
RTI Queuing Service
User’s Manual

Version 6.0.0

© 2019 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
February 2019.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, Connext, Micro DDS, the RTI logo,
1RTI and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks or service
marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/).

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Welcome to RTI Queuing Service

1.1 Paths Mentioned in Documentation 1
Chapter 2 Queuing Service Architecture and Operation

2.1 Terms to Know 3
2.2 Load Balancing by Sharing a Queue 4
2.3 DataWriter Connection to a SharedReaderQueue 5

2.3.1 QueueProducer Wrapper 6
2.3.2 Samples with Large Maximum Size 6

2.4 DataReader Connection to a SharedReaderQueue 7
2.4.1 QueueConsumer Wrapper 7
2.4.2 Samples with Large Maximum Size 8

2.5 Queuing Service Entities 8
2.6 Sample Distribution to a Selected QueueConsumer 9
2.7 Interaction of Publish-Subscribe Entities with Queuing Service Entities 10
2.8 Sample Lifecycle In Queuing Service 11
2.9 Selecting a QueueConsumer for a Sample 13

2.9.1 Round-Robin Dispatch Policy without Explicit QueueConsumer Availability Feedback 13
2.9.2 Round-Robin Dispatch Policy with Explicit QueueConsumer Availability Feedback 14

2.10 Sending a Reply from QueueConsumer to QueueProducer 15
2.10.1 Requester Identification 16
2.10.2 Request-Reply Correlation 16
2.10.3 Sending the Reply Sample to the Associated Requester 18
2.10.4 QueueRequester Wrapper 18
2.10.5 QueueReplier Wrapper 18

2.11 Dead-Letter Queues 18
2.12 Detecting the Presence of a SharedReaderQueue 20

iii

iv

2.13 Queuing Service Persistency 20
2.13.1 Service State Persistency 21
2.13.2 SharedReaderQueue Persistency 22

2.13.2.1 The Restore Process 24
2.14 SharedReaderQueue Resource Management 24

2.14.1 Maximum SharedReaderQueue Size 24
2.14.1.1 Initial and Maximum Number of Samples 25
2.14.1.2 Maximum Number of Bytes in Memory 25

2.14.2 Memory Management for a Sample 26
2.14.3 High and Low Watermarks 27
2.14.4 Sample Replacement Policy 28

2.15 High Availability 29
2.16 Remote Administration 29
2.17 Queuing Service Monitoring 30

Chapter 3 Configuring Queuing Service

3.1 How to Load the XML Configuration from a File 31
3.2 XML Syntax and Validation 33
3.3 XML Tags for Configuring Queuing Service 34

3.3.1 Configuring Queuing Service Types 35
3.3.2 Configuring Queuing Service 37
3.3.3 Configuring Administration 39

3.3.3.1 Configuring Memory Management for a CommandReply Buffer 40
3.3.4 Configuring Monitoring 42

3.3.4.1 Configuring Request-Reply Monitoring 43
3.3.4.2 Configuring Publish-Subscribe Monitoring 43

3.3.4.2.1 Publish-Subscribe Monitoring Configuration Inheritance 44
3.3.4.3 Configuring Statistics Calculation Process 45

3.3.4.3.1 Statistics Calculation 47
3.3.5 Configuring Persistence Settings 47
3.3.6 Configuring DomainParticipants 47

3.3.6.1 Configuring Memory Management for Sample Buffers 50
3.3.7 Configuring SharedSubscribers 51
3.3.8 Configuring Session Settings 52
3.3.9 Configuring SharedSubscribers Sessions 52
3.3.10 Configuring SharedReaderQueues 54
3.3.11 Configuring DeadLetterSharedReaderQueues 60

3.4 Using Variables in XML 60
3.5 Enabling RTI Distributed Logger in Queuing Service 61

Chapter 4 Running Queuing Service

4.1 Starting from Launcher 62
4.2 Starting Manually from the Command Line 63
4.3 Using Queuing Service as a Windows Service 65

4.3.1 Enabling Queuing Service to Run as a Windows Service 65
4.3.2 Running RTI Queuing Service as a Windows Service 66
4.3.3 Notes when Running as a Windows Service 66
4.3.4 Stopping Queuing Service when it is Running as a Windows Service 67
4.3.5 Disabling Queuing Service from Running as a Windows Service 67

Chapter 5 Administering Queuing Service from a Remote Location

5.1 Enabling Remote Administration 68
5.2 Remote Administration API 68

5.2.1 Resource Identifiers 69
5.2.2 Sample Selector 70

5.3 Remote Administration Topics 72
5.4 Remote Commands in Queuing Service 73

5.4.1 Create SharedReaderQueue 73
5.4.2 Delete SharedReaderQueue 73
5.4.3 Flush SharedReaderQueue 73
5.4.4 Get SharedReaderQueue Status 74
5.4.5 Get Service Data 74
5.4.6 Get Samples From a SharedReaderQueue 75
5.4.7 Create SharedSubscriber 77
5.4.8 Delete SharedSubscriber 77
5.4.9 Shutdown 77

5.5 Accessing Queuing Service from a Connext DDS application 78
Chapter 6 Publish-Subscribe Monitoring of Queuing Service from a Remote Location

6.1 Enabling Publish-Subscribe Monitoring Data 79
6.2 Status Information for a SharedReaderQueue 80

Chapter 7 High Availability

7.1 SharedReaderQueue Replication 81
7.1.1 SharedReaderQueue Replication Protocol 82

7.1.1.1 Sample Replication Phase 82
7.1.1.2 Enqueue Phase 84

v

vi

7.1.1.3 Consumer Assignment Phase 85
7.1.1.4 Delivery Phase 85

7.1.2 SharedReaderQueue Master Election Protocol 86
7.1.3 SharedReaderQueue Replication Configuration 86

7.1.3.1 Protocol Information Exchange 87
7.2 Configuration Replication 88

7.2.1 SharedReaderQueue for Configuration Replication 89
7.3 Replication Clusters 89

Chapter 8 Queuing Service Wrapper API

8.1 QueueProducer Wrapper 91
8.2 QueueConsumer Wrapper 91
8.3 QueueRequester Wrapper 92
8.4 QueueReplier Wrapper 92

Chapter 9 Communication Using TCP Transport

9.1 Asymmetric TCP Communication With Queuing Service 93
9.2 Asymmetric TCP Communication with Queuing Service And Replication 96

Chapter 1 Welcome to RTI Queuing
Service

RTI® Queuing Service is a broker that provides a queuing communication model in which a
sample is stored in a queue until it is consumed by one QueueConsumer. If there are no QueueCon-
sumers available when the sample is sent, the sample is kept in the queue until a QueueConsumer
is available to process it. If a QueueConsumer receives a sample and does not acknowledge it
before a specified amount of time or acknowledges it negatively, the sample will be redelivered to
a different QueueConsumer.

Queuing Service provides an “at-most-once” and “at-least once” delivery semantic.

By default, Queuing Service keeps the samples in memory. To provide fault tolerance, Queuing
Service can be configured to keep the samples on disk.

For high availability, Queuing Service provides mechanisms to replicate its state so that samples
can survive the loss of any particular service and/or computer.

1.1 Paths Mentioned in Documentation

The documentation refers to:

l <NDDSHOME>

This refers to the installation directory for RTI® Connext® DDS. The default installation
paths are:

l Mac® OS X® systems:
/Applications/rti_connext_dds-6.0.0

l UNIX-based systems, non-root user:
/home/<your user name>/rti_connext_dds-6.0.0

l UNIX-based systems, root user:
/opt/rti_connext_dds-6.0.0

1

1.1 Paths Mentioned in Documentation

2

l Windows® systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-6.0.0

l Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-6.0.0

You may also see $NDDSHOME or %NDDSHOME%, which refers to an environment variable
set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users:When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:
“C:\Program Files\rti_connext_dds-6.0.0\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

l <path to examples>

By default, examples are copied into your home directory the first time you run RTI Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples as
<path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:
l Mac OS X systems: /Users/<your user name>/rti_workspace/6.0.0/examples

l UNIX-based systems: /home/<your user name>/rti_workspace/6.0.0/examples

l Windows systems: <your Windows documents folder>\rti_workspace\6.0.0\examples

Where 'your Windows documents folder' depends on your version of Windows. For example,
on Windows 10, the folder is C:\Users\<your user name>\Documents.

Note: You can specify a different location for rti_workspace. You can also specify that you do not
want the examples copied to the workspace. For details, see Controlling Location for
RTI Workspace and Copying of Examples in the RTI Connext DDS Core Libraries Getting Started
Guide.

Chapter 2 Queuing Service Architecture
and Operation

2.1 Terms to Know

You should become familiar with a few key terms and concepts.

l QueuingService instance: A single application process (service) that is deployed and con-
figured to host the queues.

l QueuingServiceName: A string label that uniquely identifies a QueuingService instance run-
ning within a DDS domain.

l SharedSubscriber: A container that hosts SharedReaderQueues, allowing remote
QueueConsumers to attach to the shared queues, and providing "exactly once" or "at-most
once" access to the samples in the shared queues. With these access modes, when one
QueueConsumer gets a message, the other QueueConsumers attached to the same
SharedReaderQueue do not get that message. A SharedSubscriber can host one or more
SharedReaderQueues, each one associated with a different DDS Topic name.

l SharedSubscriberName: A string label that uniquely identifies a SharedSubscriber within a
DDS domain.

l SharedReaderQueue: A logical DataReader queue hosted inside a SharedSubscriber that
provides "exactly once" or "at-most once" access to the Consumers attached to the
SharedReaderQueue. It is associated with a Topic and the name of the SharedReaderQueue
is derived from the name of the Topic and the SharedSubscriber that hosts it. Imple-
mentation-wise, a SharedReaderQueue is composed of an input (DDS DataReader) and out-
put (DDS DataWriter) pair that, together with a queue storage, implement the queuing
behavior for a Topic. The input DataReader is matched to the DataWriters associated with
the Queue Producers and the output DataWriter is matched to the DataReaders associated
with the Queue Consumers. The processing logic ensures that each sample in the
SharedReaderQueue is delivered to only one of the QueueConsumers.

3

2.2 Load Balancing by Sharing a Queue

4

l SharedReaderQueueName: A string label that uniquely identifies a SharedReaderQueue within a
DDS domain. It is derived from the name of the SharedSubscriber that hosts the queue and the name
of the associated DDS Topic, as in <aQueueTopicName>@<aSharedSubscriberName>.

l Session: Defines a threaded context for a SharedReaderQueue. Sessions are part of SharedSub-
scribers. SharedReaderQueues in different sessions can be processed in parallel.

l QueueProducer: An application-level entity that is either a DDS DataWriter, or a wrapper for it,
which allows an application to send data on a single Topic to a SharedReaderQueue.

l QueueConsumer: An application-level entity that is either a DDS DataReader, or a simple wrap-
per for it, which allows an application to access data on a single DDS Topic from a SharedRead-
erQueue hosted inside a SharedSubscriber. The QueueConsumer DataReaders "compete" for the
data on the SharedReaderQueue, such that each sample in the SharedReaderQueue will be received
by exactly one QueueConsumer DataReader.

2.2 Load Balancing by Sharing a Queue

A DDS DataReader has an ingress ReaderQueue that stores received samples. The DataReader can per-
form atake() operation to remove the data from the ReaderQueue, in which case a subsequent read/take
will not see that sample. Two threads can read/take from the same DataReader to balance the load of pro-
cessing samples from the queue. However, each DataReader has a different ReaderQueue; therefore, they
are independent from each other. "Taking" from one DataReader does not affect the other DataReaders.

Queuing Service provides a way to share a ReaderQueue (SharedReaderQueue) among DataReaders of
the same Topic (see Figure 2.1: Load-Balancing Using Queuing Service on the facing page) running in
separate processes, possibly on different computers. By sharing the same ReaderQueue, multiple
DataReaders can collaborate, coordinate, and load-balance among each other.

2.3 DataWriter Connection to a SharedReaderQueue

Figure 2.1: Load-Balancing Using Queuing Service

Realizing the SharedReaderQueue in a separate service also decouples the lifecycle of the samples from
that of the producer (DataWriter) and consumer (DataReader) of the data.

In order to be shared, a ReaderQueue must have a ReaderQueueName, so that a DataReader can specify
which queue to attach to.

Queuing Service provides a way to host the SharedReaderQueues. DataReaders attach to a shared Read-
erQueue by specifying the same ReaderQueueName. Multiple DataReaders can attach to the same shared
ReaderQueue and Queuing Service will ensure that each sample is delivered to exactly one DataReader.

SharedReaderQueues exist within SharedSubscribers. A SharedSubscriber has a name (SharedSub-
scriberName) that provides a scope for the shared ReaderQueue names. Each SharedReaderQueue is asso-
ciated with exactly one DDS Topic. A single SharedSubscriber is not allowed to host two
SharedReaderQueues of the same Topic name; hence the Topic name uniquely identifies the SharedRead-
erQueue within the SharedSubscriber. For this reason, the name of a shared ReaderQueue is defined by
combining the two, as in: aTopicName@aSharedSubscriberName.

2.3 DataWriter Connection to a SharedReaderQueue

You can use a DataWriter to send data to a SharedReaderQueue. The DataWriter simply writes to the
Topic that is associated with a SharedReaderQueue.

5

2.3.1 QueueProducer Wrapper

6

With regards to QoS, the DataWriter can specify any DataWriter QoS, except: the following are required:

l reliability.kind = RELIABLE_RELIABILITY_QOS

l reliability.acknowledgment_kind =
APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE

l history.kind = KEEP_ALL_HISTORY_QOS

The DataWriter is typically also configured with durability.kind set to VOLATILE_DURABILITY_
QOS.

For every received sample, Queuing Service sends an application-level acknowledgement (AppAck) mes-
sage to the QueueProducer's DataWriter indicating successful processing or rejection the sample.

The sending of the application-level acknowledgement (enabled by default) message is optional and can
be disabled on a per SharedReaderQueue basis by setting the tag <app_ack_sample_to_producer>
under <queue_qos>/<reliability> to false (see 3.3 XML Tags for Configuring Queuing Service).

Samples are successfully processed when they are stored in the SharedReaderQueue. Samples are rejected
when they cannot be stored in the SharedReaderQueue.

One possible cause of rejection is when the maximum number of samples that can be stored in the queue is
exceeded.

The response data of the AppAck message for successfully processed samples will be a single byte set to
1. The response data for rejected samples will be a single byte set to 0.

You may want to capture the AppAck message by installing a listener on the DataWriter that implements
the on_application_acknowledgment() callback.

2.3.1 QueueProducer Wrapper

To simplify the use and configuration of a DataWriter to send samples to a SharedReaderQueue, Connext
DDS provides an abstraction, QueueProducer<aMessageType>, that wraps the DataWriter and provides
additional services such as an operation to detect if there is a matching SharedReaderQueue or an oper-
ation to wait for application-level acknowledgement after sending a sample.

For more information, see Chapter 8 Queuing Service Wrapper API on page 91.

Note: In this release, the QueueProducer wrapper API is only supported in the .NET API.

2.3.2 Samples with Large Maximum Size

By default, Connext DDS preallocates the samples in the QueueProducer’s DataWriter queue and the keys
stored with the instances to their maximum size. If the SharedReaderQueue type has variable-size mem-
bers (sequences and/or strings) with large maximum size this may lead to high memory-usage.

2.4 DataReader Connection to a SharedReaderQueue

For information on how to reduce memory consumption on a DataWriter, see Sample-Data and Instance-
Data Memory Management in the RTI Connext DDS Core Libraries User's Manual.

2.4 DataReader Connection to a SharedReaderQueue

You can use a DataReader to read samples from a SharedReaderQueue as long as the DataReader is con-
figured as follows:

l The DataReader must attach to the SharedSubscriber that contains the SharedReaderQueue. It does
this by setting the property dds.data_reader.shared_subscriber_name in reader_qos.property
with a value that is equal to the SharedSubscriberName. This property must be propagated as fol-
lows:

<element>
<name>dds.data_reader.shared_subscriber_name</name>
<value>MySharedSubscriberName</value>
<propagate>true</propagate>

</element>

l The DataReader must set a ContentFilteredTopic on the related_reader_guid. Queuing Service
uses this filter to distribute a sample only to the DataReader that has been selected for the sample
(see 2.6 Sample Distribution to a Selected QueueConsumer on page 9).

l The DataReader must subscribe to the Topic <SharedReaderQueue Top-
icName>@<SharedSubscriberName>.

With regards to QoS, the DataReader can specify any DataReader QoS except: reliability.kind must be
set to RELIABLE_RELIABILITY_QOS and reliability.acknowledgment_kind must be set to
APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE.

The DataReader is typically also configured with durability.kind set to VOLATILE_DURABILITY_
QOS.

The application must acknowledge the successful processing or rejection of a received sample using the
DataReader's acknowledge_sample() and/or acknowledge_all() operations.

The response data for successfully processed samples will be a single byte set to 1. The response data for
rejected samples will be a single byte set to 0.

For more information on the sample lifecycle in a SharedReaderQueue, see 2.8 Sample Lifecycle In
Queuing Service on page 11.

2.4.1 QueueConsumer Wrapper

To simplify the use and configuration of a DataReader to receive samples from a SharedReaderQueue,
Connext DDS provides an abstraction, QueueConsumer<MessageType>, which wraps the DataReader

7

2.4.2 Samples with Large Maximum Size

8

and provide additional services such as an operation to detect if there is a matching SharedReaderQueue or
a blocking operation to receive samples.

For more information, see Chapter 8 Queuing Service Wrapper API on page 91.

Note: In this release, the QueueConsumer wrapper API is only supported in the .NET API.

2.4.2 Samples with Large Maximum Size

By default, Connext DDS preallocates the samples in the QueueConsumer’s DataReader queue and the
keys stored with the instances to their maximum size. If the SharedReaderQueue type has variable-size
members (sequences and/or strings) with large maximum size, this may lead to high memory-usage.

For information on how to reduce memory consumption on a DataReader, see Sample-Data and
Instance-Data Memory Management in the RTI Connext DDS Core Libraries User's Manual.

2.5 Queuing Service Entities

A SharedReaderQueue is the result of the association of a Topic with a SharedSubscriber. For each
SharedReaderQueue, Queuing Service instantiates:

l A DataReader to receive data from the QueueProducer<aMessageType>

l A DataWriter to send data to the QueueConsumer<aMessageType>

In the entities above, aMessageType refers to the data type of the Topic associated with the SharedRead-
erQueue.

The Queuing Service DataReader subscribes directly to the SharedReaderQueue Topic with name aTop-
icName. Thus the Queuing Service DataReader which will 'match' the QueuePro-
ducer<aMessageType> DataWriter, subject to normal DDS type and QoS matching.

The Queuing Service DataWriter publishes a Topic whose name is obtained by concatenating the
SharedReaderQueue Topic name aTopicName with the SharedSubscriber name aSharedSub-
scriberName as in aTopicName@aSharedSubscriberName.

With this Topic name:

l The Queuing Service DataReader will only match the QueueProducer<aMessageType>

l The Queuing Service DataWriter will only match the QueueConsumer<aMessageType>

2.6 Sample Distribution to a Selected QueueConsumer

Figure 2.2: Queuing Service Entities and Topics

2.6 Sample Distribution to a Selected QueueConsumer

Queuing Service implements the logic that decides which QueueConsumer DataReader gets each sample.
To distribute a sample to the selected QueueConsumer, the QueueConsumer DataReader uses a Con-
tentFilteredTopic on the related_reader_guid. For example:
(@related_reader_guid.value = &hex(00000000000000000000000000000007))

Queuing Service uses the write_w_param() operation on the SharedReaderQueue DataWriter to set the
related_reader_guid to the value specified in the filter expression of the selected DataReader (see Figure
2.3: Sample Distribution to Selected QueueConsumer DataReader on the next page).

9

2.7 Interaction of Publish-Subscribe Entities with Queuing Service Entities

10

Figure 2.3: Sample Distribution to Selected QueueConsumer DataReader

In Figure 2.3: Sample Distribution to Selected QueueConsumer DataReader above, when Queuing Ser-
vice wants to send a sample to the first DataReader, it sets the field related_reader_guid in WriteParams_
t to 0xFF. To send to the second DataReader, related_reader_guid is set to 0xEF.

2.7 Interaction of Publish-Subscribe Entities with Queuing Service
Entities

A regular DataReader of Topic aQueueTopicName@aSharedSubscriberName will match a
SharedReaderQueue DataWriter for the SharedSubscriber aSharedSubscriberName of Topic
aQueueTopicName. However, Queuing Service will notice that the DataReader's SharedSub-
scriberName is not set and interpret this to mean that it does not want to share the ReaderQueue. Instead,
the DataReader wants traditional publish-subscribe access, which means it will get a copy of each sample
that is sent to any of the QueueConsumers. See Figure 2.4: Queuing Service Endpoint Matching with
non-QueueConsumer DataReaders on the facing page.

This approach ensures that RTI DDS Spy, RTI Recording Service, and other such tools that observe data
will continue to function without changes.

Note that the QueueProducer has a regular DataWriter of Topic aQueueTopicName. In addition to the
SharedReaderQueue DataReader, it will also match any regular DataReader of that Topic. Consequently,
the regular Connext DDS tools (such as RTI DDS Spy and RTI Recording Service) will also receive the
data sent by the QueueProducer.

2.8 Sample Lifecycle In Queuing Service

Figure 2.4: Queuing Service Endpoint Matching with non-QueueConsumer DataReaders

2.8 Sample Lifecycle In Queuing Service

The samples received by a Queuing Service instance have a lifecycle described by the following states:

l Enqueued: The sample has been received by Queuing Service and has been stored in the
SharedReaderQueue (persistent or in memory).

In addition, if SharedReaderQueue replication is enabled, the sample must have been received and
stored by a quorum of up-to-date replicas. See Chapter 7 High Availability on page 81.

l Assigned: The sample has been assigned to one of the QueueConsumers.

In addition, if SharedReaderQueue replication is enabled, the selected QueueConsumer must have
been communicated to the replicas and optionally confirmed by a quorum of up-to-date replicas. See
Chapter 7 High Availability on page 81.

l Sent: The sample has been sent to the designated QueueConsumer.

l Delivered: The sample has been delivered to a QueueConsumer and the (application-level) acknow-
ledgment of the successful delivery has been received from the QueueConsumer.

In addition, if SharedReaderQueue replication is enabled, the delivery of the sample must have been
communicated to the replicas. See Chapter 7 High Availability on page 81.

11

2.8 Sample Lifecycle In Queuing Service

12

l Rejected: The sample has been delivered to the selected QueueConsumer and the (application-
level) acknowledgment from the QueueConsumer has been received with an indication that the mes-
sage has been rejected.

l Timed out: The sample has been delivered to the selected QueueConsumer and it has not been
(application-level) acknowledged from the QueueConsumer for a configurable maximum time (set
using the tag <response_timeout> under <queue_qos>/<redelivery>, see 3.3 XML Tags for Con-
figuring Queuing Service).

l Expired: Indicates a sample that has exceeded a configurable maximum time to be held by Queuing
Service. The sample lifespan can be configured per SharedReaderQueue or per QueueProducer:

l To configure the sample lifespan per SharedReaderQueue, use the <lifespan> tag under
<queue_qos>, see 3.3 XML Tags for Configuring Queuing Service.

l To configure the sample lifespan per QueueProducer, set the Lifespan QoS policy for the
QueueProducer's DataWriter. This way all the samples sent by that QueueProducer will have
a lifespan equal to the writer_qos.lifespan.duration. The lifespan per QueueProducer, when
finite, takes precedence over the lifespan per SharedReaderQueue.

l FailedDelivery: Indicates a sample that has not been successfully delivered to any QueueConsumer
after the maximum number of attempts (configured using the tag <max_delivery_retries> under
<queue_qos>/<redelivery> for a SharedReaderQueue, see 3.3 XML Tags for Configuring
Queuing Service.

In addition to the state, each sample has a flag that indicates whether the sample may be a duplicate. This
flag is set when Queuing Service sends a sample to a QueueConsumer but cannot ensure that no other
QueueConsumer has processed it.

You can inspect the status of the duplicate flag in a received sample by inspecting the field flag in the
SampleInfo. A sample may be a duplicate if the bit DDS_REDELIVERED_SAMPLE is active.

State(s) Transition Event to Next State Next State

<Init>

Sample is received by SharedReaderQueue DataReader and stored in the SharedReaderQueue.

If SharedReaderQueue replication is enabled, sample is received and stored by a quorumof up-to-date rep-
licas.

Queuing Service sends an AppAckmessage to the QueueProducer.

Enqueued

Enqueued

Queuing Service decides which QueueConsumer should get the sample.

If SharedReaderQueue replication is enabled, the selected QueueConsumer has been communicated to
the replicas and optionally confirmed by a quorumof up-to-date replicas.

Assigned

Table 2.1 State Transitions

2.9 Selecting a QueueConsumer for a Sample

State(s) Transition Event to Next State Next State

Assigned

Queuing Service sends the sample to the designated QueueConsumer.

If the sample is the last sample in the SharedReaderQueue that can be received by the QueueConsumer,
Queuing Service can be configured to mark the sample with the flag DDS_LAST_SHARED_READER_
QUEUE_SAMPLE. You can inspect the status of this flag in a received sample by inspecting the flag field
in the SampleInfo.

Sent

Sent

Queuing Service receives an AppAckmessage fromQueueConsumer indicating successful processing.

In addition, if SharedReaderQueue replication is enabled, the delivery of the sample must is communicated
to the replicas.

Delivered

Sent
Queuing Service receives an AppAckmessage fromQueueConsumer indicating sample rejection.

AttemptedDeliveryCount is incremented.

Enqueued WHEN
AttemptedDeliveryCount
< MAX_ATTEMPTS

FailedDeliveryWHEN
AttemptedDeliveryCount
== MAX_ATTEMPTS

Sent

Queuing Service does not receive an AppAckmessage after a timeout.

DDS_REDELIVERED_SAMPLE is set.

AttemptedDeliveryCount is incremented

Enqueued WHEN
AttemptedDeliveryCount
< MAX_ATTEMPTS

FailedDeliveryWHEN
AttemptedDeliveryCount
== MAX_ATTEMPTS

Any state The lifespan timeout elapses Expired

Table 2.1 State Transitions

2.9 Selecting a QueueConsumer for a Sample

Queuing Service implements the logic that decides which QueueConsumer gets each sample. This
decision can be made according to different dispatch policies. To configure a dispatch policy and its prop-
erties, use the <distribution> tag under <queue_qos> (see 3.3 XML Tags for Configuring Queuing Ser-
vice).

2.9.1 Round-Robin Dispatch Policy without Explicit QueueConsumer
Availability Feedback

This dispatch mode uses a round-robin approach to dispatch messages among the QueueConsumers that
have acknowledged all previous messages sent to them up to a specified threshold. This dispatch mode
does not require explicit feedback from the QueueConsumer.

For example, with a threshold of zero, samples are round-robin'ed among QueueConsumers that have
acknowledged all previous samples that were sent to them. With a threshold of 2, samples are round-
robin'ed among QueueConsumers that have acknowledged all samples sent to them except up to 2 samples
(i.e., have acknowledged all, all but one, or all but two). With a threshold of UNLIMITED (-1), samples

13

2.9.2 Round-Robin Dispatch Policy with Explicit QueueConsumer Availability Feedback

14

are round-robin'ed among all QueueConsumers, regardless of the number of outstanding unacknowledged
samples in each one of them.

With this dispatch mode, the threshold is set per SharedReaderQueue using the property UNACKED_
THRESHOLD. For example:
<distribution>

<kind>ROUND_ROBIN</kind>
<property>

<value>
<element>

<name>UNACKED_THRESHOLD</name>
<value>-1</value>

</element>
</value>

</property>
</distribution>

2.9.2 Round-Robin Dispatch Policy with Explicit QueueConsumer
Availability Feedback

This dispatch mode uses a QueueConsumer Availability Topic, which is published by the QueueCon-
sumers and provides information about the capability of the QueueConsumer to process messages from
Queuing Service. The round-robin will be done among the QueueConsumers that are available.

The ConsumerAvailability topic name is as follows: Con-
sumerAvailability@<SharedReaderQueueName>, where <SharedReaderQueueName> is
<SharedReaderQueueTopicName>@<SharedSubscriberName>.

The topic type is the following and can be found in <NDDSHOME>/re-
source/idl/QueuingServiceTypes.idl.
struct ConsumerAvailability_t {

GUID_t consumer_guid; //@key
boolean reception_enabled;
long unacked_threshold;

}; //@Extensibility EXTENSIBLE_EXTENSIBILITY

The type is registered with the following name: RTI::QueuingService::ConsumerAvailability_t.

A QueueConsumer can report its availability by updating the unacked_threshold and reception_enabled
fields. The unacked_threshold field is equivalent to the threshold parameter described in 2.9.1 Round-
Robin Dispatch Policy without Explicit QueueConsumer Availability Feedback on the previous page but
it can be set per QueueConsumer.

In addition, a QueueConsumer can indicate that it does not want to receive any samples from Queuing Ser-
vice by setting the field reception_enabled to DDS_BOOLEAN_FALSE.

2.10 Sending a Reply from QueueConsumer to QueueProducer

The field consumer_id must be used to identify the QueueConsumer that sends the Availability sample.
This field must be the same value that was used to set the QueueConsumer ContentFilteredTopic
described in 2.6 Sample Distribution to a Selected QueueConsumer on page 9.

By default, when using ROUND_ROBIN policy, a SharedReaderQueue does not create a DataReader to
receive availability updates from a QueueConsumer. To enable that behavior, set the property ALLOW_
CONSUMER_FEEDBACK to 1. For example:
<distribution>

<kind>ROUND_ROBIN</kind>
<property>

<value>
<element>

<name>UNACKED_THRESHOLD</name>
<value>-1</value>

</element>
<element>

<name>ALLOW_CONSUMER_FEEDBACK</name>
<value>1</value>

</element>
</value>

</property>
</distribution>

Notice that in a SharedReaderQueue with the previous configuration it is possible to have some
QueueConsumers reporting availability through the new topic and some QueueConsumers not reporting
availability and using the configuration threshold under <distribution>.

2.10 Sending a Reply from QueueConsumer to QueueProducer

Queuing Service also supports a request-reply communication model in which a requester application
sends a sample to a SharedReaderQueue, and a replier application receives the sample from the
SharedReaderQueue and returns a response to the requester application.

Realizing the request-reply communication model requires creating a new SharedReaderQueue that will be
used to send responses from the replier application to the requester application (see Figure 2.5: Request-
Reply Communication Model on the next page).

15

2.10.1 Requester Identification

16

Figure 2.5: Request-Reply Communication Model

2.10.1 Requester Identification

In a request-reply pattern, requests must uniquely identify the associated QueueProducer so that each reply
sample can be unambiguously delivered to the requester application that sent the associated request. To
identify a QueueProducer, you can use the source GUID.

The source_guid consists of a GUID; it can be set per sample using the source_guid field in the
WriteParams_t parameter provided to the QueueProducer's DataWriter write_w_params() operation.

If you do not want to set the source GUID of a sample, the QueueProducer's DataWriter will assign it auto-
matically to be equal to the DataWriter's virtual GUID.

In general, you should always assign the source GUID when sending requests. Otherwise, the requester
application will not be robust to potential restarts. If the source GUID is different every time the requester
application restarts, there may be responses that get lost since Queuing Service will not know how to route
them to the proper requester application.

2.10.2 Request-Reply Correlation

When the replier application receives a request sample from Queuing Service, it must extract the source
GUID and the sample identity in order to send them back as part of the reply to the requester application.
This allows requests and replies to be correlated.

2.10.2 Request-Reply Correlation

The replier application can extract the identity of a request from the fields related_original_publication_
virtual_guid and related_original_publication_virtual_sequence_number in the SampleInfo asso-
ciated with the request sample (see Figure 2.6: Request Generation below).
Figure 2.6: Request Generation

The replier application can extract the source GUID of a request from the field related_source_guid of
the SampleInfo associated with the request sample (see Figure 2.6: Request Generation above).

Once the replier application extracts the request sample identity and source GUID from the request
SampleInfo, it must attach them to the reply sample as follows:

l The sample identity will be set using the field related_sample_identity in theWriteParams_t para-
meter provided to the DataWriter's write_w_params() operation.

l The source GUID will be set using the field related_source_guid in theWriteParams_t parameter
provided to the DataWriter's write_w_params() operation.

When the requester application receives the reply, it can associate the reply with the corresponding request
by inspecting the related_original_publication_virtual_guid and related_original_publication_vir-
tual_sequence_number fields in the SampleInfo associated with the reply sample (see Figure 2.6:
Request Generation above).

17

2.10.3 Sending the Reply Sample to the Associated Requester

18

2.10.3 Sending the Reply Sample to the Associated Requester

To guarantee that a reply sample is only distributed to right Requester, the DataReader in the Requester
must use a ContentFilteredTopic on the related_source_guid, where the value is set to the source GUID
associated with the request. For the example in Figure 2.6: Request Generation on the previous page, the
filter would be:
(@related_source_guid.value = &hex(<SGUIDm>))

Alternatively, you can set the filter in the related_reader_guid, as follows:
(@related_reader_guid. value = &hex(<SGUIDm>))

2.10.4 QueueRequester Wrapper

To simplify the use and configuration of the DataReader and DataWriter in the requester application, Con-
next DDS provides an abstraction, QueueRequester<MessageRequestType, MessageReplyType,
which wraps the DataReader and DataWriter usage and provide additional services such as an operation
to wait for the response for a given request.

For more information, see Chapter 8 Queuing Service Wrapper API on page 91.

In this release, the QueueRequester wrapper API is only supported in the .NET API.

2.10.5 QueueReplier Wrapper

To simplify the use and configuration of the DataReader and DataWriter in the replier application, Con-
next DDS provides an abstraction, QueueReplier<MessageRequestType, MessageReplyType>, which
wraps the DataReader and DataWriter usage.

For more information, see Chapter 8 Queuing Service Wrapper API on page 91.

In this release, the QueueReplier wrapper API is only supported in the .NET API.

2.11 Dead-Letter Queues

Queuing Service provides support for dead-letter queues. A dead-letter queue is a SharedReaderQueue to
which other SharedReaderQueues can send messages that for some reason could not be successfully
delivered and processed.

Queuing Service supports the definition of one dead-letter queue per SharedSubscriber by using the XML
tag <dead_letter_shared_reader_queue>. The dead-letter queue has two limitations compared with a
regular queue:

1. It cannot have a <reply_type>.

2. It cannot have a <type_name>.

2.11 Dead-Letter Queues

The type associated with the samples in a dead-letter queue is DeadLetter_t, defined as follows:
enum UndeliveredReasonKind {

LIFESPAN_UNDELIVERED_REASON_KIND,
MAX_RETRIES_UNDELIVERED_REASON_KIND
UNRECOVERABLE_WRITE_ERROR_UNDELIVERED_REASON

}
struct GUID_t {

octet value[16];
};
struct SequenceNumber_t {

long high;
unsigned long low;

};
struct SampleIdentity_t {

GUID_t writer_guid;
SequenceNumber_t sequence_number;

};
struct SampleBuffer_t {

sequence<octet> value;
};
struct DeadLetter_t {

string queue_name;
SampleIdentity_t sample_identity;
UndeliveredReasonKind undelivered_reason;
SampleBuffer_t sample_buffer;

}; //@Extensibility EXTENSIBLE_EXTENSIBILITY

You can find the IDL file that defines the DeadLetter types in <NDDSHOME>/re-
source/idl/QueuingServiceTypes.idl.

The queue_name has the format <aQueueTopicName>@<aSharedSubscriberName>.

The sample_identity contains the identity of the undelivered sample.

The sample_buffer contains the sample data in serialized form with CDR representation. To deserialize
the sample data, use the following operations:

l C: FooTypeSupport_deserialize_data_from_cdr_buffer()

l C++: FooTypeSupport::deserialize_data_from_cdr_buffer()

l Java: FooTypeSupport.get_instance().deserialize_from_cdr_buffer()

l C++/CLI: FooTypeSupport::deserialize_data_from_cdr_buffer()

l C#: FooTypeSupport.deserialize_data_from_cdr_buffer()

For additional information on these deserialization operations, see the Connext DDS API Reference
HTML documentation.

19

2.12 Detecting the Presence of a SharedReaderQueue

20

The undelivered_reason is an enumeration describing why the sample was not delivered. There are two
possible reasons:

l The lifespan expired for the sample.

l The sample exceeded the maximum number of redelivery retries.

For more information on why a sample may be undelivered, see 2.8 Sample Lifecycle In Queuing Service
on page 11.

By default, SharedReaderQueues do not send undelivered samples to the dead-letter queue. To enable this
behavior, you must use the attribute dead_letter_queue in the <shared_reader_queue> tag. This attrib-
ute must be set to the name of the dead-letter queue in the configuration file.

2.12 Detecting the Presence of a SharedReaderQueue

You can detect the existence of a SharedReaderQueue for a given QueueProducer or QueueConsumer by
monitoring the matched subscriptions associated with the QueueProducer's DataWriter and the matched
publications associated with the QueueConsumer's DataReader.

The PublicationBuiltinTopicData and SubscriptionBuiltinTopicData include a field called service, which,
in the case of a Queuing Service DataWriter or DataReader, is set to QUEUING_SERVICE_QOS.

Since the durability of the QueueProducer DataWriter is normally set to VOLATILE, to guarantee that the
initial samples are received by a Queuing Service instance, the application should check that there is a
match between a QueueProducer DataWriter and a SharedReaderQueue DataReader before starting to
publish samples.

For convenience and ease of use, the wrapper APIs offer methods to detect when there are matching
SharedReaderQueue for QueueProducers, QueueConsumers, QueueRequesters, and QueueRepliers. See
Chapter 8 Queuing Service Wrapper API on page 91.

2.13 Queuing Service Persistency

By default, both the service state and the SharedReaderQueues samples are kept in memory.

For fault tolerance, and to preserve the current configuration, Queuing Service can be configured to persist
its configuration, as well as the SharedReaderQueues samples to disk.

2.13.1 Service State Persistency

Figure 2.7: Service State Persistency

2.13.1 Service State Persistency

The configuration of a Queuing Service instance is dynamic. Once the service is bootstrapped from a con-
figuration file in XML format or remotely by getting the configuration from other Queuing Service
instances, the configuration can be changed at run time by sending remote commands to the service (see
Chapter 5 Administering Queuing Service from a Remote Location on page 68). For example, you may
decide to add a new SharedReaderQueue or to remove a SharedReaderQueue.

You can choose to persist the configuration to disk each time it changes by setting the <kind> tag within
<queuing_service>/<service_qos>/<persistence> to PERSISTENT (see 3.3 XML Tags for Configuring
Queuing Service).

The location of the file where the configuration is persisted, as well as the properties of the storage process,
can be configured using the <filesystem> tag under <queuing_service>/<persistence_settings> (see 3.3
XML Tags for Configuring Queuing Service on page 34).

When Queuing Service is restarted, it will look for its persisted configuration using the following values:

l Command-line option -appName (see Table 4.1 RTI Queuing Service Command-Line Options)

l XML tag values <directory> and <file_prefix> under <persistence_settings>/<filesystem>

If the persisted configuration is found and the service is configured from a XML file, the persisted con-
figuration will be used to configure the service instance. In that case, the input XML file is only used to

21

2.13.2 SharedReaderQueue Persistency

22

find the location of the persistent storage and configure the storage process. If the persisted configuration is
not found, the service will be initialized using the input XML file.

When the service configuration is obtained remotely using the command-line option (see Table 4.1 RTI
Queuing Service Command-Line Options), any persisted configuration will be dropped and the service
will always be initialized using the remote XML configuration.

The location and name of the file where the configuration is persisted is as follows:

[directory]/[prefix]service@[appName].db

Where:

l [directory] is configured using the tag <directory> under <persistence_settings>/<filesystem>

l [prefix] is configured using the tag <file_prefix> under <persistence_settings>/<filesystem>

l [appName] is configured using the command-line parameter -appName.

2.13.2 SharedReaderQueue Persistency

A SharedReaderQueue can be configured to persist the undelivered samples into disk by setting the XML
tag <kind> within <shared_reader_queue>/<queue_qos>/<persistence> to PERSISTENT (see 3.3
XML Tags for Configuring Queuing Service).

Queuing Service provides two different PERSISTENT implementations:

l Without In-Memory State: In this mode, the metadata and user data associated with the
SharedReaderQueue's samples is kept only on disk. Every time the metadata or user data is used,
Queuing Service reads it from disk.

l With In-Memory State: In this mode, the metadata for the SharedReaderQueue's samples is
always kept both on disk and in memory. The sample's user data is kept in memory and on disk only
when:

l Its serialized size is smaller than the threshold set using the tag <domain_par-
ticipant>/<memory_management>/<sample_buffer_min_size> (see 2.14.2 Memory Man-
agement for a Sample on page 26).

l <domain_participant>/<memory_management>/<sample_buffer_trim_to_size> is set to
to false (see 2.14.2 Memory Management for a Sample on page 26).

PERSISTENT SharedReaderQueues with in-memory state introduce significant performance improve-
ments because the sample metadata, and in some cases the sample user data, does not need to be accessed
from disk. The disadvantage is that the number of samples on the SharedReaderQueue is limited by the
available memory, as the service needs to keep some state per sample in memory.

2.13.2 SharedReaderQueue Persistency

To configure a PERSISTENT SharedReaderQueue to keep the sample state in-memory (the default con-
figuration), you must set the XML tag <in_memory_state> under <queue_qos>/<persistence> to true.

Samples are persisted before Queuing Service sends an application-level acknowledgement (AppAck) mes-
sage to the QueueProducer DataWriter indicating successful processing of the sample.

Like with the service configuration, the location of the file(s) where the SharedReaderQueue's samples are
persisted, as well as the properties of the storage process, can be configured using the <filesystem> tag
under <queuing_service>/<persistence_settings> (see 3.3 XML Tags for Configuring Queuing Service
on page 34).

When a SharedReaderQueue is created, the service will locate its persisted samples using the following val-
ues:

l Command-line option -appName (Queuing Service runs as a separate application. The script to run
the executable is in <NDDSHOME>/bin. See Chapter 4 Running Queuing Service on page 62.)

l XML tag values <directory> and <file_prefix> under <persistence_settings>/<filesystem>

l The SharedSubscriber's name configured using the name attribute in <shared_subscriber>

l The SharedReaderQueue's topic name configured using the XML tag value <topic_name> under
<shared_reader_queue>

l The DomainParticipant's domain ID configured using the XML tag value <domain_id> under
<domain_participant>

If the samples are found, the SharedReaderQueue will be initialized with them.

The location and name of the file where the SharedReaderQueue's samples are persisted is as follows:

l Without in-memory state:

[directory]/[prefix] [topicName]@[sharedSubscriberName]@[domainId]@[appName].db
l With in-memory state:

For data:
[directory]/[prefix] [topicName]@[sharedSubscriberName]@[domainId]@[appName]_d[fileIn-
dex].db

For metadata:
[directory]/[prefix] [topicName]@[sharedSubscriberName]@[domainId]@[appName]_m[fileIn-
dex].db

23

2.13.2.1 The Restore Process

24

Where:

l [directory] is configured using the tag <directory> under <persistence_settings>/<filesystem>

l [prefix] is configured using the tag <file_prefix> under <persistence_settings>/<filesystem>

l [appName] is configured using the command-line parameter -appName

l [topicName] is configured using the tag value <topic_name> under <shared_reader_queue>

l [sharedSubscriberName] is configured using the attribute name under <shared_subscriber>

l [domain_id] is configured using the tag value <domain_id> under <domain_participant>

l *[fileIndex] is the index of the file containing data or metadata. This index always increases and
Queuing Service creates a new file after <filesystem>/<file_max_size> is reached (see 3.3 XML
Tags for Configuring Queuing Service).

2.13.2.1 The Restore Process

Before the samples for a SharedReaderQueue are restored, the service instance will preprocess them as fol-
lows. See 2.8 Sample Lifecycle In Queuing Service on page 11 for more information.

l If there is no DeadLetterSharedReaderQueue, the service will remove expired samples from disk
based on the expiration time set when the samples were first added to the SharedReaderQueue.

l If there is no DeadLetterSharedReaderQueue, the service will remove samples on the FailedDe-
livery state from disk.

l The service will remove samples on the Delivered state from disk.

l The service will move samples in the Assigned, Sent, Rejected, or Timed-out state to the Enqueued
state.

2.14 SharedReaderQueue Resource Management

Queuing Service provides fine-grained control over the resources (memory and disk) associated with the
samples in a SharedReaderQueue. It provides ways to monitor when the space taken by the samples in a
SharedReaderQueue goes above or below configurable watermarks and when the SharedReaderQueue
fills up. Finally, it also provides a way to configure the SharedReaderQueue behavior when a new sample
arrives and the SharedReaderQueue is full.

2.14.1 Maximum SharedReaderQueue Size

The maximum size of a SharedReaderQueue can be configured based on number of samples, number of
bytes in memory, or both.

2.14.1.1 Initial and Maximum Number of Samples

2.14.1.1 Initial and Maximum Number of Samples

The tag <resource_limits> under <shared_reader_queue>/<queue_qos> can be used to configure the
initial and maximum number of samples in a SharedReaderQueue (see 3.3 XML Tags for Configuring
Queuing Service) as well as if dynamic allocations are allowed and how they occur.

Example:
<resource_limits>

<queue_allocation_settings>
<initial_count>10</initial_count>
<max_count>LENGTH_UNLIMITED</max_count>
<incremental_count>-1</incremental_count>

</queue_allocation_settings>
</resource_limits>

In the above example:

l initial_count: Queuing Service will pre-allocate ten queue samples in advance.

l max_count: The maximum number of samples that the queue can hold is UNLIMITED.

l incremental_count: As additional samples are needed, Queuing Service will double the amount of
extra memory allocated each time memory is needed.

Ranges:

l initial_count: positive number and < max_count

l max_count: LENGTH_UNLIMITED or positive number

l incremental_count: -1 (double) or positive number

Defaults:

l initial_count: 1

l max_count: LENGTH_UNLIMITED

l incremental_count: -1

When max_count is exceeded, the behavior of a SharedReaderQueue when new samples are received
can be configured using <replacement_policy> under <resource_limits>. See 2.14.4 Sample Replace-
ment Policy on page 28.

2.14.1.2 Maximum Number of Bytes in Memory

The tag <resource_limits> under <shared_reader_queue>/<queue_qos> can also be used to configure
the maximum size of a SharedReaderQueue based on the number of bytes required to store the samples in-

25

2.14.2 Memory Management for a Sample

26

memory. For example:
<resource_limits>

<queue_allocation_settings>
<max_in_memory_bytes>1000000</max_in_memory_bytes>

</queue_allocation_settings>
</resource_limits>

In the above example, the size required to store the SharedReaderQueue samples in-memory cannot
exceed 1,000,000 bytes. Notice that if the SharedReaderQueue does not have any samples and the size of
a new sample exceeds 1,000,000 bytes, this sample will be stored in the SharedReaderQueue. Therefore, it
is possible to go beyond 1,000,000 bytes when the SharedReaderQueue is empty.

The configuration parametermax_in_memory_bytes includes both the sample metadata and the sample
user data. The parameter does not take into account the SharedReaderQueue metadata and the preallocated
samples (metadata and user data) that are not currently used.

If both <max_count> and <max_in_memory_bytes> are set to a finite number, the maximum size of the
SharedReaderQueue will be limited by the limit that is reached first.

<max_in_memory_bytes> is ignored for PERSISTENT SharedReaderQueues where the state is not kept
in-memory.

Ranges:

l max_in_memory_bytes: LENGTH_UNLIMITED or positive number

Defaults:

l max_in_memory_bytes: LENGTH_UNLIMITED

2.14.2 Memory Management for a Sample

For every sample in a SharedReaderQueue, Queuing Service will use a buffer to store the content of the
sample in serialized form. The memory for that buffer may come from a pre-allocated pool of buffers or
may be dynamically allocated from the heap upon sample reception. This behavior is controlled per
<domain_participant> using the XML tag <memory_management> (see 3.3 XML Tags for Con-
figuring Queuing Service), which affects all the SharedReaderQueues within the <domain_participant>.

For example:
<memory_management>

<sample_buffer_min_size>16000</sample_buffer_min_size>
<sample_buffer_trim_to_size>true</sample_buffer_trim_to_size>

</memory_management>

In the above example:

2.14.3 High and Low Watermarks

l sample_buffer_min_size: If the serialized size of an incoming sample is smaller or equal to 16000
bytes, Queuing Service will use a pre-allocated buffer from a pool to hold the sample. The initial and
maximum number of buffers in the pool as well as the pool’s growth policy is configured using the
XML tag <resource_limits> under <shared_reader_queue>/<queue_qos>. When the serialized
size of the incoming sample is greater than 16,000 bytes, Queuing Service will allocate the buffer
from the heap dynamically upon sample reception.

l sample_buffer_trim_to_size: For dynamically allocated buffers Queuing Service will release the
memory after the sample is removed from the SharedReaderQueue.

For more information on <memory_management> and its default values, see 3.3 XML Tags for Con-
figuring Queuing Service.

2.14.3 High and Low Watermarks

The tag <queue_watermark_settings> under <shared_reader_queue>/<queue_qos>/<resource_lim-
its> can be used to configure high and low watermarks in a SharedReaderQueue (see 3.3 XML Tags for
Configuring Queuing Service). Watermarks are expressed as a percentage with respect to the maximum
number of samples or maximum number of bytes allowed in the SharedReaderQueue. For example:
<resource_limits>

<queue_allocation_settings>
<max_count>1000</max_count>
<max_in_memory_bytes>10000000</max_in_memory_bytes>

</queue_allocation_settings>
<queue_watermark_settings>

<high_watermark>90</low_watermark>
<low_watermark>10</low_watermark>

</queue_watermark_settings>
</resource_limits>

In the above example, the high watermark of 90% corresponds to 900 samples (9,000,000 bytes) and the
low watermark of 10% corresponds to 100 samples (1,000,000 bytes).

An application can monitor if the number of samples in a SharedReaderQueue go over the high watermark
or below the low watermark by retrieving the SharedReaderQueue status using the remote administration
command Get SharedReaderQueue Status (see 5.4.4 Get SharedReaderQueue Status on page 74) or by
subscribing to the SharedReaderQueue status monitoring topic (see Chapter 6 Publish-Subscribe Mon-
itoring of Queuing Service from a Remote Location on page 79).

The SharedReaderQueueStatus type used to provide the status of a SharedReaderQueue can be found
<NDDSHOME>/resource/idl/QueuingServiceTypes.idl :
struct SharedReaderQueueStatus {

...
unsigned long long high_watermark_count;
unsigned long long low_watermark_count;
unsigned long long queue_full_count;
...

27

2.14.4 Sample Replacement Policy

28

unsigned long long high_watermark_count_change;
unsigned long long low_watermark_count_change;
unsigned long long queue_full_count_change;
...

}; //@Extensibility MUTABLE_EXTENSIBILITY

Where:

l high_watermark_count: Number of times that the SharedReaderQueue went over the high water-
mark since the service started.

l low_watermark_count: Number of times that the SharedReaderQueue went below the low water-
mark since the service started.

l high_watermark_count_change: Number of times that the SharedReaderQueue has gone over the
high watermark since the last remote administration command to retrieve the status of the
SharedReaderQueue.

l low_watermark_count_change: Number of times that the SharedReaderQueue has gone below
the low watermark since the last remote administration command to retrieve the status of the
SharedReaderQueue.

Notice that it is also possible to monitor how many times the SharedReaderQueue filled up by inspecting
the fields queue_full_count and queue_full_count_change.

2.14.4 Sample Replacement Policy

The tag <replacement_policy> under <shared_reader_queue>/<queue_qos>/<resource_limits> can
be used to configure a SharedReaderQueue behavior when it is full and a new sample is received. For
example:
<resource_limits>

<replacement_policy>
<kind>REJECT_WITHOUT_REPLACEMENT</kind>

</replacement_policy>
</resource_limits>

In the above example, a new incoming sample will be rejected if there is no space for it in the SharedRead-
erQueue. When a sample is rejected, and if <app_ack_sample_to_producer> is set to true for the
SharedReaderQueue, Queuing Service will send an AppAck message to the QueueProducer with a pay-
load byte set to 0.

This version of Queuing Service supports two kinds of replacement policies:

l REJECT_WITHOUT_REPLACEMENT: New samples are rejected when the SharedRead-
erQueue is full.

l WAIT_WITHOUT_REPLACEMENT: New samples are kept in the SharedReaderQueue's
DataReader cache until they can be added to the SharedReaderQueue.

2.15 High Availability

Default:

l kind: REJECT_WITHOUT_REPLACEMENT

Notice that the WAIT_WITHOUT_REPLACEMENT replacement kind allows you to implement a flow-
control mechanism with the QueueProducer's DataWriter in which the DataWriter’s write() operation will
block if new samples cannot be added to the SharedReaderQueue.

To achieve this behavior:

l The SharedReaderQueue's DataReader’s cache must have a finite size. This can be done by con-
figuring <shared_reader_queue>/<datareader_qos>/<resource_limits>/ <max_samples> to a
finite number.

l The QueueProducer's DataWriter’s send window size must be a finite value. This can be done by
configuring <datawriter_qos>/<protocol>/<rtps_reliable_writer>/<max_send_window_size>.

If a new sample arrives to the SharedReaderQueue and there is no space for it in the SharedReaderQueue's
DataReader cache, the sample will be rejected by Connext DDS. The QueueProducer's DataWriter will
not be able to mark that sample or any subsequent samples as acknowledged and eventually it will block
after its send window fills up.

2.15 High Availability

For high availability, you can configure Queuing Service to replicate both the content of the SharedRead-
erQueues and the service configuration.

By default, SharedReaderQueues within a Queuing Service instance are not replicated. SharedRead-
erQueues can optionally be replicated across multiple instances of Queuing Service running on the same or
different nodes.

By default, the service configuration is not replicated. The service configuration can optionally be rep-
licated across multiple instances of Queuing Service running in the same or different nodes.

For more information on SharedReaderQueues and service configuration replication, see Chapter 7 High
Availability on page 81.

2.16 Remote Administration

You can control Queuing Service remotely by sending commands through a special topic. Any Connext
DDS application can be implemented to send these commands and receive their corresponding responses.

These remote administration commands will allow you to:

29

2.17 Queuing Service Monitoring

30

l Create SharedReaderQueues

l Delete SharedReaderQueues

l Flush SharedReaderQueues

l Get SharedReaderQueues status

l Get service data

l Get samples from a SharedReaderQueue

For more information on remote administration, see Chapter 5 Administering Queuing Service from a
Remote Location on page 68.

2.17 Queuing Service Monitoring

With Queuing Service, you can monitor the status of the service and its SharedReaderQueues using
request-reply or publish-subscribe communication patterns.

Request-reply monitoring is done by issuing remote administration commands that retrieve the status of the
different entities in the service. See Chapter 5 Administering Queuing Service from a Remote Location on
page 68.

Publish-subscribe monitoring is done by subscribing to monitoring topics. See Chapter 6 Publish-Sub-
scribe Monitoring of Queuing Service from a Remote Location on page 79.

Chapter 3 Configuring Queuing Service
This chapter describes how to configure Queuing Service. For installation instructions, please see
the Queuing Service Getting Started Guide.

Queuing Service is configured using a configuration in XML format. There are three different
ways to provide the initial configuration to Queuing Service:

l Configuration file: The file(s) can be implicit or explicit using the -cfgFile command-line
option (see 3.1 How to Load the XML Configuration from a File below).

l Database: The Queuing Service configuration can be persisted and restored from disk by
enabling service state Persistency (see 2.13.1 Service State Persistency on page 21).

l Remote configuration: Queuing Service can be set up to obtain its initial configuration
remotely from a different Queuing Service instance by using the -cfgRemote command-line
option (see 4.2 Starting Manually from the Command Line on page 63).

Before reading this chapter, you should be familiar with 2.1 Terms to Know on page 3.

This chapter describes:

l 3.1 How to Load the XML Configuration from a File below

l 3.2 XML Syntax and Validation on page 33

l 3.3 XML Tags for Configuring Queuing Service on page 34

3.1 How to Load the XML Configuration from a File

Queuing Service loads its XML configuration file(s) from multiple locations. This section presents
the various approaches, listed in load order.

The first three locations only contain QoS Profiles and are inherited from Connext DDS (see
Chapter 15 in the RTI Connext DDS Core Libraries User's Manual).

31

3.1 How to Load the XML Configuration from a File

32

l <NDDSHOME>/resource/xml/NDDS_QOS_PROFILES.xml

This file contains the Connext DDS default QoS values; it is loaded automatically if it exists. (First
to be loaded)

l File in NDDS_QOS_PROFILES

The files (or XML strings) separated by semicolons referenced in this environment variable are
loaded automatically.

l <working directory>/USER_QOS_PROFILES.xml

This file is loaded automatically if it exists.

The next locations are specific to Queuing Service:

l <NDDSHOME>/resource/xml/RTI_QUEUING_SERVICE.xml

This file contains the default Queuing Service configuration; it is loaded if it exists. RTI_
QUEUING_SERVICE.xml defines a service with an empty SharedSubscriber and with admin-
istration enabled.

l <working directory>/USER_QUEUING_SERVICE.xml

This file is loaded automatically if it exists.
l File specified using the command line parameter -cfgFile

The command-line option -cfgFile (see) can be used to specify a configuration file.

An example configuration file is seen below. You will learn the meaning of each line as you read the rest
of this chapter.

Example XML Configuration File
<?xml version="1.0"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">

<types>
<struct name="Foo">

<member type="string" stringMaxLength="255" name="message"/>
</struct>

<struct name="Bar">
<member type="string" stringMaxLength="255" name="message"/>

</struct>
</types>

<queuing_service name="QueuingService_1">
<administration>

<domain_id>56</domain_id>

3.2 XML Syntax and Validation

</administration>

<domain_participant name="DomainParticipant_1">
<domain_id>57</domain_id>

<shared_subscriber name="SharedSubscriber_1">
<session_settings>

<session name="Session_1" />
</session_settings>

<dead_letter_shared_reader_queue name="DeadLetter_1"
session="Session_1">

<topic_name>DeadLetter</topic_name>
</dead_letter_shared_reader_queue>

<shared_reader_queue session="Session_1"
dead_letter_queue="DeadLetter_1">

<topic_name>HelloWorld</topic_name>
<type_name>Foo</type_name>
<reply_type>Bar</reply_type>

<queue_qos>
<distribution>

<kind>ROUND_ROBIN</kind>
</distribution>

<lifespan>
<duration>

<sec>120</sec>
<nanosec>0</nanosec>

</duration>
</lifespan>

<redelivery>
<reponse_timeout>

<duration>
<sec>10</sec>
<nanosec>0</nanosec>

</duration>
</reponse_timeout>
<max_delivery_retries>10</max_delivery_retries>

</redelivery>
</queue_qos>

</shared_reader_queue>
</shared_subscriber>

</domain_participant>
</queuing_service>

</dds>

3.2 XML Syntax and Validation

The XML configuration file must follow these syntax rules:

33

3.3 XML Tags for Configuring Queuing Service

34

l The syntax is XML; the character encoding is UTF-8.

l Opening tags are enclosed in <>; closing tags are enclosed in </>.

l A tag value is a UTF-8 encoded string. Legal values are alphanumeric characters. Queuing Service's
parser will remove all leading and trailing spaces from the string before it is processed. For example,
" <tag> value </tag>" is the same as "<tag>value</tag>".

l All values are case-sensitive unless otherwise stated.

l Comments are enclosed as follows: <!-- comment -->.

l The root tag of the configuration file must be <dds> and end with </dds>.

Queuing Service provides an XSD file that describes the format of the XML content. We recommend
including a reference to this file in the XML file that contains the Queuing Service configuration—this
provides helpful features in code editors such as Visual Studio and Eclipse, including validation and auto-
completion while you are editing the XML file.

The XSD definition of the XML elements is in <NDDSHOME>/resource/schema/rti_queuing_ser-
vice.xsd.

To include a reference to the XSD document in your XML file, use the attribute xsi:noNamespaceS-
chemaLocation in the <dds> tag. For example:
<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation=
"<Queuing Service installation directory>/resource/schema/rti_queuing_service.xsd">
...
</dds>

3.3 XML Tags for Configuring Queuing Service

This section describes the XML tags you can use in a Queuing Service configuration file. The following
diagram and Table 3.1 Top-Level Tags in the Configuration File describe the top-level tags allowed within
the root <dds> tag.

3.3.1 Configuring Queuing Service Types

See Chapter 18 in the RTI Connext DDS Core Librar-
ies User’s Manual

See 3.3.1 Configuring Queuing Service Types below

See Chapter 3 Configuring Queuing Service on
page 31

Tags
within
<dds>

Description Number of
Tags Allowed

<queuing_ser-
vice>

Specifies aQueuing Service configuration. See 3.3 XML Tags for Configuring Queuing Service on the pre-
viouspage.

1 ormore

(required)

<qos_library>

Specifies a QoS library and profiles.

The contents of this tag are specified in the same manner as for a Connext DDSQoS profile file. See
Chapter 15 in the RTI Connext DDSCore LibrariesUser’sManual.

0 ormore

<types>
Defines types that can be used byQueuing Service. See 3.3 XML Tags for Configuring Queuing Service
on the previouspage.

0 or 1

Table 3.1 Top-Level Tags in the Configuration File

3.3.1 Configuring Queuing Service Types

Queuing Service allows users to provide type definitions for a SharedReaderQueue using two different
mechanisms:

l Type definition in the XML configuration file

l Type discovery

To define and use a type in your XML configuration file:

1. Define your type within the <types> tag. (This is one of the top-level tags, see 3.3.1 Configuring
Queuing Service Types.)

35

3.3.1 Configuring Queuing Service Types

36

2. Refer to it using its fully qualified name in the SharedReaderQueues that will use it.

For example:
<?xml version="1.0"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">

<types>
<struct name="Foo">

<member type="string" stringMaxLength="255" name="message"/>
</struct>

<struct name="Bar">
<member type="string" stringMaxLength="255" name="message"/>

</struct>
</types>

<queuing_service name="QueuingService_1">
...
<domain_participant name="DomainParticipant_1">

<domain_id>57</domain_id>

<shared_subscriber name="SharedSubscriber_1">
<session_settings>

<session name="Session_1" />
</session_settings>

<dead_letter_shared_reader_queue name="DeadLetter_1"
session="Session_1">

<topic_name>DeadLetter</topic_name>
</dead_letter_shared_reader_queue>

<shared_reader_queue session="Session_1"
dead_letter_queue="DeadLetter_1">

<topic_name>HelloWorld</topic_name>
<type_name>Foo</type_name>
<reply_type>Bar</reply_type>
...

</shared_reader_queue>
</shared_subscriber>

</domain_participant>
</queuing_service>

</dds>

When types are defined in XML, Queuing Service is registering them with the underlying DDS
DomainParticipant using as the registration name the fully qualified name of the type under the <type>
tag.

If you refer to types that are not defined in the configuration file, Queuing Service has to discover the type
representation (e.g., a typeobject). A SharedReaderQueue cannot be instantiated without the type rep-
resentation information.

3.3.2 Configuring Queuing Service

3.3.2 Configuring Queuing Service

A configuration file must have at least one <queuing_service> tag, which is used to configure an exe-
cution of Queuing Service. A configuration file may contain multiple <queuing_service> tags.

When you start Queuing Service, you can specify which <queuing_service> tag to use to configure the
service using the -cfgName command-line parameter.

For example:
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">

...
<queuing_service name="QueuingService_1">

...
</queuing_service>
...
<queuing_service name="QueuingService_2">

...
</queuing_service>

</dds>

Starting Queuing Service with the following command will use the <queuing_service> tag with the name
QueuingService_1:
Queuingservice -cfgFile example.xml -cfgName QueuingService_1

Because a configuration file may contain multiple <queuing_service> tags, one file can be used to con-
figure multiple Queuing Service executions.

Table 3.2 Queuing Service Tags describes the tags allowed within a <queuing_service> tag. Notice that
the <domain_participant> tag is required.

37

3.3.2 Configuring Queuing Service

38

Tags within
<queuing_
service>

Description
Number of
Tags
Allowed

<administration>
Enables and configures remote administration. See 3.3.2 Configuring Queuing Service on the previous
page and Chapter 5 Administering Queuing Service from aRemote Location on page 68.

0 or 1

<domain_par-
ticipant>

For each <domain_participant> tag,Queuing Service creates one DomainParticipant to communicate
overDDS.

SharedSubscribers are defined within a <domain_participant>.

See 3.3.2 Configuring Queuing Service on the previouspage.

1 ormore

(required)

<monitoring>
Enables and configures general remote Pub/Sub monitoring.

See 3.3.2 Configuring Queuing Service on the previouspage.
0 or 1

<persistence_set-
tings>

Configures the storage settings that are used to persist the service state as well as the SharedRead-
erQueues samples. See 3.3.2 Configuring Queuing Service on the previouspage. 0 or 1

Table 3.2 Queuing Service Tags

3.3.3 Configuring Administration

Tags within
<queuing_
service>

Description
Number of
Tags
Allowed

<replication_set-
tings>

Configures the default settings for the replication protocol for SharedReaderQueues and configuration.

These settings can be overridden by the settings under:

l <shared_reader_queue_replication> under<service_qos>

l <configuration_replication> under<service_qos>

l <replication> under<queue_qos>

Important: Using this tag does not enable replication. To enable replication, set:

l <shared_reader_queue_replication> under<service_qos> or<replication> under<queue_
qos> for SharedReaderQueues

l <configuration_replication> under<service_qos> for configuration

See Chapter 7 High Availability on page 81.

0 or 1

<service_qos> Configures the QoS for the service. See 3.3.2 Configuring Queuing Service 0 or 1

<statistics>
Configures the statistics-gathering process for publish-subscribe and request-reply monitoring. See 3.3.2
Configuring Queuing Service on page 37.

0 or 1

Table 3.2 Queuing Service Tags

3.3.3 Configuring Administration

You can create a Connext DDS application that can remotely control Queuing Service. The <admin-
istration> tag is used to enable remote administration and configure its behavior.

By default, remote administration is turned off in Queuing Service for security reasons. A remote admin-
istration section is not required in the configuration file.

For example:
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">
<queuing_service name="QueuingService_1">

<administration>
<domain_id>55</domain_id>

</administration>
...

</queuing_service>
</dds>

39

3.3.3.1 Configuring Memory Management for a CommandReply Buffer

40

Tags within
<service_qos> Description

Number of
Tags
Allowed

<configuration_
replication>

Enables configuration replication. See Chapter 7 High Availability on page 81. 0 or 1

<persistence>

Configures whether or not the service state must be persisted on disk. In addition, when the state is per-
sisted, you can select whether or not to restore it when the service is restarted.

Example:

<persistence>
<kind>PERSISTENT</kind>
<restore>true</restore>

</persistence>

There are two values for the kind:

l VOLATILE: Do not persist service state

l PERSISTENT: Persist service state

Note: If this policy’s kind is configured as VOLATILE and there are changes to the configuration as a result
of running remote administration commands when the service is restarted, these changes will be lost.

See 2.13Queuing Service Persistencyon page 20.

Defaults:

kind: VOLATILE

restore: true

0 or 1

<shared_reader_
queue_rep-
lication>

Enables SharedReaderQueue replication. See Chapter 7 High Availability on page 81. 0 or 1

Table 3.3 Service QoS Tags

When remote administration is enabled, Queuing Service will create a DomainParticipant, Publisher, Sub-
scriber, DataWriter, and DataReader. These entities are used to receive commands and send responses.
You can configure these entities with QoS tags within the <administration> tag.

Table 3.4 Remote Administration Tags lists the tags allowed within <administration> tag. Notice that the
<domain_id> tag is required.

For more details, please see Chapter 5 Administering Queuing Service from a Remote Location on
page 68.

Note: The command-line options used to configure remote administration take precedence over the XML
configuration.

3.3.3.1 Configuring Memory Management for a CommandReply Buffer

The <memory_management> tag under <administration> controls how Queuing Service allocates
memory for the string_body or octet_body buffer in a CommandReply.

3.3.3.1 Configuring Memory Management for a CommandReply Buffer

For example:
<memory_management>

<sample_buffer_min_size>16000</sample_buffer_min_size>
<sample_buffer_trim_to_size>true</sample_buffer_trim_to_size>

</memory_management>

Tags within
<administration> Description Number of Tags

Allowed

<datareader_qos>

Configures the DataReader QoS for remote administration.

If the tag is not defined,Queuing Service will use the Connext DDS defaults with the following
changes:

reliability.kind =DDS_RELIABLE_RELIABILITY_QOS (this value cannot be changed)

history.kind =DDS_KEEP_ALL_HISTORY_QOS

resource_limits.max_samples = 32

0 or 1

<datawriter_qos>

Configures the DataWriter QoS for remote administration.

If the tag is not defined,Queuing Servicewill use the Connext DDS defaults with the following
changes:

history.kind =DDS_KEEP_ALL_HISTORY_QOS

resource_limits.max_samples = 32

0 or 1

<distributed_logger>
ConfiguresRTI Distributed Logger. See 3.5 Enabling RTI Distributed Logger in Queuing Ser-
vice on page 61.

0 or 1

<domain_id> Specifies which domain IDQueuing Servicewill use to enable remote administration. 1 (required)

<memory_man-
agement>

Controls howQueuing Service allocates memory for the string_body oroctet_body buffer in a
CommandReply.

See 3.3.3.1 ConfiguringMemoryManagement for a CommandReplyBuffer on the previous
page.

0 or 1

<participant_qos>
Configures the DomainParticipantQoS for remote administration. If the tag is not defined,
Queuing Servicewill use the Connext DDS defaults.

0 or 1

<publisher_qos>
Configures the Publisher QoS for remote administration. If the tag is not defined,Queuing Ser-
vice will use the Connext DDS defaults.

0 or 1

<subscriber_qos>
Configures the Subscriber QoS for remote administration. If the tag is not defined,Queuing Ser-
vice will use the Connext DDS defaults.

0 or 1

Table 3.4 Remote Administration Tags

l sample_buffer_min_size: If the size required for the buffer of a CommandReply is smaller or equal
to this value, Queuing Service will use a pre-allocated buffer. The size of this buffer is equal to this
value.

If the size required for the buffer of a CommandReply is greater than this value, Queuing Service
will allocate the buffer from the heap dynamically upon reply generation.

41

3.3.4 Configuring Monitoring

42

l sample_buffer_trim_to_size: This value controls what to do with the CommandReply buffer that is
dynamically allocated. When true, the buffer will be released when the corresponding reply is sent.
When false, the buffer is retained for future responses. It may be released later on, but only to be
replaced by a larger buffer.

Ranges:

l sample_buffer_min_size: -1 (2 GB, the maximum size of a CommandReply) or a positive number.

l sample_buffer_trim_to_size: true or false

Defaults:

l sample_buffer_min_size: 32768

l sample_buffer_trim_to_size: false

3.3.4 Configuring Monitoring

With Queuing Service, you can monitor the status of the service and its SharedReaderQueues using
request-reply or publish-subscribe communication patterns.

Request-reply monitoring is done by issuing remote administration commands that retrieve the status of the
different entities in the service. See Chapter 5 Administering Queuing Service from a Remote Location on
page 68.

publish-subscribe monitoring is done by subscribing to the monitoring topics. See Chapter 6 Publish-Sub-
scribe Monitoring of Queuing Service from a Remote Location on page 79.

To enable Request/Reply monitoring and configure its behavior, use the <administration> tag under
<queuing_service> (See 3.3.4 Configuring Monitoring above).

To enable Pub/Sub monitoring and configure its behavior, use the <monitoring> tag under <queuing_ser-
vice> (See 3.3.4.2 Configuring Publish-Subscribe Monitoring on the facing page).

By default, both, remote publish-subscribe monitoring and request-reply monitoring are turned off in
Queuing Service for security and performance reasons. A <monitoring> or <administration> section is
not required in the configuration file.

For example:
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">
<queuing_service name="QueuingService_1">

<administration>
<domain_id>55</domain_id>

</administration>
<monitoring>

3.3.4.1 Configuring Request-Reply Monitoring

<domain_id>55</domain_id>
</monitoring>
...

</queuing_service>
</dds>

There are two kinds of monitoring data for en entity (for example, a SharedReaderQueue):

l Entity data

l Entity status

Entity data provides information about the configuration of the entity. For example, the service data con-
tains a list of the SharedReaderQueues contained in the service. Entity data information is updated every
time there is a configuration change that affects that data.

Entity status provides information about the operational status of an entity. This kind of information
changes continuously and is computed and published periodically. For example, the SharedReaderQueue
status contains information such as the SharedReaderQueue's latency and throughput.

The following table shows the monitoring information available with publish-subscribe and request-reply
monitoring:

Publish-Subscribe Request-Reply

ServiceData No Yes

SharedReaderQueueData No Yes

SharedReaderQueueStatus Yes Yes

For more information on how to retrieve the monitoring data, see Chapter 5 Administering Queuing Ser-
vice from a Remote Location on page 68 and Chapter 6 Publish-Subscribe Monitoring of Queuing Service
from a Remote Location on page 79.

3.3.4.1 Configuring Request-Reply Monitoring

See 3.3.4 Configuring Monitoring on the previous page.

3.3.4.2 Configuring Publish-Subscribe Monitoring

When publish-subscribe remote monitoring is enabled, Queuing Service will create one DomainPar-
ticipant, one Publisher, and one DataWriter to publish SharedReaderQueue status. You can configure the
QoS of these entities with the <monitoring> tag defined under <queuing_service>.

43

3.3.4.2.1 Publish-Subscribe Monitoring Configuration Inheritance

44

Tags within
<monitoring> Description

Number of
Tags
Allowed

<enabled>

Enables/disables publish-subscribe monitoring for theQueuing Service instance.

Setting this value to true (default value) in the <monitoring> tag under <queuing_service> enables monitoring
in all the entities unless they explicitly disable it by setting this tag to false in their local <entity_monitoring>
tags.

Setting this tag to false in the <monitoring> tag under <queuing_service> disables monitoring in all the
Queuing Service entities. In this case, anymonitoring configuration settings in the entities are ignored.

Default value: true

0 or 1

<datawriter_
qos>

Configures the DataWriter QoS for remote monitoring.

If the tag is not defined,Queuing Service will use the Connext DDS defaults with this change:

durability.kind = DDS_TRANSIENT_LOCAL_DURABILITY_QOS

0 or 1

<domain_id> Specifies which domain IDQueuing Servicewill use to enable remote monitoring. 1 (required)

<participant_
qos>

Configures the DomainParticipantQoS for remote monitoring.

If the tag is not defined,Queuing Servicewill use the Connext DDS defaults with this change:

resource_limits.type_code_max_serialized_length = 4096

0 or 1

<publisher_qos>
Configures the Publisher QoS for remote monitoring.

If the tag is not defined,Queuing Servicewill use the Connext DDS defaults.
0 or 1

<status_pub-
lication_period>

Specifies the frequency at which the status of an entity is published. For example:

<status_publication_period>
<sec>3</sec>
<nanosec>0</nanosec>

</status_publication_period>

If the tag is not defined, the period is 5 seconds.

The status publication period defined in <queuing_service>/<monitoring> is inherited by all the monitorable
entities within <queuing_service>.

An entity can override the period.

0 or 1

Table 3.5 Monitoring Tags

3.3.4.2.1 Publish-Subscribe Monitoring Configuration Inheritance

The <status_publication_period> defined under <queuing_service>/<monitoring> is inherited by all
the monitorable entities. An entity can override this value using the <entity_monitoring> tag.

For example, this how a SharedReaderQueue would override the status publication period:
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">
<queuing_service name="QueuingService_1">

...
<monitoring>

<domain_id>55</domain_id>

3.3.4.3 Configuring Statistics Calculation Process

<status_publication_period>
<sec>5</sec>
<nanosec>0</nanosec>

</status_publication_period>
</monitoring>
<domain_participant name="DomainParticipant_1">

...
<shared_subscriber name="SharedSubscriber_1">

...
<shared_reader_queue

name="SharedReaderQueue_1"
session="Session_1">
...
<entity_monitoring>

<enabled>true</enabled>
<status_publication_period>

<sec>3</sec>
<nanosec>0</nanosec>

</status_publication_period>
</entity_monitoring>

</shared_reader_queue>
</shared_subscriber>

</domain_participant>
</queuing_service>

</dds>

In the above example, the SharedReaderQueue overrides the status publication period, setting it to 3
seconds.

Tags within <entity_
monitoring> Description Number of Tags

Allowed

<enabled>

Enables/disables remote publish-subscribe monitoring for a given entity. If generalmon-
itoring is disabled, this value is ignored.

Default value: true

0 or 1

<status_publication_period>

Specifies the frequency at which the status of an entity is published. For example:

<status_publication_period>
<sec>3</sec>
<nanosec>0</nanosec>

</status_publication_period>

If the tag is not defined, its value is inherited from the generalmonitoring settings.

0 or 1

Table 3.6 Entity Monitoring Tags

3.3.4.3 Configuring Statistics Calculation Process

Queuing Service reports multiple statistics as part of the entity status. Some of these statistics are counters,
such as the number of samples received by a SharedReaderQueue; other statistics are statistics variables,
such as the number of samples enqueued per second in a SharedReaderQueue.

45

3.3.4.3 Configuring Statistics Calculation Process

46

struct SharedReaderQueueStatus {
...
unsigned long long received_message_count;
...
StatisticVariable enqueue_throughput;
...

};

For a given statistic variable, Queuing Service computes the metrics in StatisticMetrics during specified
time frames.
struct StatisticMetrics {

unsigned long long period_ms;
long long count;
float mean;
float minimum;
float maximum;
float std_dev;

};

struct StatisticVariable {
StatisticMetric publication_period_metrics;
sequence<StatisticMetrics, MAX_HISTORICAL_METRICS> historical_metrics;

};

The count is the sum of all values received during the time frame. For example, in the case of enqueue_
throughput, count is the number of samples enqueued during the time frame.

Queuing Service always calculates the statistics corresponding to the time between two status publications
(publication_period_metrics field) independently of whether or not publish-subscribe monitoring is
enabled. This time is configured using the tag <status_publication_period> under <monitoring> or
<entity_monitoring> (3.3.4.2 Configuring Publish-Subscribe Monitoring on page 43).

You can also select additional windows on a per-entity basis using the tag <historical_statistics> under
<statistics> (see 3.3.4.3.1 Statistics Calculation on the facing page). The sequence historical_metrics in
StatisticVariable contains values corresponding to the windows that have been enabled:

l 5-sec. metrics correspond to activity in the last five seconds.

l 1-min. metrics correspond to activity in the last minute.?

l 5-min. metrics correspond to activity in the last five minutes.

l 1-hour metrics correspond to activity in the last hour.

l Up-time metrics correspond to activity since the entity was created.

Each window has a field called period_ms that identifies its size in milliseconds. For the publication_
period_metrics, this field contains the <status_publication_period>. For the up-time metrics, this field
contains the time since the entity was created. For the other windows, this field contains a fixed value that
identifies the window size (5000 for the 5-second window, 60000 for the one-minute window, etc).

3.3.4.3.1 Statistics Calculation

3.3.4.3.1 Statistics Calculation

The accuracy of the statistics calculation process is determined by the value of the statistics sampling
period. This period specifies how often statistics are gathered and is configured on a per entity basis using
the tag <statistics_sampling_period> under <statistics>.

As a general rule, the statistics_sampling_period of an entity must be smaller than its status_pub-
lication_period for publish-subscribe monitoring and the request period for request-reply monitoring. A
small statistics_sampling_period provides more accurate statistics at expense of increasing the memory
consumption and decreasing performance.

The statistics calculation process is configured using the tags <statistics> under <queuing_service> and
<shared_reader_queue>.

3.3.5 Configuring Persistence Settings

The <persistence_settings> tag configures the store settings that are used to persist the service state and the
SharedReaderQueues’s states (see 2.13 Queuing Service Persistency on page 20).

3.3.5 Configuring Persistence Settings lists the tags that you can specify in <persistence_settings>.

3.3.6 Configuring DomainParticipants

For each <domain_participant> tag, Queuing Service creates one DomainParticipant to communicate
over DDS.

Table 3.10 DomainParticipant Tags lists the tags allowed within <domain_participant>.

47

3.3.6 Configuring DomainParticipants

48

Tags within
<statistics> Description Number of

Allowed Tags

<historical_stat-
istics>

Enables or disables the statistic calculation within fixed time windows.

By default,Queuing Service only publishes the statistics corresponding to the window between two status
publications. By using this tag, you can get the following additional windows:

l 5 seconds

l 1 minute

l 5 minutes

l 1 hour

l Up time (since the entity was enabled)

For example:

<historical_statistics>
<five_second>true</five_second>
<one_minute>true</one_minute>
<five_minute>false</five_minute>
<one_hour>true</one_hour>
<up_time>false</up_time>

</historical_statistics>

If a window is not present (inside <historical_statistics>), it is considered disabled.

Historical statistics can be overridden on a per entity basis.

0 or 1

<statistics_
sampling_
period>

Specifies the frequency at which statistics variables (such as throughput and latency) are updated.

For example:

<statistics_sampling_period>
<sec>1</sec>
<nanosec>0</nanosec>

</statistics_sampling_period>

If the tag is not defined, the period is 1 second.

The statistic sampling period defined in <queuing_service> is inherited by all the entities inside <queuing_
service>.

An entity can override the period.

0 or 1

Table 3.7 Statistics Tags

Tags within
<persistence_settings> Description Number of Tags

Allowed

<filesystem>
Configures the file systemsettings used to persist the service state and the SharedRead-
erQueues' states. See Table 3.9 Filesystem Tags. 0 or 1

Table 3.8 Persistence Setting Tags

3.3.6 Configuring DomainParticipants

Tags within
<filesystem> Description

Number of
Tags
Allowed

<directory>

Specifies the directory of the files in which the service state and the SharedReaderQueues' states will be
persisted.

This directory can also be provided by, and is overridden by, the
-persistentStoragePath command-line option.

The directory must exist; otherwise the service will report an error upon start up.

Default: Value provided with -persistentStoragePath or the current working directory if the command-line
option is not provided.

0 or 1

<file_max_size>

This tag configures the maximumsize (in KB) of the files storing the SharedReaderQueue data (both
metadata and user data).Queuing Servicewill create a new file when this size is exceeded.

Default: 1000 KB

Note: This tag only applies to PERSISTENTSharedReaderQueues created with <in_memory_state> set to
true (see 3.3.6 Configuring DomainParticipants on page 47).

0 or 1

<file_prefix>

Specifies a name prefix associated with all the files created byQueuing Service.

This prefix can also be provided by, and is overridden by, the -persistentFilePrefix command-line option.

Default: Value provided with -persistentFilePrefix or 'QS' if the command-line option is not provided

0 or 1

<journal_mode>

Sets the journalmode of the persistent storage. This tag can take these values:

l DELETE: Deletes the rollback journal at the conclusion of each transaction.

l MEMORY: Stores the rollback journal in volatile RAM. This saves disk I/O.

l OFF: Completely disables the rollback journal. If the application crashes in the middle of a trans-
action when the journalmode is set to OFF, the files containing the samples will very likely be cor-
rupted.

l PERSIST: Prevents the rollback journal frombeing deleted at the end of each transaction.
Instead, the header of the journal is overridden with zeros.

l TRUNCATE: Commits transactions by truncating the rollback journal to zero-length instead of delet-
ing it.

l WAL: Uses a write-ahead log instead of a rollback journal to implement transactions.

Default: DELETE

Note: This does not apply to PERSISTENTSharedReaderQueues created with <in_memory_state> set to
true (see 3.3.6 Configuring DomainParticipants on page 47).

0 or 1

<synchronization>

Determines the level of synchronization with the physical disk. This tag can take three values:

l FULL: Every sample is written to physical disk asQueuing Service receives it.

l NORMAL: Samples are written to disk at criticalmoments.

l OFF: No synchronization is enforced. Data will be written to physical disk when the OS flushes its
buffers.

Default: OFF

0 or 1

Table 3.9 Filesystem Tags

49

3.3.6.1 Configuring Memory Management for Sample Buffers

50

Tags within
<filesystem> Description

Number of
Tags
Allowed

<trace_file>

Specifies the name of the trace file for debugging purposes. The trace file contains information about all
SQL statements executed by the persistence service.

Default: No trace file is generated

Note: This does not apply to PERSISTENTSharedReaderQueues created with <in_memory_state> set to
true (see 3.3.6 Configuring DomainParticipants on page 47).

0 or 1

<vacuum>

Sets the auto-vacuumstatus of the storage. This tag can take these values:

l NONE: When data is deleted from the storage files, the files remain the same size.

l FULL: The storage files are compacted every transaction.

Default: FULL

Note: This does not apply to PERSISTENTSharedReaderQueues created with <in_memory_state> set to
true (see 3.3.6 Configuring DomainParticipants on page 47).

0 or 1

Table 3.9 Filesystem Tags

Tags within <domain_
participant> Description

Number of
Tags
Allowed

<domain_id> Specifies the domain ID associated with the DomainParticipant 1 (required)

<memory_management>
Controls how to allocate the memory for a sample buffer.

For details, see 3.3.6.1 ConfiguringMemoryManagement for Sample Buffers below.
0 or 1

<participant_qos>
Configures the DomainParticipantQoS. If the tag is not defined,Queuing Servicewill use the
Connext DDS defaults.

0 or 1

<shared_subscriber> Configures a SharedSubscriber. See 3.3.6 Configuring DomainParticipants on page 47.
1 ormore

(required)

Table 3.10 DomainParticipant Tags

3.3.6.1 Configuring Memory Management for Sample Buffers

For every sample in a SharedReaderQueue, Queuing Service uses a buffer to store the content of the
sample in serialized form with CDR representation. The <memory_management> tag controls how to
allocate the memory for a sample buffer.

For example:
<memory_management>

<sample_buffer_min_size>16000</sample_buffer_min_size>

3.3.7 Configuring SharedSubscribers

<sample_buffer_trim_to_size> true</sample_buffer_trim_to_size>
</memory_management>

l sample_buffer_min_size: If the serialized size of an incoming sample is smaller or equal to this
value, Queuing Service will use a pre-allocated buffer (with size equal to this value) from a pool to
hold the sample.

The initial and maximum number of buffers in the pool as well as the pool's growth policy is con-
figured using the XML tag <resource_limits> under <shared_reader_queue>/<queue_qos>.

When the serialized size of the incoming sample is greater than this value, Queuing Service will
allocate the buffer from the heap dynamically upon sample reception.

l sample_buffer_trim_to_size: This value controls what to do with the buffers that are dynamically
allocated. When true, the buffers will be released when the corresponding samples are remove from
the SharedReaderQueues. When false, the buffers are kept around for future samples. They maybe
released later on but only to be replaced by bigger buffers.

Ranges:

l sample_buffer_min_size: -1 (In a SharedReaderQueue is the maximum serialized size of its
samples) or positive number.

l sample_buffer_trim_to_size: true or false

Defaults:

l sample_buffer_min_size: 256

l sample_buffer_trim_to_size: true

Notice that setting a positive value for sample_buffer_min_size is critical when a data type has a very
high maximum serialized size (e.g., megabytes) but most of the samples sent are much smaller than the
maximum possible size (e.g., kilobytes). In this case, the memory footprint is reduced dramatically, while
still correctly handling the rare cases in which very large samples are published.

3.3.7 Configuring SharedSubscribers

SharedSubscribers are containers that host SharedReaderQueues, allowing remote QueueConsumers to
attach to the shared queues and providing “exactly once” or “at-most once” access to the samples in the
shared queues.

With these access modes, when one QueueConsumer gets a message, the other QueueConsumers attached
to the same SharedReaderQueue do not get that message. A SharedSubscriber can host one or more
SharedReaderQueues, each one associated with a different DDS Topic name.

Table 3.11 SharedSubscriber Tags lists the tags allowed within <shared_subscriber>.

51

3.3.8 Configuring Session Settings

52

Tags within <shared_
subscriber> Description Number of Tags

Allowed

<dead_letter_shared_reader_
queue>

Configures the DeadLetterSharedReaderQueue for a SharedSubscriber.

You can define one dead-letter queue per SharedSubscriber.

See 2.11 Dead-Letter Queueson page 18.

0 or 1

<publisher_qos>
Sets the QoS associated with the session DDS Publishers. There is one Pub-
lisher per session.

0 or 1

<session_settings>

Configures the sessions for the SharedReaderQueues defined in the
SharedSubscriber.

A session defines a threaded context for a SharedReaderQueue.

See 3.3.7 Configuring SharedSubscribers on the previouspage

1 (required)

<shared_reader_queue>
Configures a SharedReaderQueue in a SharedSubscriber.

See 3.3.7 Configuring SharedSubscribers on the previouspage.
0 ormore

<subscriber_qos>
Sets the QoS associated with the session DDS Subscribers. There is one Sub-
scriber per session.

0 or 1

Table 3.11 SharedSubscriber Tags

3.3.8 Configuring Session Settings

Table 3.12 Session Settings Tags lists the only tag allowed within <session_settings>.

Tags within <session_settings> Description Number of Tags Allowed

<session>
A session defines a threaded context for a SharedReaderQueue.

See 3.3.8 Configuring Session Settingsabove
1 ormore
(required)

Table 3.12 Session Settings Tags

3.3.9 Configuring SharedSubscribers Sessions

A session defines a threaded context for a SharedReaderQueue. SharedReaderQueues in different sessions
can be processed in parallel. Sessions are part of SharedSubscribers.

For each Session defined within the tag <session_settings>, Queuing Service will create the following ele-
ments:

l Two threads: one for storing samples into SharedReaderQueues, and one to distribute samples from
the SharedReaderQueues to QueueConsumers.

l One DDS Publisher

l One DDS Subscriber

3.3.9 Configuring SharedSubscribers Sessions

The QoS of the Publisher and Subscriber are configured using the tags <publisher_qos> and <sub-
scriber_qos> under <shared_subscriber>.

Table 3.13 Session Tags lists the tags allowed within <session>.

SharedReaderQueues and DeadLetterSharedReaderQueues can be associated with a session by using the
XML attribute session in <shared_reader_queue> and <dead_letter_shared_reader_queue>, respect-
ively.

Tags
within

<session>
Description

Number
of Tags
Allowed

<dequeue_
period>

Configures the period at whichQueuing Service retries sending samples that have not been delivered to a
QueueConsumer upon reception.

This can happen when the available QueueConsumers cannot accept the samples or if there are no QueueCon-
sumers in the system for a SharedReaderQueue.

Example:

<session>
<thread>

<dequeue_period>
<sec>1</sec>
<nanosec>0</nanosec>

</dequeue_period>
</thread>

</session>

Default: 10 msec

0 or 1

<monitoring>
Enables and configures remote Pub/Sub monitoring for the SharedReaderQueue. See 3.3.9 Configuring
SharedSubscribersSessionson the previouspage and Chapter 6 Publish-SubscribeMonitoring of Queuing Ser-
vice from aRemote Location on page 79.

0 or 1

<replication> Enables SharedReaderQueue replication. See Chapter 7 High Availability on page 81. 0 or 1

<statistics>

Configures the statistic gathering process for publish-subscribe or request-reply monitoring of the SharedRead-
erQueue.

See 3.3.9 Configuring SharedSubscribersSessionson the previouspage.
0 or 1

Table 3.13 Session Tags

53

3.3.10 Configuring SharedReaderQueues

54

Tags
within

<session>
Description

Number
of Tags
Allowed

<thread>

Sets the mask, priority and stack size of the threads associated with this session.

Example:

<session>
<thread>

<mask>MASK_DEFAULT</mask>
<priority>

THREAD_PRIORITY_DEFAULT
</priority>
<stack_size>

THREAD_STACK_SIZE_DEFAULT
</stack_size>

</thread>
</session>

Defaults:

l mask = MASK_DEFAULT

l priority = THREAD_PRIORITY_DEFAULT

l stack_size = THREAD_STACK_SIZE_DEFAULT

0 or 1

Table 3.13 Session Tags

3.3.10 Configuring SharedReaderQueues

A SharedReaderQueue is a logical DataReader queue hosted inside a SharedSubscriber that provides
“exactly once” or “at-most once” access to the Consumers attached to the SharedReaderQueue. It is asso-
ciated with a Topic and the name of the SharedReaderQueue is derived from the name of the Topic and
the SharedSubscriber that hosts it. Implementation-wise, a SharedReaderQueue is composed of an input
(DDS DataReader) and output (DDS DataWriter) pair that, together with a queue storage, implement the
queuing behavior for a Topic.

The input DataReader is matched to the DataWriters associated with the QueueProducers and the output
DataWriter is matched to the DataReaders associated with the QueueConsumers. The processing logic
ensures that each sample in the SharedReaderQueue is delivered to only one of the QueueConsumers.

l Table 3.14 SharedReaderQueue Tags and Table 3.15 Queue QoS Tags describe the tags allowed
within <shared_reader_queue>.

l Table 3.16 <shared_reader_queue> Attributes describes the attributes you may set for <shared_
reader_queue>.

3.3.10 Configuring SharedReaderQueues

Tags within
<shared_

reader_queue>
Description

Number
of Tags
Allowed

<datareader_qos>

Configures the QoS for the SharedReaderQueue DataReader.

If the tag is not defined,Queuing Servicewill use the Connext DDS defaults with the following changes:

l reliability.kind =DDS_RELIABLE_RELIABILITY_QOS
(this value cannot be changed)

l reliability.acknowledgment_kind = APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE

l history.kind =DDS_KEEP_ALL_HISTORY_QOS
(this value cannot be changed)

l reader_resource_limits.max_app_ack_response_length = 1

l subscription_name.role_name =QUEUING_SERVICE

l service.kind =QUEUING_SERVICE_QOS
(this value cannot be changed)

0 or 1

<datawriter_qos>

Configures the QoS for the SharedReaderQueue DataWriter.

If the tag is not defined,Queuing Servicewill use the Connext DDS defaults with the following changes:

l reliability.kind =DDS_RELIABLE_RELIABILITY_QOS
(this value cannot be changed)

l reliability.acknowledgment_kind =
APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE (this value cannot be changed)

l history.kind =DDS_KEEP_ALL_HISTORY_QOS
(this value cannot be changed)

l service.kind =QUEUING_SERVICE_QOS
(this value cannot be changed)

0 or 1

<queue_qos> Configures the QoS for the SharedReaderQueue. See Table 3.15QueueQoSTags. 0 or 1

<reply_topic>

The topic name for the implicit Reply SharedReaderQueue created by setting <reply_type>.

This tag is ignored if <reply_type> is not set.

Default: <topic_name>Reply

0 or 1

<reply_type>

The name of the type associated with a Reply SharedReaderQueue.

When it comes to the creation of a Reply SharedReaderQueue, you have two options:

l Declare the queue explicitly in the configuration file.

l Declare the queue implicitly through the usage of <reply_type>. In this case, the configuration of the
Reply SharedReaderQueue matches the configuration of the SharedReaderQueue containing
<reply_type>.

See 2.10 Sending a Reply fromQueueConsumer to QueueProducer on page 15.

0 or 1

Table 3.14 SharedReaderQueue Tags

55

3.3.10 Configuring SharedReaderQueues

56

Tags within
<shared_

reader_queue>
Description

Number
of Tags
Allowed

<topic_name>

The name of the Topicassociated with the SharedReaderQueue.

QueueProducers will publish on this Topic. QueueConsumers will subscribe to a Topicwith name “<topic_
name>@SharedSubscriberName”where SharedSubscriberName is the name of the SharedSubscriber con-
taining the SharedReaderQueue.

See 2.5 Queuing Service Entities on page 8.

1

(required)

<type_name>
The name of the type associated with the ShareReaderQueue.

See 3.3.10 Configuring SharedReaderQueueson page 54.

1

(required)

<update_
datareader_qos>

Configures the QoS of the DataReader used to receive the status information required by the SharedRead-
erQueue replication protocol.

If the tag is not defined,Queuing Servicewill use the Connext DDS defaults with the following changes:

l reliability.kind =DDS_RELIABLE_RELIABILITY_QOS (this value cannot be changed)

l history.kind =DDS_KEEP_ALL_HISTORY_QOS (this value cannot be changed)

0 or 1

<update_
datawriter_qos>

Configures the QoS of the DataWriter used to publish the status information required by the SharedRead-
erQueue replication protocol.

If the tag is not defined,Queuing Servicewill use the Connext DDS defaults with the following changes:

l reliability.kind =DDS_RELIABLE_RELIABILITY_QOS (this value cannot be changed)

l history.kind =DDS_KEEP_ALL_HISTORY_QOS (this value cannot be changed)

0 or 1

Table 3.14 SharedReaderQueue Tags

3.3.10 Configuring SharedReaderQueues

Tags
within
<queue_
qos>

Description
Number
of Tags
Allowed

<distribution>

Configures the dispatch policy for the SharedReaderQueue.

Queuing Service uses the dispatch policy to determine which QueueConsumer gets each sample.

In this release,Queuing Service only supports a ROUND_ROBIN dispatch policy, with and without explicit availability
feedback fromQueueConsumers.

You can also configure a SharedReaderQueue so that the last sample in the SharedReaderQueue for a QueueCon-
sumer is marked with the flag DDS_LAST_SHARED_READER_QUEUE_SAMPLE before is sent to the QueueCon-
sumer. The QueueConsumer application can inspect the value of this flag by checking the flag field in SampleInfo.

Example:

<distribution>
<kind>ROUND_ROBIN</kind>
<mark_last_undelivered_sample>

true
</mark_last_undelivered_sample>
<property>

<value>
<element>

<name>UNACKED_THRESHOLD</name>
<value>-1</value>

</element>
</value>
<value>

<element>
<name>ALLOW_CONSUMER_FEEDBACK</name>
<value>1</value>

</element>
</value>

</property>
</distribution>

See 2.9 Selecting aQueueConsumer for a Sample on page 13 formore information regarding the dispatch policy.

Defaults:

l kind: ROUND_ROBIN

l UNACKED_THRESHOLD: -1

l ALLOW_CONSUMER_FEEDBACK: 0

l mark_last_undelivered_sample: false

0 or 1

<lifespan>

Configures how long a sample written by a QueueProducer is kept in the SharedReaderQueue.

Example:

<lifespan>
<duration>

<sec>60</sec>
<nanosec>0</nanosec>

</duration>
</lifespan>

Note: A finite lifespan set on the QueueProducer'sDataWriter using the Lifespan QoS policy takes precedence over
this value.

Default: UNLIMITED (no lifespan)

0 or 1

Table 3.15 Queue QoS Tags

57

3.3.10 Configuring SharedReaderQueues

58

Tags
within
<queue_
qos>

Description
Number
of Tags
Allowed

<persistence>

Configures whether or not the SharedReaderQueue state must be persisted on disk for fault tolerance purposes:

There are two values for this policy:

l VOLATILE: Keep the samples in-memory.

l PERSISTENT: Store the samples into disk.

Example:

<persistence>
<kind>PERSISTENT</kind>

</persistent>

In the case of PERSISTENTSharedReaderQueues, you can choose between two implementations using the XML
tag <in_memory_state>:

l Without In-Memory State: The metadata and user data associated with the SharedReaderQueue's samples
is kept only on disk.

l With In-Memory State: The metadata for the SharedReaderQueue's samples is always kept both on disk and
in memory. The sample's user data is kept in memory and on disk only when:

l Its serialized size is smaller than the threshold set with <domain_participant>/<memory_management>/<sample_buffer_min_size>
(see 2.14.2 Memory Management for a Sample on page 26).

l <domain_participant>/<memory_management>/<sample_buffer_trim_to_size> is false (see 2.14.2 Memory Management for a
Sample on page 26).

Example:
<persistence>

<kind>PERSISTENT</kind>
<in_memory_state>true</in_memory_state>

</persistent>

Default:

l kind: VOLATILE

l in_memory_state: true

See 2.13Queuing Service Persistencyon page 20.

0 or 1

Table 3.15 Queue QoS Tags

3.3.10 Configuring SharedReaderQueues

Tags
within
<queue_
qos>

Description
Number
of Tags
Allowed

<redelivery>

Configures the redelivery policy for the SharedReaderQueue.

Example:

<redelivery>
<max_delivery_retries>

10
</max_delivery_retries>
<response_timeout>

<duration>
<sec>60</sec>
<nanosec>0</nanosec>

</duration>
</response_timeout>

</redelivery>

In the above example:

l <max_delivery_retries> configures the maximumnumber of redelivery attempts for a sample in a
SharedReaderQueue

l <response_timeout> configures the maximum time that Queue Service waits for an acknowledgment from
the QueueConsumer to which the sample was sent to. After that timeout expires, the sample is redelivered to
a different QueueConsumer for<max_delivery_retries>

Defaults:

l Formax_delivery_retries: 0

l For response_timeout:UNLIMITED

0 or 1

<reliability>

Configures the QoS for reliable delivery of samples froma QueueProducer to theQueuing Service.

This release supports only one configuration parameter, which allows you to disable the sending of application-level
acknowledgement messages fromQueuing Service to the QueueProducers after samples are stored into a
SharedReaderQueue.

Example:

<reliability>
<app_ack_sample_to_producer>

false
</app_ack_sample_to_producer>

</reliability>

Default: app_ack_sample_to_producer = true

0 or 1

<resource_lim-
its>

This policy:

l Provides fine-grained control over the resources (memory and disk) associated with the samples in a
SharedReaderQueue.

l Provides a way to configure the behavior of a SharedReaderQueue when a new sample arrives and the
SharedReaderQueue is full.

l Provides ways to monitor when the space taken by the samples in a SharedReaderQueue goes above or
below configurable watermarks and when the SharedReaderQueue fills up.

For default values and additional information, see 2.14 SharedReaderQueueResourceManagement on page 24.

0 or 1

Table 3.15 Queue QoS Tags

59

3.3.11 Configuring DeadLetterSharedReaderQueues

60

Attributes for
<shared_

reader_queue>
Description Required

dead_letter_queue
The name of the Dead-Letter SharedReaderQueue associated with this SharedReaderQueue (See 2.11
Dead-Letter Queueson page 18).

No

name
The name of the SharedReaderQueue. This name is needed to address the queue using remote ad-
ministration (See Chapter 5 Administering Queuing Service from aRemote Location on page 68). If not spe-
cified, the service generates a randomname.

No

session
The name of the session associated with the SharedReaderQueue. See 3.3.10 Configuring SharedRead-
erQueueson page 54 for additional information on sessions.

Yes

Table 3.16 <shared_reader_queue> Attributes

3.3.11 Configuring DeadLetterSharedReaderQueues

Queuing Service provides support for deal-letter queues. A deal-letter queue is a SharedReaderQueue to
which other SharedReaderQueues can send messages that for some reason could not be successfully
delivered and processed.

Queuing Service supports the definition of one deal-letter queue per SharedSubscriber by using the XML
tag <dead_letter_shared_reader_queue>. The deal-letter queue has two limitations compared with a reg-
ular queue:

l It cannot have a <reply_type>.

l It cannot have a <type_name>.

By default, SharedReaderQueues do not send undelivered samples to the deal-letter queue. To enable this
behavior, you must use the attribute dead_letter_queue in <shared_reader_queue>. This attribute must
be set to the name of the deal-letter queue in the configuration file.

For more information, see 2.11 Dead-Letter Queues on page 18.

3.4 Using Variables in XML

The text within an XML tag can refer to a variable. To do so, use the following notation:
$(MY_VARIABLE)

For example:
<element>

<name>The name is $(MY_NAME)</name>
<value>The value is $(MY_VALUE)</value>

3.5 Enabling RTI Distributed Logger in Queuing Service

</element>

When the XML parser parses the above tags, it will replace the references to variables with their actual val-
ues as follows:

1. First, it will try to get the variable value from the command-line. The variable value can be provided
using the -var command-line option (see Table 4.1 RTI Queuing Service Command-Line Options)

2. If the value is not found, the parser will try to get it from the OS environment variables.

3. If the value still cannot be found, the parsing process will fail.

3.5 Enabling RTI Distributed Logger in Queuing Service

Queuing Service provides integrated support for RTI Distributed Logger.When you enable Distributed
Logger, Queuing Service will publish its log messages to Connext DDS.

You can use RTI Monitor to visualize the log message data. Since the data is provided in a topic, you can
also use RTI DDS Spy (rtiddsspy) or even write your own visualization tool.

To enable Distributed Logger, modify the Queuing Service XML configuration file. In the <admin-
istration> section, add the <distributed_logger> tag as seen here:
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">

<queuing_service name="QueuingService_1">
<administration>

...
<distributed_logger>

<enabled>true</enabled>
</distributed_logger>

</administration>
...

</queuing_service>
</dds>

There are more configuration tags that you can use to control Distributed Logger’s behavior. For example,
you can specify a filter so that only certain types of log messages are published. For details, see Chapter 42
Enabling Distributed Logger in RTI Services, in the RTI Connext DDS Core Libraries User's Manual.

61

Chapter 4 Running Queuing Service
Queuing Service runs as a separate application. The script to run the executable is in
<NDDSHOME>/bin. There are four ways to start Queuing Service:

l 4.1 Starting from Launcher below

l 4.2 Starting Manually from the Command Line on the next page

l 4.3 Using Queuing Service as a Windows Service on page 65

If you are starting Queuing Service as a Windows Service, also read 4.3.3 Notes when Running as
a Windows Service on page 66.

4.1 Starting from Launcher

1. Start RTI Launcher from the Start menu (on Windows systems) or on the command line,
type:

<NDDSHOME>/bin/rtilauncher

62

4.2 Starting Manually from the Command Line

63

2. From the Services tab, selectQueuing Service.

4.2 Starting Manually from the Command Line

To start Queuing Service, enter:
cd <NDDSHOME>
bin/rtiqueuingservice [options]

Example:
cd <NDDSHOME>
bin/rtiqueuingservice -cfgFile example.xml -cfgName QueuingService_1

Table 4.1 RTI Queuing Service Command-Line Options describes the command-line options.

Option Description

-appName <name>

Assigns a name to the execution ofQueuing Service.

Remote commands will refer to the queuing service using this name.

In addition, the name ofDomainParticipants created byQueuing Servicewill be based on this name.

Default: The name given with -cfgName, if present, otherwise it isRTI_Queuing_Service.

Table 4.1 RTI Queuing Service Command-Line Options

4.2 Starting Manually from the Command Line

Option Description

-cfgFile <name>

Specifies a configuration file to be loaded.

This parameter is required.

See Section 3.1 How to Load the XML Configuration froma File in theQueuing Service User'sManual.

-cfgName <name>
Specifies a configuration name.Queuing Service will look for a matching <queuing_service> tag in the con-
figuration file.

This parameter is required unless -cfgRemote is used.

-cfgRemote

Specifies that the initial configuration of the service must be obtained remotely fromother running instances.

Using this option also requires the use of -remoteAdministrationDomainId to enable remote administration, be-
cause the initial configuration will be received in the remote administration domain ID.

If you use this option and -cfgName, the service will wait until a configuration with that name is received. Other-
wise, the service will use the first configuration that it receives.

If the service does not receive the initial configuration after a configurable timeout (see -cfgRemoteTimeout), it
will load the configuration from the input configuration file(s).

-cfgRemoteTimeout <n>
Specifies the maximumamount of time, in seconds, thatQueuing Service will wait for an initial configuration when
using -cfgRemote.

Default: 20 seconds

-daemon
RunsQueuing Service as a daemon/Windows service. When this flag is present,Queuing Servicewill start in the
background. Note that some systemsmay require special privileges to do this.

-domainIdBase <ID>

Sets the base domain ID.

This value is added to the domain IDs in the configuration file. For example, if you set –domainIdBase to 50 and
use domainIDs 0 and 1 in the configuration file, thenQueuing Service will use domains 50 and 51.

Default: 0

-heapSnapshotPeriod

Enables heap monitoring.

Queuing Servicewill generate a heap snapshot every <sec>.

Default: heap monitoring is disabled.

-heapSnapshotDir

When heap monitoring is enabled, this parameter configures the directory where the snapshots will be stored. The
snapshot filename format is RTI_<configurationName><processId><index>.log.

Default: current working directory

-help Displays help information.

-re-
moteAdministrationDomainId
<ID>

Enables remote administration and sets the domain ID for remote communication.

When remote administration is enabled,Queuing Service will create a DomainParticipant, Publisher, Subscriber,
DataWriter, and DataReader in the designated domain.

See Chapter 5, Administering Queuing Service froma Remote Location, in theQueuing Service User’sManual.

This option overrides the value of the tag <domain_id>within a <administration> tag.

This parameter is required when using -cfgRemote.

Default: Remote administration is not enabled unless it is enabled from the XML file.

Table 4.1 RTI Queuing Service Command-Line Options

64

4.3 Using Queuing Service as a Windows Service

65

Option Description

-persistentFilePrefix

Specifies a name prefix to use with all files created byQueuing Service.

This option overrides the value of the tag <file_prefix>within <persistence_settings>/<filesystem>.

Default: Value in <persistence_settings>/<filesystem>/<file_prefix>.

-persistentStoragePath

Configures the directory for persistent storage.

This option overrides the value of the tag <directory>within <persistence_settings>/<filesystem>.

Default: Value in <persistence_settings>/<filesystem>/<directory>.

-var <name>=<value>

Sets the value of the variable <name>. This variable can be referenced within the XML configuration files using
the $(<name>) notation. See Section 3.4, Using Variables in XML, in theQueuing Service User’sManual for
more information on configuration variables.

You may have more than one -var flag on the command line.

On Windows platforms, you will need to put quotation marks around the variable name and value, like this:

-var "MY_VAR=myvalue"

-verbosity <n>

Controls what type of messages are logged:

0 - Silent

1 - Exceptions (Connext DDS andQueuing Service) (default)

2 -Warnings (Queuing Service)

3 - Information (Queuing Service)

4 -Warnings (Connext DDS andQueuing Service)

5 - Tracing (Queuing Service)

6 - Tracing (Connext DDS andQueuing Service)

Each verbosity level, n, includes all the verbosity levels smaller than n.

-version Prints theQueuing Service version number.

Table 4.1 RTI Queuing Service Command-Line Options

4.3 Using Queuing Service as a Windows Service

Windows Services automatically run in the background when the system reboots.

4.3.1 Enabling Queuing Service to Run as a Windows Service

If you want to run Queuing Service as a Windows Service, you must install it as such before running it. To
install it as a Windows Service, run the following command in a terminal with Administrator privileges:
<NDDSHOME>\bin\rtiqueuingservice -installService

By default, Queuing Service is installed with the service name rtiqueuingservice523. If you want to
install it with a different service name, you can use the -serviceName flag. For instance (you would enter
this all on one line):

4.3.2 Running RTI Queuing Service as a Windows Service

<NDDSHOME>\bin\rtiqueuingservice -installService -serviceName mycustomservicename

Using the -serviceName parameter with different names allows you to install multiple Queuing Service
instances on the same host.

4.3.2 Running RTI Queuing Service as a Windows Service

If you added Queuing Service as a Windows Service and want to run it without rebooting, you can start it
as a service from the command line with the Windows sc utility:
sc <serviceName> start

By default, it will start Queuing Service with the "defaultService" configuration that is stored in
<NDDSHOME>\resource\xml\RTI_QUEUING_SERVICE.xml. This configuration contains a service
running with an empty SharedSubscriber with remote administration and monitoring enabled.

If you want to start Queuing Service with different parameters, you can use the utility nssm. You can spe-
cify the parameters from the command line by setting the option AppParameters. For example (you
would enter this all on one line):
%NDDSHOME%\resource\app\bin\x64Win64VS2008\nssm.exe set <serviceName> AppParameters "<queuing
service arguments>"

For more information and examples, see 4.3.3 Notes when Running as a Windows Service below.

Additionally, you can start Queuing Service from the Windows Services Control Manager. From the Start
Menu, select Control Panel, Administrative Services, Services. Click on the service in the list, then
right-click to select Start.

4.3.3 Notes when Running as a Windows Service

Here are some things to consider when running Queuing Service as a Windows Service:

l All AppParameters arguments must be enclosed in quotation marks.

l To refer to variables in the XML configuration file, use the Queuing Service command-line option -
var to set the variable’s value. The syntax for referring to a variable in the XML file is:

<name>$(NAME)</name>

l For the AppParameters passed to nssm, use -var like this:

-var MY_DOMAIN=10

For example (you would enter this all on one line):
%NDDSHOME%\resource\app\bin\x64Win64VS2008\nssm.exe set rtiqueuingservice523
AppParameters
"-cfgFile \"C:\dir with spaces\qsconf-with-vars.xml\"
-cfgName MyCustomConf -var MY_DOMAIN=10"

66

4.3.4 Stopping Queuing Service when it is Running as a Windows Service

67

l If a variable value includes spaces, you must enclose the value in escaped quotes. For example (you
would enter this all on one line):

%NDDSHOME%\resource\app\bin\x64Win64VS2008\nssm.exe
set rtiqueuingservice523 AppParameters
"-cfgFile \"C:\dir with spaces\qsconf-with-vars.xml\"
-cfgName MyCustomConf -var \"NAME=My QS name\""

l If you use environment variables instead of the -var command-line option, you may need to restart
your Windows machine.

l If you specify -cfgFile in the Start Parameters field, you must use the full path to the file.

l Some versions of Windows do not allow Windows Services to communicate with other ser-
vices/applications using shared memory. For this reason, if you plan to run Queuing Service as Win-
dows Service, you should disable the shared-memory transport in all the DomainParticipants created
by Queuing Service and in the applications communicating with Queuing Service. For more inform-
ation on setting builtin transports, see the RTI Connext DDS Core Libraries User’s Manual (Section
15.1, Builtin Transport Plugins).

l In some scenarios, you may need to add a multicast address (e.g., builtin.udpv4://239.255.0.1) to
your discovery peers. For details on setting the discovery peers, see the RTI Connext DDS Core
Libraries Getting Started Guide (Section 4.1.2, How to Set Your Discovery Peers).

4.3.4 Stopping Queuing Service when it is Running as a Windows Service

To stop Queuing Service when it is running as a Windows Service, use this command:
sc rtiqueuingservice523 stop

You can also start/stop Queuing Service from the Windows Services Control Manager. From the Start
menu, select Control Panel, Administrative Services, Services. Click on the service in the list, then
right-click to select Start or Stop.

4.3.5 Disabling Queuing Service from Running as a Windows Service

To remove Queuing Service from the list of Windows Services on your system, run this command in a ter-
minal with Administrator privileges:
<NDDSHOME>\bin\rtiqueuingservice -uninstallService

By default, the service rtiqueuingservice523 is uninstalled. If you want to uninstall a different service
instance, add the -serviceName option to the above command.

Chapter 5 Administering Queuing Service
from a Remote Location

Queuing Service can be controlled remotely by sending commands through a special topic. Any
Connext DDS application can be implemented to send these commands and receive the cor-
responding responses.

5.1 Enabling Remote Administration

By default, remote administration is disabled in Queuing Service for security reasons.

To enable remote administration, you can use the <administration> tag (see 3.3 XML Tags for
Configuring Queuing Service on page 34) or the -remoteAdministrationDomainId <ID> com-
mand-line parameter, which enables remote administration and sets the domain ID for remote com-
munication. For more information about the command-line options, see Table 4.1 RTI Queuing
Service Command-Line Options.

When remote administration is enabled, Queuing Service will create a DomainParticipant, Pub-
lisher, Subscriber, DataWriter, and DataReader in the designated domain. (The QoS values for
these entities are described in 3.3 XML Tags for Configuring Queuing Service on page 34.)

5.2 Remote Administration API

Queuing Service remote administration is based on the RTI Remote Administration Platform. See
"Remote Administration Platform" (in the "Common Infrastructure" section) of the RTI Routing
Service documentation for more information about the remote administration API.

Queuing Service provides a RESTful-style remote administration API in which the commands
have the following format:

<ACTION> <target_queuing_service> <resource_identifier> [<body>]

68

5.2.1 Resource Identifiers

69

Where:

l <ACTION> is one the following values: CREATE, DELETE, GET.

l <target_queuing_service> can be:
l The application name of a Queuing Service instance, such as “MyQueuingService1”, as spe-
cified at start-up with the command-line option –appName (see)

l A regular expression—as defined by the POSIX fnmatch API (1003.2-1992 section B.6)—
for a Queuing Service application name, such as “MyQueuingService*”

l <resource_identifier> identifies the resource to which the action is applied (see 5.2.1 Resource Iden-
tifiers below).

l <body> identifies the parameters of the action on the resource identified by <resource_identifier>.
For example, when creating a SharedReaderQueue, the body is the XML snippet for the new
queue.

5.2.1 Resource Identifiers

The format of a resource identifier is as follows:

/<resource_kind_1>/<resource_name_1>/.../<resource_kind_N>[/resource_name_N]

Where:

l <resource_kind> can have one of the following values:
l domain_participant, shared_subscriber, shared_reader_queue, dead_letter_shared_
reader_queue, status, data, and message. The resource kinds status, data, and message rep-
resent different information for an entity.

l status: Refers to the operational status for a Queuing Service entity. This information
changes continuously. The status information is composed primarily of statistics.

l data: Refers to configuration data. This data is mostly static and does not change con-
tinuously.

l message: Applies to SharedReaderQueues and refers to samples in the queues.

l <resource_name> specifies the name of the resource as defined in the XML configuration file using
the attribute name.

For example, consider the following XML:

<?xml version="1.0"?>
<dds>

<queuing_service name=”QueuingService_1”>
...
<domain_participant name=”DomainParticipant_1”>

5.2.2 Sample Selector

...
<shared_subscriber name=”SharedSubscriber_1”>

...
<shared_reader_queue name=”SharedReaderQueue_1”>
</shared_reader_queue>

</shared_subscriber>
</domain_participant>

</queuing_service>
</dds>

The resource identifier for the DomainParticipant is: /domain_participant/DomainParticipant_1.

The resource identifier for SharedSubscriber is: /domain_participant/DomainParticipant_1/
shared_subscriber/SharedSubscriber_1.

The resource identifier for the SharedReaderQueue is: /domain_participant/DomainParticipant_
1/shared_subscriber/SharedSubscriber_1/shared_reader_queue/SharedReaderQueue_1.

The resource identifier for the sample(s) in the SharedReaderQueue is: /domain_par-
ticipant/DomainParticipant_1/shared_subscriber/SharedSubscriber_1/
shared_reader_queue/SharedReaderQueue_1/message.

The resource identifier for the SharedReaderQueue status is: /domain_participant/DomainParticipant_
1/shared_subscriber/SharedSubscriber_1/shared_reader_queue/SharedReaderQueue_1/status.

5.2.2 Sample Selector

For requests that apply to messages in a SharedReaderQueue, you may optionally provide a sample
selector as part of the <body>. The sample selector is an SQL-like expression.

Expression Grammar:
Condition::= Predicate

| Condition 'AND' Condition
| Condition 'OR' Condition
| 'NOT' Condition
| '(' Condition ')'

Predicate ::= ComparisonPredicate

ComparisonPredicate ::= ComparisonTerm RelOp ComparisonTerm

ComparisonTerm ::= FieldIdentifier | Parameter

FieldIdentifier ::= FIELDNAME

RelOp ::= '=' | '<>'

Parameter ::=
SEQUENCE_NUMBER |
INTEGER_VALUE|

70

5.2.2 Sample Selector

71

BOOLEAN_VALUE|
STRING|
OCTET_ARRAY

Token Expressions:

l FIELDNAME—A reference to a field in the data structure. A period '.' is used to navigate through
nested structures. The number of dots that may be used in a FIELDNAME is unlimited. An ‘@’
symbol prepending the field indicates that the field is a metadata field.

l INTEGERVALUE—Any series of digits, optionally preceded by a plus or minus sign, representing
a decimal integer value within the range of the system. 'L' or 'l' must be used for long long, oth-
erwise long is assumed. A hexadecimal number is preceded by 0x and must be a valid hexadecimal
expression.

l BOOLEANVALUE—Can either be TRUE or FALSE, and is case insensitive.

l STRING—Any series of characters encapsulated in single quotes, except the single quote itself.

l OCTET_ARRAY—An array of octets represented as follows:&hex(hex_octet_values). For
example:

&hex(0708090A0B0C0D0E0F10111213141516)

Here the left-most pair represents the byte and index 0.
l SEQUENCE_NUMBER: A sequence number represented by a pair (high, low).

For example: (2,3)

Supported Field Names:

The only field names supported in this release are:

l @original_sample_identity.writer_guid.value

l @original_sample_identity.sequence_number

l @sample_queue_status

The original_sample_identity identifies a sample sent by the QueueProducer. The identity consists of a
pair (Virtual Writer GUID, Virtual Sequence Number).

By default, the identity of a sample published with a QueueProducer’s DataWriter is automatically set by
the middleware. You can access this value by using the write_w_params() operation. It is also possible to
explicitly set the sample identity by using the same write_w_params() operation. For details on how to set
and retrieve the sample identity, see Section 6.3.8, Writing Data, in the RTI Connext DDS Core Libraries
User's Manual.

The sample_queue_status is a mask that represents the status of a sample in a SharedReaderQueue. The
possible statuses are:

5.3 Remote Administration Topics

l UNDELIVERED_MESSAGE_STATUS

l SENT_MESSAGE_STATUS

l DELIVERED_MESSAGE_STATUS

Sample Selector Examples:

To select all the samples that have been sent to a QueueConsumer but not acknowledged yet:
@sample_queue_status = SENT_MESSAGE_STATUS

To select all the samples that have been not been delivered to a QueueConsumer yet:
@sample_queue_status = SENT_MESSAGE_STATUS| UNDELIVERED_MESSAGE_STATUS

To select all the samples coming from a QueueProducer’s DataWriter identified by virtual GUID 1:
@original_sample_identity.writer_guid.value =

&hex(00000000000000000000000000000001)

To select the sample coming from a QueueProducer’s DataWriter identified by virtual GUID 1 with
sequence number 1:
@original_sample_identity.writer_guid.value =

&hex(00000000000000000000000000000001) AND
@original_sample_identity.sequence_number = (0,1)

5.3 Remote Administration Topics

For remote administration, Queuing Service creates two topics:

l rti/service/admin/command_request is used to send a command from a client to Queuing Service.

l rti/service/admin/command_reply is used to send the command response(s) from Queuing Service
to the client.

The topics have these corresponding types:

l RTI::Service::Admin::CommandRequest

l RTI::Service::Admin::CommandReply

You can find the IDL definitions for these types in <NDDSHOME>/ resource/idl/ServiceAdmin.idl.

The field native_retcode in the CommandReply is reserved for future use.

When generating code for ServiceAdmin.idl in C, C++, and .NET, make sure to use the command-line
option, -unboundedSupport.

72

5.4 Remote Commands in Queuing Service

73

5.4 Remote Commands in Queuing Service

This section describes the remote commands available in Queuing Service. 5.5 Accessing Queuing Service
from a Connext DDS application on page 78 explains how to use remote administration from a Connext
DDS application.

5.4.1 Create SharedReaderQueue

The following command is used to create a SharedReaderQueue:
CREATE <target_queuing_service> <shared_subscriber_resource_identifier> <xml_url>

Where:

l <shared_subscriber_resource_identifier> is the resource identifier for the SharedSubscriber that will
contain the SharedReaderQueue.

l <xml_url> contains an XML snippet containing the SharedReaderQueue configuration. A full file
(starting with <dds>...) is not valid. For example:

str://”<shared_reader_queue name=\”SharedReaderQueue_1\”...>
<topic_name>RequestMessageTopic</topic_name> ... </shared_reader_queue>”

Return Value:

Upon success, this command returns OK in the retcode field of the reply. Otherwise, this command
returns ERROR, and the field string_body contains a human-readable string describing the error.

5.4.2 Delete SharedReaderQueue

The following command is used to delete a SharedReaderQueue:
DELETE <target_queuing_service> <shared_reader_queue_resource_identifier>

Return Value:

Upon success, this command returns OK in the retcode field of the reply. Otherwise, this command
returns ERROR, and the field string_body contains a human-readable string describing the error.

5.4.3 Flush SharedReaderQueue

The following command is used to flush all the samples or a set of samples from a SharedReaderQueue.
DELETE <target_queuing_service> <shared_reader_queue_resource_identifier>/message <sample
selector>

Parameters:

The <sample_selector> (see 5.2.2 Sample Selector on page 70) is a SQL expression that specifies the set
of samples that must be removed and it must be provided in the field string_body of the

5.4.4 Get SharedReaderQueue Status

CommandRequest.

Return Value:

Upon success, this command returns OK in the retcode field of the reply. Otherwise, this command
returns ERROR, and the field string_body contains a human-readable string describing the error.

5.4.4 Get SharedReaderQueue Status

The type of the SharedReaderQueue's status is called SharedReaderQueueStatus; you can find it in the
file <NDDSHOME>/resource/idl/QueuingServiceTypes.idl.

The operational status provides multiple counters describing the status of the SharedReaderQueue.

Return Value:

Upon success, this command returns OK in the retcode field of the reply. The operational status is sent in
serialized form within the octet_body field in the CommandReply. If there is an error, this command
returns ERROR and the field string_body contains a human-readable string describing the error.

Status Description:

The type of the SharedReaderQueue’s status can be found in the file <NDDSHOME>/re-
source/idl/QueuingServiceTypes.idl.

To deserialize the status from the CommandReply octet_body use the following operations:

l C: SharedReaderQueueStatusTypeSupport_deserialize_data_from_cdr_buffer()

l C++: SharedReaderQueueStatusTypeSupport::deserialize_data_from_cdr_buffer()

l C++/CLI:
SharedReaderQueueStatusTypeSupport::deserialize_data_from_cdr_buffer()

l C#: SharedReaderQueueStatusTypeSupport.deserialize_data_from_cdr_buffer()

l Java: SharedReaderQueueStatusTypeSupport.get_instance().deserialize_from_cdr_
buffer()

When generating code forQueuingServiceTypes.idl in C, C++, and .NET, make sure you use the -
unboundedSupport command-line option.

5.4.5 Get Service Data

The following command is used to get the ServiceData that provides a sequence of SharedRead-
erQueueData. This command provides a way to query all the SharedReaderQueues hosted in a service
instance.

74

5.4.6 Get Samples From a SharedReaderQueue

75

GET <target_queuing_service> /data

Return Value:

Upon success, this command returns OK in the retcode field of the reply. The ServiceData is sent in seri-
alized form within the field octet_body in the CommandReply. If there is an error, this command returns
ERROR and the field string_body contains a human-readable string describing the error.

Service Data:

The type of the ServiceData can be found in the file <NDDSHOME>/re-
source/idl/QueuingServiceTypes.idl.
struct SharedReaderQueueData {

/* Fully qualified name of the SharedReaderQueue within the XML file */
string<NAME_MAX_LENGTH> queue_name; //@key
string<NAME_MAX_LENGTH> topic_name;

}; //@Extensibility MUTABLE_EXTENSIBILITY

struct ServiceData {
sequence<SharedReaderQueueData> shared_reader_queue_data_list;

}; //@Extensibility MUTABLE_EXTENSIBILITY

To deserialize the ServiceData from the CommandReply octet_body, use the following operations:

l C: ServiceDataTypeSupport_deserialize_data_from_cdr_buffer()

l C++: ServiceDataTypeSupport::deserialize_data_from_cdr_buffer()

l C++/CLI: ServiceDataTypeSupport::deserialize_data_from_cdr_buffer()

l C#: ServiceDataTypeSupport.deserialize_data_from_cdr_buffer()

l Java: ServiceDataTypeSupport.get_instance().deserialize_from_cdr_buffer()

When generating code forQueuingServiceTypes.idl in C, C++, and .NET, make sure you use the -
unboundedSupport command-line option.

5.4.6 Get Samples From a SharedReaderQueue

The following command is used to get one or more samples from the SharedReaderQueue using a con-
dition. This is a multi-reply command in which the number of responses is equal to the number of samples
satisfying the condition.
GET <target_queuing_service> <shared_reader_queue_resource_identifier>/message <sample_
selector>

Parameters:

The <sample_selector> (see 5.2.2 Sample Selector on page 70) is a SQL expression that specifies the set
of samples that must be retrieved. This expression must be provided in the field string_body of the Com-
mandRequest.

5.4.6 Get Samples From a SharedReaderQueue

Return Value:

Upon success, this command returns X number of replies where X is the number of samples in the
SharedReaderQueue satisfying the <sample_selector> expression. In each one of these replies the retcode
field is set to OK and the octet_body is initialized with the serialized sample in CDR format.

If there are no samples satisfying the <sample_selector>, the service returns one reply where the retcode
field is set to OK and the octet_body is empty.

In multi-reply commands, you can detect the last reply for a given command by inspecting the field flag in
DDS_SampleInfo. For intermediate replies, the flag DDS_INTERMEDIATE_REPLY_SEQUENCE_
SAMPLE is set. In the last reply this flag is not set.

Samples:

Each one of the samples returned by this command in the field octet_body of the reply is encapsulated in a
Message type, which has the following definition:
struct Message {

MessageStatusKind status;
SampleIdentity_t original_virtual_sample_identity;
/* CDR-serialized content of the SharedReaderQueue sample */
SampleBuffer_t sample_buffer;

}; //@Extensibility EXTENSIBLE_EXTENSIBILITY

The type can be found in the file <NDDSHOME>/resource/idl/QueuingServiceTypes.idl.

To deserialize the Message from the CommandReply octet_body use the following operations:

l C:MessageTypeSupport_deserialize_data_from_cdr_buffer()

l C++:MessageTypeSupport::deserialize_data_from_cdr_buffer()

l C++/CLI:MessageTypeSupport::deserialize_data_from_cdr_buffer()

l C#:MessageTypeSupport.deserialize_data_from_cdr_buffer()

l Java:MessageTypeSupport.get_instance().deserialize_from_cdr_buffer()

The sample_buffer field inMessage contains the serialized SharedReaderQueue’s sample. To deserialize
the sample use the following operations (where <Foo> is the type of the SharedReaderQueue’s samples):

l C: <Foo>TypeSupport_deserialize_data_from_cdr_buffer()

l C++: <Foo>TypeSupport::deserialize_data_from_cdr_buffer()

l C++/CLI: <Foo>TypeSupport::deserialize_data_from_cdr_buffer()

l C#: <Foo>TypeSupport.deserialize_data_from_cdr_buffer()

l Java: <Foo>TypeSupport.get_instance().deserialize_from_cdr_buffer()

76

5.4.7 Create SharedSubscriber

77

When generating code forQueuingServiceTypes.idl in C, C++, and .NET, make sure you use the -
unboundedSupport command-line option.

5.4.7 Create SharedSubscriber

The following command is used to create a SharedSubscriber:
CREATE <target_queuing_service> <domain_participant_resource_identifier> <xml_url>

Parameters:

l <domain_participant_resource_identifier> is the resource identifier for the DomainParticipant that
will contain the SharedSubscriber.

l <xml_url> contains an XML snippet containing the SharedSubscriber configuration. A full file (start-
ing with <dds>...) is not valid. For example:

str://”<shared_subscriber name=\”SharedSubscriber_1\”...>
... </shared_subscriber>”

Return Value:

Upon success, this command returns OK in the retcode field of the reply. Otherwise, this command
returns ERROR, and the field string_body contains a human-readable string describing the error.

5.4.8 Delete SharedSubscriber

The following command is used to delete a SharedSubscriber:
DELETE <target_queuing_service> <shared_subscriber_resource_identifier>

Return Value:

Upon success, this command returns OK in the retcode field of the reply. Otherwise, this command
returns ERROR and the field string_body contains a human- readable string describing the error.

5.4.9 Shutdown

The following command is used to shut down a Queuing Service process:
DELETE <target_queuing_service>

Return Value:

Upon success, this commands returns OK in the retcode field of the reply, and the shutdown sequence is
initiated in the remote service process. Otherwise, this command returns ERROR, and the field string_
body contains a human-readable string describing the error.

5.5 Accessing Queuing Service from a Connext DDS application

5.5 Accessing Queuing Service from a Connext DDS application

You can create a DataWriter for the command topic to write Queuing Service administration commands
and create a DataReader for the response topic to receive responses.

A more powerful and easier way is to use the Request-Reply API (only available with Connext DDS Pro-
fessional). You can create a Requester for these topics that will write command requests and wait for
replies.

The QoS configurations of your DataWriter and DataReader, or your Requester (if you are using the
Request-Reply API), must be compatible with the one used by Queuing Service (see how this is con-
figured in 3.3 XML Tags for Configuring Queuing Service on page 34).

For more information on accessing Queuing Service from a Connext DDS application, see "Remote
Administration Platform" (in the "Common Infrastructure" section) of the RTI Routing Service doc-
umentation.

78

Chapter 6 Publish-Subscribe Monitoring of
Queuing Service from a Remote
Location

You can monitor Queuing Service remotely by subscribing to special topics. By subscribing to
these topics, any Connext DDS application can receive information about the configuration and
operational status of Queuing Service.

Being able to monitor the state of a Queuing Service instance is an important tool that allows you
to detect problems. For example, looking at the enqueue throughput of a SharedReaderQueue you
might see that the queue is receiving a lot of traffic and you may want to put that queue in its own
session.

There are two kinds of monitoring data for en entity (for example, a SharedReaderQueue):

l Entity data provides information about the configuration of the entity. For example, the ser-
vice data contains a list of the SharedReaderQueues contained in the service. Entity data
information is updated every time there is a configuration change that affects that data.

l Entity status provides information about the operational status of an entity. This kind of
information changes continuously and is computed and published periodically. For example,
the SharedReaderQueue status contains information such as the SharedReader- Queue's
latency and throughput.

Queuing Service only publishes entity status for SharedReaderQueues. Entity data can be accessed
using remote administration commands (See Chapter 5 Administering Queuing Service from a
Remote Location on page 68.)

6.1 Enabling Publish-Subscribe Monitoring Data

By default, remote publish-subscribe monitoring is disabled in Queuing Service for security rea-
sons. To enable remote monitoring, you can use the <monitoring> tag (see 3.3 XML Tags for

79

6.2 Status Information for a SharedReaderQueue

80

Configuring Queuing Service on page 34).

When remote publish-subscribe monitoring is enabled, Queuing Service creates:

l 1 DomainParticipant

l 1 Publisher

l 1 DataWriter to publish status data for SharedReaderQueues

The QoS values for these entities are described in 3.3 XML Tags for Configuring Queuing Service on
page 34.

6.2 Status Information for a SharedReaderQueue

The topic that publishes SharedReaderQueue status is called rti/queuing_service/monitoring/shared_
reader_queue.

The registered type name for the topic is RTI::QueuingService::Monitoring::SharedReader-
QueueStatus.

The type definition of the SharedReaderQueue status is called SharedReaderQueueStatus and it can be
found in the file <NDDSHOME>/resource/idl/QueuingServiceTypes.idl.

Queuing Service reports multiple statistics as part of the SharedReaderQueue status. Some of these stat-
istics are counters such as the number of samples received by a SharedReaderQueue and other statistics are
statistics variables such as the number of samples enqueued per second in a SharedReaderQueue.

To see how statistics variable are calculated, see 3.3 XML Tags for Configuring Queuing Service on
page 34.

Chapter 7 High Availability
For high availability, Queuing Service can be configured to replicate both the content of the
SharedReaderQueues and the service configuration.

7.1 SharedReaderQueue Replication

By default, SharedReaderQueues within a Queuing Service instance are not replicated. Share-
dReaderQueues can optionally be replicated across multiple instances of Queuing Service run-
ning in the same or different nodes. See Figure 7.1: Replicating SharedReaderQueues below
Figure 7.1: Replicating SharedReaderQueues

81

7.1.1 SharedReaderQueue Replication Protocol

82

7.1.1 SharedReaderQueue Replication Protocol

Each replicated SharedReaderQueue consists of one master and multiple slaves. Only the mas- ter
SharedReaderQueue distributes messages to the QueueConsumers DataReaders. When the master goes
away the most up-to-date slave is promoted into master.

The replication protocol has four different phases:

1. Sample replication

2. Enqueue

3. Consumer assignment

4. Delivery

7.1.1.1 Sample Replication Phase

During this phase, the samples published by a QueueProducer's DataWriter are distributed to all replicas
(master and slaves). There are two ways to do this:

1. The QueueProducer's DataWriter sends directly the samples to all the replicas. This is the preferred
way to distribute the sample as it provides the best performance, especially with the usage of mul-
ticast. See Figure 7.2: Direct Sample Distribution on the facing page.

7.1.1.1 Sample Replication Phase

Figure 7.2: Direct Sample Distribution

2. The QueueProducer's DataWriter sends the samples to only a subset of the replicas, usually one.
Then the replicas that receive the samples broadcast these samples to all the other replicas, as seen in
Figure 7.3: Relayed Sample Distribution on the next page.

83

7.1.1.2 Enqueue Phase

84

Figure 7.3: Relayed Sample Distribution

In this release, the decision of whether or not a replica should broadcast the received samples to the other
replicas is taken by the QueueProducer's application on a per-sample basis by marking the sample with the
flag DDS_REPLICATE_SAMPLE. This can be done by using the DataW- riter 's write_w_params()
operation and setting the bit DDS_REPLICATE_SAMPLE in the flag field of WriteParams_t.

7.1.1.2 Enqueue Phase

During the enqueue phase, the master makes sure at least a quorum of the most up-to-date rep- licas
(including itself) have received a sample before moving the sample to the ENQUEUE state (see 2.8
Sample Lifecycle In Queuing Service on page 11).

The number of replicas in the quorum is defined as the lowest integer that is higher than half of the expec-
ted number of replicas. The expected number of replicas must be known in advance and it is configured
using the XML tag <queue_instances> under <replication_settings> (see 7.1.3 SharedReaderQueue
Replication Configuration on page 86).

After the sample is moved to the ENQUEUE state, the master and slaves send an AppAck message to the
QueueProducer indicating that the sample has been successfully enqueued. The response data of the
AppAck message for successfully enqueued samples will be a single byte set to 1. Positive AppAck

7.1.1.3 Consumer Assignment Phase

messages are global AppAck messages. Therefore, when monitoring AppAck messages, the QueuePro-
ducer can assume that a sample has been successfully enqueued as soon as it receives a positive acknow-
ledgment from any of the replicas (master or slaves).

If there is no a quorum of up-to-date replicas that are able to enqueue the sample, the replicas will send an
AppAck message to the QueueProducer's DataWriter, where the response is set to 0. Negative AppAck
messages are local messages. In order to consider a message as not enqueued, a QueueProducer must
receive a negative AppAck from all replicas.

To make this decision easier, you can use the DataWriter’s is_sample_app_acknowledged() operation—
it returns TRUE when a sample has been application acknowledged (negatively or positively) by all rep-
licas that were alive when the sample was published. If the QueueProducer has not received a positive
AppAck message for a sample and the is_sample_app_acknowledged() returns TRUE, the sample can
be considered not enqueued. At this point it is responsibility of the application to decide whether or not to
republish the sample.

7.1.1.3 Consumer Assignment Phase

During the consumer assignment phase the master selects a QueueConsumer as the destination for a mes-
sage according to the distribution policy configured for the SharedReaderQueue (see 2.9 Selecting a
QueueConsumer for a Sample on page 13).

After the QueueConsumer has been selected, the master notifies all the slaves about this selec- tion. Then,
there are two possibilities:

1. The master sends the sample to the QueueConsumer immediately.

2. The master waits until it gets confirmation from the quorum of most up-to-date slaves indicating that
they received the assignment before it sends the sample to the Queue- Consumer.

This behavior con be configured using the XML tag <synchronize_consumer_assignment> under <rep-
lication_settings> (see 7.1.3 SharedReaderQueue Replication Configuration on the next page).

If the master goes away, the slave promoted to master will try first to send the samples to the assigned
QueueConsumer if this QueueConsumer is still in the system. These samples will be marked with the
DDS_REDELIVERED_SAMPLE flag.

7.1.1.4 Delivery Phase

After a QueueConsumer sends an application-level acknowledgment to the master indicating that a sample
has been processed successfully, the master notifies all the slaves about this deci- sion and it removes the
sample from the SharedReaderQueue. When the slaves receive this noti- fication they also remove the
sample from their SharedReaderQueues.

85

7.1.2 SharedReaderQueue Master Election Protocol

86

7.1.2 SharedReaderQueue Master Election Protocol

When the master for a SharedReaderQueue goes away the most up-to-date slave is promoted into master.

How fast the loss of the master is detected depends on a master timeout period configurable using the
XML tag <master_timeout> under <replication_settings> (See 7.1.3 SharedReaderQueue Replication
Configuration below).

If a slave does not receive messages from the master during a period greater than the master timeout, it ini-
tiates a voting mechanism to select a new master.

While the new master election is in progress, the samples sent by QueueProducers will be rejected. The
QueueProducer will receive AppAck messages from all replicas with the response set to 0.

7.1.3 SharedReaderQueue Replication Configuration

You can choose between replicating all the SharedReaderQueues within a service or replicating individual
SharedReaderQueues.

To replicate all the SharedReaderQueues within a service, you can set the <shared_reader_queue_rep-
lication> tag within <queuing_service>/<service_qos>. Replication is automatically enabled when you
use this tag. It also allows you to configure the replication protocol.

Table 7.1 SharedReaderQueue Replication Tags describes the tags allowed within a <shared_reader_
queue_replication> tag.

You can also replicate individual SharedReaderQueues by using the <replication> tag under <shared_
reader_queue>/<queue_qos> (see Table 7.2 Replication Tags).

Tags within <shared_
reader_queue_replication> Description Number of

Tags Allowed

<enabled>

Enables/disables replication for all Share- dReaderQueues in the service.

You can override this behavior on a per Share- dReaderQueue basis by setting <rep-
lication> under<shared_reader_queue>/<queue_qos>.

Default: true

0 or 1

<replication_settings>

Configures the replication protocol.

See Table 7.3, Replication Settings Tags.

Default: If not set, replication settings are inherited from the settings in <replication_
settings> under<queuing_service>.

0 or 1

Table 7.1 SharedReaderQueue Replication Tags

7.1.3.1 Protocol Information Exchange

Tags within
<replication> Description Number of Tags

Allowed

<enabled>
Enables/disables replication for the SharedReaderQueue

Default: true
0 or 1

<replication_settings>

Configures the replication protocol.

See Table 7.3, Replication Settings Tags.

Default: If not set, replication settings are inherited as follows:

First, from the settings in <replication_settings> under<queuing_service>/<service_
qos>/<shared_reader_queue_replication>

Second, from the settings in <replication_settings> under<queuing_service>

0 or 1

Table 7.2 Replication Tags

The replication protocol is configured using the <replication_settings> tag; see Table 7.3 Replication Set-
tings Tags.

7.1.3.1 Protocol Information Exchange

The replication of SharedReaderQueues requires the exchange of status information among replicas. This
is done by creating a DataWriter and a DataReader per SharedReaderQueue to publish and subscribe to
this information.

The QoS for these entities can be configured using the tags <update_datawriter_qos> and <update_
datareader_qos> under the <shared_reader_queue> tag; see 3.3 XML Tags for Configuring Queuing
Service.

Tags within
<replication_
settings>

Description
Number
of Tags
Allowed

<queue_in-
stances>

The number of expected replicas (including the master) for a SharedReaderQueue

Default: 2
0 or 1

<master_
timeout>

A newmaster election process will be initiated if the master does not send messages to the replicas before this
timeout expires. Example:

<master_timeout>
<sec>5</sec>
<nanosec>0</nanosec>

</master_timeout>

Default: 5 seconds

0 or 1

<synchronize_
consumer_as-
signment>

Indicates if the mastermust wait for the slaves to receive the QueueConsumer assignment before sending a sample
to the selected QueueConsumer.

Default: false

0 or 1

Table 7.3 Replication Settings Tags

87

7.2 Configuration Replication

88

Tags within
<replication_
settings>

Description
Number
of Tags
Allowed

<sample_
timeout>

Configures the maximumamount of time that a sample can be in a replica's SharedReaderQueue without having
reached quorum. After this time, the sample is removed from the SharedReaderQueue, the replica sends an Ap-
pAckmessage to the QueueProducer (with the response set to 0), and the replica notifies the master about this
event. Notice that the sample is not sent to the DeadLetterSharedReaderQueue.

This timeout is needed to avoid situations in which a sample stays in the replicas' SharedReaderQueues per-
manently. This could happen if for some reason one of the replicas participating in the quorumdid not receive a
sample from the QueueProducer. Under this circumstance, the sample would not be able to be enqueued with
quorumand it would stay in the SharedReaderQueues of the replicas that received the sample indefinitely.

Default: 7 seconds, measured from the enqueue time

0 or 1

Table 7.3 Replication Settings Tags

7.2 Configuration Replication

By default, the service configuration is not replicated. Enabling configuration replication between a set of
Queuing Service instances (replication cluster) will require:

l Enabling remote administration and using the same remote administration domain ID for each one of
the Queuing Service instances participating in the configuration replication process. The admin-
istration domain ID can be configured using the command-line option -remoteAd-
ministrationDomainId (see Table 4.1 RTI Queuing Service Command-Line Options on page 63)
or the XML tag <administration>/<domain_id> (see 3.3 XML Tags for Configuring Queuing Ser-
vice on page 34).

l Assigning an application name to each one of the Queuing Service instances using the command-
line option -appName (see). This name should have a common prefix, so that when an application
sends a remote administration command, that command can be applied to all the instances by select-
ing a target queuing service using a wildcard expression on the common prefix.

For example, supposed you have three service instances with application names Cluster_1_
Instance_1, Cluster_1_Instance_2, and Cluster_1_Instance_3. (Notice that the word "Cluster" is
not strictly required, any common prefix will work.) To send a remote administration command to
all three instances, you can use Cluster_1* as the target queuing service.

l Setting the tag <configuration_replication> under <service_qos> in the configuration file (see
7.2.1 SharedReaderQueue for Configuration Replication on the facing page. This will create a spe-
cial SharedReaderQueue for configuration replication that runs in its own DomainParticipant.

l [Optional] Using the -cfgRemote command-line option in combination with -remoteAd-
ministrationDomainId to obtain the initial configuration from other running instances. Set -
remoteAdministrationDomainId to the administration domain ID that will be used to send remote
commands. If you do not use -cfgRemote, the service will not get the initial configuration remotely
and it will start from the provided file.

7.2.1 SharedReaderQueue for Configuration Replication

When replication is enabled, remote administration commands that change the service configuration, such
as adding or removing a SharedReaderQueue, should be sent to all the Queuing Service instances by using
<CommonPrefix> as the target queuing service (field service_name in CommandRequest) (see Chapter
5 Administering Queuing Service from a Remote Location on page 68). In the above example, the field
service_name would be set to Cluster_1*. The application sending the command will receive a response
from each one of the members in the cluster, confirming the successful execution of the command.

Notice that an application could still send a command to multiple Queuing Service instances without
enabling replication. The difference in this case is that the final configuration may not be consistent across
instances if multiple applications send remote commands at the same time. By enabling replication using
the tag <configuration_replication>, we guarantee configuration consistency across all the instances in
the cluster.

7.2.1 SharedReaderQueue for Configuration Replication

To enable configuration replication, you must use the <configuration_replication> tag under <service_
qos>. When this occurs, Queuing Service creates a special SharedReaderQueue that is used to replicate the
remote administration commands across all the instances in the replication cluster. This SharedRead-
erQueue is replicated and the replication settings are configured using the <replication_settings> flag
under <configuration_replication>. Table 7.4 Configuration Replication Tags describes the tags allowed
within a <configuration_replication> tag.

Tags within
<configuration_
replication>

Description
Number of
Tags
Allowed

<enabled>
Enables/disables configuration replication.

Default: true
0 or 1

<participant_qos>
Configures the DomainParticipantQoS for configuration replication. ThisDomainPartipant runs on
the administration domain ID. If the tag is not defined,Queuing Servicewill use the Connext DDS de-
faults.

0 or 1

<replication_settings>

Configures the configuration replication protocol. See Table 7.3 Replication SettingsTags

Default: If not set, the replication settings are inherited from the settings in <replication_settings> un-
der<queuing_service>.

0 or 1

Table 7.4 Configuration Replication Tags

7.3 Replication Clusters

A replication cluster is a set of Queuing Service instances that coordinate with each other to replicate
SharedReaderQueues and/or the service configuration. Instances in different clusters are isolated form each
other.

89

7.3 Replication Clusters

90

For SharedReaderQueue replication, all instances within a cluster must have a <domain_participant> with
the same <domain_id> (see 3.3 XML Tags for Configuring Queuing Service on page 34).

For service configuration replication, all instances within a cluster must use the same <domain_id> for
remote administration (See 3.3 XML Tags for Configuring Queuing Service on page 34)
Figure 7.4: Replication Cluster

Chapter 8 Queuing Service Wrapper API
RTI Connext DDS provides a wrapper API to make it easier to interact with Queuing Service.

In this release, the wrapper API is only supported in the .NET API and is located in the namespace
RTI.Connext.Queuing.

Important: The wrapper API is only available with the Connext DDS Professional, Evaluation,
and Basic package types (it is not available with the Core package type).

8.1 QueueProducer Wrapper

To simplify the use and configuration of a DataWriter to send samples to a SharedReaderQueue,
Connext DDS provides an abstraction, QueueProducer<aMessageType>, which wraps the
DataWriter and provides additional services such as an operation to detect if there is a matching
SharedReaderQueue or an operation to wait for application-level acknowledgement after sending a
sample.

The Connext DDS API Reference HTML documentation contains the full API documentation for
the QueueProducer. Under theModules tab, navigate to RTI Connext DDS API Reference,
RTI Connext Messaging API Reference, Queuing Pattern, QueueProducer.

8.2 QueueConsumer Wrapper

To simplify the use and configuration of a DataReader to receive samples from a SharedReader-
Queue, Connext provides an abstraction, QueueConsumer<MessageType>, which wraps the
DataReader and provide additional services such as an operation to detect if there is a matching
SharedReaderQueue or a blocking operation to receive samples.

The Connext API Reference HTML documentation contains the full API documentation for the
QueueProducer. Under theModules tab, navigate to RTI Connext DDS API Reference, RTI
Connext Messaging API Reference, Queuing Pattern, QueueConsumer.

91

8.3 QueueRequester Wrapper

92

8.3 QueueRequester Wrapper

To simplify the use and configuration of the DataReader and DataWriter in the requester application, Con-
next provides an abstraction, QueueRequester<MessageRequestType, MessageReplyType>, which
wraps the DataReader and DataWriter usage and provide additional services such as an operation to wait
for the response for a given request.

The Connext API Reference HTML documentation contains the full API documentation for the QueuePro-
ducer. Under theModules tab, navigate to RTI Connext DDS API Reference, RTI Connext Mes-
saging API Reference, Queuing Pattern, QueueRequester.

8.4 QueueReplier Wrapper

To simplify the use and configuration of the DataReader and DataWriter in the replier application, Con-
next provides an abstraction, QueueReplier<MessageRequestType, MessageReplyType>, which wraps
the DataReader and DataWriter usage.

The Connext API Reference HTML documentation contains the full API documentation for the QueuePro-
ducer. Under theModules tab, navigate to RTI Connext DDS API Reference, RTI Connext Mes-
saging API Reference, Queuing Pattern, QueueReplier.

Chapter 9 Communication Using TCP
Transport

Queuing Service, and the applications that interact with it, can be configured to communicate with
each other using the TCP transport distributed with Connext DDS. The transport can be configured
via XML using the PropertyQosPolicy of the Queuing Service’s DomainParticipants and the
applications’ DomainParticipants.

This chapter explains how to use and configure TCP communications with Queuing Service. This
chapter does not intend to provide an exhaustive explanation of the TCP transport and all of its con-
figuration properties. For details on the TCP transport, see the RTI Connext DDS Core Libraries
and Utilities User’s Manual.

The TCP transport distributed with Connext DDS can be used to address multiple communication
scenarios that range from simple communication within a single LAN, to complex communication
scenarios across LANs where NATs and firewalls may be involved.

The next sections explain how to configure and use the TCP transport to communicate with
Queuing Service in some typical scenarios.

9.1 Asymmetric TCP Communication With Queuing Service

In this scenario, Queuing Service is behind a NAT/Firewall and the QueueProducers, QueueCon-
sumers, and Remote Administration applications run outside the NAT. TCP connections can be ini-
tiated only by applications running outside the NAT.

Figure 9.1: Asymmetric TCP Configuration on the next page shows how to configure the system
to communicate using the TCP transport. Notice that it is not necessary to set NDDS_
DISCOVERY_PEERS in the Queuing Service instance because the connections are initiated from
the applications running outside the NAT. In this example, Queuing Service instantiates two
instances of the TCP transport: one for administration and one for SharedReaderQueue traffic.
Each instance uses a separate TCP port.

93

9.1 Asymmetric TCP Communication With Queuing Service

94

Figure 9.1: Asymmetric TCP Configuration

The following XML snippet shows how to configure the TCP transport in Queuing Service. For con-
venience, the participant QoS in the administration and SharedReaderQueue domains inherits from a com-
mom QoS profile TCPLibrary::TCPProfile.

<qos_library name="TCPLibrary">
<qos_profile name="TCPProfile">
<participant_qos>
<property>
<value>
<element>
<name>dds.transport.load_plugins</name>
<value>dds.transport.tcp</value>

</element>
<element>
<name>dds.transport.tcp.library</name>
<value>nddstransporttcp</value>

</element>
<element>
<name>dds.transport.tcp.parent.classid</name>
<value>NDDS_TRANSPORT_CLASSID_TCPV4_WAN</value>

</element>
<element>
<name>dds.transport.tcp.create_function</name>
<value>NDDS_Transport_TCPv4_create</value>

</element>
</value>

</property>
</participant_qos>

</qos_profile>
</qos_library>

<queuing_service name="Service">

9.1 Asymmetric TCP Communication With Queuing Service

<administration>
<domain_id>1</domain_id>
<participant_qos base_name="TCPLibrary::TCPProfile">
<property>
<value>
<element>
<name>dds.transport.tcp.server_bind_port</name>
<value>15001</value>

</element>
<element>
<name>dds.transport.tcp.public_address</name>
<value>18.181.0.32:15001</value>

</element>
</value>

</property>
</participant_qos>

</administration>
<domain_participant name="DomainParticipant">
<domain_id>0</domain_id>
<participant_qos>
<property>
<value>
<element>
<name>dds.transport.tcp.server_bind_port</name>
<value>15000</value>

</element>
<element>
<name>dds.transport.tcp.public_address</name>
<value>18.181.0.32:15000</value>

</element>
</value>

</property>
</participant_qos>

</domain_participant>
</queuing_service>

The following XML snippet shows how to configure the applications running outside the NAT.
<participant_qos>
<property>
<value>
<element>
<name>dds.transport.load_plugins</name>
<value>dds.transport.tcp</value>

</element>
<element>
<name>dds.transport.tcp.library</name>
<value>nddstransporttcp</value>

</element>
<element>
<name>dds.transport.tcp.parent.classid</name>
<value>NDDS_TRANSPORT_CLASSID_TCPV4_WAN</value>

</element>
<element>

95

9.2 Asymmetric TCP Communication with Queuing Service And Replication

96

<name>dds.transport.tcp.create_function</name>
<value>NDDS_Transport_TCPv4_create</value>

</element>
<element>
<name>dds.transport.tcp.server_bind_port</name>
<value>0</value>

</element>
</value>

</property>
</participant_qos>

9.2 Asymmetric TCP Communication with Queuing Service And
Replication

In this scenario, one of more instances of Queuing Service are behind a NAT/Firewall and the QueuePro-
ducers, QueueConsumers, and Remote Administration applications run outside the NAT. The Queuing
Service instances are configured to replicate SharedReaderQueues and configuration.

Figure 9.2: Asymmetric TCP Configuration With Replication on the facing page shows how to configure
the system to communicate using the TCP transport. This includes communication with the applications
running outside the NAT and communication between the Queuing Service instances.

9.2 Asymmetric TCP Communication with Queuing Service And Replication

Figure 9.2: Asymmetric TCP Configuration With Replication

In a basic scenario that does not include configuration replication, a Queuing Service instance creates two
DomainParticipants:

1. The first DomainParticipants is used to communicate with QueueProducers and QueueConsumers.
This DomainParticipants is also used to exchange SharedReaderQueue synchronization inform-
ation between Queuing Service instances. To configure QoS of this DomainParticipant, use the
<domain_participant>/<participant_qos> tag (see 3.3 XML Tags for Configuring Queuing Ser-
vice on page 34).

2. The second DomainParticipants is used to receive remote administration commands. To configure
its QoS, use the <administration>/<participant_qos> tag (see 3.3 XML Tags for Configuring
Queuing Service on page 34).

When Queuing Service is configured to replicate configuration, it creates one more DomainParticipants to
replicate the configuration. The QoS of this DomainParticipants is configured using <configuration_rep-
lication>/<participant_qos> (see 7.2.1 SharedReaderQueue for Configuration Replication on page 89).
All this DomainParticipants must be configured to use TCP.

97

9.2 Asymmetric TCP Communication with Queuing Service And Replication

98

This TCP communication scenario will require creating two instances of the TCP transport in each one of
the DomainParticipants created by the Queuing Service (QS) instances:

l The first instance runs in asymmetric mode and is used to allow the Queuing Services to com-
municate with Producers, Consumers, and Remote Administration applications.

l The second instance runs in symmetric mode and is used for communication between Queuing Ser-
vices. Symmetric mode means that each service will create a server socket that other services will
use to establish connections.

The following XML snippet shows how to configure the TCP transport in Queuing Service:
<qos_library name="TCPLibrary">
<qos_profile name="TCPProfile">
<participant_qos>
<property>
<value>
<element>
<name>dds.transport.load_plugins</name>
<value>dds.transport.tcp,dds.transport.tcp2</value>

</element>
<element>
<name>dds.transport.tcp.library</name>
<value>nddstransporttcp</value>

</element>
<element>
<name>dds.transport.tcp.parent.classid</name>
<value>NDDS_TRANSPORT_CLASSID_TCPV4_WAN</value>

</element>
<element>
<name>dds.transport.tcp.create_function</name>
<value>NDDS_Transport_TCPv4_create</value>

</element>
<element>
<name>dds.transport.tcp2.library</name>
<value>nddstransporttcp</value>

</element>
<element>
<name>dds.transport.tcp2.parent.classid</name>
<value>NDDS_TRANSPORT_CLASSID_TCPV4_LAN</value>

</element>
<element>
<name>dds.transport.tcp2.create_function</name>
<value>NDDS_Transport_TCPv4_create</value>

</element>
</value>

</property>
</participant_qos>

</qos_profile>
</qos_library>

9.2 Asymmetric TCP Communication with Queuing Service And Replication

<queuing_service name="Service">
<administration>
<domain_id>1</domain_id>
<participant_qos base_name="TCPLibrary::TCPProfile">
<property>
<value>
<element>
<name>dds.transport.tcp.server_bind_port</name>
<value>15002</value>

</element>
<element>
<name>dds.transport.tcp.public_address</name>
<value>18.181.0.32:15002</value>

</element>
<element>
<name>dds.transport.tcp2.server_bind_port</name>
<value>15003</value>

</element>
<element>
<name>dds.transport.tcp2.public_address</name>
<value>192.168.5.11:15003</value>

</element>
</value>

</property>
</participant_qos>

</administration>
<service_qos>
<configuration_replication>
<participant_qos base_name="TCPLibrary::TCPProfile">
<property>
<value>
<element>
<name>dds.transport.tcp.server_bind_port</name>
<value>15004</value>

</element>
<element>
<name>dds.transport.tcp.public_address</name>
<value>18.181.0.32:15004</value>

</element>
<element>
<name>dds.transport.tcp2.server_bind_port</name>
<value>15005</value>

</element>
<element>
<name>dds.transport.tcp2.public_address</name>
<value>192.168.5.11:15005</value>

</element>
</value>

</property>
</participant_qos>

</configuration_replication>
</service_qos>
<domain_participant name="DomainParticipant">
<domain_id>0</domain_id>

99

9.2 Asymmetric TCP Communication with Queuing Service And Replication

100

<participant_qos base_name="TCPLibrary::TCPProfile">
<property>
<value>
<element>
<name>dds.transport.tcp.server_bind_port</name>
<value>15000</value>

</element>
<element>
<name>dds.transport.tcp.public_address</name>
<value>18.181.0.32:15000</value>

</element>
<element>
<name>dds.transport.tcp2.server_bind_port</name>
<value>15001</value>

</element>
<element>
<name>dds.transport.tcp2.public_address</name>
<value>192.168.5.11:15001</value>

</element>
</value>

</property>
</participant_qos>

</domain_participant>
</queuing_service>

The following XML snippet shows how to configure the applications running outside the NAT.
<participant_qos>
<property>
<value>
<element>
<name>dds.transport.load_plugins</name>
<value>dds.transport.tcp</value>

</element>
<element>
<name>dds.transport.tcp.library</name>
<value>nddstransporttcp</value>

</element>
<element>
<name>dds.transport.tcp.parent.classid</name>
<value>NDDS_TRANSPORT_CLASSID_TCPV4_WAN</value>

</element>
<element>
<name>dds.transport.tcp.create_function</name>
<value>NDDS_Transport_TCPv4_create</value>

</element>
<element>
<name>dds.transport.tcp.server_bind_port</name>
<value>0</value>

</element>
</value>

</property>
</participant_qos>

	Chapter 1 Welcome to RTI Queuing Service
	1.1 Paths Mentioned in Documentation

	Chapter 2 Queuing Service Architecture and Operation
	2.1 Terms to Know
	2.2 Load Balancing by Sharing a Queue
	2.3 DataWriter Connection to a SharedReaderQueue
	2.3.1 QueueProducer Wrapper
	2.3.2 Samples with Large Maximum Size

	2.4 DataReader Connection to a SharedReaderQueue
	2.4.1 QueueConsumer Wrapper
	2.4.2 Samples with Large Maximum Size

	2.5 Queuing Service Entities
	2.6 Sample Distribution to a Selected QueueConsumer
	2.7 Interaction of Publish-Subscribe Entities with Queuing Service Entities
	2.8 Sample Lifecycle In Queuing Service
	2.9 Selecting a QueueConsumer for a Sample
	2.9.1 Round-Robin Dispatch Policy without Explicit QueueConsumer Availability Feedback
	2.9.2 Round-Robin Dispatch Policy with Explicit QueueConsumer Availability Feedback

	2.10 Sending a Reply from QueueConsumer to QueueProducer
	2.10.1 Requester Identification
	2.10.2 Request-Reply Correlation
	2.10.3 Sending the Reply Sample to the Associated Requester
	2.10.4 QueueRequester Wrapper
	2.10.5 QueueReplier Wrapper

	2.11 Dead-Letter Queues
	2.12 Detecting the Presence of a SharedReaderQueue
	2.13 Queuing Service Persistency
	2.13.1 Service State Persistency
	2.13.2 SharedReaderQueue Persistency
	2.13.2.1 The Restore Process

	2.14 SharedReaderQueue Resource Management
	2.14.1 Maximum SharedReaderQueue Size
	2.14.1.1 Initial and Maximum Number of Samples
	2.14.1.2 Maximum Number of Bytes in Memory

	2.14.2 Memory Management for a Sample
	2.14.3 High and Low Watermarks
	2.14.4 Sample Replacement Policy

	2.15 High Availability
	2.16 Remote Administration
	2.17 Queuing Service Monitoring

	Chapter 3 Configuring Queuing Service
	3.1 How to Load the XML Configuration from a File
	3.2 XML Syntax and Validation
	3.3 XML Tags for Configuring Queuing Service
	3.3.1 Configuring Queuing Service Types
	3.3.2 Configuring Queuing Service
	3.3.3 Configuring Administration
	3.3.3.1 Configuring Memory Management for a CommandReply Buffer

	3.3.4 Configuring Monitoring
	3.3.4.1 Configuring Request-Reply Monitoring
	3.3.4.2 Configuring Publish-Subscribe Monitoring
	3.3.4.2.1 Publish-Subscribe Monitoring Configuration Inheritance

	3.3.4.3 Configuring Statistics Calculation Process
	3.3.4.3.1 Statistics Calculation

	3.3.5 Configuring Persistence Settings
	3.3.6 Configuring DomainParticipants
	3.3.6.1 Configuring Memory Management for Sample Buffers

	3.3.7 Configuring SharedSubscribers
	3.3.8 Configuring Session Settings
	3.3.9 Configuring SharedSubscribers Sessions
	3.3.10 Configuring SharedReaderQueues
	3.3.11 Configuring DeadLetterSharedReaderQueues

	3.4 Using Variables in XML
	3.5 Enabling RTI Distributed Logger in Queuing Service

	Chapter 4 Running Queuing Service
	4.1 Starting from Launcher
	4.2 Starting Manually from the Command Line
	4.3 Using Queuing Service as a Windows Service
	4.3.1 Enabling Queuing Service to Run as a Windows Service
	4.3.2 Running RTI Queuing Service as a Windows Service
	4.3.3 Notes when Running as a Windows Service
	4.3.4 Stopping Queuing Service when it is Running as a Windows Service
	4.3.5 Disabling Queuing Service from Running as a Windows Service

	Chapter 5 Administering Queuing Service from a Remote Location
	5.1 Enabling Remote Administration
	5.2 Remote Administration API
	5.2.1 Resource Identifiers
	5.2.2 Sample Selector

	5.3 Remote Administration Topics
	5.4 Remote Commands in Queuing Service
	5.4.1 Create SharedReaderQueue
	5.4.2 Delete SharedReaderQueue
	5.4.3 Flush SharedReaderQueue
	5.4.4 Get SharedReaderQueue Status
	5.4.5 Get Service Data
	5.4.6 Get Samples From a SharedReaderQueue
	5.4.7 Create SharedSubscriber
	5.4.8 Delete SharedSubscriber
	5.4.9 Shutdown

	5.5 Accessing Queuing Service from a Connext DDS application

	Chapter 6 Publish-Subscribe Monitoring of Queuing Service from a Remote Location
	6.1 Enabling Publish-Subscribe Monitoring Data
	6.2 Status Information for a SharedReaderQueue

	Chapter 7 High Availability
	7.1 SharedReaderQueue Replication
	7.1.1 SharedReaderQueue Replication Protocol
	7.1.1.1 Sample Replication Phase
	7.1.1.2 Enqueue Phase
	7.1.1.3 Consumer Assignment Phase
	7.1.1.4 Delivery Phase

	7.1.2 SharedReaderQueue Master Election Protocol
	7.1.3 SharedReaderQueue Replication Configuration
	7.1.3.1 Protocol Information Exchange

	7.2 Configuration Replication
	7.2.1 SharedReaderQueue for Configuration Replication

	7.3 Replication Clusters

	Chapter 8 Queuing Service Wrapper API
	8.1 QueueProducer Wrapper
	8.2 QueueConsumer Wrapper
	8.3 QueueRequester Wrapper
	8.4 QueueReplier Wrapper

	Chapter 9 Communication Using TCP Transport
	9.1 Asymmetric TCP Communication With Queuing Service
	9.2 Asymmetric TCP Communication with Queuing Service And Replication

