
RTI Connext DDS

Core Libraries
Release Notes

Version 6.0.0

© 2019 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
February 2019.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, Connext, Micro DDS, the RTI logo,
1RTI and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks or service
marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/).

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Introduction 1
Chapter 2 System Requirements

2.1 Supported Operating Systems 3
2.2 Requirements when Using Microsoft Visual Studio 5
2.3 Disk and Memory Usage 6

Chapter 3 Compatibility

3.1 Wire Protocol Compatibility 7
3.2 Code and Configuration Compatibility 7
3.3 Extensible Types Compatibility 8
3.4 ODBC Database Compatibility 8

Chapter 4 What's Fixed in 6.0.0

4.1 Fixes Related to Discovery 9
4.1.1 Endpoint discovery initialization errors during participant creation left participant in incon-

sistent state 9
4.1.2 Writer/reader resource limits affected wrong builtin endpoints 9
4.1.3 Failure to send TypeObject when type had base with no members 10
4.1.4 Received incorrect QoS policy values through discovery when communicating with other

vendors 10
4.2 Fixes Related to Reliability Protocol 11

4.2.1 VOLATILE DataReader may have received historical samples from DataWriter 11
4.2.2 Wrong RTPS GAP messages emitted by reliable DataWriters in some cases 11
4.2.3 Individual sample fragment losses may have triggered full sample repair 12
4.2.4 DataReader may have ignored some piggyback heartbeats, leading to performance degrad-

ation 12
4.2.5 max_bytes_per_nack_response was ignored when using asynchronous publication 12
4.2.6 Disabling positive ACKs may have caused segmentation fault in publishing application 12
4.2.7 Unexpected DDS_RETCODE_OUT_OF_RESOURCES error when writing a sample 12

iii

iv

4.3 Fixes Related to Instance Management and Lifecycle 13
4.3.1 Instances may not have transitioned to NOT_ALIVE_NO_WRITERS on DataReader matching with

a DataWriter using MultiChannelQosPolicy 13
4.3.2 DomainParticipantFactory::get_instance always returned success 13
4.3.3 DataReaders may not have purged samples from instances in NOT_ALIVE_NO_WRITERS state

when autopurge_nowriter_samples_delay was set to finite value 13
4.3.4 Instances in NOT_ALIVE_DISPOSED state may not have been purged from DataReader queue

when autopurge_disposed_instances_delay was set to zero 14
4.3.5 A DataReader may have failed to calculate the keyhash for a sample containing zero-length strings 14
4.3.6 Incorrect warning reported while trying to purge disposed instances proactively 15
4.3.7 Purging disposed or unregistered instances based on source timestamp does not work when internal

clock is set to monotonic 15
4.3.8 Possible leak upon application exit after using NDDSConfigVersion::get_instance() (Traditional C++

API only) 15
4.3.9 Unexpected errors when receiving a dispose sample for unbounded DDS_KeyedString BuiltinType

topic 15
4.3.10 instance_replacement not applied correctly for durable DataWriters 16
4.3.11 Incorrect warning reported when replacing DISPOSE/ALIVE instance on a DataWriter 16

4.4 Fixes Related to Content Filters and Query Conditions 16
4.4.1 Possible crash in creation of a content filter for a type with an aliased base type 16
4.4.2 Reading samples by instance with QueryCondition returned no data when using TOPIC or GROUP

PresentationQosPolicy access_scope 17
4.4.3 Content Filter issue when filtering on a member of the base type, for types with inheritance 17

4.5 Fixes Related to TopicQueries 17
4.5.1 DataWriter may have deadlocked if receiving "continuous" TopicQueries 17
4.5.2 Instances may not have transitioned to NOT_ALIVE_NO_WRITERS on DataReader matching with

a DataWriter with TopicQuery enabled 17
4.5.3 Error when changing partition, group data, or topic data on a Publisher containing a DataWriter with

TopicQuery enabled 18
4.5.4 Possible increasing memory and CPU usage in publishing applications using TopicQueries 18
4.5.5 Spurious log message related to TopicQuery has been removed 18
4.5.6 DataReader::getKey did not work with TopicQueries 19
4.5.7 TopicQuery samples that failed to be written a first time may have never been sent 19

4.6 Fixes Related to DynamicData 19
4.6.1 DynamicData had limitations with members larger than 65,535 bytes 19
4.6.2 Copying into a bound DynamicData object did not work 20
4.6.3 Corrupt DynamicData objects containing sequences with length 0 20
4.6.4 Binding to members of a sequence incorrectly created members in the DynamicData API 20
4.6.5 Error when unbinding from a union DynamicData object 20

4.6.6 Performance degradation when setting large sequences using the DynamicData API 21
4.6.7 DynamicData::is_member_key did not work for types using inheritance 21
4.6.8 DynamicData::set_complex_member did not work with aliased typecodes 21
4.6.9 DynamicData::set_string API did not accept NULL strings 21
4.6.10 Large memory allocation when binding to large sequences in the DynamicData API 22
4.6.11 DynamicData::from_cdr_buffer API did not resize DynamicData object 22
4.6.12 Error when unbinding from a DynamicData object 22
4.6.13 Accessing a member of an array or sequence by member ID failed for member IDs > 65535 22
4.6.14 DynamicData DataReader may have failed to correctly deserialize key for types containing strings 23
4.6.15 Missing DynamicData::clear_optional_member API in the .NET API 23
4.6.16 DynamicData::clear_optional_member API incorrectly returned error for unset optional members 23
4.6.17 DynamicData APIs did not check for an associated TypeCode 23
4.6.18 Setting members past a sequence's maximum bound was not prohibited in the DynamicData API 24
4.6.19 DynamicData::clear_all_members API did not work on bound DynamicData objects 24

4.7 Fixes Related to Transports 24
4.7.1 Communication between kernel and RTP Mode Participants with shared memory transport not work-

ing on 64-bit VxWorks 6 platforms 24
4.7.2 Network interface tracker may have reported non-existing changes 24
4.7.3 Possible continuous failure to send over shared memory transport 25
4.7.4 Race condition in shared memory transport led to cleanup failure 25
4.7.5 UDPv4/UDPv6 transport creation failed when setting send_socket_buffer_size or recv_socket_buf-

fer_size to NDDS_TRANSPORT_UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT or NDDS_
TRANSPORT_UDPV6_SOCKET_BUFFER_SIZE_OS_DEFAULT 25

4.7.6 Unexpected shared memory locator when setting rtps_host_id to a value different than DDS_RTPS_
AUTO_ID 26

4.7.7 Crash when network interface changed before transport was fully created 26
4.7.8 Wrong transport class name when logging 'No interfaces' warning 26

4.8 Fixes Related to Logging and Distributed Logger 27
4.8.1 Segmentation fault when simultaneously changing log files and writing to a log file 27
4.8.2 Unexpected "PRESCstReaderCollator_addInstanceEntry:exceeded max total instances" message at

WARNING level 27
4.8.3 Segmentation fault when attempting to write to one file of a file set if that file failed to be opened 27
4.8.4 NDDS_Config_Logger_get_output_device() always returned NULL after DomainParticipant creation 27
4.8.5 Unable to configure Distributed Logger profile Using C++ DomainParticipantFactory 28
4.8.6 Possible segmentation fault when deleting options that were used to create Distributed Logger

instance 28
4.8.7 Error code for setApplicationKind not captured in Distributed Logger C example 28
4.8.8 Logger settings from QoS File not set correctly when using Distributed Logger 29

v

vi

4.8.9 "Max queue size reached, message will get lost" warning removed from DistributedLogger 29
4.9 Fixes Related to XML Configuration 29

4.9.1 Some XML example files were not compliant with target XSD schema 29
4.9.2 NDDS_QOS_PROFILES.xml not loaded from default location 29
4.9.3 is_default_participant_factory_profile="true" was ignored when <participant_factory_qos> only had

the base_name attribute specified 30
4.9.4 Creating a typecode from an XML with a directive tag may have caused a crash 30
4.9.5 XML parser error if <domain_library> or <domain_participant_library> split into multiple tags with

same name attribute 30
4.9.6 Connext DDS XML parser failed to parse a const char with '\0' value 30
4.9.7 Value checks were not enforced for writer_qos.writer_resource_limits.instance_replacement field in

DataWriterQos 31
4.9.8 Last, not first, value was retrieved when getting a QoS by specifying topic_filter 31
4.9.9 Unable to set WriterDataLifecycle::autopurge_disposed_instances_delay for builtin DataWriters via

XML 32
4.10 Fixes Related to XML-Based Application Creation 32

4.10.1 Sequences defined in XML with sequenceMaxLength of -1 were not interpreted as unbounded 32
4.10.2 XML-Based Application Creation in Java didn't work with some TypeCodes 32

4.11 Fixes Related to OMG Specification Compliance 32
4.11.1 Connext DDS not compliant with RTPS 2.2 32
4.11.2 Default GUID not compliant with RTPS specification 33
4.11.3 Manual by Participant Liveliness stopped working when communicating with old RTI Connext Pro-

fessional versions or non-RTI DDS implementations 33
4.11.4 NACK_FRAG message not compliant with RTPS specification 34

4.12 Fixes Related to Vulnerabilities 34
4.13 Fixes Related to Modern C++ API 34

4.13.1 Compilation failure when NDDS_USER_DLL_EXPORT defined on non-Windows platform 34
4.13.2 Downcasting a condition into a ReadCondition not supported 34
4.13.3 ReadCondition handler may not have been dispatched 34
4.13.4 Compilation error accessing a const LoanedSamples instance 35
4.13.5 Missing unregister_thread function 35
4.13.6 dds::sub::Sample creation or assignment from a LoanedSample failed when data was invalid 35
4.13.7 Possible symbol collision with Boost compiling the Modern C++ API 36
4.13.8 dds::topic::find could not return AnyTopic 36
4.13.9 Inconsistency between XML format and QosProvider::type() arguments 36
4.13.10 Missing accessors for Liveliness:: assertions_per_lease_duration 36
4.13.11 Entity Listeners may have missed some notifications 36

4.14 Other Fixes 37

4.14.1 strict-aliasing warnings when compiling code generated from an IDL with floats or enumerations 37
4.14.2 Unexpected sample loss notification on non-VOLATILE DataReader 37
4.14.3 RTPS messages with wrong alignment incorrectly accepted 37
4.14.4 Segmentation fault while looking up vendor-specific topics from a traditional C++ or .NET applic-

ation 38
4.14.5 Memory leak when failing to create builtin endpoints 38
4.14.6 Segmentation Fault when Simultaneously Removing Remote Participant and Sending a Message to

a Third Participant 38
4.14.7 Could not add property names that were prefixes of existing property names 38
4.14.8 Unbounded memory growth on DataWriter when enable_required_subscriptions set to true and

DataReaders setting role name were created/destroyed continuously 39
4.14.9 Possible crash when applications used two extensible types that differed by one aliased primitive

member 39
4.14.10 Errors reported when compiling a file including disc_rtps_impl.h with gcc -C 40
4.14.11 Unlikely segmentation fault when deleting a DataReader and using GROUP ordered access 40
4.14.12 RTIOsapiProcess_getId() returns incorrect PID in VxWorks Kernel Mode 40
4.14.13 Potential segmentation fault while unregistering a logger output device 40
4.14.14 Incorrect value for type_consistency in SubscriptionBuiltinTopicData in .NET API 41
4.14.15 DomainParticipant creation did not fail when using an unknown flow controller 41
4.14.16 Removed recursion in include files 41
4.14.17 max_blocking_time not honored for KEEP_LAST DataWriters 41
4.14.18 Use of -qosProfile argument in DDS Ping did not take topic_filter into consideration 42
4.14.19 Use of -qosProfile argument in DDS Spy did not take topic_filter into consideration 42
4.14.20 Rare race condition may have caused a keep-last DataWriter to time out in write() 42
4.14.21 DDS_PublisherQos_copy() in C API made a shallow copy 43
4.14.22 Unexpected sample losses with reason DDS_LOST_BY_REMOTE_WRITERS_PER_SAMPLE_

LIMIT when using Group-Ordered access 43
4.14.23 Unexpected "!get remote writer queue" warning 43
4.14.24 DataReader may have incorrectly reported on_sample_lost() with a negative total_count 44
4.14.25 Unexpected warning printed when a Participant ignored itself 44
4.14.26 Potential crash when setting new_participant_domain_id in Java monitoring libraries 44
4.14.27 TypeCode.print_complete_IDL() failed if a type inherited through an alias 44
4.14.28 Possible error "Too many open files" specifying the discovery peers by a file 44
4.14.29 Error receiving batches on a DataWriter from a DataReader with a different endianness 45
4.14.30 Performance degradation when DataWriters sent HeartbeatFrag RTPS messages 45
4.14.31 Unexpected COMMENDSrReaderService_onSubmessage:!add NACK_FRAG error message 45
4.14.32 Visual Studio run-times copied to .NET project directory 45

Chapter 5 Known Issues

vii

viii

5.1 AppAck Messages Cannot be Greater than Underlying Transport Message Size 47
5.2 Cannot Open USER_QOS_PROFILES.xml in rti_workspace/examples from Visual Studio 47
5.3 DataReader Cannot Persist AppAck Messages Greater Than 32767 Bytes 48
5.4 DataReaders with Different Reliability Kinds Under Subscriber with GROUP_PRESENTATION_QOS may

Cause Communication Failure 48
5.5 DataWriter's Listener Callback on_application_acknowledgment() not Triggered by Late-Joining DataRead-

ers 49
5.6 Discovery with Connext DDS Micro Fails when Shared Memory Transport Enabled 49
5.7 Examples and Generated Code for Visual Studio 2017 may not Compile (Error MSB8036) 49
5.8 HighThroughput and AutoTuning built-in QoS profiles may cause Communication Failure when Writing

Small Samples 49
5.9 Memory Leak if Foo:initialize() Called Twice 50
5.10 Shared Memory Communication Requires Setting dds.transport.shmem.builtin.hostid in Transport Mobility

Scenarios 50
5.11 TopicQueries not Supported with DataWriters Configured to Use Batching or Durable Writer History 51
5.12 Uninstalling on AIX Systems 51
5.13 Writer-Side Filtering May Cause Missed Deadline 51
5.14 Wrong Error Code After Timeout on write() from Asynchronous Publisher 51
5.15 Instance does not Transition to ALIVE when "live" DataWriter Detected 51
5.16 Communication may not be Reestablished in Some IP Mobility Scenarios 52
5.17 DomainParticipantFactoryQos in XML may not be Loaded 52
5.18 Known Issues with Dynamic Data 53
5.19 Known Issues in RTI Monitoring Library 53

5.19.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Participant Sends Mon-
itoring Data 53

5.19.2 Participant’s CPU and Memory Statistics are Per Application 53
5.19.3 XML-Based Entity Creation Nominally Incompatible with Static Monitoring Library 54
5.19.4 ResourceLimit channel_seq_max_length must not be Changed 54

Chapter 6 Experimental Features 55

Chapter 1 Introduction
RTI® Connext® DDS 6.0.0 is a general access release. This document describes fixes in the Con-
next DDS Core Libraries in 6.0.0. These enhancements have been made since 5.3.1 was released.
This document includes the following:

l System Requirements (Chapter 2 on page 3)

l Compatibility (Chapter 3 on page 7)

l What's Fixed in 6.0.0 (Chapter 4 on page 9)

l Known Issues (Chapter 5 on page 47)

l Experimental Features (Chapter 6 on page 55)

For an overview of new features in 6.0.0, see RTI Connext DDS Core Libraries Whats New in
6.0.0.

Many readers will also want to look at additional documentation available online. In particular,
RTI recommends the following:

l Use the RTI Customer Portal (http://support.rti.com) to download RTI software and con-
tact RTI Support. The RTI Customer Portal requires a username and password. You will
receive this in the email confirming your purchase. If you do not have this email, please con-
tact license@rti.com. Resetting your login password can be done directly at the RTI Cus-
tomer Portal.

l The RTI Community Forum (https://community.rti.com) provides a wealth of knowledge
to help you use Connext DDS, including:

l Documentation, at https://community.rti.com/documentation

l Best Practices,

l Example code for specific features, as well as more complete use-case examples,

1

http://support.rti.com/
https://community.rti.com/
https://community.rti.com/documentation

Chapter 1 Introduction

2

l Solutions to common questions,

l A glossary,

l Downloads of experimental software,

l And more.

l Whitepapers and other articles are available from http://www.rti.com/resources.

l Performance benchmark results for Connext are published online at
http://www.rti.com/products/dds/benchmarks.html. Updated results for new releases are typically
published within two months after general availability of that release.

http://www.rti.com/resources
http://www.rti.com/products/dds/benchmarks.html

Chapter 2 System Requirements
2.1 Supported Operating Systems

Connext DDS requires a multi-threaded operating system. This section describes the supported host
and target systems.

In this context, a host is the computer on which you will be developing a Connext DDS applic-
ation. A target is the computer on which the completed application will run. A host installation
provides the RTI Code Generator tool (rtiddsgen), examples and documentation, as well as the
header files required to build a Connext DDS application for any architecture. You will also need a
target installation, which provides the libraries required to build a Connext DDS application for that
particular target architecture.

Connext DDS is available for the platforms in Table 2.1 Supported Platforms.

Operating System Version

AIX® AIX 7.1

Android™ (target only) Android 5.0, 5.1

INTEGRITY® (target only) INTEGRITY 10.0.2, 11.0.4, 11.4.4

iOS® (target only) iOS 8.2

Linux® (ARM®CPU)

NI™ Linux 3

Raspbian Wheezy 7.0

Ubuntu®16.04 LTS

Linux (Intel®CPU)

CentOS™ 6.0, 6.2 - 6.4, 7.0

Red Hat®Enterprise Linux 6.0 - 6.5, 6.7, 6.8, 7.0, 7.3, 7.5

Ubuntu 12.04 LTS, 14.04 LTS, 16.04 LTS, 18.04 LTS

SUSE®Linux Enterprise Server 11 SP2, 11 SP3, 12

Wind River®Linux 7

Table 2.1 Supported Platforms

3

2.1 Supported Operating Systems

4

Operating System Version

LynxOS® (target only) LynxOS 5.0

OS X® OS X 10.11 - 10.13

QNX® (target only) QNX Neutrino®6.4.1, 6.5, 7.0

Solaris™ Solaris 2.10 (Only available by request.)

VxWorks® (target only)
VxWorks 6.9, 6.9.3.2, 6.9.4.2, 6.9.4.6, 7.0

VxWorks 653 2.3 (Only available by request.)

Windows®

Windows 7, 8, 8.1, 10a

Windows Server 2008 R2

Windows Server 2012 R2

Windows Server 2016

Table 2.1 Supported Platforms

The following table lists additional target libraries for which RTI offers custom support. If you are inter-
ested in using one of these platforms, please contact your local RTI sales representative or email sales@rti.-
com.

Operating System Version

INTEGRITY INTEGRITY 5.0.11 on MPC8349 CPU

INtime® forWindows INtime 6.3 with Visual Studio 2017 on x86 CPUb

Linux

Debian®7 on ARMv7 CPU

Freescale™ 1.4 on QorIQ or P4040/P4080/P4081 CPU

Red Hat Enterprise Linux 5.2 on x86 CPU

RedHawk™ Linux 6.0 on x64 CPU

RedHawk Linux 6.5 on i86 and x64 CPUs

Wind River Linux 7 and 8 on ARMv7 CPU

Xilinx®14.2 on ARMv7 CPU

Yocto Project®2.2 on 64-bit ARMv8 CPU

Table 2.2 Custom Supported Platforms

aPer Microsoft, this should be compatible with Windows 10 IoT Enterprise with Windows native app.
bTested on 64-bit Windows 10 operating system.

2.2 Requirements when Using Microsoft Visual Studio

Operating System Version

QNX

QNX 6.5 on PPCE500 v2 CPU

QNX 6.6 on ARMv7 and x86 CPUs

QNX 7.0 on ARMv7 CPU

VxWorks

VxWorks 6.9.3 on ARMv7 and PPCCPUs

VxWorks 6.9.3.2 on MIPS CPU

VxWorks 653 2.5.0.2 on PPCe500v2 CPU

Table 2.2 Custom Supported Platforms

See the RTI Connext DDS Core Libraries Platform Notes for more information on each platform.

2.2 Requirements when Using Microsoft Visual Studio

Note: Debug versions of applications and the various Visual C++ DLLs are not redistributable. Therefore,
if you want to run debug versions, you must have the compiler installed.

When Using Visual Studio 2010 — Service Pack 1 Requirement

You must have Visual Studio 2010 Service Pack 1 or the Microsoft Visual C++ 2010 SP1 Redistributable
Package installed on the machine where you are running an application linked with dynamic libraries.

This includes dynamically linked C/C++ and all .NET and Java applications. To run an application built
with debug libraries of the above RTI architecture packages, you must have Visual Studio 2010 Service
Pack 1 installed.

The Microsoft Visual C++ 2010 Service Pack 1 Redistributable Package can be obtained from the fol-
lowing Microsoft websites:

For x86 architectures:https://www.microsoft.com/en-us/download/details.aspx?id=8328

For x64 architectures: https://www.microsoft.com/en-us/download/details.aspx?id=13523

When Using Visual Studio 2012 — Update 4 Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2012 Update 4 installed on the machine
where you are running an application linked with dynamic libraries. This includes dynamically linked
C/C++ and all .NET and Java applications.

You can download Visual C++ Redistributable for Visual Studio 2012 Update 4 from this Microsoft web-
site: http://www.microsoft.com/en-ca/download/details.aspx?id=30679

When Using Visual Studio 2013 — Redistributable Package Requirement

You must have Visual C++ Redistributable for Visual Studio 2013 installed on the machine where you are
running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all

5

https://www.microsoft.com/en-us/download/details.aspx?id=8328
https://www.microsoft.com/en-us/download/details.aspx?id=13523
http://www.microsoft.com/en-ca/download/details.aspx?id=30679

2.3 Disk and Memory Usage

6

.NET and Java applications.

You can download Visual C++ Redistributable for Visual Studio 2013 from this Microsoft website:
https://www.microsoft.com/en-us/download/details.aspx?id=40784

When Using Visual Studio 2015 — Update 3 Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2015 Update 3 installed on the machine
where you are running an application linked with dynamic libraries. This includes C/C++ dynamically
linked and all .NET and Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2015 Update 3 from this Microsoft
website: https://www.microsoft.com/en-us/download/details.aspx?id=53840.

When Using Visual Studio 2017 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2017 installed on the machine where you
are running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all
.NET and Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2017 from this Microsoft website:
https://www.visualstudio.com/downloads. Look for "Microsoft Visual C++ Redistributable for Visual Stu-
dio 2017" in the section called "Other Tools and Frameworks."

2.3 Disk and Memory Usage

Disk usage for a typical host-only installation is approximately 802 MB on Linux systems and 821 MB on
Windows systems. Each additional architecture (host or target) requires an additional 498 MB on Linux
systems and 609 MB on Windows systems.

We recommend that you have at least 256 MB RAM installed on your host development system. The tar-
get requirements are significantly smaller and they depend on the complexity of your application and hard-
ware architecture.

https://www.microsoft.com/en-us/download/details.aspx?id=40784
https://www.microsoft.com/en-us/download/details.aspx?id=53840
https://www.visualstudio.com/downloads/

Chapter 3 Compatibility
Below is basic compatibility information for this release.

For backward compatibility information between 6.0.0 and previous releases, see theMigration
Guide on the RTI Community Portal (https://community.rti.com/documentation).

3.1 Wire Protocol Compatibility

Connext DDS communicates over the wire using the formal Real-time Publish-Subscribe (RTPS)
protocol. RTPS has been developed from the ground up with performance, interoperability and
extensibility in mind. The RTPS protocol is an international standard managed by the OMG. The
RTPS protocol has built-in extensibility mechanisms that enable new revisions to introduce new
message types, extend the existing messages, or extend the Quality of Service settings in the
product—without breaking interoperability.

RTPS 1.0 was introduced in 2001. The current version is 2.3. RTI plans to maintain inter-
operability between middleware versions based on RTPS 2.x.

3.2 Code and Configuration Compatibility

The Connext DDS core uses an API that is an extension of the OMG Data Distribution Service
(DDS) standard API, version 1.4. RTI strives to maintain API compatibility between versions, but
will conform to changes in the OMG DDS standard.

The Connext DDS core primarily consists of a library and a set of header files. In most cases,
upgrading simply requires you to recompile your source using the new header files and link the
new libraries. In some cases, minor modifications to your application code might be required; any
such changes are noted in theMigration Guide on the RTI Community Portal (https://-
community.rti.com/documentation). TheMigration Guide also indicates whether and how to regen-
erate code.

7

https://community.rti.com/documentation
https://community.rti.com/documentation
https://community.rti.com/documentation

3.3 Extensible Types Compatibility

8

3.3 Extensible Types Compatibility

This release of Connext DDS includes partial support for the "Extensible and Dynamic Topic Types for
DDS" (DDS-XTypes) specification1 from the Object Management Group (OMG), version 1.2. This sup-
port allows systems to define data types in a more flexible way, and to evolve data types over time without
giving up portability, interoperability, or the expressiveness of the DDS type system.

For information related to compatibility issues associated with the Extensible Types support, see theMigra-
tion Guide on the RTI Community Portal (https://community.rti.com/documentation). See also the RTI
Connext DDS Core Libraries Getting Started Guide Addendum for Extensible Types for a full list of the
supported and unsupported extensible types features.

3.4 ODBC Database Compatibility

To use the Durable Writer History and Durable Reader State features, you must install a relational data-
base such as MySQL.

To see if a specific architecture has been tested with the Durable Writer History and Durable Reader State
features, see the RTI Connext DDS Core Libraries Platform Notes. To see what databases are supported,
see the RTI Connext DDS Core Libraries Getting Started Guide Addendum for Database Setup.

1 See the specification at http://www.omg.org/spec/DDS-XTypes/.

https://community.rti.com/documentation
http://www.omg.org/spec/DDS-XTypes/

Chapter 4 What's Fixed in 6.0.0
Release 6.0.0 is a general access release based on the maintenance release 5.3.11. This section
describes bugs fixed in the Core Libraries in 6.0.0.

For an overview of new features and improvements in the Core Libraries in 6.0.0, please see RTI
Connext DDS Core Libraries Whats New in 6.0.0.

4.1 Fixes Related to Discovery

4.1.1 Endpoint discovery initialization errors during participant creation
left participant in inconsistent state

If an error occurred during a participant creation’s endpoint discovery initialization, the ini-
tialization may have incorrectly reported success. In this situation, the participant was left in an
inconsistent state. Trying to enable the participant would have failed with errors similar to the fol-
lowing:
[D0064|CREATE Participant|D0064|ENABLE]DISCSimpleEndpointDiscoveryPlugin_
enable:!precondition: me == NULL || worker == NULL
[D0064|CREATE Participant|D0064|ENABLE]DDS_DomainParticipantDiscovery_enableI:!enable
simple endpoint discovery plugin
[D0064|CREATE Participant|D0064|ENABLE]DDS_DomainParticipant_enableI:!enable discovery

This problem is now resolved.

[RTI Issue ID CORE-8249]

4.1.2 Writer/reader resource limits affected wrong builtin endpoints

Certain members of the DomainParticipantResourceLimitsQosPolicy affected the wrong endpoint-
discovery builtin endpoints. For example, writer_property_list_max_length determined the max-

1For What’s Fixed in 5.3.1, see the RTI Connext DDS Core Libraries Release Notes provided with 5.3.1.

9

4.1.3 Failure to send TypeObject when type had base with no members

10

imum number of properties that the SubscriptionBuiltinTopicDataDataWriter could serialize when it sent
discovery information about DataReaders. Consequently, the following scenario would fail:

1. Set reader_property_list_max_length to one.

2. Set writer_property_list_max_length to zero.

3. Create a reader with one property.

4. Create no writers.

5. The reader's discovery information would fail to be sent.

The following members of DomainParticipantResourceLimitsQosPolicy had this kind of problem:

l writer_property_list_max_length

l reader_property_list_max_length

l writer_user_data_max_length

l reader_user_data_max_length

l publisher_group_data_max_length

l subscriber_group_data_max_length

This problem has been resolved by making writer resource limits affect the PublicationBuiltinTopic end-
points and reader resource limits affect the SubscriptionBuiltinTopic endpoints.

[RTI Issue ID CORE-8411]

4.1.3 Failure to send TypeObject when type had base with no members

Connext DDS applications publishing or subscribing to a topic whose type definition had a base type with
no members may have failed to send the TypeCode during endpoint discovery.

This problem may have affected only systems running Connext DDS 5.0.0+ applications along with pre-
5.0.0 applications, or RTI tools that required the availability of the type information to work. Systems run-
ning only 5.0.0 and above relied on the TypeObject, which was not affected by this problem.

[RTI Issue ID CORE-8526]

4.1.4 Received incorrect QoS policy values through discovery when
communicating with other vendors

During the discovery process, if a remote participant omitted a QoS policy because it was set to the default
value, Connext DDS may have set that QoS policy to a default value not matching the OMG DDS and
RTPS specifications. This issue affected the following QoS policies:

4.2 Fixes Related to Reliability Protocol

l DDS_ParticipantBuiltinTopicData::lease_duration

l DDS_ParticipantBuiltinTopicData::reachability_lease_duration

l DDS_PublicationBuiltinTopicData::reliability

l DDS_SubscriptionBuiltinTopicData::reliability

l DDS_PublicationBuiltinTopicData::ownership_strength

This issue only affected communication with other vendors, since Connext DDS never omits the propaga-
tion of these QoS policies.

This issue is now fixed: the above-mentioned QoS policies that are not received from other vendors are
now set to the default value defined in the OMG DDS and RTPS specifications.

[RTI Issue ID CORE-8882]

4.2 Fixes Related to Reliability Protocol

4.2.1 VOLATILE DataReader may have received historical samples from
DataWriter

A VOLATILE DataReader may have received some historical samples from a matching DataWriter after
being created.

Specifically, the DataReader would have received all the samples from the DataWriter queue that were
not acknowledged by all the matching DataReaders at the moment the new DataReader was discovered.

This problem has been resolved. Now a VOLATILE DataReader does not receive historical samples
from a DataWriter.

[RTI Issue ID CORE-4923]

4.2.2 Wrong RTPS GAP messages emitted by reliable DataWriters in some
cases

A reliable DataWriter may have sent invalid GAP messages to a VOLATILE reliable DataReader after
receiving a preemptive ACK or after receiving a NACK for samples that the DataReader had already
received. These messages did not cause the DataReader to misbehave, but they could have led to issues
when interoperating with other DDS vendors.

This issue, which was incorrectly marked as fixed in 5.3.0, is now resolved. A reliable DataWriter now
sends correctly formatted GAPs in this case.

[RTI Issue ID CORE-7836]

11

4.2.3 Individual sample fragment losses may have triggered full sample repair

12

4.2.3 Individual sample fragment losses may have triggered full sample
repair

In some cases, losing individual fragments for a sample may have triggered the repair of the whole sample,
as opposed to a repair of the missing fragments. This incorrect behavior resulted in excessive bandwidth
usage.

This problem has been resolved. Now individual fragment losses are always repaired individually.

[RTI Issue ID CORE-8354]

4.2.4 DataReader may have ignored some piggyback heartbeats, leading to
performance degradation

A DataReader may have ignored some piggyback heartbeats from a DataWriter when the DataReader
used a content-filtered topic that led to writer-side filtering or when the DataReader created TopicQueries.
By not processing the piggyback heartbeats, the DataReader may not have sent ACKNACK messages to
the DataWriter. This problem may have caused the send window to fill up and the DataWriter to unne-
cessarily block on a write() call. This problem has been resolved.

[RTI Issue ID CORE-8908]

4.2.5 max_bytes_per_nack_response was ignored when using
asynchronous publication

A DataWriter setting publish_mode to DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS ignored the
protocol setting max_bytes_per_nack_response.

This meant that the number of samples that were sent in response to a NACK message from a DataReader
was not limited based on themax_bytes_per_nack_response setting. This issue has been resolved.

[RTI Issue ID CORE-8973]

4.2.6 Disabling positive ACKs may have caused segmentation fault in
publishing application

Disabling positive ACKs by setting protocol.disable_positive_acks to TRUE on the DataWriter or
DataReader may have led to a rare segmentation fault. This problem has been fixed.

[RTI Issue ID CORE-9144]

4.2.7 Unexpected DDS_RETCODE_OUT_OF_RESOURCES error when
writing a sample

The DataWriter::write operation may have failed with an unexpected DDS_RETCODE_OUT_OF_
RESOURCES error when the DataWriter had enough resources to accept the sample that was being

4.3 Fixes Related to Instance Management and Lifecycle

written.

This error occurred only when:

l Communication was reliable.

l The DataWriter set <max_samples> to a finite value.

l Some of the DataReaders matching with the DataWriter used a ContentFilteredTopic.

This problem has been fixed.

[RTI Issue ID CORE-9190]

4.3 Fixes Related to Instance Management and Lifecycle

4.3.1 Instances may not have transitioned to NOT_ALIVE_NO_WRITERS on
DataReader matching with a DataWriter using MultiChannelQosPolicy

Some instances may not have transitioned to NOT_ALIVE_NO_WRITERS state when a DataReader
stopped matching with a DataWriter configured to use MultiChannel by setting writer_qos.multi_chan-
nel. This problem might have occurred only for instances that were not published in all channels. This
problem has been resolved.

[RTI Issue ID CORE-8458]

4.3.2 DomainParticipantFactory::get_instance always returned success

In release 5.3.0, the operation DomainParticipantFactory::get_instance always returned success even if
there was an error executing it. This problem has been resolved.

[RTI Issue ID CORE-8518]

4.3.3 DataReaders may not have purged samples from instances in NOT_
ALIVE_NO_WRITERS state when autopurge_nowriter_samples_delay
was set to finite value

A DataReader may not have purged samples from instances that transitioned to NOT_ALIVE_NO_
WRITERS state when reader_qos.reader_data_lifecycle.autopurge_nowriter_samples_delay was set
to a finite value.

This problem only occurred when DataWriters did not unregister instances explicitly by calling the unre-
gister operation. For example:

l When a DataWriter was shut down gracefully or ungracefully without calling unregister for the
instances that were in its cache.

13

4.3.4 Instances in NOT_ALIVE_DISPOSED state may not have been purged from DataReader queue

14

l When a DataWriter became incompatible with a DataReader because of a QoS change (for
example, a partition).

This issue affected 5.2.x and 5.3.x releases. This problem has been fixed.

[RTI Issue ID CORE-8522]

4.3.4 Instances in NOT_ALIVE_DISPOSED state may not have been purged
from DataReader queue when autopurge_disposed_instances_delay
was set to zero

Instances in NOT_ALIVE_DISPOSED state without samples may not have been removed from a
DataReader queue configured with reader_qos.reader_data_lifecycle.autopurge_disposed_instances_
delay set to zero.

This problem was likely to occur in the following scenarios:

l Scenarios in which the DataReader received instances from redundant Routing Services.

l Scenarios in which the DataReader received instances from Persistence Service.

l Scenarios in which destination order was set to BY_SOURCE_TIMESTAMP.

Because the instances were not removed from the queue, unbounded memory growth could have occurred
when reader_qos.resource_limits.max_instances was configured to UNLIMITED, or sample rejection
may have occurred with reason SAMPLES_PER_INSTANCE_LIMIT when reader_qos.resource_lim-
its.max_instances had a finite value.

This problem has been fixed.

[RTI Issue ID CORE-8538]

4.3.5 A DataReader may have failed to calculate the keyhash for a sample
containing zero-length strings

A DataReader may have failed to calculate the keyhash for a sample containing zero-length strings. This
would occur only if the strings were not a part of the key themselves and were declared before at least one
of the members of the type that was part of the key.

A DataReader calculates the keyhash for samples coming from DataWriters with
DataWriterProtocolQosPolicy.disable_inline_keyhash set to TRUE. If keyhash calculation fails, a
sample may be incorrectly added to the wrong instance and the correct instance will not be found in the
DataReader.

This issue has been resolved.

[RTI Issue ID CORE-8603]

4.3.6 Incorrect warning reported while trying to purge disposed instances proactively

4.3.6 Incorrect warning reported while trying to purge disposed instances
proactively

When autopurge_dispose_instances_delay is not DURATION_INFINITE, Connext DDS attempts to
purge disposed instances proactively, independently of hitting resource limits. The warning “Writer-
HistoryMemoryPlugin_dropFullyAckedDisposedInstance:unregistered instances not fully acked” was
logged during this process; however, this warning is valid only when resource limits are hit, not when
instances are proactively removed. This problem has been resolved.

[RTI Issue ID CORE-8629]

4.3.7 Purging disposed or unregistered instances based on source
timestamp does not work when internal clock is set to monotonic

This issue applied only to release 5.3.0.8 when the internal clock for the participant was set to monotonic.
In this case, setting the property dds.data_writer.history.source_timestamp_based_autopurge_
instances_delay to 1 on a DataWriter in order to purge disposed or unregistered instances using the
source timestamp, did not work when the purging period was finite. (The purging period is configurable
using the QoS values writer_data_lifecycle.autopurge_disposed_instances_delay and writer_data_life-
cycle.autopurge_unregistered_instances_delay.)

This problem has been fixed.

[RTI Issue ID CORE-8637]

4.3.8 Possible leak upon application exit after using
NDDSConfigVersion::get_instance() (Traditional C++ API only)

Tools such as Valgrind may have reported a memory leak upon application exit (not a recurring leak)
when NDDSConfigVersion::get_instance() was called. This leak has been resolved.

[RTI Issue ID CORE-8686]

4.3.9 Unexpected errors when receiving a dispose sample for unbounded
DDS_KeyedString BuiltinType topic

When a reader received a dispose sample without a keyhash, with a serialized key for an unbounded
DDS_KeyedString bultin type topic, the following errors were logged and the dispose sample was not
received:
DDS_KeyedStringPlugin_get_serialized_sample_size:value cannot be NULL
PRESCstReaderCollator_addRegisteredInstanceEntry:!serialize key
PRESCstReaderCollator_addInstanceEntry:!add registered instance
DDS_KeyedStringPlugin_get_serialized_sample_size:value cannot be NULL
PRESCstReaderCollator_addRegisteredInstanceEntry:!serialize key
PRESCstReaderCollator_addInstanceEntry:!add registered instance

15

4.3.10 instance_replacement not applied correctly for durable DataWriters

16

This problem is now resolved: the dispose sample is now received and no errors are logged.

[RTI Issue ID CORE-8747]

4.3.10 instance_replacement not applied correctly for durable DataWriters

If you set <max_instances> to a finite value, <instance_replacement> may not have been applied correctly.
That is, when <max_instances> was exceeded, the DataWriter may have replaced an instance that did not
meet the replacement criteria defined in <instance_replacement>.

For example, if you set the instance replacement to DDS_DISPOSED_INSTANCE_REPLACEMENT,
when <max_instances> was exceeded the DataWriter may have chosen for replacement an instance or
multiple instances that were not in the DISPOSED state.

This problem has been resolved.

[RTI Issue ID CORE-8829]

4.3.11 Incorrect warning reported when replacing DISPOSE/ALIVE instance
on a DataWriter

When a DataWriter was configured with an instance_replacement different than DDS_
UNREGISTERED_INSTANCE_REPLACEMENT, Connext DDS incorrectly printed the following
warning while trying to replace an instance, even if the replacement was successful:
WriterHistoryMemoryPlugin_dropEmptyAndFullyAckedUnregisteredInstance:no unregistered instances

This problem has been resolved.

[RTI Issue ID CORE-8902]

4.4 Fixes Related to Content Filters and Query Conditions

4.4.1 Possible crash in creation of a content filter for a type with an aliased
base type

Applications creating an SQL content filter for a topic-type that inherits from an aliased type crashed in all
the languages’ APIs except for the C API.

For example, the creation of a DataReader with a ContentFilteredTopic based on the following IDL type
"Foo" caused this problem (except in the C API):
struct Base { long x; };

typedef Base BaseAlias;
struct Foo : BaseAlias { long y; };

This problem has been resolved.

[RTI Issue ID CORE-8462]

4.4.2 Reading samples by instance with QueryCondition returned no data when using TOPIC or GROUP

4.4.2 Reading samples by instance with QueryCondition returned no data
when using TOPIC or GROUP PresentationQosPolicy access_scope

An application using the PresentationQosPolicy access _scope TOPIC or GROUP while ordered_access
= TRUE was not able to retrieve data using the DataReader::take_next_instance_w_condition,
DataReader::read_next_instance_w_condition, DataReader::take_instance_w_condition, and
DataReader::read_instance_w_condition APIs when the condition being used was a QueryCondition.
In this case, these APIs returned DDS_RETCODE_NO_DATA when in fact there was data matching the
requested instance and condition. (The data could be retrieved successfully using other read or take
APIs.) This issue has been resolved.

[RTI Issue ID CORE-8508]

4.4.3 Content Filter issue when filtering on a member of the base type, for
types with inheritance

When using a Content Filter on a type with inheritance, if the filter expression required evaluating a mem-
ber of the base type, the result of the filter was incorrect. This issue has been fixed. Now the filter expres-
sion is applied properly, and the result is correct.

[RTI Issue ID CORE-9035]

4.5 Fixes Related to TopicQueries

4.5.1 DataWriter may have deadlocked if receiving "continuous"
TopicQueries

A race condition may have caused a thread to deadlock when a DataWriter dispatched a continuous Top-
icQuery. This problem stopped the DataWriter from operating normally.

This deadlock could happen only if topic_query_dispatch.samples_per_period, in the DataWriterQos,
was set to unlimited (the default value), and the DataWriter received a TopicQuery with continuous selec-
tion kind (the default was history snapshot, not continuous).

This problem affected release 5.3.0.8 only and has been fixed in this release.

[RTI Issue ID CORE-8448]

4.5.2 Instances may not have transitioned to NOT_ALIVE_NO_WRITERS on
DataReader matching with a DataWriter with TopicQuery enabled

Some instances may not have transitioned to NOT_ALIVE_NO_WRITERS state when a DataReader
stopped matching with a DataWriter with TopicQuery enabled (writer_qos.topic_query_dis-
patch.enable = TRUE). For example, this problem could have occurred if the DataWriter was unmatched
due to a partition change. This problem has been fixed.

17

4.5.3 Error when changing partition, group data, or topic data on a Publisher containing a DataWriter with

18

[RTI Issue ID CORE-8452]

4.5.3 Error when changing partition, group data, or topic data on a Publisher
containing a DataWriter with TopicQuery enabled

Changing a partition or the group data on a Publisher containing a DataWriter with TopicQuery enabled
(writer_qos.topic_query_dispatch.enable = TRUE) caused the following error:
PRESPsService_assertRemoteEndpoint:!assert pres psRemoteWriter
PRESPsService_notifyOfGroupDataOrPartitionChange:!assert remote endpoint

The issue also occurred with a slightly different error message when the topic data for the Topic associated
with the Publisher's DataWriter was updated.

This problem has been fixed.

[RTI Issue ID CORE-8453]

4.5.4 Possible increasing memory and CPU usage in publishing applications
using TopicQueries

A publishing application that enables TopicQuery may have been subject to increasing CPU and memory
usage.

This growth was in linear proportion to the preceding number of TopicQueries times the preceding num-
ber of samples selected, but growing with respect to a sample only for as long as such a sample remained
present in the DataWriter’s history. That is, removing a sample from the history would reset the con-
tribution to this growth attributed to that sample.

The DataWriter keeps state for each TopicQuery it receives. This state can be deleted when all the
samples that the TopicQuery selects have been delivered and acknowledged; however, some state inform-
ation was not removed until the samples were replaced (for example, when updating an instance and
exceeding the history depth).

This problem has been resolved.

[RTI Issue ID CORE-8817]

4.5.5 Spurious log message related to TopicQuery has been removed

The following log message may have been incorrectly displayed with "local" verbosity:
PRESPsService_dispatchMatchingTopicQueries:ignoring TopicQuery for this DataWriter because it
doesn't enable them

This problem happened when a DataWriter discovered a new DataReader, regardless of the existence of a
TopicQuery.

4.5.6 DataReader::getKey did not work with TopicQueries

The log message will no longer be displayed in that situation. It will only be displayed when a DataWriter
that doesn't enable TopicQueries receives a TopicQuery.

[RTI Issue ID CORE-8820]

4.5.6 DataReader::getKey did not work with TopicQueries

The DataReader::getKey API may have returned DDS_RETCODE_BAD_PARAMETER for an
instance that was known to a DataReader if samples for that instance were only in the DataReader's
queue in response to a TopicQuery.

This problem has been resolved. The API now searches for the instance in the queues associated with live
data as well as TopicQuery data.

[RTI Issue ID CORE-8953]

4.5.7 TopicQuery samples that failed to be written a first time may have never
been sent

If the write operation that publishes TopicQuery samples failed (for example, due to a timeout because of
blocking), the sample that failed to be written may never have been sent. This error would happen in one
of two cases, given a sample with sequence number n that failed to be written:

l The next sample in the writer queue that matched the TopicQuery expression had a sequence num-
ber > n + 1.

l The sample that failed to be written was the last TopicQuery sample in the writer's queue, and the
last sample in the writer's queue at the time of the write error had a sequence number > n + 1.

This issue has been resolved. Now if the internal write call for a TopicQuery sample fails, the sample will
be sent during the next TopicQuery publication period.

[RTI Issue ID CORE-9188]

4.6 Fixes Related to DynamicData

4.6.1 DynamicData had limitations with members larger than 65,535 bytes

DynamicData did not support resizing or out-of-order assignment of members that were longer than
65,353 bytes. Doing one of these two operations would result in the following error:
sparsely stored member exceeds 65535 bytes

There are no longer any restrictions regarding a member's size when using any of the DynamicData APIs
in any order.

[RTI Issue ID CORE-3177]

19

4.6.2 Copying into a bound DynamicData object did not work

20

4.6.2 Copying into a bound DynamicData object did not work

Using the DynamicData::copy operation did not work properly when copying into a DynamicData
object that was bound to another object. The operation may have caused corruption of the destination
object.

This issue has been resolved.

[RTI Issue ID CORE-3385]

4.6.3 Corrupt DynamicData objects containing sequences with length 0

In some cases, a DynamicData object may have been corrupted if a sequence member with length 0 was
set in the object. This would only occur with sequences of primitives with a size greater than 4: double,
long long, unsigned long long, long double. The corruption would have been noticeable when set and get
operations performed on the DynamicData object returned errors or incorrect values.

This issue has been resolved.

[RTI Issue ID CORE-5161]

4.6.4 Binding to members of a sequence incorrectly created members in the
DynamicData API

Binding to member n of a sequence in a DynamicData object that did not previously exist incorrectly cre-
ated members 0 through n-1 of the sequence, even when the member was unbound without setting any val-
ues.

This issue has been resolved. Now, if a member of a sequence is bound and unbound without calling any
set APIs, the length of the sequence that was bound to remains unchanged.

[RTI Issue ID CORE-5800]

4.6.5 Error when unbinding from a union DynamicData object

In some rare situations, unbinding from a union member may have returned RETCODE_ERROR with the
following error message:
DDS_DynamicData_unbind_complex_member:internal error 1 trying to to stream

This issue has been resolved.

[RTI Issue ID CORE-6657]

4.6.6 Performance degradation when setting large sequences using the DynamicData API

4.6.6 Performance degradation when setting large sequences using the
DynamicData API

If a DynamicData object's type contained any optional members, setting a large sequence (tens or hun-
dreds of thousands of elements) using any of the DynamicData::set_*_seq APIs may have taken a very
long time, on the order of minutes. The sequence itself did not have to be an optional member in order for
this issue to occur.

This issue has been resolved.

[RTI Issue ID CORE-6979]

4.6.7 DynamicData::is_member_key did not work for types using inheritance

The DynamicData::is_member_key API did not work correctly for members that were part of a base
type of the DynamicData object's type. The API may have returned incorrect results for whether or not a
member is a key.

This issue has been resolved.

[RTI Issue ID CORE-7505]

4.6.8 DynamicData::set_complex_member did not work with aliased
typecodes

The DynamicData::set_complex_member API failed with RETCODE_ERROR and an error message
similar to the following:
DDS_DynamicData_set_complex_member:type mismatch for field aField (id=1)

if the complex member being set had a TypeCode with kind TK_ALIAS.

This issue has been resolved.

[RTI Issue ID CORE-7561]

4.6.9 DynamicData::set_string API did not accept NULL strings

The DynamicData::set_string API did not accept a NULL string. This behavior was not parallel with
generated types, which allowed setting and sending NULL strings.

This issue has been fixed. The DynamicData::set_string API now accepts a NULL string. A string with
length 0 containing only the null-terminator will be set in the DynamicData object.

[RTI Issue ID CORE-8163]

21

4.6.10 Large memory allocation when binding to large sequences in the DynamicData API

22

4.6.10 Large memory allocation when binding to large sequences in the
DynamicData API

There was a large memory allocation when calling the DynamicData::bind_complex_member API on a
large sequence of non-primitive members. More concretely, the allocation was (4 * max length of the
sequence) bytes.

This issue has been resolved. Binding to a sequence no longer requires this memory allocation.

[RTI Issue ID CORE-8358]

4.6.11 DynamicData::from_cdr_buffer API did not resize DynamicData object

The DynamicData::from_cdr_buffer API did not resize the DynamicData buffer. This meant that the
API failed if the same DynamicData object was used in repeated calls to the API in which the CDR buffer
was larger than in previous calls. The following errors were printed in these situations:
DDS_DynamicDataTypePlugin_parametrized_cdr_to_cdr:deserialization error: insufficient space
DDS_DynamicDataTypePlugin_parametrized_cdr_to_cdr:error converting from extended CDR to CDR
DDS_DynamicDataTypePlugin_deserialize:error converting from extended CDR to CDR
DDS_DynamicData_from_cdr_buffer:deserialization error: buffer
DDS_DynamicData_from_cdr_buffer error 1

This issue has been resolved. The DynamicData::from_cdr_buffer will resize the DynamicData object's
internal buffer if required to accommodate the deserialized sample.

[RTI Issue ID CORE-8394]

4.6.12 Error when unbinding from a DynamicData object

In rare situations, unbinding from a member may have returned RETCODE_ERROR with the following
error message:
DDS_DynamicData_unbind_complex_member:internal error 1 trying to assert complex member

This issue has been resolved.

[RTI Issue ID CORE-8386]

4.6.13 Accessing a member of an array or sequence by member ID failed for
member IDs > 65535

Using any of the DynamicData::get_* APIs on a sequence or array and providing a member ID greater
than 65535 failed with DDS_RETCODE_NO_DATA, even if the member existed.

This issue has been resolved.

[RTI Issue ID CORE-8561]

4.6.14 DynamicData DataReader may have failed to correctly deserialize key for types containing strings

4.6.14 DynamicData DataReader may have failed to correctly deserialize key
for types containing strings

If a DynamicData DataReader received a keyed sample with a zero-length string, it may have failed to cor-
rectly deserialize the key. This problem occurred if the string was not part of the key and came before at
least one of the key members in the type definition. When this issue occurred, the following error would be
printed:
"DDS_DynamicDataUtility_skip_compact_type:stream error trying to access string"

This issue has been resolved.

[RTI Issue ID CORE-8604]

4.6.15 Missing DynamicData::clear_optional_member API in the .NET API

In previous releases, the DynamicData::clear_optional_member API was missing from the .NET API.
This issue has been resolved.

[RTI Issue ID CORE-9077]

4.6.16 DynamicData::clear_optional_member API incorrectly returned error
for unset optional members

Calling the DynamicData::clear_optional_member API on an unset optional member returned
PRECONDITION_NOT_MET and produced the following error message:
DDS_DynamicData_clear_optional_member:cannot clear non-optional members

This issue has been resolved. The DynamicData::clear_optional_member now returns RETCODE_OK
when called on an already unset optional member.

[RTI Issue ID CORE-9092]

4.6.17 DynamicData APIs did not check for an associated TypeCode

The DynamicData APIs were not consistent in checking for a TypeCode associated with the Dynam-
icData object before trying to execute the operation. This inconsistency resulted in unclear errors messages
and inconsistent return codes.

This issue has been resolved. DynamicData APIs that require the DynamicData object to have an asso-
ciated TypeCode now check for a TypeCode and return RETCODE_PRECONDITION_NOT_MET
when there is no TypeCode associated with the DynamicData object.

[RTI Issue ID CORE-9093]

23

4.6.18 Setting members past a sequence's maximum bound was not prohibited in the DynamicData API

24

4.6.18 Setting members past a sequence's maximum bound was not
prohibited in the DynamicData API

Setting a member past a sequence's maximum bound was not prohibited in the DynamicData API. An
attempt to set a member past the sequence's maximum bound now returns an error.

[RTI Issue ID CORE-9174]

4.6.19 DynamicData::clear_all_members API did not work on bound
DynamicData objects

The DynamicData::clear_all_members API did not work on bound DynamicData objects. If you called
DynamicData::clear_all_members on a bound DynamicData object, unbound that object, and then
bound the object again to the same member, all of the previous values were still set, as if the Dynam-
icData::clear_all_members API had never been called.

Note: In the Modern C++ API, binding is equivalent to loaning a DynamicData object.

This issue has been resolved.

[RTI Issue ID CORE-9175]

4.7 Fixes Related to Transports

4.7.1 Communication between kernel and RTP Mode Participants with
shared memory transport not working on 64-bit VxWorks 6 platforms

Applications could not communicate between kernel and RTP mode using the shared memory transport on
64-bit VxWorks 6 systems. (This is not an issue for 64-bit VxWorks 7 systems.) This problem has been
resolved.

As a result of this fix, applications built with older Connext DDS releases cannot communicate with applic-
ations built with this release if the communication uses shared memory on 64-bit VxWorks 6 systems and
occurs between kernel and RTP mode. (This configuration is not a common use case.)

[RTI Issue ID CORE-8171]

4.7.2 Network interface tracker may have reported non-existing changes

In some configurations in which several network interfaces share the same IP address, the network inter-
face tracker may have reported non-existing changes on the interfaces. This problem has been resolved.

[RTI Issue ID CORE-8205]

4.7.3 Possible continuous failure to send over shared memory transport

4.7.3 Possible continuous failure to send over shared memory transport

When using the shared memory transport and rapidly creating and deleting DomainParticipants, it was
possible for a DataWriter or DataReader to continuously fail to send content. The following log message
was generated with the NDDS_CONFIG_LOG_VERBOSITY_STATUS_ALL verbosity and NDDS_
CONFIG_LOG_CATEGORY_COMMUNICATION category:
RTINetioSender_send: send failed: locator:
shmem://0000:0702:0007:0000:0000:0000:0000:0000:10414

(The specific locator numbers may differ.)

This problem has been resolved.

[RTI Issue ID CORE-8295]

4.7.4 Race condition in shared memory transport led to cleanup failure

A race condition in the shared memory transport occurred when two processes attempted to create a
DomainParticipant with the same domain ID and participant ID at the same time. This race condition led
to cleanup problems when one of the DomainParticipants was being deleted. It would generate these error
messages:
NDDS_Transport_Shmem_destroy_recvresource_rrEA:!take mutex
NDDS_Transport_Shmem_destroy_recvresource_rrEA:!give mutex
RTIOsapiSharedMemoryMutex_delete:OS semctl() failure, error 0X16: Invalid argument

This race condition has been fixed. These errors no longer appear.

[RTI Issue ID CORE-8534]

4.7.5 UDPv4/UDPv6 transport creation failed when setting send_socket_
buffer_size or recv_socket_buffer_size to NDDS_TRANSPORT_
UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT or NDDS_
TRANSPORT_UDPV6_SOCKET_BUFFER_SIZE_OS_DEFAULT

In release 5.3.0, there was an issue provoking UDPv4 and UDPv6 transport creation to fail if any of the
send_socket_buffer_size or recv_socket_buffer_size properties was set to either NDDS_
TRANSPORT_UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT or NDDS_TRANSPORT_
UDPV6_SOCKET_BUFFER_SIZE_OS_DEFAULT.

This problem is now resolved.

[RTI Issue ID CORE-8585]

25

4.7.6 Unexpected shared memory locator when setting rtps_host_id to a value different than DDS_

26

4.7.6 Unexpected shared memory locator when setting rtps_host_id to a
value different than DDS_RTPS_AUTO_ID

In Connext DDS 5.3.0, the generated shared memory locator was incorrect when the rtps_host_id value
was different than DDS_RTPS_AUTO_ID. As a result, 5.3.0 may have failed to communicate over
shared memory with previous versions of the product.

Starting with Connext DDS 6.0.0, the shared memory locator is generated as follows:

l If the dds.transport.shmem.builtin.host_id property is defined, the shared memory locator is
derived from this value.

l If the Wire Protocol rtps_auto_id_kind is DDS_RTPS_AUTO_ID_FROM_IP and rtps_host_id
is different than DDS_RTPS_AUTO_ID, the shared memory locator is derived from the rtps_
host_id value.

l In all other cases, the shared memory locator is derived from the MAC address, IP address, or
UUID value depending on the rtps_auto_id_kind value.

[RTI Issue ID CORE-8738]

4.7.7 Crash when network interface changed before transport was fully
created

A crash may have occurred in IP Mobility scenarios if a network interface changed before the transport cre-
ation was completed. This problem has been resolved. Now when the network interface tracker starts, it
can properly handle changes in the interfaces.

[RTI Issue ID CORE-8869]

4.7.8 Wrong transport class name when logging 'No interfaces' warning

The logging of a warning due to the absence of valid interfaces in TCP Transport, in TCPv4_LAN or
TLSv4_LAN mode, triggered the following two messages:
NDDS_Transport_UDP_get_class_name_cEA:!family parameter not valid
NDDS_Transport_IP_selectValidInterfaces:WARNING: No interfaces for transport (null) match
allowed patterns

This behavior was wrong: it did not properly show the transport class, and, although the message said
WARNING, it actually logged an exception. This problem is now fixed: the message now properly shows
the transport class, and it logs a warning instead of an exception.

[RTI Issue ID COREPLG-444]

4.8 Fixes Related to Logging and Distributed Logger

4.8 Fixes Related to Logging and Distributed Logger

4.8.1 Segmentation fault when simultaneously changing log files and writing
to a log file

The functions NDDS_Config_Logger_set_output_file_set(), NDDS_Config_Logger_set_output_file
(), NDDS_Config_Logger_set_output_file_name(), and DDS_DomainParticipantFactory_set_qos()
were not thread-safe. If any of these functions was called to change the logging output file(s) while a sep-
arate thread was writing a log message, the writing thread may have crashed with a segmentation fault.
This problem has been resolved. These functions are now thread-safe.

[RTI Issue ID CORE-8710]

4.8.2 Unexpected "PRESCstReaderCollator_addInstanceEntry:exceeded
max total instances" message at WARNING level

You may have seen the following message when using the NDDS_CONFIG_LOG_VERBOSITY_
WARNING verbosity level:
PRESCstReaderCollator_addInstanceEntry:exceeded max total instances.

This message should not be a warning, since exceeding max_total_instances is expected when reader_
qos.resource_limits.max_instances is finite, reader_qos.resource_limits.max_total_instances is
AUTO (default), and the DataReader receives more than reader_qos.resource_limits.max_instances.

The verbosity level at which this message is printed has been changed to NDDS_CONFIG_LOG_
VERBOSITY_STATUS_ALL.

[RTI Issue ID CORE-8822]

4.8.3 Segmentation fault when attempting to write to one file of a file set if that
file failed to be opened

After an application called the NDDS_Config_Logger_set_output_file_set() function, if one of the files
failed to be opened (let's call it file N), the first attempt to write to that file failed gracefully (which was cor-
rect behavior), but the second attempt to write to that file resulted in a segmentation fault. This problem has
been resolved. Now, the second attempt to write will be to file N+1 rather than file N.

[RTI Issue ID CORE-9181]

4.8.4 NDDS_Config_Logger_get_output_device() always returned NULL
after DomainParticipant creation

NDDS_Config_Logger_get_output_device() always returned NULL after the first DomainParticipant
was created. This problem only affected 5.3.x releases and has been fixed. NDDS_Config_Logger_get_
output_device() will now return the correct device.

27

4.8.5 Unable to configure Distributed Logger profile Using C++ DomainParticipantFactory

28

[RTI Issue ID CORE-9202]

4.8.5 Unable to configure Distributed Logger profile Using C++
DomainParticipantFactory

C++ Distributed Logger was not using the C++ DomainParticipantFactory internally, but using the C fact-
ory. This led to issues like these:

l The operations RTI_DLOptions::setQosLibrary and RTI_DLOptions::setQosProfile could not
be used to configure a QoS profile for RTI Distributed Logger while using the C++ API. This prob-
lem only occurred when the application using Distributed Logger loaded its XML configuration
using the QoS values DomainParticipantFactoryQos.profile.url_profile or DomainPar-
ticipantFactoryQos.profile.string_profile.

l If Distributed Logger used its own DomainParticipant, the threads associated with this DomainPar-
ticipant were not created using the ThreadFactory installed on the C++ DomainParticipantFactory
with the API DDS_DomainParticipantFactory::set_thread_factory.

l Because Distributed Logger was using the C DomainParticipantFactory when creating its own
DomainParticipant, you may have been forced to finalize this DomainParticipantFactory (using
DDS_DomainParticipantFactory_finalize_instance), in addition to the C++ DomainPar-
ticipantFactory to avoid a memory leak.

This problem has been resolved.

[RTI Issue ID DISTLOG-155]

4.8.6 Possible segmentation fault when deleting options that were used to
create Distributed Logger instance

An application using Distributed Logger may have issued a segmentation fault if the options used to create
it were deleted before the Distributed Logger instance was finalized. This problem has been resolved.

[RTI Issue ID DISTLOG-157]

4.8.7 Error code for setApplicationKind not captured in Distributed Logger C
example

The error code was not captured in the Distributed Logger C example, when the options were configured
with an application kind. This problem has been resolved.

[RTI Issue ID DISTLOG-159]

4.8.8 Logger settings from QoS File not set correctly when using Distributed Logger

4.8.8 Logger settings from QoS File not set correctly when using Distributed
Logger

If your application created a Distributed Logger instance before loading the QoS profiles, the verbosity set-
tings specified in the QoS file were overwritten with the default settings. This problem has been resolved.

[RTI Issue ID DISTLOG-175]

4.8.9 "Max queue size reached, message will get lost" warning removed from
DistributedLogger

Distributed Logger used to print a warning when a message could not be added to the internal messages
queue because the queue was full. This warning has been removed. The warning is no longer necessary
because there is a new field in com::rti::dl::LogMessage called messageId that can be used to detect if
messages are lost.

[RTI Issue ID DISTLOG-194]

4.9 Fixes Related to XML Configuration

4.9.1 Some XML example files were not compliant with target XSD schema

The following XML example files were not compliant with their target XSD schemas:

l MONITORING_DEMO.xml

l RTIDDSPING_QOS_PROFILES.example.xml

l RTIDDSSPY_QOS_PROFILES.example.xml

l RTI_RECORDING_SERVICE.xml

l USER_RECORDING_SERVICE.xml

l USER_ROUTING_SERVICE.xml

This problem has been resolved; these example files are now compliant.

[RTI Issue ID CORE-8259]

4.9.2 NDDS_QOS_PROFILES.xml not loaded from default location

Connext DDS did not load a file with the name NDDS_QOS_PROFILES.xml from the default location of
resource/xml. This problem has been resolved. Now, if such a file exists in that location, Connext DDS
will automatically load the file.

[RTI Issue ID CORE-8279]

29

4.9.3 is_default_participant_factory_profile="true" was ignored when <participant_factory_qos> only had

30

4.9.3 is_default_participant_factory_profile="true" was ignored when
<participant_factory_qos> only had the base_name attribute specified

If a <participant_factory_qos> didn't have any tags set in XML and specified just a base_name, the
metadata information that indicated what fields were set in XML for the parent weren't copied as a part of
the single inheritance code path. This led to problems loading the correct value when the is_default_par-
ticipant_factory_profile="true" attribute was used for a <qos_profile> that contained this <participant_
factory_qos>. The reason was that other functions relied on the metadata to detect if something other than
the default value was being set.

This problem has been resolved in this release, for both single and multiple QoS Profile inheritance via
XML. The metadata is now copied during inheritance.

[RTI Issue ID CORE-8364]

4.9.4 Creating a typecode from an XML with a directive tag may have caused
a crash

Creating a typecode from an XML file may have caused a segmentation fault if the tag "directive" was
used. This problem occurred when calling the function DDS_TypeCodeFactory_create_tc_from_xml_
file. This problem has been resolved.

[RTI Issue ID CORE-8493]

4.9.5 XML parser error if <domain_library> or <domain_participant_library>
split into multiple tags with same name attribute

The Connext DDS XML parser reported an error if a <domain_library> or <domain_participant_library>
appeared more than once with the same value in its name attribute. This behavior has changed. Now, a
domain or participant library can be split into multiple <domain_library> or <domain_participant_library>
tags, respectively.

The resulting behavior is equivalent to defining a single library containing all the elements specified in
each library, with the same value in the name attribute.

[RTI Issue ID CORE-8294]

4.9.6 Connext DDS XML parser failed to parse a const char with '\0' value

The Connext DDS XML parser failed with the following error when parsing a const char '\0':
DDS_ExpressionEvaluator_get_next_token:expression parse error at column 2: invalid scape
character
DDS_ExpressionEvaluator_evaluate:expression parse error at column 2: empty expression
DDS_XMLConst_evaluate_expression:Parse error at line 3: error evaluating const expression
DDS_XMLConst_initialize:error evaluating const expression
DDS_XMLConst_new:!init XML const object

4.9.7 Value checks were not enforced for writer_qos.writer_resource_limits.instance_replacement field in

RTIXMLParser_onStartTag:Parse error at line 3: Error processing tag 'const'

Now the parser can parse this character.

[RTI Issue ID CORE-8802]

4.9.7 Value checks were not enforced for writer_qos.writer_resource_
limits.instance_replacement field in DataWriterQos

The RTI Connext DDS XML parser did not produce an error if the value specified for writer_qos.writer_
resource_limits.instance_replacement wasn't one of the standard values specified in the documentation.
(In the API Reference HTML documentation, search for DDS_DataWriter-
ResourceLimitsInstanceReplacementKind for a list of the accepted values.) The parser now produces
an error if the value is not one of these values.

[RTI Issue ID CORE-8810]

4.9.8 Last, not first, value was retrieved when getting a QoS by specifying
topic_filter

A problem occurred when a Profile had multiple QoSes of the same type, with the topic_filter attribute
either not specified (NULL) or set to “*”. In this case, API calls (such as DDS_DomainPar-
ticipantFactory_get_datareader_qos_from_profile_w_topic_name()) retrieved the wrong QoS values
when passing those values to the appropriate function calls (such as DDS_XMLQosProfile_get_
datareader_dds_qos_filtered()) in fallback scenarios only.

The fallback scenarios are the following:

l When a topic_filter argument is set to NULL, a lookup API matches against the first QoS type in
the Profile with the topic_filter attribute set to NULL. When such a QoS does not exist, the fallback
scenario is for the API to return the first matching QoS type (in the case of duplicates) with topic_fil-
ter set to “*”.

l Likewise, when a topic_filter argument is set to a valid string value, the lookup API matches
against the first QoS type in the Profile with the topic_filter attribute set to a matching pattern value.
If such a QoS does not exist, the fallback scenario is for the API to return the first matching QoS
type (in the case of duplicates) with topic_filter set to NULL.

In both of these fallback scenarios, the problem was that the API was not returning the first matching QoS
type, but the last one.

This problem is now resolved. In both cases, the API now correctly returns the first matching QoS type.

[RTI Issue ID CORE-9024]

31

4.9.9 Unable to set WriterDataLifecycle::autopurge_disposed_instances_delay for builtin DataWriters via

32

4.9.9 Unable to set WriterDataLifecycle::autopurge_disposed_instances_
delay for builtin DataWriters via XML

Due to an error in the shipped DTD, it was not possible to setWriterDataLifecycle::autopurge_dis-
posed_instances_delay for the builtin DataWriters via XML. Attempting to do so would result in errors
during participant creation similar to the following:
[CREATE Participant] RTIXMLParser_validateOnStartTag:Parse error at line 113: Unexpected tag
'autopurge_disposed_instances_delay'
[CREATE Participant] RTIXMLParser_parseFromFile_ex:Parse error in file 'USER_QOS_PROFILES.xml'

This issue has been resolved.

[RTI Issue ID CORE-9082]

4.10 Fixes Related to XML-Based Application Creation

4.10.1 Sequences defined in XML with sequenceMaxLength of -1 were not
interpreted as unbounded

If a type defined in XML had its sequences or strings set to -1 in the attributes sequenceMaxLength or
stringMaxLength, the resulting sequence or string length was interpreted as being of a default size rather
than unbounded. This problem has been resolved. The resulting length is now interpreted as unbounded
((2^32)-1 bytes).

[RTI Issue ID CORE-8494]

4.10.2 XML-Based Application Creation in Java didn't work with some
TypeCodes

Types larger than 65,535 bytes and types that use extensible type features only available in TypeObject
weren't properly serialized when using XML-Based Application Creation in Java. This issue caused
DomainParticipant creation to produce a BAD_TYPECODE exception for large types, and could have
prevented communication between Java applications and applications using a different language binding
for types using extensibility features. This issue has been resolved.

[RTI Issue ID CORE-CORE-8957]

4.11 Fixes Related to OMG Specification Compliance

4.11.1 Connext DDS not compliant with RTPS 2.2

Previous releases of Connext DDS were not compliant with the OMG RTPS 2.2 specification. In par-
ticular, the GUID announced by default was not compliant with the RTPS 2.2 specification (as described
in 4.11.2 Default GUID not compliant with RTPS specification on the facing page).

4.11.2 Default GUID not compliant with RTPS specification

This release is now fully compliant with RTPS 2.2. In addition, the RTPS wire protocol version that Con-
next DDS announces in messages it puts on the wire has been updated to 2.3, since this release is also fully
compliant with the RTPS 2.3 wire protocol (described in the RTPS 2.2 and DDS Security 1.1 spe-
cifications).

Note that this release also supports some of new RTPS 2.4 wire protocol features. One example is the abil-
ity to announce QoS for builtin endpoints (for more information about this, please refer to 4.11.3 Manual
by Participant Liveliness stopped working when communicating with old RTI Connext Professional ver-
sions or non-RTI DDS implementations below).

[RTI Issue ID CORE-6902]

4.11.2 Default GUID not compliant with RTPS specification

The default value of DDS_DomainParticipantQos::wire_protocol::rtps_auto_id_kind was DDS_
RTPS_AUTO_ID_FROM_IP. This value caused the rtps_host_id to be the IP address by default, which
was not compliant with this statement in the RTPS specification:

To comply with this specification, implementations of the RTPS protocol shall set the first two bytes
of the guidPrefix to match their assigned vendorId.

This problem has been resolved by changing the default value of rtps_auto_id_kind to DDS_RTPS_
AUTO_ID_FROM_UUID. The UUID always has the first two bytes equal to the RTI RTPS vendorId.
Note that DDS_RTPS_AUTO_ID_FROM_UUID is currently the only value that will result in a spe-
cification-compliant GUID.

[RTI Issue ID CORE-8033]

4.11.3 Manual by Participant Liveliness stopped working when
communicating with old RTI Connext Professional versions or non-RTI
DDS implementations

In release 5.2 and above, Manual by Participant Liveliness may have stopped working when com-
municating with remote participants in Connext DDS Professional 5.1 or below or when communicating
with non-RTI remote participants. Note that this issue was only triggered when setting DiscoveryConfig
Qos's participant_message_reader_reliability_kind to BEST_EFFORT_RELIABILITY (default). In
particular, the problem was provoked by a wrong configuration of the Reliability QoS used when com-
municating with remote liveliness builtin endpoints.

This problem is now resolved by implementing the RTPS 2.3 specification's BuiltinEndpointQos_t
propagation mechanism, which ensures the proper QoS is selected when communicating with remote live-
liness builtin endpoints. (RTPS 2.3 defines version 2.4 of the wire protocol.)

[RTI Issue ID CORE-8762]

33

4.11.4 NACK_FRAG message not compliant with RTPS specification

34

4.11.4 NACK_FRAG message not compliant with RTPS specification

The NACK_FRAG message was not compliant with the format specified in the RTPS specification. This
may have led to interoperability issues with other DDS vendors.

This problem has been fixed.

[RTI Issue ID CORE-9193]

4.12 Fixes Related to Vulnerabilities

This release fixes some potential vulnerabilities, including RTI Issue IDs CORE-8581, CORE-8645,
CORE-8868, and CORE-9038.

4.13 Fixes Related to Modern C++ API

4.13.1 Compilation failure when NDDS_USER_DLL_EXPORT defined on
non-Windows platform

The preprocessor definition NDDS_USER_DLL_EXPORT is only intended for Windows systems and
should be ignored on other platforms. But that was not the case in Connext DDS 5.3.0, where this situation
could have caused a compilation failure in the Modern C++ API. This problem has been resolved.

[RTI Issue ID CORE-8176]

4.13.2 Downcasting a condition into a ReadCondition not supported

In the Modern C++ API, a Reference Type acting as a base class (for example, dds::core::Entity) can be
downcasted to a child type (for example, dds::domain::DomainParticipant) using dds::-
core::polymorphic_cast (analogous to std::dynamic_pointer_cast).

That was the intended behavior with dds::core::Condition and dds::sub::ReadCondition, as well as
dds::sub::QueryCondition; however, the following code did not compile:
dds::core::Condition c = ...;
auto rc = dds::core::polymorphic_cast<dds::sub::ReadCondition>(c);
auto qc = dds::core::polymorphic_cast<dds::sub::QueryCondition>(rc);

This problem has been resolved, and the previous casts now work.

[RTI Issue ID CORE-8347]

4.13.3 ReadCondition handler may not have been dispatched

One-argument condition handlers used to create ReadConditions (or QueryConditions) were not called by
WaitSet::dispatch().

Other types of Conditions were not affected, and no-argument handlers worked in all cases.

4.13.4 Compilation error accessing a const LoanedSamples instance

This problem has been resolved.

[RTI Issue ID CORE-8352]

4.13.4 Compilation error accessing a const LoanedSamples instance

Attempting to access a const LoanedSamples may have caused a compilation error. For example, the fol-
lowing code didn't compile, although it should be legal:
void print_samples(const LoanedSamples<Foo>& samples)
{

for (auto&& s : samples) {
std::cout << s.data() << std::endl;

}
}

This problem has been resolved. Now it is possible to iterate through a const LoanedSamples using its
const_iterator.

[RTI Issue ID CORE-8423]

4.13.5 Missing unregister_thread function

Release 5.2.0 added the function unregister_thread(), which allows releasing Connext DDS thread-local
memory. The Modern C++ API did not provide this function.

This release adds the function rti::core::unregister_thread() and the utility type rti::-
core::UnregisterThreadOnExit, which calls unregister_thread in its destructor.

[RTI Issue ID CORE-8425]

4.13.6 dds::sub::Sample creation or assignment from a LoanedSample failed
when data was invalid

The creation or assignment of a dds::sub::Sample from a LoanedSample (the value type of
LoanedSamples) threw an exception if the LoanedSample's data was invalid. This was not the expected
behavior, since Sample can hold invalid data.

This problem has been resolved, and now this is the behavior:

l The constructor Sample<T>(const LoanedSample<T>& ls) will default-construct the sample data
when ls.info().valid() is false.

l The assignment operator operator=(const LoanedSample<T>& ls) will not modify the sample
data (only the sample info) when ls.info().valid() is false.

[RTI Issue ID CORE-8446]

35

4.13.7 Possible symbol collision with Boost compiling the Modern C++ API

36

4.13.7 Possible symbol collision with Boost compiling the Modern C++ API

An application using both Boost and the Modern C++ API may have failed to compile due to a symbol col-
lision. The problem happened only if the application included (directly or indirectly) the file boost/-
detail/iterator.hpp. This problem has been resolved.

[RTI Issue ID CORE-8536]

4.13.8 dds::topic::find could not return AnyTopic

The function dds::topic::find can be used to return a typed topic (Topic<Foo>), but was intended to
allow returning an AnyTopic. In previous releases, dds::topic::find<AnyTopic>(...) didn't compile.

This problem has been resolved.

[RTI Issue ID CORE-8618]

4.13.9 Inconsistency between XML format and QosProvider::type()
arguments

The QosProvider allows loading DynamicTypes from an XML document. The function to retrieve them,
type(), required two arguments: a library name and a type name. But the XML format to define types
doesn't require a library name.

This inconsistency has been resolved by adding an overload whose only argument is the type name. See
an example in the Modern C++ API Reference HTML documentation, under "Modules > Programming
How-To's > DynamicType and DynamicData Use Cases > Create a DynamicType from an XML descrip-
tion."

[RTI Issue ID CORE-8805]

4.13.10 Missing accessors for Liveliness:: assertions_per_lease_duration

In the Modern C++ API, the type dds::core::policy::Liveliness did not provide an accessor to the exten-
sion field assertions_per_lease_duration.

This problem has been resolved, and a getter and a setter are now provided:
dds::core::policy::Liveliness liveliness;
liveliness.extensions().assertions_per_lease_duration(3);
assert(liveliness.extensions().assertions_per_lease_duration() == 3);

[RTI Issue ID CORE-8833]

4.13.11 Entity Listeners may have missed some notifications

A race condition during the creation of an Entity (DomainParticipant, DataReader, etc.) with a Listener
may have caused the Listener to miss a notification for a status change that occurred right before the

4.14 Other Fixes

Entity's constructor finished. This problem has been resolved.

[RTI Issue ID CORE-8905]

4.14 Other Fixes

4.14.1 strict-aliasing warnings when compiling code generated from an IDL
with floats or enumerations

When compiling code generated from an IDL with floats or enumerations using the GCC compiler flag -
Wstrict-aliasing, you would see strict-aliasing warnings that contained the following:
warning: dereferencing type-punned pointer will break strict-aliasing rules
note: in expansion of macro ‘RTICdrStream_serializeFloat’

This problem has been resolved. These compiler warnings no longer appear.

[RTI Issue ID CORE-6778]

4.14.2 Unexpected sample loss notification on non-VOLATILE DataReader

A new DataReader that you have just created and enabled, that is configured with non-VOLATILE dur-
ability, may have incorrectly reported sample losses upon matching with a non-VOLATILE DataWriter.

This issue occurred when the DataWriter was configured with finite autopurge_unregistered_
instances_delay or autopurge_unregistered_instances_delay and some of the instances were removed
due to these delays before the DataReader was matched with the DataWriter.

This problem has been fixed.

[RTI Issue ID CORE-7841]

4.14.3 RTPS messages with wrong alignment incorrectly accepted

RTPS messages and submessages with wrong alignment may have been incorrectly accepted by Connext
DDS.

This problem is now resolved. By default these messages with wrong alignment are now dropped, and the
following message is logged:
MIGInterpreter_parse:submessage not aligned to 4

Note this behavior can be changed by setting the following property on the Participant PropertyQos to
true: dds.participant.use_45d_compatible_alignment_enforcement.

[RTI Issue ID CORE-8060]

37

4.14.4 Segmentation fault while looking up vendor-specific topics from a traditional C++ or .NET

38

4.14.4 Segmentation fault while looking up vendor-specific topics from a
traditional C++ or .NET application

When monitoring libraries were enabled in a traditional C++ or .NET application, the use of lookup_top-
icdescription() or find_topic() to get a monitoring topic led to a segmentation fault. This problem has
been resolved. These functions now successfully retrieve the monitoring topic.

Similar problems existed for the Distributed Logger topics and the Security Plugins Builtin Logging topic.
These problems have also been resolved.

[RTI Issue ID CORE-8256]

4.14.5 Memory leak when failing to create builtin endpoints

Failure by Connext DDS to create certain builtin endpoints resulted in a memory leak. The affected end-
points were the DataReaders and DataWriters for the publication, subscription, and participant message
builtin topics. These leaks have been fixed.

[RTI Issue ID CORE-8367]

4.14.6 Segmentation Fault when Simultaneously Removing Remote
Participant and Sending a Message to a Third Participant

A rare segmentation fault may have occurred in the following scenario:

l Three DomainParticipants: P1, P2, P3.

l Delete P1.

l P2 receives an announcement (via ParticipantBuiltinTopicData) from P1 that it has been deleted. P2
starts removing P1 as a remote participant.

l Simultaneously, P2 sends a message to P3. For example, it could be an ACKNACK from P2's
DataReader to P3's DataWriter.

l While P2 is sending the message, P2 may have crashed with a bad pointer access.

This problem has been resolved.

[RTI Issue ID CORE-8464]

4.14.7 Could not add property names that were prefixes of existing property
names

If you wanted to introduce certain properties in the PropertyQosPolicy that had application-specific mean-
ing, there were certain property names that could not be used because they were the prefix of an existing
Connext DDS property name.

4.14.8 Unbounded memory growth on DataWriter when enable_required_subscriptions set to true and

One example of an unusable property name was "d" because "d" is a prefix of "dds", which is a prefix of
many existing property names. If "d" belonged to a DataWriter, then the value of "d" would have been
misinterpreted as the value of "dds.sample_assignability.accept_unknown_enum_value".

This problem has been resolved. You may now use "d" or any other property name you want.

[RTI Issue ID CORE-8525]

4.14.8 Unbounded memory growth on DataWriter when enable_required_
subscriptions set to true and DataReaders setting role name were
created/destroyed continuously

In previous releases there may have been an unbounded memory growth on a DataWriter when:

l writer_qos.availability.enable_required_subscriptions was set to true.

l You created/deleted matching DataReaders where reader_qos.subscription_name.role_name
was set to a value other than NULL.

This problem has been fixed.

[RTI Issue ID CORE-8650]

4.14.9 Possible crash when applications used two extensible types that
differed by one aliased primitive member

The algorithm that verifies the compatibility of two extensible types may have crashed when one of the
two types added an aliased primitive member at the end.

For example, an application publishing or subscribing T1 and trying to match with an application using T2
would crash:
struct T1 {

long x;
};

typedef long LongAlias;
struct T2 {

long x;
LongAlias y;

};

This problem affected types with extensible extensibility (the default). It did not affect types with final or
mutable extensibility.

This problem has been resolved.

[RTI Issue ID CORE-8516]

39

4.14.10 Errors reported when compiling a file including disc_rtps_impl.h with gcc -C

40

4.14.10 Errors reported when compiling a file including disc_rtps_impl.h with
gcc -C

On UNIX-like systems, errors were reported when compiling a file that included disc_rtps_impl.h with the
-C option. The errors reported by the gcc compiler are now fixed, and the code now compiles without
issue.

[RTI Issue ID CORE-8575]

4.14.11 Unlikely segmentation fault when deleting a DataReader and using
GROUP ordered access

An unlikely segmentation fault may have occurred when deleting a DataReader that was part of a Sub-
scriber, when all of the following was true:

l subscriber_qos.presentation.access_scope was set to DDS_GROUP_PRESENTATION_QOS
or DDS_HIGHEST_OFFERED_PRESENTATION_QOS

l subscriber_qos.presentation.ordered_access was set to TRUE

l the DataReader matched a DataWriter that was part of a Publisher, where publisher_qos.-
presentation.access_scope was set to DDS_GROUP_PRESENTATION_QOS

This problem has been resolved.

[RTI Issue ID CORE-8615]

4.14.12 RTIOsapiProcess_getId() returns incorrect PID in VxWorks Kernel
Mode

In previous releases, calling RTIOsapiProcess_getId in Vxworks Kernel Mode would return different
PIDs when called from different threads (tasks). This problem is resolved. RTIOsapiProcess_getId() will
now always return the same TASK_ID, regardless of the thread that called it.

[RTI Issue ID CORE-8634]

4.14.13 Potential segmentation fault while unregistering a logger output
device

The function NDDS_Config_Logger_set_output_device() is not thread-safe. For example, when calling
this function to unregister a device, it is possible for a different thread to be logging a message using the
device. This situation can lead to a segmentation fault in the function ADVLOGLoggerDeviceMgr_
logMessageLNOOP(). This problem has been fixed. NDDS_Config_Logger_set_output_device() is
now thread-safe.

[RTI Issue ID CORE-8671]

4.14.14 Incorrect value for type_consistency in SubscriptionBuiltinTopicData in .NET API

4.14.14 Incorrect value for type_consistency in SubscriptionBuiltinTopicData
in .NET API

When using the .NET API, the value for type_consistency within SubscriptionBuiltinTopicData was
incorrect. It did not reflect the underlying native value. This problem has been resolved.

[RTI Issue ID CORE-8678]

4.14.15 DomainParticipant creation did not fail when using an unknown flow
controller

Using an unknown flow controller to configure one of the built-in Topics did not cause the participant cre-
ation to fail. For example:
<discovery_config>
<publication_writer_publish_mode> <flow_controller_name>dds.flow_controller.token_
bucket.UNKNOWN</flow_controller_name>
<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>
</publication_writer_publish_mode>
</discovery_config>

With the above configuration, the DomainParticipantFactory::create_participant operation logged the
following error, but it still succeeded:
DDS_PublishModeQosPolicy_to_presentation_qos_policy: flow controller name 'dds.flow_
controller.token_bucket.UNKNOWN' not found

This problem has been resolved. Now the participant creation fails.

[RTI Issue ID CORE-8722]

4.14.16 Removed recursion in include files

Some static code analysis tools detected that there was a recursion in the following header files:

1. rtixml_extension.h included rtixml_object.h

2. rtixml_object.h included rtixml_object_impl.h

3. rtixml_object_impl.h included rtixml_extension.h

Although there are preprocessor guards protecting against multiple inclusion, this recursion has been fixed.

[RTI Issue ID CORE-8739]

4.14.17 max_blocking_time not honored for KEEP_LAST DataWriters

A DataWriter might have not honored the ReliabilityQosPolicy'smax_blocking_time when the His-
toryQoSPolicy's kind was set to KEEP_LAST and themax_send_window_size was less than the

41

4.14.18 Use of -qosProfile argument in DDS Ping did not take topic_filter into consideration

42

HistoryQoSPolicy's depth. This problem has been resolved: now max_blocking_time is always honored.

[RTI Issue ID CORE-8753]

4.14.18 Use of -qosProfile argument in DDS Ping did not take topic_filter into
consideration

In RTI DDS Ping (rtiddsping), the -qosProfile command-line argument can be used to specify a Profile
within an XML QoS file. rtiddsping is used for checking reachability between two DDS nodes. It also
allows you to specify the topic name for those published samples using the -topicName command-line
argument.

When using the -qosProfile command line argument, if the Profile contained QoSes with topic_filters spe-
cified, the expectation was that the utility would use the appropriate QoS (DataReader or DataWriter for
the -subscriber or -publisher command-line argument respectively) based on the -topicName argument
or the default name 'PingTopic'. But this wasn't the case in previous releases.

This problem has been resolved in this release. Now rtiddsping correctly uses a QoS taking the topic_filter
into consideration.

[RTI Issue ID CORE-8837]

4.14.19 Use of -qosProfile argument in DDS Spy did not take topic_filter into
consideration

In RTI DDS Spy (rtiddsspy), the -qosProfile command-line argument can be used to specify a Profile
within an XML QoS file. Since rtiddsspy snoops for any topic names being published on a given domain
ID, if the Profile contains QoSes with topic_filters specified, the expectation is that the utility will use the
appropriate QoS based on the snooped topic's name. But this wasn't the case, up through release 5.3.1.

This problem has been resolved in this release. Now rtiddsspy correctly uses a QoS taking the topic_filter
into consideration.

[RTI Issue ID CORE-8838]

4.14.20 Rare race condition may have caused a keep-last DataWriter to time
out in write()

The write() operation in a reliable DataWriter configured with keep-last history QoS shouldn't time out.

A race condition may have caused it to time out if the blocking time was very small.

This problem has been resolved.

[RTI Issue ID CORE-8845]

4.14.21 DDS_PublisherQos_copy() in C API made a shallow copy

4.14.21 DDS_PublisherQos_copy() in C API made a shallow copy

DDS_PublisherQos_copy() in the Connext DDS C API made a shallow copy for all the DDS_ThreadSet-
tings_t it contained within the asynchronous_publisher members:

l asynchronous_batch_thread

l thread

l topic_query_publication_thread

Because of this shallow copy, if you made a copy of the DDS_PublisherQos from an original value and
finalized the copy by calling finalize(), accessing the original structure caused a crash, since the DDS_
LongSeq corresponding to cpu_list would have been cleaned up due to the nature of shallow copy. The
crash occurred because DDS_ThreadSettings_t contained a member of type DDS_LongSeq, which, being
a sequence, has just pointers to the actual values on the heap. Since other language wrappers were calling
the C API, this problem was present in all languages.

Now, DDS_PublisherQos_copy()makes a deep copy by replicating the heap values and not just the
pointers, in all languages.

[RTI Issue ID CORE-8855]

4.14.22 Unexpected sample losses with reason DDS_LOST_BY_REMOTE_
WRITERS_PER_SAMPLE_LIMIT when using Group-Ordered access

DataReaders of applications using Group-Ordered Access may have seen unexpected samples losses with
lost reason DDS_LOST_BY_REMOTE_WRITERS_PER_SAMPLE_LIMIT.

This problem has been fixed.

[RTI Issue ID CORE-8871]

4.14.23 Unexpected "!get remote writer queue" warning

In previous releases, when installing a listener on the built-in Topics, you may have observed the following
warning:
PRESPsReader_deleteRemoteWriterQueue:!get remote writer queue

The verbosity of the message has been changed to NDDS_CONFIG_LOG_VERBOSITY_STATUS_
LOCAL.

[RTI Issue ID CORE-8903]

43

4.14.24 DataReader may have incorrectly reported on_sample_lost() with a negative total_count

44

4.14.24 DataReader may have incorrectly reported on_sample_lost() with a
negative total_count

When receiving a piggyback heartbeat around the time of matching with a remote DataWriter, a
DataReader may have incorrectly reported on_sample_lost(). Moreover, the total_count of the DDS_
SampleLostStatus was a negative number. This problem occurred between a DataReader with volatile dur-
ability and a DataWriter with batching enabled. This problem has been resolved.

[RTI Issue ID CORE-8921]

4.14.25 Unexpected warning printed when a Participant ignored itself

In previous releases, when a Participant ignored itself using the API DDS_DomainParticipant_ignore_
participant, Connext DDS printed the following unexpected warning:
PRESParticipant_removeRemoteParticipant:!goto key remoteParticipant

This issue has been fixed. This warning is no longer printed.

[RTI Issue ID CORE-8922]

4.14.26 Potential crash when setting new_participant_domain_id in Java
monitoring libraries

In release 5.3.0, a crash may have occurred when using Java monitoring libraries with a new_par-
ticipant_domain_id different than the default. This issue is now resolved: the Java monitoring libraries no
longer crash when setting new_participant_domain_id.

[RTI Issue ID CORE-8940]

4.14.27 TypeCode.print_complete_IDL() failed if a type inherited through an
alias

TypeCode.print_complete_IDL() failed by producing an IllegalStateException if the base type was spe-
cified to be an alias (a type created through a typedef). This issue has been resolved.

[RTI Issue ID CORE-8986]

4.14.28 Possible error "Too many open files" specifying the discovery peers
by a file

Specifying the discovery peers in a file with the well-known name NDDS_DISCOVERY_PEERS may
have triggered the error "Too many open files". This error occurred because the file descriptor was not
properly closed. This problem has been resolved. Now the file descriptor is closed after it is used.

[RTI Issue ID CORE-9122]

4.14.29 Error receiving batches on a DataWriter from a DataReader with a different endianness

4.14.29 Error receiving batches on a DataWriter from a DataReader with a
different endianness

A DataReader may not have received samples published by a DataWriter where batching is enabled. If
the endianness of the platform in which the DataReader was running was different than the endianness of
the platform in which the DataWriter was running, the DataReader printed deserialization errors. This
problem has been resolved (samples are now received).

[RTI Issue ID CORE-9128]

4.14.30 Performance degradation when DataWriters sent HeartbeatFrag
RTPS messages

You may have observed performance degradation in large data scenarios in which a DataWriter sends
DataFrag RTPS messages.

The problem occurred only when the DataWriter publishing the DataFrag messages also sent Heart-
beatFrag messages. This problem happened only with third-party vendor DataWriters or when using a
Connext DDS Micro 3.0.0 (or higher) DataWriter with Connext DDS Professional 5.3.0 or lower. (The
problem does not occur when using Micro 3.0.0 with Connext DDS 6.0.0.)

This problem has been fixed.

[RTI Issue ID CORE-9211]

4.14.31 Unexpected COMMENDSrReaderService_onSubmessage:!add
NACK_FRAG error message

You may have seen this error message on DataReaders receiving RTPS data fragments (DataFrag):
COMMENDSrReaderService_onSubmessage:!add NACK_FRAG

This error occurred only when the DataWriter publishing the DataFrag messages also sent HeartbeatFrag
messages. The error occurred only with third-party vendor DataWriters or when using a Connext DDS
Micro 3.0.0 (or higher) DataWriter with Connext DDS Professional 5.3.0 or lower. (The problem does
not occur when using Micro 3.0.0 with Connext DDS 6.0.0.)

This problem has been fixed.

[RTI Issue ID CORE-9213]

4.14.32 Visual Studio run-times copied to .NET project directory

Every Windows machine needs to use the redistributable libraries installed on that particular system. Pre-
viously, some incompatible redistributable libraries were mistakenly copied into the final application binary
directory. Those incompatible libraries in the application’s binary directory were used instead of the system

45

4.14.32 Visual Studio run-times copied to .NET project directory

46

redistributable libraries. In this release, those libraries are no longer copied into the application’s binary dir-
ectory. This allows the correct system ones to be used instead.

[RTI Issue ID PLATFORMS-1316]

Chapter 5 Known Issues
5.1 AppAck Messages Cannot be Greater than Underlying

Transport Message Size

A DataReader with acknowledgment_kind (in the ReliabilityQosPolicy) set to DDS_
APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_
EXPLICIT_ACKNOWLEDGMENT_MODE cannot send AppAck messages greater than the
underlying transport message size.

If a DataReader tries to send an AppAck message greater than the transport message size, Connext
DDS will print the following error message:
COMMENDFacade_sendAppAck:!add APP_ACK to MIG
COMMENDSrReaderService_sendAppAck:!send APP_ACK
PRESPsService_onReaderAppAckSendEvent:!send acknowledgment

To recover from the above error, the DataReader must acknowledge samples until the size of the
AppAck message goes below the transport message size threshold.

Why does an AppAck message increase its size? An AppAck message contains a list of sequence
number intervals where each interval represents a set of consecutive sequence numbers that have
been already acknowledged. As long as samples are acknowledged in order, the AppAck message
will always have a single interval. However, when samples are acknowledged out of order, the
number of intervals and the size of the AppAck will increase.

For more information, see Section 6.3.12, Application Acknowledgment, in the RTI Connext DDS
Core Libraries User's Manual.

[RTI Issue ID CORE-5329]

5.2 Cannot Open USER_QOS_PROFILES.xml in rti_
workspace/examples from Visual Studio

When trying to open the USER_QOS_PROFILES.xml file from the resource folder of one of the
provided examples, you may see the following error:

47

5.3 DataReader Cannot Persist AppAck Messages Greater Than 32767 Bytes

48

Could not find file : C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\connext_
dds\c\<example>\win32\USER_QOS_PROFILES.xml

The problem is that the Visual Studio project is looking for the file in a wrong location (win32 folder).

You can open the file manually from here:

C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\connext_dds\c\<example>\USER_QOS_
PROFILES.xml

This issue does not affect the functionality of the example.

[RTI Issue ID CODEGENII-743]

5.3 DataReader Cannot Persist AppAck Messages Greater Than
32767 Bytes

A DataReader using durable reader state, whose acknowledgment_kind (in the ReliabilityQosPolicy) is
set to DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_
EXPLICIT_ACKNOWLEDGMENT_MODE, cannot persist an AppAck message greater than 32767
bytes.

To recover from the previous error, the DataReader must acknowledge samples until the size of the
AppAck message goes below the transport message size threshold.

For more information, see the section "Durable Reader State," in the RTI Connext DDS Core Libraries
User's Manual.

[RTI Issue ID CORE-5360]

5.4 DataReaders with Different Reliability Kinds Under Subscriber with
GROUP_PRESENTATION_QOS may Cause Communication
Failure

Creating a Subscriber with PresentationQosPolicy.access_scope GROUP_PRESENTATION_QOS
and then creating DataReaders with different ReliabilityQosPolicy.kind values creates the potential for
situations in which those DataReaders will not receive any data.

One such situation is when the DataReaders are discovered as late-joiners. In this case, samples are never
delivered to the DataReaders. A workaround for this issue is to set the AvailabilityQosPolicy.max_data_
availabilty_waiting_time to a finite value for each DataReader.

[RTI Issue ID CORE-7284]

5.5 DataWriter's Listener Callback on_application_acknowledgment() not Triggered by Late-Joining

5.5 DataWriter's Listener Callback on_application_acknowledgment()
not Triggered by Late-Joining DataReaders

The DataWriter's listener callback on_application_acknowledgment()may not be triggered by late-join-
ing DataReaders for a sample after the sample has been application-level acknowledged by all live
DataReaders (no late-joiners).

If your application requires acknowledgment of message receipt by late-joiners, use the Request/Reply
communication pattern with an Acknowledgment type (see the chapter "Introduction to the Request-Reply
Communication Pattern," in the RTI Connext DDS Core Libraries User's Manual).

[RTI Issue ID CORE-5181]

5.6 Discovery with Connext DDS Micro Fails when Shared Memory
Transport Enabled

Given a Connext DDS 6.0.0 application with the shared memory transport enabled, a Connext DDS Micro
2.4.x application will fail to discover it. This is due to a bug in Connext DDS Micro that prevents a
received participant discovery message from being correctly processed. This bug will be fixed in a future
release of Connext DDS Micro. As a workaround, you can disable the shared memory transport in the Con-
next DDS application and use UDPv4 instead.

[RTI Issue ID EDDY-1615]

5.7 Examples and Generated Code for Visual Studio 2017 may not
Compile (Error MSB8036)

The examples provided with Connext DDS and the code generated for Visual Studio 2017 will not com-
pile out of the box if the Windows SDK version installed is not 10.0.15063.0. If that happens, you will see
the compilation error MSB8036. To compile these projects, select an installed version of Windows SDK
from the Project menu -> Retarget solution.

Another option is to set the enviroment variable RTI_VS_WINDOWS_TARGET_PLATFORM_
VERSION to the SDK version number. For example, set RTI_VS_WINDOWS_TARGET_
PLATFORM_VERSION to 10.0.16299.0. (Note: the environment variable will not work if you have
already retargeted the project via the Project menu.)

[RTI Issue ID CODEGENII-800]

5.8 HighThroughput and AutoTuning built-in QoS profiles may cause
Communication Failure when Writing Small Samples

If you inherit from either the BuiltinQosLibExp::Generic.StrictReliable.HighThroughput or the Built-
inQosLibExp::Generic.AutoTuning built-in QoS profiles, your DataWriters and DataReaders will fail

49

5.9 Memory Leak if Foo:initialize() Called Twice

50

to communicate if you are writing small samples.

In Connext DDS 5.1.0, if you wrote samples that were smaller than 384 bytes, you would run into this
problem. In version 5.2.0 onward, you might experience this problem when writing samples that are smal-
ler than 120 bytes.

This communication failure is due to an interaction between the batching QoS settings in the Gen-
eric.HighThroughput profile and the DataReader'smax_samples resource limit, set in the Built-
inQosLibExp::Generic.StrictReliable profile. The size of the batches that the DataWriter writes are
limited to 30,720 bytes (see max_data_bytes). This means that if you are writing samples that are smaller
than 30,720/max_samples bytes, each batch will have more than max_samples samples in it. The
DataReader cannot handle a batch with more than max_samples samples and the batch will be dropped.

There are a number of ways to fix this problem, the most straightforward of which is to overwrite the
DataReader'smax_samples resource limit. In your own QoS profile, use a higher value that accom-
modates the number of samples that will be sent in each batch. (Simply divide 30,720 by the size of your
samples).

[RTI Issue ID CORE-6411]

5.9 Memory Leak if Foo:initialize() Called Twice

Calling Foo:initialize() more than once will cause a memory leak.

[RTI Issue ID CORE-7678]

5.10 Shared Memory Communication Requires Setting
dds.transport.shmem.builtin.hostid in Transport Mobility
Scenarios

On some platforms, to use the shared memory transport in a transport mobility scenario, you will also need
to set the dds.transport.shmem.builtin.hostid property in the DomainParticipant's Properties QoS
policy. Use this property to assign a unique hostid to the transport. In this release, that unique hostid (a 32-
bit integer) must be generated by the user and must be the same for all applications running on the same
host.

For instance, if you want to two Connext DDS applications to communicate using shared memory and one
application is started while no NICs are enabled, and after that you enable a NIC and start another Connext
DDS application, your applications will not communicate by default on certain platforms. To make both
applications communicate, you need to set the property dds.transport.shmem.builtin.hostid to the same
value in both applications.

Affected platforms: AIX, Solaris.

[RTI Issue ID CORE-8040]

5.11 TopicQueries not Supported with DataWriters Configured to Use Batching or Durable Writer History

5.11 TopicQueries not Supported with DataWriters Configured to Use
Batching or Durable Writer History

Getting TopicQuery data from a DataWriter configured to use Batching or Durable Writer History is not
supported.

[RTI Issue IDs CORE-7405, CORE-7406]

5.12 Uninstalling on AIX Systems

To uninstall Connext DDS on an AIX system: if the original installation is on an NFS drive, the uninstaller
will hang and fail to completely uninstall the product. As a workaround, you can remove the installation
with this command:

rm -rf $INSTALL_PATH/rti_connext_dds-6.0.0

[RTI Issue ID INSTALL-323]

5.13 Writer-Side Filtering May Cause Missed Deadline

If you are using a ContentFilteredTopic and you set the Deadline QosPolicy, the deadline may be missed
due to filtering by a DataWriter.

[RTI Issue ID CORE-1634, Bug # 10765]

5.14 Wrong Error Code After Timeout on write() from Asynchronous
Publisher

When using an asynchronous publisher, if write() times out, it will mistakenly return DDS_RETCODE_
ERROR instead of the correct code, DDS_RETCODE_TIMEOUT.

[RTI Issue ID CORE-2016, Bug # 11362]

5.15 Instance does not Transition to ALIVE when "live" DataWriter
Detected

The "Data Distribution Service for Real-time Systems" specification allows transitioning an instance from
the NO_WRITERS state to the ALIVE state when a "live" DataWriter writing the instance is detected.
Currently, this state transition is not supported in Connext DDS. The only way to transition an instance
from NO_WRITERS to ALIVE state is by receiving a sample for the instance from one of the
DataWriters publishing it.

Example:

51

5.16 Communication may not be Reestablished in Some IP Mobility Scenarios

52

1. A DataWriter writes a particular instance. The DataReader receives the sample. The DataWriter
loses liveliness with the DataReader, making the instance transition from ALIVE to NO_
WRITERS. The writer later becomes alive again, but it doesn't resume writing samples of the
instance. In this case, the instance will stay in a NO_WRITERS state.

2. The DataWriter publishes a new sample for the instance. Only then does the instance state change
on the DataReader from NO_WRITERS to ALIVE.

[RTI Issue ID CORE-3018]

5.16 Communication may not be Reestablished in Some IP Mobility
Scenarios

If you have two Connext DDS applications in different nodes and they change their IP address at the same
time, they may not reestablish communication. This situation may happen in the following scenario:

l The applications see each other only from one single network.

l The IP address change happens at the same time in the network interface cards (NICs) that are in the
network that is in common for both applications.

l The IP address change on one of the nodes happens before the arrival of the DDS discovery mes-
sage propagating the address change from the other side.

[RTI Issue ID CORE-8260]

5.17 DomainParticipantFactoryQos in XML may not be Loaded

The DomainParticipantFactoryQos set in XML may not be loaded in the Modern C++ API. This happens
when a QosProvider is accessed before any DDS entities have been created. The most straightforward
workaround for this issue is to set the DomainParticipantFactoryQos in code as follows:
dds::core::QosProvider qos_provider = dds::core::QosProvider("USER_QOS_PROFILES.xml",
"MyQosLibrary::MyQosProfile");

dds::domain::qos::DomainParticipantFactoryQos factory_qos;
factory_qos->entity_factory.autoenable_created_entities(false);

// Set the DomainParticipantFactoryQos
dds::domain::DomainParticipant::participant_factory_qos(factory_qos);

// Continue with application code
dds::domain::DomainParticipant participant(domain_id, qos_provider.participant_qos());

[RTI Issue ID CORE-6846]

5.18 Known Issues with Dynamic Data

5.18 Known Issues with Dynamic Data

l The conversion of data by member-access primitives (get_X() operations) is limited when con-
verting to types that are not supported on all platforms. This limitation applies when converting to a
64-bit long long type (get_longlong() and get_ulonglong() operations) and a 128-bit long double
type (get_longdouble()). These methods will always work for data members that are actually of the
correct type, but will only support conversion from values that are stored as smaller types on a sub-
set of platforms. Conversion to 64-bit long longs from a 32-bit or smaller integer type is supported
on all Windows, Solaris, and Linux architectures, and any additional 64-bit architectures. Con-
version to 128-bit long doubles from a float or double is only supported on Solaris SPARC archi-
tectures.

[RTI Issue ID CORE-2986]

l Types that contain bit fields are not supported by DynamicData. Therefore, when rtiddsspy dis-
covers any type that contains a bit field, rtiddsspy will print this message:

DDS_DynamicDataTypeSupport_initialize:type not supported (bitfield member)

[RTI Issue ID CORE-3949]

5.19 Known Issues in RTI Monitoring Library

5.19.1 Problems with NDDS_Transport_Support_set_builtin_transport_
property() if Participant Sends Monitoring Data

If a Connext DDS application uses the NDDS_Transport_Support_set_builtin_transport_property()
API (instead of the PropertyQosPolicy) to set built-in transport properties, it will not work with Monitoring
Library if the user participant is used for sending all the monitoring data (the default settings). As a work-
around, you can configure Monitoring Library to use another participant to publish monitoring data (using
the property name rti.monitor.config.new_participant_domain_id in the PropertyQosPolicy).

[RTI Issue ID MONITOR-222]

5.19.2 Participant’s CPU and Memory Statistics are Per Application

The CPU and memory usage statistics published in the DomainParticipant entity statistics topic are per
application instead of per DomainParticipant.

[RTI Issue ID CORE-7972]

53

5.19.3 XML-Based Entity Creation Nominally Incompatible with Static Monitoring Library

54

5.19.3 XML-Based Entity Creation Nominally Incompatible with Static
Monitoring Library

If setting the DomainParticipant QoS programmatically in the application is not possible (i.e., when using
XML-based Application Creation), the monitoring create function pointer may still be provided via an
XML profile by using the environment variable expansion functionality. The monitoring property within
the DomainParticipant QoS profile in XML must be set as follows:
<participant_qos>

<property>
<value>

<element>
<name>rti.monitor.library</name>
<value>timonitoring</value>

</element>
<element>

<name>rti.monitor.create_function_ptr</name>
<value>$(MONITORFUNC)</value>

</element>
</value>

</property>
</participant_qos>

Then in the application, before retrieving the DomainParticipantFactory, the environment variable must be
set programmatically as follows:
...
sprintf(varString, "MONITORFUNC=%p", RTIDefaultMonitor_create);
int retVal = putenv(varString);
...
//DomainParticipantFactory must be created after env. variable setting

[RTI Issue ID CORE-5540]

5.19.4 ResourceLimit channel_seq_max_length must not be Changed

The default value of DDS_DomainParticipantResourceLimitsQosPolicy::channel_seq_max_length can't
be modified if a DomainParticipant is being monitored. If this QoS value is modified from its default value
of 32, the monitoring library will fail.

[RTI Issue ID MONITOR-220]

Chapter 6 Experimental Features
This software may contain experimental features. These are used to evaluate potential new features
and obtain customer feedback. They are not guaranteed to be consistent or supported and they
should not be used in production.

In the API Reference HTML documentation, experimental APIs are marked with <<exper-
imental>>.

The APIs for experimental features use the suffix _exp to distinguish them from other APIs. For
example:
const DDS::TypeCode * DDS_DomainParticipant::get_typecode_exp(

const char * type_name);

Experimental features are also clearly noted as such in the User’s Manual or Getting Started Guide
for the component in which they are included.

Disclaimers:

l Experimental feature APIs may be only available in a subset of the supported languages and
for a subset of the supported platforms.

l The names of experimental feature APIs will change if they become officially supported. At
the very least, the suffix, _exp, will be removed.

l Experimental features may or may not appear in future product releases.

l Experimental features should not be used in production.

Please submit your comments and suggestions about experimental features to support@rti.com or
via the RTI Customer Portal (https://support.rti.com/).

55

https://support.rti.com/

	Chapter 1 Introduction
	Chapter 2 System Requirements
	2.1 Supported Operating Systems
	2.2 Requirements when Using Microsoft Visual Studio
	2.3 Disk and Memory Usage

	Chapter 3 Compatibility
	3.1 Wire Protocol Compatibility
	3.2 Code and Configuration Compatibility
	3.3 Extensible Types Compatibility
	3.4 ODBC Database Compatibility

	Chapter 4 What's Fixed in 6.0.0
	4.1 Fixes Related to Discovery
	4.1.1 Endpoint discovery initialization errors during participant creation left participant in inconsistent state
	4.1.2 Writer/reader resource limits affected wrong builtin endpoints
	4.1.3 Failure to send TypeObject when type had base with no members
	4.1.4 Received incorrect QoS policy values through discovery when communicating with other vendors

	4.2 Fixes Related to Reliability Protocol
	4.2.1 VOLATILE DataReader may have received historical samples from DataWriter
	4.2.2 Wrong RTPS GAP messages emitted by reliable DataWriters in some cases
	4.2.3 Individual sample fragment losses may have triggered full sample repair
	4.2.4 DataReader may have ignored some piggyback heartbeats, leading to performance degradation
	4.2.5 max_bytes_per_nack_response was ignored when using asynchronous publication
	4.2.6 Disabling positive ACKs may have caused segmentation fault in publishing application
	4.2.7 Unexpected DDS_RETCODE_OUT_OF_RESOURCES error when writing a sample

	4.3 Fixes Related to Instance Management and Lifecycle
	4.3.1 Instances may not have transitioned to NOT_ALIVE_NO_WRITERS on DataReader matching with a DataWriter using MultiChannelQosPolicy
	4.3.2 DomainParticipantFactory::get_instance always returned success
	4.3.3 DataReaders may not have purged samples from instances in NOT_ALIVE_NO_WRITERS state when autopurge_nowriter_samples_delay was set to finite value
	4.3.4 Instances in NOT_ALIVE_DISPOSED state may not have been purged from DataReader queue when autopurge_disposed_instances_delay was set to zero
	4.3.5 A DataReader may have failed to calculate the keyhash for a sample containing zero-length strings
	4.3.6 Incorrect warning reported while trying to purge disposed instances proactively
	4.3.7 Purging disposed or unregistered instances based on source timestamp does not work when internal clock is set to monotonic
	4.3.8 Possible leak upon application exit after using NDDSConfigVersion::get_instance() (Traditional C++ API only)
	4.3.9 Unexpected errors when receiving a dispose sample for unbounded DDS_KeyedString BuiltinType topic
	4.3.10 instance_replacement not applied correctly for durable DataWriters
	4.3.11 Incorrect warning reported when replacing DISPOSE/ALIVE instance on a DataWriter

	4.4 Fixes Related to Content Filters and Query Conditions
	4.4.1 Possible crash in creation of a content filter for a type with an aliased base type
	4.4.2 Reading samples by instance with QueryCondition returned no data when using TOPIC or GROUP PresentationQosPolicy access_scope
	4.4.3 Content Filter issue when filtering on a member of the base type, for types with inheritance

	4.5 Fixes Related to TopicQueries
	4.5.1 DataWriter may have deadlocked if receiving continuous TopicQueries
	4.5.2 Instances may not have transitioned to NOT_ALIVE_NO_WRITERS on DataReader matching with a DataWriter with TopicQuery enabled
	4.5.3 Error when changing partition, group data, or topic data on a Publisher containing a DataWriter with TopicQuery enabled
	4.5.4 Possible increasing memory and CPU usage in publishing applications using TopicQueries
	4.5.5 Spurious log message related to TopicQuery has been removed
	4.5.6 DataReader::getKey did not work with TopicQueries
	4.5.7 TopicQuery samples that failed to be written a first time may have never been sent

	4.6 Fixes Related to DynamicData
	4.6.1 DynamicData had limitations with members larger than 65,535 bytes
	4.6.2 Copying into a bound DynamicData object did not work
	4.6.3 Corrupt DynamicData objects containing sequences with length 0
	4.6.4 Binding to members of a sequence incorrectly created members in the DynamicData API
	4.6.5 Error when unbinding from a union DynamicData object
	4.6.6 Performance degradation when setting large sequences using the DynamicData API
	4.6.7 DynamicData::is_member_key did not work for types using inheritance
	4.6.8 DynamicData::set_complex_member did not work with aliased typecodes
	4.6.9 DynamicData::set_string API did not accept NULL strings
	4.6.10 Large memory allocation when binding to large sequences in the DynamicData API
	4.6.11 DynamicData::from_cdr_buffer API did not resize DynamicData object
	4.6.12 Error when unbinding from a DynamicData object
	4.6.13 Accessing a member of an array or sequence by member ID failed for member IDs > 65535
	4.6.14 DynamicData DataReader may have failed to correctly deserialize key for types containing strings
	4.6.15 Missing DynamicData::clear_optional_member API in the .NET API
	4.6.16 DynamicData::clear_optional_member API incorrectly returned error for unset optional members
	4.6.17 DynamicData APIs did not check for an associated TypeCode
	4.6.18 Setting members past a sequence's maximum bound was not prohibited in the DynamicData API
	4.6.19 DynamicData::clear_all_members API did not work on bound DynamicData objects

	4.7 Fixes Related to Transports
	4.7.1 Communication between kernel and RTP Mode Participants with shared memory transport not working on 64-bit VxWorks 6 platforms
	4.7.2 Network interface tracker may have reported non-existing changes
	4.7.3 Possible continuous failure to send over shared memory transport
	4.7.4 Race condition in shared memory transport led to cleanup failure
	4.7.5 UDPv4/UDPv6 transport creation failed when setting send_socket_buffer_size or recv_socket_buffer_size to NDDS_TRANSPORT_UDPV4_SOCKET_BUFFER_SIZE_OS_DEFAULT or NDDS_TRANSPORT_UDPV6_SOCKET_BUFFER_SIZE_OS_DEFAULT
	4.7.6 Unexpected shared memory locator when setting rtps_host_id to a value different than DDS_RTPS_AUTO_ID
	4.7.7 Crash when network interface changed before transport was fully created
	4.7.8 Wrong transport class name when logging 'No interfaces' warning

	4.8 Fixes Related to Logging and Distributed Logger
	4.8.1 Segmentation fault when simultaneously changing log files and writing to a log file
	4.8.2 Unexpected PRESCstReaderCollator_addInstanceEntry:exceeded max total instances message at WARNING level
	4.8.3 Segmentation fault when attempting to write to one file of a file set if that file failed to be opened
	4.8.4 NDDS_Config_Logger_get_output_device() always returned NULL after DomainParticipant creation
	4.8.5 Unable to configure Distributed Logger profile Using C++ DomainParticipantFactory
	4.8.6 Possible segmentation fault when deleting options that were used to create Distributed Logger instance
	4.8.7 Error code for setApplicationKind not captured in Distributed Logger C example
	4.8.8 Logger settings from QoS File not set correctly when using Distributed Logger
	4.8.9 Max queue size reached, message will get lost warning removed from DistributedLogger

	4.9 Fixes Related to XML Configuration
	4.9.1 Some XML example files were not compliant with target XSD schema
	4.9.2 NDDS_QOS_PROFILES.xml not loaded from default location
	4.9.3 is_default_participant_factory_profile=true was ignored when <participant_factory_qos> only had the base_name attribute specified
	4.9.4 Creating a typecode from an XML with a directive tag may have caused a crash
	4.9.5 XML parser error if <domain_library> or <domain_participant_library> split into multiple tags with same name attribute
	4.9.6 Connext DDS XML parser failed to parse a const char with '\0' value
	4.9.7 Value checks were not enforced for writer_qos.writer_resource_limits.instance_replacement field in DataWriterQos
	4.9.8 Last, not first, value was retrieved when getting a QoS by specifying topic_filter
	4.9.9 Unable to set WriterDataLifecycle::autopurge_disposed_instances_delay for builtin DataWriters via XML

	4.10 Fixes Related to XML-Based Application Creation
	4.10.1 Sequences defined in XML with sequenceMaxLength of -1 were not interpreted as unbounded
	4.10.2 XML-Based Application Creation in Java didn't work with some TypeCodes

	4.11 Fixes Related to OMG Specification Compliance
	4.11.1 Connext DDS not compliant with RTPS 2.2
	4.11.2 Default GUID not compliant with RTPS specification
	4.11.3 Manual by Participant Liveliness stopped working when communicating with old RTI Connext Professional versions or non-RTI DDS implementations
	4.11.4 NACK_FRAG message not compliant with RTPS specification

	4.12 Fixes Related to Vulnerabilities
	4.13 Fixes Related to Modern C++ API
	4.13.1 Compilation failure when NDDS_USER_DLL_EXPORT defined on non-Windows platform
	4.13.2 Downcasting a condition into a ReadCondition not supported
	4.13.3 ReadCondition handler may not have been dispatched
	4.13.4 Compilation error accessing a const LoanedSamples instance
	4.13.5 Missing unregister_thread function
	4.13.6 dds::sub::Sample creation or assignment from a LoanedSample failed when data was invalid
	4.13.7 Possible symbol collision with Boost compiling the Modern C++ API
	4.13.8 dds::topic::find could not return AnyTopic
	4.13.9 Inconsistency between XML format and QosProvider::type() arguments
	4.13.10 Missing accessors for Liveliness:: assertions_per_lease_duration
	4.13.11 Entity Listeners may have missed some notifications

	4.14 Other Fixes
	4.14.1 strict-aliasing warnings when compiling code generated from an IDL with floats or enumerations
	4.14.2 Unexpected sample loss notification on non-VOLATILE DataReader
	4.14.3 RTPS messages with wrong alignment incorrectly accepted
	4.14.4 Segmentation fault while looking up vendor-specific topics from a traditional C++ or .NET application
	4.14.5 Memory leak when failing to create builtin endpoints
	4.14.6 Segmentation Fault when Simultaneously Removing Remote Participant and Sending a Message to a Third Participant
	4.14.7 Could not add property names that were prefixes of existing property names
	4.14.8 Unbounded memory growth on DataWriter when enable_required_subscriptions set to true and DataReaders setting role name were created/destroyed continuously
	4.14.9 Possible crash when applications used two extensible types that differed by one aliased primitive member
	4.14.10 Errors reported when compiling a file including disc_rtps_impl.h with gcc -C
	4.14.11 Unlikely segmentation fault when deleting a DataReader and using GROUP ordered access
	4.14.12 RTIOsapiProcess_getId() returns incorrect PID in VxWorks Kernel Mode
	4.14.13 Potential segmentation fault while unregistering a logger output device
	4.14.14 Incorrect value for type_consistency in SubscriptionBuiltinTopicData in .NET API
	4.14.15 DomainParticipant creation did not fail when using an unknown flow controller
	4.14.16 Removed recursion in include files
	4.14.17 max_blocking_time not honored for KEEP_LAST DataWriters
	4.14.18 Use of -qosProfile argument in DDS Ping did not take topic_filter into consideration
	4.14.19 Use of -qosProfile argument in DDS Spy did not take topic_filter into consideration
	4.14.20 Rare race condition may have caused a keep-last DataWriter to time out in write()
	4.14.21 DDS_PublisherQos_copy() in C API made a shallow copy
	4.14.22 Unexpected sample losses with reason DDS_LOST_BY_REMOTE_WRITERS_PER_SAMPLE_LIMIT when using Group-Ordered access
	4.14.23 Unexpected !get remote writer queue warning
	4.14.24 DataReader may have incorrectly reported on_sample_lost() with a negative total_count
	4.14.25 Unexpected warning printed when a Participant ignored itself
	4.14.26 Potential crash when setting new_participant_domain_id in Java monitoring libraries
	4.14.27 TypeCode.print_complete_IDL() failed if a type inherited through an alias
	4.14.28 Possible error Too many open files specifying the discovery peers by a file
	4.14.29 Error receiving batches on a DataWriter from a DataReader with a different endianness
	4.14.30 Performance degradation when DataWriters sent HeartbeatFrag RTPS messages
	4.14.31 Unexpected COMMENDSrReaderService_onSubmessage:!add NACK_FRAG error message
	4.14.32 Visual Studio run-times copied to .NET project directory

	Chapter 5 Known Issues
	5.1 AppAck Messages Cannot be Greater than Underlying Transport Message Size
	5.2 Cannot Open USER_QOS_PROFILES.xml in rti_workspace/examples from Visual Studio
	5.3 DataReader Cannot Persist AppAck Messages Greater Than 32767 Bytes
	5.4 DataReaders with Different Reliability Kinds Under Subscriber with GROUP_PRESENTATION_QOS may Cause Communication Failure
	5.5 DataWriter's Listener Callback on_application_acknowledgment() not Triggered by Late-Joining DataReaders
	5.6 Discovery with Connext DDS Micro Fails when Shared Memory Transport Enabled
	5.7 Examples and Generated Code for Visual Studio 2017 may not Compile (Error MSB8036)
	5.8 HighThroughput and AutoTuning built-in QoS profiles may cause Communication Failure when Writing Small Samples
	5.9 Memory Leak if Foo:initialize() Called Twice
	5.10 Shared Memory Communication Requires Setting dds.transport.shmem.builtin.hostid in Transport Mobility Scenarios
	5.11 TopicQueries not Supported with DataWriters Configured to Use Batching or Durable Writer History
	5.12 Uninstalling on AIX Systems
	5.13 Writer-Side Filtering May Cause Missed Deadline
	5.14 Wrong Error Code After Timeout on write() from Asynchronous Publisher
	5.15 Instance does not Transition to ALIVE when live DataWriter Detected
	5.16 Communication may not be Reestablished in Some IP Mobility Scenarios
	5.17 DomainParticipantFactoryQos in XML may not be Loaded
	5.18 Known Issues with Dynamic Data
	5.19 Known Issues in RTI Monitoring Library
	5.19.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Participant Sends Monitoring Data
	5.19.2 Participant’s CPU and Memory Statistics are Per Application
	5.19.3 XML-Based Entity Creation Nominally Incompatible with Static Monitoring Library
	5.19.4 ResourceLimit channel_seq_max_length must not be Changed

	Chapter 6 Experimental Features

