
RTI Security Plugins
User's Manual

Version 6.0.1

© 2020 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
March 2020.

Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Work-
ing as one,” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All
other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

Securing a distributed, embedded system is an exercise in user risk management. RTI expressly disclaims
all security guarantees and/or warranties based on the names of its products, including Connext DDS
Secure, RTI Security Plugins, and RTI Security Plugins SDK. Visit https://www.rti.com/terms/ for com-
plete product terms and an exclusive list of product warranties.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

https://www.rti.com/terms/
mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Introduction 1
Chapter 2 Paths Mentioned in Documentation 4
Chapter 3 Libraries Required for Using RTI Security Plugins

3.1 Mixing Libraries Not Supported 8
3.1.1 Dynamic Linking 9
3.1.2 Static Linking 10
3.1.3 Mixed Linking 11

Chapter 4 Restrictions when Using RTI Security Plugins

4.1 When to Set Security Parameters 12
4.2 Impact of Using Security Plugins 12

Chapter 5 Authentication

5.1 Identity Certificate Chaining 21
5.2 Related Governance Attributes for Authentication 22

5.2.1 domain_rule 22
5.3 Fragmentation Support for the Authentication Topic 22
5.4 Configuration Properties Common to All Authentication Plugins 23
5.5 Re-Authentication 23
5.6 Protecting Participant Discovery 24
5.7 Supporting TrustedState in Custom Plugins 25

Chapter 6 Access Control

6.1 Specifying Domain IDs 29
6.2 Related Governance Attributes for Access Control 30

6.2.1 domain_rule 30
6.2.2 topic_rule 30
6.2.3 No Matching Rule 31

6.3 Permissions Document 31

iii

iv

6.3.1 Topics 31
6.3.2 Partitions 31

6.3.2.1 Allowed 32
6.3.2.2 Denied 32
6.3.2.3 Partitions Mutability 33

6.3.3 Data Tags 33
6.3.3.1 Allowed 34
6.3.3.2 Denied 34

Chapter 7 Cryptography

7.1 Related Governance Attributes for Cryptography 37
7.1.1 ProtectionKind 37
7.1.2 domain_rule 38
7.1.3 topic_rule 39

7.2 Configuration Properties Common to All Cryptography Plugins 39
7.3 Reliability Behavior When MAC Verification Fails 40
7.4 Enabling Asynchronous Publishing for the Key Exchange Topic 40

Chapter 8 Logging

8.1 Connext DDS Builtin Logging System 41
8.2 Log File 42
8.3 Distributed over DDS 43

8.3.1 Setting the Properties 44
8.3.2 Using a Custom Subscriber 45

8.4 Logging Properties and Messages 46
Chapter 9 Support for OpenSSL Engines

9.1 Support for Engine Control Commands 54
Chapter 10 Support for RTI Persistence Service 56
Chapter 11 RTPS-HMAC-Only Mode 58
Chapter 12 What’s Different from the OMG Security Specification

12.1 Differences Affecting Builtin Plugins to be Addressed by Next DDS Security Specification 60
12.1.1 Acess Control 60

12.1.1.1 Mutability of Publisher PartitionQosPolicy 60
12.2 Differences Affecting Builtin Plugins 61

12.2.1 General 61
12.2.1.1 Support for Infrastructure Services 61

12.3 Differences Affecting Custom Plugins 61
12.3.1 Authentication 61

12.3.1.1 Revocation 61
12.3.2 Access Control 61

12.3.2.1 check_local_datawriter_register_instance 61
12.3.2.2 check_local_datawriter_dispose_instance 61
12.3.2.3 check_remote_datawriter_register_instance 61
12.3.2.4 check_remote_datawriter_dispose_instance 61
12.3.2.5 check_local_datawriter_match / check_local_datareader_match 61
12.3.2.6 Revocation 62
12.3.2.7 PermissionsToken 62
12.3.2.8 check_remote_topic 62

Appendix A Quick Reference: Governance File Settings 63

v

Chapter 1 Introduction
RTI® Security Plugins is a robust set of security capabilities, including authentication, encryption,
access control and logging. Secure multicast support enables efficient and scalable distribution of
data to many subscribers. Performance is also optimized by fine-grain control over the level of
security applied to each data flow, such as whether encryption or just data integrity is required.

This release of Security Plugins includes partial support for the DDS Security specification from
the Object Management Group (OMG)1. This support allows DomainParticipants to authenticate
and authorize each other before initializing communication, and then encode and decode the com-
munication traffic to achieve confidentiality, message authentication, and data integrity.

Specifically, these features are supported:

l Authentication can be done as part of the RTI Connext® DDS discovery process to ensure
that DomainParticipants validate each other’s identity.

l Access Control permissions checking can be done as part of the Connext DDS discovery pro-
cess to ensure that DomainParticipants, DataWriters, and DataReaders have the appropriate
permissions to exist and match with each other. Domain governance can now be done dur-
ing entity creation to ensure the right security attributes are applied to the right DomainPar-
ticipants, DataWriters, and DataReaders.

l Cryptographic operations can be done as part of Connext DDS steady-state communication
to ensure confidentiality, message authentication, and data integrity.

l Logging operations can be done using the Logging Plugin. There are options to print the log
messages using NDDS_Config_Logger or an output file, distribute the log messages over a
DDS topic, and control the verbosity level of the log messages.

l Data tagging can be done using the DataTagQosPolicy, and data tags can now be allowed
or denied using the Permissions Document.

1http://www.omg.org/spec/DDS-SECURITY/1.1/

1

http://www.omg.org/spec/DDS-SECURITY/1.1/

Chapter 1 Introduction

2

The above features are supported in the RTI core middleware in the C, C++, Java, and .NET pro-
gramming languages.

The following DDS Security features are not supported:

l Revocation of identities and permissions

l Instance-level permissions checking

For descriptions and examples of the security configuration in this release, please consult the hello_secur-
ity examples under the rti_workspace/<version>/examples/connext_dds/[c, c++, java, cs] directory.

To use Security Plugins, you will need to create private keys, identity certificates, governance, and per-
mission files, as well as signed versions for use in secure authenticated, authorized, and/or encrypted com-
munications.

If you are new to the world of internet security, see this link:

l https://en.wikipedia.org/wiki/Public-key_cryptography

Fundamentally, if you want to deploy a secure system, your organization will need to have an in-house
security expert. Just using Security Plugins is not sufficient. It is a tool that can build secure systems, but
you do have to use it (configure it) to meet your requirements. If used incorrectly, systems deployed with
Security Plugins may not meet the security requirements of a project.

The Security Plugins bundle includes a set of builtin plugins that implement those defined by the DDS
Security specification. It is also possible to implement new custom plugins by using the Security Plugins
SDK bundle (for more information, please contact support@rti.com).

You should know that Security Plugins use the same technology as most of the world's eCommerce, so if
you have ever purchased something on the internet, the same technology protecting your purchase is used
by Security Plugins to protect data exchange.

As an end user, you need to have the following files, which an application using Security Plugins needs to
communicate in a secure DDS domain:

l Keys. Each participant has a Private Key and Identity Certificate pair that is used in the authen-
tication process.

l Shared CA has signed participant public keys. Participants must also have a copy of the CA cer-
tificate (also known as Identity Certificate Authority Certificate).

l Permissions File specifies what domains/partitions the DomainParticipant can join, what topics it
can read/write, and what tags are associate with the readers/writers.

l Domain Governance specifies which domains should be secured and how.

https://en.wikipedia.org/wiki/Public-key_cryptography

Chapter 1 Introduction

Permissions CA has a signed participant permission file, as well as the domain governance document. Par-
ticipants must have a copy of the permissions CA certificate (also known as Permissions Authority Cer-
tificate).
Figure 1.1: Artifacts required for RTI Security Plugins

3

Chapter 2 Paths Mentioned in
Documentation

The documentation refers to:

l <NDDSHOME>

This refers to the installation directory for RTI® Connext® DDS. The default installation
paths are:

l macOS® systems:
/Applications/rti_connext_dds-6.0.1

l Linux systems, non-root user:
/home/<your user name>/rti_connext_dds-6.0.1

l Linux systems, root user:
/opt/rti_connext_dds-6.0.1

l Windows® systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-6.0.1

l Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-6.0.1

You may also see $NDDSHOME or%NDDSHOME%, which refers to an environment
variable set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

4

Chapter 2 Paths Mentioned in Documentation

5

Note for Windows Users:When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:
“C:\Program Files\rti_connext_dds-6.0.1\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

l <path to examples>

By default, examples are copied into your home directory the first time you run RTI Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples as
<path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:
l macOS systems: /Users/<your user name>/rti_workspace/6.0.1/examples

l Linux systems: /home/<your user name>/rti_workspace/6.0.1/examples

l Windows systems: <your Windows documents folder>\rti_workspace\6.0.1\examples

Where 'your Windows documents folder' depends on your version of Windows. For example,
on Windows 10, the folder is C:\Users\<your user name>\Documents.

Note: You can specify a different location for rti_workspace. You can also specify that you do not
want the examples copied to the workspace. For details, see Controlling Location for
RTI Workspace and Copying of Examples in the RTI Connext DDS Installation Guide.

Chapter 3 Libraries Required for Using RTI
Security Plugins

To use the RTI Security Plugins, link against the additional libraries in one of the following tables,
depending on your platform. Select the files appropriate for your chosen library format.

Table 3.1 Additional Libraries for Using RTI Security Plugins on Android Systems

Library Format RTI Security Plugins Libraries a OpenSSL Libraries b

Dynamic Release libnddssecurity.so librtisslsupport.so

Dynamic Debug libnddssecurityd.so librtisslsupport.so

Static Release libnddssecurityz.a librtisslsupportz.a

Static Debug libnddssecurityzd.a librtisslsupportz.a

a These libraries are in <NDDSHOME>/lib/<architecture>.
b These libraries are in <openssl install dir>/<architecture>/<debug or release dir>/lib.

Table 3.2 Additional Libraries for Using RTI Security Plugins on iOS Systems

Library Format RTI Security Plugins Libraries a OpenSSL Libraries b

Static Release libnddssecurityz.a libsslz.a libcryptoz.a

Static Debug libnddssecurityzd.a libsslz.a libcryptoz.a

a These libraries are in <NDDSHOME>/lib/<architecture>.
b These libraries are in <openssl install dir>/<architecture>/<debug or release dir>/lib.

6

Chapter 3 Libraries Required for Using RTI Security Plugins

7

Table 3.3 Additional Libraries for Using RTI Security Plugins on Linux Systems

Library Format RTI Security Plugins Libraries a OpenSSL Libraries b

Dynamic Release libnddssecurity.so libssl.so libcrypto.so

Dynamic Debug libnddssecurityd.so libssl.so libcrypto.so

Static Release libnddssecurityz.a libsslz.a libcryptoz.a

Static Debug libnddssecurityzd.a libsslz.a libcryptoz.a

a These libraries are in <NDDSHOME>/lib/<architecture>.
b These libraries are in <openssl install dir>/<architecture>/<debug or release dir>/lib.

Table 3.4 Additional Libraries for Using RTI Security Plugins on macOS Systems

Library Format RTI Security Plugins Libraries a OpenSSL Libraries b

Dynamic Release libnddssecurity.dylib libssl.dylib libcrypto.dylib

Dynamic Debug libnddssecurityd.dylib libssl.dylib libcrypto.dylib

Static Release libnddssecurityz.a libsslz.a libcryptoz.a

Static Debug libnddssecurityzd.a libsslz.a libcryptoz.a

aThese libraries are in <NDDSHOME>/lib/<architecture>.
bThese libraries are in <openssl install dir>/<architecture>/<debug or release dir>/lib.

Table 3.5 Additional Libraries for Using RTI Security Plugins on QNX Systems

Library Format RTI Security Plugins Libraries a OpenSSL Libraries b

Dynamic Release libnddssecurity.so libssl.so libcrypto.so

Dynamic Debug libnddssecurityd.so libssl.so libcrypto.so

Static Release libnddssecurityz.a libsslz.a libcryptoz.a

Static Debug libnddssecurityzd.a libsslz.a libcryptoz.a

aThese libraries are in <NDDSHOME>/lib/<architecture>.
bThese libraries are in <openssl install dir>/<architecture>/<debug or release dir>/lib.

3.1 Mixing Libraries Not Supported

Table 3.6 Additional Libraries for Using RTI Security Plugins on Windows Systems

Library Format RTI Security Plugins Libraries a OpenSSL Libraries b System Libraries

Dynamic Release nddssecurity.lib libssl.lib libcrypto.lib (none)

Dynamic Debug nddssecurityd.lib libssl.lib libcrypto.lib (none)

Static Release nddssecurityz.lib libsslz.lib libcryptoz.lib crypt32.lib

Static Debug nddssecurityzd.lib libsslz.lib libcryptoz.lib crypt32.lib

aThese libraries are in <NDDSHOME>\lib\<architecture>.
bThese libraries are in <openssl install dir>\<architecture>\<debug, release, static_debug, or static_release dir>\lib.

3.1 Mixing Libraries Not Supported

Mixing static and dynamic RTI libraries (e.g., using RTI static core libraries and dynamic Security Plugins
libraries) is not supported for user applications; however, you can use either static or dynamic linking. The
following sections explain what to be aware of and to avoid in the different scenarios.

The examples in this section are for Linux systems, but except for small differences in names, the same
concepts apply to Windows and macOS systems as well.

Suppose you have a Connext DDS-based application myApp, and you want to use Security Plugins to pro-
tect the communication. The library dependency looks something like that in Figure 3.1: Library Depend-
ency below.
Figure 3.1: Library Dependency

Figure 3.1: Library Dependency above is a simple and common situation, but in some cases you may end
up with a circular dependency among the libraries. In particular, circular dependency may occur when you
enable the Security Plugins logging distribution (see Logging (Chapter 8 on page 41)). In this case, Secur-
ity Plugins performs calls to the Connext DDS core library, potentially creating a dangerous situation, as
shown in Figure 3.2: Circular Library Dependency on the next page.

8

3.1.1 Dynamic Linking

9

Figure 3.2: Circular Library Dependency

3.1.1 Dynamic Linking

An easier and more flexible solution is to use dynamic linking. At run time, your application loads the Con-
next DDS libraries (on UNIX-based systems: libnddsc.so, libnddscore.so), and everything is controlled
from the QoS defined in an XML file. To specify dynamic linking, use something like the following dur-
ing the link phase of your application:
gcc -o myApp myApp.o -L$NDDSHOME/lib/$ARCH -lnddsc -lnddscore

Note: Security Plugins is not included in the list of required libraries, because it is dynamically loaded at
run time from the participant QoS com.rti.serv.secure.library:
<participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.secure.library</name>
<value>nddssecurity</value>

</element>
</value>

</property>
</participant_qos>

Dynamic loading is particularly useful if, for example, you use your own security plugins library, because
the library can be easily defined at run time through the QoS.

l When your application starts, the dynamic loader automatically loads the Connext DDS libraries
(libnddsc.so, libnddscore.so) from your dynamic library search path.

l When the DomainParticipant is created and the QoS is set, the Connext DDS core libraries dynam-
ically load the security library at run time. Because the Security Plugins library depends on
libnddscore.so, the dynamic loader knows that the library has already been loaded, and it auto-
matically resolves the undefined symbols to use the currently loaded library.

l The security library then initializes and creates the Logging Plugin. The Logging Plugin initializes
the DomainParticipantFactory (which is implemented in the Connext DDS core library) .

3.1.2 Static Linking

3.1.2 Static Linking

If you choose to statically link the RTI libraries, the mechanism for dynamic selecting and loading of Secur-
ity Plugins is no longer available. Compared to dynamic linking, you need to pay attention to two things
with static linking.

First, you need to include the Security Plugins library and the OpenSSL dependency libraries in the list of
libraries needed during linking:
gcc -o myApp myApp.o -L$NDDSHOME/lib/$ARCH -lnddscz -lnddscorez -lnddssecurityz -lcryptoz -
lsslz

Second, in your code you need to manually tell Connext DDS the pointer to the function of the entry point
of Security Plugins before you create the DomainParticipant, as shown in the following snippet:
#include "security/security_default.h"

struct DDS_DomainParticipantQos participant_qos = DDS_DomainParticipantQos_INITIALIZER;
DDS_ReturnCode_t retcode;

retcode = DDS_DomainParticipantFactory_get_participant_qos_from_profile(
DDS_TheParticipantFactory, &participant_qos, "AppQosLibrary::MyAppProfile",

profile);
if (retcode != DDS_RETCODE_OK) {

// error: Unable to get default participant qos
[...]

}

retcode = DDS_PropertyQosPolicyHelper_assert_pointer_property(
&participant_qos.property,
BUILTIN_PLUGIN_NAME ".create_function_ptr",
RTI_Security_PluginSuite_create);

if (retcode != DDS_RETCODE_OK) {
// error: Unable to assert create_function_ptr property
[...]

}
/* Create the domain participant on domain ID 18 */
participant = DDS_DomainParticipantFactory_create_participant(

DDS_TheParticipantFactory,
18, /* Domain ID */
&participant_qos, /* Qos */
NULL, /* Listener */
DDS_STATUS_MASK_NONE);

[...]

IMPORTANT: If you statically link Security Plugins, the QoS property com.rti.serv.secure.library will
be silently ignored, if defined. Security Plugins is only set at compile time. There is no runtime selection.

The example above works for Connext DDS 6.0.0 and newer. For older versions, refer to the example
code examples/connext_dds/c/hello_security/src/HelloWorld_subscriber.c.

10

3.1.3 Mixed Linking

11

3.1.3 Mixed Linking

The last scenario is when you have your application statically linked with the Connext DDS library, but
you dynamically select the Security Plugins library to load at run time.

Mixing static and dynamic libraries is not valid, and you should avoid it.

You can easily end up in a mixed linking scenario without realizing the implications. For example, sup-
pose you design your statically linked application without security in mind, then add security from the
QoS. This scenario is not valid because when the runtime dynamic loader loads the Security Plugins lib-
rary, it also loads a second copy of the Connext DDS core libraries in memory as shown by Figure 3.3:
Mixed Library Linking below.
Figure 3.3: Mixed Library Linking

If you enable Security Plugins logging distribution, the moment the Security Plugins library is loaded, you
will get an error message like the following:
DDS_DomainParticipantGlobals_initializeWorkerFactoryI:!Potential library mismatch.
This may happen if your application uses the static and the shared RTI core
libraries simultaneously.
For example, using the shared RTI Monitoring library
and linking statically with the RTI core libraries will cause this mismatch

If you don't have Security Plugins logging distribution enabled, your application might still work (because
the detection of this condition is implemented in the initializer of the DDS DomainParticipantFactory), but
this configuration is not supported and you might end up with unexpected behavior at run time.

Chapter 4 Restrictions when Using RTI
Security Plugins

4.1 When to Set Security Parameters

You must set the security-related participant properties before you create a participant (see the
tables in Authentication (Chapter 5 on page 14)). You cannot create a participant without security
and then call DomainParticipant::set_qos() with security properties, even if the participant has
not yet been enabled.

4.2 Impact of Using Security Plugins

Enabling Security Plugins may affect the timing of Connext DDS discovery, causing your applic-
ations to behave slightly differently when starting your system. With Security Plugins enabled, two
additional processes need to happen before data is successfully exchanged between two applic-
ations: first, the two involved DomainParticipants need to complete authentication, which is a
three-way handshake process; then, each one of the secured DataWriters and DataReaders need to
exchange the key material for protecting the data. Endpoints need to exchange this key material so
that protected (encrypted or signed) payloads and submessages can be decrypted and verified.

If protected data, such as user samples, arrive before the key material exchange is complete, this
protected data is dropped by Connext DDS. Only samples exchanged over non-volatile, reliable
channels (i.e., a channel with the Reliability QoS kind set to RELIABLE, and Durability QoS kind
other than VOLATILE) will be resent if they're dropped due to incomplete key material exchange.
Since key material exchange is required with Security Plugins, and it takes some additional time for
this exchange to occur before endpoints begin accepting data, more data may be sent as repair
traffic than in scenarios without Security Plugins enabled.

As a result, if your application starts writing data samples right after enabling the DataWriter, you
may observe those initial samples to take longer to be received (if using RELIABLE reliability) or
to not be received at all (if using BEST_EFFORT reliability), even if those samples were usually

12

4.2 Impact of Using Security Plugins

13

received when not using Security Plugins. (They could also have been lost even if not using security, if dis-
covery was not completed at the time of writing the sample.)

Another consideration is that using the "Generic.Security" profile for enabling security also does some tun-
ing to the reliability protocol parameters for endpoint discovery traffic. The goal of this tuning is to shorten
discovery times; however, the configured parameters could be too aggressive for some systems, sig-
nificantly increasing network traffic during the discovery phase. These parameters can be tuned down by
explicitly configuring the following DiscoveryConfigQosPolicy's publication_writer and subscription_
writer values: fast_heartbeat_period to 1 sec, late_joiner_heartbeat_period to 1 sec, and max_heart-
beat_retries to 30.

Chapter 5 Authentication
Authentication is the process of making sure a DomainParticipant is who it claims to be. Loading
any security plugins will configure the DomainParticipant to authenticate a newly discovered
remote participant before initiating endpoint discovery with that participant. Authentication is done
via a series of inter-participant challenge and response messages. These messages perform mutual
authentication, so the end result is that this participant authenticates the remote participant and vice-
versa. If this participant fails to authenticate the remote participant, the remote participant is
ignored. Otherwise, this participant initiates endpoint discovery with the remote participant and
communication resumes as normal.

Table 5.1 Properties for Enabling Security below, Table 5.2 DDS Security Properties for Con-
figuring Authentication on page 16, and Table 5.3 RTI Security Plugins Properties for Configuring
Authentication on page 19 list the properties that you can set for Authentication and enabling secur-
ity in general. These properties are configured through the DomainParticipant’s Prop-
ertyQosPolicy.

Property Name
(prefix with

‘com.rti.serv.secure.’)
1

Property Value Description

com.rti.serv.load_plugin

(Note: this does not take a
prefix)

Required

The prefix name of the security plugin suite that will be loaded byConnext DDS. For example: com.rti.ser-
v.secure. You will use this string as the prefix to some of the property names. Setting this value to non-
NULL will also configure the DomainParticipant to attempt authentication with newly discovered remote
participants. Note: you can load only one security plugin suite.

Default: NULL unless using theGeneric.Security builtin profile

Table 5.1 Properties for Enabling Security

1 Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the
string used with com.rti.serv.load_plugins, followed by the '.' character.

14

Chapter 5 Authentication

15

Property Name
(prefix with

‘com.rti.serv.secure.’)
1

Property Value Description

library

Only required if linking dynamically

Must be set to the dynamic library that implements the security plugin suite. If using Connext DDS’s
provided security plugin suite, you must set this value to nddssecurity.

This library and the dependent OpenSSL libraries must be in your library search path (pointed to by the en-
vironment variable LD_LIBRARY_PATH on UNIX/Solaris systems, Path on Windows systems, LIBPATH
on AIX systems,DYLD_LIBRARY_PATH on macOS systems).

Default: NULL unless usingGeneric.Security builtin profile

create_function

Only required if linking dynamically

Must be set to the security plugin suite creation function that is implemented by the library. If using Con-
next DDS’s provided security plugin suite, you must set this value to RTI_Security_PluginSuite_create.

Default: NULL unless usingGeneric.Security builtin profile

create_function_ptr

Only required if linking statically

Must be set to the security plugin suite creation function implemented by the library. If using Connext
DDS’s provided security plugin suite, you must set this value to the stringified pointer value ofRTI_Se-
curity_PluginSuite_create, as demonstrated in the hello_security examples.

Notes:

l You cannot set this value in an XML profile. You must set it in code.

l If this property is set to a value other than NULL, it will always take effect, even if create_function
is also set to a value other than NULL.

Default: NULL

Table 5.1 Properties for Enabling Security

1 Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

Chapter 5 Authentication

Property Name Property Value Description

dds.sec.auth.identity_ca

Required

This Identity Certificate Authority is used for signing authentication certificate files.

OpenSSL should generate this file using commands such as the following. For an example openssl.cnf file, refer
to the example cert folder: rti_workspace/version/examples/dds_security/cert. Note: You will need to modify
this file to match your certificate folder structure and Identity Certificate Authority desired configuration.

RSA:
% openssl genrsa -out cakey.pem 2048
% openssl req -new -key cakey.pem -out ca.csr -config openssl.cnf
% openssl x509 -req -days 3650 -in ca.csr -signkey cakey.pem -out cacert.pem

DSA:
% openssl dsaparam 2048 > dsaparam
% openssl gendsa -out cakeydsa.pem dsaparam
% openssl req -new -key cakeydsa.pem -out dsaca.csr -config openssldsa.cnf
% openssl x509 -req -days 3650 -in dsaca.csr -signkey cakeydsa.pem -out
cacertdsa.pem

ECDSA:
% openssl ecparam -name prime256v1 > ecdsaparam
% openssl req -nodes -x509 -days 3650 -newkey ec:ecdsaparam
-keyout cakeyECdsa.pem -out cacertECdsa.pem -config opensslECdsa.cnf

If specifying the file name as the property value, this property value should be set to "file:" (no space after the
colon), followed by the file name that appears after the "-out" parameter of the final openssl command (e.g., cacer-
t.pem, cacertdsa.pem, or cacertECdsa.pem).

Note: When running the above commands, you may run into these OpenSSL warnings:
WARNING: can't open config file: [default openssl built-inpath]/openssl.cnf

Or:
unable to write 'random state'

To resolve the first issue, set the environmental variable OPENSSL_CONFwith the path to the openssl.cnf file you
are using. (See Installing OpenSSL, in the SecurityPlugins Installation Guide.) To resolve the second issue, set
the environmental variable RANDFILE with the path to a writable file.

Two participants that want to securely communicate with each othermust use the same Identity Certificate Author-
ity.

The document should be in PEM format. You may specify either the file name or the document contents. If spe-
cifying the file name, the property value must have the prefix "file:" (no space after the colon), followed by the fully-
qualified path and name of the file. If specifying the contents of the document, the property value must have the
prefix "data:," (no space after the comma), followed by the contents inside the document. For example:
"data:,-----BEGIN CERTIFICATE-----\nabcdef\n-----END CERTIFICATE-----"

Note that the two “\n” characters are required.

Default: NULL

Table 5.2 DDS Security Properties for Configuring Authentication

16

Chapter 5 Authentication

17

Property Name Property Value Description

dds.sec.auth.private_key

Required

The private key associated with the first certificate that appears in identity_certificate. After generating the iden-
tity_ca, OpenSSL should generate this file using commands such as the following:

RSA:
% openssl genrsa -out peer1key.pem 2048

DSA:
% openssl dsaparam 2048 > dsaparam
% openssl gendsa -out peer1keydsa.pem dsaparam

ECDSA:
% openssl ecparam -name prime256v1 > ecdsaparam1
% openssl req -nodes -new -newkey ec:ecdsaparam1 -config example1ECdsa.cnf \

-keyout peer1keyECdsa.pem -out peer1reqECdsa.pem

peer1reqECdsa.pemwill be used to generate the certificate file. This property value should be set to peer-
1keyECdsa.pem.

The document should be in PEM format. You may specify either the file name or the document contents. If spe-
cifying the file name, the property value must have the prefix "file:" (no space after the colon), followed by the fully-
qualified path and name of the file. If specifying the contents of the document, the property value must have the
prefix "data:," (no space after the comma), followed by the contents inside the document. For example:
"data:,-----BEGIN PRIVATE KEY-----\nabcdef\n-----END PRIVATE KEY-----"

Note that the two “\n” characters are required.

Default: NULL

Table 5.2 DDS Security Properties for Configuring Authentication

Chapter 5 Authentication

Property Name Property Value Description

dds.sec.auth.identity_cer-
tificate

Required

An Identity Certificate is required for secure communication.

To generate this file, first generate the identity_ca and private_key. Then create a serial file whose contents are
01 and a blank index.txt file. The names of these files will depend on the contents of the openssl*.cnf file. Then
use OpenSSL to generate the certificate file using commands such as the following. For example .cnf files, refer to
the example cert folder: rti_workspace/version/examples/dds_security/cert. Note: You will need to modify this
file to match your certificate folder structure and Identity Certificate desired configuration:

RSA:
% openssl req -config example1.cnf -new -key peer1key.pem -out user.csr
% openssl ca -config openssl.cnf -days 365 -in user.csr -out peer1.pem

DSA:
% openssl req -config example1dsa.cnf -new -key peer1keydsa.pem -out dsauser.csr
% openssl ca -config openssldsa.cnf -days 365 \

-in dsauser.csr -out peer1dsa.pem

ECDSA:

Generate peer1reqECdsa.pem using the instructions for private_key.
% openssl ca -batch -create_serial -config opensslECdsa.cnf \

-days 365 -in peer1reqECdsa.pem -out peer1ECdsa.pem

If specifying the file name as the property value, this property value should be set to "file:" (no space after the
colon), followed by the file name that appears after the "-out" parameter.

Notes:

l The above commands will generate an optional human-readable section above the mandatory section
delimited by

-----BEGINCERTIFICATE-----

-----ENDCERTIFICATE-----

The human-readable section's "Subject" field may be copied to a <subject_name> element in the Per-
missions Document. But this section adds no functionality and is not protected in any way. It may be mod-
ified without changing the validity of the certificate. To generate a certificate without this section, add the
command line parameter -notext to the "openssl ca" command.

l openssl((EC)dsa).cnfmust have the same countryName, stateOrProvinceName, and localityName
as the example .cnf files.

l For better security, it is recommended, but not required, that .cnf files of different participants have dif-
ferent commonNames

l The document should be in PEM format. You may specify either the file name or the document contents. If
specifying the file name, the property value must have the prefix "file:" (no space after the colon), followed
by the fully qualified path and name of the file. If specifying the contents of the document, the property
value must have the prefix "data:," (no space after the comma), followed by the contents inside the doc-
ument. For example:

"data:,-----BEGINCERTIFICATE-----\nabcdef\n-----ENDCERTIFICATE-----"

Note that the two “\n” characters are required.

l You may put a chain of certificates in the Identity Certificate by concatenating individual certificates and
specifying the concatenated result as a single file or string. See 5.1 IdentityCertificate Chaining on
page 21.

Default: NULL

Table 5.2 DDS Security Properties for Configuring Authentication

18

Chapter 5 Authentication

19

Property Name Property Value Description

dds.sec.auth.password

Only required if private_key is encrypted

The password used to decrypt the private_key. The value of the password property is interpreted as the Base64 en-
coding of the symmetric key that will be used to decrypt the private_key. For example, if the private_key was en-
crypted using this command:

% openssl req -new -newkey ec:ecdsaparam2 -config example2ECdsa.cnf \
-keyout peer2keyECdsa.pem -passout pass:MyPassword -out peer2reqECdsa.pem

you can obtain the Base64 encoding of MyPassword using these commands:

% echo MyPassword > foo
% openssl base64 -e -in foo TXlQYXNzd29yZAo=

The value of the password property should be "TXlQYXNzd29yZAo=". If the private_key was not encrypted, then
the password must be NULL.

Default: NULL

Table 5.2 DDS Security Properties for Configuring Authentication

Property Name (prefix with
‘com.rti.serv.secure.’)1 Property Value Description

authentication.
shared_secret_algorithm

Optional

The algorithmused to establish a shared secret during authentication. The options are dh and ecdh for
(Elliptic Curve)Diffie-Hellman.

If two participants discover each other and they specify different values for this algorithm, the algorithm
that is used is the one that belongs to the participant with the lower-valued participant_key.

Note: ecdh does not work with static OpenSSL libraries when using CerticomSecurity Builder Engine.

Default: ecdh

authentication.
alternative_ca_files

Optional

A comma-separated list of alternative Identity CA certificates. If the verification of a file fails with the main
certificate (identity_ca/ca_file), verification will be retried with all of the corresponding alternative cer-
tificates. If none of the alternative certificates can be used to verify the file, the verification process will fail.
If any of the alternative certificate files fail to be loaded, the DomainParticipant creation will fail.

Default: NULL

Table 5.3 RTI Security Plugins Properties for Configuring Authentication

1 Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

Chapter 5 Authentication

Property Name (prefix with
‘com.rti.serv.secure.’)1 Property Value Description

authentication.crl_file

Optional

This Certificate Revocation List keeps track of untrusted X.509 certificates.

OpenSSL should generate this file using commands such as the following. For an example
opensslECdsa.cnf file, refer to the example cert folder: rti_workspace/version/examples/dds_se-
curity/cert. Note: You will need to modify this file to match your certificate folder structure and Certificate
Revocation List desired configuration:
% touch indexECdsa.txt
% echo 01 > crlnumberECdsa
% openssl ca -config opensslECdsa.cnf -batch -revoke peerRevokedECdsa.pem
% openssl ca -config opensslECdsa.cnf -batch -gencrl -out democaECdsa.crl

In this example:

crlnumberECdsa is the database of revoked certificates. This file should match the crlnumber value in
opensslECdsa.cnf.

peerRevokedECdsa.pem is the certificate_file of a revoked DomainParticipant.

democaECdsa.crl should be the value of the crl_file property.

If crl_file is set to NULL, no CRL is checked, and all valid certificates will be considered trusted.

If crl_file is set to an invalid CRL file, the DomainParticipant creation will fail.

If crl_file is set to a valid CRL file, the CRL will be checked upon DomainParticipant creation and upon dis-
covering otherDomainParticipants. Creating a DomainParticipantwith a revoked certificate will fail. If Par-
ticipantA uses a certificate that does not appear in ParticipantA’s CRL but does appear in ParticipantB’s
CRL, then ParticipantB will reject and ignore ParticipantA. Changes in the CRL will not be enforced until
the DomainParticipant using the CRL is deleted and recreated.

This property value may optionally contain "file:" (no space after the colon) as a prefix to the fully-qualified
path and name of the file.

Default: NULL

Table 5.3 RTI Security Plugins Properties for Configuring Authentication

1 Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

20

5.1 Identity Certificate Chaining

21

Property Name (prefix with
‘com.rti.serv.secure.’)1 Property Value Description

authentication.
x509v3_extension_enforcement.key_
usage

Optional

How to enforce the presence of the X.509 v3 extension keyUsage (see ht-
tps://tools.ietf.org/html/rfc5280#section-4.2.1.3).

This property has three possible values (case insensitive):

l auto: The Security Plugins will not do anything special to enforce the presence of keyUsage in a
certificate. Note this is the behavior in 6.0.0 and below.

l inherited: The Security Plugins will enforce the presence of keyUsage if the certificate's parent
has keyUsage. For example, if cacert.pemhas keyUsage, cacert.pemsigned peer1.pem, peer-
1.pemdoes NOT have keyUsage, identity_ca is set to cacert.pem, and identity_certificate is set
to peer1.pem, then participant creation will fail. The same applies if identity_certificate is set to
the concatenation of peer1.pemand cacert.pemand cacert.pem is just an intermediate CA in a
chained identity_certificate.

l force: The Security Plugins will always enforce the presence of keyUsage. This is not the default,
but it will force you to make sure that all of the certificates in the systemhave their extensions
properly set.

Default: inherited

Table 5.3 RTI Security Plugins Properties for Configuring Authentication

5.1 Identity Certificate Chaining

In the dds.sec.auth.identity_certificate property (see Table 5.2 DDS Security Properties for Configuring
Authentication on page 16), you may put a chain of certificates in the Identity Certificate by concatenating
individual certificates and specifying the concatenated result as a single file or string. The Identity Cer-
tificate will be verified against the Identity CA using the following procedure; see Figure 5.1: Identity Cer-
tificate Chaining on the next page:

l The current certificate is the first certificate in the Identity Certificate chain.

l Perform the following steps up to and including the case when the current certificate is the last cer-
tificate in the Identity Certificate chain:

l If the current certificate is signed by the Identity CA or any of the CAs in the list of
authentication.alternative_ca_files, then the verification succeeds immediately.

l Otherwise:

l If a next certificate exists in the chain and the current certificate is signed by that

1 Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

https://tools.ietf.org/html/rfc5280#section-4.2.1.3
https://tools.ietf.org/html/rfc5280#section-4.2.1.3

5.2 Related Governance Attributes for Authentication

next certificate, then the next certificate becomes the current certificate.

l Otherwise, verification fails immediately.

Figure 5.1: Identity Certificate Chaining

5.2 Related Governance Attributes for Authentication

This section describes the Authentication attributes that appear in the Governance Document.

5.2.1 domain_rule

The attribute allow_unauthenticated_participants belongs inside a <domain_rule>.

This attribute may be TRUE or FALSE. It controls whether or not a remote DomainParticipant that either
doesn’t support security or fails the authentication handshake is allowed to proceed in trying to com-
municate with the local DomainParticipant. Communication with such a DomainParticipant will happen
only on the topics for which all of the topic rules are set to FALSE or NONE.

If allow_unauthenticated_participants is set to TRUE, rtps_protection_kind must be set to NONE.

5.3 Fragmentation Support for the Authentication Topic

Security Plugins supports fragmenting Authentication (ParticipantStatelessMessage) built-in topic samples.
This is useful in scenarios with a hard limit on the transport maximum message size.

This feature is enabled by default: fragmentation of Authentication built-in topic samples will be triggered
when sending samples that exceed themessage_size_max configured in the transports used by Connext
DDS.

22

5.4 Configuration Properties Common to All Authentication Plugins

23

5.4 Configuration Properties Common to All Authentication Plugins

Table 5.4 Properties for Configuring Authentication Common to Any Authentication Plugin below lists a
set of properties that are not exclusive to the shipped Security Plugins, but that will affect any Authentic-
ation Plugin.

Property Name
(prefix with

'dds.participant.trust_
plugins.')

Property Value Description

authentication_
timeout.sec

Optional

Controls the maximum time in seconds that an ongoing authentication can remain without completing. After this
timeout expires, the authentication process is cancelled, and associated resources are released.

A DomainParticipant should set its own authentication_timeout to be shorter than the participant_liveliness_
lease_duration (in the DomainParticipant's DISCOVERY_CONFIG QosPolicy) of its peers. This restriction helps a
temporarily disconnected peer to successfully reconnect with the DomainParticipant.

Default: 60

authentication_request_
delay.sec

Optional

Controls the delay in seconds before sending an authentication_request to the remote participant. Formore in-
formation, please see 5.5 Re-Authentication below.

Default: 5

Table 5.4 Properties for Configuring Authentication Common to Any Authentication Plugin

5.5 Re-Authentication

The Security Plugins support securely re-authenticating remote Participants as described in the DDS Secur-
ity specification. This is needed in scenarios where there is an asymmetric liveliness loss.

Asymmetric liveliness loss occurs between two Participants A and B when Participant A loses liveliness
with B, and therefore cleans up all the associated state, while B still keeps the authenticated state. As B
keeps an authenticated state from A, it will not accept new authentication messages from A. Without the
ability to re-authenticate, asymmetric liveliness loss will lead to communication not recovering. The Secur-
ity Plugins address this problem by including re-authentication capability as described in the DDS Security
specification.

In Security Plugins, if Participant A has not completed an ongoing authentication with Participant B after a
specific period, it will send a "dds.sec.auth_request" message (or "com.rti.sec.auth.request" message if the
remote Participant is 5.3.x or older) that includes a nonce1 to Participant B. This message will give a hint
to Participant B that Participant A is pending Authentication with Participant B. This specific period is

1Nonce: an arbitrary number used only once in a cryptographic communication, used to avoid replay
attacks.

5.6 Protecting Participant Discovery

configured by the property dds.participant.trust_plugins.authentication_request_delay.sec, see Table
5.4 Properties for Configuring Authentication Common to Any Authentication Plugin on the previous
page.

When Participant B receives a "dds.sec.auth_request" (or "com.rti.sec.auth.request") message, it will
check if it already has a valid completed authentication with Participant A. If that is the case, that could
mean that an asymmetric liveliness loss has occurred. In order to verify that the authentication request is
legitimate, the two Participants will now conduct a whole Authentication process that includes the nonce
received as part of the triggering "dds.sec.auth_request" (or "com.rti.sec.auth.request"). Only if this sec-
ondary authentication succeeds, the old state will be removed in Participant B and replaced with the new
one, allowing for discovery to complete again and communication to recover. If this secondary authen-
tication fails, no change will be made in Participant B and the old authenticated session will be kept.

Because the old authenticated state is kept until the new authentication has successfully completed, the
Security Plugins re-authentication is robust against attackers trying to bring down an existing authen-
tication.

5.6 Protecting Participant Discovery

Participant discovery is sent through an unsecure channel. Consequently, additional mechanisms need to
be put in place to make sure the received information comes from a legitimate participant. In Security Plu-
gins, the mechanism for protecting the participant discovery information is known as TrustedState.

Security Plugins TrustedState is an RTI extension to the DDS Security Authentication specification that
covers two limitations in the DDS Security specification:

l Vulnerability in the protocol: The lack of a standardized mechanism for validating that the Par-
ticipant Discovery information received by DDS actually matches the one authenticated.

l Participant Discovery Data is immutable after authentication. This prevents functionality such as
updating IP addresses.

Security Plugins TrustedState is a digest of the participant discovery data, plus information that unam-
biguously identifies the current local participant state, plus information that unambiguously identifies the
current authentication session. TrustedState is exchanged as part of the authentication process as a vendor
extension. Once the authentication completes, involved participants will validate received participant dis-
covery information against the received TrustedState. This way, participants can be sure that the received
participant discovery comes from the authenticated participant.

In order to securely propagate participant discovery changes after authenticating the remote participant, the
Security Plugins use the participant's identity private key to sign the participant discovery data plus some
additional information identifying the local participant state (and which is consistent with the one serialized
in the TrustedState). This signature is then serialized as a property in the participant discovery data. This
way, other participants can validate that the update is legitimate by verifying the received participant dis-
covery against the participant's public key.

24

5.7 Supporting TrustedState in Custom Plugins

25

5.7 Supporting TrustedState in Custom Plugins

To secure participant discovery updates through the TrustedState mechanism in plugins other than the
Security Plugins, the following APIs must be implemented by the custom plugin:

l set_local_participant_trusted_state()

l verify_remote_participant_trusted_state()

l get_max_signature_size()

l private_sign()

l verify_private_signature()

For more information, please see the RTI_SecurityPlugins_BuildableSourceCode_Instructions file
included in the Security Plugins SDK.

Chapter 6 Access Control
Access Control consists of two components: governance and permissions checking. Governance is
the process of configuring locally created DomainParticipants, Topics, DataWriters, and
DataReaders to perform the right amount of security for the right use case. Permissions checking is
the process of making sure locally created and remotely discovered entities are allowed to do what
they want to do. Both governance and permissions checking are enforced by XML documents that
are signed by a permissions certificate authority that may or may not be the same as the identity cer-
tificate authority that signs identity certificates. The XSD definitions of these documents are in
$(NDDSHOME)/resource/schema/dds_security_governance.xsd and dds_security_per-
missions.xsd.

Examples of these documents are in rti_workspace/version/examples/dds_security/xml/, see
Governance.xml and PermissionsA.xml. Use these files just as a reference, you will need to
update their content/create new files to match your system configuration (domains, topics, and used
identity certificates) before signing them. To specify that you want to use these XML files, add the
properties in Table 6.1 DDS Security Properties for Configuring Access Control on the next page
and Table 6.2 RTI Security Plugins Properties for Configuring Access Control on page 28 to the
DDS_DomainParticipantQos property.

26

Chapter 6 Access Control

27

Property Name Property Value Description

dds.sec.access.permissions_
ca

Required

This Permissions Certificate Authority is used for signing access control governance and permissions XML files and
verifying the signatures of those files. The Permissions Certificate Authority file may ormay not be the same as the
Identity Certificate Authority file, but both files are generated in the same way. See the tables at the beginning of
Chapter 5 Authentication on page 14 for the steps to generate this file.

Two participants that want to securely communicate with each othermust use the same Permissions Certificate
Authority.

The document should be in PEM format. You may specify either the file name or the document contents. If spe-
cifying the file name, the property value must have the prefix "file:" (no space after the colon), followed by the fully-
qualified path and name of the file. If specifying the contents of the document, the property value must have the pre-
fix "data:," (no space after the comma), followed by the contents inside the document. For example:
"data:,-----BEGIN CERTIFICATE-----\nabcdef\n-----END CERTIFICATE-----"

Note that the two “\n” characters are required.

Default: NULL

dds.sec.access.governance

Required

The signed document that specifies the level of security required per domain and per topic.

To sign an XML document with a Permissions Certificate Authority, run the following OpenSSL command (enter this
all on one line):
% openssl smime -sign -in Governance.xml -text
-out signed_Governance.p7s -signer cacert.pem
-inkey cakey.pem

Then set this property value to signed_Governance.p7s.

You may specify either the file name or the document contents. If specifying the file name, the property value must
have the prefix "file:" (no space after the colon), followed by the fully-qualified path and name of the file. If spe-
cifying the contents of the document, the property value must have the prefix "data:," (no space after the comma),
followed by the contents inside the document. For example:
"data:,MIME-Version: 1.0\nContent-Type:...boundary=\”---7236\”\n\n"

Note that for signed XML files, all whitespace characters (‘ ‘, ‘\r’, ‘\n’) are significant, and all quotes must be escaped
by a backslash. The safest way to get the correct property value is to call the fread() function on the file and use the
resulting buffer as the property value.

Default: NULL

Table 6.1 DDS Security Properties for Configuring Access Control

http://www.cplusplus.com/reference/cstdio/fread/

Chapter 6 Access Control

Property Name Property Value Description

dds.sec.access.permissions

Required

The signed document that specifies the access control permissions per domain and per topic.

The <subject_name> element identifies the DomainParticipant to which the permissions apply. Each subject name
can only appear in a single <permissions> section within the XML Permissions document.

The contents of the <subject_name> element should be the X.509 subject name for the DomainParticipant, as
given in the "Subject" field of its Identity Certificate.

A <permissions> section with a subject name that does not match the subject name given in the corresponding
Identity Certificate will be ignored.

To sign an XML document with a Permissions Certificate Authority, run the following OpenSSL command (enter this
all on one line):
% openssl smime -sign -in PermissionsA.xml -text
-out signed_PermissionsA.p7s -signer cacert.pem
-inkey cakey.pem

Then set this property value to signed_PermissionsA.p7s.

The signed permissions document only supports validity dates between 1970010100 and 2038011903. Any dates
before 1970010100 will result in an error, and any dates after 2038011903 will be treated as 2038011903. Cur-
rently, Connext DDS will not work if the system time is after January 19th, 2038.

You may specify either the file name or the document contents. If specifying the file name, the property value must
have the prefix "file:" (no space after the colon), followed by the fully-qualified path and name of the file. If spe-
cifying the contents of the document, the property value must have the prefix "data:," (no space after the comma),
followed by the contents inside the document. For example:
"data:,MIME-Version: 1.0\nContent-Type:...boundary=\”---7236\”\n\n"

Note that for signed XML files, all whitespace characters (‘ ‘, ‘\r’, ‘\n’) are significant, and all quotes must be escaped
by a backslash. The safest way to get the correct property value is to call the fread() function on the file and use the
resulting buffer as the property value.

Default: NULL

Table 6.1 DDS Security Properties for Configuring Access Control

Property Name (prefix with
‘com.rti.serv.secure.’)1 Property Value Description

access_control.
alternative_permissions_authority_files

Optional

A comma-separated list of alternative Permissions CA certificates. If the verification of a
file fails with the main certificate (permissions_ca/permissions_authority_file), verification
will be retried with all of the corresponding alternative certificates. If none of the alternative
certificates can be used to verify the file, the verification process will fail. If any of the al-
ternative certificate files fail to be loaded, the DomainParticipant creation will fail.

Default: NULL

Table 6.2 RTI Security Plugins Properties for Configuring Access Control

1 Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

28

http://www.cplusplus.com/reference/cstdio/fread/

6.1 Specifying Domain IDs

29

Property Name (prefix with
‘com.rti.serv.secure.’)1 Property Value Description

access_control.
use_530_permissions_rules_precedence

Optional

How to deal with conflicting allow/deny rules in a Permissions Document. If TRUE, then the
last rule will take precedence, which is consistent with Connext DDS 5.3.0 behavior. If
FALSE, then the first rule will take precedence, which is consistent with the intended be-
havior of the DDS Security specification.

Default: FALSE

access_control.use_530_logging_protection

Optional

How to set the value of <metadata_protection_kind> for the Builtin Logging Topic. If
TRUE, then the value will be NONE, which is consistent with Connext 5.3.0 behavior. If
FALSE, then the value will be SIGN, which is consistent with the behavior of the DDS Se-
curity specification.

Default: FALSE

access_control.use_530_partitions

Optional

How to determine a match between a DataWriter orDataReader'spartitions and an "al-
lowed partitions" condition in a Permissions Document. If TRUE, then an entity is matched
if it has at least one partition in the condition; this is consistent with Connext 5.3.0 be-
havior. If FALSE, then an entity is matched only if all of its partitions are in the condition;
this is consistent with the behavior of the DDS Security specification.

For example, if a DataWriter has partitions [A, B], and a Permissions Document allows par-
titions [B, C], then when use_530_partitions = TRUE, the DataWriter is allowed because
B is allowed. When use_530_partitions = FALSE, the DataWriter is not allowed because
A is not allowed.

Default: FALSE

Table 6.2 RTI Security Plugins Properties for Configuring Access Control

6.1 Specifying Domain IDs

Both the Governance Document and the Permissions Document require you to specify the applicable
domain IDs using the <domains> tag. You may use this tag to specify individual domain IDs, domain
ranges, open domain ranges, and combinations thereof.

Example: Individual domain IDs
<!-- Domains 0 and 1 -->
<domains>

<id>0</id>
<id>1</id>

</domains>

1 Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

6.2 Related Governance Attributes for Access Control

Example: Domain Ranges
<!-- All domains between 3 and 10, inclusive -->
<domains>

<id_range>
<min>3</min>
<max>10</min>

</id_range>
</domains>

Example: Open Domain Ranges
<domains>
<!-- Domain 10 and above -->

<id_range>
<min>10</min>

</id_range>
<!-- Domains from 0 to 5, inclusive -->
<id_range>

<max>5</max>
</id_range>

</domains>

6.2 Related Governance Attributes for Access Control

This section describes the Access Control attributes that appear in the Governance Document.

6.2.1 domain_rule

The following attributes belong inside a <domain_rule>:

l enable_join_access_controlmay be TRUE or FALSE. It controls whether or not remote
DomainParticipant permissions are checked when a remote DomainParticipant is discovered. Local
DomainParticipant permissions are always checked using the local DomainParticipant’s Permissions
Document. There is no way to configure whether or not local DomainParticipant permissions are
checked when a DomainParticipant is created.

l topic_access_rules contains one or more topic_rule attributes.

6.2.2 topic_rule

The following attributes belong inside a <topic_rule>:

l enable_read_access_control

l enable_write_access_control

These attributes may be TRUE or FALSE. They control whether or not DataReader or DataWriter per-
missions are checked. If enable_read_access_control is TRUE for a given topic, the local permissions

30

6.2.3 No Matching Rule

31

are enforced on locally created DataReaders of that topic, and the remote permissions are enforced on
remotely discovered DataReaders of that topic. Similar logic applies to enable_write_access_control and
DataWriters.

6.2.3 No Matching Rule

If no matching domain or topic rule is found, the Entity creation will fail.

6.3 Permissions Document

The Permissions Document is an XML document containing the permissions of the DomainParticipant
and binding them to the subject name of the DomainParticipant as defined in the Identity Certificate. The
Permissions CA must sign the Permissions Document. This document contains a set of <grant> sections,
each of which contains a <subject_name> section, a <validity> section, zero or more <allow_rule> sec-
tions, and zero or more <deny_rule> sections. This document is exchanged during authentication hand-
shaking, so to conserve bandwidth, it is best to have this document contain exactly one <grant> section,
which contains the subject name and rules for the DomainParticipant that is sending the document.

The following sections describe the elements within the <publish> and <subscribe> sections, which are
inside <allow_rule> and <deny_rule> sections.

6.3.1 Topics

The <topics> element defines the DDS Topic names that must be matched for the rule to apply. Topic
names may be given explicitly or by means of Topic name expressions. Each topic name or topic-name
expression appears separately in a <topic> sub-element within the <topics> element. The Topic name
expression syntax and matching shall use the syntax and rules of the POSIX fnmatch() function as spe-
cified in POSIX 1003.2-1992, Section B.6.

Example (appearing within an <allow_rule> and within a publish or subscribe action):
<topics>

<topic>Square</topic>
<topic>B*</topic>

</topics>

The above topic condition would match Topic “Square” and any topic that starts with a “B”.

6.3.2 Partitions

The RTI Connext DDS Core Libraries User's Manual describes the PartitionQosPolicy as a sequence of
strings that belong to a Publisher or Subscriber. The Security Plugins Access Control plugin uses these par-
titions to determine whether or not a DataWriter or DataReader is allowed to exist according to the Per-
missions Document. Inside the Permissions Document, the <partitions> element may appear within a
<publish> or <subscribe> element. <partitions> may contain one or more <partition> elements, each con-
taining a string. For example:

6.3.2.1 Allowed

<subscribe>

<topics>
<topic>Square</topic>

</topics>
<partitions>

<partition>aPartition1</partition>
<partition>aPartition2</partition>
<partition>bPartition*</partition>

</partitions>
</subscribe>

Note the asterisk in the third partition. POSIX fnmatch() matching is allowed for the <partition> element.

6.3.2.1 Allowed

If the <partitions> are under an <allow_rule>, then the <partitions> delimit an allowed partitions condition
section. In order for an action (e.g., a publish action) to meet the allowed partitions condition, the set of the
partitions associated with the DDS Entity performing the action (e.g., a DataWriter for a publish action)
must be contained in the set of partitions defined by the allowed partitions condition section. If there is no
<partitions> section, then the default "empty string" partition is assumed. This means that the allow action
(e.g., publish action) would only allow publishing on the "empty string" partition.

Example (appearing within a <allow_rule> and within a <publish> action):
<partitions>

<partition>A</partition>
<partition>B</partition>

</partitions>

The above allowed partitions condition would be matched if the partitions associated with the DDS Entity
performing the action (e.g., DataWriter for publish action) are a subset of the set [A, B] . So it would be
OK to publish in partition A, in B, or in [A, B] but not in [A, B, C] (assuming the value of the property
access_control.use_530_partitions is FALSE) or in the "empty string" partition.

6.3.2.2 Denied

If the <partitions> are under a <deny_rule>, then the <partitions> delimit a denied partitions condition sec-
tion. For this condition to be met, the DDS Entity associated with the action (e.g., DataWriter for a publish
action) must have a partition that matches one of the partitions explicitly listed in the denied partitions con-
dition section. If there is no <partitions> section, then the "*" partition expression is assumed. This means
that the deny action (e.g., deny publish action) would apply regardless of the partitions associated with the
DDS Endpoint (e.g., DataWriter for a publish action).

Example (appearing within a <deny_rule> and within a <publish> action):
<partitions>

<partition>A</partition>
<partition>B</partition>

</partitions>

32

6.3.2.3 Partitions Mutability

33

The above denied partitions condition would be matched if the partitions associated with the DDS Entity
performing the action (e.g., DataWriter for a publish action) intersect the set [A, B]. So, it would be OK to
publish in partition C or in the "empty string" partition, but not in partition A, in [A,B], or in [A, B, C].

6.3.2.3 Partitions Mutability

Security Plugins does not allow a Publisher to change the PartitionQosPolicy after the Publisher has been
enabled if the Publisher contains any DataWriter that meets the following two criteria:

l The TopicSecurityAttributes for that DataWriter have is_read_protected (which corresponds to
enable_read_access_control in the Governance Document) set to TRUE.

l The DataWriter has the DurabilityQos policy kind set to something other than VOLATILE.

When these two criteria are met, a DataWriter should send historical data only to DataReaders that were
passing the topic access control rules at the time the historical data was generated. The rule about Par-
titionQos immutability enforces this behavior by conservatively preventing a DataWriter of a protected
topic from sending historical data to DataReaders that were not matched before a PartitionQos change and
that potentially could have failed to pass the topic access control rules.

6.3.3 Data Tags

The RTI Connext DDS Core Libraries User's Manual describes the DataTagQosPolicy as a sequence of
(name, value) string pairs that belong to a DataWriter or DataReader. The Security Plugins Access Con-
trol plugin uses these tags to determine whether or not a DataWriter or DataReader is allowed to exist
according to the Permissions Document. Inside the Permissions Document, the <data_tags> element may
appear within a <publish> or <subscribe> element. <data_tags> may contain one or more <tag> elements,
each containing a <name> and a <value> element. For example:
<subscribe>

<topics>
<topic>Sq*</topic>

</topics>
<data_tags>

<tag>
<name>Department</name>
<value>Engineering</value>

</tag>
<tag>

<name>Seniority</name>
<value>Senior</value>

</tag>
<tag>

<name>Title</name>
<value>*Software*</value>

</tag>
</data_tags>

</subscribe>

6.3.3.1 Allowed

Note the asterisk in the third tag’s value. POSIX fnmatch() matching is allowed for the <value> element,
but not for the <name> element.

6.3.3.1 Allowed

If the <data_tags> are under an <allow_rule>, then the <data_tags> delimit an allowed data tags condition
section. In order for an action (e.g., a publish action) to meet the allowed data tags condition, the set of the
data tags associated with the DDS Entity performing the action (e.g., a DataWriter for a publish action)
must be contained in the set of data tags defined by the allowed data tags condition section. If there is no
<data_tags> section, then the default empty set is assumed. This means that the allow action (e.g., publish
action) would only allow publishing if there are no data tags associated with the DDS Endpoint
(DataWriter for a publish action).

Example (appearing within a <allow_rule> and within a <publish> action):
<data_tags>

<tag>
<name>aTagName1</name>
<value>aTagValue1</value>

</tag>
</data_tags>

The above allowed data tags condition would be matched if the data tags associated with the DDS Entity
performing the action (e.g., DataWriter for publish action) are a subset of the set [(aTagName1,
aTagValue)]. So it would be OK to publish using a DataWriter with no associated data tags, or a
DataWriter with a single tag with name "aTagName1" and value "aTagValue1".

6.3.3.2 Denied

If the <data_tags> are under a <deny_rule>, then the <data_tags> delimit a denied data tags condition sec-
tion. For this condition to be met, the DDS Entity associated with the action (e.g., DataWriter for a publish
action) must have a data tag name and value pair that matches one of the data tags explicitly listed in the
denied data tags condition section. If there is no <data_tags> section, then the "set of all possible tags" set
is assumed as default. This means that the deny action (e.g., deny publish action) would apply regardless
of the data tags associated with the DDS Endpoint (e.g., DataWriter for a publish action).

Example (appearing within a <deny_rule> and within a <publish> action):
<data_tags>

<tag>
<name>aTagName1</name>
<value>aTagValue1</value>

</tag>
</data_tags>

The above denied data tags condition would be matched if the data tags associated with the DDS Entity
performing the action (e.g., DataWriter for a publish action) intersect the set [(aTagName1, aTagValue1)].
So it would not deny publishing using a DataWriter with no associated data-tags, or a DataWriter with a

34

6.3.3.2 Denied

35

single tag with name "aTagName2", or a DataWriter with a single tag with name "aTagName1" and value
"aTagValue2". But it would deny publishing using a DataWriter with two associated data tags
[(aTagName1, aTagValue1), (aTagName2, aTagValue2)].

Chapter 7 Cryptography
Cryptography is the process of making sure no adversaries can manipulate or eavesdrop on com-
munication. To prevent manipulation of data, set the governance attribute rtps_protection_kind to
SIGN. To prevent eavesdropping of data, set the governance attribute rtps_protection_kind to
ENCRYPT.

The following properties in the DDS_DomainParticipantQos property configure Cryptography:

Property Name

(prefix with
‘com.rti.serv.secure.’)

1

Property Value Description

cryptography.
max_blocks_per_session

Optional

The number of message blocks that can be encrypted with the same keymaterial. Whenever the number
of blocks exceeds this value, new keymaterial is computed. The block size depends on the encryption al-
gorithm. You can specify this value in decimal, octal, or hex. This value is an unsigned 64-bit integer.

Default: 0xffffffffffffffff

cryptography.
encryption_algorithm

Optional

The algorithmused for encrypting and decrypting data and metadata. The options are aes-128-gcm,
aes-192-gcm, and aes-256-gcm (“gcm” is Galois/CounterMode (GCM) authenticated encryption). The
number indicates the number of bits in the key. Participants are not required to set this property to the
same value in order to communicate with each other.

In the Domain Governance document, a "protection kind" set to ENCRYPTwill use GCM, and a "pro-
tection kind" set to SIGNwill use the GMACvariant of this algorithm.

Default: aes-128-gcm

Table 7.1 RTI Security Plugins Properties for Configuring Cryptography

1Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the
string used with com.rti.serv.load_plugins, followed by the '.' character.

36

7.1 Related Governance Attributes for Cryptography

37

Property Name

(prefix with
‘com.rti.serv.secure.’)

1

Property Value Description

cryptography.
max_receiver_specific_
macs

Optional

The maximumnumber of receiver-specific Message Authentication Codes (MACs) that are appended to
an encoded result.

For example, if this value is 32, and the Participant is configured to protect both RTPS messages and
submessages with origin authentication, there could be 32 receiver-specific MACs in the result of en-
code_datawriter_submessage, and there could be another 32 receiver-specific MACs in the result of en-
code_rtps_message. If there are more than 32 receivers, the receivers will be assigned one of the 32
possible MACs in a round-robin fashion. Note that in the case of encode_datawriter_submessage, all
the readers belonging to the same participant will always be assigned the same receiver-specific MAC. Set-
ting this value to 0 will completely disable receiver-specific MACs.

Default: 0.

Range: [0, 3275], excluding 1

cryptography.share_key_
for_metadata_and_data_
protection

Optional

Indicator of whether the metadata and data encoding operations share the same keymaterial or use dif-
ferent keys. By default,DataWriterswith bothmetadata_protection_kind and data_protection_kind
set to a value other than NONE use the same keymaterial for encoding both submessages and serialized
data. To change this behavior, set this property to FALSE.

Default: TRUE (they share keymaterial)

Table 7.1 RTI Security Plugins Properties for Configuring Cryptography

7.1 Related Governance Attributes for Cryptography

This section describes the Cryptography attributes that appear in the Governance Document.

7.1.1 ProtectionKind

Attributes whose names end with _protection_kind share a type called ProtectionKind. The DDS Secur-
ity specification lists five possible values of ProtectionKind, all of which are supported by Security
Plugins.

l NONE indicates that no cryptographic transformation is applied.

l SIGN indicates that the cryptographic transformation is purely a Galois message authentication code
(GMAC). No encryption is performed. The GMAC is placed after the content. If the receiver finds a
missing or incorrect GMAC, the receiver will reject the content.

1Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

7.1.2 domain_rule

l ENCRYPT indicates that the cryptographic transformation is an AES encryption followed by a
GMAC computed on the ciphertext, also known as Galois/Counter Mode (GCM). The GMAC is
placed after the content. If the receiver finds a missing or incorrect GMAC, the receiver will reject
the content.

l WITH_ORIGIN_AUTHENTICATION protection kinds. There are two protection kinds that
have WITH_ORIGIN_AUTHENTICATION in their names. WITH_ORIGIN_
AUTHENTICATION indicates that in addition to using the sender’s key to generate a common
GMAC, the sender generates receiver-specific GMACs using keys that are specific to individual
sender-receiver pairs. The additional GMACs are placed after the common GMAC. They prove to
the receiver that the sender originated the message, preventing other receivers from impersonating
the sender. If the receiver finds a missing or incorrect common GMAC, the receiver will reject the
content. If the receiver finds a missing or incorrect receiver-specific GMAC that was computed
using its own receiver-specific key, the receiver will reject the content. WITH_ORIGIN_
AUTHENTICATION protection kinds are allowed only if the value of the property cryp-
tography.max_receiver_specific_macs is greater than 1.

The WITH_ORIGIN_AUTHENTICATION protection kinds are as follows:
l SIGN_WITH_ORIGIN_AUTHENTICATION indicates that a common GMAC is per-
formed on the content, and receiver-specific GMACs are performed on the common GMAC.

l ENCRYPT_WITH_ORIGIN_AUTHENTICATION indicates that a GCM is performed
on the content, and receiver-specific GMACs are performed on the GMAC of the GCM.

7.1.2 domain_rule

The following attributes belong inside a <domain_rule>.

l rtps_protection_kind. This ProtectionKind specifies how to protect a DomainParticipant’s out-
going messages and what kind of protection is required of incoming messages. A message consists
of an RTPS header and submessages, so a message is an envelope around submessages. If allow_
unauthenticated_participants is set to TRUE, rtps_protection_kind must be set to NONE. Set-
ting rtps_protection_kind to NONE will cause the DomainParticipant to accept both protected
and unprotected incoming RTPS messages. Setting rtps_protection_kind to something other than
NONE will cause the DomainParticipant to reject incoming RTPS messages that have a missing or
incorrect GMAC or GCM.

l discovery_protection_kind. This ProtectionKind specifies themetadata_protection_kind used
for the secure builtin DataWriter and DataReader entities used for discovery, Topic Queries, and
Locator Reachability Responses.

l liveliness_protection_kind. This ProtectionKind specifies themetadata_protection_kind used for
the secure builtin DataWriter and DataReader entities used for liveliness.

38

7.1.3 topic_rule

39

7.1.3 topic_rule

The following attributes belong inside a <topic_rule>.

l metadata_protection_kind. This ProtectionKind specifies how to protect a DataWriter’s or
DataReader’s outgoing submessages. These submessages include, but are not limited to, DATA,
HEARTBEAT, ACKNACK, and GAP. A DATA submessage is an envelope around a serialized
payload, so metadata_protection_kind affects data as well as metadata. One difference between
metadata_protection_kind and data_protection_kind is that formetadata_protection_kind, the
submessage protection takes effect immediately before sending out the content, so a protected
submessage is re-protected when it is resent.

l data_protection_kind. This attribute may be NONE, SIGN, or ENCRYPT. It specifies how to pro-
tect a DataWriter’s serialized payload. The writer history stores the protected payload, so the pro-
tected payload is not re-protected when it is resent. Receiver-specific GMACs are never included in
this protection, so the WITH_ORIGIN_AUTHENTICATION values are not allowed here.

l enable_discovery_protection. This attribute may be TRUE or FALSE. It specifies whether to use
the secure or non-secure builtin endpoints for certain outgoing traffic related to this topic. Such
traffic includes endpoint discovery messages and TopicQuery messages. enable_discovery_pro-
tection also specifies whether or not to reject non-secure incoming endpoint discovery messages
related to this topic.

l enable_liveliness_protection. This attribute may be TRUE or FALSE. The value of this attribute
matters only if the DataWriter LivelinessQosPolicy is AUTOMATIC_LIVELINESS_QOS or
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS. In either of these cases, enable_live-
liness_protection specifies whether or not to use the secure builtin endpoints for exchanging live-
liness messages for DataWriters of this topic.

7.2 Configuration Properties Common to All Cryptography Plugins

Table 7.2 Properties for Configuring Cryptography Common to Any Cryptography Plugin below lists a
set of properties that are not exclusive to the shipped Security Plugins, but that will affect any Cryp-
tography Plugin.

Table 7.2 Properties for Configuring Cryptography Common to Any Cryptography Plugin

Property
Name Property Value Description

dds.data_writer-
.history.use_530_
encoding_align-
ment

Optional

Determines whether or not to align a serialized payload to a 4-byte boundary before encoding it. If TRUE, then this alignment
does not occur; this is consistent with Connext 5.3.0 behavior. If FALSE, then this alignment does occur; this is the only way to
make the builtin Cryptography plugin work with data_protection_kind = SIGN. This property applies to the DataWriterQos.

Default: FALSE

7.3 Reliability Behavior When MAC Verification Fails

7.3 Reliability Behavior When MAC Verification Fails

When setting data_protection_kind, metadata_protection_kind, or rtps_protection_kind to a value
other than NONE, the DataReader may reject a sample due to MAC verification (for example, if the
sample is tampered or replayed). When this happens, the DataReader does not deliver the sample to the
application, and the sample is lost. If the ReliabilityQosPolicy is configured with DDS_RELIABLE_
RELIABILITY_QOS, however, the DataWriter can still repair the lost sample.

Note that depending on the level of protection, a tampered/replayed sample may be rejected at different
levels:

l Ifmetadata_protection_kind or rtps_protection_kind is a value other than NONE, the sample
will be rejected before reaching the DataReader queue.

l If metadata and rtps protection checks passed, and data_protection_kind is set to a value other than
NONE, the sample will be rejected by the DataReader queue.

7.4 Enabling Asynchronous Publishing for the Key Exchange Topic

Security Plugins supports fragmenting Key Exchange (ParticipantSecureVolatileMessageSecure) built-in
topic samples. This is useful in scenarios with a hard limit on the transport maximum message size. Key
Exchange is a reliable topic; therefore, enabling fragmentation requires changing the publish mode to asyn-
chronous publishing. For more information about how to configure the Key Exchange topic publish mode,
see Table 7.3 DDS_DiscoveryConfigQosPolicy fields Affecting Key Exchange Topic below.

Type Field Name Description

PUBLISH_MODE QosPolicy (DDSExtension) (Section
6.5.18 ofRTI Connext DDSCore LibrariesUser's
Manual)

secure_volatile_
writer_publish_
mode

Determines whether the Key Exchange built-in subscription
DataWriter publishes data synchronously or asynchronously, and
how.

Table 7.3 DDS_DiscoveryConfigQosPolicy fields Affecting Key Exchange Topic

40

Chapter 8 Logging
Security Plugins uses its own Logging Plugin to notify you of security events. This Logging Plu-
gin supports the following logging methods:

l Using Connext DDS's own builtin logging system to send security messages

l Printing security log messages to a file

l Distributing security log messages over DDS

By default, log messages are processed by the Connext DDS builtin logging system. You can
instead print log messages to a file by setting logging.log_file and/or distribute log messages over
DDS by setting logging.distribute.enable properties. You can also adjust the verbosity level of
the log messages with logging.verbosity. See Table 8.1 RTI Security Plugins Properties for Con-
figuring Logging.

If you are distributing log messages over DDS, the messages' log levels are used as the severity val-
ues of the BuiltinLoggingType. If you are using the Connext DDS builtin logging system (which is
the default logging method), the messages' log levels are mapped to the values shown in Table 8.3
Mapping between Logging Plugin and Connext DDS Builtin Logging System.

See Controlling Messages from Connext DDS, in the RTI Connext DDS Core Libraries User's
Manual for more information on the Connext DDS builtin logging system.

8.1 Connext DDS Builtin Logging System

When security logging is configured to be written to Connext DDS's own builtin logging system
(also known as NDDS_Config_Logger), you will see messages that look something like the fol-
lowing:
[1541757196.822050]RTI_Security_Authentication_validate_local_identity:successfully
validated local identity
[1541757196.822290]RTI_Security_AccessControl_get_permissions_credential_
token:successfully got permissions token
[1541757196.825604]RTI_Security_AccessControl_validate_local_permissions:successfully

41

8.2 Log File

42

validated local permissions
[1541757196.828948]RTI_Security_AccessControl_get_participant_sec_attributes:successfully got
participant security attributes

The messages may be preceded by additional information, such as timestamps or GUIDs, depending on
the Connext DDS builtin logging system format configuration and the message itself. (See Format of
Logged Messages, in the RTI Connext DDS Core Libraries User's Manual.)

To write a log to the Connext DDS builtin logging system, none of the following should be enabled; if
they are, the log won’t be shown in the Connext DDS builtin logging system:

l The output file property (com.rti.serv.secure.logging.log_file)

l The distributed log property (com.rti.serv.secure.logging.distribute.enable)

If the above options aren't enabled, the log is written to the Connext DDS builtin logging system, which is
the default option.

8.2 Log File

When security logging is configured to be written to an output log file, you will see messages that look
something like the following:
[1541757196.822050]RTI_Security_Authentication_validate_local_identity:successfully validated
local identity
[1541757196.822290]RTI_Security_AccessControl_get_permissions_credential_token:successfully got
permissions token
[1541757196.825604]RTI_Security_AccessControl_validate_local_permissions:successfully validated
local permissions
[1541757196.828948]RTI_Security_AccessControl_get_participant_sec_attributes:successfully got
participant security attributes

The messages may be preceded by additional information, such as timestamps or GUIDs, depending on
the message.

To write the log to an output file, set the following property within the <participant_qos> (see Con-
figuring QoS with XML, in the RTI Connext DDS Core Libraries User's Manual):

8.3 Distributed over DDS

<participant_qos>
<property>

<value>
<element>

<name>com.rti.serv.secure.logging.log_file</name>
<value>log.txt</value>

</element>
</value>

</property>
</participant_qos>

8.3 Distributed over DDS

When the messages are distributed over DDS, you get more information than if you use the Connext DDS
builtin logging system or a log file. Furthermore, the information follows the DDS Security specification.
For example, here is how the messages look in RTI DDS Spy using the -printSample option if you use
logging distribution over DDS:
1543498637.929123 d +M DCB9C740 DDS:Security:LogTopic
DDSSecurity::BuiltinLoggingType
facility: 10
severity: DEBUG_LEVEL
timestamp:

sec: 1543498637
nanosec: 928903998

hostname: "localhost"
hostip: "0.0.0.0"
appname: "RTI Secure DDS Application"
procid: "9654"
msgid: "security"
message: "received submessage from an endpoint that discovered me but that I haven't discovered
yet; dropping submessage hoping it will be repaired. It will not be repaired if the endpoint
did not properly share its MasterKeyId in its CryptoToken."
structured_data:

[0]:
key: "DDS"
pairs:

[0]:
name: "guid"
value: "dcb9c740.7ecf85eb.42aa8349.1c1"

[1]:
name: "domain_id"
value: "25"

[2]:
name: "plugin_method"
value: "RTI_Security_Cryptography_preprocess_secure_submsg"

[3]:
name: "plugin_class"
value: "Cryptography"

You can find the BuiltinLoggingType in <NDDSHOME>/resource/idl/builtin_logging_ type.idl. (See
Chapter 2 Paths Mentioned in Documentation on page 4.)

43

8.3.1 Setting the Properties

44

IMPLEMENTATION NOTES:

l The DDS:Security:LogTopic (described in 8.3.2 Using a Custom Subscriber on the next page) is
published by the same DomainParticipant that uses Security Plugins to communicate securely.
Therefore, this topic is published in a secured domain, and the Governance and Permissions files
that apply to that DomainParticipant also apply to this log topic. For this reason, the Permissions file
must allow the DDS:Security:LogTopic to be published.

l Security Plugins publishes log messages using the QoS profile specified by the property com.rti.ser-
v.secure.logging.distribute.profile. If this property is not set, Security Plugins will use the same
QoS profile as the DomainParticipant that is loading Security Plugins.

l If you specify a custom profile in the property com.rti.serv.secure.logging.distribute.profile, only
Publisher, Topic, and DataWriter QoS will be used from the specified profile. This is because the
DataWriter that distributes the log belongs to the same DomainParticipant as the one instantiating
Security Plugins. As a result, you can use the custom profile for the logger if, for example, you want
to change the logger's reliability, but you cannot use it to change the logger's identity (private key
and certificate).

8.3.1 Setting the Properties

To distribute the log messages over DDS, set the following property within the <participant_qos> (see
Configuring QoS with XML, in the RTI Connext DDS Core Libraries User's Manual):
<participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.secure.logging.distribute.enable</name>
<value>true</value>

</element>
</value>

</property>
</participant_qos>

The granularity of the log messages depends on the verbosity level set for the security log. You can set the
verbosity level as follows, DEBUG being the highest verbosity level (see 8.4 Logging Properties and Mes-
sages on page 46):

8.3.2 Using a Custom Subscriber

<participant_qos>
<property>

<value>
<element>

<name>com.rti.serv.secure.logging.verbosity</name>
<value>DEBUG</value>

</element>
</value>

</property>
</participant_qos>

8.3.2 Using a Custom Subscriber

To get the security logging information that is being distributed over DDS, you will need to create an
application that subscribes to the secure log topic:

l Topic name: DDS:Security:LogTopic

l Type name: DDSSecurity::BuiltinLoggingType

To create a custom subscriber, you can start from the IDL containing the definition of the DDSSe-
curity::BuiltinLoggingType, which can be found here: <NDDSHOME>/resource/idl/builtin_logging_
type.idl. (See Chapter 2 Paths Mentioned in Documentation on page 4.)

With the IDL, you can run rtiddsgen to generate type support code and example code. For example, the
following command will generate all the files you need to access the DDS:Security:LogTopic topic from
your Connext DDS application:
rtiddsgen -language C -example x64Linux3gcc4.8.2 -unboundedSupport builtin_logging_type.idl

IMPORTANT: You need to use the command-line option -unboundedSupport because DDSSe-
curity::BuiltinLoggingType contains strings without a specified limit. By default, rtiddsgen will limit
unbounded strings to 255 characters, unless you specify the -unboundedSupport option. Without this
option, the type support code will not be compatible with the type used by Security Plugins, and you won't
be able to receive any messages. For more information about the use of unbounded support with builtin
types, see Managing Memory for Builtin Types, in the RTI Connext DDS Core Libraries User's Manual.

Since the log messages are distributed in a secured domain, your custom subscriber needs an identity
(private key and certificate). In addition, it needs to have permissions to subscribe to DDS:Se-
curity:LogTopic; this permission needs to be included in the Permissions file.

45

8.4 Logging Properties and Messages

46

8.4 Logging Properties and Messages

The following properties in the DDS_DomainParticipantQos property configure Logging:

Property Name

(prefix with
‘com.rti.serv.secure.’)1

Property Value Description

applies to log file method only

logging.log_file

Optional

The file that log messages are printed to. If you specify a file in this property, SecurityPluginswill print to this file
instead of to the Connext DDS builltin logging systemor via DDS distribution.

Default: NULL

applies to all logging methods

logging.log_level

(deprecated)

Optional

The logging verbosity level. This setting applies to all methods of security logging (the Connext DDS builtin log-
ging system, a log file, and DDS distribution). All log messages at and below the logging.log_level setting will be
logged.

This property can take any of the following values:

l 0: emergency

l 1: alert

l 2: critical

l 3 (default): error

l 4: warning

l 5: notice

l 6: informational

l 7: debug

Notes:

l This property is deprecated and may stop working in a future release. Use logging.verbosity instead.

l This property is incompatible with logging.verbosity (i.e. they cannot be used simultaneously).

Table 8.1 RTI Security Plugins Properties for Configuring Logging

1Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

8.4 Logging Properties and Messages

Property Name

(prefix with
‘com.rti.serv.secure.’)1

Property Value Description

logging.verbosity

Optional

The logging verbosity level.

This setting applies to all methods of security logging (the Connext DDS builtin logging system, a log file, and
DDS distribution). All log messages at and below the verbosity level will be logged.

This property can take any of the following values (case sensitive):

l SILENT (least verbose)

l EMERGENCY

l ALERT

l CRITICAL

l ERROR (default)

l WARNING

l NOTICE

l INFORMATIONAL

l DEBUG (most verbose)

This property is incompatible with logging.log_level (i.e., they cannot be used simultaneously).

applies to logging distribution over DDS method only

logging.distribute.enable

Optional

Controls whether security-related log messages should be distributed over a DDS DataWriter. If enable is true,
then the Logging Plugin will create a Publisher and DataWriter within the same DomainParticipant that is set-
ting this property. There is no option to use a separate DomainParticipant or to share a DataWriter among mul-
tiple DomainParticipants.

To subscribe to the log messages, run rtiddsgen on resource/idl/builtin_logging_type.idl.

Create a DataReader of type DDSSecurity::BuiltinLoggingType and topic DDS:Security:LogTopic. The
DataReadermust be allowed to subscribe to this topic according to itsDomainParticipant’spermissions file.

To subscribe to the log messages, run rtiddsgen on resource/idl/builtin_logging_type.idl. For example:
rtiddsgen -language C -example x64Linux3gcc4.8.2 -unboundedSupport builtin_
logging_type.idl

IMPORTANT: You must use the command-line option -unboundedSupport. See 8.3.2 Using a CustomSub-
scriber on page 45 formore information.

Boolean.

Default: FALSE

Table 8.1 RTI Security Plugins Properties for Configuring Logging

1Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

47

8.4 Logging Properties and Messages

48

Property Name

(prefix with
‘com.rti.serv.secure.’)1

Property Value Description

logging.distribute.profile

Optional

QoS Library and QoS profile used to create logging-related entities (Publisher, Topicand DataWriter). Must be
a string of the formatQosLibraryName::QosProfileName.

String.

Default: empty string (uses default QoS profile)

logging.distribute.writer_history_
depth

Optional

History depth (in samples) of the logging DataWriter.

Integer.

Default: 64

logging.distribute.writer_timeout

Optional

Number of milliseconds to wait before giving up trying to write a log message. This property overwrites themax_
blocking_timeQoS of the logging DataWriter.

Integer.

Default: 5000

logging.distribute.queue.size

Optional

Size of the logging thread queue, in bytes.

Integer.

Default: 50688

log-
ging.dis-
tribute.queue.message_count_
max

Optional

Maximumnumber of log messages in the logging queue. Integer.

Default: 64

log-
ging.dis-
tribute.queue.message_size_
max

Optional

Maximumserialized size of a log message in the logging queue.

Integer.

Default: 792

log-
ging.dis-
tribute.thread.message_
threshold

Optional

Number of bytes to preallocate for the logging message string in the logging thread, beyond which dynamic alloc-
ation will occur.

Integer.

Default: 256

Table 8.1 RTI Security Plugins Properties for Configuring Logging

1Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

8.4 Logging Properties and Messages

Property Name

(prefix with
‘com.rti.serv.secure.’)1

Property Value Description

log-
ging.distribute.thread.plugin_
method_threshold

Optional

Number of bytes to preallocate for the plugin method string in the logging thread, beyond which dynamic alloc-
ation will occur.

Integer.

Default: 256

log-
ging.dis-
tribute.thread.message_
threshold

Optional

Number of bytes to preallocate for the plugin class string in the logging thread, beyond which dynamic allocation
will occur.

Integer.

Default: 256

Table 8.1 RTI Security Plugins Properties for Configuring Logging

Table 8.2 Log Messages lists security-related events and the log messages they generate.

Event Log Level Message

Failed to allocate memory EMERGENCY insufficient memory

allow_unauthenticated_participants = FALSE, and discovered remote
participant that is unauthenticable, i.e. has not enabled security

WARNING
unauthenticated remote participant [participant ID]
denied

allow_unauthenticated_participants = TRUE, and discovered remote
participant that is either unauthenticable or fails authentication

WARNING allowing unauthenticated participant [participant ID]

Received invalid X509 certificate, fromeither remote or local par-
ticipant

ERROR failed to decode certificate

Couldn't verify certificate's signature against neither the certificate of
the Identity Certificate Authority nor any alternative CAs

ERROR failed to verify certificate

Certificate appears in Certificate Revocation List ERROR2 certificate revoked

Upon receiving HandshakeReplyMessageToken orHand-
shakeFinalMessageToken, couldn't verify challenge's signature
against peer's certificate. Peer likely hasmismatched private and pub-
lic keys, so it’s an imposter.

ERROR failed to verify challenge signature

Table 8.2 Log Messages

1Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

2This log message is logged using Connext DDS's own builtin logging system, regardless of the logging method used.

49

8.4 Logging Properties and Messages

50

Event Log Level Message

Another participant has lost liveliness with this one before authen-
tication was completed and is trying to re-authenticate itself (see 5.5
Re-Authentication on page 23). A new authentication should restore
communication once the ongoing authentication times out.

Or: Network traffic corruption during authentication.

Or: Misbehaving remote participant during authentication.

NOTICE

RTI_Security_Authentication_process_hand-
shake:received unexpected handshake message, prob-
ably froma participant that lost liveliness with this one
before ongoing authentication completed. Once current
authentication times out, communication should be
restored.

RTI_Security_Authentication_process_handshake failed (see pre-
vious row).

STATUS_
REMOTE1

DDS_DomainParticipantTrustPlugins_for-
wardProcessHandshake:!security function process_hand-
shake returned VALIDATION_FAILED

Couldn't verify permissions or governance file signature against either
the certificate of the Permissions Authority or any alternative per-
missions authorities

ERROR
Document signature verification failed. Make sure doc-
ument was signed by the right permissions authority.

Received signed permissions document that is not an XML document ALERT received invalid signed permissions document

Received signed governance document that is not an XML document ERROR received invalid signed governance document

Couldn't parse the permissions file for some reason, such as duplicate
grants for the same subject name or no grant for the intended subject
name

ALERT failed to parse permissions file

Couldn't parse the governance file for some reason ALERT failed to parse governance file

Denied participant because there is a deny rule explicitly prohibiting
the participant

ERROR participant not allowed: deny rule found

Denied participant because there is no rule for the participant's do-
main ID, and the default is to deny

ERROR
participant not allowed: no rule found for the participant's
domainId; default DENY

Denied writer or reader because there is a deny rule explicitly pro-
hibiting the writer or reader

ERROR endpoint not allowed: deny rule found

Denied writer or reader because there is no rule for the writer or reader,
and the default is to deny

ERROR endpoint not allowed: no rule found; default DENY

Parsed publish/subscribe rule in permissions file that does not apply to
the writer/reader because no topic expressionsmatch the writer-
/reader's topic

DEBUG
This publish/subscribe rule doesn't apply because none
of the rule's topic expressionsmatch the endpoint's topic
name of [topic name]

Parsed publish/subscribe rule in permissions file that does not apply to
the writer/reader because even though there's a matching topic ex-
pression, there are no matching partition expressions

DEBUG
This publish/subscribe rule doesn't apply because none
of the rule's partition expressionsmatch with any of the en-
dpoint's partitions

Table 8.2 Log Messages

1This log message is logged using Connext DDS's own builtin logging system, regardless of the logging method used.

8.4 Logging Properties and Messages

Event Log Level Message

Another participant, which is not using is_rtps_protected = true or is
not using security at all, has sent this one an unprotected RTPS mes-
sage that is not a participant announcement, handshake message, or
key exchange message. This participant is using is_rtps_protected =
true, so it drops the message.

Or: Network traffic corruption after key exchange.

Or: Misbehaving remote participant after key exchange.

STATUS_
REMOTE1

MIGInterpreter_parse:received unencoded rtps mes-
sage. Unacceptable due to is_rtps_protected = true

Received authenticated content that has been tampered with, i.e.
EVP_DecryptFinal_ex failed because the GCMorGMAC tag veri-
fication failed

ALERT DecryptFinal failed. Possible GCMauthentication failure.

Received submessage encrypted with a key whose MasterKeyId
hasn't yet been exchanged via CryptoToken

DEBUG

received submessage froman endpoint that discovered
me but that I haven't discovered yet; dropping submes-
sage hoping it will be repaired. It will not be repaired if the
endpoint did not properly share its MasterKeyId in its
CryptoToken

Writing a log message over the LogTopic fails due to insufficient log-
ging queue size

STATUS_
LOCAL2

Failed to write log message of size = [message size]
because the logging queue is full. Try to increase log-
ging.distribute.queue.
message_count_max, which is currently [message_
count_max].

Parsed publish/subscribe <allow_rule> in permissions file that does
not apply to the writer/reader because even though there's a matching
topicexpression, the partition expressions in the QoS are not a subset
of the ones in the <allow_rule>

DEBUG
This publish/subscribe rule doesn't apply because en-
dpoint's partitions are not a subset of the rule's partition
expressions

Table 8.2 Log Messages

Log messages generated by the Logging Plugin in Security Plugins and those generated by the Connext
DDS builtin logging system (which is the default method) have a different structure. For example, the Log-
ging Plugin includes information about the process ID (procid) and the host (hostname, hostip). This
information is lost when using the Connext DDS builtin logging system. The log level values used by
these logging systems are also different. Table 8.3 Mapping between Logging Plugin and Connext DDS
Builtin Logging System shows the mapping between Logging Plugin log values and the Connext DDS
builtin logging system log values. For example, messages marked as "emergency," "alert," "critical," or
"error" in Security Plugins are translated to "error" when using the builtin logging system.

1This log message is logged using Connext DDS's own builtin logging system, regardless of the logging method used.

2This log message is logged using Connext DDS's own builtin logging system, regardless of the logging method used.

51

8.4 Logging Properties and Messages

52

Table 8.3 Mapping between Logging Plugin and Connext DDS Builtin Logging System

Logging Plugin (Security Plugins) log level values1 Connext DDS builtin logging system log level values2

DDS_LOGGING_EMERGENCY_LEVEL

DDS_LOGGING_ALERT_LEVEL

DDS_LOGGING_CRITICAL_LEVEL

DDS_LOGGING_ERROR_LEVEL

NDDS_CONFIG_LOG_LEVEL_ERROR

DDS_LOGGING_WARNING_LEVEL NDDS_CONFIG_LOG_LEVEL_WARNING

DDS_LOGGING_NOTICE_LEVEL NDDS_CONFIG_LOG_LEVEL_STATUS_LOCAL

DDS_LOGGING_INFORMATIONAL_LEVEL NDDS_CONFIG_LOG_LEVEL_STATUS_REMOTE

DDS_LOGGING_INFORMATIONAL_DEBUG NDDS_CONFIG_LOG_LEVEL_DEBUG

1These values correspond to the values listed in logging.verbosity.

2These values are described in Controlling Messages from Connext DDS, in the RTI Connext DDS Core Libraries
User's Manual.

Chapter 9 Support for OpenSSL Engines
RTI Security Plugins support the option of using an OpenSSL engine. The following property in
the DDS_DomainParticipantQos property configures the usage of OpenSSL engines:

Property Name

(prefix with
‘com.rti.serv.secure.’)

1

Property Value Description

openssl_engine

Optional

The dynamic library that implements an OpenSSL engine. If this property value is not set, then the RTI
Security Plugins will use native OpenSSL code with its default engine. Otherwise, you must set this value
to the filename, excluding the “lib” prefix and the file extension, of the dynamic library that implements the
engine, and you must set your $LD_LIBRARY_PATHor%path% environment variable to include the
dynamic library and any of its dependent libraries. Failure to load the engine, due to an incorrect $LD_
LIBRARY_PATHor otherwise, will result in failure to create the DomainParticipant. The engine will
performall security operations, including encryption, HMAC, and Diffie-Hellman.

The value of this property for the firstDomainParticipant of the application will be the value for all otherDo-
mainParticipants in the application. Setting this property to a different value for subsequentDo-
mainParticipantswill not be effective.

Default: not set

Table 9.1 Properties for Configuring OpenSSL Engines

1Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the
string used with com.rti.serv.load_plugins, followed by the '.' character.

53

9.1 Support for Engine Control Commands

54

Property Name

(prefix with
‘com.rti.serv.secure.’)

1

Property Value Description

authentication.keyform

Optional

The format of the private key specified by dds.sec.auth.private_key.

The value of this property can be one of the following:

l pem: The key is in PEM format and will be loaded as a file or a string, depending on its "file:" or
"data:," prefix.

l engine: The key is an array of bytes and will be loaded by the engine specified by openssl_
engine.

Default: pem

Table 9.1 Properties for Configuring OpenSSL Engines

One example of an OpenSSL engine is Certicom Corp.’s Security Builder Engine for OpenSSL, which
supports the architecture armv7aQNX6.6.0qcc_cpp4.7.3. Usage of Certicom requires their dynamically-
loaded libraries (which RTI does not provide) and your LD_LIBRARY_PATH environment variable
must include:
$RTI_OPENSSLHOME/release/lib/:$CERTICOM_SBENGINEHOME/tools/sb/sb-$(CERTICOMOS)/lib/:$CERTICOM_
SBENGINEHOME/lib/$(CERTICOMOS)

where RTI_OPENSSLHOME is the installation directory/armv7aQNX6.6.0qcc_cpp4.7.3 of the
OpenSSL distributed by RTI, CERTICOM_SBENGINEHOME is the installation directory of Certicom
Security Builder Engine, and CERTICOMOS is Certicom’s architecture corresponding to RTI’s arm-
v7aQNX6.6.0qcc_cpp4.7.3, e.g. qnx6.5_armv7. The authentication.shared_secret_algorithm ecdsa-ecdh
does not work with static OpenSSL libraries when enabling Certicom Security Builder Engine.

9.1 Support for Engine Control Commands

You may use the DDS_DomainParticipantQos property to invoke a sequence of ENGINE_ctrl_cmd_
string() function calls (see also https://www.openssl.org/docs/man1.1.0/man3/ENGINE_ctrl_cmd_
string.html, "Issuing control commands to an ENGINE"). The Qos Profile XML format of the properties
is the following, assuming that the prefix is com.rti.serv.secure:
<participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.secure.openssl_engine</name>

1Assuming you used ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

https://www.openssl.org/docs/man1.1.0/man3/ENGINE_ctrl_cmd_string.html
https://www.openssl.org/docs/man1.1.0/man3/ENGINE_ctrl_cmd_string.html

9.1 Support for Engine Control Commands

<value>[engineName]</value>
</element>
<element>

<name>com.rti.serv.secure.openssl_engine.[engineName].[cmdName1]</name>
<value>[arg1]</value>

</element>
<element>

<name>com.rti.serv.secure.openssl_engine.[engineName].[cmdName2]</name>
<value>[arg2]</value>

</element>
...

</value>
</property>

</participant_qos>

The above properties will result in the following code being called:
ENGINE_ctrl_cmd_string(engineIdentifiedBy[engineName], [cmdName1], [arg1], 0);
ENGINE_ctrl_cmd_string(engineIdentifiedBy[engineName], [cmdName2], [arg2], 0);

55

Chapter 10 Support for RTI Persistence
Service

RTI’s security solution may be used in conjunction with RTI Persistence Service. To store per-
sisted data encrypted, Persistence Service must use a configuration whose participant_qos
includes security properties for 1) dynamically loading the security libraries and 2) using a
Governance document that sets data_protection_kind to ENCRYPT for the desired topics (or *
for all topics). The %PATH% or $LD_LIBRARY_PATH environment variable must include RTI
and OpenSSL DLLs or libraries.

If Persistence Service stores encrypted data, it also stores the PRSTDataWriter’s encryption key
along with the rest of the writer’s metadata. If Persistence Service shuts down and restarts with the
same configuration, the new PRSTDataWriter will discard its normally random key and use the old
PRSTDataWriter’s key, which it securely exchanges with user DataReaders to allow them to cor-
rectly decrypt the data. Key rotation works seamlessly in this scenario because the stored encrypted
data includes not only the payload but also the metadata necessary to decrypt it, including the ses-
sion_id used to derive the session key from the master key. When the encryption key is stored, it is
stored encrypted. The key of this encryption is the output of a derivation function whose input is an
optional user-specified property, and the Cryptography Plugin implementation determines both the
key derivation function and the encryption algorithm.

In RTI’s default plugin implementation, the key derivation function involves PBKDF2 (Password-
Based Key Derivation Function) with SHA-512 (Secure Hash Algorithm with a 512-bit hash
value) and a random salt, and the encryption algorithm involves AES-256-GCM. The key deriv-
ation function derives both the key and the IV (Initialization Vector) used in the encryption. Per-
sistence Service stores the random salt along with the PRSTDataWriter’s encrypted key.

Attempting to use an insecure Persistence Service to restore encrypted data or a secure Persistence
Service to restore plain-text data will result in a graceful failure to create Persistence Service.

The following properties in the Persistence Service participant_qos or persistence_
group.datawriter_qos property configure the Persistence Service’s use of security:

56

Chapter 10 Support for RTI Persistence Service

57

Property Name Property Value Description

dds.data_writer.
history.key_material_key

Required
The basis of the keymaterial used to encrypt the PRSTDataWriter’s keymaterial. This property may be spe-
cified in either the DomainParticipantQos or the DataWriterQos.

Attempting to restore encrypted data using a non-existent or incorrect key_material_key will result in an in-
formative log message and failure to create Persistence Service.

You may specify either the file name or the document contents:

l If specifying the file name, the property value may optionally have the prefix "file:" (no space after
the colon), followed by the fully qualified path and name of the file.

l If specifying the contents of the document, the property value must have the prefix "data:," (no
space after the comma), followed by the contents inside the document. For example:
"data:,myPassword".

The length of the keymaterial contents may not exceed 2,147,483,647.

Default: NULL

Table 10.1 Properties for Configuring Secure Persistence Service

Chapter 11 RTPS-HMAC-Only Mode
The Security Plugins library includes an alternative set of "RTPS-HMAC-Only" plugins. These
plugins allow RTPS messages to be signed with a user-provided HMAC key while disabling all
other security features (authentication, access control and encryption). To set up the behavior of the
RTPS-HMAC-Only mode, refer to Table 11.1 Properties for Configuring HMAC-Only Mode
below.

Property Name
(prefix with

‘com.rti.serv.secure.’)
1

Property Value Description

hmac_only.enabled

Optional

Enables or disables the HMAC-only mode.

Default: FALSE

Table 11.1 Properties for Configuring HMAC-Only Mode

1Assuming you use ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string
used with com.rti.serv.load_plugins, followed by the '.' character.

58

Chapter 11 RTPS-HMAC-Only Mode

59

Property Name
(prefix with

‘com.rti.serv.secure.’)
1

Property Value Description

hmac_only.cryp-
tography.key

Required

Sets the static HMACkey used to compute message signatures. The HMACkey can be either a plain text
string or an arbitrary binary string. Empty keys (either string or binary) are not allowed.

The maximumHMACkey size is bounded by the maximumproperty size, controlled by the Do-
mainParticipant resource limit participant_property_string_max_length.

Plain text HMACkeys are case sensitive, and must start with the prefix str: (e.g.: str:Some secret key
string)

Binary HMACkeysmust be provided as a sequence of upper- or lower-case hexadecimal digits prefixed by
hex: (e.g.: hex:1489a95de3873df5).

To compute the actual key that the RTPS-HMAC-Only plugins use, the plugins compute a SHA256 hash
over the contents of a buffer containing the user-provided HMACkey, plus a randomsession-id, plus
some non-disclosed strings. Consequently, passing a user-provided HMACkey longer than 32 bytes does
not provide any benefit with respect to the security of the key. As such, we recommend using a full entropy
32-byte HMACkey formaximumsecurity.

Default: not set

hmac_only.cryp-
tography.max_blocks_per_
session

Optional

For signing RTPS messages, HMAC-only mode uses a key derived from the HMACkey and a sessionId
that is serialized as part of the signed RTPS message representation. This property sets the number of
message blocks that can be signed with the same sessionId. The current message block size is fixed at 32
bytes.

Default: 0xffffffffffffffff)

Table 11.1 Properties for Configuring HMAC-Only Mode

1Assuming you use ‘com.rti.serv.secure’ as the alias to load the plugin. If not, change the prefix to match the string used
with com.rti.serv.load_plugins, followed by the '.' character.

Chapter 12 What’s Different from the OMG
Security Specification

This section describes differences between Security Plugins 6.0.1 and the OMG DDS Security spe-
cification (Version 1.1).

12.1 Differences Affecting Builtin Plugins to be Addressed by Next
DDS Security Specification

12.1.1 Acess Control

12.1.1.1 Mutability of Publisher PartitionQosPolicy

Section 7.3.5 in the specification defines the kind of DataWriters that a Publisher must contain in
order for its PartitionQosPolicy to be immutable. These DataWriters meet the following two cri-
teria:

1. The DataWriter either encrypts the SerializedPayload submessage element or encrypts the
Data or DataFrag submessage elements.

2. The DataWriter has the DurabilityQosPolicy kind set to something other than VOLATILE.

The next version of the specification will change the first criterion to be the following:

1. The TopicSecurityAttributes for that DataWriter have is_read_protected set to TRUE.

The second criterion still applies. Security Plugins uses this new criteria to determine Par-
titionQosPolicy immutability. (is_read_protected corresponds to <enable_read_access_control>
in the Governance Document.)

60

12.2 Differences Affecting Builtin Plugins

61

12.2 Differences Affecting Builtin Plugins

12.2.1 General

12.2.1.1 Support for Infrastructure Services

Section 7.1.1.4 in the specification describes the mechanism for preventing unauthorized access to data by
infrastructure services. To support this capability, certain functions have an output parameter called relay_
only. While Security Plugins functions include this additional parameter, Security Plugins does not imple-
ment this mechanism, and the parameter is currently not used or populated.

12.3 Differences Affecting Custom Plugins

12.3.1 Authentication

12.3.1.1 Revocation

Section 8.3.2.12 in the specification describes the mechanism for revoking identities. Security Plugins do
not implement this mechanism. This release supports looking up a certificate revocation list upon
DomainParticipant creation and discovery.

12.3.2 Access Control

12.3.2.1 check_local_datawriter_register_instance

Section 8.4.2.6.7 in the specification describes the check_local_datawriter_register_instance() oper-
ation. Security Plugins do not implement this operation.

12.3.2.2 check_local_datawriter_dispose_instance

Section 8.4.2.6.8 in the specification describes the check_local_datawriter_dispose_instance() oper-
ation. Security Plugins do not implement this operation.

12.3.2.3 check_remote_datawriter_register_instance

Section 8.4.2.6.15 in the specification describes the check_remote_datawriter_register_instance() oper-
ation. Security Plugins do not implement this operation.

12.3.2.4 check_remote_datawriter_dispose_instance

Section 8.4.2.6.16 in the specification describes the check_remote_datawriter_dispose_instance() oper-
ation. Security Plugins do not implement this mechanism.

12.3.2.5 check_local_datawriter_match / check_local_datareader_match

When calling check_local_datawriter_match / check_local_datareader_match, the subscription_data
and publication_data parameters are not set.

12.3.2.6 Revocation

12.3.2.6 Revocation

Section 8.4.2.10 in the specification describes the mechanism for revoking permissions. Security Plugins
do not implement this mechanism.

12.3.2.7 PermissionsToken

Table 10 in the specification mentions PermissionsToken as a new parameter in Par-
ticipantBuiltinTopicData. Security Plugins sends this parameter, but when receiving this parameter, it is
not used in any Access Control functionality. The built-in Access Control plugin does not use Per-
missionsToken, so this issue only affects certain custom Access Control plugins.

12.3.2.8 check_remote_topic

Section 8.4.2.9.12 in the specification describes the check_remote_topic() operation, which receives a
TopicBuiltinTopicData as an input. Instead of invoking this operation when the remote DomainParticipant
creates a certain Topic, Connext DDS invokes this operation when discovering the first DataWriter or
DataReader belonging to that Topic-DomainParticipant combination.

This distinction matters if the implementation of check_remote_topic() considers any of the QosPolicies
within the TopicBuiltinTopicData structure. (The builtin plugins do not consider these QosPolicies.) For
example, if Participant B creates two DataReaders of the same topic, Participant A will call check_
remote_topic() only when it discovers the first DataReader. If the second DataReader's
DeadLineQosPolicy matches that of Participant B's TopicQos and the first DataReader's Dead-
lineQosPolicy does not match, then check_remote_topic() will receive the wrong DeadlineQosPolicy as
part of the input TopicBuiltinTopicData. This problem would occur only if check_remote_topic() con-
siders the DeadlineQosPolicy when deciding whether to return TRUE or FALSE.

62

Appendix A Quick Reference: Governance
File Settings

The following tables show common security objectives and the Governance file settings necessary
to achieve them. The highlighted cells indicate settings that increase security.

Table A.1 Domains

Security Objective

Governance Parameter

allow_
unauthenticated_

join

enable_
join_
access_
control

discovery_
protection_

kind

liveliness_
protection_

kind

rtps_
protection_

kind

Baseline T F N N N

Enable authentication &
access control F T N N N

Encrypt-then-MAC
discovery data T F E N N

MAC livelinessmessages
(protect builtin topic) T F N S N

MAC entire RTPSpacket (including header) T F N N S

MAC entire RTPSpacket (including header), protecting against
tampering and replaybyan authorized subscriber

T F N N SOA

MAC entire RTPSpacket (including header) and encrypt-then-
MAC data T F N N S

MAC entire RTPSpacket (including header) and encrypt-then-
MAC data andmetadata T F N N S

All possible participant-level protections F T N N EOA

63

Appendix A Quick Reference: Governance File Settings

64

Table A.2 Topics

Security Objective
Governance Parameter

enable_
discovery_
protection

enable_
liveliness_
protection

enable_read_
access_
control

enable_write_
access_control

metadata_
protection_

kind

data_
protection_

kind

Baseline F F F F N N

Enable authentication &
access control F F T T N N

Encrypt-then-MAC
discovery data T F F F N N

MAC livelinessmessages
(protect builtin topic) F T F F N N

MAC entire RTPSpacket (including header) F F F F N N

MAC entire RTPSpacket (including header), protecting
against tampering and replaybyan authorized subscriber

F F F F N N

MAC entire RTPSpacket (including header) and encrypt-
then-MAC data F F F F N E

MAC entire RTPSpacket (including header) and encrypt-
then-MAC data andmetadata F F F F E N

All possible participant-level protections F F T T N N

Legend:

T = TRUE E = ENCRYPT SOA = SIGN_WITH_ORIGIN_AUTHENTICATION

F = FALSE EOA = ENCRYPT_WITH_
ORIGIN_
AUTHENTICATION

N = NONE S = SIGN

	Chapter 1 Introduction
	Chapter 2 Paths Mentioned in Documentation
	Chapter 3 Libraries Required for Using RTI Security Plugins
	3.1 Mixing Libraries Not Supported
	3.1.1 Dynamic Linking
	3.1.2 Static Linking
	3.1.3 Mixed Linking

	Chapter 4 Restrictions when Using RTI Security Plugins
	4.1 When to Set Security Parameters
	4.2 Impact of Using Security Plugins

	Chapter 5 Authentication
	5.1 Identity Certificate Chaining
	5.2 Related Governance Attributes for Authentication
	5.2.1 domain_rule

	5.3 Fragmentation Support for the Authentication Topic
	5.4 Configuration Properties Common to All Authentication Plugins
	5.5 Re-Authentication
	5.6 Protecting Participant Discovery
	5.7 Supporting TrustedState in Custom Plugins

	Chapter 6 Access Control
	6.1 Specifying Domain IDs
	6.2 Related Governance Attributes for Access Control
	6.2.1 domain_rule
	6.2.2 topic_rule
	6.2.3 No Matching Rule

	6.3 Permissions Document
	6.3.1 Topics
	6.3.2 Partitions
	6.3.2.1 Allowed
	6.3.2.2 Denied
	6.3.2.3 Partitions Mutability

	6.3.3 Data Tags
	6.3.3.1 Allowed
	6.3.3.2 Denied

	Chapter 7 Cryptography
	7.1 Related Governance Attributes for Cryptography
	7.1.1 ProtectionKind
	7.1.2 domain_rule
	7.1.3 topic_rule

	7.2 Configuration Properties Common to All Cryptography Plugins
	7.3 Reliability Behavior When MAC Verification Fails
	7.4 Enabling Asynchronous Publishing for the Key Exchange Topic

	Chapter 8 Logging
	8.1 Connext DDS Builtin Logging System
	8.2 Log File
	8.3 Distributed over DDS
	8.3.1 Setting the Properties
	8.3.2 Using a Custom Subscriber

	8.4 Logging Properties and Messages

	Chapter 9 Support for OpenSSL Engines
	9.1 Support for Engine Control Commands

	Chapter 10 Support for RTI Persistence Service
	Chapter 11 RTPS-HMAC-Only Mode
	Chapter 12 What’s Different from the OMG Security Specification
	12.1 Differences Affecting Builtin Plugins to be Addressed by Next DDS Security Specification
	12.1.1 Acess Control
	12.1.1.1 Mutability of Publisher PartitionQosPolicy

	12.2 Differences Affecting Builtin Plugins
	12.2.1 General
	12.2.1.1 Support for Infrastructure Services

	12.3 Differences Affecting Custom Plugins
	12.3.1 Authentication
	12.3.1.1 Revocation

	12.3.2 Access Control
	12.3.2.1 check_local_datawriter_register_instance
	12.3.2.2 check_local_datawriter_dispose_instance
	12.3.2.3 check_remote_datawriter_register_instance
	12.3.2.4 check_remote_datawriter_dispose_instance
	12.3.2.5 check_local_datawriter_match / check_local_datareader_match
	12.3.2.6 Revocation
	12.3.2.7 PermissionsToken
	12.3.2.8 check_remote_topic

	Appendix A Quick Reference: Governance File Settings

