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Chapter 1 Introduction
Welcome to RTI® Shapes Demo! This demonstration application is a self-contained introduction to
the elegance and power of publish-subscribe networking. It goes beyond simple publishing and
subscribing, however. This demo will also give you a glimpse of the goals and capabilities of
RTI Connext® DDS. As you will see, RTI Connext DDS offers flexibility, performance, and reli-
ability well beyond other networking technologies while addressing the challenge of extremely
high-performance distributed networking.

Connext DDS offers flexible and fine-grained control over Quality of Service (QoS) parameters.
No one application can showcase all the supported QoS parameters. Shapes Demo is intended to
provide you with an abbreviated introduction to Connext DDS concepts; it covers a small subset of
the many QoS parameters available in Connext DDS.

Shapes Demo publishes and subscribes to (writes and
reads) colored moving shapes, which are displayed in the
demo’s window. Each copy of Shapes Demo can sim-
ultaneously publish and subscribe to many topics
(shapes).

Shapes Demo also demonstrates the concepts of Extens-
ible types. Shapes Demo can publish and subscribe to two
different data types: the "Shape” type or the "Shape Exten-
ded" type. In a production scenario, your deployed applic-
ations are communicating using some existing data type.
However, after deployment, you may find it necessary to
modify the deployed data model. For instance, you may
need to add new attributes. Connext DDS’s Extensible
Types feature is designed to make your data type flexible
and allow it to evolve over time.

1
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1.1 Guide to this Document

This document will guide you through the demonstration and the underlying principles.

l 1.2 Goals of the Demonstration below outlines the concepts and goals of this demonstration.

l Chapter 2 Background Information on page 4 provides an overview of publish-subscribe and other
communication paradigms. It also provides an overview of Connext DDS and its key concepts.

l Chapter 3 Installing and Using Shapes Demo on page 9 details the features of the demonstration
application.

l Chapter 4 Examples on page 26 jumps right into using the application and playing with examples.
Feel free to start here if you are familiar with publish-subscribe networking.

l Appendix A Running from the Command Line on page 64 explains how to run from the command
line.

l Appendix B Troubleshooting on page 66 contains a few troubleshooting hints.

1.2 Goals of the Demonstration

There is no teacher like experience. Playing with this demonstration will give you a first-hand introduction
to key Connext DDS concepts. These include:

l Anonymous publish-subscribe

Applications communicating over publish subscribe networks do not need to know the source or des-
tination of the data. This loosely coupled design simplifies (or eliminates) configuration, eases fault
tolerance, and boosts performance.

l Dynamic discovery

With publish subscribe, applications simply ask for the information they need and provide the
information they have. The middleware does the hard task of finding the information and delivering
it where it needs to go. There is no (or minimal) configuration; each node can simply join or leave
the network at any time.

l Failover

Connext DDS supports the concept of "ownership"; a publisher can own the responsibility for
providing data to the network. Ownership makes failover simple; if the owner fails, a backup owner
can instantly take over responsibility

l Failure notification

Connext DDS is designed for the real world. In the case of failure, e.g., the violation of a deadline or
the termination of service, interested applications are immediately notified.



1.2 Goals of the Demonstration

l Extensible Types

Connext DDS supports the "Extensible and Dynamic Topic Types for DDS" specification from the
Object Management Group (OMG)1. (See Connext DDS documentation for details and limitations.)
Using Extensible Types, existing applications that are designed to publish and subscribe data with a
particular data model will be able to communicate with newer applications that use an exten-
ded/compatible data model—without any changes or recompilation.

l Advanced concepts

If you are interested in exploring the demo more extensively, this document also briefly illustrates
additional use cases such as content-filtered topics, reliability, durability and time-based filtering.

1http://www.omg.org/spec/DDS-XTypes/
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Chapter 2 Background Information
This section provides an overview of existing middleware communication paradigms, including
publish-subscribe, along with basic concepts of Connext DDS.

If you are already familiar with this information, you can go directly to Chapter 3 Installing and
Using Shapes Demo on page 9.

2.1 Communication Models in Distributed Systems

Software applications are becoming increasingly distributed. A node in a distributed application
must find the right data, know where to send it, and deliver it to the right place at the right time.
Simplifying access to this data would enable a whole new class of distributed applications. The
challenge, especially in embedded and real-time networks, is to quickly find and disseminate
information to many nodes.

Three major communication paradigms have emerged to meet this need: client-server, message
passing, and publish-subscribe.

Client-server is fundamentally a many-to-one design that works well for systems with centralized
information, such as databases, transaction processing systems, and central file servers. However, if
multiple nodes generate information, client-server architectures require that all the information be
sent to the server for later redistribution to the clients, resulting in inefficient client-to-client com-
munication. The central server is a potential bottleneck and single-point of failure. It also adds an
unknown delay (and therefore indeterminism) to the system, because the receiving client does not
know when it has a message waiting.

Message-passing architectures work by implementing queues of messages. Processes can create
queues, send messages, and service messages that arrive. This extends the many-to-one client-
server design to a more distributed topology. Message passing allows direct peer-to-peer con-
nection; it is much easier to exchange information between many nodes in the system with a simple
messaging design. However, the message-passing architecture does not support a data-centric
model. Applications have to find data indirectly by targeting specific sources (e.g., by process ID
or "channel" or queue name) on specific nodes. So, this architecture doesn't address how
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applications know where a process/channel is, what happens if that process/channel doesn't exist, etc. The
application must determine where to get data, where to send it, and when to perform the transaction. In the
message-passing architecture, there is a model of the means to transfer data but no real model of the data
itself.

Publish-subscribe adds a data model to messaging. Publish-subscribe nodes simply "publish" information
they have and "subscribe" to data they need. Messages logically pass directly between the communicating
nodes. The fundamental communications model implies both discovery (i.e. what data should be sent) and
delivery (i.e. when and where to send the data). This design mirrors time-critical information delivery sys-
tems in everyday life (e.g. television, radio, magazines and newspapers). Publish-subscribe systems are
good at distributing large quantities of time-critical information quickly, even in the presence of unreliable
delivery mechanisms.

Publish-subscribe architectures map well to the real-time communications challenge. Finding the right data
is straight forward; nodes just declare their interest once and the system delivers it. Sending the data at the
right time is also natural; publishers send data when the data is available. Publish-subscribe can be efficient
because the data flows directly from source to destination without requiring intermediate servers. Multiple
sources and destinations are easily defined within the model, making redundancy and fault tolerance nat-
ural. Finally, the intent declaration process provides an opportunity to specify per-data-stream Quality of
Service (QoS), requirements. Properly implemented, publish-subscribe delivers the right data to the right
place at the right time.

In summary, client-server middleware is best for centralized data designs and for systems that are naturally
service oriented, such as file servers and transaction systems. Client-server middleware is not the best
choice in systems that entail many, often-poorly-defined data paths. Message passing, with "send that
there" semantics, map well to systems with clear, simple dataflow needs. Message passing middleware is
better than client-server middleware at free-form data sharing, but still require the application to discover
where data resides. Publish-subscribe, by providing both discovery and messaging, implements a data cent-
ric information distribution system. Nodes communicate simply by sending the data they have and asking
for the data they need.

2.2 Connext DDS Overview

Connext DDS presents a publish-subscribe connectivity framework that connects anonymous information
producers (publishers) with information consumers (subscribers). The overall distributed application is com-
posed of processes called "participants," each running in a separate address space, possibly on different
computers. A participant may simultaneously publish and subscribe to typed data-streams identified by
names called "Topics." The Application Programming Interface (API) offered by Connext DDS complies
with the Object Management Group (OMG) Data Distribution Service (DDS) standard. It is the first com-
prehensive specification available for "publish-subscribe" data-centric designs.

Connext DDS defines a communications relationship between publishers and subscribers. The com-
munications are decoupled in space (nodes can be anywhere), time (delivery may be immediately after pub-
lication or later), and flow (delivery may be reliably made at controlled bandwidth). To increase scalability,



2.2.1  Quality of Service

topics may contain multiple independent data channels identified by "keys." This allows nodes to sub-
scribe to many, possibly thousands, of similar data streams with a single subscription. When the data
arrives, Connext DDS can sort it by the key and deliver it for efficient processing.

Connext DDS is fundamentally designed to work over unreliable transports, such as UDP or wireless net-
works. No facilities require central servers or special nodes. Efficient, direct, peer-to-peer communications,
or even multicasting, can implement every part of the model.

2.2.1 Quality of Service

Fine control over Quality of Service (QoS) is perhaps the most important feature of Connext DDS. Each
publisher-subscriber pair can establish independent QoS agreements. Thus, Connext DDS designs can sup-
port extremely complex, flexible data-flow requirements.

QoS parameters control virtually every aspect of the Connext DDS model and the underlying com-
munications mechanisms. Many QoS parameters are implemented as "contracts" between publishers and
subscribers; publishers offer and subscribers request levels of service. Connext DDS is responsible for
determining if the offer can satisfy the request, thereby establishing the communication or indicating an
incompatibility error. Ensuring that participants meet the level-of-service contracts guarantees predictable
operation. More information about some important QoS parameters is presented below.

l Deadline: Periodic publishers can indicate the speed at which they can publish by offering guar-
anteed update deadlines. By setting a deadline, a compliant publisher promises to send a new update
at a minimum rate. Subscribers may then request data at that or any slower rate.

l Reliability: Publishers may offer levels of reliability, parameterized by the number of past issues
they can store for the purpose of retrying transmissions. Subscribers may then request differing
levels of reliable delivery, ranging from fast-but-unreliable "best effort" to highly reliable in-order
delivery. This provides per-data-stream reliability control.

l Strength: Connext DDS can automatically arbitrate between multiple publishers of the same topic
with a parameter called "strength." Subscribers receive from the strongest active publisher. This
provides automatic failover; if a strong publisher fails, all subscribers immediately receive updates
from the backup (weaker) publisher.

l Durability: Publishers can declare "durability," a parameter that determines how long previously
published data is saved. Late-joining subscribers to durable publications can then be updated with
past values.

Other QoS parameters control when Connext DDS detects nodes that have failed, suggest latency budgets,
set delivery order, attach user data, prioritize messages, set resource utilization limits, partition the system
into namespaces, and more. Connext DDS QoS facilities offer unprecedented flexibility and com-
munications control.

6
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2.3 Publish-Subscribe Simple Analogy

The publish-subscribe communications model is analogous to that of magazine or newspaper publications
and subscriptions. Think of a publication as a newspaper such as New York Times®. The Topic is the
name of the periodical ("New York Times"). The type specifies the format of the information (weekly prin-
ted magazine or daily newspaper). The user data is the contents (text and graphics) of each sample (weekly
or daily issues). The middleware is the distribution service (US Postal service or a paper delivery service)
that delivers the reading material from where it is created (a printing house) to the individual subscribers
(people's homes). This analogy is illustrated in Figure 2.1: Publish-Subscribe Example below.

Note that by subscribing to a publication, subscribers are requesting current and future samples of that pub-
lication, so that as new samples are published, they are delivered without having to submit another request
for data.
Figure 2.1: Publish-Subscribe Example

The publish-subscribe model is analogous to publishing magazines or newspapers. The Publisher sends samples of a par-
ticular Topic to all Subscribers of that Topic. With the New York Times®, the Topic would be "New York Times." The
sample consists of the data (articles and pictures) sent to all Subscribers daily or weekly. Connext DDS is the dis-

tribution channel: all of the planes, trucks, and people who distribute issues to the Subscribers.

In this example, Quality of Service (QoS) parameters can be linked to delivery requirements; deliver only
the Sunday edition, the paper must be delivered by 7:00am; the paper must be in the mailbox or on the
porch, etc. QoS parameters specify where, how, and when the data is to be delivered, controlling not only
transport-level delivery properties, but also application-level concepts of fault tolerance, ordering, and reli-
ability.

2.4 Publish-Subscribe Complex Analogy

Above, we drew an analogy between publish-subscribe and a newspaper delivery system. That is, of
course, an oversimplification. Complex systems have complex data-delivery requirements. Connext DDS
is perhaps more like a picture-in-picture-in-picture super-television system, with each super-TV set capable
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of displaying dozens or even thousands of simultaneous channels. Super-TV sets can optionally be broad-
cast stations; each can publish hundreds of channels from locally mounted cameras to all other interested
sets. Any set can add new pictures by subscribing to any channel at any time.

Each of these sets can also be outfitted with cameras and act as a transmitting station. TV sets publish
many channels, and may add new outgoing channels at any time. Each communications channel, indeed
each publisher-subscriber pair, can agree on reliability, bandwidth, and history-storage parameters, so the
pictures may update at different rates and record outgoing streams to accommodate new subscribers.

These super-TV sets can also join or leave the network, intentionally or not, at any time. If and when they
leave or fail, backup TV set-transmitters will take over their picture streams so no channels ever go blank.

That would be quite a system! It is only an analogy, but we hope this gives you some idea of the enormity
of the real-time communications challenge. It also outlines the power of publish-subscribe: as you will see,
Connext DDS provides simple parameters to permit all these scenarios with a remarkably simple and intu-
itive model.

2.5 Publish-Subscribe Example Application

An air traffic control system provides a more realistic example application. An air traffic control system
monitors and directs all flights over an entire continent. The data distributed in such a system is in the form
of aircraft tracks, which provides positional information (e.g., course, speed, etc.) about an airplane. Com-
ponents of an air traffic control system would include radar systems, airplanes and air traffic control centers
that provide current flight status information through real-time displays.

Managing correct distribution of data in such a system is complex. Each radar system can track many dif-
ferent airplanes, and each airplane may be tracked by more than one radar system. Real-time access to this
information is needed for displays at air-traffic control centers so that air traffic controllers can make
informed decisions. Air traffic controllers in the north-east may only want aircraft track information in their
area, so only a subset of data needs to be provided to them. Based on current local conditions (e.g. air
traffic, weather, etc.) air traffic controllers may issue flight plan updates back to airplanes in order to rout
around inclement weather and other airplanes. Though airplanes do not need flight plans from all other air
planes, it would be useful to have information about planes in the immediate vicinity.

Defining the air traffic control system in terms of publishers, subscribers and QoS parameters reveals that
Connext DDS is a natural fit to address this data distribution problem. Each radar system can be thought of
as a publisher that publishes the "tracks" topic which describes an airplane's positional information. Each
airplane that the radar system is tracking can be thought of as an "instance" of the "track" topic. The real-
time controller displays are both subscribers that subscriber to the "tracks" topic and publishers that publish
"flight plan" topic updates back to the specific airplane. QoS parameters can be used to manage and con-
trol deterministic behaviors and fault tolerance capabilities of the system.

8



Chapter 3 Installing and Using Shapes
Demo

3.1 Installation

Note: If you have Connext DDS installed, you may already have Shapes Demo installed. In this
case, you do not need to install Shapes Demo separately.

l On Linux® systems:

The distribution is packaged in a .run file. Run the downloaded file. For example:
> rti_shapes_demo-<version>-<architecture>.run

l On Windows® systems:

The distribution is packaged in a .exe file. Simply double-click the file to run the installer.
l On Mac® OS X® systems:

The distribution is packaged in a .dmg file. Double-click the file, this will open a folder that
contains another file—double-click that file to run the installer.

The resulting installation directory will be named rti_shapes_demo-<version>.

3.2 Running Shapes Demo

You can run Shapes Demo on a single computer or on multiple workstations connected via Eth-
ernet. Mac, Linux, and Windows operating systems are supported.

You can start multiple copies of the demo on as many computers as you would like (see below).
By default, the demo discovers other instances using multicast, loopback, or shared memory. The
discovery mechanism is fully configurable.

9
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Note: Shapes Demo is not compatible with applications built with RTI Data Distribution Service 4.5e and
earlier releases when communicating over shared memory. For more information, please see the Transport
Compatibility section in the RTI Connext DDS Core Libraries Release Notes for release 5.3.1 or earlier.

There are two ways to start Shapes Demo:

l From a command prompt:

<Shapes Demo installation directory>/bin/rtishapesdemo

For details on running from the command-line, see Appendix A Running from the Command Line
on page 64.

Note: If Shapes Demo was installed as part of a Connext DDS bundle: the <Shapes Demo install-
ation directory> mentioned in this document is the same as the <NDDSHOME> location mentioned
in the Connext DDS Core Libraries Getting Started Guide and User’s Manual (rti_connext_dds-
<version>).

l From RTI Launcher’s Learn tab, select Shapes Demo. (RTI Launcher is provided with RTI Con-
next DDS.)

Running a Second Instance of Shapes Demo

l Once you have an instance of Shapes Demo running, you can start additional ones by using the
above options, or in Shapes Demo, select File, New Shapes Demo. The new instance of Shapes



3.2.1  If You Cannot use Multicast

Demo will be completely independent from the first one.

When Shapes Demo starts, you will see a window like that in Figure 3.1: Shapes Demo—Initial View
below.
Figure 3.1: Shapes Demo—Initial View

3.3 Publish and Subscribe Task Panes on the next page

3.4 Other Controls on page 20

3.4.5 Output and Legend Tabs on page 22

3.2.1 If You Cannot use Multicast

If you want to run Shapes Demo on multiple computers that do not support multicast, or on a network that
doesn't support multicast, you need to explicitly give Shapes Demo a list of all of the hosts that need to dis-
cover each other; we call this the discovery peers list. The list can contain hostnames and/or IP addresses.
In its simplest format, each entry should be: builtin.udpv4://<hostname|IP>. The list can contain multiple,
comma-separated entries.

To set your discovery peers list, either:

l Set the NDDS_DISCOVERY_PEERS environment variable:

l On Windows systems: For example:

set NDDS_DISCOVERY_PEERS=builtin.udpv4://mypeerhost1, \
builtin.udpv4://mypeerhost2

11
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l On UNIX-based systems: For example, if you are using csh or tcsh:

setenv NDDS_DISCOVERY_PEERS builtin.udpv4://mypeerhost1,\
builtin.udpv4://mypeerhost2

l Edit the profile in <Shapes Demo installation directory>/resource/xml/RTI_SHAPES_DEMO_
QOS_PROFILES.xml or <rti_workspace>/USER_RTI_SHAPES_DEMO_QOS_
PROFILES.xml. (See 3.5 Shapes Demo’s Workspace on page 23.) For example, if the other
machine has an IP address of 10.30.42.8:

<discovery>
<initial_peers>

<element>builtin.udpv4://10.30.42.8</element>
</initial_peers>
<multicast_receive_addresses/>

</discovery>

3.3 Publish and Subscribe Task Panes

Connext DDS applications publish (write) and subscribe to (read) Topics. A Topic
has a name and a type; the type defines the structure of the data.

Shapes Demo can publish and subscribe to three Topics: Square, Circle, and Tri-
angle.

Clicking any of these options will open a dialog that allows you to set the QoS for
the publisher/subscriber:



3.3.1  Color

3.3.1 Color

Color is selectable only when creating a publisher. You can use color to represent different instances of the
same topic (shape).

A shape's color is used as a key—simply a way to distinguish between data for multiple instances of the
same shape (topic). Data that belongs to the same instance in the topic (shape) will have the same key
(color).

The Color (key) area is grayed out for subscribers. The subscriber of a topic will receive all data sent on all
instances of the topic.

3.3.2 Initial Size

The “initial size” field allows you to control how big the shape is.

3.3.3 Partitions

You can use partitions to dynamically isolate and group publishers and subscribers. If a publisher has a par-
tition, then only subscribers with that same partition will receive data from that publisher.

The demo supports four partitions: A, B, C, and D. Partitions support regular expressions, so a publisher
with a wildcard (*) partition will match subscribers with partitions A, B, C, and D.

A publisher with no partition (the default case) will not be matched with a subscriber that does have a par-
tition. That is, "no partition" is not the same thing as a wild card (*) partition.

3.3.4 Extended Attributes

This section is enabled when you are using the “Shape Extended”
Data Type in the Configuration dialog (see 3.4.4 Configuration
on page 21), this is the default case. The extended attributes only
apply to Publishers. (You will see it in the dialog for Subscribers,
but it cannot be enabled.) You can choose a fill pattern and rota-
tion speed for the shape.

These attributes illustrate a feature known as Extensible Types,
which are described in the RTI Connext DDS Core Libraries Get-
ting Started Guide Addendum for Extensible Types.

3.3.5 Applying QoS from a Profile

The drop-down listbox allows you to choose a QoS profile that
has been pre-loaded from an XML file.

13
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If the listbox contains only Default::Default, it means you haven’t spe-
cified an XML file via the Configuration dialog (see 3.4.4 Con-
figuration on page 21). In this case, Default::Default will result in all
default QoS settings, as described in the Connext DDS API reference
HTML documentation.

A profile contains the QoS values that will be used for the objects cre-
ated by the demo. All QoS values not specified in the selected profile
will use default values noted in the Connext DDS API reference HTML
documentation. Any QoS settings that you make in the Create New Pub-
lisher/Subscriber dialog take precedence over the values in the selected
profile. (See 3.3.6 Setting QoS Values on the facing page.)

Shapes Demo includes an XML file, RTI_SHAPES_DEMO_QOS_
PROFILES.xml, which includes these profiles:

l Default::Default—This profile means you want to use whichever profile in the XML file is marked
as the default (with <qos_profile name="x" is_default_qos="true">). In RTI_SHAPES_DEMO_
QOS_PROFILE.xml, the default profile is RTI_Shapes_Lib::Shapes_Default_Profile.

l RTI_Shapes_Lib::Shapes_Default_Profile—Sets the data writer’s autodispose_unregistered_
instances1 to false and the data reader’s History depth to keep the last 6 samples.

l RTI_Shapes_Lib::Batching—Enables best-effort communication in the data writer and keeps the
last 10 samples. It also enables batching with a maximum flush delay of 1 second and allows an
unlimited number of bytes to be batched for up to 10 samples.

l RTI_Shapes_Lib::History_KeepLast20—Sets the data reader’s History QoS to keep the last 20
samples.

l RTI_Shapes_Lib::Ownership_Shared—Sets Ownership to SHARED and Durability to
TRANSIENT with direct communication to true for both the data reader and data writer. Both the
reader’s and writer’s Liveliness is set to AUTOMATIC with a lease duration of 1 second. The
reader has a History depth is 100 samples and uses RELIABLE reliability.

l RTI_Shapes_Lib::Ownership_Exclusive—Sets Ownership to EXCLUSIVE for both the data
reader and data writer. The writer’s Ownership Strength is set to 4.

l RTI_Shapes_Lib::Durability_Volatile—Sets Ownership to VOLATILE and History of 100
samples for both the data reader and data writer. The reader uses RELIABLE Reliability.

l RTI_Shapes_Lib::Durability_Transient—Sets Ownership to TRANSIENT for both the data
reader and data writer.

1See Dispose vs. Unregister: on page 23.
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l RTI_Shapes_Lib::Durability_Persistent—Sets Ownership to PERSISTENT for both the data
reader and data writer.

l MonitorDemoLibrary::Default—Enables monitoring. See 3.6 Using Monitoring on page 24.

l MonitorDemoLibrary::SamplesRejectedScenario,
MonitorDemoLibrary::FixedSamplesRejectedScenario
—Profiles used in the tutorial for RTI Monitor (see 3.6 Using Monitoring on page 24).

l Security::NonSecure—Baseline profile of the Security QoS library with security disabled.

l Security::SecureAllowAll—Security enabled, subscribing and publishing to all topics is allowed.

l Security::SecureMinimal—Minimal security profile: does not protect outgoing data from being
tainted, does not check that incoming data hasn't been tainted, and unencrypted topics will be com-
municated with Multicast (no security) participants.

l Security::SecureDenyPubCircles—Circles published by this participant will be accepted by
secure participants because they have enable_write_access_control set to false for Circle.

l Security::SecureDenySubSquares—Prevents this participant from subscribing to Squares.

l Security::Imposter (adversarial)—Enables security. Tries to impersonate another peer by using its
certificate.

l Security::WriterTainter (adversarial)—Simulates a man in the middle tainting data while it's in
flight. This profiles applies to a data writer.

l Security::ReaderMulticast—Enables multicast in the data reader. This profiles applies to a data
reader.

Note: In all the Security profiles, the Triangle and Square topics are encrypted. Circles remain unen-
crypted.

RTI_SHAPES_DEMO_QOS_PROFILES.xml is in <Shapes Demo installation dir-
ectory>/resource/xml. If you open this file, you will see that these profiles have the property base_name,
which points to another profile. The profile uses all the QoS settings of the profile pointed to by base_
name plus the QoS settings that are explicitly specified. If a property is specified in both the base profile
and the current profile, the property in the current one is used.

In the Shapes Demo workspace directory (see 3.5 Shapes Demo’s Workspace on page 23) there is a file
named USER_RTI_SHAPES_DEMO_QOS_PROFILES.xml. You can use this files as a template to
create your own QoS profiles. Shapes Demo automatically loads the profiles from this file and the profiles
in RTI_SHAPES_DEMO_QOS_PROFILES.xml.

3.3.6 Setting QoS Values

There are two ways to control the QoS values for the publisher and subscriber:

15
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1. You can modify the QoS values in a profile and apply that profile as described in 3.3.5 Applying
QoS from a Profile on page 13.

2. You can explicitly set some QoS values directly in the
Create New Publisher/Subscriber dialog, as seen in this
screenshot and described below. Values set in the dialog
override values in the profile.

3.3.6.1 Exclusive Ownership and Strength

Ownership determines whether or not the instance (specified by
color) of the Topic is exclusively owned by one publisher—that
is, if multiple publishers of Red Squares can send data to this
instance at the same time or not.

If the “Exclusive” check box is selected for a publisher, the Strength box will become available for input.
The publisher with the highest Ownership Strength number is the only publisher that can write data to this
instance.

If the “Exclusive” check box is selected for a subscriber, it means that the subscriber only wants data from
one publisher—the one with the highest ownership strength.

The publisher and subscriber must use the same setting, so either check this box for both, or leave it
unchecked for both. Otherwise, their QoS are incompatible and the publisher and subscriber will not com-
municate.

3.3.6.2 Durability

Durability controls whether the publisher will store the data that it sends, so that it can be sent to new sub-
scribers that join the system later. The possible settings for this QoS are:

l VOLATILE(Default) Data samples are not stored.

l TRANSIENT Connext DDS will attempt to store samples in memory. The data will survive the
data writer.

l TRANSIENT_LOCALConnext DDS will attempt to store samples in memory. The data will not
survive the data writer.

l PERSISTENT Connext DDS will store previously published samples in permanent storage, like a
disk. The data will survive the data writer.

Which particular samples are stored depends on other QoS such as History (3.3.6.6 History on page 18)
and ResourceLimits.



3.3.6.3  Time-Based Filter

If Durability is selected for a subscriber, the subscriber will ask the publisher to send all previously written
data. All data in the publisher's history queue will be sent to the subscriber. To buffer this temporary high
throughput, the subscriber should use a History value comparable to the publisher's.

The publisher and subscriber must use compatible settings, as described in Table 3.1 Valid Combinations
of Durability.

Subscriber

VOLATILE TRANSIENT_
LOCAL TRANSIENT PERSISTENT

Publisher

VOLATILE yes incompatible incompatible incompatible

TRANSIENT_
LOCAL

yes yes incompatible incompatible

TRANSIENT yes yes yes incompatible

PERSISTENT yes yes yes yes

Table 3.1 Valid Combinations of Durability

Note: If you select Durability, you must also select Reliability (this applies to the publisher and sub-
scriber).

3.3.6.3 Time-Based Filter

The Time-Based Filter field is only available when creating a subscriber. It is the minimum separation time
(in milliseconds) that the subscriber wants between data updates. Any data arriving within this time inter-
val will be discarded. Where possible, the publisher will not "publish" the data. Valid settings range from 0
to 31,536,000,000 ms (1 year).

The Time-Based Filter value must be less than the Deadline value (3.3.6.7 Deadline on page 19).

3.3.6.4 Reliability

The Reliability QoS can be RELIABLE or BEST_EFFORT. Selecting the Reliability check box sets Reli-
ability to RELIABLE. If the check box is not selected, Reliability is set to BEST_EFFORT.

For publishers:

l The default is RELIABLE.

l If Reliability is RELIABLE (check box is selected), the publisher will attempt to deliver all the data
that has been sent. If data is not received by the subscriber due to a communication error, Connext
DDS will retransmit the data.

17
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l If Reliability is BEST_EFFORT (check box is not selected), the publisher will use best-effort com-
munication and will not retransmit any missing data.

For subscribers:

l The default is BEST_EFFORT.

l If Reliability is RELIABLE (check box is selected), the subscriber expects to receive all data
updates reliably. The subscriber listens for "heartbeats" from the publisher and responds with either
a positive acknowledgement to indicate data receipt or a negative acknowledgement to initiate
retransmission of missing data.

l If Reliability is BEST_EFFORT (check box is not selected), the subscriber will not expect lost data
to be resent.

The publisher and subscriber must use compatible settings, as described in Table 3.2 Valid Combinations
of Reliability.

Subscriber

Reliability not selected (default) (BEST_
EFFORT)

Reliability selected
(RELIABLE)

Publisher

Reliability not selected (default) (BEST_
EFFORT)

yes incompatible

Reliability selected (RELIABLE) yes yes

Table 3.2 Valid Combinations of Reliability

3.3.6.5 Liveliness and Lease Duration

Liveliness is used to detect the state of the publisher even when it is not actively sending data. For a pub-
lisher, the Liveliness value is the maximum time interval within which a publisher will signal that it is act-
ive. For a subscriber, the Liveliness value is the maximum time interval within which a subscriber expects
to be notified that the publisher is alive.

A subscriber’s Liveliness must be greater than or equal to the publisher’s Liveliness.Valid settings range
from 0 to 31,536,000,000 ms (1 year), or “INF” for infinity (the default).

3.3.6.6 History

History controls the amount of data that is kept in the send queue. This is normally used in connection with
Durability and/or Reliability. If Durability is selected, then History determines how much previously sent
data is sent to late-joining subscribers. Valid settings range from 0 to 100,000,000. The default is 1.
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3.3.6.7 Deadline

For a publisher, the Deadline value is the time interval within which the publisher commits to updating
data at least once, if not more frequently.

For a subscriber, the Deadline value is the maximum time interval between data updates that the subscriber
expects from the publisher.

If a publisher fails to send a data update within the subscriber’s requested Deadline interval, the subscriber
will get a "deadline missed" notification.

Valid settings range from 1 ms to 1 year, or “INF” for infinity (the default).

A subscriber's Deadline value must be greater than or equal to the publisher's. A subscriber’s deadline
must also be >= its minimum separation (see 3.3.6.3 Time-Based Filter on page 17).

3.3.6.8 Lifespan

Lifespan is only available when creating a publisher. The purpose of the Lifespan QoS is to avoid deliv-
ering stale data.

Each data sample written has an associated expiration time, beyond which the data should not be
delivered. Connext DDS attaches timestamps to all data sent and received. The expiration time of each
sample is computed by adding the specified Lifespan duration to the destination timestamp. When you spe-
cify a finite Lifespan, Connext DDS will compare the current time with those timestamps and drop data
when the specified Lifespan expires. The default setting is an infinite duration, meaning the data will never
‘expire.’

If you have multiple publishers for the same instance, they should all use the same Lifespan value.

Valid settings range from 1 ms to 1 year, or “INF” for infinity (the default).

3.3.7 Using a Content Filtered Topic

The ‘Use filter’ check box is only available when creating a subscriber. If selected, a filter is created for
data updates to a topic based on the content of the data. Only data that satisfies the filter will be made avail-
able to the subscriber.

3.3.8 Controlling the Read Method

When creating a subscriber, you can choose whether it will use read() or take().

With read() (the default), Connext DDS will continue to store the data in the data reader’s receive queue.
The same data may be read again until it is taken in subsequent take() calls. Graphically, a “new” sample
is shown with a thicker border.

With take(), Connext DDS will remove the data from the data reader’s receive queue. The data returned
by Connext DDS is no longer stored by Connext DDS.
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3.4 Other Controls

The Controls sub-panel includes various commands that you can use to control the demo.

3.4.1 Delete All

This command deletes all the publishers and subscribers that have been created in the demo application.
All objects moving in the application window will disappear and no data will be sent or received. (NOTE:
Delete All removes all the entities but it does not destroy the participant. The quick reset is to select Con-
figuration, Stop, Start). If you have started multiple copies of Shapes Demo, you will need to click
Delete All in each copy to delete their respective publishers and subscribers.

3.4.2 Pause Publishing

The Pause Publishing command is only effective on publishers. It pauses the sending of coordinate data
for the shape until you click Resume Publishing. When Pause Publishing is clicked, the label changes to
Resume Publishing.

The Pause/Resume Publishing commands are also available when you right-click an entity (if it is a pub-
lisher) in the Legend tab. In this way you can individually pause each single publisher.

When publishing is paused, you will still see published topics (colored shapes) moving in the publisher
demo window, but corresponding topics in a subscriber window will stop moving. That’s because what
you see in the publisher window is the data being generated (not necessarily sent); what you see in the sub-
scriber window is data being received. When you pause publishing, the subscriber stops receiving updates
to the topic (that is, the shape’s coordinates).

3.4.3 Show/Hide History

The Show History and Hide History commands tells the demo to start/stop drawing the shapes from all
the packets that are in the subscriber’s history queue.

This command has no effect on subscribers that use the take()method of accessing data. It is only for sub-
scribers that use read(). It also has no effect on publishers.

If you set History greater than 1, by default all the packets in the history queue are displayed, showing the
historical path of the shapes on the subscriber’s canvas. If History is 1 (the default), no historical samples
appear because there is only room for one sample in the queue.

By default, historical samples are shown; that is, Show History is the default setting and you will see the
Hide History command in the Controls panel.

When you select Show History, the samples stay in the data reader’s queue, so you can see the shadow
trail of the historical samples (up to the number set in the History field).



3.4.4  Configuration

3.4.4 Configuration

Note: To make changes with this dialog, first click Stop. Then make the desired changes and click Start.

The Configuration dialog is where you can change the domain ID, manage QoS profiles, and start/stop.
Using the Stop and Start buttons is the equivalent of a Reset button, short of quitting and restarting the
application.

The dialog also lets you choose between two data types: Shape and Shape Extended (the default). Use
Shape Extended if you want to select the shape’s fill pattern or rotation speed when you create a pub-
lisher (see 3.3.4 Extended Attributes on page 13).

The “Enable distributed Logger” checkbox is described in 3.7
Using RTI Distributed Logger on page 24.

You can use the “Choose the profile” listbox to select a profile
from one of the loaded XML files. If this listbox contains only
“Default::Default”, this means no XML files have been loaded.

To load an XML QoS Profiles file:

1. Click Stop. (Any publishers/subscribers will be deleted when you do this.)

2. ClickManage QoS.

3. In the resulting dialog box, click Add; then browse
to select an XML QoS profiles file.

You can use your own file, or the following files,
which are provided with Shapes Demo:

l RTI_SHAPES_DEMO_
QOS_PROFILES.xml, in <Shapes Demo
installation directory>/resource/xml. For information on the contents of this file, see 3.3.5
Applying QoS from a Profile on page 13.

l USER_SHAPES_DEMO_QOS_PROFILES.xml in Shapes Demo’s workspace. You can
edit this file to include your own profiles.

If you specify multiple XML files, the Up and Down buttons change the order in which they are
loaded. If you load files that contain profiles with is_default_qos=”true”, the last profile loaded is
used. This information is saved in the workspace (see 3.5 Shapes Demo’s Workspace on page 23).
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To unload an XML QoS Profiles file:

l Select Configuration, then Stop.

l ClickManage QoS.

l In the resulting dialog box, clear the check box next to the file, or select the file and click Remove.

If the XML QoS Profile file has errors:

If you add an XML QoS Profile file that has errors and you click Ok, Shapes Demo will try detect the
error and will show a popup that indicates with file has been detected to be wrong. Once you click
OK, the Load/Unload QoS profile files window will automatically uncheck all the incorrectly format-
ted files.

At this point you can either press Ok and proceed without loading those files or edit them by pressing
the Edit button: the default XML editor will open, allowing you to correct the file and correct the
error.

3.4.5 Output and Legend Tabs

There are two tabs at the bottom of the demo application window.

l The Legend tab shows you the publishers and subscribers created for the demo and their QoS set-
tings.

Right-click on a publisher entity in the Legend tab to access these commands:
l Pause/resume publishing (see 3.4.2 Pause Publishing on page 20)

l Dispose data and delete the data writer.

l Unregister data and delete the data writer.

Right-click on a subscriber in the Legend tab to access a command to delete the data reader.



3.5 Shapes Demo’s Workspace

Another way to delete a publisher or subscriber is to click on it in the Legend tab and press the
Delete button on your keyboard.1

Dispose vs. Unregister:

When data is disposed, all data readers are informed that, as far as the data writer knows, the data
instance no longer exists and can be considered “not alive.” When data is unregistered, this only indic-
ates that a particular data writer no longer wants to modify an instance—an important distinction if
there are multiple writers for the same instance.

l The Output tab shows statuses, events and other information.

3.5 Shapes Demo’s Workspace

The workspace directory for Shapes Demo is here:

l On Mac systems: 
/Users/your user name/rti_workspace/version/user_config/shapes_demo

l On Linux systems: 
/home/your user name/rti_workspace/version/user_config/shapes_demo

l On Windows systems: 
<your home directory>\rti_workspace\version\user_config/shapes_demo

Shapes Demo uses the concept of a workspace, which is an XML file that contains the last settings used
by Shapes Demo. For example, it contains the list of QoS XML profile files loaded through the Load/Un-
load QoS profile files window and whether or not the files should be loaded. Another useful piece of
information saved in the workspace is the last domain ID specified by the Configuration window. This
allows you to start Shapes Demo with well-known settings each time. (If you start Shapes Demo with the -
domainId option, that domain ID setting is not saved in the workspace.)

1When you press Delete, the current setting for the WriterDataLifecycle QoS policy’s autodispose_unregistered_
instances field determines if the writer’s data is disposed before it is unregistered. If autodispose_unregistered_
instances has not been changed via a QoS profile, the default setting will cause the data to be disposed and unregistered.
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If the workspace directory contains a file named RTI_SHAPES_DEMO.xml, this file is used as the work-
space file. You can specify a different workspace file by starting Shapes Demo with the -workspaceFile
<filename> command-line option. If the file specified with this option cannot be found, it will be created.

If you do not use the -workspaceFile <filename> option and RTI_SHAPES_DEMO.xml is not in the
workspace directory, Shapes Demo will automatically create RTI_SHAPES_DEMO.xml in the work-
space directory.

3.6 Using Monitoring

This section is only useful if you have RTI Monitor, a graphical tool that displays monitoring data from
Connext DDS applications in which monitoring is enabled.

To enable monitoring in Shapes Demo, select theMonitorDemoLibrary::Default QoS profile described
in 3.3.5 Applying QoS from a Profile on page 13. For more information on monitoring, please see the RTI
Monitor Getting Started Guide and RTI Monitor User’s Manual.

3.7 Using RTI Distributed Logger

Shapes Demo provides integrated support for RTI Distributed Logger and is enabled by default.

When you enable Distributed Logger, Shapes Demo will publish its log messages to Connext DDS in the
same domain that Shapes Demo is using. Then you can use RTI Monitor or RTI Admin Console1 to see
the log message data. Since the data is provided in a DDS Topic, you can also use rtiddsspy2 or even write
your own visualization tool.

To disable/enable Distributed Logger, use the checkbox provided in the Configuration dialog under the
Controls menu.

1RTI Monitor and RTI Admin Console are separate tools that can run on the same host as your application or on a different
host.

2rtiddsspy is provided with Connext DDS.



3.8 Using Security

3.8 Using Security

Shapes Demo supports the RTI Security Plugins, which provide security features such as authentication,
access control, and encryption. These features can be tested by selecting the corresponding QoS profile
within the Security QoS library as described in 3.3.5 Applying QoS from a Profile on page 13 and fol-
lowing the example in 4.7 Security Examples on page 41. For more information on security, please see the
RTI Security Plugins Release Notes and RTI Security Plugins Getting Started Guide
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Chapter 4 Examples
Important: Unless otherwise noted, these examples assume you are using the default Shapes
Demo settings—meaning the RTI_SHAPES_DEMO_QOS_PROFILES.xml file is loaded. This
file tells Connext DDS to load the profile called Shapes_Default_Profile from the RTI_Shapes_
Lib library and use it as the default settings. For more information about profiles, see 3.3.5 Apply-
ing QoS from a Profile on page 13.

4.1 Publish-Subscribe Example

This example showcases the publish-subscribe concept. It uses best-effort communication and
shows the decoupling between the publisher and the subscriber; i.e., the publisher can send data
without knowing where/what the subscriber(s) are, and the subscriber can receive data without
knowing where/what the publisher(s) are. In this example, you will be asked to start two copies of
Shapes Demo. There is no need to configure a discovery service or provide any a priori inform-
ation about where the demo applications are being run.

1. Create a red circle publisher:

a. Start Shapes Demo. We will refer to
this instance of the application as
Publisher1.

b. Under Publish, click on Circle.

c. In the Create New Publisher win-
dow:

l Select RED for Color.

l Click OK.

You will see a red circle moving on
the Publisher canvas. If there were
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any subscribers, the publisher would start sending data (the coordinates of the red circle).

2. Create a subscriber for circles:

a. Start a second Shapes Demo. We will refer to this
instance of the application as Subscriber1.

b. Under Subscribe, click on Circle.

c. In the Create New Subscriber window:

l Click OK. (Use all the defaults.)

You will see 6 red circles with blue borders on the Sub-
scriber canvas, mirroring the movements of the circle in the
Publisher canvas. The leading circle indicates the current
position of the published circle. The other circles are the his-
torical samples kept by Connext DDS. You can see the dif-
ference between historical data and new data looking at the thickness of the border. (You can also
hide historical data by selecting Hide History from the Controls menu.)

Your windows should look similar to Figure 4.1: Publisher and Subscriber Displays below.
Figure 4.1: Publisher and Subscriber Displays

3. Test real-time data delivery:

To show that the subscriber is receiving real-time data, move the cursor over the Publisher's red
circle and click the mouse button. This will stop the red circle in the publisher canvas. Drag the
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cursor and move it around while holding down the mouse button. The red circles on the subscriber
canvas should exactly mirror your mouse movements.

Congratulations, you have just finished the first exercise, which illustrates basic publish-subscribe func-
tionality!

If you plan to continue with the next exercise, leave the two demo windows running. The next exercise
will use the red circles.

4.2 Multiple Instances Example

Instances are useful when you are dealing with data that is unpredictable in terms of its creation and dele-
tion—e.g., aircraft/airplane flight tracks and shipment tracking. Flights and shipments can come and go.
The application has no way of knowing when or how many flights/shipments show up. Connext DDS
provides rich semantics that can be used to track, monitor, and check the state (new, deleted, no writers,
etc.) of individual instances. Some of the possible notifications are displayed in the Output tab.

Publishers and subscribers are associated with a topic. If you create a new topic every time a new flight is
detected, you would need to create a matching subscriber and publisher pair. This is obviously not scal-
able, since you can have many different aircraft flight plans.

Instances give you the ability to scale a topic. Unique instances of a topic are defined by unique key val-
ues. A subscriber of a topic will get all the data sent on all the instances of this topic. Take the example of
flight track data: the key could be the flight ID, pilot name or mission code. Regardless of how many new
flights there are, you would only need one subscriber to get the data, because the topic is the same.

In this example, the topic is the shape of the object (Square, Circle or Triangle) and the key is its color. So
different colors of an object give you different instances of the topic. For example, a red circle is a different
instance from a green circle, yet they are all instances of the Circle topic.

At this point, you should have two copies of Shapes Demo running, which will be referred to as Pub-
lisher1 and Subscriber1. In this example, you will be asked to start additional copies of Shapes Demo.

Tip: If you make a mistake during the following steps and need to delete a single publisher or subscriber,
select the item in the Legend tab and press the Delete key on your keyboard.

1. This exercise picks up where the previous one left off. So you should have two demo windows run-
ning: one is publishing red circles (Publisher1) and the other is subscribing to circles (Subscriber1).

2. In Subscriber1, choose Delete All from the Controls Menu.

3. Create a circle subscriber with History = 1:

a. In Subscriber1, under Subscribe, click on Circle.

b. In the Create New Subscriber window:
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l Change the History field from 6 to 1.

l Click OK.

You should now see one red circle moving in each instance of Shapes Demo.
4. Create a green circle publisher:

a. In Publisher1 under Publish, click on Circle.

b. In the Create New Publisher window:

l SelectGREEN for Color.

l Click OK.

You should see two circles moving on each canvas—one red and one green.

Figure 4.2: Publisher and Subscriber Displays for Multiple Instances

Notice that we did not have to do anything in Subscriber1 to start receiving the green circle’s
data. That’s because the subscriber of a topic (Circle, in this case) gets all data sent for all
instances of the topic. The green circle was just another instance of the topic Circle, so the sub-
scriber received this new data automatically.

5. Create another red circle publisher in a new window:

a. Start a third Shapes Demo. We will refer to this copy of the application as Publisher2.
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b. Under Publish, click on Circle.

c. In the Create New Publisher window:

l Select RED for Color

l Click OK.

We now have multiple publishers updating the same instance (Red) of the topic Circle, as in Click
OK. above. You'll see that the red circle in Subscriber1's canvas flickers between different locations.
This happens because the subscriber is receiving position data from both of the publishers and is try-
ing to display them at the same time. Details on how to handle such a situation will be discussed in
the next section.

a. Start a third Shapes Demo. We will refer to this copy of the application as Publisher2.

b. Under Publish, click on Circle.

c. In the Create New Publisher window:

l Select RED for Color

l Click OK.

We now have multiple publishers updating the same instance (Red) of the topic Circle, as in Figure
4.3: Two Publishers and One Subscriber on the next page. You'll see that the red circle in Sub-
scriber1's canvas flickers between different locations. This happens because the subscriber is receiv-
ing position data from both of the publishers and is trying to display them at the same time. Details
on how to handle such a situation will be discussed in the next section.

6. Click Delete All in the Controls sub-panel of each of the three demo windows.

Note: A Subscriber shape may appear with an X or a ? symbol on it:

l X means the instance has been disposed by the DataWriter (DDS_NOT_ALIVE_DISPOSED_
INSTANCE_STATE).

l ? means none of the DataWriters that are currently alive are writing the instance (DDS_NOT_
ALIVE_NO_WRITERS_INSTANCE_STATE).

l For more information on these states, please see the RTI Connext DDS Core Libraries User’s
Manual or API reference HTML documentation.
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Figure 4.3: Two Publishers and One Subscriber

4.3 Ownership Example

As you saw in the previous example, it's possible for multiple publishers to simultaneously send data to the
same instance of a topic. You may or may not want this behavior. For certain types of data such as com-
mands, you may want to receive updates from just one publisher at a time in order to be ensure con-
sistency. Exclusive ownership is a way to ensure that only one publisher's data for a specific instance can
get through to a subscriber. With multiple publishers, the one with the highest ownership strength wins.

At this point, you should have three copies of Shapes Demo running, which will be referred to as Pub-
lisher1, Publisher2 and Subscriber1. If you have not already done so, click Delete All on each one, so they
are not publishing or subscribing to any shapes.

Tip: If you make a mistake during the following steps and need to delete a single publisher or subscriber,
select the item in the Legend tab and press the Delete key on your keyboard.
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1. In Publisher1, create an orange triangle publisher, with
Exclusive ownership, Strength = 1:

a. Under Publish, click on Triangle.

b. In the Create New Publisher window:

l SelectORANGE for Color.

l Check Exclusive.

l Set Strength to 1.

l Click OK.

You should see a floating orange triangle on the can-
vas. We created a publisher with exclusive ownership
and a strength of 1.

2. In one of the other Shapes Demo windows, create a
triangle subscriber with Exclusive ownership. We
will call this window Subscriber1.

a. Under Subscribe, click on Triangle.

b. In the Create New Subscriber window:

l Check Exclusive.

l Click OK.

You should see 6 orange triangles with blue borders
moving around in the Subscriber1 canvas. So far,
this is similar to the publisher-subscriber exercise.

3. In the third window, create an orange triangle pub-
lisher with Exclusive ownership and Strength = 3.
We will call this window Publisher2.
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a. Under Publish, click on Triangle.

b. In the Create New Publisher window:

l SelectORANGE for Color.

l Check Exclusive and set Strength to 3.

l Click OK.

You should see an orange triangle in Publisher2's
canvas, as in Figure 4.4: Different Ownership
Strengths on the facing page.

4. Use your mouse in Publisher2 to drag the triangle
around the canvas. The triangle in Subscriber1
should exactly mirror your mouse movements,
because Publisher2 has a higher strength than Pub-
lisher1.

5. Click Delete All in the Controls sub-panel of each of the three demo windows.
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Figure 4.4: Different Ownership Strengths

4.4 Failure Detection Example

You may want to detect when the publisher or the network is behaving abnormally and the subscriber
hasn't seen updates for an instance within a specified period of time. The Deadline QoS offers a way to do
this.

Deadline is a contract between the publisher and the subscriber based on the data rate. The publisher offers
to send data at least once in its specified deadline period and the subscriber requests to receive data within
its deadline period. If either the subscriber or the publisher misses their deadline, an event callback for
"deadline missed" occurs.

At this point, you should have three copies of Shapes Demo running, though you will only use two of
them for this example. The two copies will be referred to as Publisher1 and Subscriber1.

Tip: If you make a mistake during the following steps and need to delete a single publisher or subscriber,
select the item in the Legend tab and press the Delete key on your keyboard.
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1. In Publisher1, create a cyan square publisher,
Deadline = 200 ms.:

a. Under Publish, click on Square.

b. In the Create New Publisher window:

l Select CYAN for Color.

l Set Deadline to 200 ms.

l Click OK.

2. Create a square subscriber in Subscriber1 with Deadline
= 4000 ms:

a. Under Subscribe, click on Square.

b. In the Create New Subscriber window:

l Set Deadline to 4000 ms.

l Click OK.

You'll see six cyan squares moving around Sub-
scriber1's canvas. This set of squares mirrors the move-
ment of the cyan square in Publisher1's canvas, along
with 5 historical samples.

Note: The subscriber's deadline must be greater than or
equal to the publisher's deadline. If not, an "Incompatible QoS (Deadline) on Square" error message
will be displayed in the Output tab of the Subscriber demo application.

3. In Publisher1’s Controls sub-panel, click Pause Publishing.

The cyan square in Subscriber1's canvas should freeze. Note that now all the samples' borders have
the same thickness: this indicates that all of them are historical data. In Subscriber1, select the Out-
put tab to see messages notifying the application that the promised deadline of 4000 ms has been
missed, as seen in Figure 4.5: Missed Deadline on the facing page.

4. Click Resume Publishing.

The cyan squares in Subscriber1's canvas will start moving again, mirroring the movement in Pub-
lisher1's canvas.

5. Click Delete All in the Controls sub-panel of each demo window.



4.5 Failover Example

Figure 4.5: Missed Deadline

4.5 Failover Example

In most mission-critical systems, there are failover mechanisms to handle unexpected behaviors. In this
exercise, we combine the previous two exercises to illustrate hot-failover behavior where the "primary"
publisher goes down and the subscriber immediately detects the loss and starts taking data from the "sec-
ondary" publisher.

At this point, you should have three copies of Shapes Demo running, referred to as Publisher1, Publisher2
and Subscriber1.

Tip: If you make a mistake during the following steps and need to delete a single publisher or subscriber,
select the item in the Legend tab and press the Delete key on your keyboard.
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1. In Publisher1, create a red circle publisher with
Exclusive Ownership, Strength = 1, Deadline = 400
ms:

a. In Publisher1, under Publish, click on Circle.

b. In the Create New Publisher window:

l Select RED for Color.

l Check Exclusive.

l Set Strength to 1.

l Set Deadline to 400 ms.

l Click OK.

2. In Publisher2, create a red circle publisher with
Exclusive Ownership, Strength = 3, Deadline = 400
ms:

a. Under Publish, click on Circle.

b. In the Create New Publisher window:

l Select RED for Color.

l Check Exclusive.

l Set Strength to 3.

l Set Deadline to 400 ms.

l Click OK.



4.6 Extensible Types Examples

3. In Subscriber1, create a circle subscriber, Exclusive
selected, Deadline = 2000 ms.

a. Under Subscribe, click on Circle.

b. In the Create New Subscriber window:

l Check Exclusive.

l Set Deadline to 2000 ms.

l Click OK.

In the subscriber canvas, you should see red circles
that mirror the movement of the one in Publisher2.
This happens because Publisher2's circle has a higher
strength that Publisher1's. The deadline setting for the
subscriber is the time at which the subscriber application will "fail-over" to the lower strength pub-
lisher application.

4. In Publisher2, click on Pause Publishing.

After 2000 ms, Subscriber1 will show a "requested deadline missed" message in its Output tab and
at the same time, fail over to display the movements of the red circle in Publisher1.

Publisher2 initially had exclusive ownership of the red circle instance because it had a higher
strength. However, this ownership was lost to the lower-strength Publisher1 when the subscriber
missed a deadline. This is especially useful if a publisher is unable to gracefully shutdown and relin-
quish its ownership.

5. In Publisher2, click on Resume Publishing.

Subscriber1's red circle should immediately switch to tracking the movements of Publisher2.
6. Click Delete All in the Controls sub-panel of each demo window.

4.6 Extensible Types Examples

Data models often need to evolve. In a deployed system, you might want to deploy new applications that
can handle additional attributes in the data model, yet maintain compatibility with already deployed applic-
ations—without making any changes. The Extensible Types feature is designed to handle these situations:
applications using different but compatible data-types can still communicate. The Shapes Demo applic-
ation uses two different data types to demonstrate this scenario. Shapes Demo can publish and subscribe to
either a “Shapes Extended” data type (the default) or a more basic “Shape” data type. The difference
between these types is that the Shapes Extended type includes two more pieces of information: a fill-pat-
tern and a rotation speed.

In addition to the QoS settings that you will experiment with in these exercises, there is another QoS spe-
cific to Extensible Types (TypeConsistencyEnforcementQosPolicy) that can further customize the
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behavior of applications when using Extensible Types. For details, see the RTI Connext DDS Core Librar-
ies Getting Started Guide Addendum for Extensible Types.

At this point, you should have three copies of Shapes Demo running, referred to as Publisher1, Publisher2
and Subscriber1. All are using the Shape Extended data type by default.

4.6.1 Introduction to the Shape Extended Type

1. Publish a Square in Publisher1. In the publish screen, choose the horizontal hatch pattern and set the
rotation speed to middle setting.

2. Subscribe to Squares in Subscriber1. In the subscriber, you
will see the shape with the selected pattern, rotating at the
selected speed.

3. Feel free to repeat with other shapes, fill patterns, and speeds.

4. Select Delete All in each instance of Shapes Demo.



4.6.2  Publishing Extended Type, Subscribing to Basic Type

4.6.2 Publishing Extended Type, Subscribing to Basic Type

This scenario simulates the situation where new applications are publishing data with extra information
using an extended data model, but there are existing applications that only need to subscribe to the original,
basic data model (and in fact, don’t even have the logic to deal with extra attributes in the newer, extended
model).

1. In Publisher 1 (which is using the Shape Extended type by default), publish a blue square. Select the
horizontal hatch fill-pattern and a medium rotation speed.

2. In Subscriber1’s Configuration dialog, press Stop, select the “Shape” data type, press Start.

3. In Subscriber1, subscribe to squares.

4. In Publisher 1, you should see a square with the selected pattern, rotating at the selected speed. In
Subscriber 1, you should see a blue square that does not have the pattern and is not rotating.

5. Select Delete All in both instances of Shapes Demo.
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4.6.3 Publishing Original and Extended Types, Subscribing to Extended
Type

This scenario simulates the situation where deployed applications are publishing data using the old model
and new applications are receiving data of both the original and extended data types.

1. In Publisher1’s Configuration dialog, press Stop, select the “Shape” data type, press Start.

2. In Publisher 1, publish a blue square.

3. In Publisher2 (using the Shape Extended type by default), publish a red square with the horizontal
hatch fill-pattern and a medium rotation speed.

4. In Subscriber1 (using the Shape Extended type by default), subscribe to squares. You should see
that Subscriber1 is receiving both types of squares, as seen below.

4.7 Security Examples

RTI Security Plugins introduce a robust set of security capabilities, including authentication, encryption,
access control and logging. Secure multicast support enables efficient and scalable distribution of data to
many subscribers. Performance is also optimized by fine-grain control over the level of security applied to
each data flow, such as whether data confidentiality, or just data integrity is required.



4.7 Security Examples

RTI Shapes Demo is configured to run Security examples out of the box, with no configuration from your
side other than selecting the correct profile.

<Shapes Demo installation directory>/resource/xml includes the following files, which are used by
Shapes Demo to configure/enable security:

l RTI_SHAPES_DEMO_GOVERNANCE_MAX.xml

l RTI_SHAPES_DEMO_GOVERNANCE_MIN.xml

l RTI_SHAPES_DEMO_PERMISSIONS.xml

l signed/RTI_SHAPES_DEMO_GOVERNANCE_MAX.p7s

l signed/RTI_SHAPES_DEMO_GOVERNANCE_MIN.p7s

l signed/RTI_SHAPES_DEMO_PERMISSIONS.p7s

Note: Make sure to run every instance of Shapes Demo using domain ID 0, since that's what the gov-
ernance files use:
<domain_access_rules>

<domain_rule>
<domains>

<id_range>
<min>0</min>

</id_range>
</domains>

</domain_rule>
...

The following sections refer to these profiles (which are in RTI_SHAPES_DEMO_QOS_
PROFILES.xml):

l Security::NonSecure—Baseline profile of the Security QoS library with security disabled.

l Security::SecureAllowAll—Security enabled, subscribing and publishing to all topics is allowed.

l Security::SecureMinimal—Minimal security profile: does not protect outgoing data from being
tainted, does not check that incoming data hasn't been tainted, and unencrypted topics will be com-
municated with Multicast (no security) participants.

l Security::SecureDenyPubCircles—Circles published by this participant will be accepted by
secure participants because they have enable_write_access_control set to false for Circle.

l Security::SecureDenySubSquares—Prevents this participant from subscribing to Squares.

l Security::Imposter (adversarial)—Enables security. Tries to impersonate another peer by using its
certificate.

l Security::WriterTainter (adversarial)—Simulates a man in the middle tainting data while it's in
flight. This profiles applies to a data writer.
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l Security::ReaderMulticast—Enables multicast in the data reader. This profiles applies to a data
reader.

Note: In all the Security profiles, the Triangle and Square topics are encrypted. Circles remain unen-
crypted.

4.7.1 Subscribing to Data from an Application not using Security Plugins

This scenario simulates the situation where we have an application using the security plugins that wants to
subscribe to a topic published by an application that is not using the security plugins.

Notes:

l Make sure to run every instance of Shapes Demo using domain 0.

l Use the default profile when publishing/subscribing unless otherwise noted.

1. Start Shapes Demo and choose the Security:NonSecure profile as explained in 3.3.5 Applying
QoS from a Profile on page 13. We'll call this instance Publisher1.



4.7.1  Subscribing to Data from an Application not using Security Plugins

Publish blue circles and squares.

2. Start a second instance of Shapes Demo using the Security:SecureAllowAll profile. We'll call this
instance Participant1.

Tip: To start another instance of Shapes Demo, select File, New Shapes Demo.

Subscribe to circles and squares.

Notice that no shapes appear in Participant1:
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Let’s see a snippet of the RTI_SHAPES_DEMO_GOVERNANCE_MAX.xml file used by the
Security:SecureAllowAll profile to see why this is happening:

<domain_access_rules>
<domain_rule>

...
<allow_unauthenticated_participants>false</allow_unauthenticated_participants>
<enable_join_access_control>true</enable_join_access_control>
<discovery_protection_kind>ENCRYPT</discovery_protection_kind>
<liveliness_protection_kind>ENCRYPT</liveliness_protection_kind>
<rtps_protection_kind>SIGN</rtps_protection_kind>
...

</domain_rule>
</domain_access_rules>

Discovery is configured to be encrypted in the Security:SecureAllowAll profile used by Par-
ticipant1 (the subscriber), but not in the Security:NonSecure profile used by Publisher1. These two
profiles are not compatible with each other and therefore will not interoperate.

3. Start a third instance of Shapes Demo using the Security:SecureMinimal profile. We'll call this
instance Subscriber1.

Subscribe to circles and squares using the Security:ReaderMulticast profile.

Notice that only blue circles appear in Subscriber1.



4.7.1  Subscribing to Data from an Application not using Security Plugins

Let’s take a look at a snippet of RTI_SHAPES_DEMO_GOVERNANCE_MIN.p7s, which is
used by the Security:SecureMinimal profile, to see why only circles are being displayed:

<domain_access_rules>
<domain_rule>

...
<allow_unauthenticated_participants>true</allow_unauthenticated_participants>
<enable_join_access_control>false</enable_join_access_control>
<discovery_protection_kind>NONE</discovery_protection_kind>
<liveliness_protection_kind>NONE</liveliness_protection_kind>
<rtps_protection_kind>NONE</rtps_protection_kind>
<topic_access_rules>

<topic_rule>
<topic_expression>Circle*</topic_expression>
<enable_discovery_protection>false</enable_discovery_protection>
<enable_liveliness_protection>false</enable_liveliness_protection>
<enable_read_access_control>false</enable_read_access_control>
<enable_write_access_control>false</enable_write_access_control>
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<metadata_protection_kind>NONE</metadata_protection_kind>
<data_protection_kind>NONE</data_protection_kind>

</topic_rule>
<topic_rule>

<topic_expression>*</topic_expression>
<enable_discovery_protection>true</enable_discovery_protection>
<enable_liveliness_protection>true</enable_liveliness_protection>
<enable_read_access_control>true</enable_read_access_control>
<enable_write_access_control>true</enable_write_access_control>
<metadata_protection_kind>ENCRYPT</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_protection_kind>

</topic_rule>
</topic_access_rules>

</domain_rule>
</domain_access_rules>

The reader cannot process squares because both the data and metadata for the “Squares” topic are
configured to be encrypted. This is accomplished by setting metadata_protection_kind =
ENCRYPT and data_protection_kind = ENCRYPT in the Governance file seen above.

When defining a topic_rule, order matters. The first rule will be used to try to match with the
DataWriter/DataReader topic that has been published/subscribed to. If the topic doesn’t match the
first rule, the second one will be used, etc. This process continues until it finds a match.

4. Using Participant1, publish green circles and squares.

Subscriber1 won’t display either shape from Participant1 because the rtps_protection_kind settings
in Security:SecureAllowAll and Security:SecureMinimal are incompatible.



4.7.1  Subscribing to Data from an Application not using Security Plugins

Participant1 (using Security:SecureAllowAll) rejects messages from Subscriber1 (using
Security:SecureMinimal) because it is configured to reject RTPS messages that have not been
signed (rtps_protection_kind = SIGN). This prevents discovery from succeeding at the participant
level. Let’s see their rtps_protection_kind settings in these snippets:

RTI_SHAPES_DEMO_GOVERNANCE_MIN.xml (used by Security:SecureMinimal, Sub-
scriber1):
...
<rtps_protection_kind>NONE</rtps_protection_kind>
...

RTI_SHAPES_DEMO_GOVERNANCE_MAX.xml (used by Security:SecureAllowAll, Par-
ticipant1):
...
<rtps_protection_kind>SIGN</rtps_protection_kind>
...
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5. Start a fourth instance of Shapes Demo using the Security:SecureAllowAll profile. We'll call this
instance Subscriber2.

Subscribe to circles and squares using the Security:ReaderMulticast profile.

In Subscriber2, you will see the green circle and square published by Participant1, because these Par-
ticipants use compatible security profiles.



4.7.2  Access Control and Authentication

4.7.2 Access Control and Authentication

This scenario simulates the situation where we have various applications using the security plugins and we
want to prevent receiving certain topics while using authentication.

Notes:

l Make sure to run every instance of Shapes Demo using domain 0.

l Use the default profile when publishing/subscribing unless otherwise noted.

1. Start an instance of Shapes Demo using the Security::SecureAllowAll profile as explained in 3.3.5
Applying QoS from a Profile on page 13. We'll call this instance Shapes1.

Publish green squares, circles, and triangles.

Subscribe to squares, circles, and triangles.
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2. Start a second instance of Shapes Demo using the Security::SecureDenyPubCircles profile. We'll
call this instance Shapes2.

Tip: To start another instance of Shapes Demo, select File, New Shapes Demo.

Publish cyan squares, circles, and triangles.

Subscribe to squares, circles, and triangles.

3. Start a third instance of Shapes Demo using the Security::SecureDenySubSquares profile. We'll
call this instance Shapes3.

Publish magenta squares, circles, and triangles.



4.7.2  Access Control and Authentication

Subscribe to squares, circles, and triangles.

Notice that subscribing to squares causes an error:

This error is because the profile will not allow you to create DataReaders for the topic ‘Square’. We
can see this in the <deny_rule> section of the profile:

<deny_rule>
<domains>

<id>0</id>
</domains>
<subscribe>

<topics>
<topic>Square*</topic>

</topics>
</subscribe>

</deny_rule>

Click OK on the error and continue to subscribe to circles and triangles.

Now the first three instances should look like this:
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To recap: 
l Shapes1 displays all the shapes that are being published, because Security::SecureAllowAll
is configured to allow subscribing to all Topics.

l Shapes2 also displays all the shapes, because Security::SecureDenyPubCircles is con-
figured to allow subscribing to all Topics. Circles published will be accepted by secure par-
ticipants because enable_write_access_control is set to false for circles.

l Shapes3 displays all the shapes except squares, because Security::SecureDenySubSquares
prevents subscribing to squares.

4. Start a fourth instance of Shapes Demo using the Security::SecureMinimal profile. We'll call this
instance Subscriber1.

Subscribe to squares, circles, and triangles.

Subscriber1 won’t display any shapes, because Security::SecureMinimal is not configured to use
authentication.

5. Start a fifth instance of Shapes Demo using the Security::Imposter profile. We'll call this instance
ShapesImposter.

Publish orange squares, circles, and triangles.

Subscribe to squares, circles, and triangles.



4.7.2  Access Control and Authentication

This instance will only receive its own shapes. The other instances will not communicate with it.
Authentication is failing because ShapesImposter is using (impersonating) a wrong combination of
private key and public certificates.

Let’s take a look at the Security::Imposter profile in the RTI_SHAPES_DEMO_QOS_
PROFILES.xml file to see why:

<qos_profile name="Imposter" base_name="SecureAllowAll">
<participant_qos>

<property>
<value>

<element>
<name>dds.sec.auth.identity_certificate</name>
<value>

file:$(NDDSHOME)/resource/cert/RTI_SHAPES_DEMO_PEER_2_CERT.pem
</value>

</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>

file:$(NDDSHOME)/resource/cert/RTI_SHAPES_DEMO_PEER_3_KEY.pem
</value>

</element>
<element>

<name>dds.sec.auth.password</name>
<value>SnVsaWFuRTEx</value>

</element>
</value>

</property>
</participant_qos>
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</qos_profile>

4.7.3 Data Integrity

This scenario simulates the situation where there is a "man in the middle" tainting data while it’s in flight.

Notes:

l Make sure to run every instance of Shapes Demo using domain 0.

l Use the default profile when publishing/subscribing unless otherwise noted.

1. Start an instance of Shapes Demo using the Security:NonSecure profile as explained in 3.3.5
Applying QoS from a Profile on page 13. We'll call this instance Publisher1.

Publish a blue square.

Publish a blue triangle using the Security:WriterTainter profile.

2. Start a second instance of Shapes Demo using the Security::NonSecure profile. We'll call this
instance Subscriber1.

Tip: To start another instance of Shapes Demo, select File, New Shapes Demo.

Subscribe to squares.

You will see the blue squares.

Now subscribe to triangles.



4.7.3  Data Integrity

You will see that the blue triangles are corrupted. The shape does not match the triangle that is pub-
lished in Publisher1. In fact, the shape may be so big that it takes up the whole area, as seen here:

Let’s take a look at theWriterTainter profile to see why the triangle is being corrupted:

<qos_profile name="WriterTainter">
<datawriter_qos>

<property>
<value>

<element>
<name>dds.data_writer.cryptography.taint_data</name>
<value>true</value>

</element>
</value>

</property>
</datawriter_qos>

</qos_profile>

The DataWriter is using a property dds.data_writer.cryptography.taint_data, which is used to
simulate tainted data. This means the data will be modified after Security Plugins generates the
GMAC for the data.

3. Start a third instance of Shapes Demo using the Security:SecureMinimal profile. We'll call this
instance Publisher2.
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Publish red squares.

Publish red triangles using the Security::WriterTainter profile.

4. Start a fourth instance of Shapes Demo using the Security::SecureMinimal profile. We'll call this
instance Subscriber2.

Subscribe to squares and triangles.

Only the red square will appear because the triangle has been tainted. Subscriber2 will detect that
the data has been modified after the data was signed on origin, so it will drop it.



Chapter 5 More Experiments
Please feel free to experiment and run tests using the other QoS options in the Create New Sub-
scriber and Create New Publisher windows. Described below are a few other interesting behaviors
to test.

5.1 Content-Filtered Topics Example

A content-filtered topic is a very useful feature if you want to filter data received by the Subscriber.
It also helps to control network and CPU usage on the subscriber side because only data that is of
interest to the subscriber is sent.

For example, assume your application is a radar monitor that draws flights detected within a 20-
mile radius. The application can subscribe to the track data with a content filtered topic for a 20-
mile radius on the coordinates of all flights. With the filter, only coordinates that are within the 20-
mile radius will be sent to the application.

1. Start two copies of Shapes Demo, which we will call Publisher1 and Subscriber1. If you are
reusing demo windows from a previous section, delete any existing publishers and sub-
scribers (under Controls, click Delete All.)

2. In Publisher1, create a circle publisher (any color):

a. Under Publish, click on Circle.

b. In the Create New Publisher window, click OK.
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3. In Subscriber1, create a circle subscriber with a
content filtered topic:

a. Under Subscribe, click on Circle.

b. In the Create New Subscriber window:

l Check Use filter.

l Click OK.

You will see a shaded rectangle appear in
the subscriber canvas. This is the filter for
the coordinates of the Circle topic. The sub-
scriber will receive position data for the
Circle only when it is with the area defined
by the content filter.

4. To see the effect of dynamic filters, use your mouse to move and resize the shaded area in Sub-
scriber1.

5.2 Lifespan Example

The Lifespan QoS controls how long data samples are considered valid. You can use it to prevent sending
data that is considered too old to be valid. The default setting is an infinite duration, meaning the data will
never ‘expire.’



5.2 Lifespan Example

1. Start two copies of Shapes Demo, which we will call Publisher1 and Subscriber1. If you are reusing
demo windows from a previous section, delete any existing publishers and subscribers (under Con-
trols, click Delete All.)

2. In Publisher1, create a circle publisher (any color) with History = 100, Lifespan = 1000 ms.:

a. Under Publish, click on Circle.

b. SetHistory to 100 and Lifespan to 1000 ms.

c. Click OK.

3. In Subscriber1, create a circle subscriber with History = 100:

a. Under Subscribe, click on Circle.

b. SetHistory to 100.

c. Click OK.

4. Drag the shape around on Publisher1’s canvas.

On Subscriber1’s canvas, you will see a "shadow" of objects printed out in a continuous pattern.
The shadow is caused by the subscriber showing the last 100 data samples from the publisher’s his-
tory queue.

5. In Publisher1, click Pause Publishing.

6. In Subscriber1, notice that the samples disappear as they time out. Experiment by increasing the
Lifespan setting for the publisher. The longer the Lifespan, the longer it takes for the samples to dis-
appear when you pause publishing.
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5.3 Reliability and Durability Example

In a dynamic system, you may want late-joining nodes to get the data that was sent before the nodes con-
nected to the network. For example, suppose you need to initialize the state of these late-joining nodes and
don't want to be continually sending the state just in case some node joins late. The Durability QoS
provides late-joining nodes with the ability to get previously sent data.

1. Start two copies of Shapes Demo, which we will call Publisher1 and Subscriber1. If you are reusing
demo windows from a previous section, delete any existing publishers and subscribers (under Con-
trols, click Delete All.)

2. In Publisher 1, create a circle publisher (any color) with Transient Local Durability, Reliability, and
History = 200.

a. Under Publish, click on Circle.

b. In the Create New Publisher window:

l Use the drop-down list box to change Durability to Transient Local.

l SetHistory to 200.

l Click OK.

3. Wait for a bit.

4. In Subscriber1, create a circle subscriber with Transient-Local Durability, Reliability and History =
200.

a. Under Subscribe, click on Circle.

b. In the Create New Subscriber window:

l Use the drop-down list box to change Durability to Transient Local.

l Check Reliability.

l SetHistory to 200.

l Click OK.

5. Watch the Subscriber canvas. You will see a "shadow" of objects printed out in a continuous pat-
tern. The shadow results from the subscriber showing the last 200 samples from the publisher’s his-
tory queue.



5.4 Time-based Filtering Example

6. To stop showing the shadow trail of samples in Subscriber1, click on Hide History.

5.4 Time-based Filtering Example

Sometimes subscribers are located on slower or more remote systems that cannot handle the amount of
data that the publisher is capable of sending. For example, consider a system where a central command cen-
ter is publishing high-resolution aerial photos of a geographic area once every 30 seconds and a soldier
with a handheld computer is trying to subscribe to the data. In this case, the handheld computer does not
have the bandwidth to handle the command center's send rate. With time-based filtering, the handheld com-
puter can "throttle" the data so that it only receives data once every 5 minutes.

1. Start two copies of Shapes Demo, which we will call Publisher1 and Subscriber1. If you are reusing
demo windows from the previous section, delete any existing publishers and subscribers (under Con-
trols, click Delete All.)

2. In Publisher1, create a circle publisher (any color).

a. Under Publish, click on Circle.

b. In the Create New Publisher window, click OK.

3. In Subscriber1, create a circle subscriber, History = 1, Time Based Filter = 1000 ms.

a. Under Subscribe, click on Circle.

b. In the Create New Subscriber window:

l SetHistory to 1

l Set Time Based Filter to 1000.
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l Click OK.

You will see the circle jump once every second, instead of a fluid movement. In this case, the pub-
lisher is only sending data to the subscriber once a second, according to the subscriber's time-based
filtering.



Appendix A Running from the Command
Line

In some cases you may want to run Shapes Demo from the command line.

Open a command prompt and navigate to the folder where Shapes Demo is installed.

Enter the following command:
> bin/rtishapesdemo <command-line options>

Table A.1 Command-line Options describes the command-line options. These options take pre-
cedence over conflicting settings in the configuration file (if any). (For example, if the con-
figuration file specifies domain ID 1 and you enter -domainId 2, then domain ID 2 will be used.)

Option Description

-compact StartsShapesDemo using a compact view

-configure Opens the configuration dialog at start up, even if -dataType is set.

-dataType
<Shape|ShapeExtended>

Sets the default value for the type.

-domainId <ID>

For different copies of ShapesDemo to communicate with each other, they must use the same domain ID.

The default domain ID is 0; if you need to use a different domain ID, you must use the same value for all cop-
ies of ShapesDemo that need to communicate with each other.

The ID is an integer value, 0 or higher.

-help Lists the command-line options.

-posX <integer>

-posY <integer>

Sets the X and Y positions where the ShapesDemowindowwill be displayed on your screen.

The valid range for <integer> depends on your screen's resolution.

Using (-1, -1) for the X and Y positions results in a default position chosen by either the windowing systemor
wxWidgets, depending on platform.

Table A.1 Command-line Options
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Option Description

-pubInterval <integer>
Specifies how often the publisher should send data (in ms).

Default: 50 ms

-subInterval <integer>
Specifies how often the subscriber should look for data (in ms).

Default: 50 ms

-verbosity <0..5>

Controls the verbosity of messages fromShapesDemo.

0 = SILENTNo further output will be logged. (Default)

1 = ERROROnly errormessages will be logged.

2 =WARNING Both errors and warnings will be logged.

3 = LOCAL Errors, warnings, and verbose information about the lifecycles of localConnext DDS objects will
be logged.

4 = REMOTE Errors, warnings, and verbose information about the lifecycles of remote Connext DDS ob-
jects will be logged.

5 = ALL Errors, warnings, verbose information about the lifecycles of local and remote Connext DDS ob-
jects, and periodic information aboutConnext DDS threads will be logged.

-workspaceFile <file>
Specifies an XML configuration file.

Default: See 3.5 ShapesDemo’sWorkspace on page 23.

Table A.1 Command-line Options



Appendix B Troubleshooting
B.1 Windows Security Alert

When you run the demo, you may encounter a "Windows Security Alert" dialog. Simply click
Allow Access.

B.2 Running without an Active Network Interface

If you run Shapes Demo on a system that does not have an active network interface, you may see
this warning:
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B.2 Running without an Active Network Interface
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Participant creation failed because, by default, Shapes Demo uses UDPv4, which is not available if there is
no active network interface.

After you selectOK, Shapes Demo will create a participant using shared memory instead of UDPv4.



Appendix C Known Issues
C.1 Shapes Demo not Scaled Properly in Some Cases

Shapes Demo is not scaled properly when using a scaling factor other than the default (100%), on
high-DPI displays on Windows 7, 8, and 8.1.

[RTI Issue ID SHAPES-173]
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