RTI Connext DDS
Core Libraries

Getting Started Guide
Addendum for Embedded Systems
Version 6.0.0

rt)

© 2019 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
February 2019.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, Connext, Micro DDS, the RTI logo,
IRTI and the phrase, “Y our Systems. Working as one,” are registered trademarks, trademarks or service
marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/).

Technical Support

Real-Time Innovations, Inc.
232 E. Java Drive

Sunnyvale, CA 94089

Phone: (408) 990-7444

Email: support@rti.com
Website: https://support.rti.com/

http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Contents

Chapter 1 Addendum for Embedded Platforms ... ___ 1
Chapter 2 Getting Started on Embedded UNIX-like Systems
2.1 Building and Running a Hello World Example 2
2.2 Configuring Automatic DiSCOVeTY 3
Chapter 3 Getting Started on INTEGRITY Systems
3.1 Building the Kernel 4
3.2 Building and Running a Hello World Example 5
3.2.1 Generate Example Code and Project File with rtiddsgen 6
3.2.2 Build the Publish and Subscribe Applicationsl 6
3.2.3 Connect to the INTEGRITY Target from MULTI 7
3.2.4 Load the Application on the Target 7
3.2.5 Run the Application and View the Output 8
Chapter 4 Getting Started on VxWorks 6.x/7 Systems
4.1 Building the VB . 10
4.2 Building the Kernel .. 12
4.3 Building and Running a Hello World Example 17
43.1 Generate Example Code and Makefile with rtiddsgen 17
4.3.2 Building and Running an Application as a Kemnel Task 18
4.3.2.1 Using the Command Line 18
4.3.2.2 Using Workbench 19
4.3.3 Building and Running an Application as a Real-Time Process _........................______. 27
43.3.1 Using the Command Line 27
4.3.3.2 Using Workbench 28
Chapter S Getting Started on VxWorks 653 Platform v2.3 Systems
5.1 Setting up Workbench for Building Applications 34
5.1.1 Installing the Wind River Services Socket Library 34

iii

5.1.2 Installing the RTI Socket Library 34

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms 35

5.3 Running Connext DDS Applications on an Sbc8641d Target 49
Chapter 6 Getting Started on VxWorks 653 v2.5.x Systems

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x 52

6.2 Running Connext DDS Applications for VxWorks 653 2.5.x 66
Chapter 7 Getting Started on Wind River Linux Systems 67

Chapter 1 Addendum for Embedded
Platforms

In addition to enterprise-class platforms like Microsoft Windows and Linux, R7TI® Connext® DDS
supports a wide range of embedded platforms. This document is especially for users of those plat-
forms. It describes how to configure some of the most popular embedded systems for use with Con-
next DDS and to get up and running as quickly as possible. The code examples covered in this
document can be generated for your platform(s) using R7/ Code Generator (rtiddsgen), which
accompanies Connext DDS.

This document assumes at least minimal knowledge with the platforms it describes and is not a sub-
stitute for the documentation from the vendors of those platforms. For further instruction on the gen-
eral operation of your embedded system, please consult the product documentation for your board
and operating system.

Chapter 2 Getting Started on Embedded
UNIX-like Systems

This document provides instructions on building and running Connext DDS applications on embed-
ded UNIX-like systems, including QNX® and LynxOS® systems. It will guide you through the
process of generating, compiling, and running a Hello World application on an embedded UNIX-
like system by expanding on Generating Code with RTI Code Generator, in the RTI Connext
DDS Core Libraries Getting Started Guide. Please read the following alongside that section.

In the following steps:

o All commands must be executed in a command shell that has all the required environment
variables. For details, see Step 1, Set up the Environment, in the RTI Connext DDS Core
Libraries Getting Started Guide.

e You need to know the name of your target architecture (look in your NDDSHOME/lib dir-
ectory). Use it in place of <architecture> in the example commands. For example, your archi-
tecture might be ‘186Lynx4.0.0gcc3.2.2°.

o We assume that you have gmake installed. If you have gmake, you can use the generated
makefile to compile. If you do not have gmake, use your normal compilation process. (Note:
the generated makefile assumes the correct version of the compiler is already in your path
and that NDDSHOME is set.)

2.1 Building and Running a Hello World Example

This section describes the basic steps for building and running an rtiddsgen-generated example on
an embedded UNIX-like target.

1. Create a directory to work in. In this example, we use a directory called myhello.

2. In the myhello directory, create a file called HelloWorld.idl that contains a user-defined data
type:

2.2 Configuring Automatic Discovery

struct HelloWorld {
string<128> msg;
};

3. Use the rtiddsgen utility to generate sample code and a makefile. Modify, build, and run the gen-
erated code as described in Using DDS Types Defined at Compile Time, in the Getting Started
Guide.

For C++:

rtiddsgen -language C++ -—-example <architecture> HelloWorld.idl
gmake -f makefile HelloWorld <architecture>./objs/<architecture>/HelloWorld
subscriber./objs/<architecture>/HelloWorld publisher

For Java:

rtiddsgen -language Java -example <architecture> HelloWorld.idlgmake -f makefile
HelloWorld <architecture>

gmake -f makefile HelloWorld <architecture> HelloWorldSubscribergmake -f makefile
HelloWorld <architecture> HelloWorldPublisher

The generated makefile deduces the path to the java executable based on the APOGEE_HOME
environment variable', which therefore must be set in order to run the example applications.

2.2 Configuring Automatic Discovery

In most cases, multiple applications—whether on the same host or different hosts—will discover each
other and begin communicating automatically. However, in some cases you must configure the discovery
service manually. For example, on LynxOS systems, multicast is not used for discovery by default; you
will need to configure the addresses it will use. For more information about these situations, and how to
configure discovery, see Automatic Application Discovery, in the RTI Connext DDS Core Libraries Get-
ting Started Guide.

IFor example: $(APOGEE_HOME)/lynx/pcc/ive/bin/j9

Chapter 3 Getting Started on INTEGRITY
Systems

This section provides simple instructions on configuring a kernel and running Connext DDS applic-
ations on an INTEGRITY system. These instructions assume that the application module will be
dynamically downloaded. Please refer to the documentation provided by Green Hills Systems for
more information about this operating system.

For more information on using Connext DDS on an INTEGRITY system, please see the
RTI Connext DDS Core Libraries Platform Notes.

The first section describes 3.1 Building the Kernel below.

The next section guides you through the steps to build and run an rtiddsgen-generated example
application on an INTEGRITY target: 3.2 Building and Running a Hello World Example on the
next page.

Before you start, make sure that you know how to:

1. Boot/reboot your INTEGRITY target.

2. Get the serial port output of your target (using telnet, minicom or hyperterminal).
3.1 Building the Kernel

Before you start, you should be familiar with running a kernel on your target.

1. Launch MULTL
2. Select File, Create new project.

3. Choose the INTEGRITY Operating System and make sure the path to your INTEGRITY
distribution is correct.

4. Choose a processor family and board name.

3.2 Building and Running a Hello World Example

Click Next.

Choose Language: C/C++.

Project type: INTEGRITY Kernel.

Choose a project directory and name.

Click Next.

10. In Kernel Options, choose at least: "TCP/IP stack'. Everything else can be left to default.

A S AT

11. In the Project Builder, you should see the following file:

<name of your project>_default.ld (under src/resource.gpj).
12. Right-click the file and edit it; the parameters of interest are the following:

CONSTANTS

{
INTEGRITY DebugBufferSize = 0x10000
INTEGRITY HeapSize = 0x100000
INTEGRITY StackSize = 0x4000
INTEGRITY DownloadSize = 0x400000
INTEGRITY MaxCoreSize = 0x200000

1

Note that most Connext DDS applications will require the StackSize and HeapSize para-
meters to be increased from their default value. The values shown above are adequate to run
the examples presented in this document.

13. Once you have changed the desired values, right-click the top-level project and select Build.

14. Run the new kernel on your target.
3.2 Building and Running a Hello World Example

This section describes the basic steps for building and running an rtiddsgen-generated example on an
INTEGRITY target:

e 3.2.1 Generate Example Code and Project File with rtiddsgen on the facing page

e 3.2.2 Build the Publish and Subscribe Applications on the facing page

e 3.2.3 Connect to the INTEGRITY Target from MULTI on page 7

e 3.2.4 Load the Application on the Target on page 7

e 3.2.5 Run the Application and View the Output on page 8

3.2.1 Generate Example Code and Project File with rtiddsgen

3.2.1 Generate Example Code and Project File with rtiddsgen

To create the example applications:

1. Create a directory to work in. In this example, we use a directory called myhello.

2. In the myhello directory, create a file called HelloWorld.idl that contains a user-defined data type:

struct HelloWorld

{
string<128> msg;

bi
3. Use the rtiddsgen utility to generate sample code and a project file as described in Generating Code
with RTI Code Generator, in the RTI Connext DDS Core Libraries Getting Started Guide. Choose
either C or C++.

For C:

rtiddsgen -language C -example <architecture> HelloWorld.idl

For C++:

rtiddsgen -language C++ -—-example <architecture> HelloWorld.idl

In your myhello directory, you will see that rtiddsgen has created a number of source code files
(described in the RTI Connext DDS Core Libraries User's Manual), additional support files (not lis-
ted here), and a project file: HelloWorld_default.gpj.

4. Edit the example code to modify the data as described in Generating Code with RTI Code Gen-
erator, in the RTI Connext DDS Core Libraries Getting Started Guide.

3.2.2 Build the Publish and Subscribe Applications

1. In a plain text editor, edit the top-level project file that was generated by rtiddsgen, HelloWorld_
default.gpj, so that it points to the path to your INTEGRITY distribution:

e For INTEGRITY 5 systems:

Under [Project], add the argument -os_dir=<path to your INTEGRITY distribution>
e For INTEGRITY 10 or 11 systems:

Set macro __ OS_DIR=<path to your INTEGRITY distribution>
2. Save your changes.

3. Launch MULTIL

4. Open the top-level project file, HelloWorld_default.gpj, in MULTI:
e For INTEGRITY 5 systems:

Select File, Open Project Builder, then open the project file from there.

3.2.3 Connect to the INTEGRITY Target from MULTI

5.

e For INTEGRITY 10 or 11 systems:

Select Components, Open Project Manager, then open the project file from there.

Right-click on the top-level project and build the project.

3.2.3 Connectto the INTEGRITY Target from MULTI

1.

From the MULTTI Launcher, click the Connection button and open the Connect option. Y our mode
should be Download (Download and debug application).

Create a custom connection with the following line:

For targets that only support the older INDRT connection mechanism:

rtserv -port udp@<ip address of your INTEGRITY target>

For targets that support the newer INDRT2 connection mechanism:

rtserv2 -port udp@<ip address of your INTEGRITY target>
(You might be able to see the IP address of your target on the output of its boot sequence.)

Y ou only have to create your connection once, MULTI will remember it.

Make sure your target has booted; then select Connect. Y ou should see a new window with the Ker-
nel Tasks running on your target.

3.2.4 Load the Application on the Target

1.

In the task window, select Target, Load module.

2. Browse for your executables; there should be 3 of them in your project directory:

o HelloWorld publisherdd
o HelloWorld_subscriberdd

o posix_shm_manager

3. Load the posix_shm_manager first, it will appear in the Tasks window as a separate address space

and start running by itself once loaded. It will allow you to use the shared memory transport on your
target.

Note: The default rfiddsgen-generated code tries to use shared memory, so unless you have manu-
ally disabled it, your application will crash if you do not load the shared memory manager before
running the application.

Load the publisher, subscriber, or both. They should appear in separate address spaces in the Tasks
window.

3.2.5 Run the Application and View the Output

3.2.5 Run the Application and View the Output

1. Select the task called "Initial" in your application's address space in the Tasks window; you can
either click the play button to run it, or click the debug button to debug it.

Note that with some versions of INTEGRITY, it is difficult to pass arguments to applications. Argu-
ments can always be hard-coded in your application before compiling it. To quickly experiment
with multiple runs of the application with different arguments, one option is to run your application
within the debugger. Then you can set a breakpoint before the arguments are used and change them
at that point.

2. From the Tasks window, select Target, Show Target Windows. This will show you the standard
output of your target.

Some errors messages may still go through the serial port, so you should leave your serial port con-
nection open and monitor it as well.

To reboot the target:

Go to your serial port connection monitor and type 'reset'.

Chapter 4 Getting Started on VxWorks
6.x/7 Systems

This section provides simple instructions to configure a kernel and run Connext DDS applications
on VxWorks 6.x/7 systems. Please refer to the documentation provided by Wind River Systems for
more information on this operating system.

This chapter will guide you through the process of generating, compiling, and running a Hello
World application on VxWorks 6.x/7 systems by expanding on the VxWorks section of the
RTI Connext DDS Core Libraries Platform Notes; please read the following alongside that section.

The first two sections describe how to build a VxWorks Source Build (VSB) and the kernel:
o 4.1 Building the VSB on the next page (only needed for VxWorks 7 systems)

e 4.2 Building the Kernel on page 12

The next section guides you through the steps to generate, modify, build, and run the provided
example HelloWorld application on a VxWorks target:

e 4.3 Building and Running a Hello World Example on page 17

4.1 Building the VSB

4.1 Building the VSB

This section explains how to build a VxWorks Source Build (VSB), which is required in order to build
your own kernels and applications with VxWorks 7. If you are using VxWorks 6.x, you can skip this sec-
tion.

The following steps use the VSB defaults. For further information and special customizations, please refer
to Wind River’s documentation:
https://docs.windriver.com/bundle/Configuration and Build Guide Edition 9 1/page/1597954.html

Before you start, you should be familiar with your hardware, as you will need to select a BSP and other
hardware-specific settings. This document uses an Intel BSP as an example.

1. Launch Workbench.
2. Select File, New, Wind River Workbench Project.

m Edit Navigate Search Project Run Window Help

Shift+Alt+N > o Wind River Workbench Project...

Open File... 9 Project...
L. Open Projects from File System...
™% Example...
3. For the Build type, select Source Build.
Mew Wind River Workbench Project + 2 OX
Build Type e
Select the build type for the project. B
Build type: | Source Build =

Description: Creates a VxWorks source build project, which allows
configuring and building operating system layers,

Setup information
Resulting project type: Source Build Project

@ < Back ﬁ Cancel Finish
L =

10

https://docs.windriver.com/bundle/Configuration_and_Build_Guide_Edition_9_1/page/1597954.html

4.1 Building the VSB

4. Set your project name and click Next.

5. Configure your VSB. Set your BSP, the CPU, addressing mode, compiler, SMP, etc., according to
your platform. When you are done, click Finish.

Project Setup

Base the new project either on an existing configuration, a beard support package, or a CPU |
type.

n: It_genesic 1 0_7 0

6. After you finish, build the VSB as you would any other project.

11

4.2 Building the Kernel

4.2 Building the Kernel

This section explains how to build a kernel capable of loading Connext DDS libraries. Connext DDS lib-
raries require that certain components are added to the default list in the VxWorks kernel, as outlined in the
following steps.

Before you start, you should be familiar with building and deploying a default working kernel on your tar-
get.

Note: The following steps might vary slightly depending on your chosen version of VxWorks.

1. Launch Workbench.
2. Select File, New, Wind River Workbench Project.

Basic Device Development - - Wind River Workbench

Edit Source Refactor Navigate Search Project Run Window Help

Wind River Workbench Project...

Open File... Project...
Close Ctrl+w Build Target
Save ctrl+S Folder
File
Refresh F5 File from Template
Convert Line Delimiters To »
Example...
Print... Ctrl+P
Other... Ctrl+N

3. Select the desired Target operating system; click Next.

o New Wind River Workbench Project

Target Operating System —d

Select the target operating system for the project.

Target operating system: (RUUTTR R Ty SRR
Host OS (Native Development)

(‘:?j = Back | Next = | Cancel | Finish |

4. When prompted to choose a Build type, select System Image (this may be Kernel Image or
VxWorks Image depending on your version of VxWorks); click Next.

12

4.2 Building the Kernel

B New Wind River Workbench Project

Build Type p—
Select the build type for the project.

Build type: :System Image v

Description: |Creates a bootable VxWorks operating system image, which can be linked
with kernel modules, and can be configured to include a ROMFS file system.

Setup information
Resulting project type: Image Project

Uses build tool: Mone

@ = Back | Next = | Cancel Finish

5. Give your project a name; click Next.

B New VxWorks Image Project

Project —
Create a new VxWorks image project with all available kernel build specs. B

Project name: testKerneI|

Location

® Create project in workspace

O Create project at external location

Directory: |/home/local/WindRiver/workspace/testKernel v | Browse... |

@ = Back | Next = | Cancel Finish

13

4.2 Building the Kernel

6. VxWorks 6.x: In Project Setup, choose a board support package (BSP) based on your hardware. If
available, select the correct Address mode.

VxWorks 7: In Project Setup, for the Based on field, choose a source build project. For the Pro-
ject, choose the VSB you created and built in the previous section. The BSP, SMP support and
other options will be correctly populated from the VSB configuration.

For the Tool chain option, select GNU; click Next.

Project Setup

Base the new project either on an existing project, or on a board support package ; :,
and a tool chain.

Setup the project

Based on a board support package - |

Project: '| Browse...
BSP: wrSbc8641d V| Browse...

Address mode: 32-bit kernel - |

Tool chain: gnu - |

Target Agent
[0 Enable WDB Target Agent

BSP validation test suite

[Add support to project Options...

Setup information

Base directory: /local/vxWorks/GPP-3.9/vxworks-6.9/target/config/wrsbc8641d

@) < Back . Next> Cancel ‘ Finish |

3. In Options, select SMP support in kernel if your BSP supports it and you want to enable sym-
metric multi-processing capability in the kernel.

Select IPv6 enabled kernel libraries if your architecture supports IPv6 (consult the R77 Connext
DDS Core Libraries Platform Notes to check if your architecture supports [Pv6); click Next.

14

4.2 Building the Kernel

. New VxWorks Image Project
Options . 4
Select the options to be used. B

-Options

Select All Deselect All

SMP support in kernel

[£] IPv6 enabled kernel libraries

@ = Back | Next = | Cancel | Finish I

4. Optionally, select a configuration profile from the drop-down menu.

15

4.2 Building the Kernel

. New VxWorks Image Project

Configuration Profile

Select kernel configuration profile. B

Profile: {PROFILE DEVELOPMENT [+

-Profile information

¥

Description: vxwWorks Kernel Development Configuration Profile

[[

Synopsis: |vxWorks kernel including development and debugging components

[«

@ = Back | Next = | Cancel | Finish I

5. Leave everything else at its default setting. Click Finish.

Your project will be created at this time.
6. From the Project Explorer, open Kernel Configuration.

v L testKernel (Wind River VxWorks 6.9 Image Project)
[vxWaorks.bin (default)
B wxWorks.hex {default)
& vxWorks (default)

b # Binaries
7. Add Operating System Components, Kernel Components, _thread variables support.

8. Make sure you have the following components enabled: INCLUDE TIMESTAMP, INCLUDE _
SHARED DATA.

Note: If you are unwilling or unable to build shared-memory support into your kernel, see the
VxWorks section of the RTI Connext DDS Core Libraries Platform Notes.

16

4.3 Building and Running a Hello World Example

10.

11.

12.

13.

If you plan to use the Request/Reply C++ API in kernel mode, you will need the following com-
ponents: FOLDER CPLUS, FOLDER CPLUS STDLIB, and CPLUS LANG.

If you plan to use the conventional Connext DDS C++ API, but not the Request/Reply C++ API,
you can forego the STL includes, as well as the exceptions support, provided you don't use those
C++ features in your application.

If you want support for RTP shared libraries, you need to add the component INCLUDE_SHL.
Note that shared libraries are not supported in all VxWorks architectures.

If you plan on accessing your target via the network, you may need the following modules:

o Telnet Server (under Network Components, Applications, Telnet Components)

This will allow you to telnet into the target.

o NFS client all (under Operating System Components, IO System Components, NFS com-
ponents)

This will allow you to see networked file systems from the target (contact your system admin-
istrator to find out if you have them set up).

If you are running applications in RTP mode, you may increase Operating System components,
Real Time Processes components, Number of entries in an RTP fd table from the default value
of 20 to a higher value such as 256. This will enable you to open more sockets from an RTP applic-
ation.

Compile the Kernel by right-clicking the project and selecting Build Project.

The Kernel and associated symbol file will be found in <your project directory>/default/.

4.3 Building and Running a Hello World Example

This section will guide you through the steps required to successfully run an rtiddsgen-generated example
application on a VxWorks 6.x/7 target using kernel mode or RTP mode.

4.3.1 Generate Example Code and Makefile with rtiddsgen

To create the example applications:

1.

Set up the environment on your development machine: set the NDDSHOME environment variable
and update your PATH as described in Step 1, Set up the Environment, in the RTI Connext DDS
Core Libraries Getting Started Guide.

Create a directory to work in. In this example, we use a directory called myhello.

. In the myhello directory, create a file called HelloWorld.idl that contains a user-defined data type:

17

4.3.2 Building and Running an Application as a Kernel Task

struct HelloWorld
{

string<128> msg;
Iy
4. Use RTI Code Generator (rtiddsgen) to generate sample code and a makefile as described in Gen-
erating Code with RTI Code Generator, in the RTI Connext DDS Core Libraries Getting Started
Guide. Choose either C or C++.

Note: The architecture names for Kernel Mode and RTP Mode are different.
For C:

rtiddsgen -language C -example <architecture> HelloWorld.idl

For C++:

rtiddsgen -language C++ -—-example <architecture> HelloWorld.idl

Edit the generated example code as described in Generating Code with RTI Code Generator, in the
RTI Connext DDS Core Libraries Getting Started Guide.

4.3.2 Building and Running an Application as a Kernel Task

There are two ways to build and run your Connext DDS application:

e 4.3.2.1 Using the Command Line below
e 4.3.2.2 Using Workbench on the facing page

4.3.2.1 Using the Command Line

1. Setup your environment with the wrenv.sh script or wrenv.bat batch file in the VxWorks base dir-
ectory. Execute the script with the -p parameter set to the correct version of VxWorks. For example:

wrenv.sh -p vxworks-6.9

2. Set the NDDSHOME environment variable as described in Step 1, Set up the Environment, in the
RTI Connext DDS Core Libraries Getting Started Guide.

3. Build the Publisher and Subscriber modules using the generated makefile. Y ou may have to modify
the HOST TYPE, compiler and linker paths to match your development setup.

4. To use dynamic linking, remove the Connext DDS libraries from the link objects in the generated
makefile.

(Note: steps 5-7 can be replaced by establishing a telnet connection to the VxWorks target. In that case,
Workbench does not need to be used and both the Host Shell and Target Console will be redirected to the
telnet connection. Once in the C interpreter (you will see the prompt '->' in the shell) you can type emd
and then help for more information on how to load and run applications on your target.)

18

4.3.2.2 Using Workbench

5. Launch Workbench.

6. Make sure your target is running VxWorks and is added to the Remote Systems panel. (To add a
new target, click the New Connection button on the Remote System panel, select Wind River
VxWorks 6.x Target Server Connection, click Next, enter the Target name or address, and click
Finish).

7. Connect to the target and open a host shell by right-clicking the connected target in the Target
Tools sub-menu.

&. In the shell:

If you are using static linking: Load the .so file produced by the build:

>cd "directory">
1d 1 < HelloWorld subscriber.so

(Where ‘directory’ refers to the location of the generated object files.) If you are using dynamic link-
ing: load the libraries first, in this order: libnddscore.so, libnddsc.so, libnddscpp.so; then load the
.so file produced by the build.

9. Run the subscriber_main or publisher_main function. For example:
>taskSpawn "sub", 255, 0x8, 150000, subscriber main, 38, 10

In this example, 38 is the domain ID and 10 is the number of samples.

4.3.2.2 Using Workbench

Note: The following steps might vary slightly depending on your chosen version of VxWorks.

1. Start Workbench.
2. Select File, New, Wind River Workbench Project.

™ @ Basic Device Development - - Wind River Workbench

J5ll=M Edit Source Refactor Mavigate Search Project Run Window Help

shift+aAlt+N P Wind River Workbench Project...

Open File... Project...
Close ctrl+w Build Target
Save Ctrl+S Folder

= File
Refresh F5

File from Template
Convert Line Delimiters To

— Example...
PBrint... Ctrl+P

Other... Ctrl+N

3. Select the desired Target operating system; click Next.

19

4.3.2.2 Using Workbench

B New Wind River Workbench Project

Target Operating System —

Select the target operating system for the project.

Target operating system: (RUUTTR R Ty SRR
Host OS (Native Development)

@ = Back | Next = | Cancel | Finish |

4. When prompted to choose a Build type, select Downloadable Kernel Module; click Next.

B New Wind River Workbench Project

Build Type —

Select the build type for the project. '

— Boot Loader / BSP Project

I« Mo =B Downloadable Kernel Module
Kernel Libraries
Description: | ROMFS File System
Real Time Process Application
Relinkable Kernel Module
Shared User Library
Static Kernel Library
Static User Library
System Image
User-Defined
MNone
Uses build tool: Linker

Setup inforn

Resulting pr

@ < Back | Next = | Cancel FEinish

5. Give your project a name; click Next.

20

4.3.2.2 Using Workbench

: New Wind River Workbench Project

Project

Create a new project with the specified data.

/=

Project name: testAppIication|

-Location

(® Create project in workspace
O Create project at external location

O Create project in workspace with content at external location

DBirectory: ,fhome,flocaI;'WindRiver,fworkspaceftestAppIicatj Browse... |

@

< Back

Next = Cancel

| Finish |

Y our project will be created at this time.

6. Leave everything else at its default setting; click Finish.

Basic Device Development - - Wind River Workbench

File Edit Source Refactor Navigate Search Project Run Window Help

|fr- 86 s ss e |s-00 |9 |8 & i e e o e

£ |T/Basic De...

5 % & | # @ 7 =8| Getting Started 52

b £ Networkimage (vxworks-cert-6.6.4.1 [not installed] \ma” f & &

creation.log W <] usrApplnit.c W creation.leg 1 creation.log W =0

5= outline &2 =8

| An outline is not available.

b 52 rti-slo-6.9.4.2-sbc8641d-v1 (Wind River VxWorks 6.9 Im
b i samsung-iso-v1 (wrlinux-4 [not installed] Platform Projel
b £ samsung-iso-v2 (wrlinux-4 [not installed] Platform Projel
b = samsung-iso-v3 (wrlinux-4 [not installed] Platform Projel
b & samsung-v1 (wrlinux-4 [not installed] Platform Project)
b @ test (vxworks-cert-6.6.4.1 [not installed] Image Preject
b = Test_Vx6lmageProject (vxworks-cert-6.6.4.1 [not install

& testApplication (Wind River VxWorks 6.9 Downloadable

> [y Build Targets (SIMLINUXdiab - debug)

¢z Wind River Launches

b @l includes
b & testkernel (Wind River VxWorks 6.9 Image Project)
b £ xcalibur1700-micro-cert-v1 (vxworks-cert-6.6.4.1 [not i

i I i)
£ Remote Systems = =8
2| |glale > alp]s -

- & Local
b G wind River Registries
b * Local Files
% Local Shells
b k8 slo (Wind River VxWorks 6.9)

b i Xcaliburl700-Test_Image (vxworks-cert-6.6.4.1 [not ins |

® Help | B Build Console 2

} Wind River Workbench 3.3

Getting Started
Create
(Debué

Anal

‘Show Weicome Splaeh B

¥ Tasks| [Problems| <" Search

AL

4

MEE ST A

[a]

[+

0* 1 testApplication (wind River Vxworks 6.9 Downloadable Kernel Module Project)

| 108moriz7m [|

21

4.3.2.2 Using Workbench

10.
11.

Copy the source and header files generated by rtiddsgen in4.3.1 Generate Example Code and Make-
file with rtiddsgen on page 17 into the project directory.

View the added files by right-clicking on the project in Project Explorer, then selecting Refresh to
see the files.

Basic Device Development - - Wind River Workbench

File Edit Source Refactor Navigate Search Project Run Window Help

M- BB & B S2 R s 0 |a |8 E |88 e e oo =i [Basic pe...

I project Explorer 5

b & samsung-iso-v2 (wrlinux-4 [not installed] Platform Pre

& - [hagl A EIWQ Getting Started 13
e w

creation.log]@ usrApplnit.c W creation.log W creation.log 1 = EI][SE Outline & =8

|||An outline is not available.

b & samsung-iso-v3 (wrlinux-4 [not installed] Platform Prc
b & samsung-v1 (wrlinux-4 [not installed] Platform Projec
b & test (vxworks-cert-6.6.4.1 [not installed] Image Proje
b & Test_Vx6imageProject (vxworks-cert-6.6.4.1 [not inst

- & testApplication (Wind River VxWorks 6.9 Downloadal

bl Build Targets (PPC32gnu_SMP - debug)

b &l Includes

b ghtestikernel (Wind River VxWorks 6.9 Image Project)

b 2 xcaliburl 700-micr-cert-yv1 (vxworks-cert-6.6.4.1 [no =
| I |

‘¢ Wind River Launches

[Helloworld_publisher.cxx
(& Helloworld_subscriber.cxx
[HelloWorld.cxx

[5 Helloworld.h

(& HelloworldPlugin.cxx

(%] HelloworldPlugin.h

[g] HelloWorldSupport.cxx

[8) HelloWerldSupport.h

[5) Helloworld.idl
makefile_Helloworld_ppc604vx6.9gcc4.3.3
[¥] USER_QOS_PROFILES.xml

A Remote Systems 52 =g

AR TEEY RN

b Ef Local

b & LinuxHest_local (Host OS (Native Development))
b #8 vxsim0 (Wind River VxWorks 6.9)

b #8 vxsim1_smp (Wind River vxWorks 6.9)

{» Help| B Build Console 52 & Tasks|[2. Problems - Search

[l

]

oo

- testApplication (Wind River VxWorks 6.9 Downloadable Kernel Medule Project) H #IM of 143M |ﬁ I

Open the project Properties by right-clicking on the project in Project Explorer and selecting Prop-
erties.

In the dialog box that appears, select Build Properties in the navigation pane on the left.

In the Build Support and Specs tab, select the desired build spec from the Active build spec drop-
down menu; click Apply to save the changes.

22

4.3.2.2 Using Workbench

x Properties for testApplication

T— p—
b Resource Specify all build
Binary Parser @ Build Support and Specslgﬁf«‘mulslﬁPathsl # Deﬁnesl;&Librariesl $ Variablesl
Build support
Builders ® Managed build (makefiles generated by the IDE)
b C/C++ General O Disabled
Code Coverage Ana
Project Info Build command: %makeprefix% make --no-print-directory ‘E
Project References
Run/Debug Settings Variables...l
Task Tags Available and enabled build specs:
validation ARMARCH4diab ﬂ Enable All
ARMARCH4diabbe Disable All
ARMARCH4gnu
ARMARCH4gnube (TR0
ARMARCHS5diab Import...
ARMARCHS5diabbe Rename. .
ARMARCHS5gnu
ARMARCHSgnube Copy..:
ARMARCHG&diab Delete...
ARMARCHEdiab_SMP
ARMARCHG6diabbe
M _ARMARCHANNL :I
Default build spec: SIMLINUXdiab - |
Active build spec: :PPC604gnu_SMP i ‘
Debug mode
I I Restore Qefaultsl Apply |
@ Cancel | oK I

12. In the Build Macros or Defines tab, add -DRTI_VXWORKS to DEFINES in the Build macro

definitions; click Apply to save the changes.

23

4.3.2.2 Using Workbench

13.

Properties for testApplication

type filter text

b Resource
Binary Parser
Builders

b C/C++ General
Code Coverage Ana
Project Info
Project References

Run/Debug Settings

Build Properties

Specify all build

@@ Build Support and Specs

;ﬁ’«‘TbuIslBPaths # Deﬁnesl!&Librariesl $ Variablesl

Build spec specific settings
Active build spec: PENTIUMgnu |- |

Defines:

Define and undefine directives

Edit... |

-DCPU=_VX_$(CPU)
-DTOOL_FAMILY=4(TOOL_FAMILY)

Add...

Task Tags
Add to all...
validation -DTOOL=5(TOOL)
-D_WRS_KERNEL Remove...
-D_VSB_CONFIG_FILE=\"$(VSB_DIR)/h/config/vsbConfig.hy" Remove from all...
-DIP_PORT_VXWORKS=69
-DRTI_VXWORKS up
Down
5 : Restore Defaults. | Apply |
@ Cancel | oK I

In the Variables tab, add to LIBPATH:

-L/(NDDSHOME)/lib/<architecture>

If you are using static linking, add to LIBS:

-Inddscppz -Inddscz -Inddscorez (in that order)

If you are using dynamic linking, add to LIBS:

-Inddscpp -Inddsc -Inddscore (in that order)

Click Apply to save the changes.

24

4.3.2.2 Using Workbench

14.

: Properties for testApplication

type filter text

b Resource

Binary Parser

Build Properties

Build Properties

dav Ghv w

Specify all build

@@ Build Support and 5pecs|s;??Tbuls|BPaths| # Deﬁnesl!%Libraries $ Variablesl

. Name Value New...
Builders
b C/C++ General CRE=en e DR Edit...
Code Coverage Ana DEFINES &g
. EXPAND_DBG 0
Project Info -
Rename...
Project References
Run/Debug Settings EEE-
Task Tags Delete...
Validation
Build spec specific settings
Active build spec: PENTIUMgnu |- |
Name (Common) Value (Build spec specific) =l New... |
TOOL_FAMILY gnu Edit...
TOOL gnu F]
TOOL_PATH
Rename...
CC_ARCH_SPEC -mtune=pentium -march=pentium -nostd|
WSB_DIR $(WIND_BASE)/target/lib Copy...
VSB_CONFIG_FILE $(VSB_DIR)/h/config/vsbConfig.h Delete...
LIBPATH -L$ {NDDSHOME }/lib/pentiumvx6.9gcc4.3.
LIBS -Inddscppz -Inddscz -Inddscorez =
5 : Restore Qefaultsl Apply |
@ Cancel | oK I

In the Build Paths or Paths tab, add both of these:

-ISONDDSHOME)/include

-IS(NDDSHOME)/include/ndds

Click Apply to save the changes.

25

4.3.2.2 Using Workbench

: Properties for testApplication
type filter text Bulld Properties v b w

b Resource Specify all build

Binary Parser @ Build Support and Specs

A s Build spec specific settings

Builders
b C/C++ General

##Tools E:vPathsl # Deﬁnesl!%Librariesl $ Variablesl

Active build spec: PENTIUMgnu |- |

Code Ci Al
ode Loverage Ana # Include paths:

Project Info

Project References

Run/Debug Settings -I$(WIND_BASE)/target/h Edit...

Task Tags -I${WIND_BASE)/target/h/wrn/coreip .
validation -1${NDDSHOME}/include

Remove...
Remove from all...
up
Down

Include directories Generate... |

Redirection directory: IPENTIUMgnu Default

Redirection root directory: I Bruwse...l

Note: Leave this field blank te store build output together with the sources, or enter
an absolute path (environment variables are permissible) to redirect the output.

5 : Restore Defaults. | Apply |

@ Cancel | oK I

15. Click OK to exit the Properties menu.

16. Build the project by right-clicking on the project in Project Explorer, then selecting Build Project.

26

4.3.3 Building and Running an Application as a Real-Time Process

Basic Device Development - - Wind River Workbench

File Edit Source Refactor Navigate Search Project Run Window Help

|- Bee 6ss @|t-0- |9 | 8E|8 8 e 9o & [Eeasic e,
W EE R s ﬁ]f& Getting Started creation.log }@ usrAppinit.c } creation.log } creation.log) = EMEE outline = =g
b 52 Networkimage (vxworks-cert-6.6.4.1 [not installed] u|| e |HAH outline is not available.

b 5 rti-slo-6.9.4.2-sbc8641d-v1 (Wind River VxWorks 6.9
b = samsung-iso-v1 (wrlinux-4 [not installed] Platform Pre

} Wind River Workbench 3.3
b 22 samsung-iso-v2 (wrlinux-4 [not installed] Platform Prc

b 12 samsung-iso-v3 (wrlinux-4 [not installed] Platform Pr¢
» & samsung-v1 (wrlinux-4 [not installed] Platform Projec
b 2test (vxworks-cert-6.6.4.1 [not installed] Image Proje

b £ Test_Vx6lmageProject (vxworks-cert-6.6.4.1 [not inst

- A testapplication (Wind River VxWorks 6.9 Dowalazda!

New
» [Build Targets (PENTIUMgnu - debu —
g rgets (9 q) Go Into

& Wind River Launches
P it Open in New Window

b 4 Binaries
b @l Includes Copy ctrl+C
Paste Ctrl+V e

b Z2PENTIUMgnu

. Delete Delete
(& Helloworld_publisher.cxx Attributes > Bha
Helloworld_subscriber.cxx Moye...

HelloWorld.cxx Rename... F2 |oas

[# Helloworld.h Import...
HelloworldPlugin.cxx Export...
[0 HelloworldPlugin.h Open Wind River VxWorks 6.9 Development Shell
(& HelloworldSupport.cxx Build Project Ctrl+B Ctrl+P
[Helloworldsupport.h Rebuild Project
) i Build Options
Refresh F5

44 Remote Systems 52 Close Project

& [A [53[& [@ o & [Close Unrelated Projects
» Ef Local Project References

b A LinuxHost_local (Host OS (Native Developme| Run VxWorks Kernel Task
b 8 vxsim0 (Wind River VxWorks 6.9) Debug VxWorks Kernel Task
» 8 vxsim1_smp (Wind River VxWorks 6.9) (et WA S CEOE Tt

Index >
Run As ¥ |Search
Debug As * iects/t: Id_|
Download » Jg/Objects/testApplication/HelloWorld_subscriber.o"™"]; then mkdir -p " dirname "test
Profile As p iects/testApplication/HelloWorld_subscriber.o
- » g/testApplication_partiallmage.o"* "]; then mkdir -p **dirname "testApplication_parti
& ktApplication_partialimage.o
Compare With * Hon.out”** ; then mkdir -p **dirname “testApplication/Debug/testApplication.out™ *;
Restore from Local History... put
. ceftestApplication/PENTIUMgnu
BICPEILES AILHENTEr | 09.14 14:51:34 (Elapsed Time: 00:50)
[I I
J 4 - testApplication (Wind River VxWorks 6.9 Downloadable Kernel Module Project) H #BM of 156M |@ J

17. Run the application as described starting in Step 5 in the 'Using the Command Line' section, except
load HelloWorld.out instead of HelloWorld_subscriber.so when you get to Step 8.

4.3.3 Building and Running an Application as a Real-Time Process

There are two ways to build and run your Connext DDS RTP application:

e 4.3.3.1 Using the Command Line below
e 4.3.3.2 Using Workbench on the next page

4.3.3.1 Using the Command Line
1. Generate the source files and the makefile with RTI Code Generator (rtiddsgen,).

Note: The architecture names for Kernel Mode and RTP Mode are different.

Please refer to the RTI Code Generator User’s Manual for more information on how to use r#idds-
gen.

27

4.3.3.2 Using Workbench

2. Set up your environment with the wrenv.sh script or the wrenv.bat batch file in the VxWorks base
directory. Execute the script with the -p parameter set to the correct version of VxWorks. For
example:

wrenv.sh -p vxworks-6.9

3. Set the NDDSHOME environment variable as described in Step 1, Set up the Environment, in the
RTI Connext DDS Core Libraries Getting Started Guide.

4. Build the Publisher and Subscriber modules using the generated makefile. Y ou may need to modify
the HOST TYPE, compiler and linker paths to match your development setup.

Notes:

o Steps 5-12 can be replaced by establishing a telnet connection to the VxWorks target. In that
case, Workbench does not need to be used and both the Host Shell and Target Console will
be redirected to the telnet connection. Once in the C interpreter (you will see a prompt '->' in
the shell) you can type emd and then help for more information on how to load and run
applications on your target.)

o Ifyou want to dynamically link your RTP to the RTI libraries, make the following modi-
fications the generated makefile:

LIBS = -L$ (NDDSHOME) /lib/<architecture> -non-static -lnddscpp \-1lnddsc -lnddscore
$ (syslibs <architecture>)

5. Addtothe LD_LIBRARY_PATH environment variable the path to your RTI libraries as well as
the path to libe.so.1 of your VxWorks installation to launch your RTP successfully.

6. Launch Workbench.
7. Make sure your target is running VxWorks.

8. Connect to the target with the target manager and open a host shell and a Target Console Tool to
look at the output. Both are found by right-clicking the connected target in the Target Tools sub-
menu.

9. Right-click on your target in the Target Manager window, then select Run, Run RTP on Target.

10. Set the Exec Path on Target to the HelloWorld_subscriber.vxe or the HelloWorld_pub-
lisher.vxe file created by the build.

11. Set the arguments (domain ID and number of samples, using a space separator).

A Stack size of 0x100000 should be sufficient. If your application doesn't run, try increasing this
value.

12. Click Run.

4.3.3.2 Using Workbench

Note: The following steps might vary slightly depending on your chosen version of VxWorks.

28

4.3.3.2 Using Workbench

1. Start Workbench.
2. Select File, New, Wind River Workbench Project.

Basic Device Development - - Wind River Workbench

Edit Source Refactor Navigate Search Project Run

Open File...
Close Ctri+w Build Target
Save Ctrl+5S iz
File
Refresh F5 File from Template
Conyert Line Delimiters To »
Example...
Print... Ctrl+P
Other... Ctrl+N

3. Select the desired Target Operating System; click Next.

B New Wind River Workbench Project

Target Operating System —

Select the target operating system for the project.

Target operating system: (RUUTTR R Ty SRR
Host OS (Native Development)

@ = Back | Next = | Cancel | Finish |

4. When prompted to choose a Build Type, select Real Time Process Application; click Next.

29

4.3.3.2 Using Workbench

10.
1.

12.

0 New Wind River Workbench Project

Build Type

Select the build type for the project.

Build type:

Description:

Setup inforn
Resulting pr

Boot Loader / BSP Project
Downloadable Kernel Module
Kernel Libraries

ROMFS File System
Relinkable Kernel Module
Shared User Library
Static Kernel Library
Static User Library
System Image
User-Defined

None

Uses build tool: Linker

@

=< Back | Next = | Cancel Finish

Give your project a name; click Next.

Leave everything else at its default setting; click Finish.

Y our project will be created at this time.

. Copy the source and header files generated by rtiddsgen in 4.3.1 Generate Example Code and

Makefile with rtiddsgen on page 17 into the project directory. There can only be one main() in your
project, so you must choose either a subscriber or a publisher. If you want to run both, you will need
to create two separate projects.

View the added files by right-clicking on the project in Project Explorer, then selecting Refresh to

see the files.

Open the project Properties by right-clicking on the project in Project Explorer and selecting Prop-

erties.

In the dialog box that appears, select Build Properties in the navigation pane on the left.

In the Build Support and Specs tab, select the desired build spec from the Active build spec drop-
down menu; click Apply to save the changes.

In the Build Macros or Defines tab, add the following to DEFINES in the Build macro definitions:

-DRTI_VXWORKS
-DRTI_STATIC

30

4.3.3.2 Using Workbench

13.

14.

-DRTI_RTP

0 Properties for testApplicationRTP

type filter text

b Resource
Binary Parser
Builders
- C/C++ General
Code Style
Documentation
File Types
b Indexer
Code Coverage Ana
Project Info
Project References
Run/Debug Settings

Build Properties

o v w

Define and undefine directives

Edit... |

-DCPU=_VX_$(CPU}
-DTOOL_FAMILY=$(TOOL_FAMILY)
-DTOOL=$(TOOL)
-D_WRS_KERNEL
-D_VSB_CONFIG_FILE=\"$(VSB_DIR)/h/config/vsbConfig. h\"
-DIP_PORT_VXWORKS=69
-DRTI_VXWORKS
-DRTI_STATIC
DRTI_RTP

Add...

Add to all...
Remove...
Remove from all...
up
Down

Task Tags =
Validation
K1 . | =]
@ Cancel oK

In the Variables tab, add to LIBPATH:

-L/(NDDSHOME)/lib/<architecture>

If you are using static linking, add to LIBS:

-Inddscppz -Inddscz -Inddscorez (in that order)

If you are using dynamic linking, add to LIBS:

-Inddscpp -Inddsc -Inddscore (in that order)

Click Apply to save the changes.
In the Build Paths or Paths tab, add:

-ISNDDSHOME)/include

-IS(NDDSHOME)/include/ndds

Click Apply to save the changes.

31

4.3.3.2 Using Workbench

x Properties for testApplicationRTP
type filter text Bulld Properties v b w

b Resource Specify all build

Binary Parser @ Build Support and Specs

A s Build spec specific settings

Builders
b C/C++ General

##Tools E:vPathsl # Deﬁnesl!%Librariesl $ Variablesl

Active build spec: PENTIUMgnu |- |

Code Coverage Ana
9 # Include paths:
Project Info

. i i Generate... |
Project References Include directories

Run/Debug Settings -I$(WIND_BASE)/target/h Edit...

Task Tags -I${WIND_BASE)/target/h/wrn/coreip .
validation -1${NDDSHOME}/include

Remove...
Remove from all...
up
Down

Redirection directory: IPENTIUMgnu Default

Redirection root directory: I Bruwse...l

Note: Leave this field blank te store build output together with the sources, or enter
an absolute path (environment variables are permissible) to redirect the output.

5 : Restore Defaults. | Apply |

@ Cancel | oK I

15. Click OK to exit the Properties menu.

16. Build the project by right-clicking on the project in Project Explorer, then selecting Build Project.

17. Run the application as described starting in Step 5 in the Command Line section above.

32

Chapter 5 Getting Started on VxWorks 653
Platform v2.3 Systems

This section provides simple instructions on how to configure a kernel and run Connext DDS
applications on a VxWorks 653 Platform v2.3 system. Please refer to the documentation provided
by Wind River Systems for more information, as well as the VxWorks section of the RTT Connext
DDS Core Libraries Platform Notes.

Developing a complete system typically involves the cooperation of developers who play the fol-
lowing principal roles:

e A platform provider, who develops the platform
o An application developer, who develops applications

o A system integrator, who designs and specifies the module, and integrates a set of applic-
ations with a platform to create a module

For more information on these roles, please see the VxWorks 653 Configuration and Build Guide.

This section assumes the above distribution of development responsibilities, with the Connext DDS
Core Libraries being a part of the application. This section is targeted towards platform providers,
application developers, and system integrators.

For platform providers, this section indicates what your system must provide to Connext DDS.
Platform providers must provide a platform that application developers will use to create the applic-
ation. The provided platform must support worker tasks and the socket driver. For the actual list of
components, refer to the RTI Connext DDS Core Libraries Platform Notes.

For application developers, this section describes how to create Connext DDS applications.
Application developers must use the platform provided by the platform provider. To create a Con-
next DDS application, follow the steps to Generate example code with rtiddsgen. on page 44
through Configure properties for the application. on page 45

33

5.1 Setting up Workbench for Building Applications

For system integrators, this section describes how to combine the platform from the platform provider,
and the application from the application developer, and create the system to be deployed. System integ-
rators must create an integration project using the module OS and partition OS provided by the platform
provider, and the application provided by the application provider. To create a system capable of running
Connext DDS applications, the system integrator needs to create a ConfigRecord considering the require-
ments noted in 5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms on the facing

page.
For someone creating a Connext DDS application, this section provides an example from the ground
up.

5.1 Setting up Workbench for Building Applications

Follow the steps in one of the following sections, depending on which socket library you want to install:
5.1.1 Installing the Wind River Services Socket Library below
or

5.1.2 Installing the RTI Socket Library below
5.1.1 Installing the Wind River Services Socket Library

1. Install Workbench.

2. Install partition_socket driver_v1.3. Follow instructions from Wind River for the installation.

For this example, the following steps were used for the installation:

a. Copy the socket driver files from Wind River to each BSP of interest. For example, for
sbc8641Vx653-2.3gcc3.3.2, copy the socket driver files into S(WIND _BASE)/tar-
get/config/wrSbc8641d.

b. Copy the socket library header files into $(WIND_BASE)/target/vThreads/h (no files
should be replaced or overwritten).

5.1.2 Installing the RTI Socket Library

1. Install Workbench.
2. Install vx_653_socket.<Connext DDS version>.

a. Copy the socket driver files from RTI to each BSP of interest. Once you extract the RTI
Socket Library zip file into your <NDDSHOME> installation directory, copy the contents of
vx_653 socket.<Connext DDS version>\bsp\src into $(WIND _
BASE)/target/config/<BSP> (choose your BSP of interest. For instance, wrSbc8641d).

34

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

b. Link the vx_653_socket.<Connext DDS version> library to the application. You can find
the libraries (release, debug, static, and dynamic) within your NDDSHOME installation dir-
ectory. For example, for the dynamic release library, you would link SNDDSHOME/-
partition_os/lib/<architecture>/libvx 653 socket posWrapper.so.

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3

Platforms

This section contains instructions for creating Connext DDS applications for the VxWorks 653 2.3 plat-
forms (sbc8641Vx653-2.3gcc3.3.2 and simpcVx653-2.3gcc3.3.2). The screenshots show the process for
sbc8641Vx653-2.3gcc3.3.2.

I.

Create an integration project with two partitions (one for the publisher, one for the subscriber). Fol-
low the instructions from Wind River for doing this. The following screenshots will guide you
through the process.

a. Create a new Workbench project.

|Q§ Basic Device Development - - Wind River Workbench
Fle Edt Source Refackor Mavigabe Search Project Run “Window Help

Mew Alshift+h B S5 wind River Workbench Project..,
Open File... ™ Project...
Close CEHY ¥ Build Target
I Falder
7 File

* File from Template
Convert Line Delimiters To

™ Examgla, ..
T Gther.,. Chrlh
Swicch Wotkspace | — =
Reskart
gag Import...
B Export. ..
Properties Ak+Enber
1 Getting Started

Exit

b. For the Target operating system, select VxWorks 653 2.3.

35

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

@ Mew Wind River Workbench Project @
Target Operating System

Select the target operating syskem for the project,

Target operating swstem: |WxiWorks 653 2.3

"
c. For Build type, select Integration Project.
@ Mew Wind River Workbench Project @
Build Type
Select the build bwpe Far the project.,
Build tvpe: | Integration Projeck V

Description: | Creates a YaWorks 653 integration projeck based on module XML

filefs1, which allows to integrate a complete system For net
booting, RAM pavioad or RiOM pavload usage.

Setup information

Resulting projeck bype: Inkegration Project
IJzed build tools Mone

I:F?_,l [< Back ” Mexk = l

d. Create a project named helloWorld in the workspace.

36

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

-

9 New VxiWorks 653 Integration Project = @
Project

Create & new YxWorks 653 inteqgration project. B

Project name: hellotworld

Locakion
(%) Create project in workspace
() Create project at external location

e. Select the appropriate Board Support package. Make sure the debug Build spec is selected.
This example assumes the wrSbe8641d board support package is selected; alternatively, you
could select simpc.

9 New VxWorks 653 Integration Project (=)<
Project Setup —
Specify a project base, B
Project base
Board suppart package: |SBEaEA1d v
Build spec: TPPc&Ddgnu.dahug El

f. Select the default options for adding the ConfigRecord, ModuleOS, and PartitionOS. Make
sure the “Add a reference to the corresponding project” checkbox is selected.

9 Specify Configuration record

(%) Create a new project: helloworld_ConfigRecord

() Uise an existing image path:

Add a reference bo the corresponding project

| ok || cancel |

37

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

9 Specify Module operating system ﬁ

(¥) Create a new project: helloWorld_Module0s

() Use an existing image path:

Add a reference bo the corresponding project

| ok || cancel |

- .
9 Specify Partition operating system ﬁ

(¥) Create a new project: helloWorld_Partition0s

() Use an existing image path:

Add a reference bo the corresponding project

| ok || cancel |

g. Create two partitions, helloWorld_publisher and helloWorld_subscriber, to create a Pub-
lisher and a Subscriber application, respectively. Make sure the “Add a reference to the cor-
responding project” checkbox is selected.

e Specify Partition ﬁ

(¥) Create a new project: helloworld_subscriber

(") Use an existing image path:

#dd a reference to the corresponding project

| ok || cancel

h. Now you are ready to create the Integration Project.

38

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

L o e

7 Project Explorer 23 = % - =l
= I helloWorld (¥xWorks 653 2.3 Integration Project) |

Mo et

I:lmu_] ram

M) rom
R helloworld_ConfigRecord (vxWorks 653 2.3 Configuration Record Project)
= @ helloWorld_ModuleOS (¥xWorks 653 2.3 Module Operating System Project)
@ @ helloWorld_PartitionOs (\vx\Warks 653 2.3 Partition Operating System Project)
@B helloworld_publisher (vxWorks 653 2,3 Application Project)
[* @ helloWorld_subscriber (VxWorks 653 2.3 Application Project)
#-) Includes

L@ Makefile

=] Makefile.rules

\=] Makefile,vars

1. Click Finish to create the Integration project.

This will create an integration project with ConfigRecord, ModuleOS, PartitionOS and two
partitions, helloWorld_publisher and helloWorld_subscriber.

[Project Explorer 52 Eg B2@®-7 70

== hellotorld (vxiorks 653 2.3 Inkegration Project) |

M met

e

M rom

% helliohwarld_ConfigRecord (vaworks 653 2.3 Configuration Record Project)
@ helliohiorld_Moduleds (abiorks 653 2.5 Module Operating Svwskem Project)
@ hellohiorld_PartitionQs (aoi'orks 653 2,3 Partition Operating Svskem Projeck)
'l'g hellowiorld_publisher (vacWorks 653 2.3 Application Project)

@ hellovorld_subscriber (v:works 653 2.3 Application Project)

[Includes

| @ Makefile

\=| Makefile rules

[

\=| Makefile,vars

2. Depending on your platform, open either helloWorld _ConfigRecord/wrSbc8641d_default.xml or
simpc_default.xml and make the changes noted below. By default, the file opens in design mode.

39

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

You may wish to switch to source mode, which makes it easier to copy and paste sections, which is
required in later steps.

[Project Explorer 52 g L

E |+ = . 7

= E; helloWorld (VxWorks 653 2.3 Integration Project)
r}f’L net
M) ram

M4 rom

=) % helloworld_ConfigRecord (Vx'\Warks 653 2,3 C

M4 configRecord.bin

M) configRecord.reloc
#-n)l Includes
Makefile

—| Makefile.vars

|X| wrSbc8a41d. xml

a. Under Applications:

o Change the application name from wrSbc8641d_partl or simpc_partl to hel-
loWorld_publisher.

Note: Your application name should not be greater than 30 characters.
o In MemorySize, make these changes, depending on your platform:

sbc8641Vx653-2.3gcc3.3.2 simpcVx653-2.3gcc3.3.2
MemorySizeBSS 0x5000 No change (keep default of 0x10000)
MemorySizeText 0x7F0000 0x640000
MemorySizeData 0x2000 No change (keep default of 0x10000)
MemorySizeRoData 0xE0000 0xf0000

For C++ only:
Change the MemorySize tag so it ends with ‘>’ (not */>’).

For sbc8641Vx653-2.3gcc3.3.2: Within MemorySize, add:

40

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

<AdditionalSection Name=".gcc except table" Size="0x2000" Type="DATA"/>

For simpcVx653-2.3gcc3.3.2: Within MemorySize, add:

<AdditionalSection Name=".gcc except table" Size="0x10000" Type="DATA"/>

Remove MemorySizePersistentData and MemorySizePersistentBss.

Close MemorySize with </MemorySize>.

It should look like this when you are done:

For sbc8641Vx653-2.3gcc3.3.2:

<MemorySize MemorySizeBss="0x5000"
MemorySizeText="0x7F0000"
MemorySizeData="0x2000"
MemorySizeRoData="0xE0000">

<AdditionalSection Name=".gcc except table"

Size="0x2000" Type="DATA"/>

</MemorySize>

For simpcVx653-2.3gcc3.3.2:

<MemorySize MemorySizeBss="0x10000"
MemorySizeText="0x640000"
MemorySizeData="0x10000"
MemorySizeRoData="0x£f0000">

<AdditionalSection Name=".gcc except table"
Size="0x10000" Type="DATA"/>
</MemorySize>

« Create a copy of the application helloWorld_publisher and rename it helloWorld_

subscriber.

b. Under Partitions:

o Change the partition name from wrSbc8641d_partl or simpc_partl to helloWorld_

publisher.

o Change the Application NameRef from wrSbc8641d_partl or simpc_partl to hel-

loWorld_publisher.

o Under Settings, make these changes, depending on your platform:

sbc8641Vx653-2.3gcc3.3.2

simpcVx653-2.3gcc3.3.2

RequiredMemorySize

0x2000000

0x2000000

numWorkerTasks

10

10

41

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

Create a copy of the partition application helloWorld _publisher and rename it helloWorld _
subscriber. Change its ID to 2 and its Application NameRef to helloWorld _subscriber.

¢. Under Schedules:

o Rename PartitionWindow PartitionNameRef from wrSbc8641d_partl or simpc_
partl to helloWorld _publisher.

o Create a copy of the PartitionWindow, and change PartitionNameRef to hel-
loWorld_subscriber.

o Add another PartitionWindow, with PartitionNameRef “SPARE” and Duration
0.05. This partition window schedules the kernel, allowing time in the schedule for sys-
tem activities like network communications.

« Optionally:

1. If you want only one of the applications to run (helloWorld_publisher or hel-
loWorld_subscriber), then you only need a partition window for the one you
want to run.

ii. If you do not want the Connext DDS application to run immediately when the
system boots up, change the schedule ID to non-zero and add a SPARE schedule
with ID 0.

d. Under HealthMonitor:

o In PartitionHMTable Settings, change TrustedPartition NameRef from wrSb-
¢8641d_partl or simpc_partl to helloWorld_publisher. This is an optional field, so
it can even be removed from the configuration.

o Optionally, change the ErrorActions from hmDefaultHandler to
hmDbgDefaultHandler, in case you want the partitions to stop and not restart on
exceptions.

e. Under Payloads:

o Change PartitionPayload NameRef from wrSbc8641d_partl or simpc_partl to hel-
loWorld_publisher.

o Create a copy of the PartitionPayload, and change NameRef to helloWorld_sub-
scriber.

f. Save the changes to wrSbc8641d_default.xml or simpc_default.xml, depending on your
platform.

3. For simpcVx653-2.3gcc3.3.2 only:

a. Open helloWorld_ConfigRecord/simpc.xml.
b. Change the PhysicalMemory Size to 0x04000000.

42

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

c. In the ramPayloadRegion tag, change Base Address to 0x23000000.
d. Change the payloadMemory Size to 0x2000000.

e. Save the changes to simpec.xml. After the changes, it should look like this:

<PhysicalMemory Size="0x04000000" Base Address="0x20000000">

<kernelMemoryRegion Size="0x00600000"/>
<kernelConfigRecordRegion Size="0x00010000"/>

<kernelPgPool Size="0x00200000"/>

<portRegion Size="0x00200000"/>

<hmLogRegion Size="0x00100000"/>

<ramPayloadRegion Size="0x00000000" Base Address="0x23000000"/>
<aceMemoryRegion Size="0x00000000" Base Address="0x20C00000"/>
<userMemoryRegion Size="0x0b000000" Base Address="0x20C00000"/>

</PhysicalMemory>
<payloadMemory Size="0x2000000" Base Address="0x0"/>

4. Under helloWorld_ModuleOS, Kernel Configuration:

a. Include the socket library component. Choose one of the following:

d.

e Include the Wind River Socket Library from
hardware->peripherals->

BSP configuration variants->
Socket I/O Device [INCLUDE_SOCKET_DEV].

Or

o Include the RTI Socket Library from
hardware->peripherals->

BSP configuration variants->
RTI's Socket I/0 Device [INCLUDE_RTI_SOCKET_DEV].

Include development tool components->
debug utilities INCLUDE _DEBUG_UTIL)]. This is needed to enable worker tasks.

Optionally, include target-resident shell components, and any other components you want to
include in the ModuleOS. Note that the target-resident shell component may be too large to
include in SimPC without additional memory tuning.

Save the changes to Kernel Configuration.

See the RTI Connext DDS Core Libraries Platform Notes for a complete list of required
kernel components for each platform.

5. Build the target helloWorld_ModuleOS->ADD NEEDED.

43

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

L™ Project Explarer 23 = B

5 2@~
= IEJI helowiorld (cworks 653 2,3 Intearation Proje|#
Ho 1
ol nek
M ram
ol Fam
7-BE helloarld_ConfigRecord (Yaborks 653 2.

=B helloworld_Madule0s (vtiorks 653 2.3 M

o Shs

+-[hjll Includes FLenane Fz
=% PPCe04gmug
L= PPCE04ONY 3¢ pielete Delete

== PPCE04gnu

(2= PPCEO4gnU Open YeWorks 653 2.3 Development Shell

= PPCE04gru ™% Build Target

L= PPCE04anU #+* Bijild Project Chel+ShifE+A

¥ (g wrSbeattls o Rebuild Project
priCamps, b

Build Cptions r
priParams.k P
[usrAapplnit, Properties Alt+Enter
m e e Tk R
< | 2

6. Generate example code with rtiddsgen.

a. Create a directory to work in. In this example, we use a directory called myhello.

b. In the myhello directory, create a file called HelloWorld.idl that contains a user-defined data
type:

struct HelloWorld {
string<128> msg;
}i
c. Use rtiddsgen to generate sample code and a makefile, as described in Generating Code with

RTI Code Generator, in the RTI Connext DDS Core Libraries Getting Started Guide. Choose
either C or C++.

For C:
rtiddsgen -language C -example <architecture> HelloWorld.idl
For C++:

rtiddsgen -language C++ -example <architecture> HelloWorld.idl

44

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

The supported values for <architecture> are listed in the Release Notes (RTI_ConnextDDS
CoreLibraries_ReleaseNotes.pdf), such as sbc8641Vx653-2.3gcc3.3.2 or simpcVx653-
2.3gcc3.3.2.

d. Edit the generated example code as described in Generating Code with RTI Code Generator,

in the RTI Connext DDS Core Libraries Getting Started Guide.

7. Import the generated code into the application.

a.

b.

Right-click helloWorld_publisher and select Import.

In the Import wizard, select General, File System, then click Next.

c. Browse to the myhello directory.

Select the generated files, except HelloWorld_subscriber.

If and only if you are using the Wind River socket library: import sockLib.c from the socket
library into the project.

Right-click usrApplnit.c and delete it.

Repeat the same process for helloWorld_subscriber, this time importing HelloWorld_sub-
scriber instead of HelloWorld_publisher.

8. Configure properties for the application.

a.

Right-click helloWorld_publisher and select Properties.

i. Select Build Properties in the selection list on the left.
ii. In the Build Macros tab:

e Add a new macro, NDDSHOME, and set its value to the location where Con-
next DDS is installed. If this is in a directory with spaces in the path (such as Pro-
gram Files), put quotation marks around the whole path. For the path, use
forward slashes ("/"), not backslashes ("\").

o Change the BLACKBOX value to helloWorld_publisher.
iii. For C++ only:

o In the Build Tools tab, select Build tool: C++-Compiler.

« Change Suffixes to *.cxx.

iv. Click OK.

45

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

'3 Properties for helloWorld_publisher (helloWorld_publisher. pm) A=)
Build Properties -
REsairos
Brary Parser Rl e - -
Build Properties @ Buid Support and Specs | & BuldTools | § Buid Magos | (= Buid Paths | B Libraries
Budlders: -
CfC++ General Buld tock C4+-Compler] [riew... | [Rename...] [copy... | [Dekete... |
Code Coverage Analyrer)
Progect Info
Praject References Suffives: | ".oox
RunjDebug Settings Buld output generation
Task Tags)
Vaddat (%) Ganerated buld output is an object

() Generated buld output is & buld target

Build spec spedific sattings

Active buld spec: PPCB0Agu v

Derived suffix: "o

Command: ¥ | echo Duidng $87; Yeccomplerprefin®e $TOOL_PATH)ocS{TOOLARCH) A

-BE(WIND_GNU_PATH)/S{WIND_HOST_TYPE)/b fgcc b/
DebugModeFiags ¥, %TooFlags% $(ADDED_C+4FLAGS) lndudes™s

Tool Flags. .. # -arsi fno-zero-niBialized-n-bes ${CFLAGS_ARCH) -Wal -mvihreads
' DCPU=${CPU) DTOOL=gru ${DEFINES) -MD -MP

teon Debugmade... & | -fuolatie -no-bultin -membedded -fo-exceptions ~fo-rtti -DCERT

@ oc J[conce |

For C: Right-click helloWorld_publisher.

For C++: Right-click helloWorld_publisher, Build Targets,
helloWorld_publisher-pm.

c. Select Properties.

d. In the Build Macros tab, add -DRTI_VXWORKS -DRTI_VX653 to DEFINES.

46

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

Build Properties
Specily buld banget properties,

o Buld Support and Specs | (B Buld Target | BT Contert | F Buld Tooks ¥ BuldMsccd | [Buld Paths | B Lbraries

Buld macro defindions:

e
PROOECT_TVRE
DEFIHES
AFF_WAME

il spes spechic sebtings

Adtive bagldl iese; | PRCEIEGML

aree (o
U

TOOLARCH
TOOL_PATH
OFLAGS_ARCH
LINKER:_SCRIPT
WL_FRE
BLACKEC
PRRTADDR
LIBPATH

L1BS

ishue

[

DRTL_VOMORKS AT Vieea
heslowiorkd _publksher

Walur (Bud spac speciic)
PROGH

po<
8 s G0 2
$IPRI_ROCT_DIRHAFP_MAME) s

$PR)_ROOT QIR Meloiiorkd ConfigRiecondfwr it 1d_ds.,
Freloiorkd_publesher

e. In the Build Paths tab, select the appropriate ‘Active Build Spec’ setting (such as PPC604gnu
or SIMNTgnu). Then add these include directories, depending on your platform:

sbc8641Vx653-2.3gcc3.3.2:

-IS(WIND_BASE)/target/config/wrSbc8641d

-ISINDDSHOME)/include

-ISINDDSHOME)/include/ndds

simpcVx653-2.3gcc3.3.2

-IS(WIND_BASE)/target/config/simpc

-ISINDDSHOME)/include

-ISINDDSHOME)/include/ndds

For sbc8641Vx653-2.3gcc3.3.2, the Build Paths tab will look like this:

47

5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms

Buikd Progperties

Speafy buld target propertes.

O Buld Suppert e Specs |) Bulie Target | BT Content

Buld spec speofic settings

Active bulld gpec | PPCEIHgR

-LS{WIND_BASE) ftarget foonfig e Shcli-4 1d
TSMHDOSHOME) include
1 S{MHOOSHOME) inclucde findds

In the Libraries tab:

oF BuliToss | § BuldMacros | = BuldPaths | i |bvanes

Add to al...

it

H

Add the following files, depending on your platform and language:

sbc8641Vx653-2.3gcc3.3.2

simpcVx653-2.3gcc3.3.2

For C++ Only:

$(WIND_BASE)/target/vThreads/lib/objPPC604gnuvx/
vThreadsCplusComponent.o

For C++ Only:

$(WIND_BASE)/target/vThreads/lib/objSIMNTgnuvx/
vThreadsCplusComponent.o

ForC++ Only:

$(WIND_BASE)/target/vThreads/lib/objPPC604gnuvx/
vThreadsCplusLibraryComponent.o

ForC++ Only:

$(WIND_BASE)/target/vThreads/lib/objSIMNTgnuvx/
vThreadsCplusLibraryComponent.o

Foralllanguages:

$(NDDSHOME)/lib/
sbc8641Vx653-2.3gcc3.3.2/libnddscore.so

$(NDDSHOME)/lib/
sbc8641Vx653-2.3gcc3.3.2/libnddsc.so

Foralllanguages:

$(NDDSHOME)/lib/
simpcVx653-2.3gcc3.3.2/libnddscore.so

$(NDDSHOME)/lib/
simpcVx653-2.3gcc3.3.2/libnddsc.so

ForC++ Only:

$(NDDSHOME)/lib/
sbc8641Vx653-2.3gcc3.3.2/libnddscpp.so

ForC++ Only:

$(NDDSHOME)/lib/
simpcVx653-2.3gcc3.3.2/libnddscpp.so

Make sure you have added the libraries as fully qualified names (without -1 or -L.).

48

5.3 Running Connext DDS Applications on an Sbc8641d Target

If and only if you are using the RTI socket library: Add one of the following libraries to link
with. This is an example for sbc8641Vx653-2.3gcc3.3.2:

$(NDDSHOME)/partition_os/lib/ sbc8641Vx653-2.3gcc3.3.2/

Dynamic release i
libvx_653_socket_posWrapper.so

$(NDDSHOME)/partition_os/lib/ sbc8641Vx653-2.3gcc3.3.2/

Dynamic debu
y J libvx_653_socket_posWrapperd.so

$(NDDSHOME)/partition_os/lib/ sbc8641Vx653-2.3gcc3.3.2/

Static release _
libvx_653_socket_posWrapperz.a

$(NDDSHOME)/partition_os/lib/ sbc8641Vx653-2.3gcc3.3.2/
Static debug

libvx_653_socket_posWrapperzd.a

& Click OK.

For sbc8641Vx653-2.3gcc3.3.2 and the Wind River socket library, it should look like this:

Build Properties -

Speafy buld tanget propertes.
¥ Buld Support and Specs | B Buld Target | BT Content | oF BukiTools | $ Bulkd Macros | (= Buld Paths | B Libranes

il spec specic pettings

Acties bold s | PPCEMGA W |
J | Librara:
Library drecthes Add...
L. reeboiorld_PartibonC InlloWorld_PartiborOS -stbs.o | |[—————
SANTND_BACE] ftangetfe Threads M lobPPCe04gruna e ThreadsCplsComponent. o Add o al...
SONIND_BASE) ftangetfy Thresds i fobPPC B0-4grunng v ThrnesdsC plues varyComponenit.o
HMNDOSHOME) by fsbrBEA 1E53-2. 3007, 1.2 Mnddscore 5o Riemove. ..
$NDOSHOME) b fsboBs4 1 Va653-2. 3goc3. 3. 2Abnadds:. so - —
HNDOSHOME) b sbrBS 4 1Va653-2. 3goc3. 3. 2Mbnddecnp. so Remove from ol

For sbc8641Vx653-2.3gcc3.3.2 and the RTI socket library, it should look like the above
image plus the RTI socket library.

h. Repeat the same process for helloWorld_subscriber.
9. Build the Integration Project.

5.3 Running Connext DDS Applications on an Sbc8641d Target

1. Boot up your target board with the kernel created by the Integration project.

2. Ifthe Connext DDS applications are in schedule 0, they will start up automatically, and you should
see the publisher and subscriber communicating with each other.

49

5.3 Running Connext DDS Applications on an Sbc8641d Target

3. Ifthe Connext DDS applications are not in schedule 0, use this command to change to the desired
schedule: arincSchedSet <Schedule number>.

50

Chapter 6 Getting Started on VxWorks 653
v2.5.x Systems

This chapter provides simple instructions on how to configure a kernel and run Connext DDS
applications on a VxWorks 653 version 2.5.x system. It shows specifically a VxWorks 653 2.5.0.1
example, which should also serve as a guide for other 2.5.x versions. Please refer to the doc-
umentation provided by Wind River Systems for more information, as well as the RTI Core Librar-
ies and Ultilities Custom Support for VxWorks 653 Version 2.5 Platforms (RTI_ConnextDDS _
CoreLibraries_PlatformNotes VxWorks653 v2.5.pdf).

Note: The memory settings in this document are specifically for the examples shown. Each version
of Connext DDS will likely require updated memory settings. Y ou will find these memory settings
in the VxWorks section of the RTI Connext DDS Core Libraries Platform Notes for each version.

Developing a complete system typically involves the cooperation of developers who play the fol-
lowing principal roles:

o A platform provider, who develops the platform

o An application developer, who develops applications

o A system integrator, who designs and specifies the module, and integrates a set of applic-
ations with a platform to create a module

For more information on these roles, please see the VxWorks 653 Configuration and Build Guide.

This document assumes the above distribution of development responsibilities, with the Connext
DDS Core Libraries being a part of the application. This document is targeted towards platform pro-
viders, application developers, and system integrators.

For platform providers, this chapter indicates what your system must provide to Connext DDS.
Platform providers must provide a platform that application developers will use to create the applic-
ation. The provided platform must support worker tasks and the socket driver. For the actual list of

51

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

components, refer to Table 9.3, “Building Instructions for VxWorks 653 Architectures,” in the Platform
Notes.

For application developers, this chapter describes how to create Connext DDS applications. Application
developers must use the platform provided by the platform provider. To create a Connext DDS application,
follow the steps in 6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x below (start with the
step to Generate example code with rtiddsgen. on page 60, through the step to Configure properties for
the application. on page 61).

For system integrators, this document describes how to combine the platform from the platform provider,
and the application from the application developer, and create the system to be deployed. System integ-
rators must create an integration project using the module OS and partition OS provided by the platform
provider, and the application provided by the application provider. To create a system capable of running
Connext DDS applications, the system integrator needs to create a ConfigRecord considering the require-
ments noted in the step to Edit the XML file in 6.1 Creating Connext DDS Applications for VxWorks
653 2.5.x below.

For someone creating a Connext DDS application, this document provides an example from the ground
up.

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

This section contains instructions for creating Connext DDS applications for the VxWorks 653 v2.5.0.1
platforms (ppce500v2Vx653-2.5gcc4.3.3). The screenshots show the process for this specific platform and
version of VxWorks. Note that these instructions will vary from those for other VxWorks 653 versions,
such as v2.3 and others.

1. Create an integration project with two partitions (one for the publisher, one for the subscriber). Fol-
low the instructions from Wind River for doing this. The following screenshots will guide you
through the process.

a. Create a new Workbench project.

52

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

b. For the Target operating system, select VxWorks 653 2.5.0.1.

¥] New Wind River Workbench Project X

Target Operating System —

Select the target operating system for the project. [

Target operating system: iVxWorks 653 2.5.0.1 [vl

c. For Build type, select Integration Project.

New Wind River Workbench Project

Build Type —
Select the build type for the project.

Build type: iIntegration Project R4

d. Create a project named helloWorld in the workspace.

] New VxWorks 653 Integration Project X

Project

Create a new \VxWorks 653 integration project. B

Project name: Ihelanand|

e. Select the appropriate Board Support package. Make sure the debug Build spec is selected.
This example assumes the fsl p2020 rdb AMP_COREO board support package is selected.

K] New VxWorks 653 Integration Project x
Project Setup \
Specify a project base. B

Project kwse

Board support package: ifs| p2020 rdb AMP COREO vl

Build spec: PPCE500V2gnu.debug ‘- |

53

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

f. Select the default options for adding the ConfigRecord, ModuleOS, and PartitionOS. Make
sure the “Add a reference to the corresponding project” check box is selected.

3 Specify Configuration record X

(®) Create a new project: |he||oWorId_ConﬁgRecord

(O Use an existing project: 01 osapi ConfigRecord

(O Use an existing image path: |

‘Add a reference to the corresponding project

Cancel | (o]'4

3 Specify Module operating system

(») Create a new project: |heIIDWDrId_M0du|eOS

(0 Use an existing project: 01 osapi_Medule0s

(O Use an existing image path: |

[¥]iAdd a reference to the corresponding project

Cancel oK

Partition operating system

(®) Create a new project: |he||uW0r|d_Partiti0nOS

() Use an existing project: 01 osapi_Partition@s

(O Use an existing image path: |

[¥]iAdd a reference to the corresponding project

Cancel oK

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

g. Create two partitions, helloWorld_publisher and helloWorld_subscriber, to create a Pub-

lisher and a Subscriber application, respectively. Make sure the “Add a reference to the cor-

responding project” check box is selected.

) Specify Partition X
(») Create a new project: Ihellch:rId_subscriber
(O Use an existing project: 01 osapi_Partiticnl |- |
(O Use an existing image path: I Erowse..,
Add a reference to the corresponding project

Cancel oK
h. Now you are ready to create the Integration Project.
3 New VxWorks 653 Integration Project X

Partition Setup

Specify the module 0S, the partition 0S, the config record, and the list of partitions. If
none is specified, any of these can be added later anytime manually.

-Configuration record
Name: Project: Image path: Reference:
IheIIoWorId_Conﬁ | | IheIIoWorId_Conﬁ Set...| clearl
-Module operating system
Name: Project: Image path: Reference:
|helloworld_modL | | |helloworld_mod. Set...| CIear|
-Partition operating system
Name: Project: Image path: Reference:
IhelloWorId_Partit | | IhelloWorId_Partit Set...| clear|
-Partitions
‘ Name Project Image path Reference | ‘Addl
helloworld_puk helloworld_publisher Edit |
helloworld_sub helloworld_subscriber
| RemoveL

()

< Back Mext =

Cancel Finish

1. Click Finish to create the Integration project.

55

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

This will create an integration project with ConfigRecord, ModuleOS, PartitionOS and two
partitions, helloWorld_publisher and helloWorld_subscriber.

-
- & helloworld (v ; 653 2.5.0.1 Integration Project)
M net
M ram
Mo ram
b BE helloworld_ConfigRecord (\sworks 653 2,5.0.1 Configuration Record Project)
b B helloworld_Module0s (\vxworks 653 2.5.0.1 Module Operating System Froject)
b BE helloworld_PartitionOS (\WxWorks 6532 2,5.0.1 Partition Operating Systermn Project)
b B4 helloworld_publisher (\vxworks 653 2.5.0.1 Application Project)
b B2 helloworld_subscriber (\vixWorks 653 2,5.0.1 Application Project)
Pl Includes
| & Makefile

| & Makefile.rules

[& Makefile.vars

2. Edit the XML file. Depending on your platform, open fsl_b4860 qds AMP_COREOQ_default.xml
and make the changes noted below. By default, the file opens in design mode. Y ou may want to
switch to source mode, which makes it easier to copy and paste sections, which is required in later
steps.

(5 Project xplorer 3 SRR I
v 12 helloworld (vxworks 553 2.5.0.1 Integration Project)
HE net
M ram k
M rom
- BS helloworld_ConfigRecord (\vxWorks 653 2.5.0.1 Configuration Record Project)
@ Module Configuration [fsl_ p2020_rdb_AMP_COREO_default xml)
1 configRecord bin
Ht configRecord.reloc
b ! Includes

B fsl_p2020 rdb_AMP COREO_defzult xml
[x) fsl_p2020_rdb_AMP_COREOQ .xml

a. Under Applications:

1. Change the application name from fsl_b4860_qds_ AMP_COREOQ_partl to hel-
loWorld_publisher.

ii. In MemorySize, make these changes:

56

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

e MemorySizeBss = "0x5000"
o MemorySizeText = "0xBFF000"
o MemorySizeData = "0xf000"
o MemorySizeRoData = "0xff000"

It should look like this when you are done:

<MemorySize MemorySizeBss="0x5000"
MemorySizeText="0xBFF000"
MemorySizeData="0x£f000"
MemorySizeRoData="0xf£000" />

iii. Create a copy of the application helloWorld_publisher and rename it helloWorld_
subscriber.

iv. Change the application name from fsl b4860 qds AMP_COREQ _partl to hel-
loWorld_publisher.

v. In MemorySize, make these changes:

o MemorySizeBss = "0x5000"
o MemorySizeText = "0xBFF000"
o MemorySizeData = "0xf000"
o MemorySizeRoData = "0xff000"

It should look like this when you are done:

<MemorySize MemorySizeBss="0x5000"
MemorySizeText="0xBFF000"
MemorySizeData="0xf000"
MemorySizeRoData="0xf£f000" />

vi. Create a copy of the application helloWorld_publisher and rename it helloWorld _
subscriber.

b. Under Shared LibraryRegions, change MemorySize MemorySizeBss to 0x6000.

c. Under Partitions:
i. Change the partition name from fsl_b4860_qds_AMP_COREO(_partl1 to hel-
loWorld_publisher.

ii. Change the Application NameRef from fsl_b4860_qds_ AMP_COREOQ_part2 to hel-
loWorld_publisher.

ii. Under Settings, make these changes:

57

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

1v.

o RequiredMemorySize = "0x1000000"
o numWorkers="10"
o« maxGlobalFDs ="50"

Create a copy of the partition application helloWorld _publisher and rename it hel-
loWorld_subscriber. Change its ID to 2 and its Application NameRef to hel-
loWorld_subscriber.

d. Under Schedules:

1.

1.

iil.

1v.

Rename PartitionWindow PartitionNameRef from fsl b4860 qds AMP_COREO0 _
partl to helloWorld_publisher.

Create a copy of the PartitionWindow and change PartitionNameRef to hel-
loWorld_subscriber.

Add another PartitionWindow, with PartitionNameRef “SPARE” and Duration
0.05. This partition window schedules the kernel, allowing time in the schedule for sys-
tem activities like network communications.

Optionally:

« If you want only one of the applications to run (helloWorld_publisher or hel-
loWorld_subscriber), then you only need a partition window for the one you
want to run.

 If'you do not want the Connext DDS application to run immediately when the
system boots up, change the schedule ID to non-zero and add a SPARE schedule
with ID 0.

e. Under HealthMonitor:

1.

1.

In PartitionHMTable Settings, change TrustedPartition NameRef from fsl_b4860
qds_ AMP_COREO(_partl to helloWorld_publisher. This is an optional field, so it
can even be removed from the configuration.

Optionally, change the ErrorActions from hmDefaultHandler to
hmDbgDefaultHandler, in case you want the partitions to stop and not restart on
exceptions.

f. Under Payloads:

1.

1.

Change PartitionPayload NameRef from fsl_b4860_qds AMP_COREO(_partl to
helloWorld_publisher.

Create a copy of the PartitionPayload, and change NameRef to helloWorld_sub-
scriber.

58

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

e. Save the changes to fsl b4860_qds AMP_COREOQ _partl_default.xml.

3. Depending on the project example you are using, you may need to set the ramPayLoad size to
zero. If needed, go to the ConfigRecord project and modify the <BSP>.xml file (fsl p2020_rdb
AMP_COREO0.xml in this example) and set the rampPayloadRegion size to zero. It should look
like this after being modified:

> fLb4350_qds_AMP_COREOm) 35
<HardwareConfiguration=
<PhysicalMemory S1ze="0x10000000" Base Address="0"=>
<kernelMemoryRegion Size="0x01400000"/=
<kernelConfigRecordRegion Size="0x00100000"/=
<kernelPgPool Size="0x00400000" /=
<portReglon S1ze="0x00200000"/=>
<hmLogRegion Si1ze="0x00100000"/=>
<!-- region from Ox7f400000 to Ox80000000 1s reserved to QMAN and BMAN
<!-- RAM payload region 1s used just for testing, keep 1t small --=
<ramPayloadRegion Size="[Jqoeelelelely® Base_Address="0x0F000000" />
<aceMemoryRegion Size="0x00500000" Base_Address="0x03400000" /=
<userMemoryReglion Size="0x0D000000" Base Address="0x02000000" /=
</PhysicalMemory=

4. Under helloWorld_ModuleOS, Kernel Configuration:

v 2L helloworld (vxWorks 653 2.5.0.1 Integration Project)
M net
M ram
M rom
b BE helloworld_ConfigRecord (vixcworks 653 2.5.0.1 Configuration Record Project)
< B hellowerld Module0s (vxworks 653 2.5.0,1 Module Operating System Project)
M ADD NEEDED
M payloadObjs

a. Include network components->network private components->FACE POSIX support
driver [INCLUDE_FACE_POSIX_SOCKET_DRYV].

b. Include development tool components->
debug utilities INCLUDE _DEBUG_UTIL)]. This is needed to enable worker tasks.

59

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

c. Optionally, include target-resident shell components and any other components you want to
include in the ModuleOS. Note that the target-resident shell component may be too large and
you may need additional memory tuning.

d. Save the changes

to Kernel Configuration.

See the RTI Core Libraries and Utilities Custom Support for VxWorks 653 Version 2.5
Platforms (RTI_CoreLibrariesAndUtilities PlatformNotes VxWorks653 v2.5.pdf) for
a complete list of required kernel components for each platform.

5. Build the target helloWorld_ModuleOS->ADD_NEEDED.

L Project Explorer 2

I
di
50

[}

< £ helloworld (\vxWorks 653
¥ net
M) ram
) rom

> BE helloworld_ConfigReco

= B helloworld_Moduleos

il ADD_NEEDED
1 payloadObjs
M sms

Pl Includes

P ggfsl_p2020_rdb_AMP)
(= PPCES00V2gnu.ceri
(= PPCES00V2gnu.ce
(= PPCESO0V2gnu.cer]
(= PPCES00V2gnu.del
(= PPCE500V2gnu.del

I_] = Build Targely Ctrl+B Ctrl+c

2.5.0.1 Integration Project)

rd (WxWorks 653 2.5.0.1 Configuration Record Project)

(Wwiworks 652 2.5.0.1 Module Operating System Project)

@ Kernel Configuration

Copy Ctrl+C

= Paste Ctrl+v
¥ Delete Delete
Move,...

Rename... F2

Open VxWorks 653 2.5.0.1 Development Shell

** Build Project Ctrl+B Ctrl+P
2 Rebuild Project
Build Options 3
Properties Alt+Enter

(= PPCES00V2gnu.de

6. Generate example code

Ug_TomPayoad

with rtiddsgen.

a. Create a directory to work in. In this example, we use a directory called myhello.

b. In the myhello directory, create a file called HelloWorld.idl that contains a user-defined data

type:

struct HelloWor
string<l
}i

1d {
28> msg;

c. Use rtiddsgen to generate sample code and a makefile, as described in Generating Code with
RTI Code Generator, in the RTI Connext DDS Core Libraries Getting Started Guide. Choose

either C or C++.

60

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

For C:

rtiddsgen -language C -example ppce500v2Vx653-2.5gcc4.3.3 HelloWorld.idl

For C++:

rtiddsgen -language C++ -—-example ppce500v2Vx653-2.5gcc4.3.3 HelloWorld.idl

For more information on the ppce500v2Vx653-2.5gcc4.3.3 architecture, please see the sep-
arate document, RT1 Core Libraries and Utilities Custom Support for VxWorks 653 Version
2.5 Platforms (RTI_ConnextDDS_CoreLibraries PlatformNotes VxWorks653
v2.5.pdf).

Edit the generated example code as described in Generating Code with RTI Code Generator,
in the RTI Connext DDS Core Libraries Getting Started Guide.

7. Import the generated code into the application.

a.

o

L =

Right-click helloWorld _publisher and select Import.

In the Import wizard, select General, File System, then click Next.
Browse to the myhello directory.

Select the generated files, except HelloWorld_subscriber.
Right-click usrApplnit.c and delete it.

Repeat the same process for helloWorld_subscriber, this time importing HelloWorld_sub-
scriber instead of HelloWorld_publisher.

8. Configure properties for the application.

a.

Right-click helloWorld_publisher and select Properties.
1. Select Build Properties in the selection list on the left.
ii. In the Variables tab:

o Add a new variable, NDDSHOME, and set its value to the location where Con-
next DDS is installed. If this is in a directory with spaces in the path (such as Pro-
gram Files), put quotation marks around the whole path.

o Change the BLACKBOX value to helloWorld_publisher.
iii. For C++ only:
 In the Tools tab, select Build tool: C++-Compiler.

o Change Suffixes to *.cxx.

61

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

iv. Click OK.
@ Properties for helloworld_publisher | X
|type filter text & | Build Properties (o v - .
b Resource

Binary Parser
Builders

b C/C++ General
Code Coverage Analyz
External File
Project Info
Project References
Refactoring Histery
Run/Debug Settings
Task Tags

Active build spec: PPCES00V2gnu [w |
b Validation
Derived suffix: *,0
Command: # echo "building $@"%ccompilerprefix%
$(TOOL_PATH)cc$(TOOLARCH) -B$(WIND_GNU_PATH)/
$(WIND_HOST_TYPE)/lib/gcc-lib/ %DebugModeFlags%
%ToolFlags% $(ADDED_C++FLAGS) %Includes% =
Tool Flags... 7 |-an5i fro-zero-initialized-in-bss ${CFLAGS_ARCH) - |ﬂ =
Al |« 2]

#Build Support and Specs ¥ Tools |[E>~Paths | # Defines |H¢Libraries | $ Variablesl b

wild tool: C++-Compiler [v| New... |Rename...‘ Copy... | Delete.”|

uffixes: |*‘c>o<

3uilld output generation

(® Generated build output is an object

O Generated build output is a build target
(] Build target can be passed

3uild spec specific settings

Cancel ‘ 0K |

For C: Right-click helloWorld_publisher.
For C++: Right-click helloWorld_publisher, Build Targets,
helloWorld_publisher-pm.

Select Properties.

In the Variables tab, add -DRTI_ VXWORKS -DRTI VX653 to DEFINES.

62

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

39 Properties for helloworld_publisher x
Itype filter text & Build Properties P
P Resource

w#Build Support and Specs |-u§“TooIs IEbPathsl # Defines |&Libraries ¢ Variables B
Binary Parser
» Build Properties jName value New...
Builders PROJECT_TYPE APP Edt...
b C/C++ General DEFINES -DRTI_VXWORKS -DRTI VX653 T
Code Coverage Analyz hel\o\ﬂ.‘or\d_pub\ishel —
Re b
External File name
Project Info Copy...
Project References m—
Refactering History
Run/Debug Settings
Task Tags
b validation Build spec specific settings
Active build spec: PPCES00V2gnu - | —
Name (Common) Value (Build spec specific) New. ..
PPCES0Q0OV2 Edit...
TOOLARCH ppc
L
TONI BATH |
Gl [| Ll [
@ Cancel | oK |

In the Paths tab, select the appropriate ‘Active Build Spec’ setting (such as PPCE6500gnu).
Then add these include directories:

« -I$(WIND_BASE)/target/config/fs|_p2020_rdb_AMP_COREO
« -I$(NDDSHOME)/include
« -I$(NDDSHOME)/include/ndds

The Build Paths tab will look like this:

Build Properties $o v oD v -

@# Build Support and Specs I:FTools (=Paths I # Defines I!ia.l.ibraries I $ Variables

Build spec specific settings

Active build spec: PPCES00V2gnu [vI

Include paths:

Include directories Generate...
-I$(WII‘~JD_B.ASE:J_,'t:arget{‘u‘Thre.adS{h Edit
-15(WIND_BASE)ftargetfvalfh
Add...

-Is(WIND_BASE)target/configffsl_p2020_rdb_AMP_COREO
-$(NDDSHOME)/include Add to all...
-${(NDDSHOME)/include/ndds

Remowve...

63

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

f. In the Libraries tab, add the following files, depending on your language. Note that in this
example we use RTI's dynamic libraries:

For C++:

$ (WIND BASE) /target/vThreads/lib/objPPCE6500gnuvx/vThreadsCplusComponent.o

$ (WIND BASE) /target/vThreads/lib/objPPCE6500gnuvx/vThreadsCplusLibraryComponent.o
$ (WIND BASE) /target/vThreads/lib/objPPCE6500gnuvx/vThreadsLocaleComponent.o

$ (WIND_BASE) /target/vThreads/1lib/objPPCE6500gnuvx/ ctype tab.o

$ (NDDSHOME) /1ib/ppce500v2Vx653-2.5gcc4.3.3/1libnddscore. so

$ (NDDSHOME) /1ib/ppce500v2Vx653-2.5gcc4.3.3/1ibnddsc. so

$ (NDDSHOME) /11ib/ppce500v2Vx653-2.5gcc4.3.3/1libnddscpp.so

For C:

$ (NDDSHOME) /1ib/ppce500v2Vx653-2.5gcc4.3.3/1libnddscore. so
$ (NDDSHOME) /1ib/ppce500v2Vx653-2.5gcc4.3.3/1ibnddsc. so

If you used RTI’s static libraries (rtiddscorez.a, rtiddscz.a, and/or rtiddscppz.a), make sure
to add this option to the linker command in the Tools tab within the Build Properties of your
partitions: "--whole-archive %Libraries% --no-whole-archive". You can see an example
in the following image:

Build Properties

Specify build target properties.
@ Build Support and Specs | i Target | [fiContent # Tools |Epaths | # Defines |5;Libraries | $ Varie

Build tool: PartiallmageLinke'vl New.., |F'enar'ne‘..| Copy... | Evelete...l

Suffixes:

Build output generation

(O Generated build output is an object

(®) Generated build output is a build target

Build target can be passed

Build spec specific settings

Active build spec: PPCE500V2gnu |-
Derived suffix: k. pm
Command: Z | |lecho "building $@":%linkerprefix% $(TOOL_PATH)Id${TOOLARCH) %

DebugModeFlags% %ToolFlags% -0 %O0utFile% %0bjects%
L Aelpl SRl [EH]--whole-archive %L ibraries% -- no-whole-archive
$(LIBPATH) $(LIBS) $(ADDED_LIBPATH) $(ADDED_LIBS)

g. Click OK.

For C++, it should look like this:

64

6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x

Build Properties é v & v -

Specify build target properties.

@ Build Support and Specs I | Target | 7 Content |§*Tools |BPaths | # Defines 3

-Build spec specific settings

1| $ Variables

Active build spec: PPCES00V2gnu [vl

ﬂ Libraries: X

Library directives Edit... |

f . fhelleWorld_cPlus_PartitionOS/hellowerld_cPlus_Partition0S-stubs.o

flocalpsxworks\vxwWorks653-2.5.0.1 patchespvxworks653-2.5.0. 1jtargetvThreads
flocalpxworks\xWorks653-2.5.0.1 patchespvxworks653-2.5.0. 1jtargetvThreads Addto all...

flocalpsxworks\vxWorks653-2.5.0.1 patchespvxworks653-2.5.0. 1jtargetvThreads Remove... |

flocalpxworks\xWorks653-2.5.0.1 patchespvxworks653-2.5.0. 1jtargetvThreads Remove from all... |
$(NDDSHOME)/lib/ppce500v2vx653-2.5gccd.3.3/libnddscore. so

$(NDDSHOME)/lib/ppce500v2vx653-2.5gccd.3.3/libnddsc.so Up |
$(NDDSHOME)/lib/ppce500v2Vx653-2.5gcc4.3.3/libnddscpp.so Down |

h. Repeat the same process for helloWorld_subscriber.
9. Build the Integration Project.
10. Add the POSIX interfaces and objects to the partitionOS.
a. Ifyou want to use POSIX API calls, you need to modify the following two files: hel-

loWorld_PartitionOS.xml and Makefile.vars from the partitionOS project.

- Project Explorer

< 12 helloworld (\vxWorks 653 2,5.0.1 Integration Project)

e net
M ram
M rom
> BE helloworld_ConfigRecord (\vsworks 653 2.5.0.1 Configuration Record Project)
> B helloworld_Module0s (vxworks 653 2,5.0.1 Module Operating System Project)

+ BE helloworld_Partition0S (\xworks 653 2,5.0,1 Partition Operating Systern Project)
T pos
e stubs
b il Includes
[ssIMain.c
creation.log
(5] helloworld_Partition0s.Ids
Ei helloworld_Partition©S xml

| & Makefile
B Makefile vars

65

6.2 Running Connext DDS Applications for VxWorks 653 2.5.x

b. The XML file will look like this:

%, helloworld_Partition0S.xml £3
<Shared_Library_API
xmlns="http://www.windriver.com/vxWorks653/SharedLibraryAPI"
xmlns:xi="http://www.w3.0rg/2001/XInclude"
Name="vThreads"

“Name=" template"/=
ide href="$(WIND_BASE) /target/vThreads/config/comps/xml/vthreads.xml" /=
e href="¢(WIND_BASE)/target/vThreads/config/comps/xml/posix.xml" />

</Shared_Library_ API=

c. The Makefile.vars file will look like this:

Makefile.vars 23

wind River Workbench makefile for partition operating system projects.

SSL_NAME = helloworld_Partition0s
CERT = 0

BsP = fsl_b4860_qds_AMP_COREQ
CPU = PPCEBS00

API_FILE = $(SSL_NAME) . xml

LDS_FILE = $(SsL_NAME) . lds

XML_FILE = ../helloworld_configRecord/fsl_b4860_qds_AMP_COREQ_default.xml

BLACKBOX = vxSysLib

SSL_0BJS = (filter-out $(SSL_NAME) -ept.o $(SSL_NAME)-stubs.o,$(patsubst %.c,%.0, $(wils

SSL_0BJS += vThreadsComponent.o vThreadsPosixInit.o vThreadsPosixComponent.o

6.2 Running Connext DDS Applications for VxWorks 653 2.5.x

1. Boot up your target board with the kernel created by the Integration project.

2. Ifthe Connext DDS applications are in schedule 0, they will start up automatically, and you should

see the publisher and subscriber communicating with each other.

3. Ifthe Connext DDS applications are not in schedule 0, use this command to change to the desired

schedule: arincSchedSet <Schedule number>.

66

Chapter 7 Getting Started on Wind River
Linux Systems

This section provides instructions on building and running Connext DDS applications on a Wind
River Linux system.

It will guide you through the process of compiling and running the Hello World application on a
Wind River Linux system.

In the following steps:

o Steps 1-5 must be executed on the host machine in a shell that has all the required envir-
onment variables. For details, see Step 1, Set up the Environment, in the RTI Connext DDS
Core Libraries Getting Started Guide.

e You need to know the name of your target architecture (look in your % NDDSHOME % \lib
directory). Use it in place of <architecture> in the example commands. Y our architecture
might be ‘ppc85xxWRLinux2.6gcc4.3.2°.

o We assume that you have gmake installed. If you have gmake, you can use the generated
makefile to compile. If you do not have gmake, use your normal compilation process. (Note:
the generated makefile assumes the correct version of the compiler is already in your path
and that NDDSHOME is set.)

To create the example applications:

1. Create a directory to work in. In this example, we use a directory called myhello.
2. In the myhello directory, create a file called HelloWorld.idl that contains a user-defined data
type:

struct HelloWorld {
string<128> msg;
}i

67

Chapter 7 Getting Started on Wind River Linux Systems

. Use rtiddsgen to generate sample code and a makefile as described in Generating Code with RTI
Code Generator, in the RTI Connext DDS Core Libraries Getting Started Guide. Choose either C
or C++.

For C:
rtiddsgen -language C -example <architecture> HelloWorld.idl
For C++:

rtiddsgen -language C++ -example <architecture> HelloWorld.idl

Edit the generated example code as described in Generating Code with RTI Code Generator, in the
RTI Connext DDS Core Libraries Getting Started Guide.

. Set up your environment with the wrenv.sh script in the Wind River Linux base directory.

wrenv.sh -p wrlinux-3.0

. With the NDDSHOME environment variable set, build the Publisher and Subscriber modules using
the generated makefile.

make -f makefile HelloWorld <architecture>

After compiling, you will find the application executables in myhello/objs/<architecture>.
. Connect to the Wind River Linux target (using telnet, ssh, serial console, connection manager, etc.)
and start the subscriber application, HelloWorld_subscriber.

HelloWorld subscriber

In this shell, you should see that the subscriber is waking up every 4 seconds to print a message:

HelloWorld subscriber sleeping for 4 sec...
HelloWorld subscriber sleeping for 4 sec...
HelloWorld subscriber sleeping for 4 sec...

. Connect to the Wind River Linux target and start the publisher application, HelloWorld_publisher.
HelloWorld publisher
In this second (publishing) shell, you should see:

Writing HelloWorld, count O

Writing HelloWorld, count 1
Writing HelloWorld, count 2

. Look back in the first (subscribing) shell. You should see that the subscriber is now receiving mes-
sages from the publisher:

68

Chapter 7 Getting Started on Wind River Linux Systems

HelloWorld subscriber sleeping for 4 sec...
msg: “Hello World! {O}"“
HelloWorld subscriber sleeping for 4 sec...
msg: “Hello World! {1}%“
HelloWorld subscriber sleeping for 4 sec...

69

	Chapter 1 Addendum for Embedded Platforms
	Chapter 2 Getting Started on Embedded UNIX-like Systems
	2.1 Building and Running a Hello World Example
	2.2 Configuring Automatic Discovery

	Chapter 3 Getting Started on INTEGRITY Systems
	3.1 Building the Kernel
	3.2 Building and Running a Hello World Example
	3.2.1 Generate Example Code and Project File with rtiddsgen
	3.2.2 Build the Publish and Subscribe Applications
	3.2.3 Connect to the INTEGRITY Target from MULTI
	3.2.4 Load the Application on the Target
	3.2.5 Run the Application and View the Output

	Chapter 4 Getting Started on VxWorks 6.x/7 Systems
	4.1 Building the VSB
	4.2 Building the Kernel
	4.3 Building and Running a Hello World Example
	4.3.1 Generate Example Code and Makefile with rtiddsgen
	4.3.2 Building and Running an Application as a Kernel Task
	4.3.2.1 Using the Command Line
	4.3.2.2 Using Workbench

	4.3.3 Building and Running an Application as a Real-Time Process
	4.3.3.1 Using the Command Line
	4.3.3.2 Using Workbench

	Chapter 5 Getting Started on VxWorks 653 Platform v2.3 Systems
	5.1 Setting up Workbench for Building Applications
	5.1.1 Installing the Wind River Services Socket Library
	5.1.2 Installing the RTI Socket Library

	5.2 Creating Connext DDS Applications for VxWorks 653 v2.3 Platforms
	5.3 Running Connext DDS Applications on an Sbc8641d Target

	Chapter 6 Getting Started on VxWorks 653 v2.5.x Systems
	6.1 Creating Connext DDS Applications for VxWorks 653 2.5.x
	6.2 Running Connext DDS Applications for VxWorks 653 2.5.x

	Chapter 7 Getting Started on Wind River Linux Systems

