RTI Connext DDS

Core Libraries

XML-Based Application Creation
Getting Started Guide
Version 6.0.0

rt)

© 2019 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
February 2019.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, Connext, Micro DDS, the RTI logo,
IRTI and the phrase, “Y our Systems. Working as one,” are registered trademarks, trademarks or service
marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/).

Technical Support

Real-Time Innovations, Inc.
232 E. Java Drive

Sunnyvale, CA 94089

Phone: (408) 990-7444

Email: support@rti.com
Website: https://support.rti.com/

http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Contents

Chapter 1 Introduction 1
Chapter 2 Paths Mentioned in Documentation 3
Chapter 3 A ‘Hello, World’ Example

3.1 Hello World using XML and Dynamic Data 5

3.1.1 Build the Application 6

3.1.2 Run the Application ... 7

3.1.3 Examine the XML Configuration Files Definition 8

3.1.3.1 QoS Definition 9

3.1.3.2 Type Definition 10

3.1.3.3 Domain Definition 10

3.1.3.4 Participant Definition 11

3.1.4 Publisher Application 12

3.1.5 Subscriber Application 14

3.1.6 Subscribing with a Content Filter 15

3.2 Hello World using XML and Compiled Types 16

3.2.1 Define the Data Types using IDL or XML ... 16

3.2.2 Generate Type-Support Code from the Type Definition 17

3.2.3 Build the Application 18

324 Run the Application ... i 18

3.2.5 Examine the XML Configuration Files Definition 20

3.2.6 Examine the Publisher Application 21

3.2.7 Examine the Subscriber Application 23

Chapter 4 Using Prototyper . 26
Chapter 5 Understanding XML-Based Application Creation

5.1 Important Points ... 29

5.2 Loading XML Configuration Files 29

iii

5.3 XML Syntax and Validation 30

5.3.1 Validation at Run Time 30
5.3.2 Validation during Editing . il 30

5.4 Accessing Entities Defined in XML Configuration from an Application_............. 31
5.5 XML Tags for Configuring Entities 31
5.5.1 Domain Library oL 33
5.5.2 Participant Library .. 37

5.6 Names Assigned to Entities . 43
5.6.1 Referring to Entities and Other Elements within XML Files 45

5.7 Creating and Retrieving Entities Configured in an XML File 46
5.7.1 Creating and Retrieving a DomainParticipant Configured in an XML File_....._.. 46
5.7.2 Creating and Retrieving Publishers and Subscribers 47
5.7.3 Creating and Retrieving DataWriters and DataReaders 48
5.7.4 Creating Content Filters .. 49
5.7.5 Using User-Generated Types ... 49

Chapter 6 Generating Applications for Connext DDS Micro

6.1 Paths Mentioned in Documentation 52
6.2 Command-Line Options 54
6.3 Generated Files 55
6.3.1 Integrating Generated Files into Your Application’s Build 56

6.4 A "Hello, World" Example 56
6.4.1 Generate Type-Support Code from the Type Definition oo ooiiiiiiioo.. 56
6.4.2 Generate DDS Entities from the System Definition 58
6.4.3 Examine the XML Configuration Files and the Generated Code ... 59
6.4.3.1 Type Definition .. 60

6.4.3.2 Domain Definition . iiiil. 60

6.4.3.3 DomainParticipant Definition 62

6.4.4 QoS Definition .. il 67
6.4.4.1 DomainParticipant Factory QoS ... L 70

6.4.4.2 DomainParticipant QoOS 70

6.4.4.3 Publisher QOS .. iiiill. 73

6.4.4.4 DataWriter QOS .. 73

6.4.4.5 Subscriber QOS il 76

6.4.4.6 DataReader QOS . . 76

6.4.5 Transport and Discovery Configuration 78
6.4.6 Flow Controllerst 80

6.4.7 Static DiSCOVeTY
6.5 Errors Caused by Invalid Configurations

Chapter 1 Introduction

This document assumes you have a basic understanding of R7TI® Connext® DDS application
development and concepts such as Domains, DomainParticipants, Topics, DataWriters and
DataReaders. For an overview of these concepts, please see the RTI Connext DDS Core Libraries
Getting Started Guide, which is part of your distribution, or you can find it online at https://-
community.rti.com/documentation.

XML-Based Application Creation is a mechanism to simplify the development and programming
of Connext DDS applications. Connext DDS supports the use of XML for the complete system
definition. This includes not only the definition of the data types and Quality of Service settings,
but also the definition of the Topics, DomainParticipants, and all the Entities they contain (Pub-
lishers, Subscribers, DataWriters and DataReaders).

With the traditional approach, an application developer must program explicitly into the code the
actions needed to join a domain, register the data types it will use, create the Topics and all the
Entities (Publishers, Subscribers, DataReaders and DataWriters) that the application uses. Even
for simple applications this “system creation” code can result in hundreds of lines of boiler-plate
code. Besides being error prone, the traditional approach results in larger code-bases that are harder
to understand and maintain. Using XML-Based Application Creation can significantly simplify this
process.

XML-Based Application Creation is a simple layer that builds on top of the standard APIs.
Everything that you do with the XML configuration can also be done with the underlying APIs. In
this manner, an application can be initially developed using XML-Based Application Creation and
transitioned to the traditional API at a later time. This would be useful in case the application has to
be deployed on a platform without a file system or needs to be ported to a DDS-compliant library
that does not support XML-based configuration.

Using XML-Based Application Creation is easy: simply edit USER_QOS_PROFILE.xml to
define:

https://community.rti.com/documentation
https://community.rti.com/documentation

Chapter 1 Introduction

o The data types that will be used to communicate information in the system
o The Topics that will be used in the domain, associating each Topic with a data type
o The DomainParticipants that can potentially be used, giving each a participant name

o The DataWriters and DataReaders present within each DomainParticipant, each associated with its
corresponding Topic.

The application code simply indicates the participant configuration name of the DomainParticipant that
the application wants to create. The XML-Based Application Creation infrastructure takes care of the rest:
creating the DomainParticipant, registering the types and Topics, and populating all the configured Entit-
ies.

When the application needs to read or write data, register listeners, or perform any other action, it simply
looks up the appropriate Entity by name and uses it.

XML-Based Application Creation enables several powerful work flows:

o Developers can describe all the Entities that a Connext DDS application will need in an XML file
and then create that application with a single function call, saving many hundreds of lines of setup
code.

» Application descriptions written in XML are usable from all programming languages.

o The complete domain (including the data types and Topics that can be in the domain) can be defined
in an XML file and shared among all the developers and applications.

o The Quality of Service (QoS) that should be used for each DomainParticipant, Topic, DataReader,
and DataWriter can be fully specified in the XML and shared among a group of developers and
applications.

o The XML description of the application can be used in combination with R77 Prototyper to design
and prototype application deployment scenarios, allowing quick testing and validation without the
need for programming.

To use the companion R71 Prototyper, see Using Prototyper (Chapter 4 on page 26).

Chapter 2 Paths Mentioned in Documentation

Chapter 2 Paths Mentioned in Documentation

The documentation refers to:

« <NDDSHOME>

This refers to the installation directory for RTI® Connext® DDS. The default installation paths are:

e Mac® OS X® systems:
/Applications/rti_connext_dds-6.0.0

o UNIX-based systems, non-root user:
/home/<your user name>/rti_connext dds-6.0.0

o UNIX-based systems, root user:
/opt/rti_connext dds-6.0.0

o Windows® systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-6.0.0

o Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-6.0.0

Y ou may also see SNDDSHOME or %NDDSHOME%, which refers to an environment variable
set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users: When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:

“C:\Program Files\rti connext dds-6.0.0\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:
“$NDDSHOME%\bin\rtiddsgen”

o <path to examples>

By default, examples are copied into your home directory the first time you run R77 Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples as
<path to examples>.

Wherever you see <path to examples™>, replace it with the appropriate path.

Default path to the examples:

Chapter 2 Paths Mentioned in Documentation

e Mac OS X systems: /Users/<your user name>/rti_workspace/6.0.0/examples
o UNIX-based systems: /home/<your user name>/rti_workspace/6.0.0/examples
o Windows systems: <your Windows documents folder>\rti_workspace\6.0.0\examples

Where 'your Windows documents folder' depends on your version of Windows. For example,
on Windows 10, the folder is C:\Users\<your user name>\Documents.

Note: You can specify a different location for rti_workspace. Y ou can also specify that you do not
want the examples copied to the workspace. For details, see Controlling Location for

RTI Workspace and Copying of Examples in the RTI Connext DDS Core Libraries Getting Started
Guide.

Chapter 3 A ‘Hello, World’ Example

This chapter assumes that you have installed Connext DDS and configured your environment cor-
rectly. If you have not done so, please follow the steps in the RTI Connext DDS Core Libraries
Getting Started Guide, specifically Chapter 2 “Installation” and Section 3.1 “Building and Run-
ning 'Hello, World". The guide is part of your distribution; you can also find it online at https:/-
community.rti.com/documentation. The guide will help you set both your environment variable
NDDSHOME and, depending on your architecture, the environment variable PATH (on Win-
dows® systems), LD LIBRARY PATH (on Linux® systems), or DYLD LIBRARY PATH
(on Mac® OS X® systems).

3.1 Hello World using XML and Dynamic Data

The files for this example are in the directory <path to examples1>/c0nnext_dds/c++ﬂ1ello_
world_xml dynamic.

This simple scenario consists of two applications, illustrated in the figure below: HelloWorld_pub-
lisher.exe, which writes the Topic, HelloWorldTopic, and HelloWorld_subscriber.exe, which
subscribes to that Topic.

ISee Chapter 2 Paths Mentioned in Documentation on page 3.

https://community.rti.com/documentation
https://community.rti.com/documentation

3.1.1 Build the Application

Figure 3.1: Hello World Domain

HelloWorld Domain

HelloWorld_publisher.exe HelloWorld_subscriber.exe

DomainParticipant DomainParticipant

HelloWorld
Topic

DataWriter }

Publisher

First we will build and run the application, then we will examine the configuration file and source code.

3.1.1 Build the Application

The example code is provided in C++, C#, and Java. The following instructions describe how to build it
on Windows and UNIX-based systems. If you will be using an embedded platform, see the RTI Connext
DDS Core Libraries Getting Started Guide Addendum for Embedded Systems for instructions specific to
these platforms.

To build the example C++ applications on a Windows system:

1. In Windows Explorer, go to <path to examples>\connext_dds\c++\hello_world_xml_dynam-
ic\win32 and open the Microsoft® Visual Studio® solution file for your architecture. For example,
the file for Visual Studio 2012 32-bit platforms is Hello-i86Win32V S2012.sln.

Note: If your Windows SDK Version is not 10.0.15063.0, you may be prompted to retarget the file.
If this happens, in the Retarget Projects window that appears, select an installed version of Windows
SDK and click OK.

2. The Solution Configuration combo box in the toolbar indicates whether you are building debug or
release executables; select Release. Then select Build Solution from the Build menu.

3.1.2 Run the Application

To build the example C++ applications on a UNIX-based system:
1. From your command shell, change directory to <path to examples>/connext_dds/c++/ hello_
world_xml_dynamic.

2. Type:
gmake -f make/Makefile.<architecture>

where <architecture> is one of the supported architectures (e.g., Makefile.i86Linux2.6gcc4.4.5);
see the contents of the make directory for a list of available architectures. This command will build a
release executable. To build a debug version instead, type:

gmake -f make/Makefile.<architecture> DEBUG=1

3.1.2 Run the Application

The previous step should have built one executable: Hello.exe. This application should be in the proper
architecture subdirectory under the objs directory (for example, objs\i86Win32VS2012 in the Windows
example cited below and objs/i86Linux2.6gcc4.4.5 in the Linux example).

To start the publishing application on a Windows system:

From your command shell, go to <path to examples>\connext_dds\c++\ hello_ world xml dynamic
and type:

objs\<architecture>\Hello pub

where <architecture> is the architecture you just built; look in the objs directory to see the name of the
architecture you built. For example, the Windows architecture name corresponding to 32-bit Visual
Studio 2012 is i86Win32VS2012.

To start the publishing application on a UNIX-based system:

From your command shell, change directory to <path to examples>/connext_dds/c++/ hello_world_
xml_dynamic and type:

objs/<architecture>/Hello pub

where <architecture> is the architecture you just built; look in the objs directory to see the name of the
architecture you built. For example, i86Linux2.6gcc4.4.5.

To start the subscribing application on a Windows system:

From a different command shell, go to <path to examples>\connext_dds\c++\ hello_world_xml_
dynamic and type:
objs\<architecture>\Hello sub

where <architecture> is the architecture you just built; look in the objs directory to see the name of the
architecture you built. For example, the Windows architecture name corresponding to 32-bit Visual

3.1.3 Examine the XML Configuration Files Definition

Studio 2012 is i86Win32VS2012.
To start the subscribing application on a UNIX-based system:
From a different command shell, change directory to <path to examples>/connext dds/c++/ hello
world_xml_dynamic and type:
objs/<architecture>/Hello sub

where <architecture> is the architecture you just built; look in the objs directory to see the name of the
architecture you built. For example, i86Linux2.6gcc4.4.5.

You should immediately see some messages from the publishing application showing that it is writing data
and messages from the subscribing application showing the data it receives. Do not worry about the con-
tents of the messages. They are generated automatically for this example. The important thing is to under-
stand how the application is defined, which will be explained in the following sections.

3.1.3 Examine the XML Configuration Files Definition

A Connext DDS application is defined in the file USER_QOS_PROFILES.xml found in the directory
<path to examples>/connext_dds/c++/ hello_world_xml_dynamic. Let’s review its content to see how
this scenario was constructed. The main sections in the file are:

e 3.1.3.1 QoS Definition on the facing page

3.1.3.2 Type Definition on page 10
e 3.1.3.3 Domain Definition on page 10

3.1.3.4 Participant Definition on page 11

The entire file is shown below. We will examine the file section-by-section.

<?xml version="1.0"?>

-<dds version="6.0.0"

xsi:noNamespaceSchemaLocation=
"http://community.rti.com/schema/5.2.0/rti dds profiles.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<!-- Qos Library -->

<gos library name="qgosLibrary">
<gos_profile name="DefaultProfile">
</qos_profile>

</gos library>

<!-- types -—>
<types>
<const name="MAX NAME LEN" value="64" type="long"/>
<const name="MAX MSG LEN" value="128" type="long"/>
<struct name="HelloWorld">
<member name="sender" type="string"

3.1.3.1 QoS Definition

stringMaxLength="MAX NAME LEN" key="true"/>
<member name="message" type="string"
stringMaxLength="MAX MSG LEN"/>
<member name="count" type="long"/>

</struct>
</types>
<!-- Domain Library -->

<domain library name="MyDomainLibrary">
<domain name="HelloWorldDomain" domain id="0">
<register type name="HelloWorldType"
type ref="HelloWorld"/>
<topic name="HelloWorldTopic"
register type ref="HelloWorldType">
<topic_gos name="HelloWorld gos"
base name="qgosLibrary::DefaultProfile"/>
</topic>
</domain>
</domain library>

<!-- Participant library -->
<domain participant library name="MyParticipantLibrary">
<domain participant name="PublicationParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<publisher name="MyPublisher">
<data writer name="HelloWorldWriter"
topic ref="HelloWorldTopic"/>
</publisher>
</domain participant>

<domain participant name="SubscriptionParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<subscriber name="MySubscriber">
<data reader name="HelloWorldReader"
topic ref="HelloWorldTopic">
<datareader gos name="HelloWorld reader gos"
base name="gosLibrary::DefaultProfile"/>
</data reader>
</subscriber>
</domain participant>
</domain participant library>
</dds>

3.1.3.1 QoS Definition

The defined DDS Entities have an associated QoS. The QoS section of the XML file provides a way to
define QoS libraries and profiles, which can then be used to configure the QoS of the defined Entfities.

The syntax of the QoS libraries and profiles section is described in Configuring QoS with XML, in the
RTI Connext DDS Core Libraries User's Manual and may also contain Entity configurations.

In this example, the QoS library and profile are empty, just to provide a placeholder where the QoS can be
specified. Using this empty profile results in the default DDS QoS being used:

<!-- QoS Library -->
<gos_library name="qgosLibrary">

3.1.3.2 Type Definition

<gos_profile name="DefaultProfile">
</gos_profile>
</gos_library>

3.1.3.2 Type Definition

The data associated with the HelloWorld Topic consists of two strings and a numeric counter:

1. The first string contains the name of the sender of the message. This field is marked as “key” as sig-
nals the identity of the data-object.

2. The second string contains a message.

3. The third field is a simple counter which the application increments with each message.

This example uses the Dynamic Data API, so the data type must be defined in the XML configuration.
You can do this by adding the type definition within the <types> tag:

<types>
<const name="MAX NAME LEN" type="long" value="64"/>
<const name="MAX MSG LEN" type="long" value="128"/>
<struct name="HelloWorld">
<member name="sender" type="string"
key="true" stringMaxLength="MAX NAME LEN"/>
<member name="message" type="string"
stringMaxLength="MAX MSG LEN"/>
<member name="count" type="long"/>
</struct>
</types>

The <types> tag may be used to define a library containing the types that the different applications will
need. However, for this simple example just one data-type, the HelloWorld type seen above, is included.

3.1.3.3 Domain Definition

The domain section is used to define the system’s Topics and the corresponding data types associated with
each Topic. To define a Topic, the associated data type must be registered with the domain, giving it a
registered type name. The registered type name is used to refer to that data type within the domain at the
time the Topic is defined.

In this example, the configuration file registers the previously defined HelloWorld type under the name
HelloWorldType. Then it defines a Topic named HelloWorldTopic, which is associated with the registered
type, referring to it by its registered name, HelloWorldType:

<!-- Domain Library -->
<domain library name="MyDomainLibrary" domain id="0" >
<domain name="HelloWorldDomain">
<register type name="HelloWorldType"
type ref="HelloWorld"/>
<topic name="HelloWorldTopic"
register type ref="HelloWorldType"/>

10

3.1.3.4 Participant Definition

</domain>
</domain_ library>

Notes:

o The attribute type_ref in the <register type> element refers to the same HelloWorld type defined in
the <types> section.

o A domain definition may register as many data types and define as many 7opics as it needs. In this
example, a single data type and Topic will suffice.

o The domain_library can be used to define multiple domains. However, this example only uses one
domain.

3.1.3.4 Participant Definition

The participant section is used to define the DomainParticipants in the system and the DataWriters and
DataReaders that each participant has. DomainParticipants are defined within the <domain_participant
library> tag.

Each DomainParticipant:

« Has a unique name (within the library) which will be used later by the application that creates it.

« Is associated with a domain, which defines the domain_id, Topics, and data types the DomainPar-
ticipant will use.

o Defines the Publishers and Subscribers within the DomainParticipant. Publishers contain
DataWriters, Subscribers contain DataReaders.

o Defines the set of DataReaders it will use to write data. Each DataReader has a QoS and a unique
name which can be used from application code to retrieve it.

o Defines the set of DataWriters it will use to write data. Each DataWriter has a QoS and a unique
name which can be used from application code to retrieve it.

o Optionally the Participants, Publishers, Subscribers, DataWriters, and DataReaders can specify a
QoS profile that will be used to configure them.

The example below defines two DomainParticipants, called PublicationParticipant and Sub-
scriptionParticipant:

<domain participant library name="MyParticipantLibrary">
<domain participant name="PublicationParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<publisher name="MyPublisher">
<data writer name="HelloWorldWriter"
topic ref="HelloWorldTopic"/>
</publisher>
</domain participant>
<domain participant name="SubscriptionParticipant"

11

3.1.4 Publisher Application

domain ref="MyDomainLibrary::HelloWorldDomain">
<subscriber name="MySubscriber">
<data reader name="HelloWorldReader"
topic ref="HelloWorldTopic">
<datareader gos name="HelloWorld reader gos"
base name="gosLibrary::DefaultProfile"/>
</data reader>
</subscriber>
</domain participant>
</domain participant library>

Examining the XML, we see that:

« PublicationParticipant is bound to the domain, MyDomainLibrary::HelloWorldDomain.

o The participant contains a single Publisher named MyPublisher, which itself contains a single
DataWriter named HelloWorldWriter.

o The DataWriter writes the Topic HelloWorldTopic, which is defined in the domain MyDo-
mainLibrary::HelloWorldDomain.

Similarly:

 SubscriptionParticipant is also bound to the domain MyDomainLibrary::HelloWorldDomain.

o The participant contains a single Subscriber named MySubscriber, which itself contains a single
DataReader named HelloWorldReader.

o The DataReader reads the Topic HelloWorldTopic, which is defined in the domain MyDo-
mainLibrary::HelloWorldDomain.

Since both participants are in the same domain and the HelloWorldWriter DataWriter writes the same
Topic that the HelloWorldReader DataReader reads, the two participants will communicate as depicted in
Figure 3.1: Hello World Domain on page 6.

3.1.4 Publisher Application

Open the file <path to examples>/connext_dds/c++/hello_world_xml_dynamic/src/HelloWorld_pub-
lisher.cxx and look at the source code.

The logic of this simple application is contained in the publisher_main() function. The logic is composed
of two parts:

« Entity Creation

The application first creates a DomainParticipant using the function create_participant_from_con-
fig(). This function takes the configuration name of the participant, MyPar-
ticipantLibrary::PublicationParticipant, which is the same name that was specified in the XML file.

12

3.1.4 Publisher Application

Note that the name in the XML file, PublicationParticipant, has been qualified with the name of the
library it belongs to: MyParticipantLibrary.
DDSDomainParticipant * participant =

DDSTheParticipantFactory->create participant from config(
"MyParticipantLibrary: :PublicationParticipant") ;

This single function call registers all the necessary data types and creates and the Topics and Entities
that were specified in the XML file. In this simple case, the participant only contains a Publisher,
MyPublisher, with a single DataWriter, HelloDataWriter. However, in more realistic scenarios, this
single call can create hundreds of entities (both readers and writers).

Use of the Entities

The remaining part of the function uses the created Entities to perform the logic of the program.

This example writes data using the single DataWriter. So the application looks up the Hel-
loWorldWriter DataWriter using the fully qualified name MyPublisher::HelloWorldWriter and nar-
rows it to be a DynamicDataWriter:

DDSDynamicDataWriter * dynamicWriter =
DDSDynamicDataWriter: :narrow (participant->lookup datawriter by name (
"MyPublisher: :HelloWorldWriter")) ;

Once the DataWriter is available, some data objects need to be created and used to send the data. As
this example uses dynamic data, and the type code is internally created, you can use the operations
create_data() and delete_data() in a DataWriter to create and delete a data object. This is achieved
with the calls seen below:

/* Create data */
DDS DynamicData *dynamicData =
dynamiCWriter—>Create_data(DDS_DYNAMIC_DATA_PROPERTY_DEFAULT);

/* Main loop to repeatedly send data */
for (count=0; count < 100 ; ++count) {
/* Set the data fields */
retcode = dynamicData->set string(
"sender", DDS DYNAMIC DATA MEMBER ID UNSPECIFIED,
"John Smith");
retcode = dynamicData->set string(
"message", DDS DYNAMIC DATA MEMBER ID UNSPECIFIED,
"Hello World!"™);
retcode = dynamicData->set long(
"count", DDS DYNAMIC DATA MEMBER ID UNSPECIFIED,
count) ;

/* Write the data */
retcode = dynamicWriter->write (*dynamicData, DDS HANDLE NIL);

}

/* Delete data sample */
dynamicWriter->delete data (dynamicData

13

3.1.5 Subscriber Application

Note that operations such as set_long() are used to set the different attributes of the Dynamic Data
object. These operations refer to the attribute names (e.g., “count”) that were defined as part of the
data type.

3.1.5 Subscriber Application

Open the file <path to examples>/connext_dds/c++/hello_world xml_dynamic/src/HelloWorld_sub-
scriber.cxx and look at the source code.

The logic of this simple application is contained in the subscriber_main() function. Similar to the pub-
lisher application, the logic is composed of two parts:

« Entity Creation

The application first creates a DomainParticipant using the function create_participant_from_con-
fig(). This function takes the configuration name of the participant MyPar-
ticipantLibrary::SubscriptionParticipant, which is the same name that was specified in the XML
file. Notice that the name in the XML file, SubscriptionParticipant, has been qualified with the
name of the library it belongs to: MyParticipantLibrary.

DDSDomainParticipant * participant =

DDSTheParticipantFactory->create participant from config(
"MyParticipantLibrary: :SubscriptionParticipant”) ;

This single function call registers all the necessary data types and creates and the Topics and Entities
that were specified in the XML file. In this simple case, the participant only contains a Subscriber,
MySubscriber, with a single DataReader, HelloDataReader. However in more realistic scenarios,
this single call can create hundreds of Entities (both DataReaders and DataWriters).

¢ Use of the Entities

The remaining part of the function uses the entities that were created to perform the logic of the pro-
gram.

This example only needs to read data using the single DataReader. So the application looks up the
HelloWorldReader DataReader using the fully qualified name MySubscriber::HelloWorldReader
and narrows it to be a DynamicDataReader:

DDSDynamicDataReader * dynamicReader = DDSDynamicDataReader::narrow (

participant-> lookup datareader by name (
"MySubscriber: :HelloWorldReader")) ;

To process the data, the application installs a Listener on the DataReader. The HelloWorldListener,
defined on the same file implements the DataReaderListener interface, which the DataReader uses
to notify the application of relevant events, such as the reception of data.

14

3.1.6 Subscribing with a Content Filter

/* Create a DataReaderListener */
HelloWorldListener * reader listener = new HelloWorldListener();

/* set listener */
retcode = dynamicReader->set listener (reader listener, DDS DATA AVAILABLE STATUS) ;

The last part is the implementation of the listener functions. In this case, we only implement the on_
data_available() operation which is the one called when data is received.

The on_data_available() function receives all the data into a sequence and then uses the DDS_
DynamicData::print() function to print each data item received.

void HelloWorldListener::on data available (DDSDataReader* reader)
{

DDSDynamicDataReader * ddDataReader = NULL;

DDS DynamicDataSeq dataSeq;

DDS SampleInfoSeq infoSeq;

DDS ReturnCode t retcode = DDS RETCODE ERROR;

DDS Long i = 0;

ddDataReader = DDSDynamicDataReader: :narrow (reader) ;
retcode = ddDataReader->take (dataSeq, infoSeq,

DDS LENGTH UNLIMITED, DDS ANY SAMPLE STATE,

DDS_ANY VIEW STATE, DDS ANY INSTANCE STATE) ;
printf ("on data available:%s\n",

ddDataReader->get topicdescription ()->get name());
for (i = 0; i < dataSeqg.length(); ++1i) {

if (infoSeq[i].valid data) {

retcode = dataSeq[i].print (stdout, 0);

}

retcode = ddDataReader->return loan (dataSeq, infoSeq) ;

}

3.1.6 Subscribing with a Content Filter

To use a content filter, modify the SubscriptionParticipant configuration to look like this:

<domain participant library name="MyParticipantLibrary">

<domain participant name="SubscriptionParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<subscriber name="MySubscriber">
<data reader name="HelloWorldReader"
topic ref="HelloWorldTopic">
<datareader gos
name="HelloWorld reader gos"
base name="qgosLibrary::DefaultProfile"/>
<filter name="HelloWorldTopic"
kind="builtin.sqgl">
<expression>count > 2</expression>
</filter>
</data_reader>
</subscriber>

15

3.2 Hello World using XML and Compiled Types

</domain participant>
</domain participant library>

The extra XML within the <filter> tag adds a SQL content filter which only accepts samples with the field
count greater than two.

Now run HelloWorld_subscriber without recompiling and confirm that you see the expected behavior.

3.2 Hello World using XML and Compiled Types

The files for this example are in the directory <path to examples>/connext_dds/c++/hello_world_xml_
compiled. This simple scenario consists of two applications identical in purpose to the one illustrated in
Figure 3.1: Hello World Domain on page 6: HelloWorld_publisher.exe, which writes to the Topic “Hel-
loWorldTopic,” and HelloWorld_subscriber.exe, which subscribes to that same Topic.

In contrast with 3.1 Hello World using XML and Dynamic Data on page 5, which uses the Dynamic Data
API, this example uses compiled types.

Compiled types are syntactically nicer to use from application code and provide better performance. The
drawback is that there is an extra step of code-generation involved to create that supporting infrastructure
to marshal and unmarshal the types into a format suitable for network communications.

3.2.1 Define the Data Types using IDL or XML

The first step is to describe the data type in a programming language-neutral manner. Two languages are
supported by the Connext DDS tools: XML and IDL. These languages (XML and IDL) provide equi-
valent type-definition capabilities, so you can choose either one depending on your personal preference.
You can even transform between one and the other with the RTI tools. That said, as the rest of the con-
figuration files use XML, it is often more convenient to also use XML to describe the data types, so they
can be shared or moved to other XML configuration files.

The directory <path to examples>/connext_dds/c++/hello_world_xml_compiled contains the XML
description of the data type in the file HelloWorld.xml; it also contains the equivalent IDL description in
HelloWorld.idl.

Let’s examine the contents of the XML file:

<?xml version="1.0" encoding="UTF-8"?>

<types xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=
"../../../resource/rtiddsgen/schema/rti dds topic_ types.xsd">
<const name="MAX NAME LEN" type="long" value="64"/>

<const name="MAX MSG LEN" type="long" value="128"/>

<struct name="HelloWorld">
<member name="sender" type="string" key="true"
stringMaxLength="MAX NAME LEN"/>
<member name="message" type="string"
stringMaxLength="MAX MSG LEN"/>

16

3.2.2 Generate Type-Support Code from the Type Definition

<member name="count" type="1long"/>
</struct>
</types>

The file defines a structure type called “HelloWorld” consisting of a string (the sender), a string (the mes-
sage), and an integer count. Note that the type-declaration syntax is identical the one used within the
USER_QOS_PROFILES.xml file that we used for the dynamic example (3.1.3.2 Type Definition on

page 10).
3.2.2 Generate Type-Support Code from the Type Definition

This step produces code to support the direct use of the structure ‘HelloWorld” from application code. The
code is generated using the provided tool named rtiddsgen.

The Code Generator supports many programming languages. XML-Based Application Creation currently
supports C, C++, Java, and C#. We will use C++ in this example.

To generate code, follow these steps (replacing <architecture> as needed for your system; e.g.,
186Win32VS2012 or i86Linux2.6gcc4.4.5):

On a Windows system:

From your command shell, change directory to <path to examples>\connext_dds\c++\hello_ world
xml_compiled and type:

<NDDSHOME>\bin\rtiddsgen -language C++ -example <architecture> HelloWorld.xml
On a UNIX-based system:

From your command shell, change directory to <path to examples>/connext _dds/c++/hello_world_
xml_compiled and type:

<NDDSHOME>/bin/rtiddsgen —-language C++ -example <architecture> HelloWorld.xml

As a result of this step you will see the following files appear in the directory HelloWorld_xml_dynamic:
HelloWorld.h, HelloWorld.cxx, HelloWorldPlugin.h, HelloWorldPlugin.cxx, HelloWorldSupport.h,
and HelloWorldSupport.cxx.

The most notable thing at this point is that the HelloWorld.h file contains the declaration of the C++ struc-
ture, built according to the specification in the XML file:

17

3.2.3 Build the Application

static const DDS Long MAX NAME LEN = 64;
static const DDS Long MAX MSG LEN = 128;

typedef struct HelloWorld
{

char* sender; /* maximum length = ((MAX NAME LEN)) */
char* message; /* maximum length = ((MAX MSG LEN)) */
DDS Long count;

} HelloWorld;

3.2.3 Build the Application

The example code is provided in C++, C#, and Java. The following instructions describe how to build it
on Windows and UNIX-based systems. If you will be using an embedded platform, see the RTI Connext
DDS Core Libraries Getting Started Guide Addendum for Embedded Systems for instructions specific to
these platforms.

C++ on Windows Systems:

In the Windows Explorer, go to <path to examples>\connext _dds\c++\hello_world_xml compiled and
open the Microsoft Visual Studio solution file for your architecture. For example, the file for Visual Studio
2012 for 32-bit platforms is HelloWorld-vs2012.sIn.

The Solution Configuration combo box in the toolbar indicates whether you are building debug or release
executables; select Release. Select Build Solution from the Build menu.

C++ on UNIX-based Systems:

From your command shell, change directory to <path to examples>/connext _dds/c++/hello_world_
xml_compiled.
Type:

gmake -f Makefile.<architecture>

where <architecture> is one of the supported architectures (e.g., Makefile.i86Linux2.6gcc4.4.5). This com-
mand will build a release executable. To build a debug version instead, type:

gmake -f Makefile.<architecture> DEBUG=1

3.2.4 Run the Application

The previous step built two executables: HelloWorld_subscriber and HelloWorld _publisher. These
applications should be in proper architecture subdirectory under the objs directory (for example,
objs\i86Win32VS2012 in the Windows example cited below and objs/i86Linux2.6gcc4.4.5 in the Linux
example).

18

3.2.4 Run the Application

1.

Start the subscribing application:

On a Windows system:

From your command shell, go to <path to examples>\connext_dds\c++\hello_world_xml_com-
piled and type:

objs\<architecture>\HelloWorld subscriber.exe

where <architecture> is the architecture you just built; see the contents of the objs directory to see
the name of the architecture you built. For example, the Windows architecture name corresponding
to 32-bit Visual Studio 2012 is i86Win32VS2012.

On a UNIX-based system:

From your command shell, change directory to <path to examples>/connext_dds/c++/hello
world_xml_compiled and type:

objs/<architecture>/HelloWorld subscriber

where <architecture> is the architecture you just built of the supported architectures; examine the
contents of the objs directory to see the name of the architecture you built.

Start the publishing application:

On a Windows system:

From your command shell, go to <path to examples>\connext dds\c++\hello_ world_xml com-
piled and type:

objs\<architecture>\HelloWorld publisher.exe

where <architecture> is the architecture you just built; see the contents of the objs directory to see
the name of the architecture you built.

On a UNIX-based system:

From your command shell, change directory to <path to examples>/connext _dds/c++/hello_
world xml compiled and type:

objs/<architecture>/HelloWorld publisher

Y ou should immediately see some messages on the publishing application showing that it is writing data
and messages in the subscribing application indicating the data it receives. Do not worry about the contents
of the messages. They are generated automatically for this example. The important thing is to understand
how the application is defined, which will be explained in the following subsections.

19

3.2.5 Examine the XML Configuration Files Definition

3.2.5 Examine the XML Configuration Files Definition

This system is defined in the file USER_QOS_PROFILES.xml in the directory <path to examples>/-

connext_dds/c++/hello_world_xml compiled. Let’s look at its content and what are the elements
defined to construct this scenario.

<?xml version="1.0"?>

<dds version="5.2.0"

xsi:noNamespaceSchemalocation=
"http://community.rti.com/schema/5.2.0/rti dds profiles.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<!-- Qos Library -->
<gos_library name="qgosLibrary">

<gos_profile name="DefaultProfile"> </gos profile>
</gos_library>

<!-- Domain Library -->
<domain library name="MyDomainLibrary">
<domain name="HelloWorldDomain" domain id="0">
<register type name="HelloWorldType"/>
<topic name="HelloWorldTopic" register type ref="HelloWorldType">
<topic_gos name="HelloWorld gos"
base name="qgosLibrary::DefaultProfile"/>
</topic>
</domain>
</domain library>

<!-- Participant library -->
<domain participant library name="MyParticipantLibrary">
<domain participant name="PublicationParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<publisher name="MyPublisher">
<data writer name="HelloWorldWriter"
topic ref="HelloWorldTopic"/>
</publisher>
</domain participant>
<domain participant name="SubscriptionParticipant"
domain ref="MyDomainLibrary::HelloWorldDomain">
<subscriber name="MySubscriber">
<data reader name="HelloWorldReader"
topic ref="HelloWorldTopic">
<datareader gos
name="HelloWorld reader gos"
base name="gosLibrary::DefaultProfile"/>
</data_reader>
</subscriber>
</domain participant>
</domain participant library>
</dds>

Notice that this file contains virtually the same information found in the hello_world_xml_dynamic

example. This is no surprise, since we are essentially trying to define the same system. Please see 3.1.3

20

3.2.6 Examine the Publisher Application

Examine the XML Configuration Files Definition on page 8 for a description of what each section in the
XML does.

There are only two differences in the configuration file for the hello_ world_xml compiled compared to
hello_world_xml_dynamic:

o The type definition “<types>" section does not appear in the configuration of the HelloWorld_xml
compiled example.

The type-definition section that appears between the tags “<types> and “</types>" is not there
because in this case the data types are compiled in. So the type-definition has been moved to an
external file to facilitate the code generation described in 3.2.2 Generate Type-Support Code from
the Type Definition on page 17.

o The registration of the data-type inside the domain uses the syntax:
<register type name="HelloWorldType" />

This contrasts with what was used in the HelloWorld xml dynamic example:

<register type name="HelloWorldType" type ref="HelloWorld" />.

The difference between the two is easily observable from the type registration mechanism in XML-
Application Creation, which is a follows:
1. Ifa<register type> tag is not present, the value of the attribute register _type ref of a
{{<topic>}] is used as registered type name of a type support that must have been already
registered by the application.

2. If a<register type> tag is specified but its attribute type ref is not present, this is equivalent
to 1, but the registered type name is the one specified by the <register type> tag.

3. Ifa<register type> tag is specified and the type_ref is present, XML-Application Creation
will first search for a type support already registered. If no type support is found, it will auto-
matically register the type using DynamiData and with the TypeCode defined by the XML
type referenced by type ref.

This behavior enables the possibility of defining configurations that are independent of the how types are
register, leaving that decision up to the end application. That is, the same configuration can be used for
applications that generate a type or that rely on DynamicData.

3.2.6 Examine the Publisher Application

Open the file <path to examples>/connext_dds/c++/hello_world_xml_compiled/HelloWorld_pub-
lisher.cxx and look at the source code.

The logic of this simple application is contained in the publisher_main() function. The logic can be seen
as composed of three parts:

21

3.2.6 Examine the Publisher Application

o Type registration (this step is new compared to HelloWorld xml dynamic)

The first thing the application does is register the data-types that were defined in the code-generation
step. This is accomplished by calling the register type support() function on the DomainPar-
ticipantFactory.

/* type registration */

retcode = DDSTheParticipantFactory->register type support (
HelloWorldTypeSupport: :register type, "HelloWorldType"):;

The function register_type support() must be called for each code-generated data type that will be
associated with the Topics published and subscribed to by the application. In this example, there is
only one Topic and one data type, so only one call to this function is required.

The function register_type_support() takes as a parameter the TypeSupport function that defines
the data type in the compiled code. In this case, it is HelloWorldTypeSupport::register type(),
which is declared in HelloWorldSupport.h. However, you cannot see it directly because it is
defined using macros. Instead you will find the line:

DDS TYPESUPPORT CPP (HelloWorldTypeSupport, HelloWorld);
This line defines the HelloWorldTypeSupport::register type() function.

In general, if you include multiple data-type definitions in a single XML (or IDL) file called
MyFile.xml (or MyFile.idl), you will have multiple TypeSupport types defined within the gen-
erated file MyFileTypeSupport.h. You can identify them searching for the DDS
TYPESUPPORT_CPP() macro and you should register each of them (the ones the application
uses) using the operation register type support() as was shown above.

« Entity creation

The steps to create the entities are the same as for the HelloWorld xml dynamic example. The
application first creates a DomainParticipant using the function create_participant_from_config(),
which takes the configuration name of the participant “MyPar-
ticipantLibrary::PublicationParticipant” (which is the same name that was specified in the XML
file). Note that the name in the XML file “PublicationParticipant” has been qualified with the name
of the library it belongs to: “MyParticipantLibrary”.

DDSDomainParticipant * participant =

DDSTheParticipantFactory->create participant from config(
"MyParticipantLibrary: :PublicationParticipant") ;

This single function call registers all the necessary data types and creates the Topics and Entities that
were specified in the XML file. In this simple case, the participant only contains a Publisher
“MyPublisher” with a single DataWriter “HelloDataWriter”. However in more realistic scenarios,
this single call can create hundreds of entities (both readers and writers).

22

3.2.7 Examine the Subscriber Application

o Use of the Entities

The remaining part of the function uses the entities that were created to perform the logic of the pro-
gram.

This example only needs to write data using the single DataWriter. So the application looks-up the
“HelloWorldWriter” DataWriter using the fully qualified name “MyPublisher::HelloWorldWriter”
and narrows it to be a HelloWorldDataWriter. Note the difference with the HelloWorld xml
dynamic example. Rather than the generic “DynamicDataWriter” used in that example, here we use
a DataWriter specific to the HelloWorld data type.

HelloWorldDataWriter * helloWorldWriter = HelloWorldDataWriter::narrow (
participant->lookup datawriter by name (
"MyPublisher::HelloWorldWriter")) ;
/* Create data */
HelloWorld * helloWorldData = HelloWorldTypeSupport::create data();

/* Main loop */
for (count=0; (sample count == 0) || (count < sample count); ++count)
{

printf ("Writing HelloWorld, count: %d\n", count);

/* Set the data fields */

helloWorldData->sender = "John Smith";
helloWorldData->message = "Hello World!";
helloWorldData->count = count;

retcode = helloWorldWriter->write (*helloWorldData,
DDS_HANDLE NIL);

if (retcode != DDS RETCODE OK) {
printf ("write error %d\n", retcode);
publisher shutdown (participant) ;
return -1;

}

NDDSUtility::sleep(send period) ;

}

Note that the data-object helloWorldData can be manipulated directly as a plain-language object.
Then to set a field in the object, the application can refer to it directly. For example:

helloWorldData->count = count;

This “plain language object” API is both higher performance and friendlier to the programmer than
the DynamicData API.

3.2.7 Examine the Subscriber Application

Open the file <path to examples>/connext_dds/c++/hello_world xml_compiled/HelloWorld_sub-
scriber.cxx and look at the source code.

23

3.2.7 Examine the Subscriber Application

The logic of this simple application is in the subscriber_main() function. Similar to the publisher applic-
ation the logic can be seen as composed of three parts:

1. Type registration (this step is new compared to HelloWorld xml dynamic)

This step is identical to the one for the publisher application. The first thing the application does is
register the data types that were defined in the code-generation step. This is accomplished calling the
register_type_support() function on the DomainParticipantFactory.

/* type registration */
retcode = DDSTheParticipantFactory->register type support (
HelloWorldTypeSupport::register type, "HelloWorldType");

Please refer to the explanation of the publishing application for more details on this step, regardless
of whether the application uses a type to publish or subscribe.

2. Entity creation

The steps for creating the entities are the same as for the HelloWorld xml dynamic example. The
application first creates a DomainParticipant using the function create_participant_from_config()
this function takes the configuration name of the participant “MyPar-
ticipantLibrary::SubscriptionParticipant” which is the same name that was specified in the XML file.
Note that the name in the XML file “SubscriptionParticipant” has been qualified with the name of
the library it belongs to: “MyParticipantLibrary”.

DDSDomainParticipant * participant =
DDSTheParticipantFactory->create participant from config(
"MyParticipantLibrary::SubscriptionParticipant") ;

This single function call registers all the necessary data types, and creates the Topics and Entities
that were specified in the XML file. In this simple case, the participant only contains a Subscriber
“MySubscriber” with a single DataReader “HelloDataReader”. However in more realistic scen-
arios, this single call can create hundreds of entities (both DataReaders and DataWriters).

3. Use of the Entities

The remaining part of the function uses the created entities to perform the logic of the program.

This example only needs to read data using the single DataReader So the application looks-up the
“HelloWorldReader” DataReader using the fully qualified name “MyPub-
lisher::HelloWorldReader” and narrows it to be a HelloWorldDataReader:

24

3.2.7 Examine the Subscriber Application

HelloWorldDataReader * helloWorldReader =
HelloWorldDataReader: :narrow (
participant->lookup datareader by name (
"MySubscriber: :HelloWorldReader")) ;

To process the data, the application installs a Listener on the DataReader. The HelloWorldListener
defined in the same file implements the DataReaderListener interface. The DataReader uses that
interface to notify the application of relevant events, such as the reception of data.

/* Create a data reader listener */
HelloWorldListener *reader listener = new HelloWorldListener();

/* set listener */
retcode = helloWorldReader->set listener (reader listener,
DDSiDATAiAVAILABLEisTATUS);

The last part is the implementation of the listener functions. In this case, we only implement the on_
data_available() operation, which is called when data is received.

The on_data_available() function receives all the data into a sequence, then uses the Hel-
loWorldTypeSupport::print() function to print each data item received.

void HelloWorldListener::on data available (DDSDataReader* reader)
{
HelloWorldDataReader *helloWorldReader = NULL;
HelloWorldSeqg dataSeqg;
DDS SampleInfoSeq infoSeq;
DDS ReturnCode t retcode = DDS RETCODE ERROR;
DDS Long i = 0;

helloWorldReader = HelloWorldDataReader: :narrow (reader) ;

retcode = helloWorldReader->take (dataSeq, infoSeq,
DDS LENGTH UNLIMITED, DDS ANY SAMPLE STATE,
DDS_ANY VIEW STATE, DDS ANY INSTANCE STATE);

for (i = 0; 1 < dataSeqg.length(); ++1i)
{
if (infoSeq[i].valid data) {
HelloWorldTypeSupport: :print data (&dataSeq[i]);

}

retcode = helloWorldReader—->return loan (dataSeq, infoSeq) ;

}

Note that the sequence received is of type HelloWorldSeq which contains the native plain language
objects of type HelloWorld. This can be manipulated directly by the application. For example the
fields can be dereferenced as shown in the code snippet below:

HelloWorld *helloWorldData = &dataSeq[i];
printf (“count= %$s\n”, helloWorldData->count) ;

25

Chapter 4 Using Prototyper

RTI Prototyper is a companion tool for use with the XML-Based Application Creation feature.
This tool allows application developers to quickly try out scenarios directly from their XML
descriptions, without writing any code.

On a Windows system:

From your command shell, go to <path to examples>\connext_dds\c++\hello_world_xml_
dynamic. Open two console windows.
In one window, type (all on one line):

SNDDSHOME\bin\rtiddsprototyper -cfgName PublicationParticipant
"MyParticipantLibrary::PublicationParticipant"

In the other window, type (all on one line):

SNDDSHOME\bin\rtiddsprototyper -cfgName SubscriptionParticipant
"MyParticipantLibrary::SubscriptionParticipant"

On a UNIX-based system:

From your command shell, go to <path to examples>/connext_dds/c++/hello_world_xml_
dynamic. Open two console windows.
In one window, type (all on one line):

${NDDSHOME } /bin/rtiddsprototyper -cfgName PublicationParticipant
"MyParticipantLibrary::PublicationParticipant"

In the other window, type (all on one line):

${NDDSHOME } /bin/rtiddsprototyper -cfgName SubscriptionParticipant
"MyParticipantLibrary::SubscriptionParticipant"

You can run both of these on the same computer or on separate computers within the same (mul-
ticast enabled) network. Y ou should immediately see the subscribing application receive and print
the information from the publishing side.

26

Chapter 4 Using Prototyper

For more information, please read the RTI Connext DDS Core Libraries Protoyper with Lua Getting Star-
ted Guide.

27

Chapter 5 Understanding XML-Based
Application Creation

Figure 5.1: Using Both Connext API and XML Configuration File to Develop an Application
below depicts a Connext DDS application built with the aid of both the Connext DDS API and an
XML configuration file. Using the XML configuration file in combination with the XML-Based
Application Creation feature simplifies and accelerates application development.

The Entities defined in the XML configuration file can be created by a single call to the API. Once
created, all Entities can be retrieved from application code using standard “lookup” operations so
they can be used to read and write data.

Figure 5.1: Using Both Connext APl and XML Configuration File to Develop an
Application

Connext DDS
Application

XML Configuration

Connext DDS AP
File

28

5.1 Important Points

5.1 Important Points

Applications can instantiate a DomainParticipant from a participant configuration described in the
XML configuration file. All the Entities defined by such a participant configuration are created auto-
matically as part of DomainParticipant creation. In addition, multiple participant configurations may
be defined within a single XML configuration file.

All the Entities created from a participant configuration are automatically assigned an entity name.
Entities can be retrieved via “lookup” operations by specifying their name. Each Entity stores its
own name in the QoS policies of the Entity so that it can be retrieved locally (via a lookup) and com-
municated via discovery. This is described in 5.7 Creating and Retrieving Entities Configured in an
XML File on page 46.

An XML configuration file is not tied to the application that uses it. Different applications may run
using the same configuration file. A single file may define multiple participant configurations. A
single application can instantiate as many DomainParticipants as desired.

Changes in the XML configuration file do not require recompilation, even if Enfities are added or
removed, unless the logic that uses the Entfities also needs to change.

5.2 Loading XML Configuration Files

Connext DDS loads its XML configuration from multiple locations. This section presents the various
approaches, listed in load order.

The following locations contain QoS Profiles (see Configuring QoS with XML, in the RTI Connext DDS
Core Libraries User's Manual) and may also contain Entity configurations.

SNDDSHOME!/resource/xml/NDDS_QOS_PROFILES.xml

This file contains the Connext DDS default QoS values; it is loaded automatically if it exists. When
present this is the first file loaded. (Where x.y represent version numbers.)

This file is loaded automatically if it exists (not the default case) and ignore resource profile in the
PROFILE QosPolicy is FALSE (the default). NDDS_QOS_PROFILES.xml does not exist by
default. However, NDDS QOS PROFILES.example.xml is shipped with the host bundle of the
product; you can copy it to NDDS QOS PROFILES.xml and modify it for your own use. The file
contains the default QoS values that will be used for all entity kinds. (First to be loaded)

File specified in NDDS QOS_ PROFILES Environment Variable

The files (or XML strings) separated by semicolons referenced in this environment variable, if any,
are loaded automatically. These files are loaded after the NDDS_QOS_PROFILES.xml and they
are loaded in the order they appear listed in the environment variable.

<working directory>/USER_QOS_PROFILES.xml

29

5.3 XML Syntax and Validation

This file is loaded automatically if it exists in the ‘working directory’ of the application, that is, the
directory from which the application is run. (Last to be loaded)

5.3 XML Syntax and Validation

The configuration files use XML format. Please see Examine the XML Configuration Files Definition
(Section 2.1.3) for an example XML file and a description of its contents.

5.3.1 Validation at Run Time

Connext DDS validates the input XML files using a built-in Document Type Definition (DTD). You can
find a copy of the built-in DTD in SNDDSHOME/resource/schema/rti_dds_profiles.dtd.

This is only a copy of the DTD that Connext DDS uses. Changing this file has no effect unless you spe-
cify its path with the DOCTYPE tag, described below.

Y ou can overwrite the built-in DTD by using the XML tag, <!IDOCTYPE>. For example, the following
indicates that Connext DDS must use a different DTD file to perform validation:

<!DOCTYPE dds SYSTEM
"/local/usr/rti/dds/modified rti dds profiles.dtd">

If you do not specify the DOCTYPE tag in the XML file, the built-in DTD is used. The DTD path can be
absolute or relative to the application's current working directory.

5.3.2 Validation during Editing

Connext DDS provides DTD and XSD files that describe the format of the XML content. We highly
recommend including a reference to the XSD in the XML file. This provides helpful features in code edit-
ors such as Visual Studio, Eclipse, or Netbeans, including validation and auto-completion while you are
editing the XML file.

To include a reference to the XSD file, use the noNamespaceSchemaLocation attribute inside the open-
ing <dds> tag, as illustrated below (replace ‘6.x.y’ with the current version number and replace
<NDDSHOME> as described in Chapter 2 Paths Mentioned in Documentation on page 3):
<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=

"<NDDSHOME>/resource/schema/rti_dds profiles.xsd"
version="6.x.y">

Y ou may use relative or absolute paths to the schema files. These files are provided as part of your dis-
tribution in the following location (replace <NDDSHOME> as described in Chapter 2 Paths Mentioned in
Documentation on page 3):

30

5.4 Accessing Entities Defined in XML Configuration from an Application

« <NDDSHOME>/resource/schema/rti_dds_profiles.xsd
o <NDDSHOME>/resource/schema/rti_dds_profiles.dtd

If you want to use the DTD for syntax validation instead of the XSD, use the <IDOCTYPE> tag. Note,
however, that this validation is less strict and will offer far less help in terms of auto-completion. The use
of <IDOCTYPE> is shown below. Simply replace SNDDSHOME with your Connext DDS installation
directory:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE dds SYSTEM SNDDSHOME/resource/schema/rti dds profiles.dtd">

<dds>

</dds>

5.4 Accessing Entities Defined in XML Configuration from an
Application

Y ou can use the operations listed in Table 5.1 Operations Intended for Use with XML-Based Con-
figuration to retrieve and then use the Entities defined in your XML configuration files.

Table 5.1 Operations Intended for Use with XML-Based Configuration

Configuration-Related

. Reference
Operations

Working with...

create_participant_from_config

create_participant_from_config_w_ [5.7.1 Creating and Retrieving a DomainParticipant Configured in an XML

arams File on page 46
DomainParticipantFactory P ! pag

lookup_participant_by_name

register_type_support 5.7.5 Using User-Generated Types on page 49

lookup_publisher_by_name

lookup_subscriber_by_name) o _)
DomainParticipant 5.7.2 Creating and Retrieving Publishers and Subscribers on page 47
lookup_datawriter_by_name

lookup_datareader_by_name

Publisher lookup_datawriter_by_name

5.7.3 Creating and Retrieving DataWriters and DataReaders on page 48

Subscriber lookup_datareader_by_name

5.5 XML Tags for Configuring Entities

There are two top-level tags to configure Entities in the XML configuration files:

31

5.5 XML Tags for Configuring Entities

o <domain_library>: Defines a collection of domains. A domain defines a global data-space where
applications can publish and subscribe to data by referring to the same Topic name. Each domain
within the domain library defines the Topics and associated data-types that can be used within that
domain. Note that this list is not necessarily exhaustive. The participants defined within the
<domain_participant_library> might add Topics beyond the ones listed in the domain library.

o <domain_participant_library>: Defines a collection of DomainParticipants. A DomainPar-
ticipant provides the means for an application to join a domain. The DomainParticipant contains all
the Entities needed to publish and subscribe data in the domain (Publishers, Subscribers,
DataWriters, DataReaders, etc.).

Figure 5.2: Top-Level Tags in Configuration File below and Table 5.2 Top-Level Tags in Configuration
File describe the top-level tags that are allowed within the root <dds> tag.

Figure 5.2: Top-Level Tags in Configuration File

e

Table 5.2 Top-Level Tags in Configuration File

Tags within Descrintion Number of
<dds> P Tags Allowed
Specifies a domain library. Set of <domain> definitions.
< — .)
domain_lib Attributes: 0 ormore
rary>
name Domain library name
Specifies a participant library. Set of <domain_participant> definitions.
<domain_par- pecifi particip ibrary in_particip initi
ticipant_library> 0 ormore
- name Participant library name

32

5.5.1 Domain Library

Table 5.2 Top-Level Tags in Configuration File

Tags within Descrintion Number of
<dds> p Tags Allowed

Specifies a QoS library and profiles.

<qos_library> The contents of this tag are specified in the same manneras fora Connext DDS QoS profile file—see Con- | 0 ormore
figuring QoS with XML, in the RTI Connext DDS Core Libraries User's Manual

<types> Defines types that can be used fordynamic data registered types. Oort

5.5.1 Domain Library

A domain library provides a way to organize a set of domains that belong to the same system. A domain
represents a data space where data can be shared by means of reading and writing the same Topics, each
Topic having an associated data-type. Therefore, in a <domain> tag you can specify Topics and their data
types.

Figure 5.3: Domain Library Tag

<damain_library>

<damain>

<register_type>

<topic>

Figure 5.3: Domain Library Tag above, Table 5.3 Domain Library Tags, and Table 5.4 Domain Tags
describe what tags can be in a <domain_library>.

o The <register type> tag specifies a type definition that will be registered in the DomainParticipants
whenever they specify a Topic associated with that data type.

o The <topic> tag specifies a Topic by associating it with a <register type> that contains the type
information.

In a domain, you can also specify the domain ID to which the DomainParticipant associated with this
domain will be bound.

33

5.5.1 Domain Library

Table 5.3 Domain Library Tags

Tags within <domain o Number of Tags
. - Description
library> allowed
Specifies a domain.
Attributes:
name Domain name
<domain> L 1 ormore
domain_id
. Domain ID (default id=0)
(optional)
base_name Base domain name. Specifies another domain from which prop-
(optionaly erties will be inherited.
Table 5.4 Domain Tags
Tags Number
within Description of Tags
<domain> allowed
Specifies the kind of data type to be registered. These are as follows:
builtin.string (see String Builtin Type, in the RTI Connext DDS Core Libraries User's Manual)
builtin.keyedString (see Keyed String Builtin Type, in the RTI Connext DDS Core Libraries User's Manual)
builtin.octets (see Octets Builtin Type, in the RTI Connext DDS Core Libraries User's Manual)
builtin.keyedOctets (see Keyed Octets Builtin Type, in the RTI Connext DDS Core Libraries User's Manual)
dynamicData Data type is defined within the <types> tag.
<register
typg> - userGenerated Data is defined by the type support code created by the code generator, rtiddsgen. 1 ormore
Attributes:
Name used to referto this registered type within the XML file. This is also the name under
name which the type is registered with the DomainParticipantsunless overridden by the <re-
gistered_name> tag.
. Reference (fully qualified name) to a defined type within <types>. Indicates to use Dy-
type_ref (optional) namicData if a type is not registered at participant creation time.

34

5.5.1 Domain Library

Table 5.4 Domain Tags
Tags Number
within Description of Tags
<domain> allowed
Specifies a topic associating its data-type and optionally QoS.
Attributes:
name Name of the topic if no <registered_name> is specified.
Name of a registered type support orreference (name) to a register_type within this domain
. with which this topic is associated. A built-in registered type can be specified by using one of
<topic> 1 ormore

register_type_ref °

these special values:

DDS::String
DDS::KeyedString
DDS::Octets
DDS::KeyedOctets

Note that a domain may inherit from another “base domain” definition by using the base name attribute.
A domain that declares a “base domain” might still override some of the properties in the base domain.
Overriding is done simply by including elements in the derived domain with the same name as in the base

domain.

The <register type> tag, described in Figure 5.4: Register Type Tag below and Table 5.5 Register Type
Tag, determines how a type is registered by specifying the type definition and the name with which it is

registered.

Figure 5.4: Register Type Tag

Table 5.5 Register Type Tag

«<domain>

“ragister_type>

Tags within <register type>

Description

Number of tags allowed

<registered_name>

Name with which the type is registered.

Oori

35

5.5.1 Domain Library

The <topic> tag, described in Figure 5.5: Topic Tag below and Table 5.6 Topic Tag, describes a Topic by

specifying the name and type of the Topic. It may also contain the QoS configuration for that Topic.

Figure 5.5: Topic Tag

cdamains

: “gopio_gos» I
[
Table 5.6 Topic Tag
Tags within <topic > Description Number of tags allowed
<registered_name> Name of the Topic. Oor1
<topic_qos> TopicQoS configuration. Oor1

Some elements may refer to already specified types and QoS tags. The definitions of these referenced tags

may appear either in the same configuration file or in a different one—as long as it is one of the ones

loaded by Connext DDS as described in 5.2 Loading XML Configuration Files on page 29.

If a QoS is not specified for an Entity, then the QoS will be set to a default value that is either the default

configured in the XML files, or if such default does not exist, then the Connext DDS QoS defaults. Please
see Configuring QoS with XML, in the RTI Connext DDS Core Libraries User's Manual for more details.

For example:

<!-- types —-—>
<types>

<struct name="MyType">

<member name="message" type="string"/>
<member name="count" type="long"/>

</struct>
</types>
<!-- Domain Library -->

<domain library name="MyDomainLibrary" >
<domain name="MyDomain" domain id="10">
<register type name="MyRegisteredType"

type ref="MyType"/>

<topic name="MyTopic" register type ref="MyRegisteredType">

<topic gos base name="gosLibrary::DefaultProfile"/>

</topic>

36

5.5.2 Participant Library

</domain>
</domain library>

The above configuration defines a domain with name “MyDomain” and domain_id “10” containing a
Topic called “MyTopic” with type “MyType” registered with the name “MyRegisteredType”:

o <register type> defines the registration of a dynamic data type with name “MyRegisteredType” and
definition “MyType”—defined in the same file.

o <topic> with name “MyTopic” and whose corresponding type is the one defined above with the
name “MyRegisteredType” found within the same configuration. The Topic QoS configuration is
the one defined by the profile “qosLibrary::DefaultProfile”, which is defined in a different file.

Note that the DomainParticipant created from a configuration profile bound to this domain will be created
with domain_id=10, unless the domain_id is overridden in the participant configuration.

5.5.2 Participant Library

A participant library provides a way to organize a set of participants belonging to the same system. A par-
ticipant configuration specifies all the entities that a DomainParticipant created from this configuration will
contain.

Figure 5.6: Participant Library Tag

“participant_library>

<dpmain_particigant>

“register_type®

<data_readers

<participant_gos>

37

5.5.2 Participant Library

Figure 5.6: Participant Library Tag on the previous page, Table 5.7 Participant Library Tag, and Table 5.8
Domain Participant Tag show the description of a <domain_participant library> and the tags it contains.

A <domain_participant> can be associated with a domain where topics and their associated types are
already defined. The elements <register type> and <topic> may also be defined in a <domain_par-
ticipant>—the same way it is done in a <domain>. This makes it possible to add Topics, data-types, etc.
beyond the ones defined in the domain, or alternatively redefine the elements that are already in the
<domain>.

A <domain_participant> is defined by specifying the set of Entities it contains. This is done using tags
such as <publisher>, <subscriber>, <data writer> and <data_reader>, which specify an Enfity of their cor-
responding type. These Entities are created within the DomainParticipant instantiated from the con-
figuration profile that contains the definitions.

Table 5.7 Participant Library Tag

Tags within <domain o Number of Tags
.. . - Description
participant_library> Allowed
Specifies a participant configuration.
Attributes:
name Participant configuration name.
base_name Base participant name. It specifies another participant from which
<domain_participant> (optional) to inherit the configuration. 1 ormore
domain_ref Reference (fully qualified name) to a defined <domain> in the
(optional) domain library.
Domain ID. If specified, overrides the id in the domain it refers to.
domain_id (op-
tional) If no domain_id is specified directly orin the referenced domain
then the default domain_id is 0.

A <domain_participant> may inherit its configuration from another “base participant” specified using the
base name attribute. In this case, overriding applies to the base <domain_participant> as well as to the
referred <domain>.

Note that in DataWriters always belong to a Publisher and DataReaders to a Subscriber. For this reason
the <data_writer> and <data_reader> typically appear nested inside the corresponding <publisher> and
<subscriber> tags. However, for convenience, it is possible to define <data writer> and <data reader>
tags directly under the <domain_participant> tag. In this case, the DataWriters and DataReaders are cre-
ated inside the implicit Publisher and Subscriber, respectively.

38

5.5.2 Participant Library

Table 5.8 Domain Participant Tag

Tags
within Number
<domain_ Description of Tags
participant Allowed
>
Configures certain aspects of how Connext DDS allocates internal memory. The configuration is per Do-
mainParticipantand therefore affects allthe contained DataReadersand DataWriters. Forexample:
<domain participant name="test">
<memory_management>
<sample buffer min size>
X
</sample_buffer min_size>
<sample_buffer trim to_size>
true
</sample_buffer trim to size>
</memory management>
Smemon- pe < t>t include the following tags: 0 ormore
management> e <memory_management> tag can include the following tags:
sample_buffer_min_size: Forall DataReadersand DataWriters, the way Connext DDS allocates memory for
samples is as follows: Connext DDS pre-allocates space for samples up to size X in the readerand writer queues. If a
sample has an actual size greaterthan X, the memory is allocated dynamically forthat sample. The default size is
DDS_LENGTH_UNLIMITED (meaning no dynamic memory is used; the maximum sample size is pre-allocated).
sample_buffer_trim_to_size: If set to true, afterallocating dynamic memory for very large samples, that memory will
be released when possible. If false, that memory will not be released but kept forfuture samples if needed. The de-
faultis false.
This feature is usefulwhen a data type has a very high maximum size (e.g., megabytes) but most of the samples sent
are much smallerthan the maximum possible size (e.g., kilobytes). In this case, the memory footprint is dramatically re-
duced, while still correctly handling the rare cases in which very large samples are published.
<register_ - . . - .
type> Specifies how a type is registered. Same as within the <domain> tag 0 ormore
<topic> Specifies a topic. Same as within the <domain> tag 0 ormore
Specifiesa configuration.
Attributes:
) name Publisher configuration name.
<publisher> 0 ormore
Number of Publishersthat are created with this con-
multiplicity (optional) figuration.
Defaultis 1.
Specifies a Subscriber configuration.
Attributes:
<subscriber> | "@Me Subscriber configuration name. 0 ormore
Number of Subscribersthat are created with this con-
multiplicity (optional) figuration.
Defaultis 1.

39

5.5.2 Participant Library

Table 5.8 Domain Participant Tag

Tags
within Number
<domain_ Description of Tags
participant Allowed
>
Specifies a DataWriter configuration. The DataWriter will be created inside the implicit Publisher.
Attributes:
name DataWriter configuration name.
<data_writer> . Reference (name) a <topic> within the <domain> ref- 0 ormore
topic_ref . .
erenced by its <participant> parent.
Number of DataWritersthat are created with this con-
multiplicity (optional) figuration.
Defaultis 1.
Specifies a data reader configuration. The DataReader will be created inside the implicit subscriber.
Attributes:
name Data reader configuration name.
<data_ . o .
. Reference (name) a <topic> within the <domain> ref- 0 ormore
reader> topic_ref ; ini
erenced by its <participant> parent.
Number of DataReadersthat are created with this con-
multiplicity (optional) figuration.
Defaultis 1.
<nartici
qu:nmpant_ DomainParticipant QoS configuration. Oor1

The <publisher>, <subscriber>, <data writer>, and <data reader> tags are described in Figure 5.7: Pub-
lisher and Subscriber Tags on the next page, Table 5.9 Publisher Tag, Table 5.10 Subscriber Tag, Table

5.11 DataWriter Tag and Table 5.12 DataReader Tags.

40

5.5.2 Participant Library

Figure 5.7: Publisher and Subscriber Tags

<domain_participant>

<domain_participant>

| <subscriber>

|

: <data_reader>
b e canaaa
! :_<datareader_qos>
|

I 1 <filter>
L

AL EEEEEEEEE 1
1

The <publisher> tag defines by default a Publisher. It may contain a QoS configuration and several
DataWriters. Likewise, the <subscriber> tag defines by default a Subscriber. It may contain a QoS con-
figuration and several DataReaders.

Table 5.9 Publisher Tag

Tags within <publisher > Description Number of Tags Allowed
<data_writer> Specifies a DataWriter configuration. Same as within the <participant>tag. | 0 ormore
<publisher_qgos> Publisher QoS configuration. Oort

Table 5.10 Subscriber Tag

Tags within <subscriber> Description Number of Tags Allowed
<data_reader> Specifies a DataReader configuration. Same as within the <participant>tag. | 0 ormore
<subscriber_qos> Subscriber QoS configuration. Oor1

Table 5.11 DataWriter Tag

Tags within <data writer >

Description

Number of Tags Allowed

<datawriter_qos>

DataWriter QoS configuration

Oor1

41

5.5.2 Participant Library

Table 5.12 DataReader Tags

s Number of
Tags within .

Description Tags
<data reader> Allowed
<
qg:iareader_ DataReader QoS configuration. 0 ormore

Enables the creation of DataReader with this configuration from a ContentFiltered Topic.
Attributes:
<fitter> Name of the ContentFiltered Topic. The ContentFiltered Topic will be associated | 0 0r1
name . . L
with the same Topicreferenced by the containing <data_reader>
filter_kind Specifies which ContentFilter to use. It defaults to the builtin.sql filter.

The <filter> tag within a <data_reader> enables content filtering. It causes the corresponding DataReader
to be created from a ContentFilteredTopic with the specified filter characteristics.

The ContentFilteredTopic name is generated as follows: xml_filter name::xml topic_name.

Where xml_filter name is the value of the attribute name of the <filter> tag, and xml_topic_name is the
value of the attribute name of the referred <topic> tag.

Table 5.13 Filter Tag

<parameter_list>

<param>param 0</param>
<param>param_1</param>

</parameter list>

Tags within <filter > Description Number of Tags Allowed
<expression> Filter expression Oori
List of parameters. Parameters are specified using <param> tags.
The maximum number of parametersis 100.
<parameter_ list>
Oor1

For example:

<domain participant name="MyParticipant"
domain ref="MyDomainLibrary::MyDomain">
<publisher name="MyPublisher">
<data writer name="MyWriter" topic_ ref="MyTopic"/>
</publisher>

<subscriber name="MySubscriber">
<data_ reader name="MyReader" topic ref="MyTopic">
<filter name="MyFilter" kind="builtin.sqgl">

42

5.6 Names Assigned to Entities

<expression> count > %0 </expression>
<parameter list>
<param>10<param>
</parameter list>
</filter>
</data_ reader>
</subscriber>
</domain participant>

The above configuration defines a <domain_participant> that is bound to the <domain> “MyDomain”.

A DomainParticipant created from this configuration will contain:

o A Publisher which has a DataWriter created from the Topic “MyTopic”.

o A Subscriber which has DataReader created from a ContentFilteredTopic whose related Topic,
“MyTopic”, uses a SQL filter. The ContentFilteredTopic has the name “MyTopic::MyFilter”.

5.6 Names Assigned to Entities

Each Entity configured in an XML file is given a unique name. This name is used to refer to it from other
parts of the XML configuration and also to retrieve it at run-time using the Connext DDS API.

In the context of XML-based configuration, we distinguish between two kinds of names:

o Configuration name: The name of a specific Entity’s configuration. It is given by the name attrib-
ute of the corresponding XML element.

o Entity name: The actual name of the Entity within the run-time system. The name assignment fol-
lows these rules of precedence:

1. An explicit name provided as a parameter in DomainParticipantConfigParams_t (applies only
to a DomainParticipant).

2. An explicit name, obtained from the specified EntityNameQosPolicy settings.

3. A default entity name, obtained from the name attribute of the corresponding configuration.

For example:

<domain participant library name="MyLibrary">
<domain participant name="MyParticipant">
<publisher name="MyPublisher">
<data writer name="MyWriter" topic ref="MyTopic"/>
<data writer name="MyWriter2" topic ref="MyTopic2">
<publication name>
<name>WriterNameFromQos</name>
</publication name>
</data writer>
</publisher>

43

5.6 Names Assigned to Entities

</domain participant>
</domain participant library>

For the above XML configuration, the name assignments are:

Entity Configuration Name Entity Name
DomainParticipant “MyParticipant” “MyParticipant”
Publisher “MyPublisher” “MyPublisher”
DataWriter “MyWriter” “MyWriter”
DataWriter “MyWriter2” “WriterNameFromQos”

For all the cases, the entity name is stored by Connext DDS using the EntityNameQosPolicy QoS policy
for DomainParticipants, Publishers, Subscribers, DataWriters and DataReaders. The policy is rep-

resented by the following C structure:

Struct DDS EntityNameQosPolicy {
char * name;
char * role name;

}

The mapping is:
Field Value
name Entity name
role_name Configuration name

For the above XML example, assuming the entities are created with create participant from_config(con-

figuration):
Entity EntityNameQosPolicy
. . name = "MyParticipant"
DomainParticipant
role_name = “MyParticipant”
name = “MyPublisher’
Publisher
role_name = “MyPublisher’
name = “MyWriter’
DataWriter
role_name = “MyWriter”’
name = “WriterNameFromQos”
DataWriter
role_name = “MyWriter2”

44

5.6.1 Referring to Entities and Other Elements within XML Files

5.6.1 Referring to Entities and Other Elements within XML Files

Entities and other elements within the XML file are addressed using a hierarchical name that matches their
declaration hierarchy. This is summarized in the table below.

Entity or . .
4 Hierarchical Name Example Use
Element
type [type_namel] type_ref="MyType"
gos [qos_library_name]::[qos_profile_name] base_name="qosLibrary::DefaultProfile"
domain [domain_libary_name]::[domain_name] domain_ref=
—bary_ a - "MyDomainLibrary::MyDomain"
[domain_participant_library_name]:: base name=
participant . . . = - . N
[participant_name] MyParticipantLibrary::PublicationParticipant
[topic_name]
topic Must be defined within the scope of the Domain orthe Participant that refers | topic_ref="MyTopic"

toit

[publisher_name]
publisher base_name="MyPublisher”
Must be defined within the scope of the Participant that refers to it

[subscriber_name]
subscriber base_name="MySubscriber’
Must be defined within the scope of the Participant that refers to it

[publisher_name]::[datawriter_name] base_name="MyPublisher::MyWrite

data_writer If addressing from within the same Publisher, the “publisher_name::” prefix

may be omitted base_name="MyWriter

[subscriber_name]::[datareader_name] base_name="MySubscriber::MyReader

data_reader If addressing from within the same Subscriber, the “subscriber_name::” prefix

may be omitted base_name="MyReader

The example above corresponds to a configuration such as the one following:

<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=
"../../../resource/schema/rti dds profiles.xsd" version="6.x.y">
<types>
<struct name="MyType'">
<member name="mylong" type="long"/>
</struct>
</types>

<domain library name="MyDomainLibrary">
<domain name="MyDomain" domain id="0">
<register type name="MyRegisteredType"
type ref="MyType"/>
<topic name="MyTopic"
register type ref="MyRegisteredType"/>

45

5.7 Creating and Retrieving Entities Configured in an XML File

</domain>
</domain library>

<domain participant library name="MyParticipantLibrary">
<domain participant name="MyParticipant"
domain ref="MyDomainLibrary::MyDomain'">
<publisher name="MyPublisher">
<data writer name="MyWriter"
topic ref="MyTopic"/>
</publisher>
<subscriber name="MySubscriber">
<data reader name="MyReader"
topic ref="MyTopic"/>
</subscriber>
</domain participant>
</domain participant library>
</dds>

5.7 Creating and Retrieving Entities Configured in an XML File

There are two kinds of operations that affect Entities configured in an XML file:

« Create the defined entities. Only the operation create participant_from_config() in the DomainPar-
ticipantFactory triggers the creation of a DomainParticipant and all its contained Entities given a
configuration name.

o Retrieve the defined entities: After creation, you can retrieve the defined Entities by using the
lookup_by name() operations available in the DomainParticipantFactory, DomainParticipant, Pub-
lisher and Subscriber.

5.7.1 Creating and Retrieving a DomainParticipant Configured in an XML
File

To create a DomainParticipant from a configuration profile in XML, use the function create_par-
ticipant_from_config(), which receives the configuration name and creates all the entities defined by that
configuration.

For example :
<domain participant library = "MyLibrary">

<domain participant name="MyParticipant"
domain ref="MyDomainLibrary::MyDomain" domain id="1>

</domain participant>
</domain participant library>

Given the above configuration, a DomainParticipant is created as follows:

DDSDomainParticipant * participant =
DDSTheParticipantFactory->create participant from config
("MyLibrary: :MyParticipant") ;
if (participant == NULL) {

46

5.7.2 Creating and Retrieving Publishers and Subscribers

//handle error

}

The DomainParticipant is bound to the domain_id specified in either the <domain_participant> tag—this
has precedence—or the <domain> tag. In this example the domain_id is set to one.

When the DomainParticipant is created by means of create participant_from_config(), a name will be
generated automatically based on the configuration name and the number of existing participants created
from the same configuration. The generation follows the same strategy explained in 5.6 Names Assigned
to Entities on page 43 for the domain entities where the multiplicity is replaced by the number of existing
participants. If this is number is identified by "N", the participant name for a new participant will be
assigned as follows:

Participant Name N

"configuration_name" 0

"configuration_name#N" [1,N-1]

For example, if we create three participants from the configuration "lib::participant", the names assigned as
the participants are created will be:

e -participant

« -participant#l

o -participant#2

Once a participant is created, it can be retrieved by its name at any other place in your program as follows,
based on the previous example and assuming that only one participant was created:

participant =
DDSTheParticipantFactory->lookup participant by name (
"MyParticipant") ;

if (participant == NULL) {

//handle error

}

To provide more flexibility, create_participant_from_config w_params() allows you to specify the par-
ticipant name. Y ou can also override the specification in the configuration for the domain ID and QoS pro-
file for the participant and entites in the domain.

5.7.2 Creating and Retrieving Publishers and Subscribers

Publishers and Subscribers configured in XML are created automatically when a DomainParticipant is
created from the <domain_participant> that contains the <publisher> and <subscriber> configurations.

Given the following example:

47

5.7.3 Creating and Retrieving DataWriters and DataReaders

<domain participant name="MyParticipant"
domain ref="MyDomainLibrary::MyDomain'">
<publisher name="MyPublisher" multiplicity="2">

</publisher>
<subscriber name="MySubscriber">

</subscriber>
</domain participant>

Once a DomainParticipant 1s created as explained in 5.7.1 Creating and Retrieving a DomainParticipant
Configured in an XML File on page 46, Publishers and Subscribers can be retrieved from the created
DomainParticipant using their name as follows:

DDSPublisher * publisher =
participant->lookup publisher by name ("MyPublisher");
if (publisher == NULL) {
//handle error

DDSPublisher * publisher 1 =
participant->lookup publisher by name ("MyPublisher#l");
if (publisher == NULL) {
//handle error

DDSSubscriber * subscriber =
participant->lookup subscriber by name ("MySubscriber");
if (subscriber == NULL) {
//handle error

}

5.7.3 Creating and Retrieving DataWriters and DataReaders

DataWriters and DataReaders configured in XML are created automatically when a DomainParticipant is
created from the <domain_participant> that contains the <data writer> and <data reader> configurations.

Given the following example:

<domain participant name="MyParticipant"
domain ref="MyDomainLibrary::MyDomain">
<publisher name="MyPublisher">
<data writer name="MyWriter" topic_ ref="MyTopic"/>
</publisher>
<subscriber name="MySubscriber">
<data reader name="MyReader" topic ref="MyTopic"/>
</subscriber>
</domain participant>

Once a DomainParticipant is created as explained in 5.7.1 Creating and Retrieving a DomainParticipant
Configured in an XML File on page 46, DataWriters and DataReaders can be retrieved from the created
DomainParticipant using their fully qualified name seen below:

48

5.7.4 Creating Content Filters

DDSDataWriter * dataWriter =
participant->lookup dataWriter by name (
“MyPublisher: :MyWriter”) ;

if (dataWriter == NULL) {

//handle error

}

DDSDataReader * dataReader =
participant->lookup datareader by name (

“MySubscriber: :MyReader”) ;

if (dataReader == NULL) {

//handle error

}

Or from the created Publisher and Subscriber ,using their ‘unqualified’ name seen below:

DDSDataWriter * dataWriter =
publisher->lookup dataWriter by name (“MyWriter”);
if (dataWriter == NULL) {
//handle error

}
DDSDataReader * dataReader =
subscriber->lookup datareader by name (“MyReader”) ;

5.7.4 Creating Content Filters

To use a content filter, modify the “SubscriptionParticipant” configuration to look like this:

<domain participant library name="MyParticipantLibrary">

<domain participant name="SubscriptionParticipantWithFilter"
domain ref="MyDomainLibrary::HelloWorldDomain">
<subscriber name="subscriber">
<data reader name="HelloWorldReader"
topic ref="HelloWorldTopic">
<datareader gos name="HelloWorld reader gos"
base name="qgosLibrary::DefaultProfile"/>
<filter name="HelloWorldTopic" kind="builtin.sqgl">
<expression> count < 20 </expression>
</filter>
</data_ reader>
</subscriber>
</domain participant>
</domain participant library>

It adds a SQL content filter, which only accepts samples with the field count greater than two.

Now run the HelloWorld subscriber application without recompiling and check that it only receives data
when counter less than 20 as expected.

5.7.5 Using User-Generated Types

If a user-generated type by means of rtiddsgen is desired rather than dynamic data, the corresponding type
support must be registered with the DomainParticipantFactory before creating a DomainParticipant. To
register the type support, use the function register_type_support() in the DomainParticipantFactory,

49

5.7.5 Using User-Generated Types

which takes (a) a pointer to a function that registers a type and (b) the type name it is registered with. Then
the specified function will be called automatically by the middleware whenever the type registration is
needed.

The definition of this function is given by:

typdef DDS ReturnCode t (*DomainParticipantFactory RegisterTypeFunction)
(DDSDomainParticipant * participant,
const char * type name);

This “register type function” should be generated using the rtiddsgen command-line tool from the IDL or
XML definition of the data type. See 3.2 Hello World using XML and Compiled Types on page 16 for a
simple example of how to follow this process.

For example, the following XML snippet defines a data type registered under the name MyType with a
TypeSupport that is user-generated. To use this data type, the application must also generate the TypeSup-
port code for the appropriate language binding using rtiddsgen and associate the generated TypeSupport
with the name MyType. This association is made by calling the operation register_type_support() on the
DomainParticipantFactory:

<domain name="MyDomain" domain id="13">
<register type name="MyType"/>

</domain>

Continuing the example above, assume that the structure of "MyType" is described in the IDL file
MyType.idl. Also assume that you are using the C++ language API and you have already run rtiddsgen
and generated the type-support files: MyTypeSupport.h and MyTypeSupport.cxx. These files will con-
tain the declaration and implementation of the function MyTypeSupport::register type(). In this situ-
ation, you must associate the MyTypeSupport::register type() operation with the type name MyType
by calling DDSTheParticipantFactory->register_type_support() from your application code prior to
creating the DomainParticipant as shown in the C++ snippet below:

DDS ReturnCode t * retCode =

DDSTheParticipantFactory->register type support (
FooTypeSupport::register type, "MyType");
if (retCode != DDS_RETCODE_OK) {

//handle error

}

You can find an example of using a user-generated type in <path to examples>/connext_dds/c++/hello_
world xml compiled. Also refer to the description of this example in 3.2 Hello World using XML and
Compiled Types on page 16.

50

Chapter 6 Generating Applications for

Connext DDS Micro

XML-Based Application Creation can also be used to configure Connext DDS Micro applications,

through a utility called RTI Micro Application Generator (MAG).

MAG generates code from an XML configuration file; it creates DDS entities and registers all the

components needed for a Connext DDS Micro-based application.

App Source Code
{MyApp.c)

DDS Data Types
(MyApp.idI)

Type Support Code
{MyAppPlugin.c)

DDS App
Configuration

{MyApp.xml)

rtiddsmag

{Micro App
Generator)

Connext DDS Micro
App Code

(MyApp_appgen.c)

L4

Connext DDS Pro
App Executable +
{MyApp)

Connext DDS Micro
App Executable
(MyApp)

51

6.1 Paths Mentioned in Documentation

Extending XML-Based Application Creation to Connext DDS Micro enables two important use cases:

o Users who may eventually develop with Connext DDS Micro, but who haven’t determined their
final platform, can prototype applications on a generic platform and validate that the QoS and DDS
Entity configuration is within scope of what Connext DDS Micro supports. The same concept
applies to those who eventually want to use Connext DDS in a safety-critical platform, such as those
required by DO-178C for avionics or ISO 26262 for automotive applications.

» Users who want to develop directly with Connext DDS Micro can simplify their development
efforts through shared XML files that can be configuration managed. This reduces the burden on sys-
tem integrators who want to configure Connext DDS Micro systems without having to manually
code in static configurations.

Some of the main features of MAG are:

o Generates code for the languages supported by Connext DDS Micro: C and C++.

» Automatically configures the remote entities that are needed to communicate with applications that
use static discovery.

« Automatically tries to use the default values used by Connext DDS Micro, to reduce the size of the
generated code.

« Optimizes the components used by your application. By default, MAG generates code that will unre-
gister transports that your application is not using.

Notes:

o MAG has been tested with Oracle JRE 8, which is included in the installation package. No other ver-
sions of Java are supported.

o Customization is not currently supported for MAG.
6.1 Paths Mentioned in Documentation

This chapter may refer to:
e <RTIMEHOME>

This refers to the installation directory for Connext DDS Micro. The default installation paths are:

e Mac OS X systems:
/Applications/rti_connext dds-6.0.0/rti_connext dds micro-3.0.0

o UNIX-based systems, non-root user:
/home/<your user name>/rti_connext dds-6.0.0/rti_connext dds micro-3.0.0

52

6.1 Paths Mentioned in Documentation

o UNIX-based systems, root user:
/opt/rti_connext_dds-6.0.0/rti_connext _dds micro-3.0.0

o Windows systems, user without Administrator privileges:
<your home directory>\rti_connext dds-6.0.0\rti_connext dds micro-3.0.0

o Windows systems, user with Administrator privileges:

o 64-bit machines:
C:\Program Files\rti_connext dds-6.0.0\rti_connext dds micro-3.0.0

o 32-bit machines:
C:\Program Files (x86)\rti_connext_dds-6.0.0\rti_connext dds_micro-3.0.0

Y ou may also see SRTIMEHOME or %R TIMEHOME%, which refers to an environment variable
set to the installation path.

Wherever you see <RTIMEHOME> used in a path, replace it with your installation path.

Note for Windows Users: When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:

“C:\Program Files\rti connext dds-6.0.0\rti connext dds micro-
3.0.0\rtiddsmag\scripts\rtiddsmag.bat”

Or if you have defined the RTIMEHOME environment variable:

“SRTIMEHOMES\rtiddsmag\scripts\rtiddsmag.bat”

<path to Micro examples>

Connext DDS Micro examples are in <RTIMEHOME>/example after you've installed Connext
DDS Micro. This document refers to the location of these examples as <path to Micro examples>.

Wherever you see <path to Micro examples>, replace it with the appropriate path.

Default path to the Connext DDS Micro examples:
o UNIX-based systems: <RTIMEHOME>/example/unix

o Windows systems: <RTIMEHOME>\example\windows

Note: The script to run MAG can be in two different folders:
e <NDDSHOME>/bin/rtiddsmag

¢ <RTIMEHOME>/rtiddsmag/scripts/rtiddsmag

The first script is included in the Connext DDS Professional bundle and the second in the Connext
DDS Micro RTI package.

53

6.2 Command-Line Options

6.2 Command-Line Options

The following table shows the options available when using rtiddsmag to generate code for Connext DDS

Micro applications.

Table 6.1 Command-Line Options for rtiddsmag

Option

Description

Generates the outputin the specified directory. By default, MAG will generate files in the directory where the

-d <outdir> XML file is located.
Use this flag to avoid adding the input file location of fields into the generated files.

-dontAddLocations By default (when this flag is not used), MAG will add the location where an entity was defined in the XML file.
The location will be placed above the definition of that entity in the generated code.
Use this flag to avoid static endpoint discovery optimization. Then MAG willinclude all DataWriters and
DataReaders when calculating the remote entities.

-dontOptimize SE

By default (when this option is not used) MAG will optimize the number of remote entities by only including
Data Writers and DataReaders that use the same Topic in the remote model.

-dontUpdateResourceLimits

Use this flag to avoid automatically updating the resource limit settings for DomainParticipants, DataReaders
and DataWriters.

By default (when this flag is not used), MAG will update the resource limits so it will at least be able to support
the entities defined in the XML file. If your applications communicate with more remote entities thatthe ones
specified in the XML file, you might need to manually update them.

-dontUseDefaultValues

Use this flag to avoid automatically generating code using default QoS policy values when possible.

By default (when this flag is not used), MAG will check whetherthe values that are set in every element of the
QoS policies foreach entity are the same as the defaults used by Connext DDS Micro. If that's the case, the
generated code will contain the default values forthose policies, instead of the values set by the user.

-dpdeName <name>

Specifies the name used by MAG when registering a DPDE discovery plugin. By default, this name is dpde.

-dpseName <name>

Specifies the name used by MAG when registering a DPSE discovery plugin. By default, this name is dpse.

-help

Prints out the command-line options for MAG.

-idIFile <file>

Specifies the IDL file name used by rtiddsgen to generate the code. This value is used by MAG to specify the
Plugin headergenerated by rtiddsgen. By default, MAG uses the name of the XML file.

-language <C|C++>

Specifies the language to use forthe generated files. The defaultlanguage is C

-onlyValidate

Causes MAG to just validate the inputfile. It willnot generate any code.

-outputFinalQoS
<QosLibrary::QosProfile>

Use this flag to display the final values of the specified QoS profile afterapplying inheritance.

Although MAG currently doesn’t generate code to set the QoS for Connext DDS Micro, using this flag will de-
termine the final values in the profile afterapplying inheritance. For complex XML files, with multiple levels of in-
heritance, it might be a challenge to determine the final QoS values. Using this flag simplifies the process.

54

6.3 Generated Files

Option Description

Specifies a file which is referenced from the one being used to generate code.

In general, itis recommended to split the application definition from the QoS definition. This way, the QoS can
-referencedFile <file> be shared among various applications.

Note:
Can be repeated: -referencedFile <file 1> -referencedFile <file2>

-replace Use this flag to overwrite existing generated files.

Specifies the name used by MAG when registering a shared emmory (SHMEM) transport plugin. By default,

-shmemName <name> . .
this name is shmem.

-udpName <name> Specifies the name used by MAG when registering a UDP transport plugin. By default, this name is udp.

Sets the MAG verbosity:

« 1:Exceptions.
-verbosity [1-4] « 2:Exceptions and warnings.
« 3: Exceptions, wamings, and information. (Default)

« 4:Exceptions, warnings, information, and debug.

-version Displays the version of MAG being used, such as 1.x.y.

6.3 Generated Files

The following table shows the files that MAG creates for an example XML file, HelloWorld.xml (which
contains the application definition) and a referenced file, HelloWorldQos.xml (which contains the QoS
definition). This second file is optional; you can define the QoS in the application file.

Table 6.2 C and C++ Files Created for Example HelloWorld.xml

Generated Files Description

HelloWorldAppgen.h

(Cand C++) Generated code foreach DDS Entityand its run-time components.

HelloWorldAppgen.c

Generated code foreach Entity Model; also contains the values of each array used in the headerfile.
(Cand C++)

HelloWorldAppgen_plugin.h

Headerfile that contains the declarations of allthe wrappers.
(C++only)

A wrapperforthe _get() call (get_plugin_type):
struct DDS_TypePluginl *HelloWorldPlugin_get cpp(void)

HelloWorldAppgen_plugin.cxx .

(C++only) return HelloWorldPlugin get () ;

}

55

6.3.1 Integrating Generated Files into Y our Application’s Build

6.3.1 Integrating Generated Files into Your Application’s Build

Integrating the generated files into your application is as easy as including the generated files Hel-
loWorldAppgen.h and HelloWorldAppgen.c in your application. If your application uses C++, you will
also need to include HelloWorldAppgen_plugin.h and HelloWorldAppgen_plugin.cxx.

Then you can create entities using the standard DDS_DomainParticipantFactory create participant
from_config() operation and retrieve all the entities from your application code using the standard
lookup_<entity> by _name() operations, such as lookup_datawriter_by_name(). For details on these
operations, see the DomainParticipantFactory module in the Connext DDS Micro API reference

HTML documentation, available here:

o C API: https://community.rti.com/static/documentation/connext-micro/latest/doc/
api c¢/group DDSDomainParticipantFactoryModule.html

o C++ API: https://community.rti.com/static/documentation/connext-micro/latest/doc/
api cpp/classDDSDomainParticipantFactory.html

6.4 A "Hello, World" Example

This simple scenario consists of two applications: HelloWorld _publisher, which writes the Topic, Hel-
loWorldTopic, and HelloWorld_subscriber, which subscribes to that Topic.

The files for this example are provided when you install Connext DDS Micro. Y ou will find them in the
directory <path to Micro examples>/C/HelloWorld _appgen. (See 6.1 Paths Mentioned in Docu-
mentation on page 52.)

6.4.1 Generate Type-Support Code from the Type Definition

The first step is to describe the data type in a programming language-neutral manner. Three languages are
supported by RT1 Code Generator: XML, IDL, and XSD. These three languages provide equivalent type-
definition capabilities, so you can choose whichever one you prefer. You can even transform between one
of these three languages and another with R77 Code Generator. That said, since the rest of the con-
figuration files use XML, it is often more convenient to also use XML to describe the data types, so they
can be shared or moved to other XML configuration files.

The file HelloWorld.xml contains the XML description of the data type. You can find this file in <path to
Micro examples>/C/HelloWorld_appgen.

Let’s examine the type used in this example:

<types>
<const name="MAX NAME LEN" type="long" value="64"/>
<const name="MAX MSG LEN" type="long" value="128"/>
<struct name="HelloWorld">
<member name="sender" type="string" stringMaxLength="MAX NAME LEN" key="true"/>
<member name="message" type="string" stringMaxLength="MAX MSG LEN"/>

56

https://community.rti.com/static/documentation/connext-micro/latest/doc/api_c/group__DDSDomainParticipantFactoryModule.html
https://community.rti.com/static/documentation/connext-micro/latest/doc/api_cpp/classDDSDomainParticipantFactory.html

6.4.1 Generate Type-Support Code from the Type Definition

<member name="count" type="1long"/>
</struct>
</types>

The data associated with the HelloWorld Topic consists of two strings and a numeric counter:

1. The first string contains the name of the sender of the message. This field is marked as the “key”
since it signals the identity of the data-object.
2. The second string contains a message.

3. The third field is a simple counter, which the application increments with each message.

Once the type has been defined, we use rtiddsgen to generate the code for the HelloWorld data type.
We will use the C language in this example.

To generate code with rtiddsgen:

e On a Windows system:

From your command shell, change directory to <path to Micro examples>\C\HelloWorld_app-
gen and type:

<RTIMEHOME>\rtiddsgen\scripts\rtiddsgen.bat -language C -micro HelloWorld.xml
Note: The Visual Studio solution in the example folder automatically calls rtiddsgen.

o On a UNIX-based system:

From your command shell, change directory to <path to Micro examples>/C/HelloWorld_app-
gen and type:

<RTIMEHOME>/rtiddsgen/scripts/rtiddsgen -language C -micro HelloWorld.xml

After running rtiddsgen, you will see the following files in the HelloWorld_appgen directory:

o HelloWorld.h

o HelloWorld.c

o HelloWorldPlugin.h
o HelloWorldPlugin.c
o HelloWorldSupport.h
o HelloWorldSupport.c

The most notable files are HelloWorld.h and HelloWorldPlugin.h:

57

6.4.2 Generate DDS Entities from the System Definition

o HelloWorld.h contains the declaration of the C structure, built according to the specification in the
XML file:

typedef struct HelloWorld

{
CDR String sender;
CDR String message;
CDR Long count;

} HelloWorld;

o HelloWorldPlugin.h contains the get plugin_type() function that MAG will use when generating
the code to create all the DDS entities:

NDDSUSERD11Export extern struct NDDS Type Plugin*
HelloWorldTypePlugin get (void) ;

6.4.2 Generate DDS Entities from the System Definition

This step uses rtiddsmag to generate code to support the creation of DDS entities using XML-Based Applic-
ation Creation.

rtiddsmag supports C and C++. We will use C in this example.

Note: You can do this step before or after generating Type-Support from the Type definition since the type
code doesn’t need to exist when running rtiddsmag.

To generate code with rtiddsmag:
e On a Windows system:

From your command shell, change directory to <path to Micro examples>\C\HelloWorld_app-
gen and type:

<NDDSHOME>\bin\rtiddsmag.bat -language C -referencedFile HelloWorldQos.xml HelloWorld.xml

or

<RTIMEHOME>\rtiddsmag\scripts\rtiddsmag.bat -language C -referencedFile HelloWorldQos.xml
HelloWorld.xml

Note: The Visual Studio solution in the example folder automatically calls rtiddsmag.
e On a UNIX-based system:

From your command shell, change directory to <path to Micro examples>/C/HelloWorld_app-
gen and type:

<NDDSHOME>/bin/rtiddsmag -language C -referencedFile HelloWorldQos.xml HelloWorld.xml

or

58

6.4.3 Examine the XML Configuration Files and the Generated Code

<RTIMEHOME>/rtiddsmag/scripts/rtiddsmag -language C -referencedFile HelloWorldQos.xml
HelloWorld.xml

We will examine the content of the generated files in the next section.

6.4.3 Examine the XML Configuration Files and the Generated Code

The entire HelloWorld.xml file is shown below. Let’s review its content to see how this scenario was con-
structed. The main sections in the file are:

e 6.4.3.1 Type Definition on the next page
e 6.4.3.2 Domain Definition on the next page

e 6.4.3.3 DomainParticipant Definition on page 62

<?xml version="1.0"7?>
<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://community.rti.com/schema/6.0.0/rti dds profiles.xsd">
<!-- Type Definition -->
<types>
<const name="MAX NAME LEN" type="long" value="64"/>
<const name="MAX MSG LEN" type="long" value="128"/>
<struct name="HelloWorld">
<member name="sender" type="string" stringMaxLength="MAX NAME LEN" key="true"/>
<member name="message" type="string" stringMaxLength="MAX MSG LEN"/>

<member name="count" type="1long"/>
</struct>
</types>
<!-- Domain Library -->

<domain library name="HelloWorldLibrary">
<domain name="HelloWorldDomain" domain id="0">
<register type name="HelloWorldType" type ref="HelloWorld">
</register type>
<topic name="HelloWorldTopic" register type ref="HelloWorldType">
<registered name>HelloWorldTopic</registered name>
</topic>
</domain>
</domain library>
<!-- Participant Library -->
<domain participant library name="HelloWorldAppLibrary">
<domain participant name="HelloWorldDPDEPubDP"
domain ref="HelloWorldLibrary: :HelloWorldDomain">
<publisher name="HelloWorldDPDEPub">
<data_writer topic ref="HelloWorldTopic" name="HelloWorldDPDEDW">
<datawriter gos base name="QosLibrary::DPDEProfile"/>
</data writer>
</publisher>
<participant gos base name="QosLibrary::DPDEProfile"/>
</domain participant>
<domain participant name="HelloWorldDPDESubDP"

59

6.4.3.1 Type Definition

domain ref="HelloWorldLibrary::HelloWorldDomain">
<subscriber name="HelloWorldDPDESub">
<data_reader topic_ref="HelloWorldTopic" name="HelloWorldDPDEDR">
<datareader qos base name="QosLibrary::DPDEProfile"/>
</data_ reader>
</subscriber>
<participant gos base name="QosLibrary::DPDEProfile"/>
</domain participant>
<domain participant name="HelloWorldDPSEPubDP"
domain ref="HelloWorldLibrary::HelloWorldDomain">
<publisher name="HelloWorldDPSEPub">
<data writer topic_ref="HelloWorldTopic" name="HelloWorldDPSEDW">
<datawriter qos base name="QosLibrary::DPSEProfile"/>
</data writer>
</publisher>
<participant gos base name="QosLibrary::DPSEProfile"/>
</domain participant>
<domain participant name="HelloWorldDPSESubDP"
domain ref="HelloWorldLibrary::HelloWorldDomain">
<subscriber name="HelloWorldDPSESub">
<data_reader topic_ref="HelloWorldTopic" name="HelloWorldDPSEDR">
<datareader qos base name="QosLibrary::DPSEProfile"/>
</data_ reader>
</subscriber>
<participant gos base name="QosLibrary::DPSEProfile"/>
</domain participant>
</domain participant library>
</dds>

6.4.3.1 Type Definition

rtiddsmag doesn’t use the types section of the XML file to generate any code. This section is used by
rtiddsgen to generate the code to support the direct use of the structure ‘HelloWorld’ from application code
(see 6.4.1 Generate Type-Support Code from the Type Definition on page 56).
<types>
<const name="MAX NAME LEN" type="long" value="64"/>
<const name="MAX MSG LEN" type="long" value="128"/>
<struct name="HelloWorld">
<member name="sender" type="string" stringMaxLength="MAX NAME LEN" key="true"/>
<member name="message" type="string" stringMaxLength="MAX MSG LEN"/>
<member name="count" type="long"/>
</struct>
</types>

6.4.3.2 Domain Definition
The domain section defines the system’s Topics and their corresponding data types. To define a Topic, the

associated data type must be registered with the domain, giving it a registered type name. The registered
type name is used to refer to that data type within the domain when the Topic 1s defined.

60

6.4.3.2 Domain Definition

In this example, the configuration file registers the previously defined HelloWorld type under the name
HelloWorldType. Then it defines a Topic named HelloWorldTopic, which is associated with the registered
type, referring to its registered name, HelloWorldType. The value used in get_plugin_type depends on
how the registration of the data-type is configured inside the domain:

1. Ifa <register type> tag is specified without a type_ref attribute, the value of get_type plugin is gen-
erated from the <register type> tag plus the string "Plugin_get".

2. Ifa<register type> tag is specified with a type_ref attribute, the value of get_type_plugin is gen-
erated from that attribute plus the string "Plugin_get". Our example has type ref="HelloWorld", so
the value of get_type plugin will be HelloWorldTypePlugin_get.

<!-- Domain Library -->
<domain library name="HelloWorldLibrary">
<domain name="HelloWorldDomain" domain id="0">
<register type name="HelloWorldType" type_ ref="HelloWorld">
</register type>
<topic name="HelloWorldTopic" register type ref="HelloWorldType">
</topic>
</domain>
</domain library>

rtiddsmag generates the following code for each entity that uses this Topic:

o HelloWorldAppgen.c

const struct APPGEN TypeRegistrationModel
HelloWorldAppLibrary HelloWorldDPDEPubDP type registrations([1l] =
{
{
"HelloWorldType", /* registered type name */
HelloWorldTypePlugin get /* get type plugin */
}
bi
const struct APPGEN TopicModel
HelloWorldAppLibrary HelloWorldDPDEPubDP topics[1l] =
{
{
"HelloWorldTopic", /* topic name */
"HelloWorldType", /* type name */
DDS_TopicQos INITIALIZER /* topic_gos*/

I

These two structures are used in the DomainParticipant definition, where they will be registered by
Connext DDS Micro when calling the Micro Application Generation APIL.

o HelloWorldAppgen.h

61

6.4.3.3 DomainParticipant Definition

extern const struct APPGEN TypeRegistrationModel
HelloWorldAppLibrary HelloWorldDPDEPubDP type registrations[1];

extern const struct APPGEN TopicModel
HelloWorldAppLibrary HelloWorldDPDEPubDP topics[1];

#define RTI_APP GEN_DP HelloWorldAppLibrary HelloWorldDPDEPubDP \
{\

1UL, /* type registration count */ \

HelloWorldAppLibrary HelloWorldDPDEPubDP type registrations, /* type registrations*/ \
1UL, /* topic count */ \

HelloWorldAppLibrary HelloWorldDPDEPubDP topics, /* topics */ \

Note: Connext DDS Micro automatically registers the types that rtiddsmag generates. This means the con-
tent inside the Domain definition must match the types generated by rtiddsgen.

6.4.3.3 DomainParticipant Definition

The DomainParticipant section defines the DomainParticipants in the system and the DataWriters and
DataReaders that each DomainParticipant has. DomainParticipants are defined within the <domain
participant_library> tag.

Each DomainParticipant:

o Has a unique name (within the library) which will be used later by the application that creates it.

o Is associated with a domain, which defines the domain_id, 7opics, and the data types the
DomainParticipant will use.

o Defines the Publishers and Subscribers within the DomainParticipant. Publishers contain
DataWriters, Subscribers contain DataReaders.

o Defines the set of DataReaders it will use to read data. Each DataReader has a QoS and a unique
name which can be used from application code to retrieve it.

o Defines the set of DataWriters it will use to write data. Each DataWriter has a QoS and a unique
name which can be used from application code to retrieve it.

o Optionally, the DomainParticipants, Publishers, Subscribers, DataWriters, and DataReaders can
specify a QoS profile that will be used to configure them.

The example below defines four DomainParticipants, two of them (HelloWorldDPDEPubDP and Hel-
loWorldDPDESubDP) use Dynamic Participant/Dynamic Endpoint (DPDE) and the other two (Hel-
loWorldDPSEPubDP and HelloWorldDPSESubDP) use Dynamic Participant/Static Endpoint (DPSE)
discovery:

62

6.4.3.3 DomainParticipant Definition

<!-- Participant Library -->
<domain participant library name="HelloWorldAppLibrary">
<domain participant name="HelloWorldDPDEPubDP"
domain ref="HelloWorldLibrary::HelloWorldDomain">
<publisher name="HelloWorldDPDEPub">
<data_writer topic_ref="HelloWorldTopic" name="HelloWorldDPDEDW">
<datawriter gos base name="QosLibrary::DPDEProfile"/>
</data writer>
</publisher>
<participant gos base name="QosLibrary::DPDEProfile"/>
</domain participant>

<domain participant name="HelloWorldDPDESubDP"
domain ref="HelloWorldLibrary::HelloWorldDomain">
<subscriber name="HelloWorldDPDESub">
<data_reader topic_ref="HelloWorldTopic" name="HelloWorldDPDEDR">
<datareader gos base name="QosLibrary::DPDEProfile"/>
</data_reader>
</subscriber>
<participant gos base name="QosLibrary::DPDEProfile"/>
</domain participant>

<domain participant name="HelloWorldDPSEPubDP"
domain ref="HelloWorldLibrary::HelloWorldDomain">
<publisher name="HelloWorldDPSEPub">
<data_writer topic_ref="HelloWorldTopic" name="HelloWorldDPSEDW">
<datawriter gos base name="QosLibrary::DPSEProfile"/>
</data writer>
</publisher>
<participant gos base name="QosLibrary::DPSEProfile"/>
</domain participant>

<domain participant name="HelloWorldDPSESubDP"
domain ref="HelloWorldLibrary::HelloWorldDomain">
<subscriber name="HelloWorldDPSESub">
<data_reader topic_ref="HelloWorldTopic" name="HelloWorldDPSEDR">
<datareader gos base name="QosLibrary::DPSEProfile"/>
</data_reader>
</subscriber>
<participant gos base name="QosLibrary::DPSEProfile"/>
</domain participant>
</domain participant library>

Examining the XML, we see that:

o Each DomainParticipant is bound to the Domain, HelloWorldLibrary::HelloWorldDomain.

o The two DomainParticipants that use DPDE as their discovery mechanism inherit from the profile
QosLibrary::DPDELibrary, while the other two that use DPSE as their discovery mechanism inherit
from QosLibrary::DPSELibrary.

63

6.4.3.3 DomainParticipant Definition

o Each DomainParticipant contains a single Publisher or Subscriber, which it turn contains a single
DataWriter or DataReader that inherits from QosLibrary::DPDELibrary or
QosLibrary::DPSELibrary, depending on the discovery mechanism used by its DomainParticipant.

o Each DataWriter writes the Topic HelloWorldTopic, which is defined in the domain
HelloWorldLibrary::HelloWorldDomain. Each DataReader reads the same Topic.

Since both Dynamic DomainParticipants (those which are using DPDE as their discovery mechanism) are
in the same the domain and the DataWriter writes the same Topic that the DataReader reads, the two
DomainParticipants will communicate. This also apply to both static participants (those which are using
DPSE as their discovery mechanism); the only difference is that rtiddsmag will generate extra code to con-
figure the remote entities (for details, see 6.4.7 Static Discovery on page 82).

Let’s look at the content of a DomainParticipant definition to explain the code generated by rtiddsmag.

<domain participant name="HelloWorldDPDEPubDP"
domain ref="HelloWorldLibrary: :HelloWorldDomain">
<publisher name="HelloWorldDPDEPub">
<data writer topic ref="HelloWorldTopic" name="HelloWorldDPDEDW">
<datawriter gos base name="QosLibrary::DPDEProfile"/>
</data writer>
</publisher>
<participant gos base name="QosLibrary::DPDEProfile"/>
</domain participant>

rtiddsmag generates the code needed to register each component used by this DomainParticipant and unre-
gister those components that are not being used. In our example, for each DomainParticipant, rtiddsmag
registers the discovery transport, dpde or dpse; registers the UDP transport used by each DomainPar-
ticipant (since they use the same configuration, only one UDP transport configuration is generated); and
unregisters the default UDP and INTRA transports, since they are not being used (these two are the only
ones that can be unregistered by rtiddsmag).

It also creates the code for each entity. In this case, it generates the code needed to create:

e A Publisher named HelloWorldDPDEPub

e A DataWriter named HelloWorldDPDEDW

o A DomainParticipant named HelloWorldDPDEPubDP

The QoS used by this DomainParticipant (see 6.4.4 QoS Definition on page 67)

HelloWorldAppgen.c

const struct ComponentFactoryUnregisterModel
HelloWorldAppLibrary HelloWorldDPDEPubDP unregister components[2] =
{

{
" udp", /* NETIO DEFAULT UDP NAME */

64

6.4.3.3 DomainParticipant Definition

NULL, /* udp struct RT ComponentFactoryProperty** */
NULL /* udp struct RT ComponentFactoryListener** */

" intra", /* NETIO DEFAULT INTRA NAME */
NULL, /* _intra struct RT ComponentFactoryProperty** */
NULL /* _intra struct RT ComponentFactoryListener** */

I

struct DPDE DiscoveryPluginProperty
HelloWorldAppLibrary HelloWorldDPDEPubDP dpde([l] =
{
RTI APP GEN dpde HelloWorldAppLibrary HelloWorldDPDEPubDP dpdel
}i
struct UDP InterfaceFactoryProperty
HelloWorldAppLibrary HelloWorldDPDEPubDP udpv4[l] =
{
RTI APP GEN udpv4 HelloWorldAppLibrary HelloWorldDPDEPubDP udpl
}i
const struct ComponentFactoryRegisterModel
HelloWorldAppLibrary HelloWorldDPDEPubDP register components[2] =
{

"dpdel", /* register name */

DPDE_DiscoveryFactory get interface, /* register intf */

&HelloWorldAppLibrary HelloWorldDPDEPubDP dpde[0]. parent, /* register property */
NULL /* register listener */

"udpl", /* register name */

UDP_InterfaceFactory get interface, /* register intf */

&HelloWorldAppLibrary HelloWorldDPDEPubDP udpv4[0]. parent. parent, /* register
property */

NULL /* register listener */

const struct APPGEN DataWriterModel
HelloWorldAppLibrary HelloWorldDPDEPubDP publisher HelloWorldDPDEPub data writers[l] =
{

"HelloWor1ldDPDEDW", /* name */
1UL, /* multiplicity */
"HelloWorldTopic", /* topic name */
RTI APP GEN DW QOS HelloWorldAppLibrary HelloWorldDPDEPubDP HelloWorldDPDEPub
HelloWorldDPDEDW /* writer qos */ - - -
}
}i
const struct APPGEN PublisherModel
HelloWorldAppLibrary HelloWorldDPDEPubDP publishers[1] =
{

65

6.4.3.3 DomainParticipant Definition

"HelloWorl1dDPDEPub", /* name */

1UL, /* multiplicity */

DDS_PublisherQos INITIALIZER, /* publisher gos */

1UL, /* writer count */

HelloWorldAppLibrary HelloWorldDPDEPubDP publisher HelloWorldDPDEPub data writers /*
data writers */

}

i

HelloWorldAppgen.h

extern struct DPDE DiscoveryPluginProperty HelloWorldAppLibrary HelloWorldDPDEPubDP dpde[1];
extern struct UDP InterfaceFactoryProperty HelloWorldAppLibrary HelloWorldDPDEPubDP udpv4[1];
extern const struct ComponentFactoryUnregisterModel

HelloWorldAppLibrary HelloWorldDPDEPubDP unregister components([2];
extern const struct ComponentFactoryRegisterModel

HelloWorldAppLibrary HelloWorldDPDEPubDP register components[2];

#define RTI_APP GEN_DPF HelloWorldAppLibrary HelloWorldDPDEPubDP \
{\
2UL, /* unregister count */ \
HelloWorldAppLibrary HelloWorldDPDEPubDP unregister components, /* unregister components */

2UL, /* register count */ \
HelloWorldAppLibrary HelloWorldDPDEPubDP register components, /* register components */ \
RTI_APP GEN__ DPF QOS QosLibrary DefaultProfile /* factory gos */ \

extern const struct APPGEN TypeRegistrationModel

HelloWorldAppLibrary HelloWorldDPDEPubDP type registrations[1];
extern const struct APPGEN TopicModel HelloWorldAppLibrary HelloWorldDPDEPubDP topics([1];
extern const struct APPGEN PublisherModel

HelloWorldAppLibrary HelloWorldDPDEPubDP publishers[1];

#define RTI APP GEN DP HelloWorldAppLibrary HelloWorldDPDEPubDP \
{\
"HelloWorldDPDEPubDP", /* name */ \
RTI APP GEN DPF HelloWorldAppLibrary HelloWorldDPDEPubDP, /* domain participant factory */

RTI APP GEN DP QOS HelloWorldAppLibrary HelloWorldDPDEPubDP, /* participant gos */ \
0L, /* domain id */ \

1UL, /* type registration count */ \

HelloWorldAppLibrary HelloWorldDPDEPubDP type registrations, /* type registrations */ \
1UL, /* topic count */ \

HelloWorldAppLibrary HelloWorldDPDEPubDP topics, /* topics */ \

1UL, /* publisher count */ \

HelloWorldAppLibrary HelloWorldDPDEPubDP publishers, /* publishers */ \

O0UL, /* subscriber count */ \

NULL, /* subscribers */ \

OUL, /* remote participant count */ \

NULL, /* remote participants */ \

0UL, /* flow controller count */ \

NULL, /* flow controllers */ \

66

6.4.4 QoS Definition

}

6.4.4 QoS Definition

The defined DDS Entities have an associated QoS, which can be defined in a separate file such as Hel-
loWorldQos.xml or within the System XML file.

See the entire file below. Then we will examine the file section by section, showing the code generated by
rtiddsmag.

<?xml version="1.0"7?>
<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://community.rti.com/schema/6.0.0/rti dds profiles.xsd">
<gos_library name="QosLibrary">
<gos_profile name="DefaultProfile" is default participant factory profile="true">

<!-- Participant Factory Qos -->
<participant factory gos>
<entity factory>
<autoenable created entities>false</autoenable created entities>
</entity factory>
</participant factory gos>

<!-- Participant Qos -->
<participant gos>
<discovery>
<accept unknown peers>false</accept unknown peers>
<initial peers>
<element>127.0.0.1</element>
<element>239.255.0.1</element>
</initial peers>
<enabled transports>
<element>udpvi</element>
</enabled transports>
<multicast receive addresses>
<element>udpv4://127.0.0.1</element>
<element>udpvd://239.255.0.1</element>
</multicast receive addresses>
</discovery>
<default unicast>
<value>
<element>
<transports>
<element>udpvi</element>
</transports>
</element>
</value>
</default unicast>
<transport builtin>
<mask>UDPv4</mask>
</transport builtin>
<resource limits>
<local writer allocation>

67

6.4.4 QoS Definition

<max_count>1</max count>
</local writer allocation>
<local reader allocation>
<max_count>1</max count>
</local reader allocation>
<local publisher allocation>
<max_count>1</max count>
</local publisher allocation>
<local subscriber allocation>
<max_count>1</max count>
</local subscriber allocation>
<local topic allocation>
<max_count>1</max count>
</local topic allocation>
<local type allocation>
<max_count>1</max count>
</local type allocation>
<remote participant allocation>
<max_count>8</max count>
</remote participant allocation>
<remote writer allocation>
<max_count>8</max count>
</remote writer allocation>
<remote reader allocation>
<max_count>8</max count>
</remote reader allocation>
<max receive ports>32</max receive ports>
<max destination ports>32</max destination ports>
</resource limits>
</participant gos>
<!-— DataWriter Qos --—>
<datawriter gos>
<history>
<depth>32</depth>
</history>
<resource limits>
<max instances>2</max_ instances>
<max samples>64</max samples>
<max samples per instance>32</max samples per instance>
</resource limits>
<reliability>
<kind>RELIABLE RELIABILITY QOS</kind>
</reliability>
<protocol>
<rtps reliable writer>
<heartbeat period>
<nanosec>250000000</nanosec>
<sec>0</sec>
</heartbeat period>
</rtps_reliable writer>
</protocol>
<!-- transports —-->
<unicast>

68

6.4.4 QoS Definition

<value>
<element>
<transports>
<element>udpvi</element>
</transports>
</element>
</value>
</unicast>
</datawriter qos>
<!-- DataReader Qos —-->
<datareader gos>
<history>
<depth>32</depth>
</history>
<resource limits>
<max instances>2</max_ instances>
<max samples>64</max samples>
<max samples per instance>32</max samples per instance>
</resource limits>
<reliability>
<kind>RELIABLE RELIABILITY QOS</kind>
</reliability>
<reader resource limits>
<max remote writers>10</max remote writers>
<max remote writers per instance>10</max remote writers per instance>
</reader resource limits>
<!-- transports —-->
<unicast>
<value>
<element>
<transports>
<element>udpvi</element>
</transports>
</element>
</value>
</unicast>
<multicast>
<value>
<element>
<receive address>127.0.0.1</receive address>
<transports>
<element>udpvi</element>
</transports>
</element>
</value>
</multicast>
</datareader qos>
</qgos_profile>

<gos_profile name="DPDEProfile" base name="DefaultProfile">
<participant gos>
<discovery config>
<builtin discovery plugins>SDP</builtin discovery plugins>
</discovery config>

69

6.4.4.1 DomainParticipant Factory QoS

</participant gos>
</qos_profile>

<gos_profile name="DPSEProfile" base name="DefaultProfile">
<participant gos>
<discovery config>
<builtin discovery plugins>DPSE</builtin discovery plugins>
</discovery config>
</participant gos>
</qos_profile>
</gos_library>
</dds>

Note: rtiddsmag only generates code for the QoSs used by at least one entity, unless the profile has either
of the default flags is_default_participant factory profile or is_default_qos set to true.

6.4.4.1 DomainParticipant Factory QoS

rtiddsmag only generates code for the <participant factory qos> in the <qos profile> that has the flag is
default_participant_factory_profile set to true. For example:

<!-- Participant Factory Qos -->
<participant factory gos>
<entity factory>
<autoenable created entities>false</autoenable created entities>
</entity factory>
</participant factory gos>

rtiddsmag generates the following code:

HelloWorldAppgen.h

#define RTI APP GEN_ _ DPF QOS QosLibrary DefaultProfile \
{\
{ /* entity factory */ \
DDS_BOOLEAN FALSE /* autoenable created entities */ \
oo\
DDS_SYSTEM RESOURCE_LIMITS QOS POLICY DEFAULT \
}

6.4.4.2 DomainParticipant QoS

The example defines a base profile named DefaultProfile, which contains the base QoSs used by each
DomainParticipant. Y ou can see the content of the DomainParticipant QoS below.

<participant gos>
<discovery>

<accept unknown peers>false</accept unknown peers>

<initial peers>
<element>127.0.0.1</element>
<element>239.255.0.1</element>

</initial peers>

<enabled transports>

70

6.4.4.2 DomainParticipant QoS

<element>udpv4</element>
</enabled transports>
<multicast receive addresses>
<element>udpv4://127.0.0.1</element>
<element>udpv4://239.255.0.1</element>
</multicast receive addresses>
</discovery>
<default unicast>
<value>
<element>
<transports>
<element>udpv4</element>
</transports>
</element>
</value>
</default unicast>
<transport builtin>
<mask>UDPv4</mask>
</transport builtin>
<resource limits>
<local writer allocation>
<max_count>1</max count>
</local writer allocation>
<local reader allocation>
<max_count>1</max count>
</local reader allocation>
<local publisher allocation>
<max_count>1</max count>
</local publisher allocation>
<local subscriber allocation>
<max_count>1</max count>
</local subscriber allocation>
<local topic allocation>
<max_count>1</max count>
</local topic allocation>
<local type allocation>
<max_count>1</max count>
</local type allocation>
<remote participant allocation>
<max_count>8</max count>
</remote participant allocation>
<remote writer allocation>
<max_count>8</max count>
</remote writer allocation>
<remote reader allocation>
<max_count>8</max count>
</remote reader allocation>
<max_ receive ports>32</max receive ports>
<max destination ports>32</max destination ports>
</resource limits>
</participant gos>

71

6.4.4.2 DomainParticipant QoS

This DomainParticipant is then inherited by two different profiles, which set up the discovery mechanism:

<participant gos>
<discovery config>
<builtin discovery plugins>SDP</builtin discovery plugins>
</discovery config>
</participant gos>
<participant gos>
<discovery config>
<builtin discovery plugins>DPSE</builtin discovery plugins>
</discovery config>
</participant gos>

rtiddsmag generates the following code for each DomainParticipant whose QoS inherits from any of the
previous ones, adding those values that are specified in the XML configuration file (which is not the case
in our example).

HelloWorldAppgen.c

const char *const HelloWorldAppLibrary HelloWorldDPDEPubDP initial peers[2] =
{
"127.0.0.1",
"239.255.0.1"
bi
const char *const HelloWorldAppLibrary HelloWorldDPDEPubDP discovery enabled transports([3] =
{
"udpl://",
"udpl://127.0.0.1",
"udpl://239.255.0.1"
bi
const char *const HelloWorldAppLibrary HelloWorldDPDEPubDP transport enabled transports[l] =
{
"udpl"
bi
const char *const HelloWorldAppLibrary HelloWorldDPDEPubDP user traffic enabled transports[l] =
{
"udpl://"
bi

HelloWorldAppgen.h

extern const char *const HelloWorldAppLibrary HelloWorldDPDEPubDP initial peers([2];

extern const char *const HelloWorldAppLibrary HelloWorldDPDEPubDP discovery enabled transports
(317

extern const char *const HelloWorldAppLibrary HelloWorldDPDEPubDP transport enabled transports
[11;

extern const char *const HelloWorldAppLibrary HelloWorldDPDEPubDP user traffic enabled
transports[1l];

#define RTI APP GEN DP QOS HelloWorldAppLibrary HelloWorldDPDEPubDP \
{\
{ /* entity factory */ \
DDS_BOOLEAN TRUE /* autoenable created entities */ \

72

6.4.4.3 Publisher QoS

[
{ /* discovery */ \
REDA StringSeq INITIALIZER W LOAN (HelloWorldAppLibrary HelloWorldDPDEPubDP initial
peers, 2, 2), /* initial peers */ \
REDA StringSeq INITIALIZER W LOAN (HelloWorldAppLibrary HelloWorldDPDEPubDP discovery
enabled transports, 3, 3), /* enabled transports */ \
{\
{ { "dpdel” } }, /* RT ComponentFactoryId INITIALIZER */ \
NDDS Discovery Property INITIALIZER \
}, /* discovery component */ \
DDS BOOLEAN FALSE /* accept unknown peers */ \
o N\
{ /* resource limits */ \
1L, /* local writer allocation */ \
1L, /* local reader allocation */ \
1L, /* local publisher allocation */ \
1L, /* local subscriber allocation */ \
1L, /* local topic_allocation */ \
1L, /* local type allocation */ \
8L, /* remote participant allocation */ \
8L, /* remote writer allocation */ \
8L, /* remote reader allocation */ \
32L, /* matching writer reader pair allocation */ \
32L, /* matching reader writer pair allocation */ \
32L, /* max_receive ports */ \
32L, /* max destination ports */ \
65536, /* unbound data buffer size */ \
500UL /* shmem ref transfer mode max segments */ \
o N\
DDS_ENTITY NAME QOS_POLICY DEFAULT, \
DDS_WIRE PROTOCOL QOS_POLICY DEFAULT, \
{ /* transports */ \
REDA StringSeq INITIALIZER W LOAN (HelloWorldAppLibrary HelloWorldDPDEPubDP transport
enabled transports, 1, 1) /* enabled transports */ \
o\
{ /* user traffic */ \
REDA StringSeq INITIALIZER W LOAN (HelloWorldAppLibrary HelloWorldDPDEPubDP user
traffic enabled transports, 1, 1) /* enabled transports */ \
oo\
DDS_TRUST QOS_POLICY DEFAULT, \
DDS PROPERTY QOS POLICY DEFAULT \

6.4.4.3 Publisher QoS

Our example doesn’t specify any value for Publisher QoS, however rtiddsmag would generate code if it
was specified.

6.4.4.4 DataWriter QoS

The example defines a base profile named DefaultProfile, which contains the base QoSs used by each
DomainParticipant. You can see the content of the DataWriter QoS below.

73

6.4.4.4 DataWriter QoS

<!-- DataWriter Qos —-->
<datawriter gos>
<history>
<depth>32</depth>
</history>

<resource limits>
<max_ instances>2</max_instances>
<max_ samples>64</max_ samples>

<max_ samples per instance>32</max samples per instance>

</resource limits>
<reliability>
<kind>RELIABLE RELIABILITY QOS</kind>
</reliability>
<protocol>
<rtps reliable writer>
<heartbeat period>
<nanosec>250000000</nanosec>
<sec>0</sec>
</heartbeat period>
</rtps_reliable writer>

</protocol>
<!-- transports -->
<unicast>
<value>
<element>
<transports>
<element>udpvi</element>
</transports>
</element>
</value>
</unicast>

</datawriter gos>
rtiddsmag generates the following code:

HelloWorldAppgen.c

const char *const

HelloWorldAppLibrary HelloWorldDPDEPubDP HelloWorldDPDEPub HelloWorldDPDEDW transport enabled

transports[l] =
{

"udpl B //"
I

HelloWorldAppgen.h

extern const char *const

HelloWorldAppLibrary HelloWorldDPDEPubDP HelloWorldDPDEPub HelloWorldDPDEDW transport enabled

transports[1l];

#define RTI_APP_GEN DW_QOS_HelloWorldAppLibrary HelloWorldDPDEPubDP_ HelloWorldDPDEPub

HelloWorldDPDEDW \
{\
DDS_DEADLINE QOS POLICY DEFAULT, \

74

6.4.4.4 DataWriter QoS

DDS_LIVELINESS QOS_POLICY DEFAULT, \

{ /* history */ \
DDS_KEEP LAST HISTORY QOS, /* kind */ \
32L /* depth */ \

oo\

{ /* resource limits */ \

64L, /* max samples */ \

2L, /* max_instances */ \

32L /* max samples per instance */ \

oo\

DDS_OWNERSHIP_QOS_POLICY DEFAULT, \

DDS_OWNERSHIP_ STRENGTH QOS POLICY DEFAULT, \

DDS_LATENCY BUDGET QOS_POLICY DEFAULT, \

{ /* reliability */ \

DDS_RELIABLE RELIABILITY QOS, /* kind */ \

{ /* max blocking time */ \

0L, /* sec */ \
100000000L /* nanosec */ \

FA

oo\

DDS_DURABILITY QOS_POLICY DEFAULT, \

DDS_DESTINATION ORDER QOS POLICY DEFAULT, \

DDS_TRANSPORT ENCAPSULATION QOS POLICY DEFAULT, \

DDS_DATA REPRESENTATION QOS POLICY DEFAULT, \

{ /* protocol */ \

DDS_RTPS AUTO_ID, /* rtps_object id */ \

{ /* rtps_reliable writer */ \

{ /* heartbeat period */ \

0L, /* sec */ \
250000000L /* nanosec */ \

booo N\

1L, /* heartbeats per max samples */ \

DDS_LENGTH UNLIMITED, /* max_send window */ \

DDS_LENGTH UNLIMITED, /* max heartbeat retries */ \

{ /* first write sequence number */ \

0, /* high */ \
1 /* low */ \

FA

oo\

DDS_BOOLEAN TRUE /* serialize on write */ \

oo\

DDS_TYPESUPPORT QOS_POLICY DEFAULT, \

{ /* transports */ \

REDA StringSeq INITIALIZER W LOAN (HelloWorldAppLibrary HelloWorldDPDEPubDP
HelloWorldDPDEPub HelloWorldDPDEDW transport enabled transports, 1, 1) /* enabled transports */
\

oo\

RTI MANAGEMENT QOS POLICY DEFAULT, \

DDS DATAWRITERRESOURCE LIMITS QOS POLICY DEFAULT, \

DDS_PUBLISH MODE QOS POLICY DEFAULT, \

DDS DATAWRITERQOS TRUST INITIALIZER \

DDS DATAWRITERQOS APPGEN INITIALIZER \

NULL, \

DDS DataWriterTransferModeQosPolicy INITIALIZER \

75

6.4.4.5 Subscriber QoS

6.4.4.5 Subscriber QoS

Our example doesn’t specify any value for Subscriber QoS, however rtiddsmag would generate code if it
was specified.

6.4.4.6 DataReader QoS

The example defines a base profile named DefaultProfile, which contains the base QoSs used by each
DomainParticipant. Y ou can see the content of the DataReader QoS below.

<!-- DataReader QoS -->
<datareader gos>
<history>
<depth>32</depth>
</history>

<resource limits>
<max_ instances>2</max instances>
<max_samples>64</max_ samples>
<max_samples per instance>32</max samples per instance>
</resource limits>
<reliability>
<kind>RELIABLE RELIABILITY QOS</kind>
</reliability>
<reader resource limits>
<max_ remote writers>10</max remote writers>
<max_ remote writers per instance>10</max remote writers per instance>
</reader resource limits>
<!-- transports -->
<unicast>
<value>
<element>
<transports>
<element>udpvi</element>
</transports>
</element>
</value>
</unicast>
<multicast>
<value>
<element>
<receive address>127.0.0.1</receive address>
<transports>
<element>udpvi</element>
</transports>
</element>
</value>
</multicast>
</datareader gos>

rtiddsmag generates the following code:

76

6.4.4.6 DataReader QoS

HelloWorldAppgen.c

const char *const
HelloWorldAppLibrary HelloWorldDPDESubDP HelloWorldDPDESub HelloWorldDPDEDR transport enabled
transports([2] =
{
"udpl://",
"udpl://127.0.0.1"
i

HelloWorldAppgen.h

extern const char *const
HelloWorldAppLibrary HelloWorldDPDESubDP HelloWorldDPDESub HelloWorldDPDEDR transport enabled
transports([2];
#define RTI APP GEN DR QOS HelloWorldAppLibrary HelloWorldDPDESubDP HelloWorldDPDESub
HelloWorldDPDEDR \ - . -
{\
DDS DEADLINE QOS POLICY DEFAULT, \
DDS LIVELINESS QOS POLICY DEFAULT, \
{ /* history */ \
DDS_KEEP_LAST HISTORY QOS, /* kind */ \
32L /* depth */ \
1
{ /* resource limits */ \

64L, /* max samples */ \

2L, /* max_instances */ \

32L /* max _samples per instance */ \

1
DDS OWNERSHIP QOS POLICY DEFAULT, \
DDS LATENCY BUDGET QOS POLICY DEFAULT, \
{ /* reliability */ \
DDS_RELIABLE RELIABILITY QOS, /* kind */ \
{ /* max _blocking time */ \
0L, /* sec */ \
0L /* nanosec */ \
FA
1
DDS DURABILITY QOS POLICY DEFAULT, \
DDS DESTINATION ORDER QOS POLICY DEFAULT, \
DDS TRANSPORT ENCAPSULATION QOS POLICY DEFAULT, \
DDS DATA REPRESENTATION QOS POLICY DEFAULT, \
DDS_TYPESUPPORT QOS POLICY DEFAULT, \
DDS DATA READER PROTOCOL QOS POLICY DEFAULT, \
{ /* transports */ \

REDA StringSeq INITIALIZER W LOAN (HelloWorldAppLibrary HelloWorldDPDESubDP
HelloWorldDPDESub HelloWorldDPDEDR transport enabled transports, 2, 2) /* enabled transports */
\

o\
{ /* reader resource limits */ \

10L, /* max remote writers */ \

10L, /* max remote writers per instance */ \

1L, /* max samples per remote writer */ \

1L, /* max_outstanding reads */ \

77

6.4.5 Transport and Discovery Configuration

DDS_NO INSTANCE REPLACEMENT QOS, /* instance replacement */ \
4L, /* max routes per writer */ \
DDS_MAX AUTO, /* max fragmented samples */ \
DDS_MAX AUTO, /* max fragmented samples per remote writer */ \
DDS_SIZE AUTO /* shmem ref transfer mode attached segment allocation */ \
boo N
RTI_MANAGEMENT QOS POLICY DEFAULT, \
DDS_DATAREADERQOS TRUST INITIALIZER \
DDS_DATAREADERQOS APPGEN INITIALIZER \
NULL \
}

6.4.5 Transport and Discovery Configuration

rtiddsmag creates the code necessary to configure each one of the available transports used by Connext
DDS Micro (UDP and SHMEM) and the discovery mechanism (Dynamic and Static discovery). It also
generates the name automatically for each component regardless of if it is a transport or discovery; for this
rtiddsmag will add a DomainParticipant number at the end of its name, only if that configuration is not
used by any other DomainParticipant:

UDP Transport: udp + participant_number.

e SHMEM Transport: shmem + participant number.
o DPDE: dpde + participant number.

DPSE: dpse + participant_number.

These names can be changed by using the ...Names options described in 6.2 Command-Line Options on
page 54.

Notes:

o rtiddsmag will only create the transport configuration based on the strongly typed XML elements in
the schema. rtiddsmag will not use the values in the property tag to configure the transport.

« Ifthe length of one of these names exceeds the maximum length, rtiddsmag will throw an error.

The following configuration specifies dynamic discovery:

<participant gos>
<discovery config>
<builtin discovery plugins>SDP</builtin discovery plugins>
</discovery config>
</participant gos>

HelloWorldAppgen.h

#define RTI APP GEN dpde HelloWorldAppLibrary HelloWorldDPDEPubDP dpdel \

{\
RT ComponentFactoryProperty INITIALIZER, /* parent */ \

78

6.4.5 Transport and Discovery Configuration

{ /*participant liveliness assert period */ \
30L, /* sec */ \
OL /* nanosec */ \
o N
{ /*participant liveliness lease duration */ \
100L, /* sec */ \
OL /* nanosec */ \
o N
5, /* initial participant announcements */ \
{ /*initial participant announcement period */ \
1L, /* sec */ \
OL /* nanosec */ \
o N
DDS_BOOLEAN FALSE, /* cache serialized samples */ \
DDS_LENGTH AUTO, /* max participant locators */ \
4, /* max locators per discovered participant */ \
8, /* max samples per builtin endpoint reader */ \
DDS_LENGTH UNLIMITED, /* builtin writer max heartbeat retries */ \
{ /*builtin writer heartbeat period */ \
0L, /* sec */ \
100000000L /* nanosec */ \
o N
1L /* builtin writer heartbeats per max samples */ \
DDS_PARTICIPANT MESSAGE READER RELIABILITY KIND INITIALIZER \

#define RTI_APP GEN__ DP QOS HelloWorldAppLibrary HelloWorldDPDEPubDP \
{\

{ /* discovery */ \
REDA StringSeq INITIALIZER W LOAN (HelloWorldAppLibrary HelloWorldDPDEPubDP initial
peers, 2, 2), /* initial peers */ \
REDA StringSeq INITIALIZER W LOAN (HelloWorldAppLibrary HelloWorldDPDEPubDP discovery
enabled transports, 3, 3), /* enabled transports */ \

{\
{ { "dpdel” } }, /* RT ComponentFactoryId INITIALIZER */ \
NDDS Discovery Property INITIALIZER \
}, /* discovery component */ \
DDS BOOLEAN FALSE /* accept unknown peers */ \
bo N

}

Notes:

o rtiddsmag will throw an error if the list of available transports for the DomainParticipant,
DataWriter, and DataReader contains a transport alias that is not part of the transport_builtin
mask.

o rtiddsmag will not generate code for the SHMEM or UDPv4 transport if it is not specified in the

79

6.4.6 Flow Controllers

transport_builtin mask.

o UDP transformation is not supported in XML.

When using the transport alias to specify the enabled_transports for the discovery DomainParticipant,
DataWriter or DataReader, you could use the transport names for the built-in transport plugins: shmem
and udpv4. rtiddsmag will automatically modify this alias to match the new one with the DomainPar-
ticipant number at the end of the name.

6.4.6 Flow Controllers

rtiddsmag creates code which it will be used by Connext DDS Micro to create a flow controller. The flow
controller is configured through properties in the XML file. Let’s see an example of how to configure a
flow controller named custom_flowcontroller and the code that rtiddsmag generates:

<participant gos>

<property>
<value>
<element>
<name>
dds.flow controller.token bucket.custom flowcontroller.token bucket.max
tokens
</name>
<value>2</value>
</element>
<element>
<name>
dds.flow controller.token bucket.custom flowcontroller.token bucket.tokens
added per period
</name>
<value>2</value>
</element>
<element>
<name>
dds.flow controller.token bucket.custom flowcontroller.token bucket.tokens
leaked per period
</name>
<!-- The value -1 means LENGTH UNLIMITED -->
<value>-1</value>
</element>
<element>
<name>
dds.flow controller.token bucket.custom flowcontroller.token
bucket.period.sec
</name>
<value>0</value>
</element>

80

6.4.6 Flow Controllers

<element>
<name>

dds.flow controller.token bucket.custom flowcontroller.token
bucket.period.nanosec

</name>
<value>100000000</value>
</element>
<element>
<name>
dds.flow controller.token bucket.custom flowcontroller.token bucket.bytes
per token
</name>
<value>1024</value>
</element>
</value>
</property>
</participant gos>

<datawriter gos>
<publish mode>
<flow controller name>
dds.flow controller.token bucket.custom flowcontroller
</flow controller name>
<kind>ASYNCHRONOUS_PUBLISH_MODE_QOS</kind>
<priority>12</priority>
</publish mode>
</datawriter gos>

HelloWorldAppgen.c

const struct APPGEN FlowControllerModel
HelloWorldAppLibrary HelloWorldDPDEPubDP flow controllers[l] =
{

"custom flowcontroller", /* name */
RTI APP GEN FC P Q0S HelloWorldAppLibrary HelloWorldDPDEPubDP custom flowcontroller
/* flow controller property */
}
}i

HelloWorldAppgen.h

#define
RTI APP GEN FC P QOS HelloWorldAppLibrary HelloWorldDPDEPubDP custom flowcontroller \
{\
NETIO FlowControllerProperty INITIALIZER, \
DDS EDF FLOW CONTROLLER SCHED POLICY, /* scheduling policy */ \
{ /* token bucket */ \
2L, /* max_tokens */ \
2L, /* tokens added per period */ \
-1L, /* tokens leaked per period */ \
{ /* period */ \
0L, /* sec */ \
100000000L /* nanosec */ \
N

81

6.4.7 Static Discovery

1024L /* bytes per token */ \

o N
DDS_BOOLEAN FALSE /* is vendor specific */ \

#define

RTI APP GEN DW QOS HelloWorldAppLibrary HelloWorldDPDEPubDP HelloWorldDPDEPub
HelloWorldDPDEDW \

{\

{ /* publish mode */ \
DDS_ASYNCHRONOUS PUBLISH MODE QOS, /* max remote readers */ \
"custom flowcontroller", /* flow controller name */ \
121 /* priority */ \

extern const struct APPGEN FlowControllerModel
HelloWorldAppLibrary HelloWorldDPDEPubDP flow controllers[1];

#define RTI APP GEN DP HelloWorldAppLibrary HelloWorldDPDEPubDP \
{\

1UL, /* flow controller count */ \
HelloWorldAppLibrary HelloWorldDPDEPubDP flow controllers /* flow controllers */ \

}

6.4.7 Static Discovery

rtiddsmag iterates through each DomainParticipant definition in the XML configuration file, creating the
remote entities that are needed to communicate with applications that use static discovery, and updating the
object _id of each DataWriter or DataReader involved if they don’t have a valid value or they are using

the default value.

Let’s see an example of two applications that use static discovery and how rtiddsmag generates the neces-
sary code that will be asserted by Connext DDS Micro to communicate with both applications:

<domain participant name="HelloWorldDPSEPubDP"
domain ref="HelloWorldLibrary::HelloWorldDomain">
<publisher name="HelloWorldDPSEPub">
<data_writer topic ref="HelloWorldTopic" name="HelloWorldDPSEDW">
<datawriter gos base name="QosLibrary::DPSEProfile"/>
</data writer>
</publisher>
<participant gos base name="QosLibrary::DPSEProfile"/>
</domain participant>

<domain participant name="HelloWorldDPSESubDP"
domain ref="HelloWorldLibrary::HelloWorldDomain">
<subscriber name="HelloWorldDPSESub">
<data_reader topic ref="HelloWorldTopic" name="HelloWorldDPSEDR">

82

6.4.7 Static Discovery

<datareader gos base_name:"QosLibrary::DPSEProfile"/>
</data_reader>
</subscriber>
<participant gos base name="QosLibrary::DPSEProfile"/>
</domain participant>

For these two DomainParticipants, rtiddsmag will update the rtps_object _id for the DataWriter and
DataReader, since they didn’t have any values set in the XML file. Y ou can see this in the following snip-
pet from HelloWorldAppgen.h:

#define
RTI APP GEN DW_QOS HelloWorldAppLibrary HelloWorldDPSEPubDP HelloWorldDPSEPub
HelloWorldDPSEDW \

{\

{ /* protocol */ \
1UL, /* rtps_object id */ \
{ /* rtps_reliable writer */ \
{ /* heartbeat period */ \
0L, /* sec */ \
250000000UL /* nanosec */ \
bo N
1L, /* heartbeats per max samples */ \
DDS_LENGTH UNLIMITED, /* max send window */ \
DDS_LENGTH UNLIMITED, /* max heartbeat retries */ \
{ /* first write sequence number */ \
0, /* high */ \
1 /* low */ \
P
Fo N\
DDS_BOOLEAN TRUE /* serialize on write */ \
[

#define

RTI APP GEN DR QOS HelloWorldAppLibrary HelloWorldDPSESubDP HelloWorldDPSESub
HelloWorldDPSEDR \

{\

{ /* protocol */ \
2UL /* rtps object id */ \
oo N

}

rtiddsmag will also generate the remote DomainParticipants, DataWriters, and DataReaders that need to
be asserted in order for endpoints to match:

HelloWorldAppgen.c

const struct APPGEN RemoteSubscriptionModel
HelloWorldAppLibrary HelloWorldDPSEPubDP remote subscribers([1l] =

{

&3

6.4.7 Static Discovery

RTI APP GEN RSD HelloWorldAppLibrary HelloWorldDPSEPubDP HelloWorldAppLibrary

HelloWor1dDPSESubDP HelloWorldDPSESub HelloWorldDPSEDR

br

const struct APPGEN RemoteParticipantModel
HelloWorldAppLibrary HelloWorldDPSEPubDP remote participants[l] =

{

br

"HelloWorldDPSESubDP", /* name */

OUL, /* remote publisher count */

NULL, /* remote publishers */

1UL, /* remote subscriber count */

HelloWorldAppLibrary HelloWorldDPSEPubDP remote subscribers /* remote subscribers */

const struct APPGEN RemotePublicationModel
HelloWorldAppLibrary HelloWorldDPSESubDP remote publishers[l] =

{

RTI APP GEN RPD HelloWorldAppLibrary HelloWorldDPSESubDP HelloWorldAppLibrary

HelloWor1dDPSEPubDP HelloWorldDPSEPub HelloWorldDPSEDW

b7

const struct APPGEN RemoteParticipantModel
HelloWorldAppLibrary HelloWorldDPSESubDP remote participants[l] =

{

b7

"HelloWorldDPSEPubDP", /* name */

1UL, /* remote publisher count */

HelloWorldAppLibrary HelloWorldDPSESubDP remote publishers, /* remote publishers */
OUL, /* remote subscriber count */

NULL /* remote subscribers */

HelloWorldAppgen.h

#define RTI APP GEN RSD HelloWorldAppLibrary HelloWorldDPSEPubDP HelloWorldAppLibrary
HelloWor1ldDPSESubDP HelloWorldDPSESub HelloWorldDPSEDR \

{\

{ /* subscription data */ \
{\
{0, 0, 0, 2} /* key */ \
oo\
{\
{ 0, 0, 0, 0} /* participant key */ \
oo\

"HelloWorldTopic", /* topic name */ \
"HelloWorldType", /* type name */ \
DDS DEADLINE QOS POLICY DEFAULT, \
DDS OWNERSHIP QOS POLICY DEFAULT, \
DDS LATENCY BUDGET QOS POLICY DEFAULT, \
{ /* reliability */ \
DDS RELIABLE RELIABILITY QOS, /* kind */ \

84

6.4.7 Static Discovery

}

{ /* max_blocking time */ \
0L, /* sec */ \
0L /* nanosec */ \

FA
oo

DDS_LIVELINESS QOS POLICY DEFAULT, \
DDS_DURABILITY QOS POLICY DEFAULT, \
DDS_DESTINATION ORDER QOS POLICY DEFAULT,
DDS_SEQUENCE INITIALIZER, \

DDS_SEQUENCE INITIALIZER, \

DDS_DATA REPRESENTATION QOS POLICY DEFAULT \

DDS_TRUST SUBSCRIPTION DATA INITIALIZER \

oo\

HelloWorldTypePlugin get /* get type plugin */ \

\

extern const struct APPGEN RemoteSubscriptionModel HelloWorldAppLibrary HelloWorldDPSEPubDP
remote subscribers[1];
extern const struct APPGEN RemoteParticipantModel HelloWorldAppLibrary HelloWorldDPSEPubDP
remote participants[1l];

#define RTI APP GEN DP HelloWorldAppLibrary HelloWorldDPSEPubDP \

{\

"HelloWor1ldDPSEPubDP",

/* name */ \

RTI APP GEN DPF HelloWorldAppLibrary HelloWorldDPSEPubDP, /* domain participant factory */

RTI APP_GEN _ DP QOS HelloWorldAppLibrary HelloWorldDPSEPubDP, /* participant gos */ \

OL, /* domain id */ \

1UL, /* type registration count */ \
HelloWorldAppLibrary HelloWorldDPSEPubDP type registrations, /* type registrations */ \

1UL, /* topic_count */ \
HelloWorldAppLibrary HelloWorldDPSEPubDP topics,

1UL, /* publisher count */ \

HelloWorldAppLibrary HelloWorldDPSEPubDP publishers,

OUL, /* subscriber count */ \
NULL, /* subscribers */ \
1UL,

/* remote participant count */ \

/* topics */ \

/* publishers */ \

HelloWorldAppLibrary HelloWorldDPSEPubDP remote participants /* remote participants */ \

0UL,

/* flow controller count */ \

NULL, /* flow controllers */ \

#define RTI APP GEN RPD HelloWorldAppLibrary HelloWorldDPSESubDP HelloWorldAppLibrary
HelloWor1dDPSEPubDP HelloWorldDPSEPub HelloWorldDPSEDW \

{\

{ /* publication data */ \

{\

{ 0, 0, O,
oo\
{\

{ 0, 0, O,
oo\

"HelloWorldTopic",
"HelloWorldType",

1} /*

0} /*

key */ \

participant key */ \

topic name */ \
type name */ \

DDS_DEADLINE QOS POLICY DEFAULT, \

85

6.4.7 Static Discovery

DDS_OWNERSHIP QOS_POLICY DEFAULT, \
DDS_OWNERSHIP STRENGTH QOS POLICY DEFAULT, \
DDS_LATENCY BUDGET QOS_POLICY DEFAULT, \
{ /* reliability */ \
DDS_RELIABLE RELIABILITY QOS, /* kind */ \
{ /* max_blocking time */ \
0L, /* sec */ \
100000000L /* nanosec */ \
FA
Fo N
DDS_LIVELINESS QOS POLICY DEFAULT, \
DDS_DURABILITY QOS POLICY DEFAULT, \
DDS_DESTINATION ORDER QOS_ POLICY DEFAULT, \
DDS SEQUENCE INITIALIZER, \
DDS_DATA REPRESENTATION QOS POLICY DEFAULT \
DDS TRUST PUBLICATION DATA INITIALIZER \
I
HelloWorldTypePlugin get /* get type plugin */ \

extern const struct APPGEN RemotePublicationModel HelloWorldAppLibrary HelloWorldDPSESubDP
remote publishers[1];

extern const struct APPGEN RemoteParticipantModel HelloWorldAppLibrary HelloWorldDPSESubDP
remote participants[1l];

#define RTI APP GEN DP HelloWorldAppLibrary HelloWorldDPSESubDP \
{\
"HelloWorldDPSESubDP", /* name */ \
RTI APP GEN DPF HelloWorldAppLibrary HelloWorldDPSESubDP, /* domain participant factory */

RTI APP GEN DP QOS HelloWorldAppLibrary HelloWorldDPSESubDP, /* participant gos */ \
OL, /* domain id */ \

1UL, /* type registration count */ \

HelloWorldAppLibrary HelloWorldDPSESubDP type registrations, /* type registrations */ \
1UL, /* topic_count */ \

HelloWorldAppLibrary HelloWorldDPSESubDP topics, /* topics */ \

OUL, /* publisher count */ \

NULL, /* publishers */ \

1UL, /* subscriber count */ \

HelloWorldAppLibrary HelloWorldDPSESubDP subscribers, /* subscribers */ \

1UL, /* remote participant count */ \

HelloWorldAppLibrary HelloWorldDPSESubDP remote participants /* remote participants */ \
0UL, /* flow controller count */ \

NULL /* flow controllers */ \

86

6.5 Errors Caused by Invalid Configurations

6.5 Errors Caused by Invalid Configurations

This section explains the different results thrown by MAG if it receives invalid configuration files.
o Invalid XML content

MAG will fail to validate the configuration file if it contains invalid content, such as ele-
ments/attributes that don’t exist in the schema or values that aren't supported by any of the existing
types. For example:

<dds>

<!-- Participant Library -->
<domain participant library name="FeatureTestLibrary">
<domain participant name="01l EmptyDomainParticipant"
domain ref="HelloWorldLibrary: :HelloWorldDomain">
<invalid tag></invalid tag>
</domain participant>
</domain participant library>

</dds>

). appgen.

e Unsupported elements

MAG will throw a warning for any elements that are not supported by Connext DDS Micro. Unsup-
ported elements will be ignored, such as the user data in the following:

<dds>

<!-- Participant Library -->
<domain participant library name="FeatureTestLibrary">
<domain participant name="01 EmptyDomainParticipant"
domain ref="HelloWorldLibrary: :HelloWorldDomain">
<participant gos>
<!-- user data is not supported by Micro -->
<user data/>
</participant gos>
</domain participant>
</domain participant library>
</dds>

87

6.5 Errors Caused by Invalid Configurations

L.micro.appgen.Micro

Unsupported values

MAG will throw an error if it finds a value that is not supported by Connext DDS Micro.

<dds>

<!-- Participant Library -->
<domain participant library name="FeatureTestLibrary">
<domain participant name="01 EmptyDomainParticipant"
domain ref="HelloWorldLibrary: :HelloWorldDomain">
<publisher name ="test">
<data writer topic_ref="HelloWorldTopicl" name="testW">
<datawriter gos>
<durability>
<!-- transient is not supported by Micro -->
<kind>TRANSIENT_DURABILITY_QOS(/kind)
</durability>
</datawriter gos>
</data writer>
</publisher>
</domain participant>
</domain participant library>
</dds>

to add input

MAG will also throw an error if the QoS values are not consistent with values supported in Connext
DDS Micro. For example, the following XML contains a deadline period that is too large.

<dds>
<!-- Participant Library -->

<domain participant library name="FeatureTestLibrary">
<domain participant name="01 EmptyDomainParticipant"

88

6.5 Errors Caused by Invalid Configurations

domain ref="HelloWorldLibrary::HelloWorldDomain">
<publisher name ="test">
<data writer topic ref="HelloWorldTopicl" name="testW">
<datawriter gos>
<deadline>
<!-- this deadline exceeds the maximum -->
<period>
<sec>123213123</sec>
<nanosec>12</nanosec>
</period>
</deadline>
</datawriter gos>
</data writer>
</publisher>
</domain participant>

</domain participant library>
</dds>

&9

	Chapter 1 Introduction
	Chapter 2 Paths Mentioned in Documentation
	Chapter 3 A ‘Hello, World’ Example
	3.1 Hello World using XML and Dynamic Data
	3.1.1 Build the Application
	3.1.2 Run the Application
	3.1.3 Examine the XML Configuration Files Definition
	3.1.3.1 QoS Definition
	3.1.3.2 Type Definition
	3.1.3.3 Domain Definition
	3.1.3.4 Participant Definition

	3.1.4 Publisher Application
	3.1.5 Subscriber Application
	3.1.6 Subscribing with a Content Filter

	3.2 Hello World using XML and Compiled Types
	3.2.1 Define the Data Types using IDL or XML
	3.2.2 Generate Type-Support Code from the Type Definition
	3.2.3 Build the Application
	3.2.4 Run the Application
	3.2.5 Examine the XML Configuration Files Definition
	3.2.6 Examine the Publisher Application
	3.2.7 Examine the Subscriber Application

	Chapter 4 Using Prototyper
	Chapter 5 Understanding XML-Based Application Creation
	5.1 Important Points
	5.2 Loading XML Configuration Files
	5.3 XML Syntax and Validation
	5.3.1 Validation at Run Time
	5.3.2 Validation during Editing

	5.4 Accessing Entities Defined in XML Configuration from an Application
	5.5 XML Tags for Configuring Entities
	5.5.1 Domain Library
	5.5.2 Participant Library

	5.6 Names Assigned to Entities
	5.6.1 Referring to Entities and Other Elements within XML Files

	5.7 Creating and Retrieving Entities Configured in an XML File
	5.7.1 Creating and Retrieving a DomainParticipant Configured in an XML File
	5.7.2 Creating and Retrieving Publishers and Subscribers
	5.7.3 Creating and Retrieving DataWriters and DataReaders
	5.7.4 Creating Content Filters
	5.7.5 Using User-Generated Types

	Chapter 6 Generating Applications for Connext DDS Micro
	6.1 Paths Mentioned in Documentation
	6.2 Command-Line Options
	6.3 Generated Files
	6.3.1 Integrating Generated Files into Your Application’s Build

	6.4 A Hello, World Example
	6.4.1 Generate Type-Support Code from the Type Definition
	6.4.2 Generate DDS Entities from the System Definition
	6.4.3 Examine the XML Configuration Files and the Generated Code
	6.4.3.1 Type Definition
	6.4.3.2 Domain Definition
	6.4.3.3 DomainParticipant Definition

	6.4.4 QoS Definition
	6.4.4.1 DomainParticipant Factory QoS
	6.4.4.2 DomainParticipant QoS
	6.4.4.3 Publisher QoS
	6.4.4.4 DataWriter QoS
	6.4.4.5 Subscriber QoS
	6.4.4.6 DataReader QoS

	6.4.5 Transport and Discovery Configuration
	6.4.6 Flow Controllers
	6.4.7 Static Discovery

	6.5 Errors Caused by Invalid Configurations

