
RTI Code Generator

User's Manual

Version 3.0.1

© 2020 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
March 2020.

Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Work-
ing as one,” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All
other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/).

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Introduction 1
Chapter 2 Paths Mentioned in Documentation 2
Chapter 3 Command-Line Arguments for rtiddsgen 4
Chapter 4 Generated Files 12
Chapter 5 Customizing the Generated Code 15
Chapter 6 Optimizing the Code Generation Process

6.1 Optimization Levels 18
6.2 How the Optimizations are Applied 19

6.2.1 Inline expansion of nested types 19
6.2.2 Serialization of consecutive members with a single copy 20
6.2.3 Rules for Inline Expansion 20
6.2.4 Guidelines 23

Chapter 7 Boosting Performance with Server Mode 24

iii

Chapter 1 Introduction
RTI® Code Generator creates the code needed to define and register a user data type with
RTI Connext® DDS.

Using Code Generator is optional if:

l You are using dynamic types (see Managing Memory for Built-in Types (Section 3.2.7) in
the RTI Connext DDS Core Libraries User's Manual).

l You are using one of the built-in types (see Built-in Data Types (Section 3.2) in the RTI
Connext DDS Core Libraries User's Manual).

To use Code Generator, you will need to provide a description of your data type(s) in an IDL or
XML file. You can define multiple data types in the same type-definition file. For details on these
files, see the RTI Connext DDS Core Libraries User's Manual (Sections 3.3 and 3.4).

1

Chapter 2 Paths Mentioned in
Documentation

The documentation refers to:

l <NDDSHOME>

This refers to the installation directory for RTI® Connext® DDS. The default installation
paths are:

l macOS® systems:
/Applications/rti_connext_dds-6.0.1

l Linux systems, non-root user:
/home/<your user name>/rti_connext_dds-6.0.1

l Linux systems, root user:
/opt/rti_connext_dds-6.0.1

l Windows® systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-6.0.1

l Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-6.0.1

You may also see $NDDSHOME or%NDDSHOME%, which refers to an environment
variable set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

2

Chapter 2 Paths Mentioned in Documentation

3

Note for Windows Users:When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:
“C:\Program Files\rti_connext_dds-6.0.1\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

l <path to examples>

By default, examples are copied into your home directory the first time you run RTI Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples as
<path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:
l macOS systems: /Users/<your user name>/rti_workspace/6.0.1/examples

l Linux systems: /home/<your user name>/rti_workspace/6.0.1/examples

l Windows systems: <your Windows documents folder>\rti_workspace\6.0.1\examples

Where 'your Windows documents folder' depends on your version of Windows. For example,
on Windows 10, the folder is C:\Users\<your user name>\Documents.

Note: You can specify a different location for rti_workspace. You can also specify that you do not
want the examples copied to the workspace. For details, see Controlling Location for
RTI Workspace and Copying of Examples in the RTI Connext DDS Installation Guide.

Chapter 3 Command-Line Arguments for
rtiddsgen

On Windows systems: Before running rtiddsgen, run VCVARS32.BAT in the same command
prompt that you will use to run rtiddsgen. The VCVARS32.BAT file is usually located in <Visual
Studio Installation Directory>/VC/bin. Alternatively, run rtiddsgen from the Visual Studio Com-
mand Prompt under the Visual Studio Tools folder.

If you are generating code for Connext DDS, the options are:
rtiddsgen [-help]

[-allocateWithMalloc]
[-alwaysUseStdVector]
[-autoGenFiles <architecture>]
[-constructor]
[-create <typefiles| examplefiles|makefiles>]
[-convertToIdl | -convertToXML | -convertToXsd]
[-D <name>[=<value>]]
[-d <outdir>]
[-disableXSDValidation]
[-dllExportMacroSuffix <suffix>]
[-enableEscapeChar]
[-example <architecture>]
[-express]
[-I <directory>]
[[-inputIdl] <IDLInputFile.idl> | [-inputXml] <XMLInputFile.xml>
|[-inputXsd <IDLInputFile.idl>]]
[-language <Ada|C|C++|C++03|C++11|C++/CLI|C#|Java>]
[-legacyPlugin]
[-namespace]
[-obfuscate]
[-optimization <level>]
[-package <packagePrefix>]
[-platform <architecture>]
[-ppDisable]
[-ppPath <path to preprocessor>]
[-ppOption <option>]

4

Chapter 3 Command-Line Arguments for rtiddsgen

5

[-qualifiedEnumerator]
[-reader]
[-replace]
[-sequenceSize <unbounded sequences size>]
[-sharedLib]
[-stringSize <unbounded strings size>]
[-U <name>]
[-unboundedSupport]
[-update <typefiles| examplefiles|makefiles>]
[-use52Keyhash]
[-use526Keyhash]
[-useStdString]
[-V <name< [=<value>]]
[-verbosity [1-3]]
[-version]
[-virtualDestructor]
[-writer]

If you have RTI CORBA Compatibility Kit, you can use the above options, plus these:
[-corba [CORBA Client header file]]
[-dataReaderSuffix <suffix>]
[-dataWriterSuffix <suffix>]
[-orb <CORBA ORB>]
[-typeSequenceSuffix <suffix>]

If you are generating code for RTI Connext DDS Micro, the options are:
rtiddsgen [-help]

[-create <typefiles| examplefiles|makefiles>]
[-convertToIdl | -convertToXML]
[-D <name>[=<value>]]
[-d <outdir>]
[-enableEscapeChar]
[-I <directory>]
[[-inputIdl] <IDLInputFile.idl> | [-inputXml] <XMLInputFile.xml>]
[-language <C|C++>]
[-micro]
[-namespace]
[-ppDisable]
[-ppPath <path to preprocessor>]
[-ppOption <option>]
[-reader]
[-replace]
[-sequenceSize <unbounded sequences size>]
[-stringSize <unbounded strings size>]
[-U <name>]
[-update <typefiles| examplefiles|makefiles>]
[-V <name< [=<value>]]
[-verbosity [1-3]]
[-version]
[-writer]

Table 3.1 Options for rtiddsgen describes the options.

Chapter 3 Command-Line Arguments for rtiddsgen

Option Description

-allocateWithMalloc
Use this flag to obtain backward-compatibility when allocating optionalmembers with DDS_Heap_mal-
loc in C++.

-alwaysUseStdVector

Only applies if -language <C|C++> is specified and -legacyPlugin is not specified.

Generates code that maps all sequences to std::vector, even bounded sequences that would oth-
erwise map to rti::core::bounded_sequence.

Alternatively, the@use_vector annotation can be applied to each sequence member.

-autoGenFiles <architecture>

Updates the auto-generated files, i.e, the typefiles and makefile/project files.

To see the valid options for <architecture> per language, run rtiddsgenwith the -help option, or use
the string "universal" (-autoGenFiles universal) to generate compatible publisher/subscriber code
for all supported platforms. The universal architecture will not generate makefiles/project files.

This is a shortcut for:

-update typefiles -update makefiles -platform <architecture>

-constructor

Only applies if -language C++ is also specified.

Generates the types default constructor, copy constructor, copy assignment operator, and de-
structor. Using this option will also disable the generation of the following TypeSupport methods: cre-
ate_data(_ex), delete_data(_ex), initialize_data(_ex), finalize_data(_ex), copy_data.

-create <typefiles|
examplefiles|makefiles>

Creates the files indicated (typefiles, examplefiles, ormakefiles) if they do not exist.

If the files already exist, the files are not modified and a warning is printed.

There can be multiple -create options.

If both -create and -update are specified for the same file type, only -updatewill be applied.

-convertToIdl
Converts the input type description file into IDL format. This option creates a new file with the same
name as the input file and a .idl extension.

-convertToXML
Converts the input type description file into XML format. This option creates a new file with the same
name as the input file and a .xml extension.

-convertToXsd
Converts the input type description file into XSD format. This option creates a new file with the same
name as the input file and a .xsd extension.

-corba [CORBAClient header file]
This option is only available when using the RTI CORBACompatibilityKit for Connext DDS (avail-
able for purchase as a separate product and described in the RTI Connext DDSCore Libraries
User’sManual).

-D <name>[=<value>]
Defines preprocessormacros.

On Windows systems, enclose the argument in quotation marks:
-D "<name>[=<value>]"

-d <outdir> Generates the output in the specified directory. By default,CodeGenerator will generate files in the
directory where the input type-definition file is found.

Table 3.1 Options for rtiddsgen

6

Chapter 3 Command-Line Arguments for rtiddsgen

7

Option Description

-dataReaderSuffix <suffix>

Only applies if -corba [CORBAClient header file] is also specified.

Assigns a suffix to the name of a DataReader interface.

By default, the suffix isDataReader. Therefore, given the type Foo, the name of the DataReader in-
terface will be FooDataReader.

-dataWriterSuffix <suffix>
Only applies if -corba [CORBAClient header file] is also specified.

Assigns a suffix to the name of a DataWriter interface. By default, the suffix isDataWriter. Therefore,
given the type Foo, the name of the DataWriter interface will be FooDataWriter.

-disableXSDValidation

CausesCodeGenerator not to check that the input XSD file is well-formed.

The use of this option is not recommended in general, asCodeGeneratormay receive invalid in-
puts.

-dllExportMacroSuffix <suffix>
Defines the suffix of the macro that is used to export symbols when building Windows DLLs. The de-
fault macro is NDDS_USER_DLL_EXPORT. When this option is specified, the name of the macro is
NDDS_USER_DLL_EXPORT_<Suffix>.

-enableEscapeChar Enables use of the escape character '_' in IDL identifiers.

-example <architecture>

Generates type files, example files, and a makefile.

This is a shortcut for:
-create typefiles -create examplefiles -create makefiles -platform

<architecture>

To see the valid options for <architecture> per language, run rtiddsgenwith the -help option, or use
the string "universal" (-example universal) to generate compatible publisher/subscriber code for all
supported platforms. The universal architecture will not generate makefiles/project files.

-express

Generates the C# project files needed to build with Microsoft Visual Studio Express.

This option is only compatible with architecture i86Win32VS2010. Newer versions of Microsoft Visual
Studio Express Edition do not need this flag.

-help Prints out the command-line options for rtiddsgen.

-I <directory> Adds to the list of directories to be searched for type-definition files (IDL or XML files). Note: A type-
definition file in one format cannot include a file in another format.

-inputIdl Indicates that the input file is an IDL file, regardless of the file extension.

-inputXml Indicates that the input file is an XML file, regardless of the file extension.

-inputXsd Indicates that the input file is an XSD file, regardless of the file extension.

IDLInputFile.idl
A file containing IDL descriptions of your data types. If -inputIdl is not used, the file must have a '.idl'
extension.

Table 3.1 Options for rtiddsgen

Chapter 3 Command-Line Arguments for rtiddsgen

Option Description

ForConnext DDSCore:

-language
<Ada|C|C++|C++03|C++11|C++/CLI|C#|Ja-
va>

ForConnext DDSMicro:

-language <C|C++>

Specifies the language to use for the generated files. The default language is C++.

-legacyPlugin

Only applies if -language C++03 or -language C++11 is also specified.

Generates code that usesConnext DDS-specific types in the type definition and type plugin.

The default behaviorwhen this option is not specified is to map to STL (Standard Template Library)
types, as follows:

l Unbounded sequences map to std::vector (also requires -unboundedSupport)

l Bounded sequences map to rti::core::bounded_sequence (or std::vector if -
alwaysUseStdVector is specified)

l Strings map to std::string, wide strings map to std::wstring, wide characters map to wchar_t.

l Members annotated with @external and pointers map to dds::core::external.

-micro
Generates code and support files forConnext DDSMicro, instead ofCodeGenerator. Use -micro -
help to list the options supported byCodeGenerator when targeting RTI Connext DDSMicro.

-namespace
Specifies the use of C++ namespaces. (ForC++ only. ForC++/CLI and C#, it is implied—namespaces
are always used.)

-obfuscate
Generates an obfuscated IDL file from the input file. Note that even if the input type is XML, this op-
tion generates an obfuscated IDL file.

-orb <CORBA ORB>

Only applies if -corba [CORBAClient header file] is also specified.

Specifies the CORBA ORB. The majority of generated code is independent of the ORB. However, for
some IDL features, the generated code depends on the ORB.CodeGenerator generates code com-
patible with ACE-TAO or JacORB. To select an ACE_TAO version, use the -orb option. The default is
ACE_TAO1.6.

Table 3.1 Options for rtiddsgen

8

Chapter 3 Command-Line Arguments for rtiddsgen

9

Option Description

-optimization <level>

Level of optimization of the code:

l 0: No optimization.

l 1: The compiler generates extra code for typedefs but optimizes its use. If a type that is used
is a typedef that can be resolved to a primitive, enum, or aggregated type (struct, union, or
value type), the generated code will invoke the code of the most basic type to which the
typedef can be resolved. This level can be used if the generated code is not expected to be
modified. This is the only optimization level supported for Java, C#, and C++/CLI languages.

l 2: (Default) This optimization level applies only to C, C++, C++03, C++11, microC, microC++,
and Ada languages. With this optimization level, rtiddsgen optimizes the seri-
alization/deserialization of structures and valuetypes by using more aggressive techniques.
These techniques include inline expansion of nested types and serialization/deserialization
of a set of consecutive members with a single copy function invocation (memcpy)when the
memory layout (C, C++ structure layout) is the same as the wire layout (XCDR). See Chapter
6 Optimizing the CodeGeneration Processon page 18 formore information.

2 is the default for C, C++, C++03, C++11, microC, microC++, and Ada languages (but you can
change it to 0 or 1). 1 is always used for Java, C#, and C++/CLI languages, and you cannot change it.

-package <packagePrefix>
Specifies the root package into which generated classes will be placed. It applies to Java only. If the
type-definition file contains module declarations, those modules will be considered subpackages of
the package specified here.

-platform<architecture>

Required if -create makefiles or -update makefiles is used.

To see the valid options for <architecture> per language, run rtiddsgenwith the -help option, or use
the string "universal" (-platform universal) to generate compatible publisher/subscriber code for all
supported platforms. The universal architecture will not generate makefiles/project files.

-ppDisable Disables the preprocessor.

-ppOption <option>
Specifies a preprocessor option. This option can be used multiple times to provide the command-line
options for the specified preprocessor. See -ppPath <path to preprocessor>.

-ppPath <path to preprocessor>

Specifies the preprocessor. If you only specify the name of an executable (not a complete path to that
executable), the executable must be found in yourPath. The default value is cpp for non-Windows ar-
chitectures and cl.exe forWindows architectures.

If you use -ppPath to provide the full path and filename for cl.exe or the cpp preprocessor, you must
also use -ppOption <option> to set the following preprocessor options:

If you use a non-default path for cl.exe, you also need to set:
-ppOption /nologo -ppOption /C -ppOption /E -ppOption /X

If you use a non-default path for cpp, you also need to set:
-ppOption -C

-qualifiedEnumerator Uses the fully qualified name for enumerator values including the enumvalue.

-reader Generates support for a DataReader (only with -micro).

Table 3.1 Options for rtiddsgen

Chapter 3 Command-Line Arguments for rtiddsgen

Option Description

-replace

Deprecated option. Instead, use -update <typefiles| examplefiles|makefiles> for the proper files
(typefiles, examplefiles, makefiles).

This option is maintained for backwards compatibility. It allowsCodeGenerator to overwrite any ex-
isting generated files.

If it is not present and existing files are found,CodeGenerator will print a warning but will not over-
write them.

-sequenceSize
<unbounded sequences size> Sets the size assigned to unbounded sequences. The default value is 100 elements.

-sharedLib
Generates makefiles that compile with the Connext DDS shared libraries (by default, the makefile will
link with the static libraries)

-stringSize
<unbounded strings size>

Sets the size assigned to unbounded strings, not counting a terminating NULL character. The default
value is 255 bytes.

-typeSequenceSuffix <suffix>
This option can only be used with the -corba [CORBAClient header file] option.

Assigns a suffix to the names of the implicit sequences defined for IDL types. By default, the suffix is
Seq. Therefore, given the type 'Foo' the name of the implicit sequence will be FooSeq.

-U <name> Cancels any previous definition of <name>.

-unboundedSupport

Generates code that supports unbounded sequences and strings. This option is not supported in
Ada. When the option is used, the command-line options -sequenceSize and -stringSize are ig-
nored.

This option also affects the way unbounded sequences are deserialized. When a sequence is being
received into a sample from the DataReader's cache, the old memory for the sequence will be deal-
located and memory of sufficient size to hold the deserialized data will be allocated. When initially con-
structed, sequences will not preallocate any elements having a maximumof zero elements.

Formore information on using the -unboundedSupport option, including some required QoS set-
tings, see these sections in the RTI Connext DDSCore LibrariesUser'sManual:

l "Sequences"

l "StringsandWide Strings"

l "DDSSample-Data and Instance-DataMemoryManagement"

-update <typefiles|
examplefiles|makefiles>

Creates the files indicated if they do not exist.

If the files already exist, this overwrites the files without printing a warning.

There can be multiple -update options.

If both -create and -update are specified for the same file type, only the -updatewill be applied.

-use52Keyhash
This option should be used when compatibility with 5.2.3 and earlierGeneral Access Releases
(GARs) is required when using keyed mutable types (related to RTI Issue IDs CODEGENII-501 and
CODEGENII-693).

-use526Keyhash
This option should be used when compatibility with 5.2.6 is required when using keyed mutable types
(related to RTI Issue IDCODEGENII-693).

Table 3.1 Options for rtiddsgen

10

Chapter 3 Command-Line Arguments for rtiddsgen

11

Option Description

-useStdString

Use 'std::string' instead of 'char *' when generating code for IDL strings when the language option is
C++.

Using this option will automatically enable constructor generation. Therefore you can use this option
with orwithout -constructor and achieve the same result.

-V <name< [=<value>]
Defines a user variable that can be used in the templates as $userVarList.name or$user-
VarList.name.equals(value). The variables defined with this option are case sensitive.

-verbosity [1-3]

Sets the CodeGenerator verbosity:

1: Exceptions

2: Exceptions and warnings

3: Exceptions, warnings and information (Default)

-version
Displays the version ofCodeGenerator being used, such as 2.x.y, as well as the version of the tem-
plates being used (xxxx-xxxx-xxxx).

-virtualDestructor

Only applies if -language C++ is also specified.

Generates a virtual destructor for the generated types in C++. Using this option will automatically en-
able the -constructor option.

Note that using this option will affect filtering performance when using ContentFilteredTopics or
QueryConditions.

-writer Generates support for a DataWriter (only with -micro).

XMLInputFile.xml
A file containing XML descriptions of your data types. If -inputXml is not used, the file must have an
.xml extension.

Table 3.1 Options for rtiddsgen

Note: Before using a makefile created by Code Generator to compile an application, make sure the
${NDDSHOME} environment variable is set as described in Step 1, Set up the Environment, in the RTI
Connext DDS Core Libraries Getting Started Guide.

Chapter 4 Generated Files
The following tables show the files that Code Generator creates for an example IDL file called
Hello.idl.

l Table 4.1 C, C++, C++/CLI, C# Files Created for Example “Hello.idl”

l Table 4.2 Java Files Created for Example “Hello.idl”

l Table 4.3 Ada Files Created for Example “Hello.idl”

Generated Files Description

The following files are required for the user data type. The source files should be compiled and linked with your application. The header
files are required to use the data type in source.

You should not modify these files unless you intend to customize the generated code supporting your type.

Hello.[c,cxx, cpp]
HelloSupport.[c, cxx, cpp]
HelloPlugin.[c,cxx, cpp]

Generated code for the data types. These files contain the implementation for your
data types.

Hello.h
HelloSupport.h
HelloPlugin.h

Header files that contain declarations used in the implementation of your data types.

The following optional files are generated when you use the -example <architecture> command-line option. You maymodify and use
these files as a way to create simple applications that publish or subscribe to the user data type.

Hello_publisher.[c, cxx, cpp, cs]

Example code for an application that publishes the user data type. This example
shows the basic steps to create all of the DDS objects needed to send data.

You will need to modify the code to set and change the values being sent in the data
structure. Otherwise, just compile and run.

Hello_subscriber.[c, cxx, cpp,cs]

Example code for an application that subscribes to the user data type. This example
shows the basic steps to create all of the DDS objects needed to receive data using a
“listener” function.

No modification of this file is required. It is ready for you to compile and run.

Table 4.1 C, C++, C++/CLI, C# Files Created for Example “Hello.idl”

12

Chapter 4 Generated Files

13

Generated Files Description

Hello.sln,
Hello_publisher.v[c, cs, cx]proj, Hello_sub-
scriber.v[c, cs, cx]proj

Microsoft Visual Studio solution and project files, generated only for Visual Studio-
based architectures. To compile the generated source code, open the workspace file
and build the two projects.

makefile_Hello_<architecture> Makefile for non-Visual-Studios-based architectures. An example <architecture> is
i86Linux2.6gcc4.4.5.

Table 4.1 C, C++, C++/CLI, C# Files Created for Example “Hello.idl”

Data Type Generated Files Description

Since the Java language requires individual files to be created for each class,CodeGenerator will generate a source file for every IDL construct
that translates into a class in Java.

Constants Hello.java Class associated with the constant

Enums Hello.java Class associated with enum type

Structures/Unions

Hello.java

HelloSeq.java

HelloDataReader.java

HelloDataWriter.java

HelloTypeSupport.java

Structure/Union class

Sequence class

DDS DataReader and DataWriter classes

Support (serialize, deserialize, etc.) class

Typedef of sequences or
arrays

Hello.java

HelloSeq.java

HelloTypeSupport.java

Wrapper class

Sequence class

Support (serialize, deserialize, etc.) class

The following optional files are generated when you use the -example <architecture> command-line option. You maymodify and use these files
as a way to create simple applications that publish or subscribe to the user data type.

Structures/Unions

HelloPublisher.java

HelloSubscriber.java

Example code for applications that publish or subscribe to the user data type. You should
modify the code in the publisher application to set and change the value of the published
data. Otherwise, both files should be ready to compile and run.

makefile_Hello_<ar-
chitecture>

Makefile for non-Windows-based architectures. An example <architecture> is
i86Linux2.6gcc4.4.5jdk.

Structures/Unions/
Typedefs/Enums

HelloTypeCode.java Type code class associated with the IDL type, Hello

Table 4.2 Java Files Created for Example “Hello.idl”

Chapter 4 Generated Files

Generated Files Description

Hello[.h,.c]

Generated code for the data types, which contain the implementation for the data
types, and header files that contain declarations used in the implementation of the
data types.

HelloSupport[.h,.c]

HelloPlugin[.h,.c]

hello_idl_file[.adb, .ads]

hello_idl_file-hello_datawriter.ads

DataReader and DataWriter classes and serialize/deserialize methods.hello_idl_file-hello_datareader.ads

hello_idl_file-hello_typesupport[.adb,.ads]

hello_idl_file-hello_metptypesupport[.adb,.ads]
These files are generated only for types that support Zero Copy transfer over shared
memory (that is, are annotated with @transfer_mode(SHMEM_REF) in the IDL file).

hello_idl_file-hello_publisher[.adb,.ads]
(in the samples/ directory)

Example code for an application that publishes the user data type. You will need to
modify the code to set and change the values being sent in the data structure. Other-
wise, just compile and run. The subscriberlistener file implements the on_data_avail-
able() callback.

hello_idl_file-hello_subscriber[.adb,.ads]
(in the samples/ directory)

hello_idl_file-hello_subscriberlistener[.adb,.ads]
(in the samples/ directory)

hello.gpr Project files using Ada-like syntax.These files define the build-related characteristics of
the application. These characteristics include the list of sources, the location of those
sources, the location of the generated object files, the name of the main program, and
the options for the various tools involved in the build process. Each of them is for a dif-
ferent set of files (hello-samples is for the examples, hello_c is for the c files and hello is
for rest of the ada files.)

hello_c.gpr

hello-samples.gpr (in the samples directory)

Table 4.3 Ada Files Created for Example “Hello.idl”

14

Chapter 5 Customizing the Generated
Code

Code Generator allows you to customize the generated code for different languages by changing
the provided templates. This version does not allow you to create new output files.

You can load new templates using the following command in an existing template, where
<pathToTemplate> is relative to the <NDDSHOME>/resource/app/app_sup-
port/rtiddsgen/templates folder:
#parse(“<pathToTemplate>/template.vm”)

If that template.vm file contains macros, you can use it within the original template. If tem-
plate.vm contains just plain text without macros, that text will be included directly in the original
file.

You can customize the behavior of a template by using the predefined set of variables provided
with Code Generator. For more information, see the tables in RTI_rtiddsgen_template_vari-
ables.xlsx.

This file contains two different sheets: Language-Templates and Template variables. The Lan-
guage-Template sheet shows the correspondence between the Velocity Templates used and the
generated files for each language. If, for example, we want to add a method in C in the Hello.c file,
we would need to modify the template typeBody.vm under the templates/c directory.

The scope of a template can be:

l type: If we generate a file with that template for each type in the IDL file. For example in
Java, where we generate a TypeSupport file for each type in the IDL.

l file: If we generate a file with that template for each IDL file. For example in C, we generate
a single plugin file containing all the types Plugin information.

l lastTopLevelType: If we generate a file with that template for the last top-level type in the
IDL file. This is commonly used for the publisher/subscriber examples.

15

Chapter 5 Customizing the Generated Code

16

l module: If we generate a file with that template for each module in the IDL file. This is used in
Ada, where there are files that contain all the types of a module.

l topLevelType: if we generate a file with that template for each type in the idl file. This is used in
ADA where the publisher/subscriber files are only generated for top level types

The table also shows the top_level variables that can be used for that templates. These variables are
explained in the sheet Template variables. For example in Java, the main unit of variables are the con-
structMap which is a hashMap of variables that represent a type. In C, we will have as the main unit the
constructMapList, which is a List of constructMap. In the Template variables sheet, we can see which vari-
ables are contained in each constructMap, the constructKind or type that it is applicable to and the value
that it contains depending on the language we use.

One important variable that contains the constructMap for a type is the memberFieldMapList. This list rep-
resent the members contained within the type. Each member is also represented as a hashMap whose vari-
ables are also described in the Template variables sheet.

Apart from that there are environmental or general variables that are not related with the types that are
defined within a hashMap called envMap.

Let’s see how to use these variables with an example. Suppose we want to generate a method in C that
prints the members for a structure and, if it is an array or sequence, its corresponding size. For this IDL:
module Mymodule{

struct MyStruct{
long longMember;
long arrayMember [2][100];
sequence<char,2> sequenceMember;
sequence <long, 5> arrayOfSequenceMember[28];

};
};

We want to generate this:
void MyModule_MyStruct_specialPrint(){

printf(" longMember \n");
printf(" arrayMember is an array [2, 100] \n ");
printf(" sequenceMember is a sequence <2> \n");
printf(" arrayOfSequenceMember is an array [28] is a sequence <5> ");

}

The code in the template would look like this:
We go through all the list of types
#foreach ($node in $constructMapList)
##We only want the method for structs
#*--*##if ($node.constructKind.equals(“struct”))
void ${node. nativeFQName}_specialPrint(){
##We go through all the members and call to the macros that check if they are array or
sequences
#*----*##foreach($member in $node.memberFieldMapList)
print("$member.name #isAnArray($member) #isASeq($member) \n");

Chapter 5 Customizing the Generated Code

#*----*##end
}
#*--*##end
#end

The isAnArray macro checks if the member is an array (i.e, has the variable dimensionList) and in that
case, prints it:
#macro (isAnArray $member)
#if($member.dimensionList) is an array $member.dimensionList #end
#end

The isASeq macro checks if the member is an sequence (i.e, has the variable seqSize) and in that case,
prints it:
#macro (isASeq $member)
#if($member.seqSize) is a sequence <$member.seqSize> #end
#end

You can add new variables to the templates using the -V <name< [=<value>] command-line option when
starting Code Generator. This variable will be added to the userVarList hashMap. You can refer to it in
the template as $userVarList.name or $userVarList.name.equals(value).

For more information on velocity templates, see https://velocity.apache.org/engine/1.5/user-guide.html.

17

https://velocity.apache.org/engine/1.5/user-guide.html

Chapter 6 Optimizing the Code Generation
Process

The cost of serialization and deserialization operations increases with type complexity and sample
size. It can become a significant contributor to the latency required to send and receive a sample.
Code Generator provides the command-line option -optimization, which can be used to indicate
the level of optimization of the serialize/deserialize operations. This command-line option allows
selecting one of three different levels.

6.1 Optimization Levels

0: No optimization

1: rtiddsgen generates extra code for typedefs but optimizes its use. If a type that is used is a
typedef that can be resolved to a primitive, enum, or aggregated type (struct, union, or value type),
the generated code will invoke the code of the most basic type to which the typedef can be
resolved. This level can be used if the generated code for typedef is not expected to be modified.
This is the only optimization level supported for Java, C#, and C++/CLI languages.

For example:
typedef long Latitude;
typedef long Latitude;

struct Position {
Latitude x;
Longitude y;

};

With optimization 0, the serialization of a sample with type Position will require calling the seri-
alize methods for Latitude and Longitude. For example:
LatitudePlugin_serialize(...) {

serialize_long(...)
}

18

6.2 How the Optimizations are Applied

19

LongitudePlugin_serialize(...) {
serialize_long(...)

}

Position_serialize(...) {
LatitudePlugin_serialize(...)
LongitudePlugin_serialize(...)

}

With optimization 1, rtiddsgen resolves Latitude and Longitude to their most primitive types for seri-
alization purposes, resulting in a more efficient serialization. In this case, rtiddsgen will save two func-
tion/method calls.
Position_serialize(...) {

serialize_long(...)
serialize_long(...)

}

2: This optimization level is the default if not specified. (You can also explicitly specify it.) This optim-
ization level applies only to C, C++, C++03, C++11, microC, microC++, and Ada languages. With this
optimization level, rtiddsgen optimizes the serialization/deserialization of structures and valuetypes by
using more aggressive techniques. These techniques include inline expansion of nested types and seri-
alization/deserialization of a set of consecutive members with a single copy function invocation (memcpy)
when the memory layout (C, C++ structure layout) is the same as the wire layout (XCDR).

6.2 How the Optimizations are Applied

In Code Generator, the optimizations (inline expansion of nested types and serialization of consecutive
members with a single copy) are related. Inline expansion of a nested structure is only done when the
C/C++ memory layout with standard packing of the structure matches the XCDR layout. (In this case, the
structure’s members can be serialized with a single memcpy.) If the C/C++ memory layout with standard
packing of the structure matches the XCDR layout, then rtiddsgen tries first to do the inline expansion,
then the serialization of consecutive members with a single copy.

6.2.1 Inline expansion of nested types

Inline expansion is an optimization in which Code Generator replaces a type definition with another one
in which nested types are flattened out. This is done to remove extra function calls during seri-
alization/deserialization. For example:
struct Point {

long x;
long y;

};

struct Dimension {
long height;
long width;

};

6.2.2 Serialization of consecutive members with a single copy

struct Rectangle {
Point leftTop;
Dimension size;

};

With optimization level 2, Code Generator replaces the definition of Rectangle with the following equi-
valent definition:
struct Rectangle {

long leftTop_x;
long leftTop_y;
long size_height;
long size_width;

};

This optimization is only done for serialization/deserialization. The generated type in C/C++ continues
using Point and Dimension.

6.2.2 Serialization of consecutive members with a single copy

In the previous Rectangle example, Code Generator, using optimization level 2, further optimizes the seri-
alization and deserialization by serializing a Rectangle sample with a single copy operation (memcpy)
instead of four.

Before optimization:
Rectangle_serialize(...) {

memcpy(..., 4) // leftTop_x
memcpy(..., 4) // leftTop_y
memcpy(..., 4) // size_height
memcpy(..., 4) // size_width

}

After optimization:
Rectangle_serialize(...) {

memcpy(..., 16) // leftTop_x
}

This optimization is only applicable when the memory layout of the C/C++ structure is equivalent to the
serialization layout, which uses the XCDR version 1 or version 2 format.

6.2.3 Rules for Inline Expansion

To be inlinable, a structure 'MyStruct' has to meet the following two requirements:

l It has to have a C/C++-friendly XCDR layout.

l No members of 'MyStruct' should be marked with the @min, @max, or @range annotations.

20

6.2.3 Rules for Inline Expansion

21

A struct/valuetype 'MyStruct' has a C/C++-friendly XCDR layout when all of the following conditions
apply:

l MyStruct is marked as @final or @appendable when the data representation is XCDR version 1.
Mutable structures are not inlinable.

l MyStruct does not have a base type.

l MyStruct contains only primitive members, or complex members composed only of primitive mem-
bers. A primitive member is a member with any of the following types: int16, int32, int64, uint16,
uint32, uint64, float, double, octet, and char. The following primitive types are not supported for
inlining purposes: long double, wchar, boolean, enum.

struct Dimension {
long height;
long width;

}; // Inlinable

struct Dimension {
string label; // Inlinable structures cannot contain strings
long height;
long width;

}; // Not Inlinable

l With any initial alignment (1, 2, 4, 8) greater than the alignment of the first member of the struct,
there is no padding between the members that are part of MyStruct. To apply this rule, consider
these alignments and sizes for primitive types:

Table 6.1 Alignments and Sizes for Primitive Types

Primitive Type Alignment (bytes) Size (bytes)

int16 2 2

uint16 2 2

int32 4 4

uint32 4 4

int64 8 8

uint64 8 8

float 4 4

double 8 8

octet 1 1

char 1 1

6.2.3 Rules for Inline Expansion

struct Dimension {
long height;
short width;

}; // Inlinable. Independently of the alignment of the starting memory address (4 or 8),
there is no padding between long and width

struct Dimension {
short height;
long width;

}; // Not Inlinable. Starting in a memory address aligned to 4 will require adding a
padding of two bytes between height and width

l With any initial alignment (1, 2, 4, 8) greater than the alignment of the first member of the struct,
there is no padding between the elements of an array of MyStruct.

struct Dimension {
long height;
short width;

}; // Not inlinable. Let's assume an array of two dimensions Dimension[2]. If the array
starts in a memory address aligned to 4, there would be padding between the first and the
second element of the array

struct Dimension {
long height;
short width;
short padding;

}; // Inlinable

For serialization and deserialization purposes, Code Generator will consider an inlinable structure (accord-
ing to the previous rules) as a primitive array where the alignment of the primitive type corresponds to the
alignment of the first member of the structure. A member with type ‘MyStruct’ will be serialized with a
single copy (memcpy) invocation.

When Code Generator serializes the members of a data structure, it will also try to coalesce the seri-
alization of consecutive primitive members into a single copy operation if possible. Code Generator only
applies this optimization when the alignment of the next member is equal to or smaller than the alignment
of the current member.
struct Dimension {

short height;
long width;

}; // Coalescing not possible because the alignment of width 4 is greater than the alignment of
height 2

struct Dimension {
long width;
short height;

}; // Coalescing is possible because the alignment of width 4 is greater than the alignment of
height 2

22

6.2.4 Guidelines

23

6.2.4 Guidelines

As a rule of thumb, to take advantage of optimization level 2 for types containing only primitive types:

l Order the members in descending alignment order (this will help with copy coalescing).

l For XCDR version 2 encapsulation, use @final extensibility if your types will not evolve. For
XCDR version 1 encapsulation, use @final or @appendable if possible (this will help with inline
expansion).

l If you use ContentFilteredTopics, it is recommended that fields that appear in the filter expression
are placed at the beginning of the type.

Chapter 7 Boosting Performance with
Server Mode

If you need to invoke Code Generator multiple times with different parameters and/or type files,
there will be a performance penalty derived from loading the JVM and compiling the velocity tem-
plates.

To help with the above scenario, you can run Code Generator in server mode. Server mode runs a
native executable that opens a TCP connection to a server instance of the code generator that is
spawned the first time the executable is run, as depicted below:

To invoke Code Generator in server mode, use the script rtiddsgen_server(.bat), which is in the
scripts directory.

When Code Generator is used in server mode, JVM is loaded a single time when the server is star-
ted; the velocity templates are also compiled a single time. The server will wait up to 5 seconds for
Code Generator to initialize. You can change this value by specifying the number of milliseconds
with the parameter -n_connectiontimeout.

The Code Generator server will automatically stop if it is not used for a certain amount of time.
The default value is 20 seconds; you can change this by editing the rtiddsgen_server script and
adjusting the value of the parameter -n_servertimeout.

24

	Chapter 1 Introduction
	Chapter 2 Paths Mentioned in Documentation
	Chapter 3 Command-Line Arguments for rtiddsgen
	Chapter 4 Generated Files
	Chapter 5 Customizing the Generated Code
	Chapter 6 Optimizing the Code Generation Process
	6.1 Optimization Levels
	6.2 How the Optimizations are Applied
	6.2.1 Inline expansion of nested types
	6.2.2 Serialization of consecutive members with a single copy
	6.2.3 Rules for Inline Expansion
	6.2.4 Guidelines

	Chapter 7 Boosting Performance with Server Mode

