RTI Connext DDS

Core Libraries

What's New in Version 6.0.0

rt)

© 2019 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
February 2019.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, Connext, Micro DDS, the RTI logo,
IRTI and the phrase, “Y our Systems. Working as one,” are registered trademarks, trademarks or service
marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/).

Technical Support

Real-Time Innovations, Inc.
232 E. Java Drive

Sunnyvale, CA 94089

Phone: (408) 990-7444

Email: support@rti.com
Website: https://support.rti.com/

http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Table of Contents

What's New in 6.0.0

1 PlatfOrMS .. 6
1.1 New platforms . . 6
1.2 Removed platforms 7

2 Large data streaming using RTI FlatData™ language binding and Zero Copy transfer over shared
031571 1103 7
3 XML multiple inheritance ... 8
4 Extensible Types 8
4.1 Support for XCDR encoding version 2 ... 8
4.2 Type-Consistency Enforcement Enhancements 9
5 DynamicData . 10
5.1 DynamicData support for accessing members without explicit binding_............. 10
5.2 New DynamicData::clear member APl 11
5.3 Performance improvements across the DynamicData API 11
6 DISCOVTY oo 11
6.1 Support Domain ID and Domain Tag in Simple Discovery 11
6.2 Decreased discovery traffic .. 12
T T AN POIES L. 13
7.1 Added shared memory transport UDP debugging configuration properties 13
7.2 Improved shared memory transport compatibility detection 14

7.3 Reintroduced support for ignore_nonrunning_interfaces for TCP and UDPv4/v6 transports ... 14

7.4 Support for strongly-typed XML elements to configure builtin transports___.............. 14
7.5 New values accepted by the builtin transport properties that represent boolean values 15
8 Topic QUeTIeS ... 15
8.1 Ability to select only alive instances with TopicQuery 15
8.2 Support for continuous TopicQUery 15

8.3 Improved CPU usage in publishing applications using TopicQueries 16

8.4 Reduced logging verbosity when a TopicQuery is receivedi...... 16
9 Language Bindings and APIs . 16
9.1 New APIs to get version nUMbEr 16
9.2 C APL: New typedef of DDS PropertyQosPolicy 17
9.3 Modemn C++ API: new IDE-friendly way to access extension functions _.............................___. 18
9.4 Modemn C++ API: new function allows accessing only valid-data samples 18
9.5 Modern C++ API: new data-access pattern returns samples in vector of shared pointers 19
9.6 Modern C++ APIL: ListenerBinder now allows retrieving the entity in addition to the listener 19
9.7 Modern C++ APL: Reference types now provide comparison operators and can be key ofamap _...... 19
9.8 New API to convert Cookie value into a pointer, 20
9.9 New API to get the maximum serialized size of a type sample 20
9.10 Added DDS_RTPS GUID t t0 C APL . .oooomo e 20
10 Performance ... oo L 21
10.1 Improved CPU usage when setting autopurge disposed_instances_delay or autopurge unregistered
Instances delay ...l 21
10.2 Performance improvements to algorithm that purges unregistered/disposed instances on DataWriter
configured with finite purging delay L 21
10.3 Performance improvements for content filters 22
L L0 i oL 22
11.1 Error messages on the write operation now print the TopicName_.__._____..................... 22
11.2 Enhanced timestamp format of logged messages 22
12 Changes to Default QoS Values o L 22
12.1 Set default DDS DomainParticipantQos::wire_protocol::rtps_auto_id kind to DDS RTPS AUTO _
ID FROM UUID oo 22
12.2 Set DataReader's reader resource limits.max_app_ack response lengthto 1 23

12.3 Set default DDS_DomainParticipantQos::resource limits::type code max_serialized lengthto 0 ... 23

12.4 Increase default DDS DomainParticipantQos::resource limits::type object max_serialized length to

B B i, 23

12.5 Set default DDS_TypeConsistencyEnforcementQosPolicy::kind to DDS AUTO_TYPE COERCION 23

13 Packaging and Installer: Find Package CMake® script 23
13.1 Added a way to disable the module version check in the FindRTIConnextDDS script 24
13.2 Added FOUND CMake variable for each component in the FindRTIConnextDDS script 24
13.3 Added imported targets for the RTI ConnextDDS libraries to the FindRTIConnextDDS script 24

L4 Other . 24
14.1 Integration with RTI Connext DDS Micro: unified XSD schema for QoS policies 24
14.2 Dynamically link Spy, Ping, and Prototyper 25

14.3 Support for finite values in writer data_lifecycle.autopurge disposed instances delay 25

14.4 New field messageld added to com::1ti::dl::LogMessage in RTI Distributed Logger 25
14.5 Heap monitoring improvements to fragment assembly code path when receiving large data 26
14.6 Support for configuring initial virtual sequence number on DataWriter _......__...................... 26
14.7 New file extension for modern C++ libraries for VxWorks systems 26

What's New in 6.0.0

Connext DDS 6.0.0 is a general access release. This document highlights new platforms and
improvements in the Core Libraries for 6.0.0. For what's fixed in the Core Libraries for 6.0.0, see
the RTI Connext DDS Core Libraries Release Notes.

For what's new and fixed in other products included in the Connext suite, see those products'
release notes.

1 Platforms
1.1 New platforms

This release adds support for the following platforms.

. . RTI Architecture
Operating System CPU Compiler . .
p £>Y p Abbreviation
INTEGRITY ® INTEGRITY 11.4.4 x64 multi7.1.6 pentiuminty11.pcx64
INtime®forWin- | |\ ime 6.3 (custom target platform) X862 Visual Studio® i86Win32INtime6.3VS2017
dows 2017
x86 gcc4.8.2 i86Linux3gcc4.8.2
Red Hat® Enterprise Linux 7.5
x64 gcc4.8.2 x64Linux3gcc4.8.2
Linux® SUSE® Linux Enterprise Server 12 x64 gcc4.3.4 x64Linux2.6gcc4.3.4
Ubuntu®18.04 LTS x64 gcc7.3.0 x64Linux4gcc7.3.0
}lglr':) River®Linux 8 (customtarget plat- ARM V7 gcc5.2.0 armv7aWRLinux8gcc5.2.0
QNX® QNX7.0.0 (customtarget platform) ARMvV7 gcc5.2.0 armv7QNX7.0.0qcc5.2.0

aTested on 64-bit Windows 10 operating system.

1.2 Removed platforms

RTI Architecture
Operating System CPU Compiler ..
p gy P Abbreviation
PPC . .
VxWorks 6.9.4.6 (6500) diab 5.9.1 ppce6500Vx6.9.4.6diab5.9.1
VxWorks®
X)’E:qv)orks 6532.5.0.2 (customtargetplat- | gy gcc4.3.3 ppce500v2Vx653-2.5gccd.3.3
Windows 7
Windows 10 i ;
Windows® x86,x64 | Visual Studio 2017 | €8 Win32VS2017,
Windows Server2016 x64Win64VS2017
Windows loT?
1.2 Removed platforms
This release removes support for the following platforms.
Operating System
Android Android 2.3-4.4
INTEGRITY INTEGRITY 5.0.11
CentOS 5.x
Linux Red Hat Enterprise Linux 5.x (except 5.2 is supported with gcc4.2.1 on x86 as a custom platform)

Wind RiverLinux 4

LynxOS Lynx0S 4.0, 4,2
OS X 0S X10.10
VxWorks VxWorks 6.3,6,4,6,6,6,7,6.8

2 Large data streaming using RTI FlatData™ language binding and
Zero Copy transfer over shared memory

To meet strict latency requirements, you can reduce the default number of copies made by the middleware
when publishing and receiving large samples (on the order of MBs) by using two new features: FlatData
language binding and Zero Copy transfer over shared memory.

These features can be used standalone or in combination.

Using FlatData language binding, you can reduce the number of copies from the default of four copies to
two copies, for both UDP and shared memory communications. FlatData is a language binding in which

aPer Microsoft, this should be compatible with Windows 10 IoT Enterprise with Windows native app.

3 XML multiple inheritance

the in-memory representation of a sample matches the wire representation, reducing the cost of seri-
alization/deserialization to zero. Y ou can directly access the serialized data without deserializing it first. To
select FlatData as the language binding of a type, annotate it with the new @languange binding(FLAT _
DATA) annotation.

Zero Copy transfer over shared memory allows reducing the number of copies to zero for communications
within the same host. This feature accomplishes zero copies by using the shared memory builtin transport
to send references to samples within a shared memory segment owned by the DataWriter, instead of using
the shared memory builtin transport to send the serialized sample content by making a copy. With Zero
Copy transfer over shared memory, there is no need for the DataWriter to serialize a sample, and there is
no need for the DataReader to deserialize an incoming sample since the sample is accessed directly on the
shared memory segment created by the DataWriter. The new TransferModeQosPolicy specifies the prop-
erties of a Zero Copy DataWriter.

For more information on setting up and using one or both of these features, see the chapter "Sending Large
Data" in the RTT Connext DDS Core Libraries User's Manual.

3 XML multiple inheritance

Connext DDS now supports multiple inheritance for QoS Profiles.

Previously, you could inherit an individual QoS or Profile only from one other QoS or Profile (then you
could inherit another profile from that profile, and so on, in a single chain of inheritance). Now, inde-
pendent QoSes or Profiles can be combined with multiple inheritance by using the new <base name> tag.
In this tag, you can specify multiple profiles, which will combine to produce the new desired behavior.

The base_name attribute is still available for single inheritance. You can use both single and multiple inher-
itance.

For more information, see section 18.3.3 "QoS Profile Inheritance" in the R7T1 Connext DDS Core Librar-
ies User's Manual.

4 Extensible Types
4.1 Support for XCDR encoding version 2

This release adds support for the standard XCDR encoding version 2 data representation described in the
"Extensible and Dynamic Topic Types for DDS" specification. This encoding version is more efficient in
terms of bandwidth than the predecessor XCDR encoding version 1 supported in previous Connext DDS
releases (and still supported in this release).

To select between XCDR and XCDR2 data representations, you can use the DataRe-
presentationQosPolicy for DataReaders and DataWriters. Connext DDS now supports this policy. You
may specify XCDR, XCDR2, or AUTO to indicate which versions of the Extended Common Data Rep-
resentation (CDR) are offered and requested. AUTO is the default.

4.2 Type-Consistency Enforcement Enhancements

A DataWriter offers a single representation, which indicates the CDR version the DataWriter uses to seri-
alize its data. A DataReader requests one or more representations, which indicate the CDR versions the
DataReader accepts. If a DataWriter's offered representation is contained within a reader’s sequence of
requested representations, then the offer satisfies the request, and the policies are compatible. Otherwise,
they are incompatible.

In support of this feature, a new QoS, DATA REPRESENTATION, has been added for the DataWriter
and DataReader. There is also a new annotation, @allowed_data_representation, that allows selecting
the supported data representations for a type.

For more information, see the "Extensible and Dynamic Topic Types for DDS" specification from the
Object Management Group (OMG): https://www.omg.org/spec/DDS-XTypes/. Also see "DATA
REPRESENTATION QosPolicy" in the RT1 Connext DDS Core Libraries User's Manual and the "Data
Representation" chapter of the R71 Connext DDS Core Libraries Getting Started Guide Addendum for
Extensible Types.

4.2 Type-Consistency Enforcement Enhancements

The TypeConsistency EnforcementQosPolicy can be set on a DataReader to control the rules that determ-
ine whether the type used to publish a given topic is consistent with that used to subscribe to it. This QoS
policy is part of the The "Extensible and Dynamic Topic Types for DDS" (XTypes) specification
(https://www.omg.org/spec/DDS-XTypes/).

In previous releases, the only field present in this QoS policy was kind, which determines whether or not
type coercion is allowed.

This release introduces five additional fields in the QoS policy that provide additional control over the type
matching rules:

o ignore_string_bounds controls whether string bounds are taken into consideration for type
assignability.

« ignore_sequence_bounds controls whether sequence bounds are taken into consideration for type
assignability.

o ignore_member names controls whether member names are taken into consideration for type
assignability.

o prevent_type widening controls whether type widening is allowed.

o force_type_validation controls whether type information must be available in order to complete
matching between a DataWriter and this DataReader.

« ignore_enum_literal names controls whether enumeration constant names are taken into con-
sideration for type assignability.

https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/

5 DynamicData

It is recommended to use the fields ignore_string_bounds and ignore_sequence_bounds instead of the
QoS property dds.type consistency.ignore sequence bounds supported in previous releases.

It is recommended to use the fields ignore_member names and ignore_enum_literal names instead of
the QoS property dds.type_consistency.ignore_member_names supported in previous releases.

For more information, see the "Type-Consistency Enforcement" specification from the Object Man-
agement Group (OMG): https:/www.omg.org/spec/DDS-XTypes/. Also see the "Type-Consistency
Enforcement" section of the RTI Connext DDS Core Libraries Getting Started Guide Addendum for
Extensible Types.

5 DynamicData
5.1 DynamicData support for accessing members without explicit binding

It is possible to refer to a nested member in a type without first having to bind to (or loan in the Modern
C++ API) the type in which the member is defined. You can do this by using a hierarchical name. A hier-
archical member name is a concatenation of member names separated by the '.' character. The hierarchical
name describes the complete path from a top-level type to the nested member.

For example, consider the following type:

struct MyNestedType {
char theChar;
}i

struct MyType {
MyNestedType theNestedType;
}i

In this example, any DynamicData API that receives a member name will accept "theNes-
tedType.theChar" to refer to the char member in MyNestedType:

char myChar = myDynamicData.get char ("theNestedType.theChar", DDS DYNAMIC DATA MEMBER ID
UNSPECIFIED) ;

In order to access the value of theChar without using a hierarchical name, you would have to first bind to
theNestedType and then get the value:
myDynamicData.bind complex member (myBoundData, "theNestedType",

DDS_DYNAMIC DATA MEMBER ID UNSPECIFIED);
DDS_Char myChar = myBoundData.get char ("theChar", DDS DYNAMIC DATA MEMBER ID UNSPECIFIED);

For more details, please refer to the "Hierarchical Member Names" section in the DynamicData API Refer-
ence HTML documentation: RTI Connext DDS API Reference > Topic Module > Dynamic Data >

DDS DynamicData. (In the Modern C++ API, refer to RTI Connext DDS API Reference > Infrastructure
Module > Dynamic Data.)

10

https://www.omg.org/spec/DDS-XTypes/

5.2 New DynamicData::clear member API

5.2 New DynamicData:.clear_member API

The DynamicData API has been extended to include a DynamicData::clear_member() API that can be
used to clear the value of any member in the DynamicData object. The member will be set to its default
value.

5.3 Performance improvements across the DynamicData API

There have been general performance improvements made across the entire DynamicData API. You
should expect more predictable performance when using the DynamicData API, regardless of the access
pattern of the members in the object. In previous releases, it was recommended to set members in the order
in which they were declared in the type definition and to avoid resizing variable sized members such as
strings and sequences. Following these types of recommendations is no longer required. Setting members
in a specific order should no longer have a significant impact on the API's performance.

6 Discovery
6.1 Support Domain ID and Domain Tag in Simple Discovery

This release adds new mechanisms to isolate a particular group of DomainParticipants from the rest of the
DomainParticipants in the network. In particular, it adds two new OMG Real-Time Publish-Subscribe
(RTPS) 2.3 standard mechanisms:

o Domain ID propagation in Simple Participant Discovery: Domain ID propagation allows
DomainParticipants to drop Participant Discovery messages not belonging to the same Domain ID
they are using. Note that this capability was already supported in previous versions of Connext DDS
as an RTI-specific discovery parameter (0x800F). This release now adds support to the OMG RTPS
2.3 standardized parameter (0x000F). To ensure backwards compatibility, Connext DDS will seri-
alize both RTI and OMG parameters.

« Domain Tag propagation in Simple Participant Discovery: Domain Tag propagation is a new
RTPS 2.3 concept that allows for an intuitive way of subdividing domains. It consists of a string
value (with a maximum of 255 characters). It allows DomainParticipants to drop Participant Dis-
covery messages not belonging to the same Domain Tag they are using.

The IDs and contents for these parameters are as follows:

Member name Member type Parameter ID name Parameter 1D value
domainld Domainld_t PID_DOMAIN_ID 0x000f
domainTag string<256> PID_DOMAIN_TAG 0x4014

Domain ID propagation is enabled by default. Domain Tag propagation can be enabled by using the fol-
lowing DomainParticipant PropertyQos property:

11

6.2 Decreased discovery traffic

dds.domain_participant.domain_tag: A string (with a maximum of 255 characters) defining the Domain
Tag the DomainParticipant will propagate through Participant Discovery. Participants will drop any Par-
ticipant discovery message that contains a Domain Tag that does not match the local Domain Tag. This
parameter is only propagated if it is set to a value different than the default. Default: "" (empty, zero-length
string).

Note: While Domain ID is fully supported across the whole Connext DDS ecosystem, Domain Tag sup-
port is currently limited to Core Libraries and infrastructure Services (by setting the aforementioned
DomainParticipant PropertyQos property). Domain Tags are not well supported in Connext DDS tools
(such as Admin Console). Connext DDS tools do not provide a tool-specific mechanism to configure
Domain Tags. Consequently, if you configure an application to use Domain Tags, that application will not
be able to communicate with Connext DDS tools, unless you edit the tool's QoS configuration (if it has
one—for instance, see Admin Console's Preferences dialog) to use Domain Tags.

For more information about the Domain ID and Domain Tag, see the following sections in the
RTI Connext DDS Core Libraries User's Manual: Section 8.3.4 "Choosing a Domain ID and Creating
Multiple DDS Domains" and Section 8.3.5 "Choosing a Domain Tag."

6.2 Decreased discovery traffic

Saving bandwidth by not propagating default values of QoS policies during discovery

During the discovery process, default QoS Policies were propagated in the endpoint discovery builtin topic
data. Deserialization, however, already sets any policies that are not in the serialized data to their default
value. Therefore, default QoS policy values are now no longer propagated during discovery, saving dis-
covery bandwidth.

TypeCode not propagated by default
Endpoint Discovery traffic is now reduced by not propagating the TypeCode by default.
Increase default type_object_max_serialized_length to SKB

Now that TypeCode is no longer propagated by default in Endpoint Discovery, the default value of type_
object max_serialized length has been increased from 3KB to 8KB.

Option to reduce size required to propagate TypeObject in Simple Endpoint Discovery

This release reduces the size needed to propagate a TypeObject as part of Simple Endpoint Discovery.
With this feature, a compressed version of the serialized TypeObject (TypeObjectLb) is now sent as a
Simple Endpoint Discovery parameter. The ID and contents for this parameter are as follows:

Member name Member type Parameter ID name Parameter ID value

type_object_Ib TypeObjectLb PID_TYPE_OBJECT_LB 0x8021

where TypeObjectLb is represented with the following IDL:

12

7 Transports

enum RTIOsapiCompressionPluginClassId {
@value (0) RTI OSAPI COMPRESSION CLASS ID NONE,
@value (1) RTI OSAPI COMPRESSION CLASS ID ZLIB,
@value (2) RTI OSAPI COMPRESSION CLASS ID BZIP,
@value (-1) RTI OSAPI COMPRESSION CLASS ID AUTO,
}i

struct TypeObjectLb {
RTIOsapiCompressionPluginClassId classId;
unsigned long uncompressedSerializedLength;
OctetSeq compressedSerializedTypeObject;

bi

This feature is enabled by default. It can be configured in the DomainParticipant's DDS_Dis-
coveryConfigQosPolicy field:

« endpoint_type_object_Ib_serialization_threshold: Minimum size (in bytes) of the serialized
TypeObject that will trigger the serialization of a TypeObjectLb instead of the regular TypeObject.
For example, setting this policy to 1000 will trigger the serialization of the TypeObjectLb for
TypeObjects whose serialized size is greater than 1000 Bytes. Range: [-1, 2147483647]. The sen-
tinel value -1 disables TypeObject compression (by never sending TypeObjectLb). Any non-valid
values will behave as 0. Default: 0

Note: In 5.3.0.17, this feature was provided but not enabled by default.

Because this feature is enabled by default, previous versions of Connext DDS will not be able to receive
TypeObject out-of-the-box. This may affect backward compatibility with Connext DDS applications from
previous releases. For details about how to interoperate Connext DDS 6.0.0 with older versions, please see
the Migration Guide on the RTI Community Portal (https://community.rti.com/documentation).

7 Transports
7.1 Added shared memory transport UDP debugging configuration properties

When applications communicate through the shared memory transport, it is not possible to capture the
traffic they exchange. There is a new feature that allows you to specify that all shared memory traffic
should be published to a configurable IP address and port. This way, the traffic can be captured from a net-
work interface.

Y ou can enable this feature (it is disabled by default) in XML as follows:

<transport builtin>
<shmem>
<enable udp debugging>true</enable udp debugging>

<!-- Set the following tag to the IP address to which the traffic will be published -->
<udp debugging address>127.0.0.1</udp debugging address>
<!-- Set the following tag to port to which the traffic will be sent -->
<udp debugging port>7900</udp debugging port>
</shmem>

13

https://community.rti.com/documentation

7.2 Improved shared memory transport compatibility detection

</transport builtin>

Alternatively, you can set the following participant properties programmatically or in XML: dds.trans-
port.shmem.builtin.enable udp debugging, dds.transport.shmem.builtin.udp_ debugging address,
and dds.transport.shmem.builtin.udp_debugging port.

This feature is only meant for debugging purposes; it is not recommended for use in production.

7.2 Improved shared memory transport compatibility detection

This release changes the way Connext DDS detects if two different DomainParticipants can communicate
over shared memory. In previous releases, the compatibility detection was based on both DomainPar-
ticipants having the same shared memory locator. In this release, the compatibility detection is based on
checking if it is possible to attach to a shared memory segment compatible with Connext DDS.

This method allows Connext DDS to establish a communication over shared memory between two
DomainParticipants that do not generate the same shared memory locator but are running on the same
host. This method produces more robust behavior when Connext DDS is used in hosts where network
interfaces change while DomainParticipants are being created, or when Connext DDS is used in com-
bination with other technologies like Docker®. This improvement also allows communication between
Connext DDS Professional and Connext DDS Micro DomainParticipants over shared memory.

This new method of detecting shared memory transport compatibility can generate shared memory locators
that are compatible with previous versions of Connext DDS, based on the Wire Protocol QoS policy. Due
to changes in the default values of some of the fields of this QoS policy, however, a DomainParticipant in
this release will not communicate out-of-the-box with a DomainParticipant from an older Connext DDS
version. For details about how to interoperate Connext DDS 6.0.0 with older versions, please see the
Migration Guide on the RTI Community Portal (https://community.rti.com/documentation).

7.3 Reintroduced support for ignore_nonrunning_interfaces for TCP and
UDPv4/v6 transports

In 5.3.0, the property ignore_nonrunning_interfaces for the TCP and UDPv4/v6 transports was marked
as deprecated and not supported. As a result, it was no longer possible to enable a TCPv4 LAN/TLSv4
LAN-only or UDPv4/v6-only DomainParticipant in a machine with interfaces that were up but not run-
ning, without setting up the DDS_WireProtocolQosPolicy's participant_id.

This release reintroduces the ignore_nonrunning_interfaces property, with a default of 1. When set to 0,
non-running interfaces will not be ignored by the local DomainParticipant; therefore, automatic participant
ID assignment will still work even if the system has up, but not running, interfaces.

7.4 Support for strongly-typed XML elements to configure builtin transports

You can configure builtin transports from an XML QoS Profile, using the new <transport_builtin> tag.
For example:

14

https://community.rti.com/documentation

7.5 New values accepted by the builtin transport properties that represent boolean values

<participant gos>
<transport builtin>
<udpv4>
<message size max>1024</message size max>
</udpv4>
</transport builtin>
</participant gos>

The <transport_builtin> tags are an easy alternative to the regular XML tags. Because they are part of the
XSD, the tag names will be auto-completed when you create the file. The XSD ensures you are not spe-
cifying invalid values. See section 18.4.6 "Transport Properties" in the R71 Connext DDS Core Libraries
User's Manual for more information.

7.5 New values accepted by the builtin transport properties that represent
boolean values

Previously, the builtin transport properties that represent boolean values only accepted "0" or "1" as valid
values. This behavior has been improved, and the properties now also accept the following values: "true",

nn

"false", "yes" and "no".

8 Topic Queries
8.1 Ability to select only alive instances with TopicQuery

A new TopicQuery filter expression provides a way to restrict the selection to samples belonging to alive
instances. The new special sub-expression is "@instance_state = ALIVE" followed by the rest of a normal
content-filter expression. For example:

"@instance state = ALIVE AND (id = 3 OR id = 10)"

Notes:

o "@instance_state = ALIVE" may be used as the only condition in the filter, in which case it selects
all samples for all alive instances.

o Otherwise, this condition must appear at the beginning of the expression, followed by "AND." For
example, the following are invalid topic query filters: "@instance state OR id = 3" (invalid), "id = 1
AND instance_state = ALIVE" (invalid).

8.2 Support for continuous TopicQuery

In general, a TopicQuery selects a subset of the DataWriter history, up to the moment the DataWriter dis-
covers it. After those samples are published, each DataWriter will forget that TopicQuery.

This release adds a new way to create a TopicQuery in which it may select samples indefinitely, even
those written after its discovery. To enable this mode, a new field kind has been added to DDS:: Top-
icQuerySelection, which can be setto DDS TOPIC_QUERY SELECTION KIND HISTORY

SNAPSHOT (default behavior) or DDS_TOPIC_QUERY SELECTION KIND CONTINUOUS.

15

8.3 Improved CPU usage in publishing applications using TopicQueries

A continuous TopicQuery has to be explicitly deleted in the DataReader to stop it from selecting new
samples.

See the API Reference HTML documentation for a specific programming language for more information.
8.3 Improved CPU usage in publishing applications using TopicQueries
A DataWriter using TopicQueries may have been subject to increasing CPU usage. This occurred when

the publication rate was high and there was a high number of TopicQueries (historical and continuous)
being served. This problem has been resolved.

8.4 Reduced logging verbosity when a TopicQuery is received

The verbosity of log messages similar to the following have been reduced from local to debug:

"PRESPsService dispatchReceivedTopicQuerySample:participant received a Topic Query with filter
expression x=3"

This change was made to allow you to more easily prevent potentially sensitive information contained in
the TopicQuery filter expression from being printed in log messages.

9 Language Bindings and APlIs
9.1 New APIs to get version number

New APIs are provided to get the library version number of the following components:

o Connext Messaging
o Monitoring Library
o Distributed Logger
e RTI TCP Transport

The new APIs are as follows:

Connext Messaging (C)

o RTI Connext Messaging get api version()
e RTI Connext Messaging Library get api version_string()
e RTI Connext Messaging get api build number string()

Connext Messaging (C++)

16

9.2 C API: New typedef of DDS_PropertyQosPolicy

o MessagingVersion::get api_version()

o MessagingVersion::get api version_string()

o MessagingVersion::get api build version()
Connext Messaging (Modern C++)

o rti::config::request reply api version()

o rti::config::request reply build number()
Connext Messaging (Java)

« com.rti.connext.infrastructure.Version.request reply api version()

Connext Messaging (C#)

o RTI.Connext.RequestReply.ProductVersion
o RTILConnext.RequestReply.BuildNumber

Monitoring Library

o RTIMonitor get version()

o RTIMonitor get api build version_string()
Distributed Logger

o RTI DL DistLogger get version()

o RTI DL DistLogger get api build version()

« RTI DL DistLogger get api version string()
RTI TCP Transport

o« NDDS Transport TCPv4 get library version()
e« NDDS Transport TCPv4 get build version_string()

9.2 C API: New typedef of DDS_PropertyQosPolicy

In the C API, there is a new type definition for DDS PropertyQosPolicy, which allows you to omit
"struct" when you write "DDS_PropertyQosPolicy":

17

9.3 Modern C++ API: new IDE-friendly way to access extension functions

typedef struct DDS PropertyQosPolicy {
/*e \dref PropertyQosPolicy value
=/
struct DDS PropertySeq value;

DDSCPP VARIABLE LENGTH VALUE TYPE SUPPORT (DDS PropertyQos Policy)
} DDS PropertyQosPolicy;

9.3 Modern C++ API: new IDE-friendly way to access extension functions

The Modern C++ API separates standard and extension functions in different headers, and the way to
invoke them is different, as explained in the API Reference HTML documentation under Modules > Con-
ventions.

Until this release, invoking an extension function in a standard type required using an overloaded arrow
operator. For example:

// Standard class (in dds namespace)

dds::domain::DomainParticipant participant (MY DOMAIN ID);

// Call a standard method

participant.assert liveliness();

// Call an extension method:
participant->register durable subscription(...);

The use of the arrow operator may have been counterintuitive (the variable is not a pointer) and didn't
allow an IDE to show the available extensions if the regular dot operator was used.

This release adds a new extensions() function to all standard types that can be used as follows:

// Call an extension method:
participant.extensions () .register durable subscription(...);

9.4 Modern C++ API: new function allows accessing only valid-data samples

A new standalone function, rti::sub::valid_data(), allows accessing only valid-data samples. The func-
tion simplifies code like the following.
Before:

auto samples = reader.take();
for (const auto& sample : samples) {
if (sample.info () .valid()) {
std::cout << sample.data() << std::endl;

}

Now:

auto samples = rti::sub::valid data(reader.take());
for (const auto& sample : samples) {
std::cout << sample.data() << std::endl;

18

9.5 Modern C++ API: new data-access pattern returns samples in vector of shared pointers

9.5 Modern C++ API: new data-access pattern returns samples in vector of
shared pointers

This release adds a new function (with several overloads) that allows unpacking a collection of data
samples (LoanedSamples or SharedSamples) into a vector with individual shared pointers to each sample.

LoanedSamples returns the loan at once, when the collection goes out of scope. By unpacking into indi-
vidual shared ptrs, the loan is returned when all these shared ptrs are destroyed. This allows sharing the
samples with more flexibility. For example, it is possible to combine the results of multiple calls to read

()/take() into a single vector.

The following code shows how rti::sub::unpack() can be called:

// Overload 1: directly create a vector from the result of any variant of read() or take()
std::vector<std::shared ptr<const Foo>> sample ptrs = rti::sub::unpack(reader.take()):;

// Overload 2: add to the vector:
dds: :sub: :SharedSamples<Foo> shared samples = reader.take();

rti::sub::unpack(shared samples, sample ptrs);

// Freely share the samples
std::shared ptr<const Foo> sample = sample ptrs[0];

// All loans are returned automatically when all shared ptrs lose all references

9.6 Modern C++ API: ListenerBinder now allows retrieving the entity in
addition to the listener

ListenerBinder now adds a function to retrieve the associated entity (for example, a DataReader). Retriev-
ing the listener was already possible.

Because of this improvement, it is now possible to keep or return a single object: the ListenerBinder.
Before, applications were forced to keep both the ListenerBinder and the entity.

For an example, see the Modern C++ API reference, under Programming How-To's > DataWriter Use
Cases > DataWriter Listeners.

9.7 Modern C++ API: Reference types now provide comparison operators
and can be key of a map

All reference types (such as Condition or DomainParticipant) now support the <, <=, >, >= operators (==
and != were already available). They compare the underlying shared ptr.

The addition of operator < is especially useful because it allows making any reference type the key of a
std::map with no extra code.

[RTI Issue ID CORE-8345]

19

9.8 New API to convert Cookie value into a pointer

9.8 New API to convert Cookie value into a pointer

This release provides a new API to convert a Cookie value into a pointer. This API is only supported in
the following languages:

o C:DDS Cookie to pointer
o Traditional C++: DDS::Cookie::to_pointer

e Modern C++: rti::core::Cookie::to_pointer

9.9 New API to get the maximum serialized size of a type sample

This releases adds a new API to get the maximum serialized size of a type sample. This API is only sup-
ported in the following languages:

e C:DDS TypeCode get cdr serialized sample max_size
o Traditional C++: DDS::TypeCode::get cdr serialized sample max_size

e Modern C++: dds::core::xtypes::cdr_serialized sample max_size
9.10 Added DDS_RTPS_GUID_tto C API

This release adds the DDS_RTPS GUID t type to the C API. The definition of this type matches the one
from the RTPS specification:

#define DDS RTPS GUID PREFIX LENGTH 12
#define DDS RTPS ENTITY KEY LENGTH 3

/*
* From DDS-RTPS Specification, clauses 8.4.2.1 and 9.3.1.
)

typedef DDS Octet DDS RTPS GuidPrefix t[DDS RTPS GUID PREFIX LENGTH];

/*
* From DDS-RTPS Specification, clauses 8.4.2.1 and 9.3.1.
)

typedef struct DDS RTPS EntityId t {

DDS Octet entityKey[DDS RTPS ENTITY KEY LENGTH];
DDS Octet entityKind;
} DDS RTPS EntityId t;

/*
* From DDS-RTPS Specification, clauses 8.4.2.1 and 9.3.1.
)

typedef struct DDS RTPS GUID t ({

DDS RTPS GuidPrefix t prefix;
DDS RTPS EntityId t entityId;
} DDS_RTPS GUID t;

20

10 Performance

Note that RTT Connext DDS APIs still use the DDS_GUID t type defined as:

#define DDS GUID LENGTH 16

/*

* Alternative representation of DDS RTPS GUID t. Memory and wire representation
* for this type is the same as the one for DDS RTPS GUID t.

*/

typedef struct DDS GUID t ({

DDS_Octet value[DDS GUID LENGTH];

} DDS_GUID t;

To convert to/from DDS _GUID tand DDS RTPS GUID t, the following two APIs have been added to
the C API:
/ *
* (@brief Gets a GUID from an RTPS GUID.
w/
DDS_GUID t* DDS RTPS GUID as guid(DDS RTPS GUID t*);

/*
* Q@brief Gets an RTPS GUID from a GUID.
*/

DDS RTPS GUID t* DDS GUID as rtps guid(DDS GUID t*);

Note that the wire representation and memory mapping of these two types is the same.

10 Performance

10.1 Improved CPU usage when setting autopurge_disposed_instances_
delay or autopurge_unregistered_instances_delay

When the number of instances published by the DataWriter was large, high CPU usage may have
occurred when writer_qos.writer_data_lifecycle.autopurge_disposed_instances_delay or writer_
qos.writer_data_lifecycle.autopurge unregister_instances_delay was set to a finite value in com-
bination with setting the property dds.data_writer.history.source_timestamp_based_autopurge
instances_delay to 1. This problem has been resolved.

10.2 Performance improvements to algorithm that purges
unregistered/disposed instances on DataWriter configured with finite
purging delay

This release introduces performance improvements to the algorithm that purges unregistered/disposed
instances on a DataWriter when the QoS value writer _data_lifecycle.autopurge disposed_instances_
delay or writer_data_lifecycle.autopurge unregistered_instances_delay (or both) is set to a finite
value other than zero.

21

10.3 Performance improvements for content filters

10.3 Performance improvements for content filters

The performance impact of a SQL content filter (for example, in a ContentFilteredTopic) was significant,
especially as the data size increased. The content filter algorithm deserialized each sample completely
before evaluating the filter expression.

In this release, this algorithm has been improved to deserialize the least possible data required to evaluate
the filter expression.

This improvement applies to all the language APIs except the C API, which didn’t require the deseri-
alization step in the first place and was already efficient.

11 Logging
11.1 Error messages on the write operation now print the TopicName

The error messages on the DataWriter::write operation that are generated because the sample cannot be
added to the DataWriter queue now print the TopicName.

11.2 Enhanced timestamp format of logged messages

The format of the timestamp reported by the NDDSConfigl.ogger has been updated to the UTC format. In
previous releases, timestamps were logged in the form "ssssss.mmmmmm" where <ssssss> is a number of
seconds, and <mmmmm> is a fraction of a second expressed in microseconds. The format of the
timestamp will now be YYYY-MM-DD HH:MM::SS.<microseconds>, where SS is the number of
seconds and <microseconds> is a fraction of that second expressed in microseconds.

12 Changes to Default QoS Values

12.1 Set default DDS_DomainParticipantQos::wire_protocol::rtps_auto_id_
kind to DDS_RTPS_AUTO_ID_FROM_UUID

The default value of DDS_DomainParticipantQos::wire_protocol::rtps_auto_id_kind has changed
from DDS RTPS AUTO_ID_FROM IP (which caused the rtps_host_id to be the IP address by
default) to DDS RTPS AUTO ID FROM UUID (which causes the rtps_host _id to be a unique, ran-
domly-generated value). This change was done to comply with the RTPS specification and reduce the pos-
sibility of non-unique GUIDs due to process ID collision.

There are backward compatibility issues as a result of this change. See the Migration Guide on the RTI
Community Portal (https://community.rti.com/documentation).

22

https://community.rti.com/documentation

12.2 Set DataReader's reader resource limits.max app ack response length to 1

12.2 Set DataReader's reader_resource_limits.max_app_ack_response_
length to 1

The default value for reader_qos.reader_resource limits.max_app ack response_length has been
changed from 0 to 1 to allow the use of the DataReader acknowledge sample() APIL.

12.3 Set default DDS_DomainParticipantQos::resource_limits::itype_code_
max_serialized_lengthto 0
This change disables sending TypeCode by default.

There are backward compatibility issues as a result of this change. See the Migration Guide on the RTI
Community Portal (https://community.rti.com/documentation).

12.4 Increase default DDS_DomainParticipantQos::resource_limits::type_
object_max_serialized_length to 8KB

The default value of type_object max_serialized length has been increased from 3KB to 8KB.

12.5 Set default DDS_TypeConsistencyEnforcementQosPolicy::kind to
DDS_AUTO_TYPE_COERCION

The default value of kind has been changed from DDS ALLOW_TYPE COERCION to DDS AUTO _
TYPE_COERCION. For a regular DataReader, AUTO translates to DDS ALLOW_TYPE
COERCION. For a Zero Copy DataReader, this default value is translated to DISALLOW_TYPE _
COERCION.

13 Packaging and Installer: Find Package CMake® script

CMake allows you to find third-party libraries using the FIND PACKAGE macro. This macro will search
for a Find<Package Name>.cmake script, which will set all the CMake variables you need to link against
the third-party dependency (in this case, the RTI Connext DDS libraries).

Connext DDS 6.0.0 now includes a FindR TIConnextDDS.cmake CMake script to make it easier to link
your application against the Connext DDS libraries. Mainly, this script searches for the R7T1 Connext DDS
libraries and provides them in some CMake variables.

The CMake script contains all the documentation related to the output variables, including what CMake
components are available. It is compatible with the following platforms listed in the R77 Connext DDS
Core Libraries Platform Notes:

o All the Linux 186 and x64 platforms
« Raspbian Wheezy 7.0 (3.x kernel) on ARMv6 (armv6viphLinux3.xgcc4.7.2)

23

https://community.rti.com/documentation

13.1 Added a way to disable the module version check in the FindRTIConnextDDS script

e Android 5.0 and 5.1 (armv7aAndroid5.0gcc4.9ndkr10e)
o All the Windows 186 and x64 platforms
o All the Darwin platforms (OS X 10.11-10.13)

The following fixes and improvements were made in 6.0.0 to the FindRTIConnextDDS.cmake originally
shipped in 5.3.0.8. These fixes were made after 5.3.0.17.

13.1 Added a way to disable the module version check in the
FindRTIConnextDDS script

The FindRTIConnextDDS script checks if the version of all the installed modules is consistent.
Now, it is possible to disable this behavior by setting the CONNEXTDDS DISABLE VERSION
CHECK variable to true in your CMake scripts before calling the FindRTIConnextDDS script.

[RTI Issue ID BUILD-870]

13.2 Added FOUND CMake variable for each componentin the
FindRTIConnextDDS script

Now, the FOUND CMake variable is set for all the CMake components defined in the FindRTICon-
nextDDS script. The definition of these variables helps you check if the desired components were
found by CMake.

[RTI Issue ID BUILD-872]

13.3 Added imported targets for the RTI ConnextDDS libraries to the
FindRTIConnextDDS script

Some imported targets were added to the FindRTIConnextDDS script to make it easier to use the
RTI Connext DDS libraries. The list of the new imported targets was added to the header of the
FindRTIConnextDDS script.

[RTI Issue ID BUILD-874]

14 Other
14.1 Integration with RTI Connext DDS Micro: unified XSD schema for QoS
policies

A unified schema has been created to support the QoS policies from both RTT Connext DDS Professional
and RTI Connext DDS Micro. As part of this integration, the following improvements have been
addressed in the Connext DDS XML parser:

24

14.2 Dynamically link Spy, Ping, and Prototyper

o Deleted the default values from the XSD schema.

o Added support for Connext DDS Micro-specific fields and values. Micro-specific fields/values will
be ignored by Connext DDS Professional, and a warning will be logged to show that they were
ignored.

o Added ability to configure builtin transports from an XML QoS Profile. The available transports are
udpv4, udpv6, and shmem. See 7.4 Support for strongly-typed XML elements to configure builtin
transports on page 14.

o Added ability to choose Static Discovery (LBED) as a builtin discovery plugin. The LBED dis-
covery plugin still has to be configured as described in the R77 Connext DDS Core Libraries User's
Manual.

14.2 Dynamically link Spy, Ping, and Prototyper

The utilities DDS Spy, DDS Ping, and RTI Prototyper are now linked dynamically. Previously, running
utilities (linked statically) with libraries such as security plugins (linked dynamically) could fail, and was
not safe. Now, these utilities can use Connext DDS dynamic libraries such as security or low-bandwidth
plugins. The utilities are linked dynamically for all architectures except INTEGRITY, i0OS, and VxWorks
RTP.

14.3 Support for finite values in writer_data_lifecycle.autopurge_disposed_
instances_delay

This release adds support for finite values in writer_data_lifecycle.autopurge disposed_instances
delay for in-memory DataWriter queues.

The purging of the disposed instances can be done based on the dispose sample source timestamp or the
time when the dispose sample was added to the DataWriter queue, by setting the following property to 1
or 0 respectively: dds.data_writer.history.source timestamp based autopurge instances delay.
Default value is 0.

This feature is not supported yet with durable DataWriter queues.

14.4 New field messageld added to com::rti::dl::LogMessage in RTI
Distributed Logger

This release adds a new field called messageld to the com::rti::dl::LogMessage Type Name used by R77
Distributed Logger to publish log messages.

This field uniquely identifies each one of the messages published by the DistributedLogger instance run-
ning a process. The DistributedLogger instance itself is identified using the existing field hostAndAppld.

The first message published by Distributed Logger has a messageld set to 1, and the number increases by
one with each message.

25

14.5 Heap monitoring improvements to fragment assembly code path when receiving large data

The messageld field allows applications to detect losses in log messages. Log messages can be lost when
the internal Distributed Logger queue is full. (The queue's capacity can be configured by using the API
RTI DL _Options_setQueueSize.) The messages can also be lost when they are published by the Dis-
tributed Logger's LogMessage DataWriter. For more information, see the new Troubleshooting section in
"Chapter 41 Using Distributed Logger in a Connext DDS Application" in the R71 Connext DDS Core
Libraries User's Manual.

14.5 Heap monitoring improvements to fragment assembly code path when
receiving large data

This release introduces heap monitoring improvements to the fragment assembly code path when receiving
large data (data that cannot be sent as a single packet by a transport). Specifically, the memory allocations
in this code path in the snapshot file will have the topic name associated with them.

14.6 Support for configuring initial_virtual_sequence_number on DataWriter

By default, the first sample published by a DataWriter will have the virtual sequence number 1. This
release adds a new QoS parameter, DataWriterProtocolQosPolicy::initial virtual sequence_number,
that allows configuring the virtual sequence number of the first sample published by a DataWriter to a dif-
ferent value.

For additional information, see the RTI Connext DDS Core Libraries User's Manual and API Reference
HTML documentation.

14.7 New file extension for modern C++ libraries for VxWorks systems

For VxWorks systems, the modern C++ libraries now use the .so extension (instead of .1o), for consistency
with the other libraries.

26

	What's New in 6.0.0
	1 Platforms
	1.1 New platforms
	1.2 Removed platforms

	2 Large data streaming using RTI FlatData™ language binding and Zero Copy transfer over shared memory
	3 XML multiple inheritance
	4 Extensible Types
	4.1 Support for XCDR encoding version 2
	4.2 Type-Consistency Enforcement Enhancements

	5 DynamicData
	5.1 DynamicData support for accessing members without explicit binding
	5.2 New DynamicData::clear_member API
	5.3 Performance improvements across the DynamicData API

	6 Discovery
	6.1 Support Domain ID and Domain Tag in Simple Discovery
	6.2 Decreased discovery traffic

	7 Transports
	7.1 Added shared memory transport UDP debugging configuration properties
	7.2 Improved shared memory transport compatibility detection
	7.3 Reintroduced support for ignore_nonrunning_interfaces for TCP and UDPv4/v6 transports
	7.4 Support for strongly-typed XML elements to configure builtin transports
	7.5 New values accepted by the builtin transport properties that represent boolean values

	8 Topic Queries
	8.1 Ability to select only alive instances with TopicQuery
	8.2 Support for continuous TopicQuery
	8.3 Improved CPU usage in publishing applications using TopicQueries
	8.4 Reduced logging verbosity when a TopicQuery is received

	9 Language Bindings and APIs
	9.1 New APIs to get version number
	9.2 C API: New typedef of DDS_PropertyQosPolicy
	9.3 Modern C++ API: new IDE-friendly way to access extension functions
	9.4 Modern C++ API: new function allows accessing only valid-data samples
	9.5 Modern C++ API: new data-access pattern returns samples in vector of shared pointers
	9.6 Modern C++ API: ListenerBinder now allows retrieving the entity in addition to the listener
	9.7 Modern C++ API: Reference types now provide comparison operators and can be key of a map
	9.8 New API to convert Cookie value into a pointer
	9.9 New API to get the maximum serialized size of a type sample
	9.10 Added DDS_RTPS_GUID_t to C API

	10 Performance
	10.1 Improved CPU usage when setting autopurge_disposed_instances_delay or autopurge_unregistered_instances_delay
	10.2 Performance improvements to algorithm that purges unregistered/disposed instances on DataWriter configured with finite purging delay
	10.3 Performance improvements for content filters

	11 Logging
	11.1 Error messages on the write operation now print the TopicName
	11.2 Enhanced timestamp format of logged messages

	12 Changes to Default QoS Values
	12.1 Set default DDS_DomainParticipantQos::wire_protocol::rtps_auto_id_kind to DDS_RTPS_AUTO_ID_FROM_UUID
	12.2 Set DataReader's reader_resource_limits.max_app_ack_response_length to 1
	12.3 Set default DDS_DomainParticipantQos::resource_limits::type_code_max_serialized_length to 0
	12.4 Increase default DDS_DomainParticipantQos::resource_limits::type_object_max_serialized_length to 8KB
	12.5 Set default DDS_TypeConsistencyEnforcementQosPolicy::kind to DDS_AUTO_TYPE_COERCION

	13 Packaging and Installer: Find Package CMake® script
	13.1 Added a way to disable the module version check in the FindRTIConnextDDS script
	13.2 Added FOUND CMake variable for each component in the FindRTIConnextDDS script
	13.3 Added imported targets for the RTI ConnextDDS libraries to the FindRTIConnextDDS script

	14 Other
	14.1 Integration with RTI Connext DDS Micro: unified XSD schema for QoS policies
	14.2 Dynamically link Spy, Ping, and Prototyper
	14.3 Support for finite values in writer_data_lifecycle.autopurge_disposed_instances_delay
	14.4 New field messageId added to com::rti::dl::LogMessage in RTI Distributed Logger
	14.5 Heap monitoring improvements to fragment assembly code path when receiving large data
	14.6 Support for configuring initial_virtual_sequence_number on DataWriter
	14.7 New file extension for modern C++ libraries for VxWorks systems

