.xml

3-2

Example 3 - Changing Some Values in Data

1. Start Shapes Demo. We'll call this the Publishing Demo. It uses domain ID 0.
2. Start a second copy of Shapes Demo. We'll call this the Subscribing Demo. Then:
a. Open its Configuration dialog (under Controls).
b. Press Stop.
c¢. Change the domain ID to 1.
d. Press Start.
3. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing service/shapes/topic bridge.xml \
-cfgName example
4. In the Publishing Demo (domain 0), publish some Squares, Circles and Triangles.
5. In the Subscribing Demo (domain 1), subscribe to Squares, Circles and Triangles.

You will see that all the squares (and only squares) from domain O are republished as circles on
domain 1.

6. Stop Routing Service by pressing Ctrl-c.

7. To see how this example is configured, review the contents of <path to examples>/routing_ser-
vice/shapes/topic_bridge.xml.

8. Try writing your own topic route that republishes triangles on domain 0 to circles on domain 1.
Create some Triangle publishers and a Circle subscriber on the respective Shapes Demo windows.

3.3 Example 3 - Changing Some Values in Data

So far, we have learned how to route samples from one topic to another topic of the same data type. Now
we will see how to change the value of some fields in the samples and republish them.

1. Start Shapes Demo. We'll call this the Publishing Demo. It uses domain ID 0.
2. Start a second copy of Shapes Demo. We'll call this the Subscribing Demo. Then:
a. Open its Configuration dialog (under Controls).
b. Press Stop.
¢. Change the domain ID to 1.
d. Press Start.
3. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice -cfgFile \
<path to examples>/routing service/shapes/topic bridge w transfl.xml \
-cfgName example
4. In the Publishing Demo (domain 0), publish some Squares.

5. In the Subscribing Demo (domain 1), subscribe to Squares.

In the Subscribing Demo, notice that the (x,y) coordinates of the shapes are inverted from what
appears in the Publishing Demo.

3-3

Example 4 - Transforming the Data’s Type and Topic with an Assignment Transformation

3.4

35

6. Stop Routing Service by pressing Ctrl-c.

7. To see how this example is configured, review the contents of <path to examples>/routing_ser-
vice/shapes/topic_bridge w_transfl.xml.

8. Try changing the transformation to assign the output shapesize to the input x.

Example 4 - Transforming the Data’s Type and Topic with an
Assignment Transformation

This example shows how to transform the data topic and type. We will use rtiddsspy to verify the result.
rtiddsspy is a utility provided with Connext DDS;, it monitors publications on any DDS domain.

1. Start Shapes Demo. We'll call this the Publishing Demo. It uses domain ID 0.
2. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>

bin/rtiroutingservice -cfgFile \

<path to examples>/routing service/shapes/topic bridge w transf2.xml \
-cfgName example

3. In the Publishing Demo (domain 0), publish some Squares.

4. We will use the rtiddsspy utility to verify the transformation of the data topic and type. If you have
Connext DDS installed, run these commands:

cd <NDDSHOME>
bin/rtiddsspy -domainId 0 -printSample
bin/rtiddsspy -domainId 1 -printSample

You will notice that the publishing samples received by rtiddsspy for domain 0 is of type Shape-
Type and topic Square. The subscribing samples received by rtiddsspy for domain 1 are of type
Point and topic Position. Notice that the two data structures are different.

5. Stop Routing Service by pressing Ctrl-c.

6. To see how this example is configured, review the contents of <path to examples>/routing_ser-
vice/shapes/topic_bridge w_transf2.xml.

Example 5 - Transforming Data with a Custom Transformation

The previous example used a built-in transformation. Now we will use our own transformation between
shapes. Routing Service allows loading shared libraries that implement the transformation API to create
custom transformations. To build a custom transformation, you must have the Connext DDS middleware
libraries installed.

Note: This example assumes your working directory is <path to examples>\routing ser-
vice\shapes\transformation[make or windows]. If your working directory is different, you will need to
modify the configuration topic_bridge w_custom_transf.xml to update the paths.

1. Compile the transformation in <path to examples>\routing_service\shapes\transforma-
tion\[make or windows]:

34

Example 5 - Transforming Data with a Custom Transformation

¢ On UNIX-based systems:

» Set the environment variable NDDSHOME as described in the RTI Connext DDS
Core Libraries Getting Started Guide.

* Enter:

cd <path to examples>/routing service/shapes/transformation/make

* Enter:

gmake -f Makefile.<architecture>

* On Windows systems:

« Set the environment variable NDDSHOME as described in the RTI Connext DDS
Core Libraries Getting Started Guide.

* Open the Visual Studio solution under <path to examples>\routing ser-
vice\shapes\transformation\windows. For example, if you are using Visual Studio
2013, open shapestransf-vs2013.sln.

» Select the Release DLL build mode.
* Build the solution.
2. Run Shapes Demo and Routing Service as in the previous examples:
a. Start Shapes Demo on domain 0 (the default domain). We'll call this the Publishing Demo.
b. Start a second copy of Shapes Demo. We'll call this the Subscribing Demo. Then:
e Open its Configuration dialog (under Controls).
* Press Stop.
* Change the domain ID to 1.
» Press Start.
c. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice -cfgFile \
<path to examples>/routing service/shapes/topic bridge w custom transf.xml \
-cfgName example
3. In the Publishing Demo (domain 0), publish some Squares.
4. In the Subscribing Demo (domain 1), subscribe to Squares.
Notice that squares on domain 1 have only two possible values for x.

5. Stop Routing Service by pressing Ctrl-c.

6. To see how this example is configured, review the contents of <path to examples>/routing_ser-
vice/shapes/topic_bridge_w_custom_transf.xml. Notice how the transformation is instantiated
inside the topic route.

7. Change the fixed ‘x’ values for the Squares in the configuration file and restart Routing Service.
8. Stop Routing Service by pressing Ctrl-c.

9. Edit the source code to make the transformation multiply the value of the field by the given inte-
ger constant instead of assigning the constant.

Hint: Look for the function ShapesTransformationPlugin_createQutputSample(), called from
ShapesTransformation_transform() and use DDS_DynamicData_get long() before DDS_Dy-
namicData_set_long().

3-5

Example 6 - Using Remote Administration

3.6

10.Recompile the transformation (the new shared library will be copied automatically) and run Rout-
ing Service as before.

Example 6 - Using Remote Administration

In this example, we will configure Routing Service remotely. We won't see data being routed until we
remotely enable an auto topic route after the application is started. Then we will change a QoS value and
see that it takes effect on the fly.

1. Start Shapes Demo. We'll call this the Publishing Demo. It uses domain ID 0.
2. Start a second copy of Shapes Demo. We'll call this the Subscribing Demo. Then:
a. Open its Configuration dialog (under Controls).
b. Press Stop.
c¢. Change the domain ID to 1.
d. Press Start.
3. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>

bin/rtiroutingservice \
-cfgFile <path to examples>/routing service/shapes/administration.xml \
-appName MyRoutingService -cfgName example

4. In the Publishing Demo (domain 0), publish some Squares, Circles and Triangles.
5. In the Subscribing Demo (domain 1), subscribe to Squares, Circles and Triangles.
Notice that no data is routed to domain 1.
6. On a different or the same machine, start the Routing Service shell:
cd <NDDSHOME>

bin/rtirssh -domainId O

Note: We use domain 0 in the shell because Routing Service is configured in administration.xml
to receive remote commands on that domain. You could have started Routing Service with the -
remoteAdministrationDomainld X command-line option and then used domain X for the shell.

7. In the shell, enter the following command:

> enable MyRoutingService RemoteConfigExample::Session::Shapes

Notice that the shapes are now received on domain 1. The above command consists of two parts:
the name of the routing service, which you gave when you launched the application with the
option -appName, and the name of the entity you wanted to enable. That name is formed by
appending its parent entities' names starting from the domain route as defined in the configuration
file administration.xml.

You could have run Routing Service without -appName. The name would have been the one pro-
vided with -cfgName (“example”). You could also have used -identifyExecution to generate the
name based on the host and application ID. In this case, you would have used this automatic name
in the shell.

3-6

Example 6 - Using Remote Administration

8. Examine the file <path to examples>/routing_service/shapes/time_filter_qos.xml on the rout-
ing service machine. It contains an XML snippet that defines a QoS value for an auto topic route's
DataReader. Execute the following command in the shell:

> update MyRoutingService RemoteConfigExample::Session::Shapes \

<path to examples>/routing service/shapes/time filter gos.xml

Notice that the receiving application only gets shapes every 2 seconds. The auto topic route has
been configured to read (and forward) samples with a minimum separation of 2 seconds.

Routing Service can be configured remotely using files located on the routing service machine or
the shell machine. In step 9 you will edit the configuration files on both machines. Step 10 shows
how to specify which of the two configuration files you want to use. If you are running the shell
and Routing Service on the same machine, skip steps 9 and 10.

9. Edit the XML configuration files on both machines:

a. In <path to examples>/routing_service/shapes/time_filter_qos.xml on the routing service
machine, change the minimum separation to 0 seconds.

b. In <path to examples>/routing_service/shapes/time_filter _qos.xml on the shell machine,
change the minimum separation to 5 seconds.

10. Run the following commands in the shell:

a. Enter the following command. Notice the use of remote at the end—this means you want to
use the XML file on the routing service machine (the remote machine, which is the default if
nothing specified).

> update MyRoutingService RemoteConfigExample::Session::Shapes \
<path to examples>/routing service/shapes/time filter gos.xml remote
Note: The path to the XML file in this example is relative to the working directory from which
you run Routing Service.
Since no time filter applies, the shapes are received as they are published.

b. Enter the following command. This time we use local at the end—this means you want to use
the XML file on the shell machine (the /oca/ machine).

> update MyRoutingService RemoteConfigExample::Session::Shapes \
<path to examples>/routing service/shapes/time filter gos.xml local
Note: The path to the XML file in this example is relative to the working directory from which
you run the Routing Service shell.
You will see that now the shapes are only received every 5 seconds.

c. Enter the following command. Once again, we use remote at the end to switch back to the
XML file on the routing service machine.

> update MyRoutingService RemoteConfigExample::Session::Shapes \
<path to examples>/routing service/shapes/time filter gos.xml remote
Shapes are once again received as they are published.

11. Disable the auto topic route again by entering:

> disable MyRoutingService RemoteConfigExample::Session::Shapes

The shapes are no longer received on Domain 1.

Note: At this point, you could still update the auto topic route’s configuration. You could also
change immutable QoS values, since the DataWriter and DataReader haven’t been created yet.
These changes would take effect the next time you called enable.

Example 7 - Monitoring

12.Run these commands in the shell and see what happens after each one:

> enable MyRoutingService RemoteConfigExample::Session::SquaresToCircles
> disable MyRoutingService RemoteConfigExample::Session::SquaresToCircles
> enable MyRoutingService RemoteConfigExample::Session::SquaresToTriangles

These commands change the output topic that is published after receiving the input Square topic.
As you can see, you can use the shell to switch topic routes after Routing Service has been started.
13.Perform a remote shutdown of the service. Run the following command:
> shutdown MyRoutingService

You should receive a reply indicating that the shutdown sequence has been initiated. Verify in the
terminal that Routing Service is running that the process is existing or already exited.

14. Stop the shell by running this command in the shell:

> exit

3.7 Example 7 - Monitoring

With Routing Service you can publish status information. The monitoring configuration is quite flexible
and allows selecting the entities that you want to monitor and how often they should publish their status.

1. Start Shapes Demo. We'll call this the Subscribing Demo. Then:
a. Open its Configuration dialog (under Controls).
b. Press Stop.
c. Change the domain ID to 1.
d. Press Start.
2. Start a second copy of Shapes Demo. We'll call this the Publishing Demo. Then:
a. Open its Configuration dialog (under Controls).
b. Press Stop.
c¢. Change the domain ID to 0.
d. Press Start.
3. In the Publishing Demo (domain 0), publish two Squares, two Circles, and two Triangles.

4. In the Subscribing Demo (domain 1), subscribe to Squares, Circles and Triangles. At this point
you will not see any shapes moving in the Subscribing Demo. It isn’t receiving shapes from the
Publishing Demo because they use different domain IDs.

5. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>

bin/rtiroutingservice \
-cfgFile <path to examples>/routing service/shapes/monitoring.xml \
-cfgName example -appName MyRoutingService

This configuration file routes Squares and Circles using two different topic routes.

3-8

Example 7 - Monitoring

6. Now you can subscribe to the monitoring topics (see Chapter 5 in the Routing Service User’s
Manual for more information). You can do it in your own application, or by using R7I Spread-
sheet Add-in for Microsoft® Excel® or rtiddsspy. We will use rtiddsspy, a utility provided with Con-
next DDS that monitors publications on any DDS domain. If you have Connext DDS installed,
enter the following in a command shell:

cd <NDDSHOME>
bin/rtiddsspy -domainId 2 -printSample

Note: We use domain 2 in Connext DDSbecause Routing Service is configured in monitoring.xml
to publish status information on that domain. You could have started Routing Service with the -
remoteMonitoringDomainld X command-line option and then used domain X for rtiddsspy.

7. Depending on the publication period of the entity in the XML file we used, you will receive status
samples at different rates. In the output from rtiddsspy, check the statistics about the two topic
routes we are using. We will focus on the input samples per second:

routing service name: "MyRoutingService"
domain route name: "DomainRoute"
session name: "Session"
name: "Squares"
input samples per s:
publication period metrics:
period ms: 2000
count: 62
mean: 30.969030
minimum: 29.970030
maximum: 31.968033
std dev: 0.999001
historical metrics:

routing service name: "MyRoutingService"

domain route name: "DomainRoute"
session name: "Session"
name: "Circles"

input samples per s:
publication period metrics:
period ms: 5000
count: 158
mean: 31.574739
minimum: 29.970030
maximum: 32.000000
std dev: 0.802551
historical metrics:

The number of samples per second in our case is 32. That value depends on the publication rate of
Shapes Demo, configurable with the option -pubInterval <milliseconds between writes>.

39

Example 7 - Monitoring

8. Optional: If you have RTI Spreadsheet Add-in for Microsoft Excel', open <path to examples>/
routing_service/shapes/monitoring_visualization.xls. Select the Topic Route worksheet (from
the tabs at the bottom of Excel); you should see the following bar chart, among other data and fig-

ures:

alnput samples per second

@ Cutput samples per second

Squares Circles

9. Create two additional Square publishers in the Publishing Demo (domain 0).
10. Check rtiddsspy again for new status information:

routing service name: "MyRoutingService"

domain route name: "DomainRoute"
session name: "Session"
name: "Squares"

input samples per s:
publication period metrics:
period ms: 2000
count: 128
mean: 63.968018
minimum: 63.936066
maximum: 64.000000
std dev: 0.031968
historical metrics:

routing service name: "MyRoutingService"

domain route name: "DomainRoute"
session name: "Session"
name: "Circles"

input_ samples_per_ s:
publication period metrics:
period ms: 5000
count: 160
mean: 31.974421
minimum: 31.968033
maximum: 32.000000
std dev: 0.012783
historical metrics:

In the topic route, Squares, we are receiving double amount of data.

1. RTI Spreadsheet Add-in for Microsoft Excel is a separate tool included with RTI Connext DDS Professional.

3-10

Example 7 - Monitoring

11. Optional: 1f you have Spreadsheet Add-in for Microsoft Excel running from Step 8, notice the
change in the bar graph:

Alnput samples per second

@ Cutput samples per second

Squares Circles

12.Look at the status of the domain route in the output from rtiddsspy:

routing service name: "MyRoutingService"
domain route name: "DomainRoute"
name: "Session"
input samples per s:
publication period metrics:
period ms: 5000
count: 480
mean: 47.961632
minimum: 31.968033
maximum: 64.000000
std dev: 0.019175
historical metrics:

It contains an aggregation of the two contained topic routes, giving us a mean of nearly 48 sam-
ples per second.

13. We can update the monitoring configuration at run time using the remote administration feature.
In the configuration file, we enabled remote administration on domain 0.

On a different or the same machine, start the Routing Service shell:
cd <NDDSHOME>

bin/rtirssh -domainId 0

14. We are receiving the status of the topic route Circles every five seconds. To receive it more often,
use the following command:

> update MyRoutingService DomainRoute::Session::Circles
topic route.entity monitoring.status publication period.sec=2

15.1n some cases, you might want to know only about one specific topic route. If you only want to
know about the topic route Circles but not Squares, you can disable monitoring for Squares:

> update MyRoutingService DomainRoute::Session::Squares
topic route.entity monitoring.enabled=false

16.To enable it again, enter:

> update MyRoutingService DomainRoute::Session::Squares
topic route.entity monitoring.enabled=true

17.1f you are no longer interested in monitoring this routing service, you can completely disable it
with the following command:

Example 8 - Using the TCP Transport with Routing Service

3.8

> update MyRoutingService routing service.monitoring.enabled=false

Now you won’t receive any more status samples.
18. You can enable it again any time by entering:

> update MyRoutingService routing service.monitoring.enabled=true

19. Stop rtiddsspy by pressing Ctrl-c.
20. Stop the shell:

> exit

21. Stop Routing Service by pressing Ctrl-c.

Example 8 - Using the TCP Transport with Routing Service

This example shows how to use Routing Service to bridge data between different LANs over TCP. Rout-
ing Service will act as the gateway in a LAN with which other Connext DDS applications can communi-
cate to send or receive data. Chapter 7 of the Routing Service User’s Manual has more information about
scenarios and detailed configuration parameters.

You will run two copies of Routing Service. One copy will run on a machine that is behind a firewall/
router with a public IP (First Peer); the other will run on a machine in another LAN (Second Peer).

Connext app

Connext app
UDP/ L
shared memory’
¥ 1
Routing Service
Firewall/router o
- Forwarded port 7400
Domain 1 \/ T P
TCP .
public IP
‘ Routing Service]
Domain 2

Example 8 - Using the TCP Transport with Routing Service

On the First Peer (behind a firewall/router with a public IP):

1. In the First Peer's network, configure the firewall to forward the TCP ports used by Routing Ser-
vice.

In this example, we will use port 7400.

You do not need to configure your firewall for every single Connext DDS application in your
LAN; doing it just once for Routing Service will allow other applications to communicate through
the firewall.

2. Include the Second Peer’s public IP address and port in the NDDS_DISCOVERY_PEERS envi-
ronment variable.

For example, on a UNIX-based system:

setenv NDDS DISCOVERY PEERS
tcpvd wan://<server’s public IP address>:<port>

On a Windows system:

set NDDS DISCOVERY PEERS=
tcpvd wan://<server's public IP address>:<port>

When you configure NDDS_DISCOVERY_PEERS, make sure to use a transport class prefix
(tcpv4_wan, udpv4, shmem) for each entry. (See Section 12.2 in the RTI Connext DDS Core
Libraries User’s Manual for details on formatting addresses in NDDS_DISCOVERY_PEERS.)

For example:
setenv NDDS DISCOVERY PEERS tcpv4 wan://10.10.1.10:7400,\
udpv4://192.168.0.1,udpv4://192.168.0.2,shmem://
3. Set the public IP address and port in the configuration file:
a. Open the file <path to examples>/routing_service/shapes/tcp_transport.xml.

b. The file contains several routing service configurations. Find the routing service configuration,
<routing_service name="TCP_1">. Then find the "public address" property
(<name>dds.transport. TCPv4.tcpl.public_address</name>) within that configuration.

¢. Setthe local public IP address and port. For example, to set the address to 10.10.1.150 and port
7400:

<element>
<name>dds.transport.TCPv4.tcpl.public_address</name>
<value>10.10.1.150:7400</value>
</element>

d. Save and close the file.

4. Run these commands and choose “TCP_1":

cd <NDDSHOME>

bin/rtiroutingservice \
-cfgFile <path to examples>/routing service/shapes/tcp transport.xml \
-cfgName TCP 1

5. On any computer in this LAN, start Shapes Demo and publish some shapes on domain 0.

On the Second Peer (a machine in any other LAN):

6. Include the First Peer’s public IP address and port in the NDDS_DISCOVERY_PEERS environ-
ment variable the same way you did before.

Example 8 - Using the TCP Transport with Routing Service

7.

Notes:

Set the public IP address and port in the configuration file:

a. The file contains several routing service configurations. Find the routing service configuration,
<routing_service name="TCP_2">. Then find the "public address" property
(<name>dds.transport. TCPv4.tcpl.public_address</name>) within that configuration.

b. Set the local public IP address and port. For example, to set the address to 10.10.1.10 and port
7400:

<element>
<name>dds.transport.TCPv4.tcpl.public_address</name>
<value>10.10.1.10:7400</value>

</element>

c. Save and close the file.
Run these commands and choose “TCP_2":

cd <NDDSHOME>

bin/rtiroutingservice \
-cfgFile <path to examples>/routing service/shapes/tcp transport.xml \
-cfgName TCP 2

On any computer in this LAN, start Shapes Demo and create subscribers on domain 2. Do not use
an already running instance of Shapes Demo—you need a new one that uses a different domain
ID.

You should receive what is being published in the server's LAN.

Running Shapes Demo on a Different Computer

If the computer running Shapes Demo is different than the computer running the client routing ser-
vice, add the address of the client (IP address or host name) to the Shapes Demo discovery peers
before starting the shapes demo. To do so, use the —peer command-line option or set the NDDS_-
DISCOVERY_PEERS environment variable.

Using Two Computers in the Same LAN

If both machines are in the same LAN, run both routing services with the configuration file
tep_transport_lan.xml and use “tcpv4_lan://” as the peer prefix in the environment variable
NDDS DISCOVERY PEERS. At least one of the peer descriptors must contain the port number.

For example, suppose the first peer is 192.168.1.3, the second peer is 192.168.1.4, and you want to
use port 7400. On the first peer set NDDS DISCOVERY PEERS to tcpv4 lan://
192.168.1.4:7400 and on the second peer set it to tcpv4_lan://192.168.1.3:7400. You don’t need
to specify an IP address in the configuration file.

Running the Example on One Computer

To run the example on the same machine, open the file <path to examples>/routing_service/
shapes/tcp_transport_lan.xml and change the property dds.trans-
port. TCPv4.tcpl.server_bind_port within TCP_1 to 7401. Run both routing services with the
modified tep_transport_lan.xml configuration file and use “tcpv4_lan://” as the peer prefix in
the environment variable NDDS DISCOVERY_ PEERS. You will also need to specify port 7401
in the tepv4_lan peer in the NDDS DISCOVERY PEERS environment variable of the routing
service in the Second Peer to reflect this port change in the configuration file.

Example 9 - Using a File Adapter

3.9

e Using a Secure Connection over WAN

To run this example, you need OpenSSL 0.9.8n (or higher) and RTI TLS Support. To purchase RT1
TLS Support, contact your account representative or sales@rti.com. OpenSSL is available from
the RTI’s Downloads page (www.rti.com/downloads), or you may obtain it from another source.
Make sure the OpenSSL libraries’ location is in your LD LIBRARY PATH (on UNIX-based sys-
tems) or Path (on Windows systems).

To run the example using a secure connection between the two router instances, use the configura-
tion file tep_transport_tls.xml. You will also need to set the peer prefix to “tlsv4_wan://” in the
NDDS DISCOVERY_ PEERS environment variable. The tep_transport_tls.xml file is based on
tep_transport.xml and uses a WAN configuration to establish communication.

e Using a Secure Connection over LAN

To run this example using a secure connection between two routers instances within the same
LAN, you need OpenSSL 0.9.8n (or higher) and TLS Support. To purchase TLS Support, contact
your account representative or sales@rti.com. OpenSSL is available from the RTI’s Downloads
page (www.rti.com/downloads), or you may obtain it from another source. Make sure the
OpenSSL libraries’ location is in your LD LIBRARY PATH (on UNIX-based systems) or Path
(on Windows systems).

To use TLS encryption over a LAN configuration, you can use the file tcp_trans-
port_tls_lan.xml. You will also need to set the peer prefix to “tlsv4_lan://” in the NDDS DIS-
COVERY_PEERS environment variable. The tcp_transport_tls_lan.xml configuration file is
based on tep_transport_lan.xml and uses a LAN configuration to establish communication.

Example 9 - Using a File Adapter

The previous examples showed how to use Routing Service with DDS. In this one you will learn how to
use RTI Routing Service Adapter SDK to create an adapter that writes and reads data from files. Routing
Service allows bridging data from different data domains with a pluggable adapter interface.

To learn how to implement your own adapter, you can follow this example and the next examples and
inspect the code that is distributed with these adapters. You can also start your own adapter from scratch
and follow step-by-step instructions to get a basic implementation up and running. These instructions are
in the Routing Service User’s Manual (Section 8.3).

The file adapter can read data from files with a specific format and provide it to Routing Service, or
receive data from Routing Service and write it into files.

www.rti.com/downloads
www.rti.com/downloads

Example 9 - Using a File Adapter

In this example, we will first write topic data (a colored square and circle) into a file and then use that file
to write it back into Connext DDS, allowing us to modify the data with a text editor.

Adapter Plugin API

x=10,y=20,color=RED

x=11,y=20,color=RED

x=12,y=21,color=RED

:> File =>
adapter

MySquare.txt 7

x=30,y=20,color=BLUE
x=31,y=19,color=BLUE
x=32,y=17,color=BLUE

MyCircle.txt 4

Compile the Adapter:

1. Compile the file adapter in adapters/file/src:
On UNIX-based systems:

¢ Set the NDDSHOME environment variable as described in the RTI Connext DDS Core
Libraries Getting Started Guide.

* Enter:
cd <path to examples>/routing service/adapters/file/make

gmake -f Makefile.<architecture>

The adapter shared library, libfileadapter.so, will be copied to <path to examples>/rout-
ing_service/adapters/file.
On Windows systems:
* Set the NDDSHOME environment variable as described in the RTI Connext DDS Core
Libraries Getting Started Guide.

* Open the Visual Studio solution under <path to examples>/routing_service/adapters/
file/windows. For example, if you are using Visual Studio 2013, open fileadapter-
vs2013.sin.

¢ Build the solution.

The adapter shared library, fileadapter.dll, will be copied to <path to examples>/routing_-
service/adapters/file.

Example 9 - Using a File Adapter

From Connext DDS to files:

2.

Run Shapes Demo and Routing Service as in the previous examples:
a. Start Shapes Demo on domain 0 (the default domain).
b. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>

bin/rtiroutingservice \
-cfgFile <path to examples>/routing service/shapes/file bridge.xml \
-cfgName dds to file

In Shapes Demo, publish some Squares.

Wait a few seconds and then stop Routing Service by pressing Ctrl-c.

5. A file called MySquare.txt should have been created in the current directory. Open it with a text

editor of your choice. It should contain several lines, each consisting of a list of <field>=<value>
elements. Each line represents a sample (Square) published by Shapes Demo and written by Rout-
ing Service and the file adapter.

On UNIX-based systems, you can see how new samples are appended to the file by running tail -
f MySquare.txt without stopping Routing Service.

We have seen how an “output” adapter works. Open the configuration file and look for <routing_-
service name="dds to file”> to see the configuration we have just run.

From a file to Connext DDS:

8.
9.

10.

11.

12.

13.

14.

15.

In Shapes Demo, delete the Square publisher and create a Square subscriber.
Run Routing Service as in the previous examples:

cd <NDDSHOME>

bin/rtiroutingservice \
-cfgFile <path to examples>/routing service/shapes/file bridge.xml \
-cfgName file to dds

You should see squares being received by Shapes Demo. These samples come from what we
recorded before.

You might have noticed than the rate at which the shape moves is much slower. This is the rate at
which the file adapter is providing data to Routing Service. To change this rate, open <path to
examples>/routing_service/shapes/file_bridge.xml and look for <route name="square file”>
within <routing service name="file to dds”>. In the <property> tag change the property ReadPe-
riod from 1000 (milliseconds) to 100.

Stop and start again Routing Service as described in Step 9. The squares should be received and
displayed about 10 times faster.

Other properties that you can configure in the file adapter are: FileName, MaxSampleSize, Loop
and SamplesPerRead and, in the <output>, FileName, Flush and WriteMode.

You can also edit the text file and publish the new data. Open MySquare.txt and replace all the
occurrences of “shapesize=30" with “shapesize=100".

Stop and start again Routing Service as described in Step 9. The squares will have the same posi-
tion and color, but they will be bigger now.

Customize the File Adapter:

In the example, the file adapters use a specific format, which you already saw in the file MySquare.txt.
Now try adapting the example to your own format.

16.

The code that reads/writes from the file is in adapters/file/src/LineConversion.c.

Example 10 - Using a Socket Adapter

17. Edit the function RTI_RoutingServiceFileAdapter_read_sample to implement how file data
maps into a sample.

18. Edit the function RTI_RoutingServiceFileAdapter_write_sample to implement how a sample
is written to a file.

19. Compile the code as described in Step 1 on page 3-16.

3.10 Example 10 - Using a Socket Adapter

This adapter can read and write from TCP sockets, serializing and deserializing Connext DDS Dynamic-
Data samples into a simple format.

The reader will establish a TCP connection and receive bytes, converting them to DynamicData samples
for Routing Service. The writer will create a TCP server and forward samples provided by Routing Service
to all the TCP clients that connect to it.

This adapter is similar to the file adapter in Example 9 - Using a File Adapter (Section 3.9); the following
instructions assume that you have gone through that example.

Compile the adapter:

1. Compile the socket adapter in adapters/socket:
* On UNIX-based systems:

» Set the NDDSHOME environment variable as described in the RTI Connext DDS
Core Libraries Getting Started Guide.

* Enter:
cd <path to examples>/routing service/adapters/socket/make
gmake -f Makefile.<architecture>
The adapter shared library, libsocketadapter.so, will be copied to <path to examples>/
routing_service/adapters/socket.
¢ On Windows systems:

» Set the NDDSHOME environment variable as described in the RTI Connext DDS
Core Libraries Getting Started Guide.

* Open the Visual Studio solution under <path to examples>\routing_service\adapt-
ers\socket\windows. For example, if you are using Visual Studio 2013, open sock-
etadapter-vs2013.sln.

* Build the solution.

The adapter shared library, socketadapter.dll, will be copied to <path to examples>/
routing_service/adapters/socket.

Run the examples:

The example configuration file for Routing Service is located in <path to examples>/routing_service/
shapes/socket_bridge.xml. It defines several <routing_service> configurations for different examples.
We will use Shapes Demo to publish and subscribe to colored shapes. To send TCP traffic and listen to
connections coming from the socket adapter, we will use the UNIX utility, netcat (nc).

Netcat is a UNIX utility with many different uses involving TCP or UDP. Among other things, it can open
TCP connections and listen to arbitrary TCP ports and accept connections. We will use netcat in this

Example 10 - Using a Socket Adapter

example to communicate with the socket adapter. You could use your own socket application or any other
third-party TCP utility of your choice.

2. Read from DDS and send through a TCP socket.
a. Start Shapes Demo on domain 0 (the default domain) and publish some Squares.
b. On machine HostA, run Routing Service:

cd <NDDSHOME>
bin/rtiroutingservice \
-cfgFile <path to examples>/routing service/shapes/socket bridge.xml \
-cfgName dds to socket
¢. On machine HostB, connect to HostA using netcat:

nc HostA 8112

d. Data should be being printed in netcat.

e. Optionally, run netcat as before on one or more additional machines. Data will be sent to all of
them.

3. Read from a TCP socket and publish into DDS.

a. The configuration file uses “MyHost” as a host name to connect to in different places. Find and
replace them to use the host where you will run netcat (we will call it HostB).

b. Start Shapes Demo on domain 0 (the default domain) and create a Square subscriber.
c. On machine HostB, start netcat and listen to TCP connections on port 8111:

nc -1 8111

d. On machine HostA, run Routing Service:
bin/rtiroutingservice \
-cfgFile <path to examples>/routing service/shapes/socket bridge.xml \
-cfgName socket to dds
e. From netcat (HostB), enter:
x=100,y=100, shapesize=50,color=RED;
x=150,y=150, shapesize=10, color=BLUE;
You should see two squares in Shapes Demo.
4. Use remote administration to change the host Routing Service is writing to.
a. On another machine, HostC run netcat:
nc -1 8111
b. On any machine, using the Routing Service shell (see Section 3.6) on domain 1, send the fol-
lowing command (all on one line):
RTI Routing Service> update socket to dds
socketdds::s::square_socket route.input.property[Host]=HostC
¢. From netcat (HostC), enter:
x=100,y=100, shapesize=10,color=RED;
x=150,y=150, shapesize=50, color=BLUE;

d. In Shapes Demo, the size of the shapes should have changed.

Example 10 - Using a Socket Adapter

e. The Routing Service adapter API lets an adapter update its configuration on the fly when the
service receives a remote command that changes its configuration properties. Explore the code
to see how RTI_RoutingServiceSocketStreamReader_update() is implemented.

5. There are two other <routing service> tags in the configuration file. One of them (sock-
et to socket) eliminates DDS from the picture and just reads from a socket and writes to a differ-
ent one. The other one, socket test, reads from TCP and uses a Java adapter that works as an
output test adapter, counting the samples received and reporting failure or success depending the
expected result configured with the tag <property>.

Customize the Socket Adapter

In the example, the socket adapters use a specific format, which you already saw in netcat. Now try adapt-
ing the example to your own format. The code that serializes/deserializes DynamicData samples to/from a
byte buffer is in adapters/socket/src/SampleParsing.c.

6. Edit the function RTI_RoutingServiceSocketAdapter parse sample() to implement how a
DynamicData sample gets created from a byte buffer

7. In the same file, edit the function RTI_RoutingServiceSocketAdapter_serialize_sample() to
implement how a sample is converted to a byte buffer.

8. Compile the code as described in Step 1 on page 3-16.

3-20

	Chapter 1 Welcome to RTI Routing Service
	1.1 Available Documentation
	1.2 Paths Mentioned in Documentation

	Chapter 2 Running Routing Service
	2.1 Starting Routing Service
	2.2 Stopping Routing Service
	2.3 Linking the Routing Service Library into Your Application

	Chapter 3 Using the Examples
	3.1 Example 1 - Routing All Data from One Domain to Another
	3.2 Example 2 - Changing Data to a Different Topic of Same Type
	3.3 Example 3 - Changing Some Values in Data
	3.4 Example 4 - Transforming the Data’s Type and Topic with an Assignment Transformation
	3.5 Example 5 - Transforming Data with a Custom Transformation
	3.6 Example 6 - Using Remote Administration
	3.7 Example 7 - Monitoring
	3.8 Example 8 - Using the TCP Transport with Routing Service
	3.9 Example 9 - Using a File Adapter
	3.10 Example 10 - Using a Socket Adapter

