
RTI Database Integration
Service

User’s Manual

Version 6.0.1

© 2020 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
March 2020.

Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Work-
ing as one,” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All
other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/).

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Welcome to RTI Database Integration Service

1.1 Intended Readers 1
1.2 Paths Mentioned in Documentation 1
1.3 Available Documentation 3
1.4 Background Reading 3

Chapter 2 Introduction

2.1 Interconnecting Standards 6
2.2 Connectivity To Edge Devices 7
2.3 Flexibility and Scalability 7
2.4 High Availability 7
2.5 Additional Benefits of Database Integration Service 7

Chapter 3 Architecture

3.1 Database Integration Service Architecture 9
3.1.1 Database Integration Service daemon 9
3.1.2 Database Integration Service’s Unique Features 10

3.2 Capturing Real-Time Data in a DBMS 11
3.3 Remote Real-Time Notification of Table Changes 11
3.4 Bidirectional Integration 12
3.5 Bridging between Domains 13
3.6 Real-Time Database Replication 14

Chapter 4 Using Database Integration Service

4.1 Introduction to the Database Integration Service daemon 17
4.1.1 How to Run the Database Integration Service daemon with MySQL 17

4.1.1.1 Installing MySQL ODBC 5.1.6 driver 17
4.1.1.2 Installing and Configuring the MySQL Server to Access (lib)rtirtc_mysqlq[.so,.dll] 18
4.1.1.3 Installing libnddsc[.so,.dll) and libnddscore(.so,.dll) on MySQL Server 18

iii

iv

4.1.1.4 Starting the MySQL Server in ANSI_QUOTES mode 19
4.1.2 How to Run Database Integration Service daemon with PostgreSQL 20
4.1.3 How to Run the Database Integration Service daemons as Windows Services 20
4.1.4 Typecodes 21

4.2 Command-Line Parameters 21
4.3 Environment Variables 24
4.4 Configuration File 25

4.4.1 How to Load the XML Configuration 25
4.4.2 XML Syntax and Validation 26
4.4.3 Top-Level XML Tags 27
4.4.4 Database Configuration with Database Integration Service XML Tag 29

4.4.4.1 General Options 30

4.4.4.1.1 Enabling Table Replication 31

4.4.4.1.2 Conflict Resolution 33

4.4.4.1.3 Table Initialization 33
4.4.4.2 Database Mapping Options 34
4.4.4.3 Database Connection Options 35
4.4.4.4 Initial Subscriptions and Publications 38
4.4.4.5 Configuring Waitsets 43

4.5 Meta-Tables 45
4.5.1 Publications Table 46

4.5.1.1 Publications Table Schema 48

4.5.1.1.1 table_owner, table_name 51

4.5.1.1.2 domain_id 51

4.5.1.1.3 topic_name 51

4.5.1.1.4 type_name 51

4.5.1.1.5 table_history_depth 52

4.5.1.1.6 resolution_column 52

4.5.1.1.7 idl_member_prefix_max_length, idl_member_suffix_max_length 53

4.5.1.1.8 profile_name 54

4.5.1.1.9 pub.present.access_scope, pub.present.ordered_access 54

4.5.1.1.10 pub.partition.name 55

4.5.1.1.11 dw.durability.kind 55

4.5.1.1.12 dw.liveliness.lease_dur 56

4.5.1.1.13 dw.deadline.period 56

4.5.1.1.14 dw.history.kind, dw.history.depth 56

4.5.1.1.15 dw.ownership.kind, dw.ownership_strength.value 57

4.5.1.1.16 dw.publish_mode.kind 58

4.5.1.1.17 dw.res_limits.max_samples, dw.res_limits.max_instances 58

4.5.1.1.18 changes_queue_maximum_size 59

4.5.1.1.19 RTIRTC_SCN 59
4.5.2 Subscriptions Table 59

4.5.2.1 Subscriptions Table Schema 61

4.5.2.1.1 table_owner, table_name 66

4.5.2.1.2 domain_id 66

4.5.2.1.3 topic_name 67

4.5.2.1.4 type_name 67

4.5.2.1.5 table_history_depth 67

4.5.2.1.6 process_batch, process_period, commit_type 68

4.5.2.1.7 cache_maximum_size, cache_initial_size 70

4.5.2.1.8 delete_on_dispose 71

4.5.2.1.9 idl_member_prefix_max_length, idl_member_suffix_max_length 71

4.5.2.1.10 profile_name 71

4.5.2.1.11 filter_duplicates 71

4.5.2.1.12 ordered_store 72

4.5.2.1.13 persist_state 72

4.5.2.1.14 sub.present.access_scope, sub.present.ordered_access 72

4.5.2.1.15 sub.partition.name 73

4.5.2.1.16 dr.durability.kind 73

4.5.2.1.17 dr.reliability.kind 74

4.5.2.1.18 dr.destination_order.kind 74

v

vi

4.5.2.1.19 dr.liveliness.lease_dur 75

4.5.2.1.20 dr.deadline.period 76

4.5.2.1.21 dr.history.kind, dr.history.depth 76

4.5.2.1.22 dr.ownership.kind 77

4.5.2.1.23 dr.time_filter.min_sep 78

4.5.2.1.24 dr.res_limits.max_samples, dr.res_limits.max_instances 78

4.5.2.1.25 dr.unicast.receive_port 78

4.5.2.1.26 dr.multicast.receive_address 78

4.5.2.1.27 dr.multicast.receive_port 79

4.5.2.1.28 metadata.timestamp_type 79

4.5.2.1.29 metadata.include_fields, metadata.exclude_fields 79

4.5.2.1.30 table_schema 80

4.5.2.1.31 RTIRTC_SCN 80
4.5.3 Table Info 80

4.5.3.1 Table Info Schema 80

4.5.3.1.1 table_owner, table_name 81

4.5.3.1.2 type_code 81
4.5.4 Log Table 82

4.5.4.1 Log Table Schema 82

4.5.4.1.1 id 83

4.5.4.1.2 ts 83

4.5.4.1.3 type 83

4.5.4.1.4 function, line 84

4.5.4.1.5 code, native_code, message 84
4.6 User-Table Creation 84
4.7 Support for Extensible Types 87
4.8 Enabling RTI Distributed Logger in Database Integration Service 88
4.9 Enabling RTI Monitoring Library in Database Integration Service 88

Chapter 5 IDL/SQL Semantic and Data Mapping

5.1 Semantic Mapping 90
5.2 Flatten Data Representation Mapping 92

5.2.1 IDL to SQL Mapping 92
5.2.2 Primitive Types Mapping 95
5.2.3 Bit Field Mapping 99
5.2.4 Enum Types Mapping 100
5.2.5 Simple IDL Structures 100
5.2.6 Complex IDL Structures 100
5.2.7 Array Fields 102
5.2.8 Sequence Fields 102
5.2.9 NULL Values 103
5.2.10 Sparse Data Types 103

5.3 JSON Data Representation Mapping 104
Appendix A Error Codes 107
Appendix B Database Limits

B.1 Maximum Columns for MySQL 117

vii

Chapter 1 Welcome to RTI Database
Integration Service

Welcome to RTI® Database Integration Service—a high-performance solution for integrating
applications and data across real-time and enterprise systems from RTI.

Database Integration Service is the integration of two complementary technologies: data-centric
publish-subscribe middleware and relational database management systems (RDBMS). This power-
ful integration allows your applications to uniformly access data from real-time/embedded and
enterprise data sources via RTI Connext® DDS, or via database interfaces. Since both these tech-
nologies are data-centric and complementary, they can be combined to enable a new class of applic-
ations. In particular, Connext DDS can be used to produce a truly decentralized, distributed
RDBMS, while RDBMS technology can be used to provide persistence for real-time data.

1.1 Intended Readers

This document presents the general concepts behind Database Integration Service’s architecture
and provides basic information on how to develop applications using Database Integration
Service.

The chapters assume general knowledge of relational databases and SQL, familiarity with the
ODBC API, IDL and the Connext DDS API, and a working knowledge of the C/C++ pro-
gramming languages.

1.2 Paths Mentioned in Documentation

The documentation refers to:

l <NDDSHOME>

This refers to the installation directory for RTI® Connext® DDS. The default installation
paths are:

1

1.2 Paths Mentioned in Documentation

2

l macOS® systems:
/Applications/rti_connext_dds-6.0.1

l Linux systems, non-root user:
/home/<your user name>/rti_connext_dds-6.0.1

l Linux systems, root user:
/opt/rti_connext_dds-6.0.1

l Windows® systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-6.0.1

l Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-6.0.1

You may also see $NDDSHOME or%NDDSHOME%, which refers to an environment variable
set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users:When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:
“C:\Program Files\rti_connext_dds-6.0.1\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

l <path to examples>

By default, examples are copied into your home directory the first time you run RTI Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples as
<path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:
l macOS systems: /Users/<your user name>/rti_workspace/6.0.1/examples

l Linux systems: /home/<your user name>/rti_workspace/6.0.1/examples

l Windows systems: <your Windows documents folder>\rti_workspace\6.0.1\examples

Where 'your Windows documents folder' depends on your version of Windows. For example,
on Windows 10, the folder is C:\Users\<your user name>\Documents.

1.3 Available Documentation

Note: You can specify a different location for rti_workspace. You can also specify that you do not
want the examples copied to the workspace. For details, see Controlling Location for
RTI Workspace and Copying of Examples in the RTI Connext DDS Installation Guide.

1.3 Available Documentation

The following documentation is available for RTI® Database Integration Service:

l The Release Notes. This document provides an overview of the current release’s features and lists
changes since the previous release, system requirements, and supported architectures. (For migration
and compatibility information, see the Migration Guide on the RTI Community Portal: https://-
community.rti.com/documentation.)

l The Getting Started Guide. This document provides installation instructions, a short ‘Hello World’
tutorial, and troubleshooting tips.

l This User’s Manual starts with an overview of RTI Database Integration Service’s basic concepts,
terminology, and unique features. It then describes how to develop and implement applications that
use RTI Database Integration Service.

Additional Resources:

l The ODBC API Reference from Microsoft is available from http://msdn.microsoft.com/en-us/lib-
rary/ms714562(VS.85).aspx.

l The documentation for MySQL™ databases can be found here:
http://dev.mysql.com/doc/refman/5.5/en/index.html.

l The documentation for PostgreSQL® databases can be found here: https://www.postgresql.org/.

1.4 Background Reading

For information on distributed systems and databases:

l George Coulouris, Jean Dollimore, Tim Kindberg. Distributed Systems: Concepts and Design (3rd
edition). Addison-Wesley, 2000

l M. Tamer Ozsu, Patrick Valduriez. Principles of Distributed Database Systems (2nd Edition).
Prentice Hall, 1999

l Andrew S. Tanenbaum, Maarten van Steen. Distributed Systems: Principles and Paradigms (1st edi-
tion). Prentice Hall, 2002

For information on real-time systems:

3

https://community.rti.com/documentation
https://community.rti.com/documentation
http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx
http://dev.mysql.com/doc/refman/5.5/en/index.html
https://www.postgresql.org/

1.4 Background Reading

4

l Qing Li, Caroline Yao. Real-Time Concepts for Embedded Systems. CMP Books, 2003

l Doug Abbott. Linux for Embedded and Real-Time Applications. Butterworth-Heinemann, 2002

l David E. Simon. An Embedded Software Primer. Addison-Wesley, 1999

For information on SQL:

l Joe Celko. Joe Celko’s SQL for Smarties: Advanced SQL Programming (expanded 2nd Edition).
Morgan Kaufmann, 1999

l Rick van der Lans. Introduction to SQL: Mastering the Relational Database Language (3rd edi-
tion). Addison-Wesley, 1999

For information on ODBC:

l Microsoft Corporation. Microsoft ODBC 2.0 Software Development Kit and Programmer’s Refer-
ence.Microsoft Press, 1997

For information on the C programming language:

l Brian W. Kernighan, Dennis M. Ritchie. The C programming Language (2nd edition). Prentice
Hall Software Series, 1988

Chapter 2 Introduction
In this section, a few of the unique qualities and features of Database Integration Service are dis-
cussed in greater detail. Figure 2.1: Example System Using Database Integration Service on the
next page shows an example system where Database Integration Service serves as the central integ-
ration technology to interconnect the real-time, embedded world with the analysis and high-level
decision-making processes of the enterprise world.

In Figure 2.1: Example System Using Database Integration Service on the next page, sensors of
physical processes produce data that must be filtered, fused, and stored for use in business pro-
cesses. In addition, multiple user consoles must have concurrent access to both raw and fused data.

Database Integration Service is the bridge that connects real-time/high performance to complex
analysis, edge devices to business systems, and embedded to enterprise.

5

2.1 Interconnecting Standards

6

Figure 2.1: Example System Using Database Integration Service

2.1 Interconnecting Standards

Until recently, distributed real-time systems were built using custom-developed data structures and
algorithms to store and manipulate data in combination with a commercial, or even proprietary, data-dis-
tribution middleware layer. This was necessary to meet real-time performance requirements. However, in
recent years, DDS, a standard for data distribution, has emerged as the premier method to integrate and
build distributed real-time systems.

For decades in enterprise systems, standards for communications, data representation and data storage has
enabled the tremendous growth of software applications for business processes worldwide. The standards
such as SQL, ODBC, JMS, HTML, XML, and WDSL have greatly increased the interoperability of those
business systems.

Database Integration Service is the first commercial product that interconnects the DDS standard newly
established in the embedded world to the common standards of the enterprise world. With Database Integ-
ration Service, enterprise applications have direct access to real-time data, and real-time applications have

2.2 Connectivity To Edge Devices

access to the plethora of processes and logic that has been developed to configure and direct actions based
on business decisions.

2.2 Connectivity To Edge Devices

For edge devices, such as sensors and hand-helds, Database Integration Service integrates Connext DDS
applications with databases. Applications can publish data into relational databases and subscribe to
changes in relational databases using the standard Connext DDS application programming interface. Integ-
ration between Connext DDS and relational database applications is supported by an IDL-to-SQL map-
ping that allows both types of applications to access a uniform data model.

2.3 Flexibility and Scalability

By leveraging Connext DDS Quality-of-Service (QoS) settings, Database Integration Service supports an
unprecedented variety of deployment configurations to accommodate a wide range of scenarios, from reli-
able point-to-point delivery to best-effort multicasting that enables real-time transaction streaming to large
numbers of subscribers. By setting QoS policies, system throughput, response time, reliability, footprint,
and network bandwidth consumption can be tuned to meet application requirements. Previously, a system
was hard-coded with parameters set for a specific operation profile during integration. In contrast, Data-
base Integration Service provides run-time configurable policy settings, which greatly enhances system
deployment flexibility.

2.4 High Availability

Availability is an essential requirement for most distributed real-time applications. Systems built in the
Defense and Aerospace industries are typically safety critical and are required to operate in crisis situ-
ations. In telecommunications, a minute of system downtime may mean many millions of dollars in lost rev-
enue. With Database Integration Service, automatic data caching and replication can serve as the
foundation technology for high-availability. Applications can use Database Integration Service to maintain
copies of SQL database tables on two or more hosts in the network. In the event of a host failure, copies of
the tables are available from other hosts to continue operation.

Database Integration Service’s automated replication management and no-single-point-of-failure guar-
antees the availability of critical information. With Database Integration Service, tables can be stored on
multiple hosts, allowing applications and services to concurrently read and write in multiple tables. Con-
flict resolution can be based on application-defined timestamps.

2.5 Additional Benefits of Database Integration Service

l Achieve quick time-to-market

l Start application development immediately using well-known interfaces.

l Minimize time-consuming custom programming.

7

2.5 Additional Benefits of Database Integration Service

8

l Easily integrate into existing solutions using industry- standard interfaces.

l Reduce development costs

l Use widely available modeling and database tools.

l Eliminate expensive complex coding for real-time data management and communication.

l Integrate edge devices, distributed real-time data management, and enterprise databases using
a single set of standard Application Programming Interfaces.

l Deliver cutting-edge solutions

l Process massive amounts of information across networks in real-time.

l Turn near-instantaneous responses to (remote) critical events into a business advantage.

l Seamlessly integrate networked applications, services, and devices.

l Minimize operational costs

l Maintain complex networked applications with near-zero administration.

l Dynamically add or change system components.

l Run on common hardware platforms and networks.

l Reduce risks

l Guarantee continuous system availability through dynamic replication management.

l Rely on continuous high-quality technical support.

l Build on years of experience in the world’s most demanding real-time application domains.

Chapter 3 Architecture
This chapter presents a more detailed view of the RTI Database Integration Service architecture
and highlights the different ways that RTI Database Integration Service can be used to integrate
systems. It includes the following sections:

l 3.1 Database Integration Service Architecture below

l 3.2 Capturing Real-Time Data in a DBMS on page 11

l 3.3 Remote Real-Time Notification of Table Changes on page 11

l 3.4 Bidirectional Integration on page 12

l 3.5 Bridging between Domains on page 13

l 3.6 Real-Time Database Replication on page 14

3.1 Database Integration Service Architecture

The Database Integration Service architecture is designed to integrate existing systems that use the
Connext DDS API or relational databases with minimal modification to working applications. In
many situations, existing applications do not have to change at all.

Database Integration Service consists of a daemon that acts like bridge between two software
development domains. One uses the OMG Data Distribution Service API to publish and subscribe
to data that may be generated at high rates with real-time constraints. The other applies algorithms
and logic representing business processes to megabytes, gigabytes or terabytes of data stored in rela-
tional databases.

3.1.1 Database Integration Service daemon

The Database Integration Service daemon oversees the incoming (subscribed) data and outgoing
(published) data. It enables automatic storage of data published by Connext DDS applications in a
database by mapping a Topic to a table in the database and storing an instance of a Topic as a row
in that table. Also, the daemon can automatically publish changes in a database table as a Topic.

9

3.1.2 Database Integration Service’s Unique Features

10

Users have total control of the Quality of Service that the daemon uses for publishing and subscribing to
Connext DDS data.

The Database Integration Service daemon uses the Connext DDS API, as well as SQL through the
ODBC API. In addition, there is a custom interface for each supported database management system
(DBMS). The three currently supported DBMSs are MySQL, Microsoft® SQL Server, and PostgreSQL.
There is a separate daemon executable for each of the specific DBMSs.

3.1.2 Database Integration Service’s Unique Features

Database Integration Service offers a unique set of features that enable seamless integration of real-
time/embedded Connext DDS applications and enterprise services:

l Storage of Connext DDS Data in a DBMS

Database Integration Service automatically stores received values of specified Topics in a database.
Once the data is propagated to the database, it can be accessed by a user application via regular SQL
queries.

l Publication of DBMS Data via Connext DDS

Database Integration Service automatically publishes changes in specified database tables. Changes
made via the SQL API (with the INSERT, UPDATE and DELETE statements) will be published
into the network via Connext DDS, so real-time/embedded applications and devices can respond to
time-critical changes with near-zero latency.

l Mapping Between IDL to SQL Data Types

Database Integration Service provides automatic mapping between an IDL data type representation
and a SQL table schema representation. This mapping is used to directly translate a table record to a
Connext DDS data structure and vice-versa. Previously, this translation had to be done by custom-
developed code.

l History

Database Integration Service can store a history of received values of a data instance. Normally, an
instance of a topic is mapped to a single row in the associated database with the IDL key used as the
primary key for the table. But when Database Integration Service’s data history feature is enabled,
multiple samples of a topic instance can be stored across multiple rows in the same table of the data-
base, supporting both real-time and off-line analysis based on historical data.

l Configurable QoS

Database Integration Service exposes many of the QoS attributes defined by the DDS standard.
This gives the user full control over the quality of service when capturing real-time data or sub-
scribing to changes in the database. Supported QoS attributes include reliability, durability, mul-
ticasting, delivery ordering, and many others.

3.2 Capturing Real-Time Data in a DBMS

3.2 Capturing Real-Time Data in a DBMS

Figure 3.1: Storing Published Connext DDS Data in a SQL Database below shows how Database Integ-
ration Service can be used to capture real-time data streams generated by embedded Connext DDS applic-
ations into one or more tables in a [in-memory] DBMS. In this scenario, the Database Integration Service
daemon has been configured with user-customizable QoSs to subscribe to Topics. When new values
arrive, the daemon stores the data in the appropriate table in the database. Mapping the Topic described by
IDL to the equivalent SQL table schema is done automatically by the daemon with no user configuration
necessary.
Figure 3.1: Storing Published Connext DDS Data in a SQL Database

3.3 Remote Real-Time Notification of Table Changes

Figure 3.2: Notifying Remote Applications of Changes in a Database on the next page shows how Data-
base Integration Service can be used to notify remote Connext DDS applications running in embedded

11

3.4 Bidirectional Integration

12

devices of time-critical changes in the database. In this scenario, the Database Integration Service daemon
has been configured with user-customizable QoSs to publish Topics whenever the specified table changes
in the database. Mapping the SQL table schema to the equivalent Topic described by IDL is done auto-
matically by the daemon—no user configuration necessary.
Figure 3.2: Notifying Remote Applications of Changes in a Database

3.4 Bidirectional Integration

Figure 3.3: Bidirectional Integration on the next page shows a system that integrates the capabilities
described in the last two sections. Database Integration Service provides bidirectional dataflow between
embedded Connext DDS applications and enterprise database systems. This approach can typically be
used to create a closed-loop system, where sensory data is collected, processed, and analyzed in an in-
memory database, and the resulting analysis creates state changes that are fed back to remote sensors and
devices to control their behavior and mode of operation.

3.5 Bridging between Domains

Figure 3.3: Bidirectional Integration

3.5 Bridging between Domains

Figure 3.4: Bridging Domains on the next page shows how Database Integration Service can be used as a
bridge between two domains by configuring the Database Integration Service daemon to subscribe to data
in one domain and publishing the same data in a different domain. Data sent by Connext DDS applications
in the first domain are stored by the daemon in a local in-memory table. Since changes in the table are sent
by the daemon into a second domain, the data is ultimately received by Connext DDS applications in the
second domain. There is no feedback cancellation needed since the data is being bridged across domains.
Usually domain bridges have to be written by users and modified whenever data types or Topics change.
Using Database Integration Service, no programming is required to create a high performance bridge for
any topic of any data type between any domains.

13

3.6 Real-Time Database Replication

14

Figure 3.4: Bridging Domains

3.6 Real-Time Database Replication

By running multiple Database Integration Service daemons on different nodes connected to different data-
bases, and configuring all of the daemons to publish and subscribe to the same table, changes made by
applications to a table on one node can be automatically replicated to tables on all of the other nodes. Fig-
ure 3.5: Replicating Tables Across Databases on the next page shows how Database Integration Service
can be used to perform lazy table replication between distributed databases.

With lazy replication, an update is sent to the subscribers after the transaction is committed into the local
database. The advantages of lazy replication are short response time and high concurrency, since locks in
the data cache are immediately released after a transaction commits and before it is sent on the network.

3.6 Real-Time Database Replication

Figure 3.5: Replicating Tables Across Databases

If you need remote table initialization and application timestamp-based conflict resolution, you can enable
this either by using the Database Integration Service configuration properties or by setting individual QoS
values. This is described further in 4.4 Configuration File on page 25.

15

Chapter 4 Using Database Integration
Service

This chapter provides detailed information on using the Database Integration Service daemon to
subscribe to and store data received as Topics into relational databases, as well as to publish as
Topic changes in relational database tables.

The contents of this chapter assume you have a working knowledge of Connext DDS and rela-
tional databases. The chapter also assumes familiarity with IDL (Interface Definition Language),
the DDS and SQL specifications and APIs. Finally, you should be able to create and run applic-
ations using Connext DDS to publish and subscribe to data.

Users can configure the Database Integration Service daemon to subscribe to Topics and store
received values in a table, or to publish database changes as Topics using a combination of meth-
ods:

l Command-line parameters

l Environment variables

l Configuration file

l Configuration tables in the database

This chapter includes the following sections:

l 4.1 Introduction to the Database Integration Service daemon on the next page

l 4.2 Command-Line Parameters on page 21

l 4.3 Environment Variables on page 24

l 4.4 Configuration File on page 25

l 4.5 Meta-Tables on page 45

16

4.1 Introduction to the Database Integration Service daemon

17

l 4.6 User-Table Creation on page 84

l 4.7 Support for Extensible Types on page 87

l 4.8 Enabling RTI Distributed Logger in Database Integration Service on page 88

l 4.9 Enabling RTI Monitoring Library in Database Integration Service on page 88

4.1 Introduction to the Database Integration Service daemon

Database Integration Service bridges the world of Connext DDS and the world of relational databases.
The main element of the bridge is an executable that must run on the same host as the database man-
agement system (DBMS). This executable is called the Database Integration Service daemon.

Database Integration Service uses Connext DDS and supports several databases: MySQL, Microsoft®
SQL Server, and PostgreSQL. There is a separate executable that you must run depending on which data-
base you are using.

l MySQL: rtirtc_mysql[.exe]

l Microsoft SQL Server: rtirtc_sqlserver.exe

l PostgreSQL: rtirtc_postgresql[.exe]

These executables can be executed as foreground processes during development or as background pro-
cesses or as a service on Windows systems. You can configure the general behavior of the Database Integ-
ration Service daemon by using command-line parameters, environment variables and configuration files.
Meta-tables in the database are used to configure the specific topics and tables that are bridged by the dae-
mon.

Besides using compatible versions of Connext DDS and MySQL/Microsoft® SQL Server/PostgreSQL
databases (see the Release Notes for a list of compatible versions), the Database Integration Service dae-
mon expects that typecodes for the IDL types used by Connext DDS applications have been generated and
are being propagated. If typecodes for IDL types were not generated, you must create the tables (used by
the daemon for storing or publishing data) yourself or declare the types in the configuration files.

4.1.1 How to Run the Database Integration Service daemon with MySQL

Before Database Integration Service will run correctly with a MySQL database, the procedures described
in this section must be completed.

4.1.1.1 Installing MySQL ODBC 5.1.6 driver

The Database Integration Service daemon requires the installation of theMySQL ODBC 5.1.6 driver (or
higher). The driver is not bundled with the MySQL server and must be installed separately.

The ODBC connector can be downloaded from http://dev.mysql.com/downloads/connector/odbc/5.1.html.

http://dev.mysql.com/downloads/connector/odbc/5.1.html

4.1.1.2 Installing and Configuring the MySQL Server to Access (lib)rtirtc_mysqlq[.so,.dll]

The installation guide can be found at https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-install-
ation.html.

The MySQL ODBC driver requires an ODBC driver manager. On Windows systems, the ODBC driver
manager is automatically installed with the OS. For Linux systems, we recommend using UnixODBC
2.2.12 (or higher), a complete, free/open ODBC solution for UNIX-based and Linux systems. You can
download the driver manager from http://www.unixodbc.org.

4.1.1.2 Installing and Configuring the MySQL Server to Access (lib)rtirtc_mysqlq[.so,.dll]

To work with a MySQL database, there is a shared library distributed with Database Integration Service
that must be installed correctly on the host of the MySQL database server. Communication by the Data-
base Integration Service daemon with the MySQL server is accomplished through user-defined functions
(UDF) executed by the MySQL server when triggers installed by the Database Integration Service dae-
mon are fired. These functions are provided in a shared library (on UNIX-based systems) or DLL (on Win-
dows systems) called [lib]rtirtc_mysqlq[.so,.dll].

This library is distributed with Database Integration Service and can be found in the lib/<platform> dir-
ectory of the installation directory. The correct version of the library to use depends on the platform on
which MySQL server is running. For example, <platform> can be:

l x64Linux2.6gcc4.4.5 for a Red Hat Enterprise Linux system on 64-bit x86 processors

l i86Linux2.6gcc4.4.5 for a Red Hat Enterprise Linux system on 32-bit x86 processors

l i86Win32VS2010 for Windows systems on 32-bit x86 processors

To install [lib]rtirtc_mysqlq[.so,.dll] copy the appropriate version of [lib]rtirtc_mysqlq[.so,.dll] into the
MySQL server’s plugin directory (the directory named by the plugin_dir system variable). The plugin dir-
ectory can be changed by setting the value of plugin_dir when the MySQL server is started. For example,
you can set its value in themy.cnf configuration file:
[mysqld]
plugin_dir=/path/to/plugin/directory

For additional information about the plugin directory see the following link:
http://dev.mysql.com/doc/refman/5.5/en/install-plugin.html

4.1.1.3 Installing libnddsc[.so,.dll) and libnddscore(.so,.dll) on MySQL Server

Since the library librtirtc_mysqlq[.so,.dll] internally uses Connext DDS, the corresponding shared lib-
raries [lib]nddsc[.so,.dll] and [lib]nddscore[.so,.dll] distributed with Connext DDS also need to be
installed on the MySQL server host.

18

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-installation.html
https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-installation.html
http://www.unixodbc.org/
http://dev.mysql.com/doc/refman/5.5/en/install-plugin.html

4.1.1.4 Starting the MySQL Server in ANSI_QUOTES mode

19

Notes:

l Please see the Release Notes for specific details of the supported platforms for your release of Data-
base Integration Service to MySQL.

l The libraries nddsc and nddscore must be located in a directory that is searched by the system
dynamic linker.

l If you are using a license managed version of RTI Connext DDS (e.g., an evaluation installer),
make sure that you define the RTI_LICENSE_FILE environment variable to point to a valid license
file. Also make sure that this environment variable is visible from the MySQL server process. In
order to take effect, on some systems you may need to define it as a system-wide environment vari-
able and restart the MySQL database process. You can find more information about using a license
file in the RTI Connext DDS Installation Guide.

UNIX-Based Systems:

l Copy the shared libraries to a directory such as /usr/lib.

l Alternatively, add the libraries to the environment variable LD_LIBRARY_PATH that must be set
for the user who starts the MySQL server. This method requires restarting the MySQL server.

Windows Systems:

l Copy the .dll files to the system directory (WINDOWS\System32 orWINDOWS\System).

l Alternatively, you can add the directories containing the libraries to the System variable Path as fol-
lows:

Using the dialog opened with Start, Settings, Control Panel, System, Advanced tab, Envir-
onment Variables button, add the directories (with backslash ‘\’ and semicolon separators ‘;’) con-
taining the libraries to the System variable “Path”. If the MySQL server is running as a service, you
will need to reboot the computer for this change to take effect.

4.1.1.4 Starting the MySQL Server in ANSI_QUOTES mode

The MySQL server can operate in different sql modes. The Database Integration Service daemon requires
the MySQL server to be configured in ANSI_QUOTES mode. Under that configuration, the MySQL
server treats ‘”’ as an identifier quote character instead of a string quote character.

To verify if the MySQL server is already configured in ANSI_QUOTES mode, run the following SQL
statement:
SELECT @@global.sql_mode;

If the string ‘ANSI_QUOTES’ is not part of the result, the MySQL server needs to be configured in
ANSI_QUOTES mode using the option --sql_mode=’ANSI_QUOTES’ to start the server

4.1.2 How to Run Database Integration Service daemon with PostgreSQL

That same effect can be achieved at runtime by executing the following SQL statement:
SET GLOBAL sql_mode = ‘ANSI_QUOTES’

Note: The specific configuration of the MySQL server may require the use of additional SQL mode
strings when starting the server.

4.1.2 How to Run Database Integration Service daemon with PostgreSQL

Before Database Integration Service will run correctly with a PostgreSQL database, the PostgreSQL
ODBC driver must be installed. The driver is not bundled with the PostgreSQL server and must be
installed separately.

You can download the PostgreSQL ODBC driver from https://odbc.postgresql.org/.

The PostgreSQL ODBC driver requires an ODBC driver manager. For Linux systems, we recommend
using UnixODBC, a complete, free/open ODBC solution for UNIX-based and Linux systems. You can
download the driver manager from http://www.unixodbc.org.

4.1.3 How to Run the Database Integration Service daemons as Windows
Services

On Windows, you can run the Database Integration Service daemons rtirtc_mysql.exe and rtirtc_
sqlserver as system services. To install it as a service, you need to run the daemon with the argument -
installService:
rtirtc_mysql -installService
[SC] CreateService SUCCESS.

This will install Database Integration Service as a Windows service and you will be able to control it
from: Start, Programs, Administrative Tools, Services application.

By default, the services will be installed in manual mode. Use the Services application to change this to
automatic to have the services start when the Windows machine boots up.

When running Database Integration Service as a Windows service, you will need to take two things into
account:

l You will need need to setup a System DSN, in order to make the data source accessible to Database
Integration Service.

l User Applications won't be able to communicate with Database Integration Service daemon using
shared memory.

The configuration file used by the Windows services is the default file, <Database Integration Service
installation directory>/resource/xml/RTI_REAL_TIME_CONNECT.xml.

20

https://odbc.postgresql.org/
http://www.unixodbc.org/

4.1.4 Typecodes

21

You can change the location of the configuration file by running the Windows service with the command
line option, -cfgFile (see 4.2 Command-Line Parameters below).

To uninstall Database Integration Service as a Windows service, can use the argument -uninstallService.
rtirtc_mysql -uninstallService
[SC] DeleteService SUCCESS.

4.1.4 Typecodes

Typecodes are runtime parsible descriptions of data, generated for user data types from an IDL file by the
Connext DDS utility rtiddsgen. Typecodes are automatically propagated during the discovery process of
Connext DDS applications. Unless the user has specifically disabled rtiddsgen from generating typecodes,
applications built with types generated by rtiddsgen should be propagating typecodes for all of the Topics
that they use, and thus are compatible with Database Integration Service. Please consult Connext DDS
documentation for more information about typecodes and their generation.

An important note is that typecodes can become quite large as the corresponding IDL type becomes more
complex. By default, Connext DDS applications allocate 2048 bytes to store a typecode. The default size
for the Database Integration Service daemon is 2048 bytes as well. The typecode size is controlled by the
QoS parameter, DomainParticipantQos::resource_limits.type_code_max_serialized_length, in the
Connext DDS API. In Database Integration Service, you can change the typecode limit using XML QoS
Profiles (see Table 4.2 Top-Level Tags).

If the Database Integration Service daemon discovers Topics that have typecodes that (a) are larger than
what it has been configured to handle or (b) have no associated typecodes at all, the daemon will not be
able to subscribe to or publish those topics unless the user manually creates the corresponding tables in the
database or defines the topic types in the configuration file (see Table 4.2 Top-Level Tags). The only way
to determine whether or not this situation exists is to examine the log messages printed by the daemon.

A status message will indicate when there is no typecode found for a Topic. This message may have been
generated because the typecode associated with the topic is too large for the daemon. By increasing the
DomainParticipantQos::resource_limits.type_code_max_serialized_length QoS policy, the daemon
can be configured to handle larger typecodes for complex IDL types.

The Database Integration Service daemon will store all the typecodes that it receives with discovered Top-
ics. These typecodes may be used by the daemon to create user-accessible tables in the database from
which changes are published or data received via Connext DDS is stored. See 4.5.1 Publications Table on
page 46 and 4.5.2 Subscriptions Table on page 59 for more information of how typecodes are used by the
daemon.

4.2 Command-Line Parameters

Any user can start a Database Integration Service daemon. The user name/ID and password with which it
connects to a database is specified in the configuration file, see Table 4.9 Common Tags for all Database
Connections on page 36.

4.2 Command-Line Parameters

When starting a Database Integration Service daemon, the following command-line parameters are sup-
ported; the -cfgName parameter is required.

For rtirtc_<database> (see below), replace <database> with one of these:

l mysql

l sqlserver

l postgresql

Usage: rtirtc_<database> [options]
Options:
-cfgFile <file> Configuration file. This parameter is optional

since the configuration can be loaded from
other locations

-cfgName <name> Configuration name. This parameter is required
and it is used to find a <real_time_connect>
matching tag in the configuration files

-appName <name> Application name
Used to name the domain participants
Default: -cfgName

-logFile <file> Log file
-nodaemon Run as a regular process. Messages are sent to

stdout and stderr
-queueDomainId <int> Domain ID of the channel connecting the MySQL

server with RTI Database Integration Service
Default: 1

-dbTransport <1|2> Transport used to communicate the MySQL server
with RTI Database Integration Service
* 1: UDPv4
* 2: Shared Memory
Default: 2 (Shared memory)

-heapSnapshotPeriod <sec>
Enables heap monitoring. Database Integration

Service will generate a heap snapshot every <sec>
Default: heap monitoring is disabled

Valid range: [1, 86400]
-heapSnapshotDir <dir>

When heap monitoring is enabled this parameter
configures the directory where the snapshots will
be stored. The snapshot filename format is
RTI_heap_<appName>_<processId>_<index>.log
Default: current working directory

-verbosity [0-6] RTI Database Integration Service verbosity
* 0 - silent
* 1 - exceptions (Core Libraries and Service)
* 2 - warnings (Service)
* 3 - information (Service)
* 4 - warnings (Core Libraries and Service)
* 5 - tracing (Service)
* 6 - tracing (Core Libraries and Service)
Default: 1 (exceptions)

22

4.2 Command-Line Parameters

23

-version Prints the RTI Database Integration Service version
-help Displays this information

Option Description

-appName <ap-
plication name>

Assigns a name to the Database Integration Service execution.

The application name is used to set the EntityNameQosPolicy of the DomainParticipants created byDatabase Integration
Service.

-cfgFile <con-
figuration file>

Specifies an XML configuration file forDatabase Integration Service.

The parameter is optional since the Database Integration Service configuration can be loaded fromother locations. See
4.4.1 How to Load the XMLConfiguration on page 25 for further details.

-cfgName <con-
figuration name>

Required

Specifies the name of the configuration to load. The Database Integration Service daemon will look for the first tag <real_
time_connect> with that name. (See 4.4 Configuration File on page 25.)

-dbTransport <1|2>

This parameter is only available for the rtirtc_mysql-[.exe] forMySQL.

By default,Database Integration Service uses shared memory to communicate with the MySQL database servers.

The -dbTransport parameter can be used to change the communication transport. There are two possible values:

1: UDPv4

2: Shared memory (default)

Note: Shared memory communication between the Database Integration Service daemon and the database servers does
not work on Windows 7 systems when the Database Integration Service daemon runs with the option -nodaemon and the
database server runs as a service. For this use case, communication can be enabled by using UDPv4 as the transport.

-heapSnap-
shotPeriod

Enables heap monitoring.

Database Integration Servicewill generate a heap snapshot every <sec>.

Default: heap monitoring is disabled.

-heapSnapshotDir

When heap monitoring is enabled, this parameter configures the directory where the snapshots will be stored. The snap-
shot filename format is RTI_<configurationName><processId><index>.log.

Default: current working directory

-help Prints out a usage message listing the command-line parameters.

-logFile <log file>
Pathname of the file to be used for log messages.

If specified, log messages will automatically be stored in the file.

-nodaemon

Start as a normal process.

Without this option, running the Database Integration Service daemon executable will start a daemon process on Linux
systems, or start a service on Windows systems. As a daemon, no log messages of any kind are printed to stdout or stderr.
However, by specifying this option, the daemon will start as a regular process, which can be run as a background process
using the standard OS with the command-line option (“&”), and log messages will be printed to stdout and stderr.

-queueDomainId <do-
main ID>

This parameter is only available for the rtirtc_mysql-[.exe] forMySQL.

The Database Integration Service daemon usesConnext DDS to communicate with the MySQL server. This command-
line option sets the domain ID used for the connection between the daemon and the servers.

Default: 1

Table 4.1 Command-line Options

4.3 Environment Variables

Option Description

-verbosity <verbosity
level>

Database Integration Service verbosity level:

0 - No verbosity

1 - Exceptions (Connext DDS and Database Integration Service) (default)

2 -Warnings (Database Integration Service)

3 - Information (Database Integration Service)

4 -Warnings (Connext DDS and Database Integration Service)

5 - Tracing (Database Integration Service)

6 - Tracing (Connext DDS and Database Integration Service)

Each verbosity level, n, includes all the verbosity levels smaller than n.

As the Database Integration Service daemon runs, it may generate log messages reflecting error conditions, warning mes-
sages or general execution status. The messagesmay be produced by the daemon or byConnext DDS.

The messages produced by the daemon can be redirected to three possible destinations: stdout/stderr, a file, and log
tables in the databases to which it is connected.Each of these destinations may be enabled independently of each other.
The first two, stdout/stderr and file, are controlled by command line parameters discussed above, and the last, log table, is
controlled in the configuration of a connection, as discussed in 4.4.4.3 Database Connection Optionson page 35.

In thisDatabase Integration Service version, the messages produced byConnext DDS can be redirected only to
stdout/stderr.

-version Prints the Database Integration Service version.

Table 4.1 Command-line Options

4.3 Environment Variables

Since the Database Integration Service daemon will be making connections to databases using ODBC, on
UNIX-based systems, the following environment variables may be used to find DSNs (data source names)
via ODBCINI files.

l ODBCINI: location of INI file for database connections. If not set, ODBCINI will be set to
“$HOME/.odbc.ini”, where $HOME is the home directory of the user who started the daemon.

l SYSODBCINI: location of system INI file, used if the DSN is not found in the file specified by
ODBCINI.

If the Database Integration Service daemon cannot find a valid DSN in any ODBC.INI file, then no con-
nections to any databases can be made.

On a Windows system, the equivalent functionality of the ODBCINI file is found in the Windows registry.
You create and modify DSNs using the application found in Start, Programs, Administrative Tools,
Data Sources (ODBC).

24

4.4 Configuration File

25

4.4 Configuration File

When you start Database Integration Service, you can provide a configuration file in XML format (it is
not required). Among other things, this file can be used to specify the set of databases to which the dae-
mon will connect and the properties of the database connections.

This section describes:

l 4.4.1 How to Load the XML Configuration below

l 4.4.2 XML Syntax and Validation on the next page

l 4.4.3 Top-Level XML Tags on page 27

l 4.4.4 Database Configuration with Database Integration Service XML Tag on page 29

4.4.1 How to Load the XML Configuration

Database Integration Service loads its XML configuration from multiple locations. This section presents
the various approaches, listed in load order.

The first three locations only contain QoS Profiles and are inherited from Connext DDS (see Chapter 15 in
the RTI Connext DDS Core Libraries User's Manual).

<NDDSHOME> is described in 1.2 Paths Mentioned in Documentation on page 1.

l <NDDSHOME>/resource/xml/NDDS_QOS_PROFILES.xml

This file contains the Connext DDS default QoS values; it is loaded automatically if it exists. (First
to be loaded.)

l File in NDDS_QOS_PROFILES

The files (or XML strings) separated by semicolons referenced in this environment variable are
loaded automatically.

l <working directory>/USER_QOS_PROFILES.xml

This file is loaded automatically if it exists.

The next locations are specific to Database Integration Service.

l <NDDSHOME>/resource/xml/RTI_REAL_TIME_CONNECT.xml

This file contains the default Database Integration Service configuration and QoS Profiles; it is
loaded if it exists. The default configuration does not work out-of-the-box because it requires setting

4.4.2 XML Syntax and Validation

the parameters that configure the database connections such as dsn, username and password (see
4.4.4 Database Configuration with Database Integration Service XML Tag on page 29).

l <working directory>/USER_REAL_TIME_CONNECT.xml

This file is loaded automatically if it exists.
l File specified using the command line parameter -cfgFile

The command-line option -cfgFile (see 4.2 Command-Line Parameters on page 21) can be used to
specify a configuration file.

You may use a combination of the above approaches.

4.4.2 XML Syntax and Validation

The XML configuration file must follow these syntax rules:

l The syntax is XML; the character encoding is UTF-8.

l Opening tags are enclosed in <>; closing tags are enclosed in </>.

l A tag value is a UTF-8 encoded string. Legal values are alphanumeric characters. The routing ser-
vice’s parser will remove all leading and trailing spaces1 from the string before it is processed.

For example, " <tag> value </tag>" is the same as "<tag>value</tag>".

l All values are case-sensitive unless otherwise stated.

l Comments are enclosed as follows: <!-- comment -->.

l The root tag of the configuration file must be <dds> and end with </dds>.

Database Integration Service provides DTD and XSD files that describe the format of the XML content.
We recommend including a reference to one of these documents in the XML file that contains the Data-
base Integration Service’s configuration—this provides helpful features in code editors such as Visual Stu-
dio and Eclipse, including validation and auto-completion while you are editing the XML file.

The DTD and XSD definitions of the XML elements are in <Database Integration Service installation dir-
ectory>/resource/schema/rti_real_time_connect.dtd and <Database Integration Service installation dir-
ectory>/resource/schema/rti_real_time_connect.xsd, respectively.

1Leading and trailing spaces in enumeration fields will not be considered valid if you use the distributed XSD document to
do validation at run-time with a code editor.

26

4.4.3 Top-Level XML Tags

27

To include a reference to the XSD document in your XML file, use the attribute xsi:noNamespaceS-
chemaLocation in the <dds> tag. For example:
<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation= "<NDDSHOME>/resource/schema/rti_real_time_connect.xsd">

...
</dds>

<NDDSHOME> is described in 1.2 Paths Mentioned in Documentation on page 1.

To include a reference to the DTD document in your XML file, use the <!DOCTYPE> tag.

For example:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dds SYSTEM "<NDDSHOME>/resource/schema/rti_routing_service.dtd">
<dds>

...
</dds>

We recommend including a reference to the XSD file in the XML documents; this provides stricter val-
idation and better auto-completion than the corresponding DTD file.

4.4.3 Top-Level XML Tags

Let’s look at an example configuration file. You will learn the meaning of each line as you read the rest of
the sections.

<?xml version="1.0"?>
<dds>

<real_time_connect name="Example">
<database_mapping_options>

<identifier_separator_char>$
</identifier_separator_char>

</database_mapping_options>
<mysql_connection>

4.4.3 Top-Level XML Tags

<dsn>Example_MySQL</dsn>
<user_name>Student</user_name>
<password>mypsswrd</password>

</mysql_connection>
<sqlserver_connection>

<dsn>Example_PostgreSQL</dsn>
<user_name>Student</user_name>
<password>mypsswrd</password>

</sqlserver_connection>
<postgresql_connection>

<dsn>Example_PostgreSQL</dsn>
<user_name>Student</user_name>
<password>mypsswrd</password>

</postgresql_connection>
</real_time_connect>

</dds>

Table 4.2 Top-Level Tags describe the top-level tags allowed within the root <dds> tag. Notice that the
<real_time_connect> tag is required.

Tags within
<dds> Description

Number of
Tags
Allowed

<qos_library>

Specifies a QoS library and profiles.

The contents of this tag are specified in the same manner as for a Connext DDSQoS profile file—see
Chapter 15 in the RTI Connext DDSCore LibrariesUser'sManual.

The profiles you specify here can be used in three ways.

By setting the attribute is_default_qos in the tag <qos_profile> to true. In this case, that profile is the de-
fault configuration for all the Entities created by the Database Integration Service daemon.

By referring to a profile using the XML tag <profile_name> within <publication> and <subscription> (see
4.4.4.4 InitialSubscriptionsand Publicationson page 38).

By referring to a profile in the profile_name column of the tables RTIDDS_PUBLICATIONS orRTIDDS_
SUBSCRIPTIONS (see 4.5.1 PublicationsTable on page 46 and 4.5.2 SubscriptionsTable on
page 59).

0 ormore

<real_time_connect>

Specifies a Database Integration Service configuration.

This tag is used to specify the set of databases to which the daemon will connect.

Note: There is no way to dynamically configure the Database Integration Service daemon to connect to
a database after it has started. All database connections must be specified within this tag before the dae-
mon starts.

See Table 4.3 Database Integration Service Tagson page 30 for a description of the elements con-
tained inside <real_time_connect>.

1 ormore (re-
quired)

Table 4.2 Top-Level Tags

28

4.4.4 Database Configuration with Database Integration Service XML Tag

29

Tags within
<dds> Description

Number of
Tags
Allowed

<types>

Defines types that can be used to create database tables.

The type description is done using the Connext DDSXML format for type definitions. Formore in-
formation, see Section 3.4 in the RTIConnext DDSCore Libraries User's Manual.

For example:

<types>
<struct name="Point">

<member name="x" type="long"/>
<member name="y" type="long"/>

</struct>
</types>

Database Integration Service supports automatic table creation by using the types defined within this
tag or the typecode sent byConnext DDS applications.

See 4.6 User-Table Creation on page 84 for additional information on user table creation.

0 or 1

Table 4.2 Top-Level Tags

Because a configuration file may contain multiple <real_time_connect> tags, one file can be used to con-
figure multiple daemon executions. When you start RTI Database Integration Service, you must use the -
cfgName option to specify which <real_time_connect> tag to use.

For example:
<dds>

...
<real_time_connect name="rtcA">

...
</ real_time_connect >
<real_time_connect name="rtcB">

...
</real_time_connect>
...

</dds>

Starting Database Integration Service with the following command will use the <real_time_connect> tag
with the name rtcA:
rtirtc_mysql -cfgFile example.xml -cfgName rtcA

If there is no <real_time_connect> tag matching the name provided with the command line option –
cfgName, the daemon will report an error and it will list the available configurations.

4.4.4 Database Configuration with Database Integration Service XML Tag

Table 4.3 Database Integration Service Tags describes the tags allowed with the <real_time_connect> sec-
tion of the XML file.

4.4.4.1 General Options

Tags within
<real_time_
connect>

Description Number of Tags Allowed

<database_map-
ping_
options>

Configures how the IDL identifier names are mapped to the database column names.
See 4.4.4.2 DatabaseMappingOptionson page 34. 0 or 1

<general_options>
Contains attributes that are independent of any particular database connection made by
the Database Integration Service daemon. See 4.4.4.1 GeneralOptionsbelow. 0 or 1

<mysql_connection>
Configures a connection to a MySQL database. See 4.4.4.3 Database Connection Op-
tionson page 35.

1 ormore (required) if running
rtirtc_mysql;

0 ormore (ignored) if running
otherDBMS version of the dae-
mon

<sqlserver_con-
nection>

Configures a connection to a Microsoft®SQL Server database. See 4.4.4.3 Database
Connection Optionson page 35.

1 ormore (required) if running
rtirtc_sqlserver;

0 ormore (ignored) if running
otherDBMS version of the dae-
mon

<postgresql_con-
nection>

Configures a connection to a PostgreSQL database. See 4.4.4.3 Database Con-
nection Optionson page 35.

1 ormore (required) if running
rtirtc_postgresql;

0 ormore (ignored) if running
otherDBMS version of the dae-
mon

Table 4.3 Database Integration Service Tags

4.4.4.1 General Options

Table 4.4 General Options Tags describes the general options; these attributes are independent of any par-
ticular database connection made by the Database Integration Service daemon.

Tags within
<general_
options >

Description
Number
of Tags
Allowed

<administration> See Table 4.5 Administration Tags 0 or 1

<enable_table_
replication>

Database Integration Service can be configured to perform real-time, lazy database replication (see 3.6 Real-
TimeDatabase Replication on page 14) by setting this attribute to true.

Default: false

0 or 1

Table 4.4 General Options Tags

30

4.4.4.1.1 Enabling Table Replication

31

Tags within
<general_
options >

Description
Number
of Tags
Allowed

<max_objects_
per_thread>

This parameter controls the maximumnumber of objects per thread thatConnext DDS can store. If you run into
problems related to the creation of Entities, increasing this numbermay be necessary. See the RTI Connext DDS
Core LibrariesUser'sManual formore information.

Default:Connext DDS default (1024)

0 or 1

<typecode_
from_table_
schema>

This tag can be used to enable typecode generation from table schemas.

If this parameter is set to true and a publication or subscription is created for a database table without an as-
sociated typecode,Database Integration Servicewill create the typecode from the table schema.

The new typecode will be made available to otherConnext DDS applications orDatabase Integration Service
daemons via discovery traffic.

When Database Integration Service is used for table replication, the default value for this parameter is true al-
lowing automatic table creation in the replicas.

Default: false (except when enable_table_replication is set to true).

0 or 1

<wait_set>

Enables the use of Waitsets to store DDS samples in the database tables (see 4.4.4.5 ConfiguringWaitsets on
page 43). Use this option to increase concurrency and scalability.

Default: Waitset usage is disabled.

0 or 1

Table 4.4 General Options Tags

Tags within
<administration> Description

Number of
Tags
Allowed

<distributed_logger>
ConfiguresRTI Distributed Logger.

See 4.8 Enabling RTI Distributed Logger in Database Integration Service on page 88.
0 or 1

<domain_id>
Specifies which domain IDDatabase Integration Servicewill use to send log messages when Distributed
Logger is enabled.

1 (required)

<profile_name>

Determines which QoS profile to use when creating the DomainParticipant that will be used forDistributed
Logger (when enabled). The value is the fully qualified name of the QoS Profile, represented as a string
with this form:

<QoS profile library name>::<QoS profile name>

0 or 1

Table 4.5 Administration Tags

4.4.4.1.1 Enabling Table Replication

Enabling database replication will automatically configure the QoS values of publications and sub-
scriptions to provide conflict resolution and table initialization (see Table 4.6 DataWriter QoS Changes
when <enable_table_replication> is True and Table 4.7 DataReader QoS Changes when <enable_table_

4.4.4.1.1 Enabling Table Replication

replication> is True). The attribute also enables automatic table creation (see <typecode_from_table_
schema> in Table 4.4 General Options Tags) and propagation of NULL values.

QoS Change Purpose

reliability.kind = RELIABLE_RELIABILITY_QOS Enables reliability

destination_order.kind =

BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

destination_order.source_timestamp_tolerance.sec = 0

destination_order.source_timestamp_tolerance.nanosec = 0

ownership.kind = SHARED_OWNERSHIP_QOS

Performs conflict resolution

protocol.serialize_key_with_dispose = true

writer_data_lifecycle.autodispose_unregistered_instances = false
Propagates delete operations

durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS
Sends table contents to late joiners (table ini-
tialization)

history.depth = 1

history.kind = KEEP_LAST_HISTORY_QOS
Keeps one record per primary key value

writer_resource_limits.instance_replacement = DDS_DISPOSED_INSTANCE_
REPLACEMENT

writer_resource_limits.replace_empty_instances =
DDS_BOOLEAN_FALSE

Enables replacement of deleted rows

Table 4.6 DataWriter QoS Changes when <enable_table_replication> is True

QoS Change Purpose

reliability.kind = RELIABLE_
RELIABILITY_QOS

Enables reliability

destination_order.source_
timestamp_tolerance.sec =
DURATION_INFINITE_SEC

destination_order.source_
timestamp_tolerance.nanosec =
DURATION_INFINITE_ NSEC

ownership.kind = SHARED_
OWNERSHIP_QOS;

Performs conflict resolution

Note: <enable_table_replication> sets some QoS related to conflict resolution, but it does not enable the
feature. See 4.4.4.1.2 Conflict Resolution on the next page for additional details

protocol.propagate_dispose_of_un-
registered_instances = true

Enables propagation of delete operations

durability.kind = TRANSIENT_
LOCAL_DURABILITY_QOS;

Sends table contents to late joiners (table initialization)

Table 4.7 DataReader QoS Changes when <enable_table_replication> is True

32

4.4.4.1.2 Conflict Resolution

33

QoS Change Purpose

history.kind = KEEP_LAST_
HISTORY_QOS;

Keeps one sample per primary key value

Table 4.7 DataReader QoS Changes when <enable_table_replication> is True

These QoS changes have priority over the values set using QoS Profiles. However, they can be over-
written per publication and per subscription by setting the corresponding fields in the RTIDDS_
PUBLICATIONS and RTIDDS_SUBSCRIPTIONS meta tables (see 4.5.1 Publications Table on
page 46 and 4.5.2 Subscriptions Table on page 59).

4.4.4.1.2 Conflict Resolution

Because there are no global (network-wide) locks on records when a transaction is being executed, con-
flicts can occur. The best way to avoid conflicts is to have only one host modify a specific row (instance)
or table (topic), but that is not always possible. The second best way is to design the application in such a
way that conflicts can never occur, for instance due to data flow dependencies. But that also is often hard
to achieve.

By default, conflict resolution is not enabled when you set <enable_table_replication> to true. You can
enable conflict resolution by setting the column dr.destination_order.kind in RTIDDS_
SUBSCRIPTIONS to BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS (see
4.5.2.1.18 dr.destination_order.kind on page 74). With this setting, eventual consistency can be guar-
anteed. Conflicts can cause a temporary inconsistency between the databases, but eventually these are
resolved by the Database Integration Service conflict-resolution mechanism. By default, conflicts are
resolved using a timestamp corresponding to the system time when the update occurred. You can over-
write this behavior by providing your own timestamp in a separate database column (see 4.5.1.1.6 res-
olution_column on page 52).

If you do not need conflict resolution, you can disable it by setting the column dr.destination_order.kind
in RTIDDS_SUBSCRIPTIONS to BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_
QOS.

4.4.4.1.3 Table Initialization

When a host starts using a table in the distributed shared database, it is essential that the local table is up-to-
date. Database Integration Service supports two approaches to filling the local table's contents:

1. If all the rows in the table are updated frequently, it is sufficient to apply these updates to the data
cache.

2. The table can be synchronized by explicitly requesting the table's contents from the other hosts. This
is called table initialization.

4.4.4.2 Database Mapping Options

If table initialization is not needed, you can disable it by setting the columns dw.durability.kind in
RTIDDS_PUBLICATIONS and dw.durability.kind in RTIDDS_SUBSCRIPTIONS to VOLATILE_
DURABILITY_QOS.

4.4.4.2 Database Mapping Options

Table 4.8 Database Mapping Options describes the options that are allowed with the <database_map-
ping_options> tag.

Tags within
<database_mapping_

options>
Description

Number of
Tags
Allowed

<close_bracket_char>

Sets the closing bracket character that is used in the index component of the arrays and se-
quencesmembers names.

See 5.2.7 ArrayFields on page 102 and 5.2.8 Sequence Fields on page 102 formore in-
formation about the mapping of IDL arrays and sequences into SQL columns.

The default value of ‘]’ will generate columns names that must be referenced using double
quotes.

Default: ‘]’

0 or 1

<identifier_separator_char>

Sets the character that is used as a separator in the hierarchical names generated when map-
ping IDL fields into SQL table columns.

The attribute is also used to configure the separator character for the columns in the meta tables.

Default: ‘$’ forMySQL

0 or 1

<idl_member_prefix_
max_length>

Controls the prefix length of the IDL member identifiers that will be used to truncate column
names when a table is automatically created.

If the default value (-1) is used,Database Integration Servicewill not truncate IDL member iden-
tifiers when these are used to create column names.

If a positive value, n, is provided,Database Integration Servicewill use the first n characters from
the IDL member identifier to compose the associated column name.

A value of 0 tellsDatabase Integration Service to compose the column name using only the last
characters of the identifiers, as defined by <idl_member_suffix_max_length>.

This value can be overridden per table by assigning a value to the idl_member_prefix_max_
length column in the meta-tables.

Default: -1 (unlimited)

0 or 1

Table 4.8 Database Mapping Options

34

4.4.4.3 Database Connection Options

35

Tags within
<database_mapping_

options>
Description

Number of
Tags
Allowed

<idl_member_suffix_
max_length>

Controls the suffix length of the IDL member identifiers that will be used to truncate column
names when a table is automatically created.

If a positive value, n, is provided,Database Integration Servicewill use the last n characters from
the IDL member identifier to compose the associated column name.

A value of 0 tellsDatabase Integration Service to compose the column name using only the first
characters of the identifiers, as defined by <idl_member_prefix_max_length>.

This value can be overridden per table by assigning a value to the idl_member_suffix_max_
length column in the meta-tables.

Note that although <idl_member_prefix_max_length> and <idl_member_suffix_max_
length> can be individually set to zero, they cannot be both zero at the same time.

Default: -1 (unlimited)

0 or 1

<open_bracket_char>

Sets the opening bracket character that is used in the index component of the arrays and se-
quencesmembers names.

See 5.2.7 ArrayFields on page 102 and 5.2.8 Sequence Fields on page 102 formore in-
formation about the mapping of IDL arrays and sequences into SQL columns.

The default value of ‘[’ will generate columns names that must be referenced using double
quotes.

Default: ‘[‘

0 or 1

Table 4.8 Database Mapping Options

4.4.4.3 Database Connection Options

The database connection tags in the XML file direct the Database Integration
Service daemon to connect to a particular database as specified by a DSN (data
source name) and configure the connection.

The database connection tags are DBMS-specific:

l <mysql_connection>

l <sqlserver_connection>

l <postgresql_connection>

A <real_time_connect> tag may have multiple database connection tags. The
DBMS-specific Database Integration Service daemon will only parse the tags
that apply to it. As explained earlier, the Database Integration Service daemon
will make a connection to a database using the DSN attribute for every con-
nection tag that it parses. This is the only way to direct the daemon to connect
to a database. No other connections will be made after startup.

Example:

4.4.4.3 Database Connection Options

<real_time_connect name="MyRtc">
<mysql_connection>

<dsn>Example_MySQL</dsn>
<user_name>Student</user_name>
<password>mypsswrd</password>
<send_period>100</send_period>
<database_logging>

<enabled>true</enabled>
<history_depth>100</history_depth>

</database_logging>
<publications>

<publication>...</publication>
</publications>
<subscriptions>

<subscription>...</subscription>
</subscriptions>

</mysql_connection>
</real_time_connect>

Table 4.9 Common Tags for all Database Connections describes tags allowed within all three types of
<database_connection> tags. Table 4.10 through Table 4.12 describe additional tags for each connection
type.

Common Tags for
<mysql_connection>,

<sqlserver_connection>,
<postgresql_connection>

Description
Number
of Tags
Allowed

<database_logging>

<enabled>

<history_depth>

If enabled, the Database Integration Service daemon’s log messages will be stored in a table
named “RTIRTC_LOG” in the database specified by the DSN.

Optionally, you can specify the history depth of the log. This value limits the size of the table,
RTIRTC_LOG, in the database that the daemon uses for logging messages. The default is 1000
rows, and a value of -1 implies no limit. When the table is filled, new log messages will replace the
oldest messages, effectively using the table as a circular buffer.

Default: disabled

0 or 1

<dsn>
You must specify a valid DSN that is found in a ODBCINI file or the Windows registry (see 4.3 En-
vironment Variableson page 24). The Database Integration Service daemon will make a con-
nection to this DSN.

1
(required)

<password> Specifies the password to connect to the database.

1
(required)
for all data-
base con-
nections

<publications>
This tags allows inserting publications in the table RTIRTC_PUBLICATIONS when the daemon
starts up. See 4.4.4.4 InitialSubscriptionsand Publicationson page 38. 0 or 1

Table 4.9 Common Tags for all Database Connections

36

4.4.4.3 Database Connection Options

37

Common Tags for
<mysql_connection>,

<sqlserver_connection>,
<postgresql_connection>

Description
Number
of Tags
Allowed

<send_period>

The send_period value specifies the milliseconds interval at which the Database Integration Ser-
vice daemon publishes database changes. The value must be greater than or equal to 0. With a
value of 0 the daemon publishes database changes as soon as they are available. A shorter time
interval reduces latency.

Default: 100 ms

0 or 1

<subscription_default_
settings>

Configures the default settings for subscriptions inserted under the <subscriptions> tags. See
Table 4.13 Default SubscriptionsSettings 0 or 1

<subscriptions>
This tags allows inserting subscriptions in the table RTIRTC_SUBSCRIPTIONS when the daemon
starts up. See Table 4.14 SubscriptionsTagson page 40. 0 or 1

<user_name>
Specifies the user name to connect to the database.

This attribute is mandatory for all databases.

1
(required)
for all data-
base con-
nections

Table 4.9 Common Tags for all Database Connections

Additional
Tags

Allowed
within
<mysql_

connection>

Description
Number
of Tags
Allowed

<transaction_
max_duration>

Provides an estimation of the maximumduration of a database transaction. If a table change is not committed in the
interval specified by this attribute, it will not be published to Connext DDS.

Uncommitted table changes are stored in a per-table queue. The maximumsize of that queue can be configured
setting the value of the changes_queue_maximum_size column in the RTIDDS_PUBLICATIONS table (see
4.5.1.1.18 changes_queue_maximum_size on page 59).

If a change in the uncommitted changes queue has not been committed after transaction_max_durationmil-
liseconds, it will be discarded by the Database Integration Service daemon.

With a value of -1, the Database Integration Service daemon will not discard changes into the uncommitted queue
until they are committed.

Default: 5000

0 or 1

Table 4.10 Tags for MySQL Connections

4.4.4.4 Initial Subscriptions and Publications

Common Tags for
<mysql_

connection>,
<postgresql_
connection>

Description
Number
of Tags
Allowed

<json_default_size>

Specifies the size in bytes of the buffer preallocated to store a sample in JSON format.

By default, when you configure a subscription to store a sample in JSON format using the table_schema
field (see 4.5.2.1.30 table_schema on page 80),Database Integration Service preallocates one buffer per
subscription to store the JSON representation of the sample before it gets into the database. The size of the
buffer is configured by this parameter.

If the JSON representation of the incoming sample is greater than this value,Database Integration Service
allocates a newbuffer from the heap that is released after the sample is added to the database.

Default: 65000 bytes

0 or 1

Table 4.11 Common Tags for all MySQL and PostgreSQL Connections

Additional
Tags

Allowed
within

<postgresql_
connection>

Description
Number
of Tags
Allowed

<force_auto-
commit>

When set to true, this parameter forces autocommit mode when storing DDS samples into a table.

When autocommit mode is enable, the setting <commit_type> configured per <subscription> (see 4.5.2.1.6 pro-
cess_batch, process_period, commit_type on page 68) is not relevant. The difference between setting this para-
meter to true versus commit_type to COMMIT_ON_SAMPLE is that in the first case Database Integration Service
will not call explicitly COMMIT for every sample added to the table. For PostgreSQL, setting this value to true seems
to provide better performance.

Default: false

0 or 1

Table 4.12 Tags for PostgreSQL Connections

4.4.4.4 Initial Subscriptions and Publications

As explained in 4.5 Meta-Tables on page 45, the daemon is configured to publish and subscribe to data in
the database by inserting entries in two meta-tables, RTIDDS_PUBLICATIONS and RTIDDS_
SUBSCRIPTIONS. In your XML configuration you can specify initial values to insert in these tables.

For example:
<mysql_connection>
...

<subscriptions delete="true">
<subscription>

<table_owner>user</table_owner>

38

4.4.4.4 Initial Subscriptions and Publications

39

<table_name>mytable1</table_name>
<domain_id>54</domain_id>
<topic_name>mytopic1</topic_name>
<type_name>mytype1</type_name>

</subscription
...
<subscription>

...
</subscription>
...

</subscriptions>
<publications>

<publication overwrite="true">
<table_owner>user</table_owner>
<table_name>mytable2</table_name>
<domain_id>54</domain_id>
<topic_name>mytopic2</topic_name>
<type_name>mytype2</type_name>

</publication>
<publication>
...
</publication>
...

</publications>
</mysql_connection>

Within <subscriptions> and <publications> tags, you can specify as many <subscription> and <pub-
lication> tags as you want. The content of each tag inside <subscription>/<publication> represents the
value for a column with the same name in the table RTIDDS_SUBSCRIPTIONS/RTIDDS_
PUBLICATIONS. Each of these <subscription>/<publication> tags may result in the insertion or update
of a row in the corresponding meta-table.

All the rows in the tables can be deleted before inserting new rows if the attribute “delete” in <pub-
lications>/<subscriptions> is set to true.

If a <publication> or <subscription> already exists in its table (the primary key is the same), then the
insertion won’t succeed. However you can set the attribute “overwrite” to true. In that case, if the insertion
fails, an update is performed on that row.

4.4.4.4 Initial Subscriptions and Publications

Tags Allowed within <subscription_default_
settings> Description Number of Tags

Allowed

<table_owner>

See 4.5.2 SubscriptionsTable on
page 59

0 or 1

<domain_id>

<cache_initial_size>

<cache_maximum_size>

<commit_type>

<delete_on_dispose>

<filter_duplicates>

<idl_member_prefix_max_length>

<idl_member_suffix_max_length>

<ordered_store>

<persist_state>

<process_batch>

<process_period>

<profile_name>

<table_history_depth>

<table_schema>

<metadata_fields>

Table 4.13 Default Subscriptions Settings

Tags Allowed within
<subscriptions> Description Number of Tags

Allowed

<subscription>
Configures a subscription by inserting or updating a row in the table RTIDDS_
SUBSCRIPTIONS. See Table 4.15 Subscription Tags. 1 ormore

Table 4.14 Subscriptions Tags

Note that there are columns in the tables RTIDDS_PUBLICATIONS and RTIDDS_SUBSCRIPTIONS
that don’t have a corresponding tag inside <publications> and <subscriptions>. Those columns represent
configuration of QoS. However, you can configure the quality of service by using <profile_name>,

40

4.4.4.4 Initial Subscriptions and Publications

41

where you can refer to a QoS profile in your own XML configuration file or in any of the other QoS pro-
file files loaded by the daemon (see 4.4.1 How to Load the XML Configuration on page 25).

Tags Allowed
within

<subscription>
Description

Number
of Tags
Allowed

<domain_id>

Inserts the tag value into the column with the same name in the table RTIDDS_SUBSCRIPTIONS.

See 4.5.2 SubscriptionsTable on page 59.
1
(required)

<table_name>

<table_owner>

<topic_name>

<cache_initial_size>

Inserts the tag value into the column with the same name in the table RTIDDS_SUBSCRIPTIONS.

If the value is not specified, the corresponding value in <subscription_default_settings> (see Table 4.13
Default SubscriptionsSettings) is used if specified. Otherwise, NULL is inserted.

See 4.5.2 SubscriptionsTable on page 59.

0 or 1

<cache_maximum_size>

<commit_type>

<delete_on_dispose>

<filter_duplicates>

<idl_member_prefix_
max_length>

<idl_member_suffix_
max_length>

<ordered_store>

<persist_state>

<process_batch>

<process_period>

<profile_name>

<table_history_depth>

<type_name>

<table_schema>
Configure how a DDS sample will be stored into a database table. See 4.5.2.1.30 table_schema on
page 80

0 or 1

<metadata_fields>
Controls whether or not metadata is stored into the UserTables. This feature is only supported in MySQL
and PostgreSQL. See Table 4.18Metadata Tags. 0 or 1

Table 4.15 Subscription Tags

4.4.4.4 Initial Subscriptions and Publications

Tags Allowed within
<publications> Description Number of Tags

Allowed

<publication>
Configures a publication by inserting or updating a row in the table RTIDDS_
PUBLICATIONS. See Table 4.17 Publication Tags. 1 ormore

Table 4.16 Publications Tags

Tags Allowed within
<publication> Description Number of Tags

Allowed

<domain_id>

Inserts the tag value into the column with the same name in the table RTIDDS_
PUBLICATIONS.

See 4.5.1 PublicationsTable on page 46
1 (required)

<table_name>

<table_owner>

<topic_name>

<idl_member_prefix_
max_length>

Inserts the tag value into the column with the same name in the table RTIDDS_
PUBLICATIONS.

If the value is not specified, NULL is inserted.

See 4.5.1 PublicationsTable on page 46

0 or 1

<idl_member_suffix_
max_length>

<resolution_column >

<profile_name>

<table_history_depth>

<type_name>

<metadata_fields>
Controls whether or not metadata is stored into the UserTables. This feature is only sup-
ported in MySQL. See Table 4.18Metadata Tags. 0 or 1

Table 4.17 Publication Tags

42

4.4.4.5 Configuring Waitsets

43

Tags Allowed within
<metadata_fields> Description

Number of
Tags
Allowed

<timestamp_type>

Insert the tag value into the columnmetadata.timestamp_type in RTIDDS_
SUBSCRIPTIONS and RTIDDS_PUBLICATIONS.

If the value is not specified, NULL is inserted.

See 4.5.2.1.28metadata.timestamp_type on page 79.

0 or 1

<included>

This tag specifies the included metadata fields for user topic tables as a sequence of field
names. These names will be concatenated, comma-separated, and stored in the
metadata.include_fields column in RTIDDS_SUBSCRIPTIONS and RTIDDS_
PUBLICATIONS.

For example:

<included>

<field>SOURCE_TIMESTAMP</field>

<field>RECEPTION_TIMESTAMP</field>

</included>

If the value is not specified, NULL is inserted.

See 4.5.2.1.29metadata.include_fields, metadata.exclude_fields on page 79

0 or 1

<excluded>

This tag specifies the excluded metadata fields for user topic tables as a sequence of field
names. These names will be concatenated, comma-separated, and stored in the
metadata.exclude_fields column in RTIDDS_SUBSCRIPTIONS and RTIDDS_
PUBLICATIONS.

For example:

<excluded>

<field>RECEPTION_TIMESTAMP</field>

</excluded>

If the value is not specified, NULL is inserted.

See 4.5.2.1.29metadata.include_fields, metadata.exclude_fields on page 79

0 or 1

Table 4.18 Metadata Tags

4.4.4.5 Configuring Waitsets

By default, Database Integration Service stores DDS samples in database tables using the DataReader’s
on_data_available() listener callback. This limits the scalability of the service because the thread invoking
the callback (DDS receive thread) is shared by all the DataReaders created by the service. With the listener
approach, using a different thread per DataReader to increase concurrency requires changing the receive
port for each DataReader, which poses a usability issue. For example:
<qos_library name="Library1">
<qos_profile name="Profile1">
<datareader_qos>
<unicast>
<value>
<element>
<receive_port>6782</receive_port>

4.4.4.5 Configuring Waitsets

</element>
</value>

</unicast>
</datareader_qos>

</qos_profile>
<qos_profile name="Profile2">
<datareader_qos>
<unicast>
<value>
<element>
<receive_port>6783</receive_port>

</element>
</value>

</unicast>
</datareader_qos>
</qos_profile>

</qos_library>
<real_time_connect name="default">
<postgresql_connection>
<subscriptions>

<subscription>
<table_name>Table1</table_name>
<profile_name>Library1::Profile1</profile_name>

</subscription>
<subscription>
<table_name>Table2</table_name>
<profile_name>Library1::Profile2</profile_name>

</subscription>
</subscriptions>

</postgresql_connection>
</real_time_connect>

The above example creates two DDS receive threads to store samples in Table1 and Table2. The storage
is concurrent. However, this configuration requires assigning a separate receive port to each one of the sub-
scriptions. In addition, the solution is not friendly to multicast configuration, since assigning two different
multicast ports would cause data to be sent twice.

You can use the <wait_set> tag to switch from a callback model to a Waitset in order to read and store
data in the database tables. When <wait_set>/<enabled> is set to true, Database Integration Service cre-
ates a thread pool to process the samples read using a Waitset. The number of threads in this pool can be
configure using <wait_set>/<thread_pool_size>; this is what provides concurrency when storing samples
in multiple tables. The above example could be rewritten as following using a Waitset:
<real_time_connect name="default">
<postgresql_connection>
<general_options>
<wait_set>
<enabled>true</enabled>
<thread_pool_size>3</thread_pool_size>

</wait_set>
</general_options>
<subscriptions>

44

4.5 Meta-Tables

45

<subscription>
<table_name>Table1</table_name>

</subscription>
<subscription>
<table_name>Table2</table_name>

</subscription>
</subscriptions>

</postgresql_connection>
</real_time_connect>

Tags within
<wait_set> Description Number of

Tags Allowed

<enabled> Enables the usage of a DDSWaitSet to read data when set to true. Default: false 0 or 1

<thread_pool_
size>

Configures the number of threads that will process and store samples concurrently. Increase this num-
ber to increase scalability. Default: 1

0 or 1

<max_event_
count>

Maximumnumber of trigger events to cause the WaitSet to awaken. See RTI Connext DDSCore
LibrariesUser’sManual for additional information. Default: 1

0 or 1

<max_event_
delay>

Maximumdelay fromoccurrence of first trigger event to cause the DDSWaitSet to awaken. For ex-
ample:

<max_event_delay>
<sec>1</sec>
<nanosec>0</nanosec>

</max_event_delay>

See RTI Connext DDSCore LibrariesUser’sManual formore information.

Default: DDS_DURATION_INFINITE

0 or 1

<wait_timeout>

Maximumduration for the wait. If this duration is exceeded and no samples have been recieved, the
DDSWaitSet will wake up. For example:

<wait_timeout>
<sec>1</sec>
<nanosec>0</nanosec>

</wait_timeout>

Default: DDS_DURATION_INFINITE

0 or 1

Table 4.19 Waitset Tags

4.5 Meta-Tables

After the Database Integration Service daemon has started and successfully made a connection to a data-
base, the user will still need to configure the daemon to publish table changes as Topics as well as sub-
scribe to Topics for storing received data into a table. This configuration is done by inserting entries into
two tables RTIDDS_PUBLICATIONS and RTIDDS_SUBSCRIPTIONS. These tables will be cre-
ated by the Database Integration Service daemon if they do not already exist in the database.

The two tables are referred to as meta-tables since their data is not user data but information used by the
daemon to create DataWriters and DataReaders, as well as corresponding user tables in the database. The
tables are just ordinary tables that users can create themselves before starting the Database Integration Ser-
vice daemon if so desired. However, if the user chooses to do so, it is important that the tables be created

4.5.1 Publications Table

with the exact tables schemas presented below, otherwise the daemon may not work correctly. If the dae-
mon finds existing meta-tables upon startup, it will process every row in the tables as if they were newly
inserted. The meta-tables RTIDDS_PUBLICATIONS and RTIDDS_SUBSCRIPTIONS can be pop-
ulated by using the <publication> and <subscription> tags in the configuration file (see 4.4.4.4 Initial Sub-
scriptions and Publications on page 38) or by running Insert/Update SQL statements.

There are two more meta-tables created by the Database Integration Service daemon:

l The meta-table RTIRTC_TBL_INFO will store the typecode associated with the user tables cre-
ated automatically by the Database Integration Service daemon (see 4.5.3 Table Info on page 80).

l The meta-table RTIRTC_LOG will be created to store log messages generated by the Database
Integration Service daemon. Use of this table is controlled by command-line parameters and the con-
nection discussed in 4.2 Command-Line Parameters on page 21 and 4.4.4.3 Database Connection
Options on page 35.

The following sections discuss the usage of these tables and describe the actions taken by the daemon
when these tables are modified:

l 4.5.1 Publications Table below

l 4.5.2 Subscriptions Table on page 59

l 4.5.3 Table Info on page 80

l 4.5.4 Log Table on page 82

4.5.1 Publications Table

When entries (rows) are added to the meta-table RTIDDS_PUBLICATIONS, the Database Integration
Service daemon will try to create a DataWriter (and Publisher along with a DomainParticipant if required)
and use it to send changes to the designated user table via the Connext DDS.

If the RTIDDS_PUBLICATIONS table does not exist at startup, the Database Integration Service dae-
mon will create it with the table owner set to the user name of the database connection as specified in the
daemon’s configuration file, see 4.4 Configuration File on page 25. The schema and meaning of the
columns of this table are described in the next section.

Users may insert new rows or modify the column values of existing rows in this table at anytime. For a
new row, the daemon will first check to see if the designated user table exists. If so, it will immediately cre-
ate the DataWriter with the QoS values as specified by the entry. The name of the Topic to publish may be
specified by the topic_name column or be automatically constructed as <table_owner>.<table_name> if
the topic_name entry is NULL.

If the user table does not exist, the Database Integration Service daemon will look for the typecode asso-
ciated with the topic defined in the topic_name column. If it finds the typecode, the daemon will create the
user table with a SQL table schema derived from the typecode following the IDL type to SQL type

46

4.5.1 Publications Table

47

mapping described in Chapter 5 IDL/SQL Semantic and Data Mapping on page 90. Then the daemon will
proceed to create the associated DataWriter. More about the creation of user tables by the daemon can be
found in 4.6 User-Table Creation on page 84.

How the daemon discovers and stores typecodes is described in 4.1.4 Typecodes on page 21. If the Data-
base Integration Service daemon has not yet have a typecode associated with the topic_name, it will defer
the creation of the DataWriter until the typecode is discovered. When a new typecode is discovered, the
daemon will scan all rows in the RTIDDS_PUBLICATIONS meta-table and create the user tables and
DataWriters for entries that were pending on the discovery of the typecode.

The daemon will also create the DataWriter if there is an entry in the RTIDDS_PUBLICATIONS table
without an associated typecode, but the user subsequently creates the corresponding table.

If user applications modify an existing row in the RTIDDS_PUBLICATIONS table, the Database Integ-
ration Service daemon will first delete the DataWriter that was created for that entry (if it exists) and then
go through the same process of trying to create the user table and DataWriter as if the row was newly inser-
ted. If user applications delete an existing row in the RTIDDS_PUBLICATIONS table, the Database
Integration Service daemon will delete the associated DataWriter (if it exists).

A flow chart describing this logic is provided below.

4.5.1.1 Publications Table Schema

4.5.1.1 Publications Table Schema

The RTIDDS_PUBLICATIONS table is created with the following SQL statement.

MySQL1:
Create Table RTIDDS_PUBLICATIONS (

table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
domain_id INTEGER NOT NULL,
topic_name VARCHAR(200),
type_name VARCHAR(200),
table_history_depth INTEGER,
resolution_column VARCHAR(255),
idl_member_prefix_max_length INTEGER,
idl_member_suffix_max_length INTEGER,
profile_name VARCHAR(255),
"pub.present.access_scope" VARCHAR(25),
"pub.present.ordered_access" TINYINT,
"pub.partition.name" VARCHAR(256),
"dw.durability.kind" VARCHAR(30),
"dw.liveliness.lease_dur.sec" INTEGER,
"dw.liveliness.lease_dur.nsec" INTEGER,
"dw.deadline.period.sec" INTEGER,
"dw.deadline.period.nsec" INTEGER,
"dw.history.kind" VARCHAR(21),
"dw.history.depth" INTEGER,
"dw.ownership.kind" VARCHAR(23),
"dw.ownership_strength.value" INTEGER,
"dw.publish_mode.kind" VARCHAR(29),
"dw.res_limits.max_samples" INTEGER,
"dw.res_limits.max_instances" INTEGER,
"metadata.timestamp_type" VARCHAR(20),
"metadata.include_fields" VARCHAR(1000),
"metadata.exclude_fields" VARCHAR(1000),
changes_queue_maximum_size INTEGER,
RTIRTC_SCN BIGINT DEFAULT 0,
PRIMARY KEY(table_owner,table_name,domain_id,topic_name)

)

SQL Server:
Create Table RTIDDS_PUBLICATIONS (

table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
domain_id INTEGER NOT NULL,
topic_name VARCHAR(200),
type_name VARCHAR(200),
table_history_depth INTEGER,
resolution_column VARCHAR(255),

1See 4.1.1.4 Starting the MySQL Server in ANSI_QUOTES mode on page 19.

48

4.5.1.1 Publications Table Schema

49

idl_member_prefix_max_length INTEGER,
idl_member_suffix_max_length INTEGER,
profile_name VARCHAR(255),
"pub.present.access_scope" VARCHAR(25),
"pub.present.ordered_access" TINYINT,
"pub.partition.name" VARCHAR(256),
"dw.durability.kind" VARCHAR(30),
"dw.liveliness.lease_dur.sec" INTEGER,
"dw.liveliness.lease_dur.nsec" INTEGER,
"dw.deadline.period.sec" INTEGER,
"dw.deadline.period.nsec" INTEGER,
"dw.history.kind" VARCHAR(21),
"dw.history.depth" INTEGER,
"dw.ownership.kind" VARCHAR(23),
"dw.ownership_strength.value" INTEGER,
"dw.publish_mode.kind" VARCHAR(29),
"dw.res_limits.max_samples" INTEGER,
"dw.res_limits.max_instances" INTEGER,
"metadata.timestamp_type" VARCHAR(20),
"metadata.include_fields" VARCHAR(1000),
"metadata.exclude_fields" VARCHAR(1000),
changes_queue_maximum_size INTEGER,
PRIMARY KEY(table_owner,table_name,domain_id,topic_name)

)

PostgreSQL:

Publication of database changes is not supported.

You should use the same SQL statement in your own applications if you want to create and populate this
table before the Database Integration Service daemon is started. Table 4.20 RTIDDS_PUBLICATIONS
Table Schema describes how each column is used by the daemon in creating and using DataWriters that
publish table changes. Detailed descriptions of the columns follow the table.

Column Name SQL Type Null-able Default if NULL

table_ownera VARCHAR(128) No N/A

table_nameb VARCHAR(128) No N/A

domain_idc INTEGER No N/A

Table 4.20 RTIDDS_PUBLICATIONS Table Schema

aPrimary key column

bPrimary key column

cPrimary key column

4.5.1.1 Publications Table Schema

Column Name SQL Type Null-able Default if NULL

topic_namea VARCHAR(200) Yes <table_owner>.<table_name>

type_name VARCHAR(200) Yes <topic_name>

table_history_depth INTEGER Yes 0

resolution_column VARCHAR(255) Yes None

idl_member_prefix_max_length INTEGER Yes Value specified in the configuration file

idl_member_suffix_max_length INTEGER Yes Value specified in the configuration file

profile_name VARCHAR(255) Yes Database Integration Service will not use a profile to create the publication

pub.present.access_scope VARCHAR(25) Yes INSTANCE_PRESENTATION_QOS

pub.present.ordered_access TINYINT Yes 0 (false)

pub.partition.name VARCHAR(256) Yes Empty string partition

dw.durability.kind VARCHAR(30) Yes VOLATILE_DURABILITY_QOS

dw.liveliness.lease_dur.sec INTEGER Yes Infinite

dw.liveliness.lease_dur.nsec INTEGER Yes Infinite

dw.deadline.period.sec INTEGER Yes Infinite

dw.deadline.period.nsec INTEGER Yes Infinite

dw.history.kind VARCHAR(21) Yes KEEP_LAST_HISTORY_QOS

dw.history.depth INTEGER Yes 1

dw.ownership.kind VARCHAR(23) Yes SHARED_OWNERSHIP_QOS

dw.ownership_strength.value INTEGER Yes 0

dw.publish_mode.kind VARCHAR(29) Yes
SYNCHRONOUS_PUBLISH_
MODE_QOS

dw.res_limits.max_samples INTEGER Yes Infinite

dw.res_limits.max_instances INTEGER Yes Infinite

metadata.timestamp_type VARCHAR(20) Yes BIGINT

metadata.include_fields VARCHAR(1000) Yes None

metadata.exclude_fields VARCHAR(1000) Yes None

Table 4.20 RTIDDS_PUBLICATIONS Table Schema

aPrimary key column

50

4.5.1.1.1 table_owner, table_name

51

Column Name SQL Type Null-able Default if NULL

changes_queue_maximum_size INTEGER Yes Infinite

RTIRTC_SCN BIGINT Yes Next SCNnumber

Table 4.20 RTIDDS_PUBLICATIONS Table Schema

4.5.1.1.1 table_owner, table_name

These columns specify the user table for which changes will be published using a DataWriter. Because a
DBMS uses a combination of <table_owner>.<table_name> to identify a table, both of these columns
must have valid values should the user want these entries to refer to an existing table.

If no table exists in the database with the identifier “<table_owner>.<table_name>” at the time that the dae-
mon sees this entry in the RTIDDS_PUBLICATIONS meta-table, it will create a user table with this
name automatically, see 4.6 User-Table Creation on page 84.

Note: In MySQL, the value of the table_owner column corresponds to the table schema or database name.

4.5.1.1.2 domain_id

This column specifies the domain ID that will be used to publish changes in the table. Before creating a
DataWriter, if no DomainParticipant has previously been created with the domain ID, the Database Integ-
ration Service daemon will create a DomainParticipant with the specified ID.

If the publications entry has associated a QoS profile, Database Integration Service will use the values in
this profile to create the participant. The participant will also be configured using the QoS values of a pro-
file when the attribute, is_default_qos, is set to 1 in that profile (see the RTI Connext DDS Core Libraries
User's Manual for additional details).

4.5.1.1.3 topic_name

These column defines the Topic that will be used to publish the changes in the associated table. The
<topic_name> need to match the Topic used by subscriptions in user applications that expect to received
data changes from the table. If the Database Integration Service daemon has discovered the typecode asso-
ciated with the <topic_name> and the user table does not exist in the database, the daemon will use the
typecode to create the table using entries in the <table_owner> and <table_name> column. See 4.6 User-
Table Creation on page 84 for more details.

4.5.1.1.4 type_name

This column defines the registered name of the type associated with the Topic defined using the column
<topic_name>. If the user table does not exist in the database, the daemon will use the type name to find a
typecode in the XML configuration file. See 4.6 User-Table Creation on page 84 for more details.

4.5.1.1.5 table_history_depth

4.5.1.1.5 table_history_depth

The <table_history_depth> column in the RTIDDS_PUBLICATIONS determines whether or not the
Database Integration Service daemon will create the user table with additional meta-columns that support
the storing of historic, or past, values of instances of Topics by DataReaders created with the RTIDDS_
SUBSCRIPTIONS table. It is only used if the daemon creates the table because it does not exist.

More about the ability to store historic data in the table as well as the added meta-columns can be found in
4.5.2.1.5 table_history_depth on page 67 and in 4.6 User-Table Creation on page 84.

This column is useful in the case that the user wants the Database Integration Service daemon to both pub-
lish and subscribe to a Topic for the same user table. The value set in <table_history_depth> will enable
the daemon to create the user table correctly if the user wants to store more than a single value for an
instance of the Topic in the table.

The possible values for <table_history_depth> column are:

l NULL or 0

These values should be used if the user does not want to store more than a single value for an
instance of a Topic in the table.

If the Database Integration Service daemon creates the table, it will not add any meta-columns for
table history to the table schema.

l Any other value

For any non-zero value in this column, the Database Integration Service daemon will add meta-
columns for table history to the table schema when it creates the user table automatically.

A table’s schema or definition cannot be changed to accommodate the table-history meta-columns
after a table has been created. So a non-zero value for this column is useful if the user wants the
table to be created with the ability to store historic values in support of entries in the RTIDDS_
SUBSCRIPTIONS table that may be made later.

4.5.1.1.6 resolution_column

This column is used to designate one of the columns of the user table for use as the timestamp when data
changes are published with the DataWriter. Instead of using the system time, when a row in the user table
changes, the Database Integration Service daemon will take the current value of the designated column
and use it in the DataWriter::write_w_timestamp()method when publishing the value of the row.

The possible values for the <resolution_column> column are:

l NULL

52

4.5.1.1.7 idl_member_prefix_max_length, idl_member_suffix_max_length

53

If this column is NULL, then the Database Integration Service daemon will just call
DDSDataWriter::write() to publish the table changes. This implies that the source timestamp used
by Connext DDS will be the system time when the write occurred.

l “column_name”

The column name of any column in the user table that has a valid type. The column must be one of
the following SQL types: INTEGER, SMALLINT, BIGINT, or TIMESTAMP.

If the user directs the daemon to use a column from the user table as the timestamp, then it is imper-
ative to the proper operation of the publication that the value in the timestamp column is mono-
tonically increasing with every table change. So when a change is made to a row of the table, the
value in the column <resolution_column> must be larger than the last value of this column that was
published.

The conversion to seconds and nanoseconds needed for DDS Time depends on the column type.
An INTEGER or SMALLINT value will be used directly as the seconds, with the nanoseconds set
to 0. A BIGINT value will extract the time as:
sec = (bigintTimestamp >> 32);
nanosec = (bigintTimestamp & 0x00000000FFFFFFFF);

A TIMESTAMP value is adjusted to the POSIX epoch of 1970.

The <resolution_column> can be used with the <dr.destination_order.kind> column of the RTIDDS_
SUBSCRIPTIONS table to implement a conflict resolution policy in a system where Database Integ-
ration Service is used to implement database table replication across a network. See 4.5.2.1.18 dr.des-
tination_order.kind on page 74 and 4.4.4.1.1 Enabling Table Replication on page 31 for more information.

4.5.1.1.7 idl_member_prefix_max_length, idl_member_suffix_max_length

These columns define how Database Integration Service maps IDL member identifiers into column
names. In particular, they control how the column names are formed by using as a prefix n characters from
the identifier’s prefix and m characters from the identifier’s suffix.

They can assume any value greater than or equal to -1. They cannot both be set to zero.

If a positive value n is provided for idl_member_prefix_max_length, Database Integration Service will
use the first n characters from the IDL member identifier to compose the associated column name. A value
of 0 tells Database Integration Service to compose the column name using only the last characters of the
identifiers, as defined by the ‘idl_member_suffix_max_length’ column. A value of -1, instructs Database
Integration Service to use all the available characters.

If a positive value n is provided for idl_member_suffix_max_length, Database Integration Service will
use the last n characters from the IDL member identifier to compose the associated column name. A value
of 0 tells Database Integration Service to compose the column name using only the first characters of the

4.5.1.1.8 profile_name

identifiers, as defined by the ‘idl_member_prefix_max_length’ column. A value of -1, instructs Data-
base Integration Service to use all the available characters.

4.5.1.1.8 profile_name

This column specifies the name of the QoS Profile that Database Integration Service will use to create the
publication.

The name must have the following format: <QoS profile library name>::<QoS profile name>

See the Connext DDS documentation for a complete description of QoS Profiles.

The QoS values specified in the publication table (if they are not NULL) take precedence over the same
values specified in the QoS profile.

4.5.1.1.9 pub.present.access_scope, pub.present.ordered_access

These two columns map directly to the DDS_PresentationQosPolicy of the DDS_PublisherQos used by
the Publisher that is created with the DataWriter for publishing changes to the table. The DDS_Present-
ationQosPolicy specifies how the samples representing changes to data instances are presented to a sub-
scribing application.

The specific columns affect the relative order of changes seen by subscribers to the table. The values of
these columns must be coordinated with the values of the DDS_PresentationQosPolicy used by the Sub-
scriber in the receiving application or else published data may not be received by the subscriber.

The possible values for the <pub.present.access_scope> column are:

l “INSTANCE_PRESENTATION_QOS” (default value if the column is NULL)

l “TOPIC_PRESENTATION_QOS”

l “GROUP_PRESENTATION_QOS”

The possible values for the <pub.present.ordered_access> column are:

l 0 (default value if the column is NULL)

l 1

For the best performance of the Database Integration Service daemon, you should set <pub-
.present.access_scope> to “TOPIC_PRESENTATION_QOS” and <pub.present.ordered_access> to 1.
This will require that the corresponding values in the DDS_PresentationQosPolicy of the Subscriber in the
receiving applications to be changed to those values as well.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.2.1.14 sub.present.access_scope, sub.present.ordered_access on page 72.

54

4.5.1.1.10 pub.partition.name

55

4.5.1.1.10 pub.partition.name

For publishing table changes, Database Integration Service creates a DataWriter per table. The pub-
.partition.name column maps directly to the DDS_PartitionQosPolicy of the DDS_PublisherQos used by
the Publisher that is created with the DataWriter. The DDS_PartitionQosPolicy introduces a logical par-
tition concept inside the ‘physical’ partition concept introduced by the domain ID. A Publisher can com-
municate with a Subscriber only if they have some partition in common. The value of the
pub.partition.name column specifies a list of partitions separated by commas to which the Publisher
belongs.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.2.1.15 sub.partition.name on page 73

4.5.1.1.11 dw.durability.kind

This column maps directly to the DDS_DurabilityQosPolicy of the DataWriter created to publish table
changes. By changing this policy, the Database Integration Service daemon can be configured to resend
past changes to the database table to remote applications as soon as their subscriptions are discovered.

Only changes made by local applications to the table will be sent. That is, if the daemon is configured to
subscribe to and store changes into the table from remote DataWriters, those changes are not sent. In addi-
tion, the changes will only be sent if the DataReader is created with a reliable setting for its DDS_Reli-
abilityQosPolicy.

The number of past changes that will be sent is limited by the values of the <dw.history.kind>, <dw.his-
tory.depth> and <dw.res_limits.max_samples> columns.

The possible values for the <dw.durability.kind> column are:

l “VOLATILE_DURABILITY_QOS”

This value prevents the daemon from sending past changes to the table to newly discovered
DataReaders.

This also the default value if the column is NULL.
l “TRANSIENT_LOCAL_DURABILITY_QOS”

This value will enable the daemon to send past changes to the table to newly discovered DataRead-
ers. The DataReaders must be created with reliable DDS_ReliabilityQosPolicy.

Note: If a table exists when the Database Integration Service daemon creates a DataWriter, the daemon
will initialize the DataWriter with the current contents of the table such that those values will be sent to
new DataReaders with their DDS_DurabilityQosPolicy set to “TRANSIENT_LOCAL_DURABILITY_
QOS.”

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.2.1.16 dr.durability.kind on page 73 and 4.5.2.1.17 dr.reliability.kind on page 74.

4.5.1.1.12 dw.liveliness.lease_dur

4.5.1.1.12 dw.liveliness.lease_dur

These columns specify the lease duration for the DDS_LivelinessQosPolicy for the DataWriter created to
publish table changes. The user may need to change the lease duration if remote applications have mod-
ified their DataReaders’ corresponding DDS_LivelinessQosPolicy to non-default values.

The possible values of the <dw.liveliness.lease_dur.sec> (seconds) and <dw.liveliness.lease_dur.nsec>
(nanoseconds) columns are:

l An infinite lease duration is specified if both columns are NULL or contain the value 2147483647
(231 - 1). This is the DDS default value.

l A non-zero value representing the number of seconds and nanoseconds for the lease duration.

Note: DDS_LivelinessQosPolicy.kind is always set to DDS_AUTOMATIC_LIVELINESS_QOS.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.2.1.19 dr.liveliness.lease_dur on page 75.

4.5.1.1.13 dw.deadline.period

These columns specify the deadline period for the DDS_DeadlineQosPolicy for the DataWriter created to
publish table changes. The user may need to change the deadline period if remote applications have mod-
ified their DataReaders’ corresponding DDS_DeadlineQosPolicy to non-default values.

The possible values of the <dw.deadline.period.sec> (seconds) and <dw.deadline.period.nsec> (nano-
seconds) columns are:

l An infinite deadline period is specified if both columns are NULL or contain the value 2147483647
(231 - 1). This is the DDS default value.

l A non-zero value representing the number of seconds and nanoseconds for the deadline period.

The DDS_DeadlineQosPolicy sets a commitment by the DataWriter to publish a value for every data
instance to DataReaders every deadline period. If this value is set to a non-infinite value, user applications
must update the value of every instance of the Topic stored in the table within each deadline period or the
contract with DataReaders that subscribe to the changes to the table will be violated.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.2.1.20 dr.deadline.period on page 76.

4.5.1.1.14 dw.history.kind, dw.history.depth

These columns directly map to the DDS_HistoryQosPolicy for the DataWriter created to publish table
changes. The values set for this QoS policy affect the DDS_ReliabilityQosPolicy and the DDS_Dur-
abilityQosPolicy.

56

4.5.1.1.15 dw.ownership.kind, dw.ownership_strength.value

57

Using a “KEEP_ALL_HISTORY_QOS” will ensure that reliable DataReaders will receive every change
to the table reliably. With a “KEEP_LAST_HISTORY_QOS,” the Database Integration Service daemon
will only guarantee that the last <dw.history.depth> changes for each data instance are sent reliably.

If the <dw.durability.kind> column of the row is set to “TRANSIENT_LOCAL_DURA-BILITY_
QOS”, then these columns determine how many past data changes are sent to new subscribers to table
changes.

The possible values of the <dw.history.kind> and <dw.history.depth> columns are:

l “KEEP_LAST_HISTORY_QOS”

For this setting, the column <dw.history.depth> determines how many published changes for each
data instance in the table are stored in the DataWriter to support reliability or durability.

<dw.history.depth> should be set to an integer greater than 0. The default value for history depth is
1 if this column is NULL.

l “KEEP_ALL_HISTORY_QOS” (default value if the column is NULL)

This setting implies that the DataWriter created to publish table changes will store all of the changes
to the table that it has sent. The total number of changes that can be stored is limited by the value in
the
<dw.res_limits.-max_samples> column.

For this setting, the value in <dw.history.depth> is ignored.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.1.1.11 dw.durability.kind on page 55 and 4.5.1.1.17 dw.res_limits.max_samples, dw.res_limits.max_
instances on the next page.

4.5.1.1.15 dw.ownership.kind, dw.ownership_strength.value

These columns directly map to the DDS_OwnershipQosPolicy and DDS_Ownership-StrengthQosPolicy
for the DataWriter created to publish table changes. These policies control whether or not DataReaders are
allowed to receive changes to an instance of a Topic from multiple DataWriters simultaneously.

The possible values of the <dw.ownership.kind> and <dw.ownership_strength.value> columns are:

l “SHARED_OWNERSHIP_QOS” (default value if the column is NULL)

This setting allows DataReaders to receive updates for an instance of a Topic from multiple
DataWriters at the same time.

l “EXCLUSIVE_OWNERSHIP_QOS”

This setting prevents a DataReader from receiving changes from more than a single DataWriter for

4.5.1.1.16 dw.publish_mode.kind

an instance of a Topic at the same time.

The DataReader will receive changes for a topic instance from the DataWriter with the greatest
value of ownership strength. If the liveliness of the DataWriter fails or if the DataWriter fails to write
within a deadline period, then the DataReader will receive published changes to the topic instance
from the DataWriter with the next highest ownership strength.

The ownership strength set is set in the <dw.ownerhip_strength.value> column. The default value
is 0 if the column is NULL.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.1.1.12 dw.liveliness.lease_dur on page 56, 4.5.1.1.13 dw.deadline.period on page 56, and 4.5.2.1.22
dr.ownership.kind on page 77.

4.5.1.1.16 dw.publish_mode.kind

This column controls the type of DataWriter that Database Integration Service will create for publishing
data. This column can take the following values:

l ASYNCHRONOUS_PUBLISH_MODE_QOS

l SYNCHRONOUS_PUBLISH_MODE_QOS (default value)

Asynchronous DataWriters were introduced in Connext DDS to support large data packets (greater than
64Kb). If IDL data types exceed the 64Kb limit and reliable communication is used, dw.publish_mod-
e.kind must be set to ‘ASYNCHRONOUS_PUBLISH_MODE_QOS’.

See the Connext DDS documentation for more details on the differences between synchronous and asyn-
chronous DataWriters.

4.5.1.1.17 dw.res_limits.max_samples, dw.res_limits.max_instances

These columns set some parameters for the DDS_ResourceLimitsQosPolicy for the DataWriter created to
publish table changes. In particular, they control the amount of memory that the system is allowed to alloc-
ate for storing published data values as well as the total number of data instances (different primary keys)
that can be handled by the DataWriter.

A value of -1 for either of these columns means infinite. An infinite setting means that the DataWriter is
allowed to allocate memory as needed to store published table changes and manage new keys.

l The default value for dw.res_limits.max_samples (if set to NULL) is 32.

l The default value for dw.res_limits.max_instances (if set to NULL) is -1.

The number of keys that the DataWriter is allowed to manage places an upper limit on the number of rows
that the related table in the database can have.

58

4.5.1.1.18 changes_queue_maximum_size

59

See the Connext DDS documentation for more details on how this QoS policy may be used.

4.5.1.1.18 changes_queue_maximum_size

This column is available only for connections to a MySQL database. The value of the column configures
the maximum size of the queue that maintains the list of uncommitted changes. Note that there is a separate
queue per table.

A value of -1 is used to indicate unlimited size.

4.5.1.1.19 RTIRTC_SCN

The System Change Number (SCN) column is available only for connections to a MySQL database. The
value of this column is automatically maintained by Database Integration Service and is usually of no
interest to the application. For more information about the RTIRTC_SCN column see 4.6 User-Table
Creation on page 84.

4.5.2 Subscriptions Table

When entries (rows) are added to the meta-table RTIDDS_SUBSCRIPTIONS, the Database Integration
Service daemon will try to create a DataReader (and Subscriber along with a DomainParticipant if
required) and use it to receive data via the Connext DDS for a Topic and store values into the designated
user table.

If the RTIDDS_SUBSCRIPTIONS table does not exist at startup, the Database Integration Service dae-
mon will create it with the table owner set to the user name of the database connection as specified in the
daemon’s configuration file, see 4.4 Configuration File on page 25. The schema and meaning of the
columns of this table are described in the next section.

You may insert new rows or modify the column values of existing rows in this table at any time. For a
new row, the daemon will first check to see if the designated user table exists. If so, it will immediately cre-
ate the DataReader with the QoS values specified by the entry. The name of the Topic to subscribe to may
be specified by the topic_name column or automatically constructed as <table_owner>.<table_name> if
the topic_name entry is NULL.

If the user table does not exist, the Database Integration Service daemon will look for the typecode asso-
ciated with the type defined in the topic_name column. If it finds the typecode, the daemon will create the
user table.

The table schema of the user table is determined by the value of the column table_schema (see 4.5.3
Table Info on page 80). These supported schemas are:

l FLATTEN: The SQL table schema is derived from the typecode following the IDL type to SQL
type mapping described in 5.2 Flatten Data Representation Mapping on page 92.

4.5.2 Subscriptions Table

l [Only MySQL and PostgreSQL] JSON: The DDS sample content will be stored in a column with
JSON type following the format described in 5.3 JSON Data Representation Mapping on page 104.

l [Only PostgreSQL] JSONB: The DDS sample content will be stored in a column with JSONB type
(binary JSON representation).

After the user table is created, the daemon will proceed to create the associated DataReader. More about
the creation of user tables by the daemon can be found in 4.6 User-Table Creation on page 84.

How the daemon discovers and stores typecodes is described in 4.1.4 Typecodes on page 21.

If the Database Integration Service daemon does not yet have a typecode associated with the topic_name,
it will defer the creation of the DataReader until the typecode is discovered. When a new typecode is dis-
covered, the daemon will scan all rows in the RTIDDS_SUBSCRIPTIONS meta-table and create the
user tables and DataReaders for entries that were pending on the discovery of the typecode.

The daemon will also create the DataReader if there is an entry in the RTIDDS_SUBSCRIPTIONS
table without an associated typecode, but the user subsequently creates the corresponding table.

If user applications modify an existing row in the RTIDDS_SUBSCRIPTIONS table, the Database
Integration Service daemon will first delete the DataReader that was created for that entry (if it exists) and
then go through the same process of trying to create the user table and DataReader as if the row was newly
inserted.

If user applications delete an existing row in the RTIDDS_SUBSCRIPTIONS table, the Database Integ-
ration Service daemon will delete the associated DataReader (if it exists).

A flow chart describing this logic is provided below.

60

4.5.2.1 Subscriptions Table Schema

61

4.5.2.1 Subscriptions Table Schema

The RTIDDS_SUBSCRIPTIONS table is created with the following SQL statement.

MySQL1:
Create Table RTIDDS_SUBSCRIPTIONS (

table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
domain_id INTEGER NOT NULL,
topic_name VARCHAR(200),
type_name VARCHAR(200),
table_history_depth INTEGER,
process_batch INTEGER,
"process_period.sec" INTEGER,
"process_period.nsec" INTEGER,
commit_type VARCHAR(17),
cache_maximum_size INTEGER,
cache_initial_size INTEGER,
delete_on_dispose INTEGER,
idl_member_prefix_max_length INTEGER,

1See 4.1.1.4 Starting the MySQL Server in ANSI_QUOTES mode on page 19.

4.5.2.1 Subscriptions Table Schema

idl_member_suffix_max_length INTEGER,
profile_name VARCHAR(255),
filter_duplicates TINYINT,
ordered_store TINYINT,
persist_state TINYINT,
"sub.present.access_scope" VARCHAR(25),
"sub.present.ordered_access" TINYINT,
"sub.partition.name" VARCHAR(256),
"dr.durability.kind" VARCHAR(30),
"dr.reliability.kind" VARCHAR(27),
"dr.destination_order.kind" VARCHAR(43),
"dr.liveliness.lease_dur.sec" INTEGER,
"dr.liveliness.lease_dur.nsec" INTEGER,
"dr.deadline.period.sec" INTEGER,
"dr.deadline.period.nsec" INTEGER,
"dr.history.kind" VARCHAR(21),
"dr.history.depth" INTEGER,
"dr.ownership.kind" VARCHAR(23),
"dr.time_filter.min_sep.sec" INTEGER,
"dr.time_filter.min_sep.nsec" INTEGER,
"dr.res_limits.max_samples" INTEGER,
"dr.res_limits.max_instances" INTEGER,
"dr.unicast.receive_port" INTEGER,
"dr.multicast.receive_address" VARCHAR(39),
"dr.multicast.receive_port" INTEGER,
"metadata.timestamp_type" VARCHAR(20),
"metadata.include_fields" VARCHAR(1000),
"metadata.exclude_fields" VARCHAR(1000),
table_schema VARCHAR(7),
PRIMARY KEY(table_owner,table_name,domain_id,topic_name)
RTIRTC_SCN BIGINT DEFAULT 0,

)

SQL Server:
Create Table RTIDDS_SUBSCRIPTIONS (

table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
domain_id INTEGER NOT NULL,
topic_name VARCHAR(200),
type_name VARCHAR(200),
table_history_depth INTEGER,
process_batch INTEGER,
"process_period.sec" INTEGER,
"process_period.nsec" INTEGER,
commit_type VARCHAR(17),
cache_maximum_size INTEGER,
cache_initial_size INTEGER,
delete_on_dispose INTEGER,
idl_member_prefix_max_length INTEGER,
idl_member_suffix_max_length INTEGER,
profile_name VARCHAR(255),
filter_duplicates BOOLEAN,
ordered_store BOOLEAN,

62

4.5.2.1 Subscriptions Table Schema

63

persist_state BOOLEAN,
"sub.present.access_scope" VARCHAR(25),
"sub.present.ordered_access" BOOLEAN,
"sub.partition.name" VARCHAR(256),
"dr.durability.kind" VARCHAR(30),
"dr.reliability.kind" VARCHAR(27),
"dr.destination_order.kind" VARCHAR(43),
"dr.liveliness.lease_dur.sec" INTEGER,
"dr.liveliness.lease_dur.nsec" INTEGER,
"dr.deadline.period.sec" INTEGER,
"dr.deadline.period.nsec" INTEGER,
"dr.history.kind" VARCHAR(21),
"dr.history.depth" INTEGER,
"dr.ownership.kind" VARCHAR(23),
"dr.time_filter.min_sep.sec" INTEGER,
"dr.time_filter.min_sep.nsec" INTEGER,
"dr.res_limits.max_samples" INTEGER,
"dr.res_limits.max_instances" INTEGER,
"dr.unicast.receive_port" INTEGER,
"dr.multicast.receive_address" VARCHAR(39),
"dr.multicast.receive_port" INTEGER,
table_schema VARCHAR(7),
PRIMARY KEY(table_owner,table_name,domain_id,topic_name)

)

PostgreSQL:
Create Table RTIDDS_SUBSCRIPTIONS (

table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
domain_id INTEGER NOT NULL,
topic_name VARCHAR(200),
type_name VARCHAR(200),
table_history_depth INTEGER,
process_batch INTEGER,
"process_period.sec" INTEGER,
"process_period.nsec" INTEGER,
commit_type VARCHAR(17),
cache_maximum_size INTEGER,
cache_initial_size INTEGER,
delete_on_dispose INTEGER,
idl_member_prefix_max_length INTEGER,
idl_member_suffix_max_length INTEGER,
profile_name VARCHAR(255),
filter_duplicates BOOLEAN,
ordered_store BOOLEAN,
persist_state BOOLEAN,
"sub.present.access_scope" VARCHAR(25),
"sub.present.ordered_access" BOOLEAN,
"sub.partition.name" VARCHAR(256),
"dr.durability.kind" VARCHAR(30),
"dr.reliability.kind" VARCHAR(27),
"dr.destination_order.kind" VARCHAR(43),
"dr.liveliness.lease_dur.sec" INTEGER,

4.5.2.1 Subscriptions Table Schema

"dr.liveliness.lease_dur.nsec" INTEGER,
"dr.deadline.period.sec" INTEGER,
"dr.deadline.period.nsec" INTEGER,
"dr.history.kind" VARCHAR(21),
"dr.history.depth" INTEGER,
"dr.ownership.kind" VARCHAR(23),
"dr.time_filter.min_sep.sec" INTEGER,
"dr.time_filter.min_sep.nsec" INTEGER,
"dr.res_limits.max_samples" INTEGER,
"dr.res_limits.max_instances" INTEGER,
"dr.unicast.receive_port" INTEGER,
"dr.multicast.receive_address" VARCHAR(39),
"dr.multicast.receive_port" INTEGER,
"metadata.timestamp_type" VARCHAR(20),
"metadata.include_fields" VARCHAR(1000),
"metadata.exclude_fields" VARCHAR(1000),
table_schema VARCHAR(7),
PRIMARY KEY(table_owner,table_name,domain_id,topic_name)

)

You should use the same SQL statement in your own applications if you want to create and populate this
table before the Database Integration Service daemon is started. Table 4.21 RTIDDS_SUBSCRIPTIONS
Table Schema describes how each column is used by the daemon in creating DataReaders and storing
received data into tables. Detailed descriptions of the columns follow the table.

Column Name SQL Type Null-able Default if NULL

table_ownera VARCHAR(128) No N/A

table_nameb VARCHAR(128) No N/A

domain_idc INTEGER No N/A

topic_named VARCHAR(200) YES <table_owner>.<table_name>

type_name VARCHAR(200) YES <topic_name>

table_history_depth INTEGER YES 0

process_batch INTEGER YES 10

process_period.sec INTEGER YES 0

Table 4.21 RTIDDS_SUBSCRIPTIONS Table Schema

aPrimary key column.

bPrimary key column.

cPrimary key column.

dPrimary key column.

64

4.5.2.1 Subscriptions Table Schema

65

Column Name SQL Type Null-able Default if NULL

process_period.nsec INTEGER YES 100000000

commit_type VARCHAR(17) YES COMMIT_ON_PROCESS

cache_maximum_size INTEGER YES 0

cache_initial_size INTEGER YES 0

delete_on_dipose INTEGER YES 0

idl_member_prefix_max_length INTEGER YES Value specified in the configuration file

idl_member_suffix_max_length INTEGER YES Value specified in the configuration file

profile_name VARCHAR(255) YES Database Integration Service will not use a profile to create the publication

filter_duplicates TINYINT YES 0

ordered_store TINYINT YES 1

persist_state TINYINT YES 0

sub.present.access_scope VARCHAR(25) YES INSTANCE_PRESENTATION_QOS

sub.present.ordered_access TINYINT YES 0 (false)

sub.partition.name VARCHAR(256) YES Empty partition string

dr.durability.kind VARCHAR(30) YES VOLATILE_DURABILITY_QOS

dr.reliability.kind VARCHAR(27) YES BEST_EFFORT_RELIABILITY_QOS

dr.destination_order.kind VARCHAR(43) YES
BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

dr.liveliness.lease_dur.sec INTEGER YES Infinite

dr.liveliness.lease_dur.nsec INTEGER YES Infinite

dr.deadline.period.sec INTEGER YES Infinite

dr.deadline.period.nsec INTEGER YES Infinite

dr.history.kind VARCHAR(21) YES KEEP_LAST_HISTORY_QOS

dr.history.depth INTEGER YES 1

dr.ownership.kind VARCHAR(23) YES SHARED_OWNERSHIP_QOS

dr.time_filter.min_sep.sec INTEGER YES 0

dr.time_filter.min_sep.nsec INTEGER YES 0

Table 4.21 RTIDDS_SUBSCRIPTIONS Table Schema

4.5.2.1.1 table_owner, table_name

Column Name SQL Type Null-able Default if NULL

dr.res_limits.max_samples INTEGER YES Infinite

dr.res_limits.max_instances INTEGER YES Infinite

dr.unicast.receive_port INTEGER YES 0

dr.multicast_receive_address VARCHAR(15) YES None

dr.multicast.receive_port INTEGER YES 0

metadata.timestamp_type VARCHAR(20) YES BIGINT

metadata.include_fields VARCHAR(1000) YES None

metadata.exclude_fields VARCHAR(1000) YES None

table_schema VARCHAR(7) YES FLATTEN

RTIRTC_SCN BIGINT YES Next SCNnumber

Table 4.21 RTIDDS_SUBSCRIPTIONS Table Schema

4.5.2.1.1 table_owner, table_name

These columns specify the user table into which data received by a DataReader will be stored. Because a
DBMS uses a combination of <table_owner>.<table_name> to identify a table, both of these columns
must have valid values should the user want these entries to refer to an existing table.

If no table exists in the database with the identifier <table_owner>.<table_name> at the time that the dae-
mon sees this entry in the RTIDDS_SUBSCRIPTIONS meta-table, it will create a user table with this
name automatically, see 4.6 User-Table Creation on page 84.

Notes:

l In MySQL, the value of the table_owner column corresponds to the table schema or database
name.

l In PostgreSQL, the value of the table_owner column corresponds to
<database name>[.<schema_name>]. If the user does not provide a schema, Database Integ-
ration Service will use “public”.

4.5.2.1.2 domain_id

This column specifies the domain ID that will be used to subscribe to Topics whose values will be stored
in the table. Before creating a DataReader, if no DomainParticipant has previously been created with the
domain ID, the Database Integration Service daemon will create a DomainParticipant with the specified
ID.

66

4.5.2.1.3 topic_name

67

If the subscriptions entry has an associated QoS profile, Database Integration Service will use the values
in this profile to create the participant. The participant will also be configured using the QoS values of a
profile when the attribute, is_default_qos, is set to 1 in that profile (see the RTI Connext DDS Core Librar-
ies User's Manual for additional details).

4.5.2.1.3 topic_name

This column defines the Topic that will be subscribed to and whose received values will be stored in the
associated table. The <topic_name> entry needs to match the Topic used by the DataWriters that are send-
ing data changes.

If the Database Integration Service daemon has discovered the typecode associated with the <topic_
name> and the user table does not exist in the database, the daemon will use the typecode to create the
table using entries in the <table_owner> and <table_name> column. See 4.6 User-Table Creation on
page 84 for more details.

4.5.2.1.4 type_name

This column defines the registered name of the type associated with the Topic defined using the column
<topic_name>. If the user table does not exist in the database, the daemon will use the type name to find a
typecode in the XML configuration file. See 4.6 User-Table Creation on page 84 for more details.

4.5.2.1.5 table_history_depth

This column determines the number of values of each instance received by the DataReader that can be
stored in the table by the Database Integration Service daemon. For non-keyed Topics, there is only a
single instance, thus the <table_history_depth> would correspond to the maximum size of the table (in
rows).

For keyed Topics, the Database Integration Service daemon may store up to <table_history_depth> val-
ues of each instance of the Topic that the DataReader receives. When the history depth is reached, the
rows are reused as a circular buffer with the newest values replacing the oldest.

To support this capability, the associated user table may be created with additional columns, meta-
columns, to help the Database Integration Service daemon manage history for a table. Whether or not
meta-columns need to be added to support table history is based on the value of the entry in <table_his-
tory_depth>.

The two meta-columns for supporting table history are:

l RTIRTC_HISTORY_SLOT: INTEGER

This column is also added to the Primary Key of the table. There is usually no need for users to
access this column, it is only used by the daemon. It is only needed since many DBMS systems do
not allow you to alter the value of a Primary Key column.

l RTIRTC_HISTORY_ORDER: INTEGER

4.5.2.1.6 process_batch, process_period, commit_type

This value of this column is maintained by the Database Integration Service daemon when it stores
data received via Connext DDS into the table. The column stores a strictly incrementing counter that
represents the received sequence number (starting at 0) of the data that is stored in that row.

You should use a combination of the instance key and the value of RTIRTC_HISTORY_
ORDER to find the latest data received for an instance in the table.

The possible values for the <table_history_depth> column are:

l NULL or 0

Only the current value of an instance of the Topic is stored. For non-keyed topics, this implies the
table will only have a single row. For keyed topics, each instance will correspond to a single row in
the table. This is the most common value for tables that are published with Connext DDS.

No meta-columns are added to help manage history.
l 1

Exactly the same behavior as NULL or 0, a single value is stored in the table per instance of the
Topic. However, table-history meta-columns are added to the table schema if the Database Integ-
ration Service daemon creates the user table automatically.

This value is useful for preparing the table to store more than a single value per instance after the
table is created. Because table schema cannot be changed to accommodate the table-history meta-
columns after a table has been created, using a value of 1 for this column is useful if the user wants
to store historic values of instances, but does not know how many instances to store at the time the
entry is made.

l n > 1

Meta-columns will be added to accommodate the storing of historic values for instances. The last n
values received for an instance will be stored by the table.

l -1

Meta-columns will be added to accommodate the storing of historic values for instances. All values
received by the DataReader will be stored by the table.

See 4.6 User-Table Creation on page 84 for more information on meta-columns.

4.5.2.1.6 process_batch, process_period, commit_type

These columns allow users to tune the Database Integration Service daemon for optimal throughput per-
formance. When the daemon receives data from a DataReader, it may be configured to delay storing the
data into a table and/or committing the transaction until more data arrives. For a data streams with high
throughput, thousands of samples per seconds, the ability for the daemon to process incoming data in

68

4.5.2.1.6 process_batch, process_period, commit_type

69

batches greatly improves the efficiency and ultimately the maximum sustainable throughput rate for a
given Topic.

The trade-off is latency. The more data that is processed in a single batch, the more efficiently the pro-
cessing can occur. However, A greater delay between the receiving of the data by the daemon and the
time that it can be accessed by user applications in the database.

The column <process_batch> controls how many data samples are processed at a time by the Database
Integration Service daemon. Instead of executing SQL UPDATE or INSERT every time data is received,
the daemon only stores the data after it receives a certain number of samples set by <process_batch>. If
the value <process_batch> is greater than 1, then it is essential that the <process_period.[sec,nsec]> is
set to be non-zero. Thus, the daemon will process stored data periodically, even if the total number of data
samples received is less than <process_batch>.

<process_period.[sec,nsec]> is an upper limit on the amount of delay that will be incurred before received
data is stored in the database. The period can be set to 0 only if <process_batch> is set to 1. This means
that the daemon will store each data sample as it is received so there is no need for periodic processing of
the received samples. Use these values to have the daemon store the data with minimal latency (at the cost
of lower overall throughput).

Finally, using the column <commit_type>, you can choose whether or not the SQL UPDATE/INSERT
statements are committed when each data sample is stored or after all of the data being processed have
been stored. There is significant performance enhancement if the storing of multiple data samples is com-
mitted as a single transaction.

However, if there is a problem during an SQL commit, for example, the transaction log of the database is
full, then the entire transaction is rolled back which means that none of the received data in that batch will
be stored in the table. If the storing of each data sample is committed separately, then an error committing
any one sample will only result in the loss of that sample.

The possible values of the <process_batch> column are:

l n > 0

The daemon will process data samples in batches of n. A value less than or equal to 0 will result in
an error that is logged by the daemon.

A value of n = 1 means that the daemon will store each data sample as it arrives.

The default value is 10 if this column is NULL.

The possible values of the <process_period.sec> (seconds) and <process_period.nsec> (nanoseconds)
columns are:

4.5.2.1.7 cache_maximum_size, cache_initial_size

l 0

If both columns are 0, then the daemon will not commit received samples periodically.
l n > 0

A background thread will process received but un-stored data at the period specified by these
columns. It is essential that a non-zero period be used if <process_batch> is greater than 1 to insure
that all received data is eventually stored.

The default value for process period is 0.1 seconds (0 sec, 100000000 nanosec) if both columns are
NULL.

The possible values of the <commit_type> column are:

l “COMMIT_ON_PROCESS” (default value if the columns are NULL)

This value will direct the Database Integration Service daemon to commit the storage of a batch of
data as a single transaction. This will result in higher performance at the risk of losing more data
than necessary when the transaction is rolled-back because an error with the database.

l “COMMIT_ON_SAMPLE”

This value will direct the daemon to commit the storage of each data sample as a separate trans-
action. Although the daemon will use more resources, if an error occurs when a transaction is com-
mitted, only that data sample is lost.

4.5.2.1.7 cache_maximum_size, cache_initial_size

These columns control the size of a cache, used to store keys that exist in the table, that the Database Integ-
ration Service daemon maintains for each DataReader. When a data instance is received, the daemon first
checks the cache to see if a row corresponding to the data already exists in the table. If the key is in the
cache, then the daemon executes an SQL UPDATE to store the data in the table.

If the key does not exist in the cache, then the Database Integration Service daemon will INSERT a row
with the key instead. The key cache can greatly enhance the performance of the daemon in storing data
into the database by saving an SQL operation each time data is received. Without a cache, the daemon
would need to execute 2 SQL statements. to store data; with the cache, only 1.

The trade off is the memory used to store keys versus the performance gain.

The default values of <cache_maximum_size> and <cache_initial_size> are 0 if the columns are NULL.
The sizes are specified as the number of keys.

For small tables, the cache could be sized to hold all of the keys. Thus the size of the cache would be the
maximum number of rows in the table. However, this is not practical for large tables and thus the cache
will be smaller.

70

4.5.2.1.8 delete_on_dispose

71

4.5.2.1.8 delete_on_dispose

This column configures the behavior of the Database Integration Service daemon when a DataWriter dis-
poses an instance stored into the database. When delete_on_dispose is initialized to 0 (the default value),
the rows corresponding to the instance will not be deleted from the database. If delete_on_dispose is ini-
tialized to 1, all the rows associated with the instance will be deleted from the database.

4.5.2.1.9 idl_member_prefix_max_length, idl_member_suffix_max_length

These columns define how Database Integration Service maps IDL member identifiers into column
names. In particular, they control how the column names are formed by using as a prefix n characters from
the identifier’s prefix and m characters from the identifier’s suffix.

They can assume any value greater than or equal to -1. They cannot both be set to zero.

If a positive value n is provided for idl_member_prefix_max_length, Database Integration Service will
use the first n characters from the IDL member identifier to compose the associated column name. A value
of 0 tells Database Integration Service to compose the column name using only the last characters of the
identifiers, as defined by the ‘idl_member_suffix_max_length’ column. A value of -1, instructs Database
Integration Service to use all the available characters.

If a positive value n is provided for idl_member_suffix_max_length, Database Integration Service will
use the last n characters from the IDL member identifier to compose the associated column name. A value
of 0 tells Database Integration Service to compose the column name using only the first characters of the
identifiers, as defined by the ‘idl_member_prefix_max_length’ column. A value of -1, instructs Data-
base Integration Service to use all the available characters.

4.5.2.1.10 profile_name

This column specifies the name of the QoS Profile that Database Integration Service will use to create the
subscription.

The name must have the following format:

<QoS profile library name>::<QoS profile name>

See Configuring QoS with XML, in the RTI Connext DDS Core Libraries User's Manual for a complete
description of QoS Profiles.

QoS values specified in the subscription table (if they are not NULL) take precedence over the same val-
ues specified in the QoS profile.

4.5.2.1.11 filter_duplicates

There are multiple scenarios in which Database Integration Service may receive duplicate samples (see
Mechanisms for Achieving Information Durability and Persistence, in the RTI Connext DDS Core Librar-
ies User's Manual). For example, if RTI Persistence Service is used in the system, Database Integration
Service could receive the same sample from the original writer and from RTI Persistence Service.

4.5.2.1.12 ordered_store

The filter_duplicates column specifies whether or not duplicates should be filtered by the Database Integ-
ration Service daemon. If duplicates are not filtered, the subscription data table may end up containing
duplicates rows.

Note: Durable Reader State configurations (see Durable Reader State, in the RTI Connext DDS Core
Libraries User's Manual) are ignored by Database Integration Service. Duplicate filtering and subscription
state persistence are implemented by the Database Integration Service daemon.

4.5.2.1.12 ordered_store

This column specifies whether or not the samples associated with a DataWriter identified by a virtual
GUID 'x' (see Durability and Persistence Based on Virtual GUIDs, in the RTI Connext DDS Core Librar-
ies User's Manual) must be stored in the database in order. The field only applies when filter_duplicates
(4.5.2.1.11 filter_duplicates on the previous page) is set to 1.

Ordered storage means that given a DataWriter with virtual GUID 'x', a sample with virtual sequence num-
ber 'sn+1' will be stored after a virtual sample with virtual sequence number 'sn'. If there is only one
DataWriter with virtual GUID 'x' in the system (for example, if there are no RTI Persistence Service
instances) the value of this column does not affect behavior.

Note: Database Integration Service stores samples in the database as soon as they are received by the
Database Integration Service subscriptions (Connext DDS DataReaders). If ordered_store is set to 1 and
there are multiple DataWriters with the same virtual GUID in the system, old samples will not be stored in
the database. A sample with sequence number 'sn' will be ignored if a sample with sequence number
'sn+1' for the same virtual writer has been already stored in the database.

4.5.2.1.13 persist_state

This column specifies whether or not the state of a Database Integration Service subscription must be per-
sisted into the database. The field only applies when filter_duplicates (4.5.2.1.11 filter_duplicates on the
previous page) is set to 1. The subscription state is used on restore by Database Integration Service in
order to avoid receiving duplicate samples.

4.5.2.1.14 sub.present.access_scope, sub.present.ordered_access

These two columns map directly to the DDS_PresentationQosPolicy of the DDS_SubscriberQos used by
the Subscriber that is created with the DataReader for storing received data in the table. The DDS_Present-
ationQosPolicy specifies how the data instances sent by a publishing application are ordered before they
are received.

The values of these columns must be coordinated with the values of the DDS_PresentationQosPolicy used
by the Publisher in the sending application or else published data may not be received by the DataReader.

The possible values for the <sub.present.access_scope> column are:

72

4.5.2.1.15 sub.partition.name

73

l “INSTANCE_PRESENTATION_QOS”

This is also the default value if the column is NULL.
l “TOPIC_PRESENTATION_QOS”

l “GROUP_PRESENTATION_QOS”

The possible values for the <sub.present.ordered_access> column are:

l 0 (default value if the column is NULL)

l 1

For the best performance of the Database Integration Service daemon, you should set <sub-
.present.access_scope> to “TOPIC_PRESENTATION_QOS” and <sub.present.ordered_access> to 1.
This will require that the corresponding values in the DDS_PresentationQosPolicy of the Publisher in the
sending applications to be changed to those values as well.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.1.1.9 pub.present.access_scope, pub.present.ordered_access on page 54.

4.5.2.1.15 sub.partition.name

For capturing data in a table, Database Integration Service creates a DataReader per Topic. The sub-
.partition.name column maps directly to the DDS_PartitionQosPolicy of the DDS_SubscriberQos used by
the Subscriber that is created with the DataReader. The DDS_PartitionQosPolicy introduces a logical par-
tition concept inside the ‘physical’ partition concept introduced by the domain ID. A Subscriber can com-
municate with a Publisher only if they have some partition in common. The value of the
sub.partition.name column specifies a list of partitions separated by commas to which the Subscriber
belongs.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.1.1.10 pub.partition.name on page 55

4.5.2.1.16 dr.durability.kind

This column maps directly to the DDS_DurabilityQosPolicy of the DataReader created to subscribe to
Topic data that is stored in the table. By changing this policy, the DataReader can be configured to request
for past values published for the Topic to be sent by existing applications soon as their matching
DataWriters are discovered.

The DataWriter’s DDS_DurabilityQosPolicy most also be set appropriately to permit the sending of his-
toric, or past, published data. In addition, the column <dr.reliability.kind> for the entry must be set to
“RELIABLE_RELIABILITY_QOS” for historic data to be received.

The possible values for the <dr.durability.kind> column are:

4.5.2.1.17 dr.reliability.kind

l “VOLATILE_DURABILITY_QOS” (default value if the column is NULL)

This value means that the DataReader does not request past data to be sent.
l “TRANSIENT_LOCAL_DURABILITY_QOS”

This value requests that existing DataWriters of the Topic send past data that they are storing to the
DataReader.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.1.1.11 dw.durability.kind on page 55 and 4.5.2.1.17 dr.reliability.kind below.

4.5.2.1.17 dr.reliability.kind

This column sets the DDSReliabilityQosPolicy for the DataReader created to subscribe to Topic data that
is stored in the table. The value in this column determines whether or not DataWriters will send their data
reliably to the DataReader.

If the value for <dr.durability.kind> is “TRANSIENT_LOCAL_DURABILITY_QOS”, then the value
for this column must be set to “RELIABLE_RELIABILITY_QOS”.

The possible values for the <dr.reliability.kind> column are:

l “BEST_EFFORT_RELIABILITY_QOS” (default value if the column is NULL)

This value means that the DataWriters will send their data to the DataReader using best efforts. Data
may be lost if the system is too busy.

l “RELIABLE_RELIABILITY_QOS”

This value means that the DataWriters will send their data to the DataReader using a reliable pro-
tocol. The exact semantics of the reliable connection is controlled by the DDS_HistoryQosPolicy of
both the DataWriter and DataReader.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.1.1.11 dw.durability.kind on page 55, 4.5.1.1.14 dw.history.kind, dw.history.depth on page 56, and
4.5.2.1.21 dr.history.kind, dr.history.depth on page 76.

4.5.2.1.18 dr.destination_order.kind

This column sets the DestinationOrderQosPolicy for the DataReader created to subscribe to Topic data
that is stored in the table. The value in this column determines how the DataReader treats data received for
the same instance of the Topic from different DataWriters.

When a data instance is received, a timestamp associated with the data is compared to the timestamp of the
last value of the data instance. If the time of the new data is older than the time of the last data received (for
that instance), then the new data is dropped.

74

4.5.2.1.19 dr.liveliness.lease_dur

75

What this column does is to set which timestamp (the one associated with the source of the data when it
was sent or the one associated with the data when it was received) the DataReader will use.

This column has no practical effect unless the value of the <dr.ownership.kind> column is “SHARED_
OWNERSHIP_QOS”.

The possible values for the <dr.destinaton_order.kind> column are:

l “BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS”
(default value if the column is NULL)

This configures the DataReader to use the timestamp of when the data was received to determine
whether or not to drop the data. In practice, this setting means all data received from all DataWriters
will be accepted since the timestamp will always be newer for the new data.

l “BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS”

This value means that the DataReader will use the timestamp that was sent with the data in determ-
ining whether or not to accept the data. This timestamp was added by the DataWriter when the data
was published. Because different DataWriters may run in applications on different machines, it is
likely that the clocks on the different machines are only synchronized to a certain resolution or not
synchronized at all.

Thus the DataReader may receive data with timestamps older than the last data that received and
thus drop those data. However if all DataReaders of the same Topic used the source timestamp to fil-
ter the data, then all DataReaders will end up with the same final value for a data instance.

If DataReaders used the reception timestamp, the DataReaders may end up with different final val-
ues because data from different DataWriters may be received in a different order by different
DataReaders.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.1.1.6 resolution_column on page 52.

4.5.2.1.19 dr.liveliness.lease_dur

These columns specify the lease duration for the DDS_LivelinessQosPolicy for the DataReader created to
subscribe to Topic data that is stored in the table. This value is useful when there are redundant
DataWriters that publish values for the same data instance for the Topic and the value set for the <dr.own-
ership.kind> column is “EXCLUSIVE_OWNERSHIP_QOS”.

The liveliness of a DataWriter is monitored by the DataReader. These columns control how quickly the
DataReader can determine that the DataWriter with the highest ownership strength has lost liveliness
because heartbeat packets or data were not received within the liveliness lease duration. When liveliness is
lost, the DataReader will then receive the data instance from the DataWriter with the next highest own-
ership strength that is still alive.

4.5.2.1.20 dr.deadline.period

The possible values of the <dr.liveliness.lease_dur.sec> (seconds) and <dr.liveliness.lease_dur.nsec>
(nanoseconds) columns are:

l An infinite lease duration is specified if both columns are NULL or contain the value 2147483647
(231 - 1). This is the DDS default value.

l A non-zero value representing the number of seconds and nanoseconds for the lease duration.

Note: The DDS_LivelinessQosPolicy.kind is always set to DDS_AUTOMATIC_LIVELINESS_QOS.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.1.1.12 dw.liveliness.lease_dur on page 56, 4.5.2.1.22 dr.ownership.kind on the next page, and
4.5.1.1.15 dw.ownership.kind, dw.ownership_strength.value on page 57.

4.5.2.1.20 dr.deadline.period

These columns specify the deadline period for the DDS_DeadlineQosPolicy for the DataReader created to
subscribe to Topic data that is stored in the table. By setting the values in this column, the user is setting an
expectation that DataWriters will publish new values for data instances at least as fast as the deadline
period.

The possible values of the <dr.deadline.period.sec> (seconds) and <dr.deadline.period.nsec> (nano-
seconds) columns are:

l An infinite deadline period is specified if both columns are NULL or contain the value 2147483647
(231 - 1). This is the DDS default value.

l A non-zero value representing the number of seconds and nanoseconds for the deadline period.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.1.1.13 dw.deadline.period on page 56.

4.5.2.1.21 dr.history.kind, dr.history.depth

These columns directly map to the DDS_HistoryQosPolicy for the DataReader created to subscribe to
Topic data that is stored in the table. The values set for this QosPolicy affect the DDS_Reli-
abilityQosPolicy.

Using a “KEEP_ALL_HISTORY_QOS” will ensure that reliable DataReaders will receive every change
to the table reliably. With a “KEEP_LAST_HISTORY_QOS”, the Database Integration Service daemon
will only guarantee that the last <dr.history.depth> changes for each data instance are received reliably.

The possible values of the <dr.history.kind> and <dr.history.depth> columns are:

76

4.5.2.1.22 dr.ownership.kind

77

l “KEEP_LAST_HISTORY_QOS”

For this setting, the column <dr.history.depth> determines the maximum number of values for
each data instance that be buffered in the DataReader before the Database Integration Service dae-
mon stores the received values into the table.

<dr.history.depth> should be set to an integer greater than 0. The default value for history depth is
1 if this column is NULL.

l “KEEP_ALL_HISTORY_QOS” (default value if the column is NULL)

This setting implies that the DataReader created to subscribe to Topic data has an unlimited queue in
which to save received data before the data is stored in the table. The actual size of the queue is lim-
ited by the value in <dr.res_limits.max_samples> column.

For this setting, the value in <dr.history.depth> is ignored.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.2.1.24 dr.res_limits.max_samples, dr.res_limits.max_instances on the next page.

4.5.2.1.22 dr.ownership.kind

These columns directly map to the DDS_OwnershipQosPolicy and DDS_Ownership-StrengthQosPolicy
for the DataReader created to subscribe to Topic data that is stored in the table. These policies control
whether or not the DataReader is allowed to receive changes to an instance of a Topic from multiple
DataWriters simultaneously.

The possible values of the <dr.ownership.kind> column are:

l “SHARED_OWNERSHIP_QOS” (default value if the column is NULL)

This setting allows the DataReader to receive updates for an instance of a Topic from multiple
DataWriters at the same time.

l “EXCLUSIVE_OWNERSHIP_QOS”

This setting prevents the DataReader from receiving changes from more than a single DataWriter for
an instance of a Topic at the same time.

The DataReader will receive changes for a topic instance from the DataWriter with the greatest
value of ownership strength. If the liveliness of the DataWriter fails or if the DataWriter fails to write
within a deadline period, then the DataReader will receive published changes to the topic instance
from the DataWriter with the next highest ownership strength.

See the Connext DDS documentation for more details on how this QoS policy may be used. See also
4.5.2.1.19 dr.liveliness.lease_dur on page 75, 4.5.2.1.20 dr.deadline.period on the previous page, and
4.5.1.1.15 dw.ownership.kind, dw.ownership_strength.value on page 57.

4.5.2.1.23 dr.time_filter.min_sep

4.5.2.1.23 dr.time_filter.min_sep

This column specifies the minimum separation duration between subsequent samples for the DDS_
TimeBasedFilterQosPolicy for the DataReader created to subscribe to Topic data that is stored in the table.
By setting the values in these columns, the user configures the DataReader to see at most one change
every the minimum_separation period.

The possible values of the <dr.time_filter.min_sep.sec> (seconds) and <dr.time_filter.min_sep.nsec>
(nanoseconds) columns are:

l A 0 minimum separation duration is specified if both columns are NULL or contain the value 0.
This is the DDS default value. With this value, the DataReader is potentially interested in all the
samples.

l A non-zero value representing the number of seconds and nanoseconds for the minimum separation
duration. That value must be smaller than the deadline period and contained in the interval [0, 1
year].

See the Connext DDS documentation for more details on how this QoS policy may be used.

4.5.2.1.24 dr.res_limits.max_samples, dr.res_limits.max_instances

These columns set some parameters for the DDS_ResourceLimits QosPolicy for the DataReader created
to subscribe to Topic data that is stored in the table. In particular, they control the amount of memory that
the system is allowed to allocate for storing published data values as well as the total number of data
instances (different primary keys) that can be handled by the DataReader.

A value of -1 for either of these columns means infinite. This is also the default value for these columns if
they are NULL. An infinite setting means that the DataReader is allowed to allocate memory as needed to
store received table changes and manage new keys.

The number of keys that the DataReader is allowed to manage places an upper limit on the number of
rows that the related table in the database can have.

See the Connext DDS documentation for more details on how this QoS policy may be used.

4.5.2.1.25 dr.unicast.receive_port

This column is used to configure the unicast port on which the DataReader will receive data. When the
default value (NULL or 0) is used, the actual port number is determined by a formula as a function of the
domain ID.

4.5.2.1.26 dr.multicast.receive_address

This column is used to set a multicast address for the DataReader to receive values for the Topic. The
column maps to the DDS_TransportMulticastQosPolicy of the DataReader.

The possible values for the <dr.multicast.receive_address> column are:

78

4.5.2.1.27 dr.multicast.receive_port

79

l NULL

A NULL column means that the DataReader will receive Topic data using unicast.
l A string that contains a valid multicast address in the form "xxx.xxx.xxx.xxx".

The DataReader for the table will subscribe to the Topic on the multicast address provided.

See the Connext DDS documentation for more details on how this QoS policy may be used.

4.5.2.1.27 dr.multicast.receive_port

This column configures the multicast port on which the DataReader will receive data. When the default
value (NULL or 0) is used, the actual port number is determined by a formula as a function of the domain
ID.

Note that the value of this field is ignored when dr.multicast.receive_address is NULL.

4.5.2.1.28 metadata.timestamp_type

This column specifies the SQL type used to store timestamps. Possible values are "BIGINT" and
"TIMESTAMP".

The BIGINT type is stored by composing two 4-byte integers for sec and nanosec:

bigintTimestamp = (sec << 32) | nanosec

Thus it can represent the full range of times.

The TIMESTAMP type uses a SQL timestamp. Dates outside the range supported by the database type
will be set to zero. The resolution may also be limited by the underlying database. Thus, this timestamp
and the DDS timestamps as seen by applications may not exactly match.

4.5.2.1.29 metadata.include_fields, metadata.exclude_fields

These lists determine the columns used to store sample metadata within user tables. Each is a comma-sep-
arated list of metadata fields. Spaces are not allowed. The excluded fields have priority, so a field that is in
both lists will be excluded. Possible fields are:

l ALL (only allowed for include_fields) - store all available fields

l SOURCE_TIMESTAMP - store SampleInfo source_timestamp. The name of the column in the
user topic table is RTIDDS_SOURCE_TIMESTAMP

l RECEPTION_TIMESTAMP - store SampleInfo reception_timestamp. The name of the column in
the user topic table is RTIDDS_RECEPTION_TIMESTAMP

4.5.2.1.30 table_schema

4.5.2.1.30 table_schema

The table_schema column determines how DDS samples are stored in a database table. Database Integ-
ration Service supports three schemas:

l FLATTEN: The SQL table schema is derived from the typecode following the IDL type to SQL
type mapping described in 5.2 Flatten Data Representation Mapping on page 92.

l [Only for MySQL and PostgreSQL] JSON: The DDS sample content is stored in a JSON column
called SAMPLE following the format described in 5.3 JSON Data Representation Mapping on
page 104. Publication of DDS samples with JSON schema is not supported.

l [Only for PostgreSQL] JSONB: The DDS sample content will be stored in a JSONB column (bin-
ary JSON representation). Publication of DDS samples with JSON schema is not supported.

The default value is FLATTEN.

4.5.2.1.31 RTIRTC_SCN

The System Change Number (SCN) column is available only for connections to a MySQL database. The
value of this column is automatically maintained by Database Integration Service and is usually of no
interest to the application. For more information about the RTIRTC_SCN column see 4.6 User-Table
Creation on page 84.

4.5.3 Table Info

The meta-table RTIRTC_TBL_INFO stores meta information associated with the user tables.

When a table is automatically created by the Database Integration Service daemon (see 4.6 User-Table
Creation on page 84), its TypeCode is stored in RTIRTC_TBL_INFO as a sequence of octets. When the
Database Integration Service daemon is restarted, the persisted TypeCodes corresponding to existing pub-
lications and subscriptions will be made available to other Connext DDS applications.

4.5.3.1 Table Info Schema

The RTIRTC_TBL_INFO table is created with the following SQL statement:

MySQL:
Create Table RTIRTC_TBL_INFO (

table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
type_code VARBINARY(65000),
RTIRTC_SCN BIGINT DEFAULT 0,
PRIMARY KEY(table_owner,table_name)

)

80

4.5.3.1.1 table_owner, table_name

81

SQL Server:
Create Table RTIRTC_TBL_INFO (

table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
type_code VARBINARY(65000),
PRIMARY KEY(table_owner,table_name)

)

PostgreSQL:
Create Table RTIRTC_TBL_INFO (

table_owner VARCHAR(128) NOT NULL,
table_name VARCHAR(128) NOT NULL,
type_code BYTEA,
PRIMARY KEY(table_owner,table_name)

)

Table 4.22 RTIRTC_TBL_INFO Table Schema describes the meta-table columns. Detailed column
descriptions follow below.

Column Name SQL Type Nullable Default if NULL

table_owner VARCHAR(128) No N/A

table_name VARCHAR(128) No N/A

type_code VARCHAR(65000) Yes NULL

Table 4.22 RTIRTC_TBL_INFO Table Schema

4.5.3.1.1 table_owner, table_name

These columns specify the user table associated with the meta information described in the other columns.

Because a DBMS uses a combination of <table_owner>.<table_name> to identify a table, both of these
columns must have valid values.

Notes:

l In MySQL, the value of the table_owner column corresponds to the table schema or database
name.

l In PostgreSQL, the value of the table_owner column corresponds to <database name>[.<schema_
name>]. If you do not provide a schema, Database Integration Service will use “public”.

4.5.3.1.2 type_code

This column contains the TypeCode information associated to the user table identified by <table_own-
er>.<table_name>.

4.5.4 Log Table

The TypeCode information stored in this table is used when publications and subscriptions are created
after the Database Integration Service daemon is restarted.

4.5.4 Log Table

A meta-table named RTIRTC_LOG is used to store log messages generated by the daemon. Whether or
not this table is created and used depends on the -loglevel option (see 4.2 Command-Line Parameters on
page 21) and the LOGTODB and LOGHISTORY Database Integration Service daemon connection
attributes (see 4.4.4.2 Database Mapping Options on page 34).

You should treat the contents of this table as read-only. There is no reason for users to modify this table.
The number of rows in the Log table is controlled by the LOGHISTORY connection attribute. If set to -1,
the table will hold as many log messages as generated by the Database Integration Service daemon. Other-
wise, the daemon will only store the last n log messages as specified by LOGHISTORY, using the table
as a circular buffer.

You may use the “id” column to determine the last log message that was generated by the daemon (see
4.5.4.1.1 id on the next page).

4.5.4.1 Log Table Schema

The RTIRTC_LOG table is created with the following SQL statement.

MySQL:
Create Table RTIRTC_LOG (

id INTEGER NOT NULL,
ts TIMESTAMP NOT NULL,
type VARCHAR(7) NOT NULL,
function VARCHAR(64) NOT NULL,
line INTEGER,
code INTEGER,
native_code INTEGER,
message VARCHAR(2048) NOT NULL

)

SQL Server:
Create Table RTIRTC_LOG (

id INTEGER NOT NULL,
ts TIMESTAMP NOT NULL,
type VARCHAR(7) NOT NULL,
function VARCHAR(64) NOT NULL,
line INTEGER,
code INTEGER,
native_code INTEGER,
message VARCHAR(2048) NOT NULL

)

82

4.5.4.1.1 id

83

PostgreSQL:
Create Table RTIRTC_LOG (

id INTEGER NOT NULL,
ts TIMESTAMP NOT NULL,
type VARCHAR(7) NOT NULL,
function VARCHAR(64) NOT NULL,
line INTEGER,
code INTEGER,
native_code INTEGER,
message VARCHAR(2048) NOT NULL

)

Each column of the Log meta-table stores a different portion of a log message generated by the Database
Integration Service daemon. Table 4.23 RTIRTC_LOG Table Schema describes these columns. Detailed
column descriptions follow below the table.

Column Name SQL Type Nullable Default if NULL

id INTEGER NO N/A

ts TIMESTAMP NO N/A

type VARCHAR(7) NO N/A

function VARCHAR(64) NO N/A

line INTEGER NO None

code INTEGER YES None

native_code INTEGER YES None

message VARCHAR(1024) NO N/A

Table 4.23 RTIRTC_LOG Table Schema

4.5.4.1.1 id

This column stores a strictly incrementing integer for each log message that is generated by the daemon.
The largest value in the id column is the last message that was produced.

4.5.4.1.2 ts

This column stores the system timestamp of when the log message was generated.

4.5.4.1.3 type

This column stores the kind of log message. Possible values are: “ERROR”, “WARNING”, “STATUS”,
and “SPECIAL”. “SPECIAL” messages are ones that are always printed independently of the log level.

4.5.4.1.4 function, line

4.5.4.1.4 function, line

These two columns contain the function name and line number of the Database Integration Service dae-
mon code where the message was generated. It is useful only to support engineers at RTI.

4.5.4.1.5 code, native_code, message

The code column contains the Database Integration Service error code that correspond to the message.
This column will have NULL entries for messages of type “STATUS”.

The native_code column will contain the error code of any external APIs, e.g., ODBC, OS, Connext
DDS, that the daemon has called and returned an error. This column may have NULL entries.

Finally, themessage column will contain a statement with details on why the message was generated.

For a complete list of possible error codes and messages that can be generated by the Database Integration
Service daemon, please see Appendix A Error Codes on page 107.

4.6 User-Table Creation

The Database Integration Service daemon may create tables automatically for user applications in the data-
base when entries are made in the RTIDDS_PUBLICATIONS or RTIDDS_SUBSCRIPTIONS meta-
tables (see 4.5.1 Publications Table on page 46 and 4.5.2 Subscriptions Table on page 59). The daemon
will create the table with the table owner and table name specified in an entry in one of those tables if:

1. There is no existing table in the database with the same <table_owner>.<table_name> identifier.

and
2. A type corresponding to the <type_name> column for the entry has been defined in the XML con-

figuration file (see 4.4.3 Top-Level XML Tags on page 27).

or

A typecode corresponding to the <topic_name> column for the entry has been discovered.

If either condition above is not satisfied, the daemon will not create the user table. If the user table already
exists, the daemon will attempt to use that table when publishing or subscribing to Topics. It is up to the
user to create the table with the right schema.

When subscribing to data there are three possible user table schemas configurable using the column table_
schema in the RTIDDS_SUBSCRIPTION table (see 4.5.2.1.30 table_schema on page 80):

l FLATTEN: The user table schema is derived from the typecode following the IDL type to SQL
type mapping described in 5.2 Flatten Data Representation Mapping on page 92.

84

4.6 User-Table Creation

85

l [Only for MySQL and PostgreSQL] JSON: The DDS sample content is stored in a JSON column
called SAMPLE following the format described in 5.3 JSON Data Representation Mapping on
page 104. Publication of DDS samples with JSON schema is not supported.

l [Only for PostgreSQL] JSONB: The DDS sample content will be stored in a JSONB column (bin-
ary JSON representation). Publication of DDS samples with JSON schema is not supported.

When publishing data, Database Integration Service only supports FLATTEN schema.

If the table does not exist and there is no XML definition for the type and the typecode for the IDL type
specified by the entry is unknown, the Database Integration Service daemon will defer creation of the
table until the typecode has been discovered from other applications on the network that are using Connext
DDS. See 4.1.4 Typecodes on page 21 for more details on how the daemon uses typecodes.

If the table is created by the Database Integration Service daemon, the daemon may add up to 8 additional
columns (9 in MySQL) that store meta-data used by the daemon when storing data received via Connext
DDS or sending table changes via Connext DDS. Although optional, there are specific operating scenarios
where these meta-columns are required for the proper operation of the daemon. We suggest that the user
understands the purpose of the meta-columns, and if the user applications create the tables used by the
Database Integration Service daemon, the user code itself should add the meta-columns to the table
schema when appropriate. If needed, RTIDDS_SOURCE_TIMESTAMP and RTIDDS_RECEPTION_
TIMESTAMP must directly follow user data columns and the source column must precede the reception
column. The other meta-columns may be in any order.

The meta-columns that may be created are:

l RTIDDS_DOMAIN_ID and RTIRTC_REMOTE

These two SQL INTEGER columns are always added to the tables created by the daemon. These
additional columns are used by the daemon when user has created entries in both the RTIDDS_
PUBLICATIONS and RTIDDS_SUBSCRIPTIONS meta-tables for the same user table. In that
situation, changes to the table made by local user applications will be published via Connext DDS at
the same time that the daemon itself may store data into the table received via Connext DDS.

Database Integration Service daemon uses these meta-columns in order to prevent the republishing
of tables values that were changed because they were received via Connext DDS. User applications
that create the table do not need to add these columns if the daemon is configured only to publish
data from the table or to store data into the table.

However, it is essential that these columns do exist for the situation where both publications and sub-
scriptions are tied to the same table. If the meta-columns are omitted, then when Database Integ-
ration Service daemon receives data via Connext DDS, it will be echoed (republished) as a change
to the table.

l RTIRTC_KEY

4.6 User-Table Creation

This SQL INTEGER column is added by the daemon if the IDL type that is used to create the table
does not contain any fields marked as a topic key (i.e., non-keyed IDL types). In such cases, the
<RTIRTC_KEY> column will be added to the table as the primary key column. The value in that
column will always be 0. Thus, there is only a single instance of the Topic which means the table
will only ever have a single row (subject to whether or not the user wants the table to store historical
value of data instances, see the details for the <RTIRTC_-HISTORY_SLOT> and <RTIRTC_
HISTORY_ORDER> meta-columns below).

If the IDL type does have key fields, then the fields will be mapped into columns that are marked as
primary keys. This meta-column is not added, and the table can contain as many rows as there are
different instance keys (primary keys).

l RTIRTC_HISTORY_SLOT and RTIRTC_HISTORY_ORDER

These SQL INTEGER columns are used to implement the ability of the Database Integration Ser-
vice daemon to store multiple values (historical) of the same data instance into a table. Usually, a
single data instance maps to a single row of a table. As new values for the instance is received by
the daemon, the value of the same row is changed.

However, users may use the <table_history_depth> columns (see 4.5.1.1.5 table_history_depth on
page 52 and 4.5.2.1.5 table_history_depth on page 67) of the RTIDDS_PUBLICATIONS and
RTIDDS_SUBSCRIPTIONS meta-tables to direct the daemon to store multiple past values of a
data instance. These values are be stored in multiple rows of a table. To support table history, the
daemon must add the meta-columns <RTIRTC_HISTORY_SLOT> and <RTIRTC_
HISTORY_ORDER> to a table. They will only be added if the <table_history_depth> column for
an entry is non-NULL and has a non-0 value.

The <RTIRTC_HISTORY_SLOT> is an auto-increment column that will also be added as a
primary key column of the table.

The <RTIRTC_HISTORY_ORDER> is a column that will contain a number that is incremented
as data is stored into the table. The oldest row of an instance will have the lowest value for this
column whereas the most recent row of an instance will have the highest value.

l RTIDDS_SOURCE_TIMESTAMP and RTIDDS_RECEPTION_TIMESTAMP

These columns are used to store the source and reception timestamp metadata fields. Columns are
only created if needed, based on the configuration in the RTIDDS_PUBLICATIONS or RTIDDS_
SUBSCRIPTIONS meta-tables (see 4.5.2.1.29 metadata.include_fields, metadata.exclude_fields on
page 79).

If present, they will directly follow the user data columns, source then reception. They are not
needed if timestamps are not being stored by a subscription or used by a publication as a source
timestamp.

l RTIRTC_SCN

86

4.7 Support for Extensible Types

87

The System Change Number (SCN) meta-column (SQL_BIGINT) is only required for connections
to a MySQL database. The SCN meta-column is used to detect committed changes in a table. Its
value is automatically assigned by the MySQL server.

Each time there is a change in a table row or a new row is inserted, the MySQL server assigns a
new SCN value to the column RTIRTC_SCN. The assignment is done during the execution of the
BEFORE UPDATE/INSERT trigger installed by the Database Integration Service daemon.

4.7 Support for Extensible Types

Database Integration Service includes partial support for the "Extensible and Dynamic Topic Types for
DDS" specification from the Object Management Group (OMG)1. This section assumes that you are famil-
iar with Extensible Types and you have read the RTI Connext DDS Core Libraries Getting Started Guide
Addendum for Extensible Types.

l The Database Integration Service daemon can publish and subscribe to topics associated with final
and extensible types.

l The Database Integration Service daemon can subscribe to topics associated with mutable types
when using JSON table_schema mode.

l When using FLATTEN table schema mode, the Database Integration Service daemon can publish
and/or subscribe to only one version of the types associated with a topic within a domain

l By default, DataReaders created when a new entry is inserted in the RTIDDS_SUBSCRIPTIONS
table are configured with the TypeConsistencyEnforcementQosPolicy’s kind set to DISALLOW_
TYPE_COERCION. You can override this setting only when using JSON table_schema mode.

l You can select the type version for a given topic within a domain in two different ways:

l By providing the type description via XML and then referring to that description using the
column type_name in the RTIDDS_SUBSCRIPTIONS and/or RTIDDS_
PUBLICATIONS tables.

l By pre-creating the database table used to store/publish the data with the right schema.

Since by default the DataReaders created by the Database Integration Service daemon have their
TypeConsistencyEnforcementQosPolicy’s kind set to DISALLOW_TYPE_COERCION, they will not
match with DataWriters whose types are not equal to the DataReader’s type. You can modify this default
behavior only when using JSON table_schema mode. You can learn more in the RTI Connext DDS Core

1The OMG specification is available here: http://www.omg.org/spec/DDS-XTypes/.

http://www.omg.org/spec/DDS-XTypes/

4.8 Enabling RTI Distributed Logger in Database Integration Service

Libraries Getting Started Guide Addendum for Extensible Types1 (see the section on Rules for Type-Con-
sistency Enforcement).

4.8 Enabling RTI Distributed Logger in Database Integration Service

Database Integration Service provides integrated support for RTI Distributed Logger.

When you enable Distributed Logger, Database Integration Service will publish its log messages to Con-
next DDS. Then you can use RTI Monitor2 to visualize the log message data. Since the data is provided in
a Connext DDS topic, you can also use rtiddsspy or even write your own visualization tool.

To enable Distributed Logger, modify the Database Integration Service XML configuration file. In the
<general_options><administration> section, add the <distributed_logger> tag as shown in the example
below.
<real_time_connect name="default">

<general_options>
<administration>

<domain_id>0</domain_id>
<distributed_logger>

<enabled>true</enabled>
</distributed_logger>

</administration>
</general_options>
...

</real_time_connect>

Replace the value of <domain_id> with the domain ID that Database Integration Service will use to send
log messages when Distributed Logger is enabled.

There are more configuration tags that you can use to control Distributed Logger’s behavior. For example,
you can specify a filter so that only certain types of log messages are published. For details, see the Dis-
tributed Logger section of the RTI Connext DDS Core Libraries User’s Manual.

4.9 Enabling RTI Monitoring Library in Database Integration Service

To enable monitoring of the Entities that are created by Database Integration Service, you must specify
the property rti.monitor.library in the QoS of the participants that you want to monitor. For example:
<participant_qos>

<property>

1<Connext DDS installation directory>/ndds.<version>/doc/pdf/RTI_ConnextDDS_CoreLibraries_GettingStarted_Extens-
ibleTypesAddendum.pdf)

2RTI Monitor is a separate GUI application that can run on the same host as your application or on a dif-
ferent host.

88

4.9 Enabling RTI Monitoring Library in Database Integration Service

89

<value>
<element>

<name>rti.monitor.library</name>
<value>rtimonitoring</value>
<propagate>false</propagate>

</element>
</value>

</property>
</participant_qos>

The QoS associated with the DomainParticipants that are created by Database Integration Service can be
configured in three different ways:

l By setting the attribute is_default_qos in the tag <qos_profile> containing the <participant_qos> to
true. In this case, that profile is the default configuration for all the Entities created by the Database
Integration Service daemon.

For a list of XML files where you can declare the QoS Profile, see 4.4.1 How to Load the XML
Configuration on page 25

l By referring to a profile using the XML tag <profile_name> within <publication> and <sub-
scription> (see 4.4.4.4 Initial Subscriptions and Publications on page 38).

l By referring to a profile in the profile_name column of the tables RTIDDS_PUBLICATIONS or
RTIDDS_SUBSCRIPTIONS (see 4.5.1 Publications Table on page 46 and 4.5.2 Subscriptions
Table on page 59).

Notice that since Database Integration Service is statically linked with RTI Monitoring Library, you do
not need to have it in your Path (on Windows systems) or LD_LIBRARY_PATH (on UNIX-based sys-
tems).

For details on how to configure the monitoring process, see theMonitoring Library section of the
RTI Connext DDS Core Libraries User's Manual.

Chapter 5 IDL/SQL Semantic and Data
Mapping

This chapter describes the semantic and data representation mapping that RTI Database Integration
Service uses to connect DDS-based applications such as Connext DDS to MySQL and Microsoft
SQL Server databases.

Connext DDS provides an API to send and receive data between networked applications following
a publish/subscribe paradigm. The corresponding standard API in the database world is SQL. Both
the Connext DDS and SQL APIs have various language bindings in C/C++ and Java.

How Database Integration Service maps actions (semantics) and data types (data representation)
from Connext DDS to SQL and vice versa is described in the following sections.

l 5.1 Semantic Mapping below

l 5.2 Flatten Data Representation Mapping on page 92

5.1 Semantic Mapping

Connext DDS applications publish and subscribe to topics which are named data structures using
functions like DDSDataWriter::write() and DDSDataReader::read(). Relational databases con-
tain tables that applications access data using SQL operations such as INSERT, UPDATE,
DELETE and SELECT. Table 5.1 Connext DDS-DBMS Semantic Models describes the map-
ping between Connext DDS and relational database semantic models.

90

5.1 Semantic Mapping

91

Connext DDS Relational Database Details

Accessed via Connext
DDSAPI

Various language bind-
ings (e.g. C/C++, Java)

Accessed via SQL

Various language bindings
(e.g. C/C++ and ODBC,
Java and JDBC)

Data structures

Defined by IDL (In-
terface Description Lan-
guage).

Tables

Defined by table schema.

Fields in data structures are mapped to columns of a table. Each row of a table represents
a different value for a data structure. The exact mapping of IDL data structures to table
schemas is described in 5.2 Flatten Data RepresentationMapping on the next page.

Topic

Identified by a name
string.

DataWriter can publish
values for Topics and
DataReaders can sub-
scribe

Table

Identified by a name string.

Applications can write val-
ues or read values from
tables using SQL.

Topic names and table names do not have to be the same when making a correspondence
between a Topic and a database table.

Data values

Rows in table

No history: A single row in a
table.

History: Multiple rows in a
table.

When the Database Integration Service daemon table history option is turned OFF (see
Sections 4.5.1.1.5 table_history_depth on page 52 and 4.5.2.1.5 table_history_depth on
page 67), only the last value of a topic instance is stored in the table. So a non-keyed topic
will be stored in a single rowwhereas for keyed topics, there will be asmany rows as there
are topic instances.

When the Database Integration Service daemon table history option is turned ON, each in-
stance will occupy up to a user-settable maximumnumber of rows so that the last N values
received for the Topic are stored in the table. When N values have been stored, the N rows
are used as a circular buffer so that new values received will overwrite the oldest values
stored.

Key

IDL data typesmay con-
tain one ormore fields
that are used to dis-
tinguish different in-
stances of the Topic.

Primary key

Most relational databases
require table schemes to
identify one ormore
columns to act as the
primary key for the table.

Keys are mapped to the primary keys of a table. When a table is created by the Database
Integration Service daemon, the columns corresponding to the IDL key fields will be cre-
ated as primary key columns.

For tables created by user code, the correspondence of IDL key fields to table primary key
columnsmust be set correctly.

DDSDataWriter::write() SQL INSERT orUPDATE

Values published for Topics will be stored into a database table by the Database In-
tegration Service daemon.

Table rowsmodified by SQL INSERT orUPDATE commands will be published by the Data-
base Integration Service daemon as values of Topics.

DDSDataReader::take()
DDSDataReader::read()

SQL SELECT

DDSDataWriter::dispose
()

SQL DELETE

When SQL DELETE is used to delete a row froma table, the Database Integration Ser-
vice daemon will callDDSDataWriter::dispose() to dispose the instance corresponding to
the row.

If a user application callsDDSDataWriter::dispose() to dispose an instance, the Data-
base Integration Service daemon may be configured to delete or keep the corresponding
rows.

Table 5.1 Connext DDS-DBMS Semantic Models

5.2 Flatten Data Representation Mapping

5.2 Flatten Data Representation Mapping

In Connext DDS, data is stored in data structures or classes defined using the Interface Definition Lan-
guage (IDL). In relational databases, data is stored in tables defined using SQL table schemas. While there
is a good correspondence of IDL primitive data types to SQL data types, this mapping is not one-to-one.
Both IDL and SQL have data types that the other does not define nor has an unambiguous mapping. In
addition, many complex data structures in IDL such as unions and data structures that contain embedded
data structures do not have equivalents in SQL.

This section describes the FLATTEN mapping used by the Database Integration Service daemon when
taking data received with DDS and storing it in tables, or taking data from tables and publishing it with
Connext DDS.

l 5.2.1 IDL to SQL Mapping below

l 5.2.2 Primitive Types Mapping on page 95

l 5.2.3 Bit Field Mapping on page 99

l 5.2.4 Enum Types Mapping on page 100

l 5.2.5 Simple IDL Structures on page 100

l 5.2.6 Complex IDL Structures on page 100

l 5.2.7 Array Fields on page 102

l 5.2.8 Sequence Fields on page 102

l 5.2.9 NULL Values on page 103

l 5.2.10 Sparse Data Types on page 103

5.2.1 IDL to SQL Mapping

Identifiers are used for the names of table columns in SQL and names of fields within an IDL structure.
SQL identifiers are a superset of IDL identifiers. Because of that, an IDL identifier can always be used as
a SQL identifier. However, there are some SQL identifiers that cannot be used as IDL identifiers. For
example, SQL allows special characters like ‘#’ to be part of an identifier, whereas IDL does not.

There are two kinds of SQL identifiers: quoted identifiers and basic identifiers:

l Quoted identifiers can use any combination of characters. These identifiers need to be surrounded
by double quotes when referenced.

l The definition of a basic identifier changes depending on the database vendor:

l In MySQL, a basic identifier can consist of any letters (A to Z), decimal digits (0 to 9), $, or
underscore (_).

92

5.2.1 IDL to SQL Mapping

93

l In Microsoft SQL Server, a basic identifier can consist of any letters (A to Z), decimal digits
(0 to 9), $, #, or @. The first character may be a letter, @, or #.

If the daemon creates the user table, it will use quoted strings for the identifiers of the table and column
names only if they cannot be considered as basic identifiers according to the previous definitions. Thus,
user applications should also use quoted strings when referring to those column and table names in their
SQL statements.

Ordinarily, the name of a field in an IDL data structure can just be used as the name of a column in a table.
In fact, for those data types with clear and obvious mappings, the column name can be independent of the
field name used in the IDL type. However, because there is no one-to-one mapping of all IDL data types
to all SQL data types, for certain types, the column names used in SQL table schemas must follow certain
conventions that tie them to the names of the fields of IDL types from which they are mapped. This is true
for only the small subset of primitive IDL data types and for the complex IDL data types that would oth-
erwise have ambiguous mappings, i.e., multiple ways to map IDL to SQL or vice versa.

The Database Integration Service daemon scans for, identifies and uses special mappings of column
names when serializing and deserializing IDL data to and from a table in a database. There are two types
of special mappings, hierarchical naming and suffixes.

Hierarchical Naming

Complex IDL types may have fields that are actually embedded structures, so a field may actually contain
multiple values. In SQL, columns usually contain a single value for each column element, although there
are a few types like BINARY(x) CHAR(x), VARBINARY(x) and VARCHAR(x) that can store multiple
values of the same type in a single column element. To map complex IDL types to SQL table schemas,
embedded data structures are unfolded so that elements of an embedded structure are stored individually in
separate columns.

When the Database Integration Service daemon creates a table schema from a Topic, it will automatically
flatten hierarchical data structures into tables. In doing so, the names of columns that store the fields of
embedded structures will have hierarchical names. For example, given this IDL definition:
struct bar { struct foo {

long one; bar element;
long two; };

};

The table constructed from a Topic which uses the foo type would have the following schema by default:
CREATE table foo (INTEGER element.one, INTEGER element.two)

The Database Integration Service daemon allows the configuration of the separator character (‘.’) using
the attribute IdentifierSeparatorChar defined in the general options of the configuration file (described in
4.4.4.1 General Options on page 30).

While for most embedded structures, the hierarchical naming of columns is not needed for the Database
Integration Service daemon to handle type translation correctly, the proper hierarchical naming of columns

5.2.1 IDL to SQL Mapping

is essential for the daemon to serialize and deserialize IDL unions and sequences. These types are variable
in length, however the table must have enough columns to hold the maximum size of the IDL data type.
Hierarchical naming allows the Database Integration Service daemon to identify columns that form a
embedded, complex element.

For variable-length types (other than sequences of “char”, “wchar” or “octet”), an extra column with the
suffix “#length” is also added to the table to hold the current length of the type. Also, each column that rep-
resents a field in an element of the variable-length type must have a suffix “[x]” in its name that identifies
the index of the element, where

x = 0 to (max_length - 1)

During the serialization and deserialization process, the daemon will usually be working with less than the
maximum length of data, and thus, will need to use the hierarchical naming along with the suffix to determ-
ine which columns belong to unused elements that should be skipped.

This hierarchical flattening operation of member names may lead to very long column names in the gen-
erated table and can easily exceed the maximum number of characters supported by the database (some
databases limit the column names to 30 characters).

To reduce the length of the generated names, you can instruct Database Integration Service to consider
only the first n and the last m characters of the flattened name, and eventually resolve any conflict by using
a progressive number between the prefix and the suffix. The two tags <idl_member_prefix_max_
length> and <idl_member_suffix_max_length> (see Table 4.8 Database Mapping Options), defined in
the configuration file (described in 4.4 Configuration File on page 25) and the columns idl_member_pre-
fix_max_length and idl_member_suffix_max_length in the meta-tables (described in 4.5.1.1.7 idl_mem-
ber_prefix_max_length, idl_member_suffix_max_length on page 53) tell the daemon the values to use.
(The values defined in the meta-table have precedence over the values defined in the configuration file.)

Suffixes

Suffixes are also needed for column names when multiple IDL primitive types map into the same SQL
type. Because there are more IDL primitive types than SQL primitive types, a full mapping will result in
the use of the same SQL type to hold more than one IDL type. For example, an IDL “long double” has no
equivalent in SQL. Thus, a SQL BINARY(16) does double duty and is used to store both an IDL “long
double” as well as an IDL “octet[16]”.

If a “long double” could be treated the same as an “octet[16]” by the Database Integration Service dae-
mon, then there would be no issue and no special name mapping would be needed. However, because the
representation of a “long double” is Endianess-dependent while an “octet[16]” is not, the Database Integ-
ration Service daemon must use the column name to decide whether or not a SQL BINARY(16) value
needs to be byte swapped or not when converting to an IDL data type. Since “long double” has no equi-
valent SQL type, a “.ld” must be appended to the name of a SQL BINARY(16) column that is used to
store one.

94

5.2.2 Primitive Types Mapping

95

Similarly, a suffix of “.str” is used to indicate that a SQL VARCHAR(x) stores IDL “string”, which is a
NULL-terminated sequence of the primitive type “char”. Without the suffix in the column name, a SQL
VARCHAR(x) naturally stores a sequence of chars-the IDL type “sequence <char,x>.

Note: Because of the use of suffixes in the mapping of identifiers of certain IDL datatypes, the identifiers
“str”, “ld“, and “bin” are reserved keywords that should not be used as the name of fields in IDL struc-
tures. For example, the following IDL definitions have the same SQL mapping which would in result in
the incorrect treatment of the type “Foo2” by the daemon. Each would result in a table schema that would
have the ten columns named “my_field[0].str”, “my_field[1].str”, ..., “my_field[2].str”.
struct Foo1 { struct Bar {

string<10> my_field; and sequence<char,10> str;
}; };

struct Foo2 {
struct Bar my_field;

}

5.2.2 Primitive Types Mapping

The following tables show the mapping between basic types in IDL and SQL:

l Table 5.2 Basic Types in IDL and SQL (MySQL)

l Table 5.3 Basic Types in IDL and SQL (SQL Server)

l Table 5.4 Basic Types in IDL and SQL (PostgreSQL)

IDL Type IDL Field Name SQL Type Table Column Name

char a my_field CHAR(1) “my_field”

char[x] b my_field CHAR(x) “my_field”

sequence<char,x> my_field VARCHAR(x) “my_field”

wchar c my_field NCHAR(1) “my_field”

wchar[x] d my_field NCHAR(x) “my_field”

sequence<wchar,x> my_field NVARCHAR(x) “my_field”

Table 5.2 Basic Types in IDL and SQL (MySQL)

aThe format on the wire of “char” and “char[x]” is the same.

bThe format on the wire of “char” and “char[x]” is the same.

cThe format on the wire of “wchar” and “wchar[x]” is the same.

dThe format on the wire of “wchar” and “wchar[x]” is the same.

5.2.2 Primitive Types Mapping

IDL Type IDL Field Name SQL Type Table Column Name

octet a my_field BINARY(1) “my_field”

octet[x]b my_field BINARY(x) “my_field”

sequence<octet,x>c my_field VARBINARY(x) “my_field”

boolean my_field TINYINT “my_field”

short my_field SMALLINT “my_field”

unsigned short my_field SMALLINT “my_field”

long my_field INTEGER “my_field”

unsigned long my_field INTEGER “my_field”

double my_field DOUBLE “my_field”

float my_field FLOAT “my_field”

string<x> my_field VARCHAR(x) “my_field.str” d

wstring<x> my_field NVARCHAR(x) “my_field.str” e

long long my_field BIGINT “my_field”

unsigned long long my_field BIGINT “my_field”

long double my_field BINARY(16) “my_field.ld” f

unsigned long long my_field DATETIME “my_field”

Table 5.2 Basic Types in IDL and SQL (MySQL)

aThe format on the wire of “octet”and “octet[x]” is the same.

bThe format on the wire of “octet”and “octet[x]” is the same.

cThe format on the wire of “octet”and “octet[x]” is the same.

dThe “.str” suffix is used to distinguish between “(w)string<x>” and “sequence<(w)char,x>”.

eThe “.str” suffix is used to distinguish between “(w)string<x>” and “sequence<(w)char,x>”.

fThe “.ld” suffix is used to distinguish between “octet[x]” and “long double”.

96

5.2.2 Primitive Types Mapping

97

IDL Type IDL Field Name SQL Type Table Column Name

char my_field [char](1) [my_field]

char[x] my_field [char](x) [my_field]

sequence<char,x> my_field [varchar](x) [my_field]

wchar my_field [nchar](1) [my_field]

wchar[x] my_field [nchar](x) [my_field]

sequence<wchar,x> my_field [nvarchar](x) [my_field]

octet my_field [binary](1) [my_field]

octet[x] my_field [binary](x) [my_field]

sequence<octet,x> my_field [varbinary](x) [my_field]

boolean my_field [tinyint] [my_field]

short my_field [smallint] [my_field]

unsigned short my_field [smallint] [my_field]

long my_field [int] [my_field]

unsigned long my_field [int] [my_field]

double my_field [float](53) [my_field]

float my_field [real] [my_field]

string<x> my_field [varchar](x) [my_field$str] a

wstring<x> my_field [nvarchar](x) [my_field$str] b

long long my_field [bigint] [my_field]

unsigned long long my_field [bigint] [my_field]

long double my_field [binary](16) [my_field$ld]

unsigned long long c my_field [datetime] [my_field]

Table 5.3 Basic Types in IDL and SQL (SQL Server)

aThe “.str” suffix is used to distinguish between “(w)string<x>” and “sequence<(w)char,x>”.

bThe “.str” suffix is used to distinguish between “(w)string<x>” and “sequence<(w)char,x>”.

cThe [datetime] type is converted to/from a 64-bit value expressed as microseconds in the Gregorian epoch.

5.2.2 Primitive Types Mapping

IDL Type IDL Field Name SQL Type Table Column Name

chara my_field CHAR(1) “my_field”

char[x]b my_field CHAR(x) “my_field”

sequence<char,x> my_field VARCHAR(x) “my_field”

wchar Not supported

wchar[x] Not supported

sequence<wchar,x> Not supported

octetc my_field BYTEA “my_field.1.bin”d

octet[x]e my_field BYTEA “my_field.x.bin”f

sequence<octet,x> my_field BYTEA “my_field.x”g

boolean my_field BOOLEAN “my_field”

short my_field SMALLINT “my_field”

unsigned short my_field SMALLINT “my_field”

long my_field INTEGER “my_field”

unsigned long my_field INTEGER “my_field”

double my_field DOUBLE PRECISION “my_field”

float my_field REAL “my_field”

Table 5.4 Basic Types in IDL and SQL (PostgreSQL)

aThe format on the wire of “char” and “char[x]” is the same.

bThe format on the wire of “char” and “char[x]” is the same.

cThe format on the wire of “octet” and “octet[x]” is the same.

dThe “bin” part of the “x.bin” suffix is used to distinguish octet[x] from sequence<octet,x> as PostgreSQL does not sup-
port SQL BINARY or VARBINARY. The “x” part of the suffix encodes the size of the octet array as the SQL type
BYTEA does not have a bound.

eThe format on the wire of “octet” and “octet[x]” is the same.

fThe “bin” part of the “x.bin” suffix is used to distinguish octet[x] from sequence<octet,x> as PostgreSQL does not sup-
port SQL BINARY or VARBINARY. The “x” part of the suffix encodes the size of the octet array as the SQL type
BYTEA does not have a bound.

gThe “x” part of the suffix encodes the maximum size of the octet sequence as the SQL type BYTEA does not have a
bound.

98

5.2.3 Bit Field Mapping

99

IDL Type IDL Field Name SQL Type Table Column Name

string<x> my_field VARCHAR(x) “my_field.str”a

wstring<x> Not supported

long long my_field BIGINT “my_field”

unsigned long long my_field BIGINT my_field

long double Not supported

Table 5.4 Basic Types in IDL and SQL (PostgreSQL)

5.2.3 Bit Field Mapping

IDL bit-field type is an RTI extension that maps directly to C/C++ bit fields but are stored in primitive
types in Java with only the specified number of bits being significant. When mapped to SQL, a full prim-
itive SQL type is used to store the value, but only a subset of the bits are significant. A suffix must be
added to the column name to indicate to the Database Integration Service daemon which bits to serialize
when translating the table data into an IDL structure.

The following tables show the mapping of bit fields between IDL and SQL:

l Table 5.5 Bit Fields in IDL and SQL (MySQL)

l Table 5.6 Bit Fields in IDL and SQL (SQL Server)

IDL Type IDL Field Name SQL Type Table Column Nameb

char my_field:x CHAR(1) “my_field:x”

wchar my_field:x NCHAR(1) “my_field:x”

octet my_field:x BINARY(1) “my_field:x”

short my_field:x SMALLINT “my_field:x”

unsigned short my_field:x SMALLINT “my_field:x”

long my_field:x INTEGER “my_field:x”

unsigned long my_field:x INTEGER “my_field:x”

Table 5.5 Bit Fields in IDL and SQL (MySQL)

aThe “.str” suffix is used to distinguish between “string<x>” and “sequence<char,x>”.

bThe column storing the last bit field in a set of bits will use name of “my_field:!x”.

5.2.4 Enum Types Mapping

IDL Type IDL Field Name SQL Type Table Column Namea

char my_field:x [char](1) “my_field:x”

wchar my_field:x [nchar](1) “my_field:x”

octet my_field:x [binary](1) “my_field:x”

short my_field:x [smallint] “my_field:x”

unsigned short my_field:x [smallint] “my_field:x”

long my_field:x [int] “my_field:x”

unsigned long my_field:x [int] “my_field:x”

Table 5.6 Bit Fields in IDL and SQL (SQL Server)

5.2.4 Enum Types Mapping

IDL enumeration fields are mapped to columns of type SQL INTEGER. No special naming is required.

5.2.5 Simple IDL Structures

Simple IDL structures containing only basic or primitive types directly map to SQL schemas with fields in
the structure becoming columns in the table. Table 5.7 Simple Structures in IDL and SQL shows the map-
ping of a simple structure between IDL and SQL

IDL Types SQL Table Schema

struct MyStruct {
long my_key_field; //@keyb

short my_short_field;
};

CREATE TABLE "MyStructContainer" (
"my_key_field" INTEGER NOT NULL,
"my_short_field" SMALLINT NOT NULL,

PRIMARY KEY(my_key_field)
);

Table 5.7 Simple Structures in IDL and SQL

5.2.6 Complex IDL Structures

IDL structures that contain more complex fields, fields that are structures, unions, or sequences and arrays
of types other than “octet”, “char” or “wchar” are mapped to SQL tables by flattening the embedded struc-
tures so that their fields are all at the top (and only) level.

aThe column storing the last bit field in a set of bits will use name of “my_field:!x”.
b IDL fields marked as keys are mapped to the primary keys of SQL tables.

100

5.2.6 Complex IDL Structures

101

Structure fields

Elements of embedded structures map into individual table columns with names that are hierarchically com-
posed from the name of the field in the embedded structure and the name of the embedded structure field
itself. This naming convention is not required for serialization to work properly. Just as long as the column
types map to the types of the embedded structure, then the Database Integration Service daemon will prop-
erly handle the data irrelevant of the actual column name.

Table 5.8 Nested Structures in IDL and SQL shows the mapping of a complex structure between IDL and
SQL.

IDL Type SQL Table Schema
struct MyStruct {

short my_short_field;
long my_long_field;

};
struct MyStructContainer {

long my_key_field; //@key
MyStruct my_struct_field;

};

CREATE TABLE "MyStructContainer" (
"my_key_field" INTEGER NOT NULL,
"my_struct_field.my_short_field" SMALLINT NOT NULL,
"my_struct_field.my_long_field" INTEGER NOT NULL,
PRIMARY KEY(my_key_field)

);

Table 5.8 Nested Structures in IDL and SQL

Union fields

IDL unions are mapped by adding an extra column with the name “_d” to represent the discriminator that
is used to indicate which type is actually stored by the union. These unions are also known as “switched
unions”. All of the individual union fields are mapped to corresponding columns in a table. However, only
one of these columns will contain valid data as indicated by the discriminator column, “_d”.

If the Database Integration Service daemon creates the table from an IDL containing an union, it will gen-
erate the data columns with hierarchical names from the name of the union field and the name of the union
itself. In addition, the values of the switch/case statement in the IDL union are encoded into the names of
the data columns as well, e.g., “.c(0,1).”, “.c(2).”, “.(def).”.

This naming convention is required for the proper serialization and deserialization of unions. The Data-
base Integration Service daemon uses the name of the fields when processing an IDL union to know
which column(s) correspond to the value of the discriminator.

Table 5.9 Union Fields in IDL and SQL shows the mapping of an union between IDL and SQL.

5.2.7 Array Fields

IDL Type SQL Table Schema
union MyUnion switch(long) {

case 0:
case 1:

long my_long_field;
case 2:

double my_double_field;
default:

short my_short_field;
};
struct MyUnionContainer {

long my_key_field; //@key
MyUnion my_union_field;

};

CREATE TABLE "MyUnionContainer" (
"my_key_field" INTEGER NOT NULL,
"my_union_field._d” INTEGER NOT NULL,
"my_union_field.c(0,1).my_long_field" INTEGER,
"my_union_field.c(2).my_double_field" DOUBLE,
"my_union_field.c(def).my_short_field" SMALLINT,

PRIMARY KEY(my_key_field)
);

Table 5.9 Union Fields in IDL and SQL

5.2.7 Array Fields

For array fields where the array type is different from “octet”, “char” and “wchar”, an IDL array type is
stored as consecutive columns of the same type in a SQL table. If the Database Integration Service dae-
mon creates a table from an IDL type that contains an array, it will create the column names using a nam-
ing convention that prevents name collisions. By default, the daemon simply adds the suffix “[i]”, where
“i” is the array index of that element (beginning at 0 for the first index). The open bracket and close
bracket characters can be configured using the tags in the configuration file <open_bracket_char> and
<close_bracket_char> (see Table 4.8 Database Mapping Options). Note, this naming convention is not
required for the Database Integration Service daemon to serialize/deserialize IDL array fields.

Note that array fields of type “octet”, “char” and “wchar” are mapped into a single column element of the
corresponding SQL types BINARY(x), CHAR(x) and WCHAR(x), respectively. Table 5.10 Array Fields
in IDL and SQL shows a mapping of an array field between IDL and SQL.

IDL Type SQL Table Schema

struct MyArrayContainer {
long my_key_field; //@key
short my_arr_field[2];

};

CREATE TABLE "MyArrayContainer" (
"my_key_field" INTEGER NOT NULL,
"my_arr_field[0]" SMALLINT NOT NULL,
"my_arr_field[1]" SMALLINT NOT NULL,

PRIMARY KEY("my_key_field")
);

Table 5.10 Array Fields in IDL and SQL

5.2.8 Sequence Fields

Sequences are basically variable-sized arrays that have a maximum length and carry an additional integer
that indicates the current size. The mapping of IDL sequences to a table schema is similar to the array map-
ping, with the following differences:

102

5.2.9 NULL Values

103

l An extra column is added with the suffix “#length”, used to store the current length of the sequence.

l The total number of columns created is equal to the maximum number of elements that the sequence
can hold, although the number of columns containing valid data at a given time is stored in the
“#length” column.

l The naming convention of adding the suffix “[i]” to each column is required for the Database Integ-
ration Service daemon to handle the mapping between IDL and SQL correctly. The open bracket
and close bracket characters can be configured using the tags <open_bracket_char> and <close_
bracket_char> (see Table 4.8 Database Mapping Options).

l Sequence elements can contain the NULL value since not all elements may be used at a given time.

Note: Sequences of the IDL types “char”, “wchar” or “octet” map directly into the variable-length SQL
types VARCHAR, VARWCHAR, and VARBINARY, respectively. Table 5.11 Sequence Fields in IDL
and SQL shows the mapping of a sequence field between IDL and SQL.

IDL Type SQL Table Schema

struct MySequenceContainer {
long my_key_field; //@key
sequence<short,4> my_seq_field;

};

CREATE TABLE "MySequenceContainer" (
"my_key_field" INTEGER NOT NULL,
"my_seq_field#length" INTEGER NOT NULL,
"my_seq_field[0]" SMALLINT,
"my_seq_field[1]" SMALLINT,
"my_seq_field[2]" SMALLINT,
"my_seq_field[3]" SMALLINT,

PRIMARY KEY("my_key_field")
);

Table 5.11 Sequence Fields in IDL and SQL

5.2.9 NULL Values

Null values exist in SQL databases but do not have an equivalent in IDL. The Database Integration Ser-
vice daemon converts NULL values into ‘0’-values when publishing from a SQL table, in the following
way:

l numerical types: 0

l fixed-length string types (CHAR, NCHAR): ""

l variable-length types (VARCHAR, NVARCHAR, VARBINARY): length 0

l binary: every byte is set to 0

l timestamp: 0

5.2.10 Sparse Data Types

Sparse Data Types follow the same mapping as structures (see 5.2.5 Simple IDL Structures on page 100
and 5.2.6 Complex IDL Structures on page 100). The fields that are not required or primary keys are cre-
ated with the nullable attribute.

5.3 JSON Data Representation Mapping

Type in Pseudo Language SQL Table Schema

sparse MySparsea {
long my_key_field; //@key
short my_short_field;
long my_long_field; //@required

};

Create Table "MySparseContainer" (
"my_key_field" INTEGER NOT NULL,
"my_short_field" SMALLINT,
"my_long_field" INTEGER NOT NULL,
PRIMARY_KEY("my_key_field")

);

Table 5.12 Simple Sparse Type

5.3 JSON Data Representation Mapping

Database Integration Service can be configured to store a DDS sample’s content in a JSON column. This
is only supported for MySQL and PostgreSQL databases. In MySQL, this is supported as of version 5.7.8.
In PostgreSQL, this is supported as of version 9.2.

Table 5.13 Mapping of DDS Sample to JSON Representation describes how to map the content of a DDS
Sample Representation to JSON representation.

IDL Construct IDL Type Example Sample JSON Representation Example

Structs (top level)

struct AStruct {
long aLong;
bolean aBool;

};

{
"aLong": 1,
"aBool": true

}

Structs (nested)

struct AnotherStruct {
long aLong;
boolean aBool;

};
struct AStruct {

AnotherStruct anotherStruct;
};

{
"anotherStruct" : {

"aLong": 1,
"aBool": true

}
}

Union (top level)

union AUnion switch (long) {
case 0:

long aLong;
default:

boolean aBool;
};

{
“aLong”: 1

}

Union (nested)

union AUnion switch (long) {
case 0:

long aLong;
default:

boolean aBool;
};
struct AStruct {

AUnion aUnion;
};

{
"aUnion":{

"aLong": 1
}

}

Table 5.13 Mapping of DDS Sample to JSON Representation

aSparse types must be built dynamically. There is no IDL construct sparse.

104

5.3 JSON Data Representation Mapping

105

IDL Construct IDL Type Example Sample JSON Representation Example

Arrays

(simple members)

struct AStruct {
long anArrayOfLongs[2];

};

{
"anArrayOfLongs" : [

1,
2

]
}

Arrays

(complex members)

struct AnotherStruct {
float aFloat;

};
struct AStruct {

AnotherStruct
anArrayOfStructs[2];

};

{
"anArrayOfStructs": [

{
"aFloat": 0.0

},
{

"aFloat": 1.0
}

]
}

Sequences

(simple members)

struct AStruct {
sequence<double,2>

aSequenceOfDoubles;
};

{
"aSequenceOfDoubles" : [

1.1,
1.2

]
}

Sequences

(complex members)

struct AnotherStruct {
float aFloat;

};
struct AStruct {
sequence<AnotherStruct,2>
aSequenceOfStructs;
};

{
"aSequenceOfStructs": [

{
"aFloat": 0.0

},
{

"aFloat": 1.0
}

]
}

Shorts
struct AStruct {

short aShort;
};

{
"aShort": 3

}

Unsigned Shorts
struct AStruct {

unsigned short aUShort;
};

{
"aUShort": 2

}

Enums

enum AEnum {
ENUMERATOR_1 = 1,
ENUMERATOR_2 = 2

};
struct AStruct {

AEnum anEnum;
};

{
"anEnum": “ENUMERATOR_1”

}

Longs
struct AStruct {

long aLong;
};

{
"aLong": 2324

}

Unsigned Longs
struct AStruct {

unsigned long aULong;
};

{
"aULong": 2326

}

Long Longs
struct AStruct {

long long aLongLong;
};

{
"aLongLong": 23245

}

Unsigned Long Longs
struct AStruct {

unsigned long aULongLong;
};

{
"aULongLong": 232457

}

Table 5.13 Mapping of DDS Sample to JSON Representation

5.3 JSON Data Representation Mapping

IDL Construct IDL Type Example Sample JSON Representation Example

Floats
struct AStruct {

float aFloat;
};

{
"aFloat": 2.3

}

Doubles
struct AStruct {

double aDouble;
};

{
"aDouble": 3.14

}

Booleans
struct AStruct {

boolean aBool;
};

{
"aBool": false

}

Octets
struct AStruct {

octet aOctet;
}

{
"aOctet": “0x00”

}

Chars
struct AStruct {

char aChar;
}

{
"aChar": “a”

}

WChars Not supported

Strings
struct AStruct {

string aString;
}

{
"aString": "A string!"

}

WStrings Not supported

Long Doubles Not supported

Table 5.13 Mapping of DDS Sample to JSON Representation

106

Appendix A Error Codes
Table A.1 Database Integration Service Errors and Warnings lists the native error and warning mes-
sages that may be logged by the Database Integration Service daemon. While some of these mes-
sages may actually provide enough information by themselves to help users fix the problem, many
have to be used along with other data to help with debugging the issue.

Often several of these messages will be logged for a single problem. A failure at a lower layer will
cause log messages to be printed at various levels of the Database Integration Service daemon
logic. These messages will be valuable to you and to RTI support engineers in debugging issues
with Database Integration Service.

Code Message Details

0 - 1023 Database Integration Service daemon errors
These messages are produced by the logic of the Database Integration Service daemon itself.

0 Unexpected error
Should never occur.

Contact support@rti.com if seen.

1 <message> General error.

2
Error storing RTI DDS sample in table
'<table>'

There was an errorwhen storing value received with Connext
DDS into the database.

3 Error creating <entity>

4
Error creating <entity> associated to the
table '<table>'

5 Error getting <entity>

6 <meta-table> entry not valid
There was an entry in a meta-table (RTIDDS_PUBLICATIONS
orRTIRTCSUBSCRIPTIONS) that was not valid.

Table A.1 Database Integration Service Errors and Warnings

107

Appendix A Error Codes

108

Code Message Details

7 Error creating '<type>' SQL statement
There was an errorwhen creating or preparing a SQL state-
ment.

8 Error creating table '<table>'

9 Error opening RTI DDS connection There was a problem initializing Connext DDS.

10 The type of the column '<column>' is not valid

The meta-columns RTIDDS_DOMAIN_ID and RTIRTC_
REMOTE must be added to tables that the user creates and
wished to connect to via Database Integration Service. They
will be automatically if the Database Integration Service dae-
mon creates the table.

If the user creates the table and adds the two columns, they
must be of type INTEGER.

This message is produced if these columns exist and are of
the wrong type.

11 Error publishing record/instance
The Database Integration Service daemon had a problem
publishing a table change as a Topic.

12 Error disposing record/instance
The Database Integration Service daemon had a problemdis-
posing of an instance of Topic when the user deleted a row in
a table.

13 Error initializing <module> module
The Database Integration Service daemon had problems ini-
tializing an internal code module.

14
The definition of environment variable '%s' is
required

15
Error opening the database connection as-
sociated to the DSN '<DSN>'

16 Error enabling database log

17 <string> too long (maximum length: <length>)

18 Error creating connection to database log

19
The value of the column 'column' in the table
'<meta-table>' is not valid

20

Error generating '<type>' SQL statement
string

Error generating SQL statement string

The Database Integration Service daemon had a problem in
generating the string for preparing or executing a SQL state-
ment.

21
Error skipping parameter for the field
'<column>'

22

Error binding parameter for the column
'<column>'

Error binding parameters

Table A.1 Database Integration Service Errors and Warnings

Appendix A Error Codes

Code Message Details

23
The column '<column>' has an unexpected
SQL Type

Supported SQL types are:
SQL_CHAR
SQL_WCHAR
SQL_VARCHAR
SQL_WVARCHAR
SQL_BINARY
SQL_VARBINARY
SQL_INTEGER
SQL_SMALLINT
SQL_TINYINT
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE
SQL_TIMESTAMP

24 Error opening configuration file ’filename’

25 Error reading configuration file ’filename’

26 Error parsing configuration file ’filename’

27
The maximum length for a <type> field is
<length>

28 Error serializing record
A problemoccurred when serializing a table row for publishing
as a Topic.

29 Error deserializing RTI DDS sample
A problemoccurred when deserializing data received via Con-
next DDS for storing into a table.

30 Error creating key cache
Could not create cache of known instance keys see 4.5.2.1.7
cache_maximum_size, cache_initial_size on page 70.

31 Error inserting key in cache
Problemoccurred while storing instance key in cache see
4.5.2.1.7 cache_maximum_size, cache_initial_size on
page 70.

32 Null pointer argument
A precondition failed in which a NULL pointerwas passed to
an internal daemon function.

33 Error reading table '<table>'

34
The resolution column '<column>' does not
exist in the table '<table>'

The RTIDDS_PUBLICATIONS table contained an entry in the
’resolution_column’ which does not match the name of an ex-
isting column in the corresponding table. See 4.5.1.1.6 res-
olution_column on page 52.

35

The type of the resolution column '<column>'
in the table '<table>' is not valid. The type of
the resolution column can be: SQL_
INTEGER, SQL_SMALLINT, SQL_BIGINT
and SQL_TIMESTAMP

A column specified in the column ’resolution_column’ in the
RTIDDS_PUBLICATIONS table is not of an acceptable type.
See 4.5.1.1.6 resolution_column on page 52.

Table A.1 Database Integration Service Errors and Warnings

109

Appendix A Error Codes

110

Code Message Details

36 Error gathering instance information
Error gathering Connext DDS instance information through
the execution of the associated SELECT statement

37 Invalid metatable schema
The schema of the metatables is not valid. It is possible that
those tables were created with a previous version ofData-
base Integration Service.

38 Error deleting key fromcache

39 Error deleting a row from '<table>' There was a problemdeleting a row froma user data table.

41
Error creating publication/subscription for the
'<table>' without primary key.

The user tried to create a publication/subscription for a table
without a primary key.

43 Key not supported

Non-primitive IDL keys are not supported. When Database In-
tegration Service tries to create a table with complex keys, it
will report this errormessage.

Example with supported keys:
struct SupportedKeysSt {

string id_str; //@key
long id_long; //@key
short id_short; //@key

};

Example with unsupported keys:
struct KeySt {

long id_long;
}
struct NonSupportedKeysSt {

KeySt id_st; //@key
}

44 Error creating subscriber state queue

45 Error updating subscription state

46 Error creating '<object>'

47 Path too long The path to the configuration file is too long.

48 Error creating database publication cache
The Database Integration Service daemon had a problem
creating the publication database cache.

49 Error adding record to publication cache
The Database Integration Service daemon had a problem
adding a new record to the publication database cache.

50
Column name length exceedsmaximum
length

The maximum length of a column name in Database In-
tegration Service is 30 characters.

To control the length of a column name, use the configuration
tags <idl_member_prefix_max_length> and <idl_member_
suffix_max_length> under <database_mapping_options>.
See 4.4.4.2 DatabaseMappingOptionson page 34.

Table A.1 Database Integration Service Errors and Warnings

Appendix A Error Codes

Code Message Details

1024 - 2047 Connext DDS-related errors
These messages are produced through the interaction of the Database Integration Service daemon with Connext
DDS. More information on each error can be found by examining the native Connext DDS errors codes that will
be logged with these messages.

1024 <message> GeneralConnext DDS errormessage.

1025 Error getting <entity> default QoS

1026 Error getting <entity> QoS

1027 Error setting <entity> QoS

1028 Error creating <entity>

1029 Error getting <entity>

1030 Error enabling <entity>

1031 Error cloning type code

1032 Error reading RTI DDS samples

1033 Error setting <entity> user data

1034 Error disposing RTI DDS instance

1035 Error unregistering RTI DDS instance

1036 Errorwriting RTI DDS sample

1037 Error ignoring <entity>

1038 Error creating <waitset type> waitset

1039 Errorwaiting in <waitset type> waitset

1040 Error getting builtin transport property

1041 Error setting builtin transport property

1042 Error creating <waitset type> guard condition

1043 Error attaching condition

1044 Error registering type '<type>'

1045 Error taking REDA buffer

1046 Error creating mutex

1047 Error creating <thread> thread

Table A.1 Database Integration Service Errors and Warnings

111

Appendix A Error Codes

112

Code Message Details

1048 Error creating REDA fast buffer

1049 Error taking semaphore

1050 Error giving semaphore

1051 Error creating worker factory

1052 Error creating worker

1053 Error creating clock

1054 Error creating event manager

1055 Error creating timer

1056 Error posting event

1057 Error getting time

1058 Error creating semaphore

1059 Error loading DDS XML Profile

1060 Error getting TypeCode

1061 Error cloning TypeCode

1062 Error parsing TypeCode

1063 Error creating TypeCode

2048 - 4095 ODBC-related errors
These message are produced through the interaction of the Database Integration Service daemon with the data-
base through the ODBC driver. More information on each error can be found by examining the native ODBC er-
rors codes that will be logged with these messages.

2048
<message>

<message>: <ODBCdriver errormessage>
General ODBCerrormessage.

4096 - 8191 DBMS Log Connection-related errors
These messages are produced through the interaction of the Database Integration Service daemon with the Con-
next DDS. More information on each error can be found by examining the native Connext DDS errors codes that
will be logged with these messages.

4096 <message> General DBMS log connection errormessage.

Table A.1 Database Integration Service Errors and Warnings

Appendix A Error Codes

Code Message Details

8192 - 16383 OS-related errors
These messages are produced through the interaction of the Database Integration Service daemon with the op-
erating system. More information on each error can be found by examining the native OS errors codes that will be
logged with these messages.

8192 <message> General OS errormessage.

8193 Error handling OS signals

8194 Unable to set signal handler for <signal>

8195 Error getting the host name

8196 Error allocating memory for <object>

16384+ Warning messages
These are warning messages that may be logged by the Database Integration Service daemon.

16384

Timestamps prior to '1970-01-01
00:00:00.00' cannot be used for conflict res-
olution.

The Database Integration Service daemon
will always use '1970-01-01 00:00:00,00' as
the timestamp for those cases

16385

The Timestamp value of the resolution
column is NULL.

The Database Integration Service daemon
will use the value '1970-01-01 00:00:00,00'.

16387 IDL member identifier collision

The prefix/suffix-based name associated with memberA in
IDL type T collides with the name of anothermember inside
the same type.Database Integration Servicewill resolve the
conflict using an index.

16388 Invalid configuration parameter

16389 Ignored QoS value
A QoS value has been ignored byDatabase Integration Ser-
vice.

16392
Dynamic loading of monitoring library is not
supported

RTIMonitoring Library is statically linked.

In Database Integration Service there is no need to load this
library dynamically.

32769 Requested incompatible QoS

The QoS of a Database Integration Service subscription is in-
compatible with the QoS of a Connext DDS publication.

The name of the policy that is incompatible is shown in this
warning message.

Table A.1 Database Integration Service Errors and Warnings

113

Appendix A Error Codes

114

Code Message Details

32770 Offered incompatible QoS

The QoS of a Database Integration Service publication is in-
compatible with the QoS of a Connext DDS subscription.

The name of the policy that is incompatible is shown in this
warning message.

32771 Sample lost message A Database Integration Service subscription lost a sample.

32772 Sample rejected message
A Database Integration Service subscription rejected a
sample.

Table A.1 Database Integration Service Errors and Warnings

Appendix B Database Limits
The maximum number of columns is limited by the underlying database product. The maximum
length of a column is independent of the database and it is limited to 30 characters. Table B.1 Real-
Time Connect Database Limits notes the database limits of Database Integration Service (referred
to as DIS in the table).

MySQL 5.5 Microsoft SQL
Server 2012 PostgreSQL

Maximumnumber of
columns

4096, although the effective maximummay be considerably smal-
ler, see B.1MaximumColumns for MySQL on page 117 1,024

250-1600, de-
pending on column
types

Maximumcolumn-
name length (char-
acters)

30 a 30 b 30 (bytes)c

CLOB/BLOB support
Not supported by DIS

Maximum record size is 65535 bytes

Not supported by
DIS

Maximum record
size is 8,000 bytes
d

Not supported by
DIS

Maximum record size
is 1.6 TB

Table B.1 Real-Time Connect Database Limits

aLimit is imposed by Database Integration Service (not MySQL, which allows column names of up to 64 char-
acters).

bLimit is imposed by Database Integration Service (not SQL Server, which allows column names of up to 128
characters).

cLimit is imposed by Database Integration Service (not PostgreSQL, which allows column names up to 63
bytes)

d [varbinary](max) and [varchar](max) are not supported by Database Integration Service.

115

B.1 Maximum Columns for MySQL

116

MySQL 5.5 Microsoft SQL
Server 2012 PostgreSQL

CHARmaximumsize
(bytes)

255 a 8,000 1GB

VARCHARmaximum
size (bytes)

65535 b 8,000 c 1GB

BINARY maximumsize
(bytes)

255 d 8,000 1GB

VARBINARY maximum
size (bytes)

65535 e 8,000 f 1GB

JSONmaximumsize
(bytes)

4194304 by default

(JSONsupport was added in MySQL 5.7)

Not supported by
DIS

1 GB

JSONB maximumsize
(bytes)

Not supported by DIS
Not supported by
DIS

256 MB

Table B.1 Real-Time Connect Database Limits

B.1 Maximum Columns for MySQL

The exact limit for the number of columns is driven by two factors:

aThe maximum size of a row in MySQL 5.5 is limited to 65535. For example, you cannot have two fields of type
VARCHAR(40000) because the total width of the columns would exceed 65535 bytes. For additional information on
this restriction, see http://dev.mysql.com/doc/refman/5.5/en/column-count-limit.html.

bThe maximum size of a row in MySQL 5.5 is limited to 65535. For example, you cannot have two fields of type
VARCHAR(40000) because the total width of the columns would exceed 65535 bytes. For additional information on
this restriction, see http://dev.mysql.com/doc/refman/5.5/en/column-count-limit.html.

c [varbinary](max) and [varchar](max) are not supported by Database Integration Service.

dThe maximum size of a row in MySQL 5.5 is limited to 65535. For example, you cannot have two fields of type
VARCHAR(40000) because the total width of the columns would exceed 65535 bytes. For additional information on
this restriction, see http://dev.mysql.com/doc/refman/5.5/en/column-count-limit.html.

eThe maximum size of a row in MySQL 5.5 is limited to 65535. For example, you cannot have two fields of type
VARCHAR(40000) because the total width of the columns would exceed 65535 bytes. For additional information on
this restriction, see http://dev.mysql.com/doc/refman/5.5/en/column-count-limit.html.

f [varbinary](max) and [varchar](max) are not supported by Database Integration Service.

http://dev.mysql.com/doc/refman/5.5/en/column-count-limit.html
http://dev.mysql.com/doc/refman/5.5/en/column-count-limit.html
http://dev.mysql.com/doc/refman/5.5/en/column-count-limit.html
http://dev.mysql.com/doc/refman/5.5/en/column-count-limit.html

B.1 Maximum Columns for MySQL

l The maximum row size for a table, not counting BLOBs, is 65535.

l The maximum size of the meta information (schema) associated with a table is 64 KB. The meta
information includes the column names. The longer the column names, the smaller the maximum
number of columns.

Table B.2 Max. Number of Columns Used by RTI for Different Column Types and Name Lengths
provides information about the maximum number of columns that RTI was able to use for different
column-name lengths and column types.

For more information about MySQL restrictions on the number of columns, see
http://dev.mysql.com/doc/refman/5.5/en/column-count-limit.html.

Column Type Column-Name Length (characters) Maximum Number of Columns

INTEGER

30 1283a
DOUBLE

CHAR (50)

VARCHAR (50)

INTEGER
15 1823b

DOUBLE

CHAR (50) 15 1308c

VARCHAR (50) 15 1283d

Table B.2 Max. Number of Columns Used by RTI for Different Column Types and Name
Lengths

aLimited by schema size

bLimited by schema size

cLimited by row size.

dLimited by row size.

117

http://dev.mysql.com/doc/refman/5.5/en/column-count-limit.html

	Chapter 1 Welcome to RTI Database Integration Service
	1.1 Intended Readers
	1.2 Paths Mentioned in Documentation
	1.3 Available Documentation
	1.4 Background Reading

	Chapter 2 Introduction
	2.1 Interconnecting Standards
	2.2 Connectivity To Edge Devices
	2.3 Flexibility and Scalability
	2.4 High Availability
	2.5 Additional Benefits of Database Integration Service

	Chapter 3 Architecture
	3.1 Database Integration Service Architecture
	3.1.1 Database Integration Service daemon
	3.1.2 Database Integration Service’s Unique Features

	3.2 Capturing Real-Time Data in a DBMS
	3.3 Remote Real-Time Notification of Table Changes
	3.4 Bidirectional Integration
	3.5 Bridging between Domains
	3.6 Real-Time Database Replication

	Chapter 4 Using Database Integration Service
	4.1 Introduction to the Database Integration Service daemon
	4.1.1 How to Run the Database Integration Service daemon with MySQL
	4.1.1.1 Installing MySQL ODBC 5.1.6 driver
	4.1.1.2 Installing and Configuring the MySQL Server to Access (lib)rtirtc_mysqlq[.so,.dll]
	4.1.1.3 Installing libnddsc[.so,.dll) and libnddscore(.so,.dll) on MySQL Server
	4.1.1.4 Starting the MySQL Server in ANSI_QUOTES mode

	4.1.2 How to Run Database Integration Service daemon with PostgreSQL
	4.1.3 How to Run the Database Integration Service daemons as Windows Services
	4.1.4 Typecodes

	4.2 Command-Line Parameters
	4.3 Environment Variables
	4.4 Configuration File
	4.4.1 How to Load the XML Configuration
	4.4.2 XML Syntax and Validation
	4.4.3 Top-Level XML Tags
	4.4.4 Database Configuration with Database Integration Service XML Tag
	4.4.4.1 General Options
	4.4.4.1.1 Enabling Table Replication
	4.4.4.1.2 Conflict Resolution
	4.4.4.1.3 Table Initialization

	4.4.4.2 Database Mapping Options
	4.4.4.3 Database Connection Options
	4.4.4.4 Initial Subscriptions and Publications
	4.4.4.5 Configuring Waitsets

	4.5 Meta-Tables
	4.5.1 Publications Table
	4.5.1.1 Publications Table Schema
	4.5.1.1.1 table_owner, table_name
	4.5.1.1.2 domain_id
	4.5.1.1.3 topic_name
	4.5.1.1.4 type_name
	4.5.1.1.5 table_history_depth
	4.5.1.1.6 resolution_column
	4.5.1.1.7 idl_member_prefix_max_length, idl_member_suffix_max_length
	4.5.1.1.8 profile_name
	4.5.1.1.9 pub.present.access_scope, pub.present.ordered_access
	4.5.1.1.10 pub.partition.name
	4.5.1.1.11 dw.durability.kind
	4.5.1.1.12 dw.liveliness.lease_dur
	4.5.1.1.13 dw.deadline.period
	4.5.1.1.14 dw.history.kind, dw.history.depth
	4.5.1.1.15 dw.ownership.kind, dw.ownership_strength.value
	4.5.1.1.16 dw.publish_mode.kind
	4.5.1.1.17 dw.res_limits.max_samples, dw.res_limits.max_instances
	4.5.1.1.18 changes_queue_maximum_size
	4.5.1.1.19 RTIRTC_SCN

	4.5.2 Subscriptions Table
	4.5.2.1 Subscriptions Table Schema
	4.5.2.1.1 table_owner, table_name
	4.5.2.1.2 domain_id
	4.5.2.1.3 topic_name
	4.5.2.1.4 type_name
	4.5.2.1.5 table_history_depth
	4.5.2.1.6 process_batch, process_period, commit_type
	4.5.2.1.7 cache_maximum_size, cache_initial_size
	4.5.2.1.8 delete_on_dispose
	4.5.2.1.9 idl_member_prefix_max_length, idl_member_suffix_max_length
	4.5.2.1.10 profile_name
	4.5.2.1.11 filter_duplicates
	4.5.2.1.12 ordered_store
	4.5.2.1.13 persist_state
	4.5.2.1.14 sub.present.access_scope, sub.present.ordered_access
	4.5.2.1.15 sub.partition.name
	4.5.2.1.16 dr.durability.kind
	4.5.2.1.17 dr.reliability.kind
	4.5.2.1.18 dr.destination_order.kind
	4.5.2.1.19 dr.liveliness.lease_dur
	4.5.2.1.20 dr.deadline.period
	4.5.2.1.21 dr.history.kind, dr.history.depth
	4.5.2.1.22 dr.ownership.kind
	4.5.2.1.23 dr.time_filter.min_sep
	4.5.2.1.24 dr.res_limits.max_samples, dr.res_limits.max_instances
	4.5.2.1.25 dr.unicast.receive_port
	4.5.2.1.26 dr.multicast.receive_address
	4.5.2.1.27 dr.multicast.receive_port
	4.5.2.1.28 metadata.timestamp_type
	4.5.2.1.29 metadata.include_fields, metadata.exclude_fields
	4.5.2.1.30 table_schema
	4.5.2.1.31 RTIRTC_SCN

	4.5.3 Table Info
	4.5.3.1 Table Info Schema
	4.5.3.1.1 table_owner, table_name
	4.5.3.1.2 type_code

	4.5.4 Log Table
	4.5.4.1 Log Table Schema
	4.5.4.1.1 id
	4.5.4.1.2 ts
	4.5.4.1.3 type
	4.5.4.1.4 function, line
	4.5.4.1.5 code, native_code, message

	4.6 User-Table Creation
	4.7 Support for Extensible Types
	4.8 Enabling RTI Distributed Logger in Database Integration Service
	4.9 Enabling RTI Monitoring Library in Database Integration Service

	Chapter 5 IDL/SQL Semantic and Data Mapping
	5.1 Semantic Mapping
	5.2 Flatten Data Representation Mapping
	5.2.1 IDL to SQL Mapping
	5.2.2 Primitive Types Mapping
	5.2.3 Bit Field Mapping
	5.2.4 Enum Types Mapping
	5.2.5 Simple IDL Structures
	5.2.6 Complex IDL Structures
	5.2.7 Array Fields
	5.2.8 Sequence Fields
	5.2.9 NULL Values
	5.2.10 Sparse Data Types

	5.3 JSON Data Representation Mapping

	Appendix A Error Codes
	Appendix B Database Limits
	B.1 Maximum Columns for MySQL

