
RTI Routing Service

User’s Manual

Version 6.0.1

Contents

1 Introduction 1
1.1 How To Read This Manual . 2
1.2 Paths Mentioned in Documentation . 2
1.3 Files Mentioned in Documentation . 4

2 Core Concepts 5
2.1 Resource Model . 5

2.1.1 Directory . 7
2.1.2 Service . 7

Plugin Interaction . 7
Service States . 7

2.1.3 DomainRoute . 9
DataReader States . 9

2.1.4 Connection . 10
Plugin Interaction . 10
Connection States . 11
Type Registration . 12

2.1.5 Session . 12
Plugin Interaction . 13
Session States . 13

2.1.6 Route . 15
Plugin Interaction . 15
Route States . 15

2.1.7 AutoRoute . 18
AutoRoute States . 19

2.1.8 Input . 20
Plugin Interaction . 20
Input States . 20

2.1.9 Output . 22
Plugin Interaction . 22
Output States . 24

2.2 Builtin plugins . 25
2.2.1 DDS Adapter . 25

DDS AdapterPlugin . 26
DDS Connection . 27
DDS Session . 27
DDS StreamReader . 27

i

DDS StreamWriter . 28
2.2.2 Forwarding Processor . 28

3 Usage 29
3.1 Command-Line Executable . 29

3.1.1 Starting Routing Service . 29
3.1.2 Stopping Routing Service . 29
3.1.3 Routing Service Command-Line Parameters 29

3.2 Routing Service Library . 31
3.2.1 Example . 32

4 Configuration 33
4.1 Configuring Routing Service . 33
4.2 Terms to Know . 33
4.3 How to Load the XML Configuration . 33
4.4 XML Syntax and Validation . 34
4.5 XML Tags for Configuring RTI Routing Service . 35

4.5.1 Routing Service Tag . 36
Example: Specifying a configuration in XML 38

4.5.2 Administration . 39
4.5.3 Monitoring . 40

Monitoring Configuration Inheritance . 42
4.5.4 Domain Route . 44

Example: Mapping between Two DDS Domains 48
Example: Mapping between a DDS Domain and raw Sockets 48

4.5.5 Session . 48
4.5.6 Route . 50
4.5.7 Input/Output . 54

Creation Modes . 56
Specifying Types . 58
Data Transformation . 60

4.5.8 Auto Route . 60
4.5.9 Plugins . 65

4.6 Enabling Distributed Logger . 66
4.7 Support for Extensible Types . 67

4.7.1 Example: Samples Published by Two Writers of Type A and B, Respectively 67
4.8 Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 68

4.8.1 Example: Configuration to enable both FlatData and zero-copy transfer over
shared memory . 68

5 Remote Administration 70
5.1 Overview . 70

5.1.1 Enabling Remote Administration . 70
5.1.2 Available Service Resources . 70

Example . 71
5.1.3 Resource Object Representations . 74

5.2 API Reference . 75
5.2.1 Remote API Overview . 75

ii

5.2.2 Service . 77
5.2.3 DomainRoute . 81
5.2.4 Connection . 83
5.2.5 Session . 84
5.2.6 AutoRoute . 86
5.2.7 Route . 87
5.2.8 Input/Output . 89

5.3 Example: Configuration Reference . 90

6 Monitoring 92
6.1 Overview . 92

6.1.1 Enabling Service Monitoring . 92
6.1.2 Monitoring Types . 92

6.2 Monitoring Metrics Reference . 93
6.2.1 Service . 93
6.2.2 DomainRoute . 94
6.2.3 Session . 96
6.2.4 AutoRoute . 98
6.2.5 Route . 99
6.2.6 Input/Output . 101

7 Software Development Kit 104

8 Propagating Content Filters 106
8.1 Enabling Filter Propagation . 106
8.2 Filter Propagation Behavior . 106
8.3 Filter Propagation Events . 108
8.4 Restrictions . 109

9 Topic Query Support 110
9.1 Dispatch Mode . 110
9.2 Propagation Mode . 112
9.3 Restrictions . 113

10 Traversing Wide Area Networks 114
10.1 TCP Configuration elements . 114

10.1.1 TCP Transport Initial Peers . 114
Example: Setting discovery peers for TCP wan/lan 115

10.1.2 TCP Transport Property . 116
10.2 Support for External Hardware Load Balancers in TCP Transport Plugin 116

11 Tutorials 119
11.1 Starting Shapes Demo . 120
11.2 Example: Routing All Data from One Domain to Another 120
11.3 Example: Changing Data to a Different Topic of Same Type 121
11.4 Example: Changing Some Values in Data . 122
11.5 Example: Transforming the Data’s Type and Topic with an Assignment Transfor-

mation . 123
11.6 Example: Transforming the Data with a Custom Transformation 123

iii

11.7 Example: Using Remote Administration . 125
11.8 Example: Monitoring . 128
11.9 Example: Using the TCP Transport . 130
11.10Example: Using a File Adapter . 134
11.11Example: Using a Shapes Processor . 136

12 Common Infrastructure 137
12.1 Application Resource Model . 137

12.1.1 Example: Simple Resource Model of a Connext DDS Application 138
12.1.2 Resource Identifiers . 138

Escaped Identifiers . 139
Example: Resource Identifiers of a Generic Connext DDS Application 140
Example: Resource Identifiers Generated from XML Entity Model 140

12.2 Remote Administration Platform . 140
12.2.1 Remote Interface . 141

Standard Methods . 142
Custom Methods . 142

12.2.2 Communication . 143
Reply Sequence . 145
Example: Accessing from Connext DDS Application 146

12.2.3 Common Operations . 147
Create Resource . 147
Get Resource . 148
Update Resource . 148
Set Resource State . 149
Delete Resource . 150

12.3 Monitoring Distribution Platform . 150
12.3.1 Distribution Topic Definition . 151

Example: Monitoring of Generic Application 152
12.3.2 DDS Entities . 154
12.3.3 Monitoring Metrics Publication . 154

Configuration Distribution Topic . 154
Event Distribution Topic . 154
Periodic Distribution Topic . 154

12.3.4 Monitoring Metrics Reference . 155
Statistic Variable . 155
Host Metrics . 156
Process Metrics . 157
Base Entity Resource Metrics . 158
Network Performance Metrics . 159

12.4 Plugin Management . 160
12.4.1 Shared Library . 160

Configuration . 161
12.4.2 Service API . 163

13 Release Notes 164
13.1 Supported Platforms . 164
13.2 Compatibility . 165

iv

13.3 What’s New in 6.0.1 . 165
13.3.1 New platforms . 165
13.3.2 Removed platforms . 166
13.3.3 Earlier detection of invalid configurations . 166
13.3.4 Added Support for Proxy of TopicQueries in Routes with Multiple Inputs

and Outputs . 166
13.4 What’s Fixed in 6.0.1 . 166

13.4.1 QoS Topic Filters were not supported . 166
13.4.2 Executable did not log build ID for DDS libraries 168
13.4.3 Remote create operation failed with resource identifiers formatted as noted

in User’s Manual . 168
13.4.4 Unbounded generation of file handles if monitoring enabled on QNX platforms168
13.4.5 Inconsistent state if remote operation performed on disabled DomainRoute . 169
13.4.6 Changing Session period through Route’s API updated the period, but with

a delay . 169
13.4.7 Added operations in Processor API to access DataReader/Writer of a DDS

input/output . 169
13.4.8 Unexpected routes created after disabling and enabling AutoRoutes 170
13.4.9 Routing Service failed to detect configuration with duplicate names 170
13.4.10Executable always ignored logging QoS . 170
13.4.11Out of memory error if Monitoring enabled on QNX platforms 170
13.4.12Segmentation fault when reading from custom processor if underlying Stream-

Reader didn’t return SampleInfo list . 171
13.4.13Failure to remotely create entity resulted in XML object inserted in loaded

DOM . 171
13.4.14Undefined behavior if entity names contained characters “:” or “/” 171
13.4.15XML variables outside of <routing_service> were not expanded 172

13.5 Previous releases . 172
13.5.1 What’s New in 6.0.0 . 172

New platforms . 172
Support for multiple connections in a domain route 172
Support for multiple inputs and outputs in routes or topic routes 173
Support for C++ Adapter, Transformation and Service APIs 173
New pluggable processor API . 173
Redesigned remote administration architecture 174
Redesigned remote monitoring architecture 174
Support for advanced logging . 174
Support for XML variables expansion from command-line and service API . . 175
Paused and disabled state is cleared after disabling an entity 175
Removed warning caused by multiple registrations of a type 175

13.5.2 What’s Fixed in 6.0.0 . 175
Remotely disabling TopicRoute/Route could fail while forwarding data . . . 175
Routing Service in debug mode did not link with debug version of Distributed

Logger . 176
Route stream matching not applied correctly in presence of certain partitions 176
Crash on shutdown if types provided through both discovery and XML . . . 176
Sample loan not returned to DDS input upon DDS_DataReader::get_key()

failure . 176

v

Enabling monitoring through ServiceProperty::enable_monitoring only
worked if <monitoring> tag present 176

Logged message included inaccurate number of dropped samples 177
Deserialization errors may have occurred under some conditions 177
TopicRoutes with TopicQuery proxy mode enabled forwarded live data only

to first output . 177
Routing Service Java API did not work with some TypeCodes 177

14 Copyrights 178

vi

Chapter 1

Introduction

RTI® Routing Service, is an out-of-the-box solution that allows developers to rapidly scale and
integrate real-time systems that are disparate or geographically dispersed. It scales RTI Connext®
DDS applications across domains, LANs and WANs, including firewall and NAT traversal.

It also supports DDS-to-DDS bridging by allowing you to make transformations in the data along
the way. This allows unmodified DDS applications to communicate even if they were developed
using incompatible interface definitions. This is often the case when integrating new and legacy
applications or independently developed systems. Using RTI Routing Service Adapter SDK, you can
extend Routing Service to interface with non-DDS systems using off-the-shelf or custom-developed
adapters.

Traditionally, Connext DDS applications can only communicate with applications in the same
domain. With Routing Service, you can send and receive data across domains. You can even
transform and filter the data along the way! Not only can you change the actual data values, you
can change the data’s type. So the sending and receiving applications don’t even need to use the
same data structure. You can also control which data is sent by using allow and deny lists.

Figure 1.1: Routing Service Overview

Simply set up Routing Service to pass data from one domain to another and specify any desired
data filtering and transformations. No change are required in the Connext DDS applications.

Key benefits of Routing Service:

• It can significantly reduce the time and effort spent integrating and scaling Connext DDS
applications across Wide Area Networks and Systems-of-Systems.

1

RTI Routing Service User’s Manual, Version 6.0.1

• With Routing Service, you can build modular systems out of existing systems. Data can
be contained in private domains within subsystems and you can designate that only certain
“global topics” can be seen across domains. The same mechanism controls the scope of
discovery. Both application-level and discovery traffic can be scoped, facilitating scalable
designs.

• Routing Service provides secure deployment across multiple sites. You can partition networks
and protect them with firewalls and NATS and precisely control the flow of data between the
network segments.

• It allows you to manage the evolution of your data model at the subsystem level. You can use
Routing Service to transform data on the fly, changing topic names, type definitions, QoS,
etc., seamlessly bridging different generations of topic definitions.

• Routing Service provides features for development, integration and testing. Multiple sites
can each locally test and integrate their core application, expose selected topics of data, and
accept data from remote sites to test integration connectivity, topic compatibility and specific
use-cases.

• It connects remotely to live, deployed systems so you can perform live data analytics, fault
condition analysis, and data verification.

• RTI Routing Service Adapter SDK allows you to quickly build and deploy bridges to integrate
DDS and non-DDS systems. This can be done in a fraction of the time required to develop
completely custom solutions. Bridges automatically inherit advanced DDS capabilities, in-
cluding automatic discovery of applications; data transformation and filtering; data lifecycle
management and support across operating systems; programming languages and network
transports.

1.1 How To Read This Manual
The content of this manual assumes you are familiar with Connext DDS concepts. While you can
read any section independently, if you are new to Routing Service we recommend starting with the
Tutorials to get an overview of what this application can do.

Then read the Core Concepts for deeper knowledge of Routing Service specific concepts. You can
then refer to the Configuration to start defining and customizing your Routing Service.

You can read any of the other sections as you see fit based on what your application or system
needs are.

1.2 Paths Mentioned in Documentation
This documentation refers to:

• <NDDSHOME> This refers to the installation directory for Connext DDS.

The default installation paths are:

– macOS® systems: /Applications/rti_connext_dds-version

1.1. How To Read This Manual 2

RTI Routing Service User’s Manual, Version 6.0.1

Figure 1.2: Quickly build and deploy bridges between natively incompatible protocols and tech-
nologies using Connext DDS

1.2. Paths Mentioned in Documentation 3

RTI Routing Service User’s Manual, Version 6.0.1

– UNIX®-based systems, non-root user: /home/your user name/rti_connext_dds-
version

– UNIX-based systems, root user: /opt/rti_connext_dds-version

– Windows® systems, user without Administrator privileges: <your home
directory>\rti_connext_dds-version

– Windows systems, user with Administrator privileges: C:\Program
Files\rti_connext_dds-version

You may also see $NDDSHOME or %NDDSHOME%, which refers to an environment variable set to
the installation path.

Whenever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users: When using a command prompt to enter a command
that includes the path C:\Program Files (or any directory name that has a space), en-
close the path in quotation marks. For example: “C:\Program Files\rti_connext_dds-
version\bin\rticlouddiscoveryservice.bat”

Or if you have defined the NDDSHOME environment variable:
"%NDDSHOME%\bin\rticlouddiscoveryservice.bat"

• <path to examples> By default, examples are copied into your home directory the first time
you run RTI Launcher or any script in <NDDSHOME>/bin. This document refers to the location
of the copied examples as <path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:

– macOS systems: /Users/your user name/rti_workspace/version/examples

– UNIX-based systems: /home/your user name/rti_workspace/version/examples

– Windows systems: your Windows documents folder\rti_workspace\version\examples.
Where 'your Windows documents folder' depends on your version of Windows. For
example, on Windows 10 systems, the folder is C:\Users\your user name\Documents.

1.3 Files Mentioned in Documentation

Table 1.1: Files mentioned in the documentation
File Description
ServiceCommon.idl Definitions of infrastructure types.
ServiceAdmin.idl Definition of remote administration types.
RoutingServiceMonitoring.
idl

Definition of monitoring types specific to Routing Service.

1.3. Files Mentioned in Documentation 4

Chapter 2

Core Concepts

This section aims to provide a deeper understanding of the Routing Service architecture and give
you the required insight to configure and use it effectively.

You will learn about:

• Application resource model: Gives you a full picture of all the elements that compose Routing
Service, including details about their relationships with the pluggable components and their
lifecycle.

• Builtin plugins: Describes the builtin pluggable components that are part of the Routing
Service module.

2.1 Resource Model

In this section you will learn the details of the Routing Service application resource model (see
Section 12.1). It describes all the different resource classes, their functions and responsibilities, and
their relationships with other resources.

Figure 2.1 shows a high-level view of the main classes that comprise the application resource model.

There are two main logical planes, each addressing orthogonal sets of capabilities:

• Data Plane: Set of resources associated with data flow, both user data and meta-data.
A resource in this plane is also known as an entity. The data provision and processing is
performed using plugins (see Section 7 for an overview of the list of available plugins).

• Control Plane: Set of resources associated with service monitoring and administration.
These are the resources in charge of providing monitoring information and run-time admin-
istration of the resources from the data plane.

An alternative representation of the resource module is shown in Figure 2.2.

The next sections describe each entity with detail. The documentation for each entity will provide:

• A Description of the role and responsibility of the entity within Routing Service.

• The relationship, if any, with plugin components. This part will give you an understanding
of how Routing Service achieves custom behavior.

5

RTI Routing Service User’s Manual, Version 6.0.1

Figure 2.1: Routing Service Application Resource Model

Figure 2.2: Routing Service Alternative representation of the Application Resource Model

2.1. Resource Model 6

RTI Routing Service User’s Manual, Version 6.0.1

• A Description of the states an entity can go through.

The next sections describe Routing Service from a generic point of view, independently of the
Adapter (or any other type of plugin) that is used. To read more about how DDS is integrated
with Routing Service, please see the (Section 2.2.1). It’s recommended though that you still review
the general model for a solid understanding of Routing Service.

2.1.1 Directory
Table 2.1 provides a resource directory with quick links to access different types of information for
each resource or entity.

Table 2.1: Resource Reference
Resource Configuration Administration Monitoring
Service Section 4.5.1 Section 5.2.2 Section 6.2.1
DomainRoute Section 4.5.4 Section 5.2.3 Section 6.2.2
Connection Section 4.5.4 Section 5.2.4 Section 6.2.2
Session Section 4.5.5 Section 5.2.5 Section 6.2.3
Route Section 4.5.6 Section 5.2.7 Section 6.2.5
Input Section 4.5.7 Section 5.2.8 Section 6.2.6
Output Section 4.5.7 Section 5.2.8 Section 6.2.6

2.1.2 Service
The Service is the top-level resource. The Service is the entity that encapsulates all the resources
needed for the operation of both the control and data planes. Typically, a Service refers to an
execution of Routing Service.

In the control plane, the Service is composed of the Monitoring and Administration resources, which
are optionally available sub-services. These components are described in Section 6 and Section 5,
respectively.

In the data plane, the Service is composed of a collection of user plugins instances and a collection
of DomainRoutes.

Plugin Interaction

The Service is responsible for loading and owning any of the plugins that you can provide through
the Software Development Kit (see Section 7). Figure 2.3 shows the relationship between the
Service and the plugin objects.

See Section 12.4 for more information about plugin management.

Service States

A Service can be in one of the states listed in Table 2.2.

2.1. Resource Model 7

RTI Routing Service User’s Manual, Version 6.0.1

Figure 2.3: Routing Service composed of different plugins

Table 2.2: Service States
State Description Trigger Plugin callback
ENABLED A Service object has loaded the specified ser-

vice configuration. Monitoring and Adminis-
tration services are started if they are enabled
in the configuration.

• User runs
the Rout-
ing Service
applica-
tion either
using the
pre-built
executable
or through
the Service
API (see
Section 3).

• Remote
command

N/A

STARTED A Service object has created all the underly-
ing resources, including creating and starting
all the contained DomainRoutes, as specified
in the configuration. Additionally, the ser-
vice discovery thread (SDT) is also started.
The SDT sets the context to read the data
from the builtin input/output stream discovery
StreamReaders Plugin configurations are vali-
dated but the libraries are loaded and instances
created lazily when they are first needed.

• User
spawns the
entity

• Remote
command

N/A

Continued on next page

2.1. Resource Model 8

RTI Routing Service User’s Manual, Version 6.0.1

Table 2.2 – continued from previous page
State Description Trigger Plugin callback
STOPPED A Service object has deleted all the resources

created during the start phase: the service dis-
covery thread and DomainRoutes are deleted.
Additionally, any plugin instances are deleted.

• User
deletes the
entity

• Remote
command

•
AdapterPlugin::
delete

•
ProcessorPlugin::
delete

•
TransformationPlugin::
delete

DISABLEDA Service object has deleted all the resources
created during the enable phase. Entering this
state occurs only temporarily while the Service
object is being deleted.

• User shut-
downs the
entity

• Remote
command

N/A

2.1.3 DomainRoute
A DomainRoute defines a collection of independent data domains (such as DDS, MQTT, AMQP,
etc.), each modeled as a Connection. It’s also composed of a collection of Sessions.

DataReader States

A DomainRoute can be in one of the states listed in Table 2.3.

Table 2.3: DataReader states
State Description Trigger Plugin callback
ENABLED A DomainRoute object has created all the un-

derlying Connections and Sessions as indicated
in the configuration.

• Service
starts
(Section
2.1.2)

• Remote
command

N/A

Continued on next page

2.1. Resource Model 9

RTI Routing Service User’s Manual, Version 6.0.1

Table 2.3 – continued from previous page
State Description Trigger Plugin callback
STARTED A DomainRoute object has enabled all the con-

tained Connections and started all the con-
tained Sessions. The DomainRoute is attached
to the service discovery thread and may start
processing stream discovery data.

• Service
starts
(Section
2.1.2)

• Remote
command

N/A

STOPPED A DomainRoute object has stopped all Ses-
sions and disabled all the Connections. The
DomainRoute is detached from the service dis-
covery thread.

• Service
stops
(Section
2.1.2)

• Remote
command

N/A

DISABLEDA DomainRoute object has deleted all the un-
derlying Connections. Entering this state oc-
curs only temporarily while the DomainRoute
object is being deleted.

• Stop
DataReader

N/A

2.1.4 Connection
A Connection defines an access point to a specific data domain. The access to a data domain is
provided through an instance of an Adapter plugin, which is specified in the configuration (See Table
4.7 and Table 4.8). For example, the associated Adapter plugin implementation could provide a
connection to an HTTP Server through an HTTP Client, or a logical connection to a DDS Domain
through a DomainParticipant.

The Connection is also responsible for tracking all the stream information that is provided by
the underlying input and output stream discovery StreamReaders. The Connection gets notified
about new or disposed streams and propagates this information downstream to the Routes and
AutoRoutes, which will process and generate events accordingly.

Note: A DomainParticipant is a special type of Connection that represents an instance of a
DdsConnection. For this case, special custom tags are available that facilitate configuring the
DdsConnection.

Plugin Interaction

Figure 2.4 shows the relationship with the plugin objects. A Connection shall hold one, and only
one, adapter::Connection object.

2.1. Resource Model 10

RTI Routing Service User’s Manual, Version 6.0.1

Figure 2.4: Relationship of plugins with a Connection

Connection States

A Connection can be in one of the states listed in Table 2.4.

Table 2.4: Connection states
State Description Trigger Plugin callback
ENABLED A Connection object has created the underly-

ing Adapter connection object. • Domain-
Route
starts
(Section
2.1.3)

•
AdapterPlugin::
new (only
once for
each plugin
class)

•
AdapterPlugin::
create_connection

Continued on next page

2.1. Resource Model 11

RTI Routing Service User’s Manual, Version 6.0.1

Table 2.4 – continued from previous page
State Description Trigger Plugin callback
DISABLEDA Connection object has deleted the Adapter

connection object it holds. • Domain-
Route
stops
(Section
2.1.3)

AdapterPlugin::
delete_connection

Type Registration

The Connection is the entity where type registration takes place. A Connection keeps a list of
registered types, where each entry in the list contains:

• registered type name: Unique name used to identify and register a concrete type within
the Connection.

• type representation: In-memory structure that describes the type itself. The type repre-
sentation is adapter-dependent and Routing Service assumes TypeCode as default type repre-
sentation for types.

A type is associated with a stream and its registration is required in order to create StreamReaders
and StreamWriters. A type can be registered in two ways:

• Through stream discovery information, provided by the builtin stream discovery StreamRead-
ers. On stream discovery, the associated information contains the registered name and the
representation for a type.

• Through XML Connection configuration (see Section 4.5.7). A type definition is provided in
XML and the Routing Service parser will generate a TypeCode from it. Connection configu-
ration can then reference this XML type definition to register it.

2.1.5 Session
A Session defines a collection of Routes and AutoRoutes. It also defines a multi-threaded safe
context for Route event processing.

Events from a Route are processed sequentially within the same Session. A Route event is processed
by a single thread at a time. That is, the same route cannot be processed concurrently. However,
within a Session, different Routes that can be processed concurrently, as many as the number of
threads available within the Session.

Figure 2.5 shows the event processing mechanism. Consider a Session with a pool of N threads and
composed of P Routes.

• Session threads are idle waiting for Routes to become active. An active Route is one that has
events pending processing.

• Once an active Route is selected for processing, all the pending events at that time will
be consumed sequentially one after the other (see Section 2.1.6 for information about route
processing). To prevent starvation, new events arriving will be deferred for the next selection
cycle.

2.1. Resource Model 12

RTI Routing Service User’s Manual, Version 6.0.1

Figure 2.5: Processing mechanism of Routes within a Session

• A Session selects Routes for processing in a round-robin fashion, following the same order as
they are defined in the Session configuration. At a maximum only N Routes can be processed
concurrently. Remaining active Routes will wait until a thread becomes available.

Figure 2.5 shows a Session concurrently processing N active Routes. Other remaining P-N Routes,
such as RouteP, are active and waiting for a thread to become available; RouteP-1 is not active (no
pending events).

Plugin Interaction

Figure 2.6 shows the relationship with the plugin objects. A Session shall hold one
adapter::Session object for each Connection in the parent DomainRoute.

Session States

A Session can be in one of the states listed in Table 2.5.

2.1. Resource Model 13

RTI Routing Service User’s Manual, Version 6.0.1

Figure 2.6: Relationship of plugins with a Session

Table 2.5: Session states
State Description Trigger Plugin callback
ENABLED A Session object has created all the underlying

adapter::Session objects. It has also created
all the AutoRoutes and Routes that are defined
in the configuration.

• Domain-
Route
starts
(Section
2.1.3)

• Remote
command

Connection::create_session

STARTED A Session object has started the thread pool,
and enabled all the underlying AutoRoutes and
Routes. In this state, the Session is actively
processing Route events.

• Domain-
Route
starts
(Section
2.1.3)

• Remote
command

N/A

Continued on next page

2.1. Resource Model 14

RTI Routing Service User’s Manual, Version 6.0.1

Table 2.5 – continued from previous page
State Description Trigger Plugin callback
STOPPED A Session object has stopped the thread pool,

and disabled all the underlying AutoRoutes and
Routes.

• Domain-
Route
stops
(Section
2.1.3)

• Remote
command

N/A

DISABLEDA Session object has deleted all the
adapter::Session objects it holds. • Domain-

Route
stops
(Section
2.1.3)

• Remote
command

Connection::delete_session

2.1.6 Route
A Route defines a processing unit for data streams. A Route is composed of N Inputs and M Outputs,
each referencing any of the Connections defined as part of the parent DomainRoute.

A Route generates certain events that are processed safely and serially within one of the threads
from the parent Session. Route events are processed through a pluggable Processor.

Note: A TopicRoute is a special type of Route. All its Inputs and Outputs are tied to the builtin
DDS Adapter. For this case, special and custom tags are available that facilitate configuring the
TopicRoute.

Plugin Interaction

Figure 2.7 shows the relationship with the plugin objects. A Route shall hold one Processor object,
which will receive the notifications of the events affecting the owner Route.

For more information about the Processor behavior and Route events, see the main page of API
documentation (Section 7).

Route States

A Route state machine is shown in Figure 2.8.

Table 2.6 shows all the states a Route can enter.

2.1. Resource Model 15

RTI Routing Service User’s Manual, Version 6.0.1

Figure 2.7: Relationship of plugins with a Route

Figure 2.8: Route state machine

2.1. Resource Model 16

RTI Routing Service User’s Manual, Version 6.0.1

Table 2.6: Route states
State Description Trigger Plugin callback
ENABLED A Route has created the underlying Processor.

The Route is attached to the parent Session
and is receiving event notifications.

• Session
starts
(Section
2.1.5)

• Remote
command

•
ProcessorPlugin::new
(only once
for each
plugin
class)

•
ProcessorPlugin::
create_processor

DISABLEDA Route has deleted the underlying Processor.
The Route is detached from the parent Session
so no events are notified.

• Session
stops
(Section
2.1.5)

• Remote
command

ProcessorPlugin::
delete_processor

STARTED A Route has enabled all its Inputs and Outputs.
• Session

starts
(Section
2.1.5)

• Enable
Input (Sec-
tion 2.1.8)
or Output
(Section
2.1.9)

• Remote
command

Processor::on_route_event

Continued on next page

2.1. Resource Model 17

RTI Routing Service User’s Manual, Version 6.0.1

Table 2.6 – continued from previous page
State Description Trigger Plugin callback
STOPPED A Route has disable at least one of its Inputs

and Outputs. • Session
stops
(Section
2.1.5)

• Disable
Input (Sec-
tion 2.1.8)
or Output
(Section
2.1.9)

• Remote
command

Processor::on_route_event

RUNNING A Route is ready to process data stream related
events. These include:

• DATA_ON_INPUTS
• PERIODIC_ACTION

• Session
starts
(Section
2.1.5)

• Enable
Input (Sec-
tion 2.1.8)
or Output
(Section
2.1.9)

• Remote
command

•
Processor::on_route_event

•
StreamReader::read

•
StreamReader::return_loan

•
Transformation::transform

•
Transformation::return_loan

•
StreamWriter::write

PAUSED A Route is temporarily suspending the process-
ing of data stream related events. • Session

stops
• Disable

Input (Sec-
tion 2.1.8)
or Output
(Section
2.1.9)

• Remote
command

Processor::
on_route_event

2.1.7 AutoRoute
An AutoRoute represents a factory of single-input single-output Routes. An AutoRoute creates
Routes based on a name filter criteria that matches the name or type of a stream.

2.1. Resource Model 18

RTI Routing Service User’s Manual, Version 6.0.1

An AutoRoute creates a Route for each pair:

[𝑆𝑚, 𝑇𝑛]

where Sm and Tn are the name for the stream m and the name of the type n, respectively. The
generation of a Route occurs only on the event of a newly discovered stream. The resulting Route
has a single Input and a single Output, both for the same stream name and type.

The created Route executes within the context of the parent Session of the AutoRoute. Figure 2.9
illustrates this relationship.

Figure 2.9: AutoRoute as a map of Routes keyed by stream and type names

The AutoRoute creates a Route only if it has not previously matched the Sm and Tn pair. Au-
toRoutes never delete the created Route, independently of whether the matching streams are dis-
posed or not.

Note: An AutoTopicRoute is a special type of AutoRoute whose Inputs and Outputs are tied
to the builtin DDS Adapter. For this case, special and custom tags are available that facilitate
configuring the AutoTopicRoute.

AutoRoute States

An AutoRoute can be in one of the states listed in Table 2.7.

2.1. Resource Model 19

RTI Routing Service User’s Manual, Version 6.0.1

Table 2.7: AutoRoute states
State Description Trigger Plugin callback
ENABLED AutoRoute object is read to start matching

streams and create Routes. Previously discov-
ered streams are matched retroactively.

• Session
starts
(Section
2.1.5)

• Remote
command

N/A

STARTED This state is equivalent to the ENABLED state
and the transition is automatic upon enabling.
This state is added for consistency with the
other entities.

• Enable Au-
toRoute

N/A

STOPPED This state is equivalent to the DISABLED state
and the transition is automatic upon disabling.
This state is added for consistency with the
other entities.

• Disable
AutoRoute

N/A

DISABLEDAutoRoute stops matching all newly discovered
streams. All the Routes created from this Au-
toRoute are deleted.

• Session
stops
(Section
2.1.5)

N/A

2.1.8 Input
An Input is responsible for obtaining data associated with a specific stream uniquely identified by its
name and type. An Input must reference an existing Connection within the parent DomainRoute.
The referenced Connection determines the data domain where the Input will obtain data.

An Input has scope only within the parent Route. It cannot be shared in other Routes. If another
Route requires accessing the same data stream, a new Input shall be defined within such Route.

Plugin Interaction

Figure 2.10 shows the relationship with the plugin objects. An Input shall hold one, and only one,
adapter::StreamReader object.

Input States

An Input can be in one of the states listed in Table 2.8.

2.1. Resource Model 20

RTI Routing Service User’s Manual, Version 6.0.1

Figure 2.10: Relationship of plugins with an Input

2.1. Resource Model 21

RTI Routing Service User’s Manual, Version 6.0.1

Table 2.8: Input states
State Description Trigger Plugin call-

back
ENABLED Input has created its underlying Stream-

Reader and it’s ready to read data.
The following two condi-
tions shall be met:

• Matching type is
available

• Creation mode con-
dition becomes true

•
Connection::
create_stream_reader

•
Processor::
on_route_event

STARTED This state is equivalent to the ENABLED
state and the transition is automatic upon
enabling. This state is added for consis-
tency with the other entities.

• Enable Input
N/A

STOPPED This state is equivalent to the DISABLED
state and the transition is automatic upon
disabling. This state is added for consis-
tency with the other entities.

• Disable Input
N/A

DISABLEDInput has deleted its underlying Stream-
Reader and can no longer read data.

Creation mode condition
becomes false •

Connection::
delete_stream_reader

•
Processor::
on_route_event

2.1.9 Output
An Output is responsible for writing data associated with a specific stream uniquely identified by its
name and type. An Output must reference an existing Connection within the parent DomainRoute.
The referenced Connection determines the data domain where the Output will provide data.

An Output has scope only within the parent Route. It cannot be shared in other Routes. If another
Route requires access to the same data stream, a new Output shall be defined within such Route.

Plugin Interaction

Figure 2.11 shows the relationship with the plugin objects. An Output shall hold one, and
only one, adapter::StreamWriter object. Optionally, an Output can hold one, and only one,
transformation::Transformation object.

The Output provides the data to a domain by calling the StreamWriter::write operation. If
a Transformation is present, the Transformation::transform operation is called right before
writing on the StreamWriter, followed by a Transformation::return_loan right after.

2.1. Resource Model 22

RTI Routing Service User’s Manual, Version 6.0.1

Figure 2.11: Relationship of plugins with an Output

2.1. Resource Model 23

RTI Routing Service User’s Manual, Version 6.0.1

Output States

An Output can be in one of the states listed in Table 2.9.

Table 2.9: Output states
State Description Trigger Plugin call-

back
ENABLED Output has created its underlying

StreamWriter and it’s ready to write
data.

The following two condi-
tions shall be met:

• Matching type is
available

• Creation mode con-
dition becomes true

•
Connection::
create_stream_writer

•
Processor::
on_route_event

•
TransformationPlugin::new
(only
once
for
each
plugin
class)

•
TransformationPlugin::create_transformation

STARTED This state is equivalent to the ENABLED
state and the transition is automatic upon
enabling. This state is added for consis-
tency with the other entities.

• Enable Output
N/A

STOPPED This state is equivalent to the DISABLED
state and the transition is automatic upon
disabling. This state is added for consis-
tency with the other entities.

• Disable Output
N/A

DISABLEDOutput has deleted its underlying
StreamWriter and can no longer write
data.

Creation mode condition
becomes false •

Connection::
delete_stream_writer

•
TransformationPlugin::delete_transformation

•
Processor::
on_route_event

2.1. Resource Model 24

RTI Routing Service User’s Manual, Version 6.0.1

2.2 Builtin plugins
Builtin plugins come pre-registered in memory within Routing Service. Any configurable aspects
are available through dedicated special tags for enhanced usability.

2.2.1 DDS Adapter
This is an Adapter implementation that provides access to DDS domains. Figure 2.12 shows the
architecture of the DDS Adapter.

Figure 2.12: DDS Adapter architecture

Most of the use cases expect to have DDS as the main data domain in the user data plane. For
this reason, you will find that Routing Service specializes some entities so that they are directly
associated with DDS. These entities are:

• Participant

• AutoTopicRoute

• TopicRoute

• DdsInput

2.2. Builtin plugins 25

RTI Routing Service User’s Manual, Version 6.0.1

• DdsOutput

These entities are equivalent to the generic entities shown in Figure 2.1 except that the Adapter
entity they enclose is created from the builtin DDS Adapter (Section 2.2.1). Figure 2.13 shows the
DDS specialization of the generic resource model.

Figure 2.13: Routing Service DDS Application Resource Model

DDS AdapterPlugin

The DdsAdapter is an implementation of the Adapter interface. It’s responsible for creating DDS
Connections.

2.2. Builtin plugins 26

RTI Routing Service User’s Manual, Version 6.0.1

Table 2.10: DDS Adapter
Mapping Configuration Tag
It uses the DomainParticipantFactory to create the par-
ticipants needed by each DDS Connection

<participant_factory_qos> (only
in USER_QOS_PROFILES.xml)

DDS Connection

The DdsConnection is an implementation of the Connections interface. It is responsible for joining
to a specific DDS Domain. It’s also the factory for creating DDS Sessions, StreamReaders and
StreamWriters.

The DdsConnection relies on the DdsAdapter for creating DomainParticipants. This class creates
the Topics associated with the DataReaders and DataWriters it also creates.

Table 2.11: DDS Connection
Mapping Configuration Tag
Composed of only one DomainParticipant <domain_route>/<participant>

(see Table 4.8)

DDS Session

The DdsSession is an implementation of the Session interface. It’s responsible for creating Sub-
scribers and Publishers.

Table 2.12: DDS Session
Mapping Configuration Tag
Composed of only one Publisher and one Subscriber <session>/<subscriber_qos> and

<session>/<publisher_qos> (see
Table 4.9)

Note that, as explained in Section 2.1.5, a new DdsSession object is instantiated for each pair
<session> and <participant> element within the parent DomainRoute.

DDS StreamReader

The DdsStreamReader is an implementation of the StreamReader interface. It’s responsible for
reading data from a Topic and providing it to the parent Route, which is in charge of processing it
through the installed Processor.

Table 2.13: DDS StreamReader
Mapping Configuration Tag
Composed of only one DataReader <route>/<dds_input> and

<topic_route>/<input> (see
Table 4.13)

The referenced DDS Connection and parent <session> determines from which DomainParticipant

2.2. Builtin plugins 27

RTI Routing Service User’s Manual, Version 6.0.1

and Subscriber the DataReader is created.

The configuration of the Input owning the StreamReader indicates:

• The referenced DDS Connection that contains the DomainParticipant

• The parent <session>, which along with the referenced Connection, determines which
DdsSession and hence Subscriber is used to create the DataReader.

• The name of the Topic in the domain of the DomainParticipant.

DDS StreamWriter

The DdsStreamWriter is an implementation of the StreamWriter interface. It’s responsible for
writing data to a Topic. The data is provided by the parent Route through the installed Processor.

Table 2.14: DDS StreamWriter
Mapping Configuration Tag
Composed of only one DataWriter <route>/<dds_output> and

<topic_route>/<output> (see
Table 4.13)

The referenced DDS Connection and parent <session> determines from which DomainParticipant
and Publisher the DataWriter is created.

The configuration of the Output owning the StreamWriter indicates:

• The referenced DDS Connection that contains the DomainParticipant

• The parent <session>, which along with the referenced Connection determines which
DdsSession and hence Publisher is used to create the DataWriter.

• The name of the Topic in the domain of the DomainParticipant.

2.2.2 Forwarding Processor
This is a Processor implementation that forwards samples within a Route. The plugin registered
name is reserved and has the value rti.routingservice.RoutingProcessor.

The functions of the builtin forwarding Processor are:

• Forwarding all the live data samples received from each Input to each Output.

• Proxying the TopicQueries received by the DdsStreamWriter, making sure all the Topic-
Query data samples received from each Input are sent to the corresponding Outputs and final
destination DataReaders. (see Section 9.2).

The builtin forwarding Processor is set by default in all AutoRoutes and Routes.

Note that if you install your own Processor implementation, you will override the functional-
ity described above. In this case, even if the dedicated configuration tags are specified (such as
<topic_query_proxy>), they will not have any effect.

2.2. Builtin plugins 28

Chapter 3

Usage

This chapter explains how to run Routing Service either from the distributed command-line exe-
cutable or from a library.

3.1 Command-Line Executable
Routing Service runs as a separate application. The script to run the executable is in <NDDSHOME>/
bin.

rtiroutingservice [options]

In this section we will see:

• How to Start Routing Service (Section 3.1.1).

• How to Stop Routing Service (Section 3.1.2).

• Routing Service Command-line Parameters (Section 3.1.3).

3.1.1 Starting Routing Service
To start Routing Service with a default configuration, enter:

$NDDSHOME/bin/rtiroutingservice

This command will run Routing Service indefinitely until you stop it. See Section 3.1.2.

Table 3.1 describes the command-line parameters.

3.1.2 Stopping Routing Service
To stop Routing Service, press Ctrl-c. Routing Service will perform a clean shutdown.

3.1.3 Routing Service Command-Line Parameters
The following table describes all the command-line parameters available in Routing Service. To list
the available commands, run rtiroutingservice -h.

29

RTI Routing Service User’s Manual, Version 6.0.1

Table 3.1: Routing Service Command-Line Parameters
Parameter Description
-appName <string> Assigns a name to the execution of the Routing Service.

Remote commands and status information will refer to
the instances using this name. In addition, the names of
DomainParticipants created by the service will be based
on this name. Default: empty string (uses configuration
name).

-cfgFile <string> Semicolon-separated list of configuration file paths. De-
fault: unspecified

-cfgName <string> Specifies the name of the Routing Service configuration to
be loaded. It must match a <routing_service> tag in the
configuration file. Default: rti.routingservice.builtin.con-
fig.default.

-convertLegacyXml <string> Converts the legacy XML specified with -cfgFile and pro-
duces the result in the specified output path. If no output
path is provided, the converted file will be in the same path
than -cfgFile with the suffix converted.

-domainIdBase <int> Sets the base domain ID. This value is added to the domain
IDs for all the DataReader ’s DomainParticipants in the
configuration file. For example, if you set -domainIdBase
to 50 and use domain IDs 0 and 1 in the configuration
file, then the Routing Service will use domains 50 and 51.
Default: 0

-D<name>=<value> Defines a variable that can be used as an alternate replace-
ment for XML environment variables, specified in the form
$(VAR_NAME). Note that definitions in the environment
take precedence over these definitions.

-heapSnapshotDir <dir> Specifies the output directory where the heap monitor-
ing snapshots are dumped. The filename format is
RTI_heap_<appName>_<processId>_<index>. Used
only if heap monitoring is enabled. Default: current work-
ing directory

-heapSnapshotPeriod <sec> Specifies the period at which heap monitoring snapshots
are dumped. For example, Routing Service will generate a
heap snapshot every <sec>. Enables heap monitoring if >
0. Default: 0 (disabled)

-help Prints this help and exits.
-identifyExecution Appends the host name and process ID to the service name

provided with the -appName option. This option helps
ensure unique names for remote administration and mon-
itoring. For example: MyRoutingService_myhost_20024
Default: false

-ignoreXsdValidation Loads the configuration even if the XSD validation fails.
Continued on next page

3.1. Command-Line Executable 30

RTI Routing Service User’s Manual, Version 6.0.1

Table 3.1 – continued from previous page
Parameter Description
-licenseFile Specifies the path to the license file, required for license-

managed distributions.
-listConfig Prints the available configurations and exits.
-maxObjectsPerThread <int> Maximum number of thread-specific objects that can be

created. Default: 2048
-noAutoEnable Starts Routing Service in a disabled state. Use this option

if you plan to enable the service remotely. Overrides:
This option overrides the <routing_service> tag’s “en-
abled” attribute in the configuration file. Default: false

-pluginSearchPath <path> Specifies a directory where plug-in libraries are
located. Default: current working directory

-remoteAdministrationDomainId
<int>

Enables remote administration and sets the domain ID
for remote communication. Overrides: This option over-
rides the <administration> tag’s “enabled” attribute and
<administration>/<domain_id> in the configuration file.
Default: unspecified

-remoteMonitoringDomainId
<int>

Enables remote monitoring and sets the domain ID for sta-
tus publication. Overrides: This option overrides <moni-
toring>/<enabled> and <monitoring>/<domain_id> in
the configuration file. Default: unspecified

-skipDefaultFiles Skips attempting to load the default configuration files De-
fault: false

-stopAfter <int> Number of seconds the Routing Service runs before it stops.
Default: (infinite).

-verbosity <int> Controls what type of messages are logged: 0. Silent 1. Ex-
ceptions (Connext DDS and Routing Service) 2. Warnings
(Routing Service) 3. Warnings (Connext DDS) 4. Local
(Routing Service) 5. Remote (Routing Service) 6. Activ-
ity (Routing Service) and Local (Connext DDS) Each ver-
bosity level, n, includes all the verbosity levels smaller than
n. Default: 1 (Exceptions)

-version Prints the Routing Service version number and exits.

All the command-line parameters are optional; if specified, they override the values of their cor-
responding settings in the loaded XML configuration. See Section 4 for the set of XML elements
that can be overridden with command-line parameters.

3.2 Routing Service Library
Routing Service can be deployed as a library linked into your application on selected architectures
(see Section 13). This allows you to create, configure, and start Routing Service instances from
your application.

To build your application, add the dependency with the Routing Service library under <NDDSHOME>/
lib/<ARCHITECTURE>, where <ARCHITECTURE> is a valid and installed target architecture.

3.2. Routing Service Library 31

RTI Routing Service User’s Manual, Version 6.0.1

If you are using the C API, see the example in <path to examples>/routing_service/
routing_service_lib. Example makefiles and project files for several architectures are provided.
Also see the README.txt file in the routing_service_lib/src directory.

3.2.1 Example

struct RTI_RoutingServiceProperty property =
RTI_RoutingServiceProperty_INITIALIZER;

struct RTI_RoutingService * service = NULL;

/* initialize property */
property.cfg_file = "my_routing_service_cfg.xml";
property.service_name = "my_routing_service";
...

service = RTI_RoutingService_new(&property);
if(service == NULL) {

/* log error */
...

}

if(!RTI_RoutingService_start(service)) {
/* log error */
...

}

while(keep_running) {
sleep();
...

}
...

RTI_RoutingService_delete(service);

3.2. Routing Service Library 32

Chapter 4

Configuration

4.1 Configuring Routing Service
This document describes how to configure Routing Service. For installation instructions or to walk
through some simple examples, please see the appropriate section.

When you start Routing Service, you can specify a configuration file in XML format. In that file,
you can set properties that control the behavior of the service. This chapter describes how to write
a configuration file.

4.2 Terms to Know
Before learning how to configure Routing Service, you should become familiar with a few key terms
and concepts:

• An AutoRoute defines a set of potential Routes that can be instantiated based on deny/allow
filters on the stream name and registered type name.

• A Transformation is a pluggable component that changes data from an input stream to an
output stream.

• An Adapter is a pluggable component that allows Routing Service to consume and produce
data for different data domains. By default, Routing Service is distributed with a builtin
DDS adapter.

4.3 How to Load the XML Configuration
Routing Service loads its XML configuration from multiple locations. This section presents the
various sources of configuration files, listed in load order.

• [working directory]/USER_ROUTING_SERVICE.xml This file is loaded automatically if it
exists.

• [NDDSHOME]/resource/xml/RTI_ROUTING_SERVICE.xml This file is loaded automatically if
it exists.

33

RTI Routing Service User’s Manual, Version 6.0.1

• One or more files (semicolon-separated) specified using the command-line parameter -
cfgFile.

Note: [working directory] indicates the path to the current working directory from which you
run Routing Service.

The tag [NDDSHOME] indicates the path to your Connext DDS installation.

You may use a combination of the above sources and load multiple configuration files.

Here is an example configuration file. You will learn the meaning of each line as you read the rest
of this section.

<?xml version="1.0"?>
<dds>

<routing_service name="TopicBridgeExample" group_name="MyGroup">
<domain_route name="DomainRoute">

<participant name="domain0">
<domain_id>0</domain_id>

</participant>

<participant name="domain1">
<domain_id>1</domain_id>

</participant>

<session name="Session">
<topic_route name="SquaresToCircles">

<input participant="domain0">
<registered_type_name>

ShapeType
</registered_type_name>
<topic_name>Square</topic_name>

</input>

<output participant="domain1">
<registered_type_name>

ShapeType
</registered_type_name>
<topic_name>Circle</topic_name>

</output>

</topic_route>
</session>

</domain_route>
</routing_service>

</dds>

4.4 XML Syntax and Validation
The XML representation of DDS-related resources must follow these syntax rules:

4.4. XML Syntax and Validation 34

RTI Routing Service User’s Manual, Version 6.0.1

• It shall be a well-formed XML document according to the criteria defined in clause 2.1 of the
Extensible Markup Language standard.

• It shall use UTF-8 character encoding for XML elements and values.

• It shall use <dds> as the root tag of every document.

To validate the loaded configuration, Routing Service relies on an XSD file that describes the format
of the XML content. We recommend including a reference to this document in the XML file that
contains the service’s configuration; this provides helpful features in code editors such as Visual
Studio®, Eclipse®, and NetBeans®, including validation and auto-completion while you are editing
the XML file.

The XSD definitions of the XML elements are in [NDDSHOME]/resource/schema/
rti_routing_service.xsd.

To include a reference to the XSD document in your XML file, use the attribute
xsi:noNamespaceSchemaLocation in the <dds> tag. For example:

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="[NDDSHOME]/resource/schema/rti_routing_service.xsd">
<!-- ... -->

</dds>

Note: The tag [NDDSHOME] indicates the path to your Connext DDS installation.

4.5 XML Tags for Configuring RTI Routing Service
This section describes the XML tags you can use in a Routing Service configuration file. The
following diagram and Table 4.1 describe the top-level tags allowed within the root <dds> tag.

Warning: The tables in this section may not necessarily reflect the order the Routing Service
XSD requires. Use these tables as a documentation reference only.

Table 4.1: Top-Level Tags in the Configuration File
Tags within <dds> Description Multi-

plicity
<qos_library> Specifies a QoS library and profiles. The contents of this

tag are specified in the same manner as for a Connext
DDS application. See Configuring QoS with XML, in
the Connext DDS Core Libraries User’s Manual.

0..*

<types> Defines types that can be used by Routing Service. See
Section 4.5.7.

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 35

https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.1 – continued from previous page
Tags within <dds> Description Multi-

plicity
<plugin_library> Specifies a library of Routing Service plugins. Available

plug-ins are Adapters, Transformations and Processors.
See Section 4.5.9.

0..*

<routing_service> Specifies a Routing Service configuration. See Section
4.5.1.
Attributes

• name: Uniquely identifies a Routing Service config-
uration. Optional.

• enabled: A boolean that indicates whether this
entity is auto-enabled when the service starts. If set
to false, the entity can be enabled after the service
starts through remote administration. Optional.
Default: true.

• group_name: A name that can be used to im-
plement a specific policy when the communi-
cation happens between Routing Service of the
same group. For example, in the builtin DDS
adapter, a DomainParticipant will ignore other
DomainParticipants in the same group, as a
way to avoid circular communication. Op-
tional. Default: RTI_RoutingService_[Host
Name]_ [Process ID]

Example
<routing_service name="ExampleService">

<!-- your service settings ... -->
</routing_service>

1..*

4.5.1 Routing Service Tag
A configuration file must have at least one <routing_service> tag. This tag is used to configure
an execution of Routing Service. A configuration file may contain multiple <routing_service>
tags.

When you start Routing Service, you can specify which <routing_service> tag to use to configure
the service using the -cfgName command-line parameter.

Because a configuration file may contain multiple <routing_service> tags, one file can be used to
configure multiple Routing Service executions.

Figure 4.2 and Table 4.2 describes the tags allowed within a <routing_service> tag.

4.5. XML Tags for Configuring RTI Routing Service 36

RTI Routing Service User’s Manual, Version 6.0.1

Figure 4.1: Top-level Tags in the Configuration File

Figure 4.2: Routing Service Tag Structure

4.5. XML Tags for Configuring RTI Routing Service 37

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.2: Routing Service Tag
Tags within <routing_ser-
vice>

Description Multi-
plicity

<annotation> Contains a <documentation> tag that can be used to
provide a configuration description.

0..1

<administration> Enables and configures remote administration. See Sec-
tion 4.5.2 and Section 5.

0..1

<monitoring> Enables and configures general remote monitoring. Gen-
eral monitoring settings are applicable to all the Routing
Service entities unless they are explicitly overridden. See
Section 4.5.3 and Section 6.

0..1

<entity_monitoring> Enables and configures remote monitoring for the service
entity. See Section 4.5.3 and Section 6.

0..1

<jvm> Configures the Java JVM used to load and run Java
adapters. For example:
Example

<jvm>
<class_path>

<element>SocketAdapter.jar</element>
</class_path>
<options>

<element>-Xms32m</element>
<element>-Xmx128m</element>

</options>
</jvm>

You can use the <options> tag to specify options for the
JVM, such as the initial and maximum Java heap sizes.

0..1

<domain_route> Defines a mapping between two or more data domains.
See Section 4.5.4.
Attributes

• name: uniquely identifies a domain_route configu-
ration. Optional.

• enabled: A boolean that indicates whether this
entity is auto-enabled when the service starts. If set
to false, the entity can be enabled after the service
starts through remote administration. Optional.
Default: true.

0..1

Example: Specifying a configuration in XML

<dds>
<routing_service name="EmptyConfiguration"/>
<routing_service name="ShapesDemoConfiguration">
<!--...-->
</routing_service>

</dds>

4.5. XML Tags for Configuring RTI Routing Service 38

RTI Routing Service User’s Manual, Version 6.0.1

Starting Routing Service with the following command will use the <routing_service> tag with
the name EmptyConfiguration.

$NDDSHOME/bin/rtiroutingservice \
-cfgFile file.xml -cfgName EmptyConfiguration

4.5.2 Administration
You can create a Connext DDS application that can remotely control Routing Service. The
<administration> tag is used to enable remote administration and configure its behavior. By
default, remote administration is turned off in Routing Service for security reasons. A remote
administration section is not required in the configuration file.

When remote administration is enabled, Routing Service will create a DomainParticipant, Publisher,
Subscriber, DataWriter, and DataReader. These entities are used to receive commands and send
responses. You can configure these entities with QoS tags within the <administration> tag. The
following table lists the tags allowed within <administration> tag. Notice that the <domain_id>
tag is required.

For more details, please see Section 5.

Note: The command-line options used to configure remote administration take precedence over
the XML configuration (see Section 3).

Table 4.3: Administration Tag
Tags within <administra-
tion>

Description Multi-
plicity

<enabled> Enables/disables administration. Default: true 0..1
<domain_id> Specifies which domain ID Routing Service will use to

enable remote administration.
0..1

<participant_qos> Configures the DomainParticipant QoS for remote ad-
ministration. If the tag is not defined, Routing Service
will use the Connext DDS defaults.

0..1

<publisher_qos> Configures the Publisher QoS for remote administration.
If the tag is not defined, Routing Service will use the
Connext DDS defaults.

0..1

<subscriber_qos> Configures the Subscriber QoS for remote administra-
tion. If the tag is not defined, Routing Service will use
the Connext DDS defaults.

0..1

<datawriter_qos> Configures the DataWriter QoS for remote administra-
tion. If the tag is not defined, Routing Service will use
the Connext DDS defaults with the following changes:

• history.kind = DDS_KEEP_ALL_HIS-
TORY_QOS

• resource_limits.max_samples = 32

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 39

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.3 – continued from previous page
Tags within <administra-
tion>

Description Multi-
plicity

<datareader_qos> Configures the DataReader QoS for remote administra-
tion. If the tag is not defined, Routing Service will use
the Connext DDS defaults with the following changes:

• reliability.kind = DDS_RELIABLE_RELIABIL-
ITY_QOS (this value cannot be changed)

• history.kind = DDS_KEEP_ALL_HIS-
TORY_QOS

• resource_limits.max_samples = 32

0..1

<distributed_logger> Configures RTI Distributed Logger. When you enable it,
Routing Service will publish its log messages to Connext
DDS.
Example:

<administration>
...
<distributed_logger>

<enabled>true</enabled>
</distributed_logger>

</administration>

0..1

<autosave_on_update> A boolean that, if true, automatically triggers a save
command when configuration updates are received. This
value is sent as part of the monitoring configuration data
for the Routing Service. Default: false.

0..1

<save_path> Specifies the file that will contain the saved configuration.
A <save_path> must be specified if you want to use the
remote save command ((Section 5.2). If the specified file
already exists, the file will be overwritten when save is
executed. Default: [CURRENT DIRECTORY].

0..1

4.5.3 Monitoring
You can create a Connext DDS application that can remotely monitor the status of Routing
Service. To enable remote monitoring and configure its behavior, use the <monitoring> and
<entity_monitoring> tags.

By default, remote monitoring is turned off in Routing Service for security and performance reasons.
A remote monitoring section is not required in the configuration file.

When remote monitoring is enabled, Routing Service will create one DomainParticipant, one Pub-
lisher, five DataWriters for data publication (one for each kind of entity), and five DataWriters
for status publication (one for each kind of entity). You can configure the QoS of these entities
with the <monitoring> tag defined under <routing_service>. The general remote monitoring
parameters specified using the <monitoring> tag in <routing_service> can be overwritten on a
per entity basis using the <entity_monitoring> tag.

For more details, please see Section 6.

4.5. XML Tags for Configuring RTI Routing Service 40

RTI Routing Service User’s Manual, Version 6.0.1

Note: The command-line options used to configure remote monitoring take precedence over the
XML configuration (See Section 3).

Table 4.4: Monitoring Tag
Tags within <monitoring> Description Multi-

plicity
<enabled> Enables/disables general remote monitoring. Setting this

value to true enables monitoring in all the entities unless
they explicitly disable it by setting this tag to false in
their local <entity_monitoring> tags.
Setting this tag to false disables monitoring in all the en-
tities. In this case, any monitoring configuration settings
in the entities are ignored. Default: true

0..1

<domain_id> Specifies which domain ID Routing Service will use to
enable remote monitoring.

0..1

<ignore_initializa-
tion_failure>

Indicates whether a failure initializing the monitoring en-
gine for the service or any of the underlying entities is
ignored.|br|
If false, a failure initializing monitoring will result in a
failure creating the service or the affected entities. De-
fault: false

0..1

<participant_qos> Configures the DomainParticipant QoS for remote mon-
itoring. If the tag is not defined, Routing Service will use
the Connext DDS defaults, with the following change:

• resource_limits.type_code_max_serial-
ized_length = 4096

0..1

<publisher_qos> Configures the Publisher QoS for remote monitoring. If
the tag is not defined, Routing Service will use the Con-
next DDS defaults.

0..1

<datawriter_qos> Configures the DataWriter QoS for remote monitoring.
If the tag is not defined, Routing Service will use the
Connext DDS defaults with the following change:

• durability.kind = DDS_TRANSIENT_LO-
CAL_DURABILITY_QOS

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 41

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.4 – continued from previous page
Tags within <monitoring> Description Multi-

plicity
<statistics_sampling_pe-
riod>

Specifies the frequency, in seconds, at which status statis-
tics are gathered. Statistical variables such as latency are
part of the entity status.
Example:

<statistics_sampling_period>
<sec>1</sec>
<nanosec>0</nanosec>

</statistics_sampling_period>

The statistics period for a given entity should be smaller
than the publication period. The statistics sampling pe-
riod defined in <routing_service> is inherited by all the
entities. An entity can overwrite the period. Default: 1

0..1

<statistics_publica-
tion_period>

Specifies the frequency, in seconds, at which the status
of an entity is published.
Example:

<statistics_publication_period>
<sec>5</sec>
<nanosec>0</nanosec>

</statistics_publication_period>

The statistics sampling period defined in
<routing_service> is inherited by all the entities.
An entity can overwrite the period. Default: 5

0..1

Monitoring Configuration Inheritance

The monitoring configuration defined in <routing_service> is inherited by all the entities defined
inside the tag.

An entity can overwrite three elements of the monitoring configuration:

• The status publication period

• The statistics sampling period

• The historical statistics windows

Each one of these three elements is inherited and can be overwritten independently using the
<entity_monitoring> tag.

Table 4.5: Entity Monitoring Tag
Tags within <entity_moni-
toring>

Description Multi-
plicity

<enabled> Enables/disables remote monitoring for a given entity. If
general monitoring is disabled, this value is ignored.
Default: true

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 42

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.5 – continued from previous page
Tags within <entity_moni-
toring>

Description Multi-
plicity

<statistics_sampling_pe-
riod>

Specifies the frequency at which status statistics are gath-
ered. Statistical variables such as latency are part of the
entity status.
Example:

<statistics_sampling_period>
<sec>1</sec>
<nanosec>0</nanosec>

</statistics_sampling_period>

The statistics period for a given entity should be smaller
than the publication period.
If this tag is not defined, historical statistics are inherited
from the general monitoring settings.
Default: 1 second.

0..1

<statistics_publica-
tion_period>

Specifies the frequency at which the status of an entity
is published.
Example:

<statistics_publication_period>
<sec>5</sec>
<nanosec>0</nanosec>

</statistics_publication_period>

If this tag is not defined, historical statistics are inherited
from the general monitoring settings.
Default: 5 seconds.

0..1

Example: Overriding Publication Period

<routing_service name="MonitoringExample">
<monitoring>

<domain_id>55</domain_id>
<status_publication_period>

<sec>1</sec>
</status_publication_period>
<statistics_sampling_period>

<sec>1</sec>
<nanosec>0</nanosec>

</statistics_sampling_period>
</monitoring>
...
<domain_route>

<entity_monitoring>
<status_publication_period>

<sec>4</sec>
</status_publication_period>

</entity_monitoring>
...

(continues on next page)

4.5. XML Tags for Configuring RTI Routing Service 43

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
</domain_route>

</routing_service>

4.5.4 Domain Route
A <domain_route> defines a mapping between different data domains. Data available in any
of these data domains can be routed to other data domains. For example, a DomainRoute could
define a mapping among multiple DDS domains, or between a DDS domain and a MQTT provider’s
network. How this data is actually read and written is defined in specific Routes.

A <domain_route> creates one or more Connections. Each Connection typically belongs to a
different data domain. The <connection> tag requires the specification of the attribute name,
which will be used by the Route to select input and output domains, and the plugin_name, which
will be used to associate a Connection with an adapter plugin defined within <adapter_library>.

Routing Service comes with a builtin implementation of a DDS adapter, which can be used by
specifying the <participant> tag. Each tag corresponds to exactly one DomainParticipant. A
DomainRoute can include both <connection> and <participant> tags to provide communication
between DDS domains and other data domains.

Table 4.6: Domain Route Tag
Tags within <do-
main_route>

Description Multi-
plicity

<entity_monitoring> Enables and configures remote monitoring for the Do-
mainRoute. See Section 6.

0..1

<connection> Applicable to non-DDS domains. Configures a custom,
adapter-based connection.
Attributes

• name: Uniquely identifies a service configuration.
Required.

• plugin_name: Name of the plug-in that creates an
adapter object. This name shall refer to an adapter
plug-in registered either in a <plugin_library> or
with the service’s attach_adapter_plugin() opera-
tion. Required.

See Table 4.7.

0..*

<participant> Applicable to DDS domains. Configures a DDS adapter
DomainParticipant. See Table 4.8.

0..*

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 44

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.6 – continued from previous page
Tags within <do-
main_route>

Description Multi-
plicity

<session> Defines a multi-threaded context in which data is routed
according to specified routes. See Section 4.5.5.
Attributes

• name: uniquely identifies the Session configuration.
Optional.

• enabled: A boolean that indicates whether this
entity is auto-enabled when the service starts. If set
to false, the entity can be enabled after the service
starts through remote administration. Optional.
Default: true.

0..*

Table 4.7: Connection Tag
Tags within <connection> Description Multi-

plicity
<property> A sequence of name-value string pairs that allows you to

configure the Connection instance.
Example:

<property>
<value>

<element>
<name>jms.connection.username</

→˓name>
<value>myusername</value>

</element>
</value>

</property>

0..1

<registered_type> Registers a type name and associates it with a type rep-
resentation. When you define a type in the configuration
file, you have to register the type in order to use it in
Routes. See Section 4.5.6.

0..*

Table 4.8: Participant Tag
Tags within <participant> Description Multi-

plicity
<domain_id> Sets the domain ID associated with the DomainPartici-

pant. Default: 0
0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 45

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.8 – continued from previous page
Tags within <participant> Description Multi-

plicity
<participant_qos> Sets the participant QoS. The contents of this tag are

specified in the same manner as a Connext DDS QoS
profile. If not specified, the DDS defaults are used, ex-
cept for the participant name which takes the following
value: “RTI Routing Service: <service name>.<domain
route name>#[1|2]” (for example “RTI Routing Service:
MyService.MyDomainRoute#1”).

Note: Changing the default participant name may pre-
vent Routing Service from being detected by Admin Con-
sole.

You can use a <participant_qos> tag inside a
<qos_library>/<qos_profile> previously defined in
your configuration file by referring to it, and also override
any value:
Example:

<participant_qos base_name=
→˓"MyLibrary::MyProfile">

<discovery>
<initial_peers>

<element>udpv4://192.168.1..12</
→˓element>

<element>shmem://</element>
</initial_peers>

</discovery>
</participant_qos>

See Configuring QoS with XML, in the Connext DDS
Core Libraries User’s Manual.

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 46

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.8 – continued from previous page
Tags within <participant> Description Multi-

plicity
<memory_management> Configures certain aspects of how Connext DDS allocates

internal memory. The configuration is per DomainPar-
ticipant and therefore affects all the contained DDS en-
tities.
Example:

<memory_management>
<sample_buffer_min_size>

1024
</sample_buffer_min_size>
<sample_buffer_trim_to_size>

true
</sample_buffer_trim_to_size>

</memory_management>
This tag includes the following tags:

• sample_buffer_min_size: For all
DataReaders and DataWriters, the way
Connext DDS allocates memory for samples
is as follows: Connext DDS pre-allocates
space for samples up to size X in the
DataReader and DataWriter queues. If a
sample has an actual size greater than X,
the memory is allocated dynamically for that
sample. The default size is 64KB. This is the
maximum amount of pre-allocated memory.
Dynamic memory allocation may occur when
necessary if samples require a bigger size.

• sample_buffer_trim_to_size: If set to
true, after allocating dynamic memory for
very large samples, that memory will be re-
leased when possible. If false, that memory
will not be released but kept for future sam-
ples if needed. The default is false.

This feature is useful when a data type has a very high
maximum size (e.g., megabytes) but most of the samples
sent are much smaller than the maximum possible size
(e.g., kilobytes). In this case, the memory footprint is
reduced dramatically, while still correctly handling the
rare cases in which very large samples are published.

0..1

<registered_type> Registers a type name and associates it with a type rep-
resentation. When you define a type in the configuration
file, you have to register the type in order to use it in
Routes. See Section 4.5.6.

0..*

4.5. XML Tags for Configuring RTI Routing Service 47

RTI Routing Service User’s Manual, Version 6.0.1

Example: Mapping between Two DDS Domains

<domain_route name="DdsDomainRoute">
<participant name="domain54">

<domain_id>54</domain_id>
...

</participant>

<articipant name="domain55">
<domain_id>55</domain_id>
...

</participant>

...
</domain_route>

Example: Mapping between a DDS Domain and raw Sockets

<domain_route name="DomainRoute">
<connection name="SocketAdapter">

...
</connection>

<participant name="domain55">
<domain_id>55</domain_id>
...

</participant>

...
</domain_route>

4.5.5 Session
A <session> tag defines a multi-threaded context for route processing, including data forwarding.
The data is routed according to specified Routes and AutoRoutes.

Each Session will have an associated thread pool to process Routes concurrently, preserving Route
safety. Multiple Routes can be processed concurrently, but a single Route can be processed only
by one thread at time. By default, the session thread pool has a single thread, which serializes the
processing of all the Routes.

Sessions that bridge domains will create a Publisher and a Subscriber from the DomainParticipants
associated with the domains. Table 4.9 lists the tags allowed within a <session> tag.

Table 4.9: Session Tag
Tags within <session> Description Multi-

plicity
<entity_monitoring> Enables and configures remote monitoring for the Ses-

sion. See Section 6.
0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 48

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.9 – continued from previous page
Tags within <session> Description Multi-

plicity
<thread_pool> Defines the number of threads to process Routes and sets

the mask, priority, and stack size of each thread.
Example:

<thread_pool>
<mask>MASK_DEFAULT</mask>
<priority>THREAD_PRIORITY_DEFAULT</

→˓priority>
<stack_size>

THREAD_STACK_SIZE_DEFAULT
</stack_size>

</thread_pool>
Default values:

• size: 1
• mask: MASK_DEFAULT
• priority: THREAD_PRIORITY_DE-

FAULT
• stack_size: THREAD_STACK_SIZE_DE-

FAULT

0..1

<periodic_action> Specifies a period at which Processors will receive notifi-
cations of the periodic event. The Session will wake up
and notify the installed Processor every specified period.
Default: INFINITE (no periodic notification)
Example:

<periodic_action>
<sec>1</sec>
<nanosec>0</nanosec>

</periodic_action>
The example above indicates the installed Processor
should be notified every one second.

0..1

<property> A sequence of name-value string pairs that allows you to
configure the Session instance.
Example:

<property>
<value>

<element>
<name>com.rti.socket.timeout</

→˓name>
<value>1</value>

</element>
</value>

</property>

These properties are only used in non-DDS domains.

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 49

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.9 – continued from previous page
Tags within <session> Description Multi-

plicity
<subscriber_qos> Only applicable to Routes that are Connext DDS Routes.

Sets the QoS associated with the session Subscribers.
There is one Subscriber per DomainParticipant. The
contents of this tag are specified in the same manner
as a Connext DDS QoS profile. See Configuring QoS
with XML, in the Connext DDS Core Libraries User’s
Manual.
If the tag is not defined, Routing Service will use the
Connext DDS defaults.

0..1

<publisher_qos> Only applicable to Routes that are Connext DDS Routes.
Sets the QoS associated with the session Publishers.
There is one Publisher per DomainParticipant. The con-
tents of this tag are specified in the same manner as a
Connext DDS QoS profile. See Configuring QoS with
XML, in the Connext DDS Core Libraries User’s Man-
ual.
If the tag is not defined, Routing Service will use the
Connext DDS defaults.

0..*

<topic_route> or
<route>

Defines a mapping between multiple input and output
streams.
Attributes

• name: uniquely identifies a TopicRoute or Route
configuration. Optional.

• enabled: A boolean that indicates whether this
entity is auto-enabled when the service starts. If set
to false, the entity can be enabled after the service
starts through remote administration. Optional.
Default: true.

See Section 4.5.6.

0..*

<auto_topic_route> or
<auto_route>

Defines a factory for Route based on type and stream
filters. See Section 4.5.8.
Attributes

• name: uniquely identifies an AutoTopicRoute or Au-
toRoute configuration. Optional.

• enabled: A boolean that indicates whether this
entity is auto-enabled when the service starts. If set
to false, the entity can be enabled after the service
starts through remote administration. Optional.
Default: true.

0..*

4.5.6 Route
A Route explicitly defines a mapping between one or more input data streams and one or more
output data streams. The input and output streams may belong to different data domains.

4.5. XML Tags for Configuring RTI Routing Service 50

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm

RTI Routing Service User’s Manual, Version 6.0.1

Route events are processed in the context of the thread belonging to the parent Session. Route
event processing includes, among others, calls to the StreamReader read and StreamWriter write
operations.

Table 4.10 lists the tags allowed within a <route>. Table 4.11 lists the tags allowed within a
<topic_route>.

Table 4.10: Route Tag
Tags within <route> Description Multi-

plicity
<entity_monitoring> Enables and configures remote monitoring for the Route.

See Section 6.
0..1

<route_types> Defines if the input connection will use types discovered
in the output connection and vice versa for the creation
of StreamWriters and StreamReaders in the Route. See
Section 4.5.7. Default: false

0..1

<publish_with_origi-
nal_timestamp>

When this tag is true, the data samples read from the
input stream are written into the output stream with
the same timestamp that was associated with them when
they were made available in the input domain.
This option may not be applicable in some adapter im-
plementations in which the concept of timestamp is un-
supported. Default: false

0..1

<processor> Sets a custom Processor for handling the data forwarding
process. See Section 7.
Attributes

• plugin_name: Name of the plug-in that cre-
ates a Processor object. This name shall re-
fer to a processor plug-in registered either in
a <plugin_library> or with the service at-
tach_processor() operation.

0..1

<dds_input> Only applicable to DDS inputs. Defines an input topic.
See Section 4.5.7.
Attributes

• name: uniquely identifies an input configura-
tion. Optional.

0..*

<dds_output> Only applicable to DDS outputs. Defines an output
topic. See Section 4.5.7.
Attributes

• name: uniquely identifies an output configura-
tion. Optional.

0..*

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 51

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.10 – continued from previous page
Tags within <route> Description Multi-

plicity
<input> Only applicable to non-DDS inputs. Defines an input

stream. See Section 4.5.7.
Attributes

• name: uniquely identifies an input configura-
tion. Optional.

0..*

<output> Only applicable to non-DDS outputs. Defines an output
stream. See Section 4.5.7.
Attributes

• name: uniquely identifies an output configura-
tion. Optional.

0..*

Table 4.11: Topic Route Tag
Tags within <topic_route> Description Multi-

plicity
<entity_monitoring> Enables and configures remote monitoring for the Topi-

cRoute. See Section 6.
0..1

<route_types> Defines if the input connection will use types discovered
in the output connection and vice versa for the creation of
DataReaders and DataWriters in the Route. See Section
4.5.7.
Default: false

0..1

<publish_with_origi-
nal_info>

Writes the data sample as if they came from its original
writer. Setting this option to true allows having redun-
dant routing services and prevents the applications from
receiving duplicate samples. Default: false

0..1

<publish_with_origi-
nal_timestamp>

Indicates if the data samples are written with their orig-
inal source timestamp. Default: false

0..1

<propagate_dispose> Indicates whether or not disposed samples
(NOT_ALIVE_DISPOSE) must be propagated by
the TopicRoute. This action may be overwritten by the
execution of a transformation. Default: true

0..1

<propagate_unregister> Indicates whether or not disposed samples
(NOT_ALIVE_NO_WRITERS) must be propagated
by the TopicRoute. This action may be overwritten by
the execution of a transformation. Default: true

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 52

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.11 – continued from previous page
Tags within <topic_route> Description Multi-

plicity
<topic_query_proxy> Configures the forwarding of TopicQueries. See Section

9 for detailed information on how Routing Service pro-
cesses TopicQueries.
The snippet below shows that topic query proxy is en-
abled in propagation mode, which causes the creation of
a TopicQuery on the route’s input for each TopicQuery
that an output’s matching DataReader creates.
Example:

<topic_query_proxy>
<enabled>true</enabled>
<mode>PROPAGATION</mode>

</topic_query_proxy>

0..1

<filter_propagation> Configures the propagation of content filters. Specifies
whether the feature is enabled and when events are pro-
cessed (Section 8).
Filter propagation events can be batched to reduce the
traffic in detriment of increasing the delay in propagating
the composed filter. Event batching can be configured
with the following tags:

• <max_event_count>: Indicates the minimum
number of filter indication events required before
propagating the composed filter.

• <max_event_delay>: Indicates the minimum
amount of time to wait before propagating the com-
posed filter.

The previous two tags can be set in combination. In this
case, the composed filter is propagated whenever one of
these conditions is met first.
The snippet below shows that filter propagation is en-
abled, and a filter update is propagated on the Stream-
Reader only after the occurrence of every three filter
events (see Section 8).
Example:

<filter_propagation>
<enabled>true</enabled>
<max_event_count>3</max_event_count>
<max_event_delay>

<sec>DURATION_INFINITE_SEC</sec>
<nanosec>DURATION_INFINITE_NSEC</

→˓nanosec>
</max_event_delay>

</filter_propagation>

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 53

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.11 – continued from previous page
Tags within <topic_route> Description Multi-

plicity
<processor> Sets a custom Processor for handling the data forwarding

process. See Section 7.
Attributes

• plugin_name: Name of the plug-in that cre-
ates a Processor object. This name shall re-
fer to a processor plug-in registered either in
a <plugin_library> or with the service at-
tach_processor() operation.

0..1

<input> Defines an input topic. See Section 4.5.7.
Attributes

• name: uniquely identifies an input configura-
tion. Optional.

0..*

<output> Defines an output topic. See Section 4.5.7.
Attributes

• name: uniquely identifies an output configura-
tion. Optional.

0..*

4.5.7 Input/Output
Inputs and outputs in a Route or TopicRoute have an associated StreamReader and StreamWriter,
respectively. For DDS domains, the StreamReader will contain a DataReader and the StreamWriter
will contain a DataWriter. The DataReaders and DataWriters belong to the corresponding Session
Subscriber and Publisher.

DDS inputs and outputs within a Route are defined using the <dds_input> and <dds_output>
tags. Inputs and outputs from other data domains are defined using the <input> and <output>
tags. A TopicRoute is a special kind of Route that allows defining mapping between DDS topics
only.

Table 4.12: Route Input/Output Tags
Tags within <input> and
<output> of <route>

Description Multi-
plicity

<entity_monitoring> Enables and configures remote monitoring for the In-
put/Output. See Section 6.

0..1

<stream_name> Specifies the stream name. 1
<registered_type_name> Specifies the registered type name of the stream. 1
<creation_mode> Specifies when to create the Stream-

Reader/StreamWriter. Default: IMMEDIATE See
Section 4.5.7.

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 54

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.12 – continued from previous page
Tags within <input> and
<output> of <route>

Description Multi-
plicity

<property> A sequence of name-value string pairs that allows you to
configure the StreamReader/StreamWriter.
Example:

<property>
<value>

<element>
<name>com.rti.socket.port</name>
<value>16556</value>

</element>
</value>

</property>

0..1

<transformation> (within
<output> only)

Sets a data transformation to be applied for every data
sample. See Section 4.5.7.
Attributes

• plugin_name: Name of the plug-in that creates
a Transformation object. This name shall re-
fer to a transformation plug-in registered either
in a <plugin_library> or with the service at-
tach_transformation() operation.

0..1

Table 4.13: TopicRoute Input/Output Tags
Tags within <input>
and <output> (in
<topic_route>) and
<dds_input> and
<dds_output> (in
<route>)

Description Multi-
plicity

<topic_name> Specifies the topic name. 1
<registered_type_name> Specifies the registered type name of the topic. 1
<creation_mode> Specifies when to create the Stream-

Reader/StreamWriter. Default: IMMEDIATE See
Section 4.5.7.

0..1

<datareader_qos> or
<datawriter_qos>

Sets the DataReader or DataWriter QoS.
The contents of this tag are specified in the same manner
as a Connext DDS QoS profile. See Configuring QoS with
XML, in the Connext DDS Core Libraries User’s Manual.
If the tag is not defined, Routing Service will use the
Connext DDS defaults.

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 55

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.13 – continued from previous page
Tags within <input>
and <output> (in
<topic_route>) and
<dds_input> and
<dds_output> (in
<route>)

Description Multi-
plicity

<content_filter> Defines a SQL content filter for the DataReader.
Example:

<content_filter>
<expression>

x > 100
</expression>

</content_filter>

0..1

<transformation>‘ (within
<output> only)

Sets a data transformation to be applied for every data
sample. See Section 4.5.7.
Attributes

• plugin_name: Name of the plug-in that creates
a Transformation object. This name shall re-
fer to a transformation plug-in registered either
in a <plugin_library> or with the service at-
tach_transformation() operation.

0..1

Creation Modes

The way a Route creates its StreamReaders and StreamWriters and starts reading and writing data
can be configured.

The <creation_mode> tag in a Route’s <input> and <output> tags controls when StreamRead-
ers/StreamWriters are created.

Table 4.14: Route Creation Mode
<creation_mode> values Description
IMMEDIATE The StreamReader/StreamWriter is created as soon as

possible; that is, as soon as the types are available. Note
that if the type is defined in the configuration file, the
creation will occur when the service starts.

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 56

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.14 – continued from previous page
<creation_mode> values Description
ON_DOMAIN_MATCH The StreamReader is not created until the associated con-

nection discovers a data Producer on the same stream. If
the adapter supports partition, the discovered Producer
must also belong to the same partition for a match to
occur.
For example, a DDS input will not create a DataReader
until a DataWriter for the same topic and partition is
discovered on the same domain.
The StreamWriter is not created until the associated con-
nection discovers a data Consumer on the same stream. If
the adapter supports partition, the discovered Producer
must also belong to the same partition for a match to
occur.
For example, a DDS output will not create a DataWriter
until a DataReader for the same topic and partition is
discovered on the same domain.

ON_ROUTE_MATCH The StreamReader/StreamWriter is not created until all
its counterparts in the Route are created.

ON_DO-
MAIN_AND_ROUTE_MATCH

Both conditions must be true.

ON_DO-
MAIN_OR_ROUTE_MATCH

At least one of the conditions must be true.

The same rules also apply to the StreamReader/StreamWriter destruction. When the condition that
triggered the creation of that entity becomes false, the entity is destroyed. Note that IMMEDIATE
will never become false.

For example, if the creation mode of an <input> tag is ON_DOMAIN_MATCH, when all the
matching user DataWriters in the input domain are deleted, the input DataReader is deleted.

Example: Route Starts as Soon as a User DataWriter is Publishing on 1st Domain

<topic_route>
<input participant="domain1">

<creation_mode>ON_DOMAIN_MATCH</creation_mode>
...

</input>
<output participant="domain2">

<creation_mode>ON_ROUTE_MATCH</creation_mode>
...
</output>

</topic_route>

4.5. XML Tags for Configuring RTI Routing Service 57

RTI Routing Service User’s Manual, Version 6.0.1

Example: Route Starts when Both User DataWriter Appears in 1st Domain and User
DataReader Appears in 2nd Domain

<topic_route>
<input participant="domain1">

<creation_mode>ON_DOMAIN_AND_ROUTE_MATCH</creation_mode>
...

</input>
<output participant="domain2">

<creation_mode>ON_DOMAIN_AND_ROUTE_MATCH</creation_mode>
...
</output>

</topic_route>

Specifying Types

The tag <registered_type_name> within the <input> and <output> tags contains the registered
type name of the stream. The actual definition of that type can be set in the configuration file or
it can be discovered by the Connections.

See Section 2.1.4 for more details about type registration.

Defining Types in the Configuration File

To define and use a type in your XML configuration file:

• Define your type within the <types> tag. The type description is done using the Connext
DDS XML format for type definitions. See Creating User Data Types with Extensible Markup
Language (XML), in the RTI Connext DDS Core Libraries User’s Manual.

• Register it in the <connection>/<participant> where you will use it.

• Refer to it in the domain route(s) that will use it.

Example: Type Registration in XML

<dds>
...
<types>

<struct name="PointType">
...
</struct>

</types>
...
<routing_service name=”MyRoutingService”>

...
<domain_route>

<connection name="MyConnection">
...
<registered_type name="Position" type_name="PointType"/>

</connection>
(continues on next page)

4.5. XML Tags for Configuring RTI Routing Service 58

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Creating_User_Data_Types_with_Extensible.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Creating_User_Data_Types_with_Extensible.htm

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
<participant name="MyParticipant">

...
<registered_type name="Position" type_name="PointType"/>

</participant>
...
<session>

<topic_route>
<input participant="2">

<registered_type_name>Position</registered_type_name>
</input>
...

</topic_route>
</session>
...

</domain_route>
...

</routing_service>
...

<dds>

Discovering Types

If the registered type name is not defined in the configuration file, Routing Service has to discover
its type representation (e.g. typecode). An Input or an Output cannot be enabled if the type has
not been registered yet within the referenced Connection.

By default, the StreamReader creation will be tied to the discovery of types in the input domain
and the StreamWriter creation will be tied to the discovery of types in the output domain. If you
want to use types discovered in either one of the domains for the creation of both the StreamReader
and StreamWriter, you must set the <route_types> tag to true.

Example: Route Creation with Type Obtained from Discovery

<dds>
...
<routing_service name=”MyRoutingService”>

...
<domain_route>

<participant name="MyParticipant"/>
...
<session>

<topic_route>
<input participant="domain1">

<registered_type_name>Position</registered_type_name>
</input>
...

</topic_route>
</session>
...

</domain_route>
(continues on next page)

4.5. XML Tags for Configuring RTI Routing Service 59

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
...

</routing_service>
...

<dds>

Data Transformation

An Output can transform the incoming data using a Transformation. To instantiate a Transfor-
mation:

1. Implement the transformation plugin API and register in a plug-in library, or attach it to a
service instance if you are using the Service API. See Section 7.

2. Instantiate a Transformation object by specifying a <transformation> tag inside a <output>
or <dds_output>.

Table 4.15 lists the tags allowed within a <transformation> tag.

Table 4.15: Transformation Tag
Tags within <transforma-
tion>

Description Multi-
plicity

<property> A sequence of name-value string pairs that allows you to
configure the custom Transformation plug-in object.
Example:

<property>
<value>

<element>
<name>X</name>
<value>Y</value>

</element>
<element>

<name>Y</name>
<value>X</value>

</element>
</value>

</property>

0..1

4.5.8 Auto Route
The tag <auto_route> defines a set of potential Routes, with single input and output, both with
the same registered type and stream name. A Route can eventually be instantiated when a new
stream is discovered with a type name and a stream name that match the filters in the AutoRoute.
When this happens, a Route is created with the configuration defined by the AutoRoute.

The generated Route has a name constructed as follows:

[auto_route_name]@[stream_name]

4.5. XML Tags for Configuring RTI Routing Service 60

RTI Routing Service User’s Manual, Version 6.0.1

where [auto_route_name] represents the name of the AutoRoute and [stream_name] the name of
the matching stream.

DDS inputs and outputs within an AutoRoute are defined using the XML tags <dds_input> and
<dds_output>. Input and outputs from other data domains are defined using the tags <input>
and <output>.

An AutoTopicRoute is a special kind of AutoRoute that defines a mapping between two DDS
domains.

See the following tables for more information on allowable tags:

• Table 4.16 lists the tags allowed within a <auto_route>.

• Table 4.17 lists the tags allowed within a <auto_topic_route>.

Table 4.16: AutoRoute Tag
Tags within <auto_route> Description Multi-

plicity
<entity_monitoring> Enables and configures remote monitoring for the Au-

toRoute. See Section 6.
0..1

<publish_with_origi-
nal_timestamp>

When this tag is true, the data samples read from the
input stream are written into the output stream with
the same timestamp that was associated with them when
they were made available in the input domain.
This option may not be applicable in some adapter im-
plementations in which the concept of timestamp is un-
supported. Default: false

0..1

<processor> Sets a custom Processor for handling the data forwarding
process. See Section 7.
Attributes

• plugin_name: Name of the plug-in that cre-
ates a Processor object. This name shall re-
fer to a processor plug-in registered either in a
<plugin_library> or with the service attach_pro-
cessor() operation.

0..1

<dds_input> Only applicable to DDS inputs. Defines an input topic. 0..1
<dds_output> Only applicable to DDS outputs. Defines an output

topic.
0..1

<input> Only applicable to non-DDS inputs. Defines an input
stream.

0..1

<output> Only applicable to non-DDS outputs. Defines an output
stream.

0..1

4.5. XML Tags for Configuring RTI Routing Service 61

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.17: AutoTopicRoute Tag
Tags within
<auto_topic_route>

Description Multi-
plicity

<entity_monitoring> Enables and configures remote monitoring for the Auto-
TopicRoute. See Section 6.

0..1

<publish_with_origi-
nal_info>

Writes the data sample as if they came from its original
writer. Setting this option to true allows having redun-
dant routing services and prevents the applications from
receiving duplicate samples. Default: false

0..1

<publish_with_origi-
nal_timestamp>

Indicates if the data samples are written with their orig-
inal source timestamp. Default: false

0..1

<propagate_dispose> Indicates whether or not disposed samples
(NOT_ALIVE_DISPOSE) must be propagated by
the TopicRoute. This action may be overwritten by the
execution of a transformation. Default: true

0..1

<propagate_unregister> Indicates whether or not disposed samples
(NOT_ALIVE_NO_WRITERS) must be propagated
by the TopicRoute. This action may be overwritten by
the execution of a transformation. Default: true

0..1

<topic_query_proxy> Configures the forwarding of TopicQueries. See Section
9 for detailed information on how Routing Service pro-
cesses TopicQueries.
The snippet below shows that topic query proxy is en-
abled in propagation mode, which causes the creation of
a TopicQuery on the route’s input for each TopicQuery
that an output’s matching DataReader creates.
Example:

<topic_query_proxy>
<enabled>true</enabled>
<mode>PROPAGATION</mode>

</topic_query_proxy>

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 62

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.17 – continued from previous page
Tags within
<auto_topic_route>

Description Multi-
plicity

<filter_propagation> Configures the propagation of content filters. Specifies
whether the feature is enabled and when events are pro-
cessed.
The snippet below shows that filter propagation is en-
abled, and a filter update is propagated on the Stream-
Reader only after the occurrence of every three filter
events (see Section 8).
Example:

<filter_propagation>
<enabled>true</enabled>
<max_event_count>3</max_event_count>
<max_event_delay>

<sec>DDS_DURATION_INFINITE_SEC</sec>
<nanosec>DDS_DURATION_INFINITE_NSEC</

→˓nanosec>
</max_event_delay>

</filter_propagation>

0..1

<processor> Sets a custom Processor for handling the data forwarding
process. See Section 7.
Attributes

• plugin_name: Name of the plug-in that cre-
ates a Processor object. This name shall re-
fer to a processor plug-in registered either in a
<plugin_library> or with the service attach_pro-
cessor() operation.

0..1

<input> Defines an input topic. 0..1
<output> Defines an output topic. 0..1

Table 4.18: AutoRoute Input/Output Tags
Tags within <input>
and <output> of
<auto_route>

Description Multi-
plicity

<entity_monitoring> Enables and configures remote monitoring for the In-
put/Output. See Section 6.

0..1

<al-
low_stream_name_fil-
ter>

A stream name filter. You may use a comma-separated
list to specify more than one filter. Default: * (allow
all)

0..1

<allow_regis-
tered_type_name_filter>

A registered type name filter. You may use a comma-
separated list to specify more than one filter. Default:
* (allow all)

0..1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 63

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.18 – continued from previous page
Tags within <input>
and <output> of
<auto_route>

Description Multi-
plicity

<deny_stream_name_fil-
ter>

A stream name filter that should be denied (excluded).
This is applied after the <allow_stream_name_filter>.
Default: empty (not applied)

1

<deny_regis-
tered_type_filter>

A registered type name filter that should be
denied (excluded). This is applied after the
<allow_registered_type_name_filter>. Default:
empty (not applied)

0..1

<creation_mode> Specifies when to create the Stream-
Reader/StreamWriter. Default: IMMEDIATE See
Section 4.5.7.

0..1

<property> A sequence of name-value string pairs that allows you to
configure the StreamReader/StreamWriter.
Example:

<property>
<value>

<element>
<name>com.rti.socket.port</name>
<value>16556</value>

</element>
</value>

</property>

0..1

Table 4.19: AutoTopicRoute Input/Output Tags
Tags within <input>
and <output> (in
<auto_topic_route>)
<dds_input> and
<dds_output> (in
<auto_route>)

Description Multi-
plicity

<entity_monitoring> Enables and configures remote monitoring for the In-
put/Output. See Section 6.

0..1

<allow_topic_name_fil-
ter>

A Topic name filter. You may use a comma-separated
list to specify more than one filter. Default: * (allow
all)

0..1

<allow_regis-
tered_type_name_filter>

A registered type name filter. You may use a comma-
separated list to specify more than one filter. Default:
* (allow all)

0..1

<deny_topic_name_fil-
ter>

A Topic name filter that should be denied (excluded).
This is applied after the <allow_stream_name_filter>.
Default: empty (not applied)

1

Continued on next page

4.5. XML Tags for Configuring RTI Routing Service 64

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.19 – continued from previous page
Tags within <input>
and <output> (in
<auto_topic_route>)
<dds_input> and
<dds_output> (in
<auto_route>)

Description Multi-
plicity

<deny_regis-
tered_type_filter>

A registered type name filter that should be
denied (excluded). This is applied after the
<allow_registered_type_name_filter>. Default:
empty (not applied)

0..1

<creation_mode> Specifies when to create the Stream-
Reader/StreamWriter. Default: IMMEDIATE See
Section 4.5.7.

0..1

<datareader_qos> or
<datawriter_qos>

Sets the DataReader or DataWriter QoS.
The contents of this tag are specified in the same manner
as a Connext DDS QoS profile. See Configuring QoS with
XML, in the Connext DDS Core Libraries User’s Manual.
If the tag is not defined, Routing Service will use the
Connext DDS defaults.

0..1

<content_filter> Defines a SQL content filter for the DataReader.
Example:

<content_filter>
<expression>

x > 100
</expression>

</content_filter>

0..1

4.5.9 Plugins
All the pluggable components specific to Routing Service are configured within the
<plugin_library> tag. Table 4.20 describes the available tags.

Plug-ins are categorized and configured based on the source language. Routing Service supports
C/C++ and Java plug-ins. See Section 7 for further information on developing Routing Service
plug-ins.

4.5. XML Tags for Configuring RTI Routing Service 65

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/XMLConfiguration.htm

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.20: Configuration tags for plug-in libraries
Tags within <plugin_li-
brary>

Description Multi-
plicity

<adapter_plugin> Specifies a C/C++ Adapter plug-in. See Table 12.16.
Attributes

• name: uniquely identifies an Adapter plug-in within
a library. This name qualified with the library
name represents the plug-in registered name that
is referred by <connection> tags. See Table 4.6.

0..*

<java_adapter_plugin> Specifies a Java Adapter plug-in. See Table 12.17.
Attributes (See <adapter_plugin>).

0..*

<transformation_plugin> Specifies a C/C++ Transformation plug-in. See Table
12.16.
Attributes

• name: uniquely identifies an Transformation plug-
in within a library. This name qualified with the
library name represents the plug-in registered name
that is referred by <transformation> tags. See
Section 4.5.6.

0..*

<processor_plugin> Specifies a C/C++ Processor plug-in. See Table 12.16.
Attributes

• name: uniquely identifies an Processor plug-in
within a library. This name qualified with the li-
brary name represents the plug-in registered name
that is referred by <processor> tags. See Section
4.5.6.

0..*

4.6 Enabling Distributed Logger
Routing Service provides integrated support for RTI Distributed Logger.

Distributed Logger is included in Connext DDS but it is not supported on all platforms; see the
Connext DDS Core Libraries Platform Notes to see which platforms support Distributed Logger.

When you enable Distributed Logger, Routing Service will publish its log messages to Connext DDS.
Then you can use RTI Admin Console to visualize the log message data. Since the data is provided
in a topic, you can also use rtiddsspy or even write your own visualization tool.

To enable Distributed Logger, use the tag <distributed_logger> within <adminstration>. For
example:

<routing_service name="default">
<administration>

...

(continues on next page)

4.6. Enabling Distributed Logger 66

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_PlatformNotes/index.htm

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
<distributed_logger>

<enabled>true</enabled>
</distributed_logger>

</administration>
...

</routing_service>

For the list of elements that configure Distributed Logger see Section 4.5.2. For more details about
Distributed Logger, see Enabling Distributed Logger in RTI Services.

4.7 Support for Extensible Types
Routing Service includes partial support for the ‘“Extensible and Dynamic Topic Types for DDS”
specification <http://www.omg.org/spec/DDS-XTypes>’ from the Object Management Group
(OMG). This section assumes that you are familiar with Extensible Types and you have read
the Connext DDS Core Libraries Getting Started Guide Addendum for Extensible Types.

• Inputs and Outputs can subscribe to and publish topics associated with final and extensible
types.

• You can select the type version associated with a topic route by providing the type description
in the XML configuration file. The XML description supports structure inheritance. You can
learn more about structure inheritance in the Connext DDS Getting Started Guide Addendum
for Extensible Types.

• The TypeConsistencyEnforcementQosPolicy can be specified on a per-topic-route basis, in
the same way as other QoS policies.

• Within a DomainParticipant, a topic cannot be associated with more than one type version.
This prevents the same DomainParticipant from having two Route DataReader or DataWriter
with different versions of a type for the same Topic. To achieve this behavior, create two
different DomainParticipant, each associating the topic with a different type version.

The type declared in an Input is the version return edin the read operations within the installed
Processor of the parent Route, which then can be provided directly to the Outputs, as long as they
have a compatible type (or a Transformation that makes it compatible). An Input can subscribe
to different-but-compatible types, but those samples are translated to the actual type of the Input.

4.7.1 Example: Samples Published by Two Writers of Type A and B, Respectively

struct A {
long x;

};

struct B {
long x;
long y;

};

4.7. Support for Extensible Types 67

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/EnablingDistributedLoggerInRTIServices.htm
http://www.omg.org/spec/DDS-XTypes

RTI Routing Service User’s Manual, Version 6.0.1

Table 4.21: Forwarded data when type in TopicRoute is not
extended

Samples published
by two DataWriters
of types A and B,
respectively

Samples forwarded by a TopicRoute for type A in
both input and output

Samples received by a
B reader

A [x=1] A [x=1] B [x=1, y=0]
B [x=10, y=11] A [x=10] B [x=10, y=0]

Table 4.22: Forwarded data when type in TopicRoute is ex-
tended

Samples published
by two DataWriters
of types A and B,
respectively

Samples forwarded by a TopicRoute for type B in
both input and output

Samples received by a
B reader

A [x=1] B [x=1, y=0] B [x=1, y=0]
B [x=10, y=11] B [x=10, y=11] B [x=10, y=11]

4.8 Support for RTI FlatData and Zero Copy Transfer Over Shared
Memory

Routing Service supports communication with applications that use RTI FlatData™ and Zero-Copy
transfer over shared memory, only on the subscription side.

Warning: On the publication side, Routing Service will ignore the type annotations for these
capabilities and will communicate through the regular serialization and deserialization paths.

To enable Routing Service to work with RTI FlatData and Zero-copy transfer over shared memory,
you will need to manually define the type in the XML configuration with the proper annotations, and
then register this type manually in each DomainParticipant. You can use each of these capabilities
separately or together.

For further information about these capabilities, see the Sending Large Data section in the RTI
Connext DDS User’s Manual.

4.8.1 Example: Configuration to enable both FlatData and zero-copy transfer over
shared memory

<dds>
<types>

<struct name="Point"
transferMode="shmem_ref"
languageBinding="flat_data"

(continues on next page)

4.8. Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 68

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/SendingLargeData.htm

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
extensibility= "final">

<member name="x" type="long"/>
<member name="y" type="long"/>

</struct>
</types>

<qos_library name="MyQosLib">
<qos_profile name="ShmemOnly">

<participant_qos>
<discovery>

<initial_peers>
<element>shmem://</element>

</initial_peers>
</discovery>
<transport_builtin>

<mask>SHMEM</mask>
</transport_builtin>

</participant_qos>
</qos_profile>

</qos_library>

<routing_service name="FlatDataWithZeroCopy">

<domain_route>
<participant name="InputDomain">

<domain_id>0</domain_id>
<participant_qos base_name="MyQosLib::ShmemOnly"/>
<registered_type name="Point" type_name="Point"/>

</participant>
<participant name="OutputDomain">

<domain_id>1</domain_id>
<registered_type name="Point" type_name="Point"/>

</participant>

<session>
<topic_route>

<input participant="InputDomain">
<topic_name>PointTopic</topic_name>
<registered_type_name>Point</registered_type_name>

</input>
<output participant="OutputDomain">

<topic_name>PointTopic</topic_name>
<!-- The output will ignore the FlataData and Zero Copy␣

→˓capabilities -->
<registered_type_name>Point</registered_type_name>

</output>
</topic_route>

</session>
</domain_route>

</routing_service>
</dds>

4.8. Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 69

Chapter 5

Remote Administration

This section provides documentation on Routing Service remote administration.

Note: Routing Service remote administration is based on the RTI Remote Administration Platform
described in Section 12.2. We recommend that you read that section before using Routing Service
remote administration.

Below you will find an API reference for all the supported operations.

5.1 Overview

5.1.1 Enabling Remote Administration
By default, remote administration is disabled in Routing Service. To enable remote administration,
you can use the <administration> tag (see Section 4.5.1) or the -remoteAdministrationDomainId
command-line parameter, which enables remote administration and sets the domain ID for remote
communication (see Section 3.1).

5.1.2 Available Service Resources
Table 5.1 lists the public resources specific to Routing Service. Each resource identifier is expressed
as a hierarchical sequence of identifiers, including parent and target resources. (See Section 12.1.2
for details.)

In the table below, the elements (rs), (dr), (c), (s), (ar), (r), (i), and (o) refer to the name
of an entity of the corresponding class as specified in the configuration in the name attribute. For
example, in the following configuration:

<routing_service name="MyRouter">...</routing_service>

The resource identifier is:

/routing_services/MyRouter

70

RTI Routing Service User’s Manual, Version 6.0.1

In the table, the resource identifier is written as /routing_services/(rs), where (rs) is the routing
service name, (dr) is the domain route name, and so on. This nomenclature is used in the table to
give you an idea of the structure of the resource identifiers. For actual (example) resource identifier
names, see the example section that follows.

Table 5.1: Resources and Their Identifiers in Routing Service
Resource Resource Identifier
Service /routing_services/(rs)
DomainRoute /routing_services/(rs)/domain_routes/(dr)
Connection or
Participant

/routing_services/(rs)/domain_routes/(dr)/connections/(c)

Session /routing_services/(rs)/domain_routes/(dr)/sessions/(s)
AutoRoute or
AutoTopicRoute

/routing_services/(rs)/domain_routes/(dr)/sessions/(s)/auto_routes/(ar)

Route or Topi-
cRoute

/routing_services/(rs)/domain_routes/(dr)/sessions/(s)/routes/(r)

Route Input or
DDS Input

/routing_services/(rs)/domain_routes/(dr)/sessions/(s)/routes/(r)/in-
puts/(i)

Route Output or
DDS Output

/routing_services/(rs)/domain_routes/(dr)/sssions/(s)/routes/(r)/out-
puts/(i)

Example

This example shows you how to address a resource of each possible resource class in Routing
Service, using the example configuration in Section 5.3 as a reference. (For a complete reference of
the available configuration tags used in Routing Service, see Section 4.5.)

Service

Entity with name “MyRouter”:

<routing_service name="MyRouter">...</routing_service>

Resource identifier:

/routing_services/MyRouter

DomainRoute

Entity with name “MyDomainRoute” in parent “MyRouter”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">...</domain_route>

</routing_service>

Resource identifier:

5.1. Overview 71

RTI Routing Service User’s Manual, Version 6.0.1

/routing_services/MyRouter/domain_routes/MyDomainRoute

Participant

Entity with name “MyParticipant” in parent “MyDomainRoute”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<participant name="Session">...</participant>
</domain_route>

</routing_service>

Resource identifier:

/routing_services/MyRouter/domain_routes/MyDomainRoute/connections/
→˓MyParticipant

Session

Entity with name “MySession” in parent “MyDomainRoute”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<session name="MySession">...</session>
</domain_route>

</routing_service>

Resource identifier:

/routing_services/MyRouter/domain_routes/MyDomainRoute/sessions/MySession

AutoTopicRoute (or AutoRoute)

Entity with name “MyAutoTopicRoute” in parent “MySession”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<session name="MySession">
<auto_topic_route name="MyAutoTopicRoute">...</auto_topic_route>

</session>
</domain_route>

</routing_service>

Resource identifier (all on one line):

/routing_services/MyRouter/domain_routes/MyDomainRoute/sessions/MySession/
routes/MyTopicRoute

5.1. Overview 72

RTI Routing Service User’s Manual, Version 6.0.1

TopicRoute (or Route)

Entity with name “MyTopicRoute” in parent “MySession”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<session name="MySession">
<topic_route name="MyTopicRoute">...</topic_route>

</session>
</domain_route>

</routing_service>

Resource identifier (all on one line):

/routing_services/MyRouter/domain_routes/MyDomainRoute/sessions/MySession/
routes/MyTopicRoute

Input

Entity with name “MyInput” in parent “MyTopicRoute”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<session name="MySession">
<topic_route name="MyTopicRoute">

<input name="MyInput">...</input>
</topic_route>

</session>
</domain_route>

</routing_service>

Resource identifier (all on one line):

/routing_services/MyRouter/domain_routes/MyDomainRoute/sessions/MySession/
routes/MyRoute/inputs/MyInput

Output

Entity with name “MyOutput” in parent “MyTopicRoute”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<session name="MySession">
<topic_route name="MyTopicRoute">

<output name="MyOutput">...</output>
</topic_route>

</session>
</domain_route>

</routing_service>

Resource identifier (all on one line):

5.1. Overview 73

RTI Routing Service User’s Manual, Version 6.0.1

/routing_services/MyRouter/domain_routes/MyDomainRoute/sessions/MySession/
routes/MyRoute/outputs/MyOutput

5.1.3 Resource Object Representations

Table 5.2: Resource Representations in Routing Service
Resource Representation Format (all element type definitions are from the file

rti_routing_service.xsd)
ddsObjectRepresentation

<xs:element name="dds"
type="ddsRouter"/>

routerObjectRepresentation
<xs:element name="routing_service"

type="routingService"/>

domainRouteObjectRepresentation
<xs:element name="domain_route"

type="domainRoute"/>

connectionObjectRepresentation
<xs:element name="connection"

type="domainRouteConnection"/>

participantObjectRepresentation
<xs:element name="participant"

type="domainRouteParticipant"/>

sessionObjectRepresentation
<xs:element name="session"

type="routerSession"/>

autoRouteObjectRepresentation
<xs:element name="auto_route"

type="autoRoute"/>

autoTopicRouteObjectRepresenta-
tion <xs:element name="auto_topic_route"

type="autoTopicRoute"/>

routeObjectRepresentation
<xs:element name="route"

type="route"/>

topicRouteObjectRepresentation
<xs:element name="topic_route"

type="topicRoute"/>

Continued on next page

5.1. Overview 74

RTI Routing Service User’s Manual, Version 6.0.1

Table 5.2 – continued from previous page
Resource Representation Format (all element type definitions are from the file

rti_routing_service.xsd)
inputObjectRepresentation

<xs:element name="input"
type="routeStreamPort"/>

outputObjectRepresentation
<xs:element name="output"

type="routeStreamPort"/>

ddsInputObjectRepresentation
<xs:element name="input"

type="topicRouteInput"/>

<xs:element name="dds_input"
type="topicRouteInput"/>

ddsOutputObjectRepresentation
<xs:element name="output"

type="topicRouteOutput"/>

<xs:element name="dds_output"
type="topicRouteOutput"/>

5.2 API Reference
This section documents each remote operation, organized by service resource class.

5.2.1 Remote API Overview

Note: To improve readability, <SERVICE> is sometimes used in place of the service resource
portion of the resource identifier (e.g., /routing_services/(rs) or/routing_services/MyService). It
does not represent valid syntax.

Table 5.3: Remote Interface Overview
Resource Operation Description
Service CREATE /routing_services/(rs)/do-

main_route
Creates a new Domain-
Route.

CREATE /routing_services/(rs)/config Loads a full service config-
uration.

GET /routing_services/(rs) Returns the Service config-
uration.

UPDATE /routing_services/(rs) Updates a Service object.
UPDATE /routing_services/(rs)/state Sets a Service state.

Continued on next page

5.2. API Reference 75

RTI Routing Service User’s Manual, Version 6.0.1

Table 5.3 – continued from previous page
Resource Operation Description

UPDATE /routing_services/(rs):save Saves the Service loaded
configuration.

DELETE /routing_services/(rs)/do-
main_routes/(dr)

Deletes a DomainRoute ob-
ject.

DELETE /routing_services/(rs)/config Returns the Service config-
uration.

DELETE /routing_services/(rs) Shuts down the running
Service.

DomainRoute CREATE /routing_services/(rs)/do-
main_route/(dr)/sessions

Creates a new Session.

UPDATE /routing_services/(rs)/do-
main_route/(dr)

Updates a DomainRoute.

UPDATE /routing_services/(rs)/do-
main_route/(dr)/state

Sets a DomainRoute state.

DELETE /routing_services/(rs)/do-
main_route/(dr)/sessions/(s)

Deletes a Session.

Connection UPDATE <SERVICE>/domain_route/con-
nections(c):add_peer

Adds a list of peers in a
Connection (a Participant
in DDS adapter).

UPDATE <SERVICE>/do-
main_route/(dr)/connections(c)

Updates a Connection.

DELETE <SERVICE>/do-
main_route/(dr)/connections(c):remove_peer

Removes a list of peers in a
Connection (a Participant
in DDS adapter).

Session CREATE <SERVICE>/do-
main_route/(dr)/sessions/(s)/auto_routes

Creates a new AutoRoute.

CREATE <SERVICE>/do-
main_route/(dr)/sessions/(s)/routes

Creates a new Route.

UPDATE <SERVICE>/do-
main_route/(dr)/sessions(s)

Updates a Session.

UPDATE <SERVICE>/do-
main_route/(dr)/sessions(s)/state

Sets a Session state.

DELETE <SERVICE>/do-
main_route/(dr)/ses-
sions/(s)/auto_routes/(ar)

Deletes an AutoRoute.

DELETE <SERVICE>/do-
main_route/(dr)/sessions/(s)/routes/(r)

Deletes a Route.

AutoRoute or
AutoTopicRoute

UPDATE <SERVICE>/do-
main_route/(dr)/ses-
sions/(s)/auto_routes(ar)

Updates an AutoRoute.

UPDATE <SERVICE>/do-
main_route/(dr)/ses-
sions/(s)/auto_routes(ar)/state

Sets an AutoRoute state.

Continued on next page

5.2. API Reference 76

RTI Routing Service User’s Manual, Version 6.0.1

Table 5.3 – continued from previous page
Resource Operation Description
Route or Topi-
cRoute

UPDATE <SERVICE>/do-
main_route/(dr)/sessions/(s)/routes(r)

Updates a Route.

UPDATE <SERVICE>/do-
main_route/(dr)/sessions/(s)/routes(r)/state

Sets a Route state.

Input UPDATE <SERVICE>/do-
main_route/(dr)/sessions/(s)/routes(r)/in-
puts/(i)

Updates an Input (Con-
next DDS and non-
Connext DDS).

Output UPDATE <SERVICE>/do-
main_route/(dr)/sessions/(s)/routes(r)/out-
puts/(o)

Updates an Output (Con-
next DDS and non-
Connext DDS).

5.2.2 Service
CREATE /routing_services/(rs)/domain_routes

Operation create_domain_route

Creates a DomainRoute object from its domainRouteObjectRepresentation (see Table 5.2).

See Create Resource (Section 12.2.3).

• Example

Create a DomainRoute with name “NewDomainRoute” under Service “My-
Router”, with its configuration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/domain_routes
string_body

str\://\"<domain_route name=\"NewDomainRoute\">
...

</domain_route>"

The newly created object has the resource identifier:

/routing_services/MyRouter/domain_routes/NewDomainRoute

CREATE /routing_services/(rs)/config
Operation load

Loads a new configuration for the service from its ddsObjectRepresentation (see Table 5.2).

If the Service is already loaded, this operation will unload it first.

The provided configuration must contain a valid Service configuration with the same name
that the initial configuration used when the service was first instantiated.

5.2. API Reference 77

RTI Routing Service User’s Manual, Version 6.0.1

If the operation fails, the service will remain in an unloaded state.

Request body

• string_body: a valid Service XML configuration document provided as file:// or
str://.

Reply body

• Empty.

• Example

Load a new configuration in Service “MyRouter”.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/config
string_body

str://"<dds>
...
<qos_library name="QosLibrary">

...
</qos_library>

...
<routing_service name="MyRouter">

...
</routing_service>

</dds>"

GET /routing_services/(rs)
Operation: get

Returns a snapshot of the currently loaded full XML configuration as ddsObjectRepresentation
(see Table 5.2).

See Get Resource (Section 12.2.3).

• Example reply body:

<routing_service name="MyRouter>
<administration>...</administration>
...

</routing_service>

UPDATE /routing_services/(rs)
Operation: update

Updates the specified Service object.

5.2. API Reference 78

RTI Routing Service User’s Manual, Version 6.0.1

See Update Resource (Section 12.2.3).

The expected XML configuration is a subset of routerObjectRepresentation and contains only
parameters valid for the update.

• Example

Update a Service with the name “MyRouter”.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter
string_body

str://\"<routing_service>
...

</routing_service>"

UPDATE /routing_services/(rs)/state
Operation: set_state

Sets the state of a Service object.

See Set Resource State (Section 12.2.3).

Valid requested states:

• STARTED

• STOPPED

• PAUSED

• RUNNING

• Example

Enable a Service with the name “MyRouter”.

Request Field Value
action UPDATE
resource_identifier /routing_services/MyRouter/state
octet_body

to_cdr_buffer(RTI::Service::EntityStateKind::ENABLED)

UPDATE /routing_services/(rs):save
Operation: save

Dumps the currently loaded XML configuration into a file.

5.2. API Reference 79

RTI Routing Service User’s Manual, Version 6.0.1

The output file is specified by the save_path configuration tag. The save operation will fail
if the save_path has not been configured.

Request body

• Empty.

Reply body

• Empty.

DELETE /routing_services/(rs)/domain_routes/(dr)
Operation delete_domain_route

Deletes the specified DomainRoute.

See Delete Resource (Section 12.2.3).

DELETE /routing_services/(rs)/config
Operation unload

Unloads the current configuration of the service. If the Service is enabled, this operation will
disable it first. Upon a successful request, the service will remain in an unloaded state and
no other operations can be made until a configuration is loaded.

Request body

• Empty.

Reply body

• Empty.

DELETE /routing_services/(rs)
Operation shutdown

Initiates the shutdown sequence on the process where the Service object runs.

• If Service runs as a process executed by the shipped executable in the RTI Connext
DDS installation, the process will exit upon receipt of the command.

• If Service is instantiated as a library in your application, the service instance will notify
the installed remote shutdown hook.

In both cases, right before executing the shutdown sequence, Service will send a reply indi-
cating the result of the operation. Note that if the operation returns successfully, the reply
may be lost and never received by remote clients, since all the contained entities are deleted,
including the RTI Remote Administration Platform entities.

This operation can be invoked at any time during the lifecycle of the service.

Request body

• Empty.

5.2. API Reference 80

RTI Routing Service User’s Manual, Version 6.0.1

Reply body

• Empty.

5.2.3 DomainRoute
CREATE /routing_services/(rs)/domain_routes/(dr)/sessions

Operation: create_session

Creates a Session object from its sessionObjectRepresentation (see Table 5.2).

See Create Resource (Section 12.2.3).

• Example

Create a Session with the name “NewSession” under the DomainRoute “My-
DomainRoute”, with its configuration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/domain_routes/My-

DomainRoute/sessions
string_body

str://"<session name="NewSession">
...
</session>"

The newly created object has the resource identifier:

<SERVICE>/domain_routes/NewDomainRoute/sessions/NewSession

UPDATE /routing_services/(rs)/domain_routes/(dr)
Operation: update

Updates the specified DomainRoute object.

See Update Resource (Section 12.2.3).

The expected XML configuration is a subset of domainRouteObjectRepresentation and con-
tains only parameters valid for the update.

• Example

Update a DomainRoute with the name “MyDomainRoute” under the Service
“MyRouter”, with its configuration provided as a str:// scheme.

5.2. API Reference 81

RTI Routing Service User’s Manual, Version 6.0.1

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/domain_routes/My-

DomainRoute
string_body

str://"<domain_route>
...
</domain_route>"

UPDATE /routing_services/(rs)/domain_routes/(dr)/state
Operation: set_state

Sets the state of a DomainRoute object.

See Set Resource State (Section 12.2.3).

Valid requested states:

• ENABLED

• DISABLED

• Example

Enable a DomainRoute with the name “MyDomainRoute” under the Service
“MyRouter”.

Request Field Value
action UPDATE
resource_identifier /routing_services/MyRouter/domain_routers/My-

DomainRoute/state
octet_body

to_cdr_buffer(RTI::Service::EntityStateKind::ENABLED)

DELETE /routing_services/(rs)/domain_routes/(dr)/sessions/(s)
Operation delete_session

Deletes the specified Session.

See Delete Resource (Section 12.2.3).

Request body

• Empty.

Reply body

• Empty.

5.2. API Reference 82

RTI Routing Service User’s Manual, Version 6.0.1

5.2.4 Connection
UPDATE <SERVICE>/domain_routes/(dr)/connections/(c):add_peer

Operation add_peer

Adds a list of peers to the specified Connection.

The Connection implementation shall refer to a <participant> object.

Request body

• string_body: A comma-separated list of peer descriptors, as described in peer descriptor
format.

• Example peer descriptor list:

updv4://10.2.0.1,udpv4://239.255.0.1

Reply body

• Empty.

UPDATE <SERVICE>/domain_routes/(dr)/connections/(c)
Operation: update

Updates the specified Connection object.

See Update Resource (Section 12.2.3).

The expected XML configuration is a subset of connectionObjectRepresentation or partici-
pantObjectRepresentation, and contains only parameters valid for the update.

• Example

Update a Connection with the name “MyConnection” under the DomainRoute
“MyDomainRoute”, with its configuration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/domain_routes/My-

DomainRoute/ connections/MyConnectiom
string_body

str://"<connection>
...
</connection>"

UPDATE <SERVICE>/domain_routes/(dr)/connections/(c):remove_peer
Operation remove_peer

Removes a list of peers from the specified Connection.

The Connection implementation shall refer to a <participant> object.

5.2. API Reference 83

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Peer_Descriptor_Format.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Peer_Descriptor_Format.htm

RTI Routing Service User’s Manual, Version 6.0.1

Request body

• string_body: A comma-separated list of peer descriptors, as described in peer descriptor
format.

• Example peer descriptor list:

updv4://10.2.0.1,udpv4://239.255.0.1

Reply body

• Empty.

5.2.5 Session
CREATE <SERVICE>/domain_routes/(dr)/sessions/(s)/auto_routes

Operation: create_auto_route

Creates an AutoRoute or AutoTopicRoute object from its autoRouteObjectRepresentation or
autoTopicRouteObjectRepresentation (see Table 5.2).

See Create Resource (Section 12.2.3).

• Example

Create an AutoRoute with the name “NewAutoRoute” under the Session “My-
Session”, with its configuration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/domain_routes/My-

DomainRoute/ sessions/MySession/auto_routes
string_body

str://"<auto_route name="NewAutoRoute">
...
</auto_route>"

The newly created object has the resource identifier:

/routing_services/MyRouter/domain_routes/MyDomainRoute/ ses-
sions/MySession/auto_routes/NewAutoRoute

CREATE <SERVICE>/domain_routes/(dr)/sessions/(s)/routes
Operation: create_route

Creates a Route or TopicRoute object from its routeObjectRepresentation or topicRouteOb-
jectRepresentation (see Table 5.2).

See Create Resource (Section 12.2.3).

• Example

5.2. API Reference 84

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Peer_Descriptor_Format.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/Peer_Descriptor_Format.htm

RTI Routing Service User’s Manual, Version 6.0.1

Create a Route with the name “NewRoute” under the Session “MySession”,
with its configuration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/domain_routes/My-

DomainRoute/ sessions/MySession/routes
string_body

str://"<route name="NewRoute">
...
</route>"

The newly created object has the resource identifier:

/routing_services/MyRouter/domain_routes/MyDomainRoute/ ses-
sions/MySession/routes/NewRoute

UPDATE <SERVICE>/domain_routes/(dr)/sessions/(s)
Operation: update

Updates the specified Session object.

See Update Resource (Section 12.2.3).

The expected XML configuration is a subset of sessionObjectRepresentation and contains only
parameters valid for update.

• Example

Update a Session with the name “MySession” under the DomainRoute “MyDo-
mainRoute”, with its configuration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/domain_routes/My-

DomainRoute/ sessions/MySession
string_body

str://"<session>
...
</session>"

UPDATE <SERVICE>/domain_routes/(dr)/sessions/(s)/state
Operation: set_state

Sets the state of a Session object.

5.2. API Reference 85

RTI Routing Service User’s Manual, Version 6.0.1

See Set Resource State (Section 12.2.3).

Valid requested states:

• ENABLED

• DISABLED

• Example

Enable a Session with the name “MySession” under the DomainRoute “MyDo-
mainRoute”.

Request Field Value
action UPDATE
resource_identifier /routing_services/MyRouter/domain_routers/My-

DomainRoute/ sessions/MySession/state
octet_body

to_cdr_buffer(RTI::Service::EntityStateKind::ENABLED)

DELETE <SERVICE>/domain_routes/(dr)/sessions/(s)/auto_routes/(ar)
Operation delete_auto_route

Deletes the specified AutoRoute.

See Delete Resource (Section 12.2.3).

DELETE <SERVICE>/domain_routes/(dr)/sessions/(s)/routes/(r)
Operation delete_route

Deletes the specified Route.

See Delete Resource (Section 12.2.3).

5.2.6 AutoRoute
UPDATE <SERVICE>/domain_routes/(dr)/sessions/(s)/auto_routes/(ar)

Operation: update

Updates the specified AutoRoute or AutoTopicRoute object.

See Update Resource (Section 12.2.3).

The expected XML configuration is a subset of autoRouteObjectRepresentation or autoTopi-
cRouteObjectRepresentation, and contains only parameters valid for the update.

• Example

5.2. API Reference 86

RTI Routing Service User’s Manual, Version 6.0.1

Update an AutoRoute with the name “MyAutoRoute” under the Session “My-
Session”, with its configuration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/do-

main_routes/MyDomainRoute/ sessions/My-
Session/auto_routes/MyAutoRoute

string_body
str://"<auto_route>
...
</auto_route>"

UPDATE <SERVICE>/domain_routes/(dr)/sessions/(s)/auto_routes/(ar)/state
Operation: set_state

Sets the state of an AutoRoute object.

See Set Resource State (Section 12.2.3).

Valid requested states:

• ENABLED

• DISABLED

• RUNNING

• PAUSED

• Example

Pause an AutoRoute with the name “MyAutoRoute” under the Session “My-
Session”.

Request Field Value
action UPDATE
resource_identifier /routing_services/MyRouter/do-

main_routers/MyDomainRoute/ sessions/My-
Session/auto_routes/MyAutoRoutestate

octet_body
to_cdr_buffer(RTI::Service::EntityStateKind::PAUSED)

5.2.7 Route
UPDATE <SERVICE>/domain_routes/(dr)/sessions/(s)/routes/(r)

Operation: update

See Update Resource (Section 12.2.3).

5.2. API Reference 87

RTI Routing Service User’s Manual, Version 6.0.1

The expected XML configuration is a subset of routeObjectRepresentation or topicRouteOb-
jectRepresentation, and contains only parameters valid for the update.

• Example

Update a Route with the name “MyRoute” under the Session “MySession”,
with its configuration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/domain_routes/My-

DomainRoute/ sessions/MySession/routes/MyRoute
string_body

str://"<route>
...
</route>"

UPDATE <SERVICE>/domain_routes/(dr)/sessions/(s)/routes/(r)/state
Operation: set_state

Sets the state of a Route object.

See Set Resource State (Section 12.2.3).

Valid requested states:

• ENABLED

• DISABLED

• RUNNING

• PAUSED

• Example

Pause a Route with the name “MyRoute” under the Session “MySession”.

Request Field Value
action UPDATE
resource_identifier /routing_services/MyRouter/domain_routers/My-

DomainRoute/ sessions/MySession/routes/My-
Routestate

octet_body
to_cdr_buffer(RTI::Service::EntityStateKind::PAUSED)

5.2. API Reference 88

RTI Routing Service User’s Manual, Version 6.0.1

5.2.8 Input/Output
UPDATE <SERVICE>/domain_routes/(dr)/sessions/(s)/routes/(r)/inputs(i)

Operation: update

See Update Resource (Section 12.2.3).

The expected XML configuration is a subset of routeInputObjectRepresentation or topi-
cRouteInputObjectRepresentation, and contains only parameters valid for the update.

• Example

Update Input with the name “MyInput” under the Route “MyRoute”, with its
configuration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/domain_routes/My-

DomainRoute/ sessions/MySession/routes/My-
Route/inputs/MyInput

string_body
str://"<input>
...
</input>"

UPDATE <SERVICE>/domain_routes/(dr)/sessions/(s)/routes/(r)/outputs(i)
Operation: update

See Update Resource (Section 12.2.3).

The expected XML configuration is a subset of routeOutputObjectRepresentation or topi-
cRouteOutputObjectRepresentation, and contains only parameters valid for the update.

• Example

Update Output with the name “MyOutput” under the Route “MyRoute”, with
its configuration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identifier /routing_services/MyRouter/domain_routes/My-

DomainRoute/ sessions/MySession/routes/My-
Route/outputs/MyOutput

string_body
str://"<output>
...
</output>"

5.2. API Reference 89

RTI Routing Service User’s Manual, Version 6.0.1

5.3 Example: Configuration Reference
This configuration example shows how individual commands would apply to a valid Routing Service
configuration.

<?xml version="1.0"?>
<dds>

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<participant name="MyParticipant">
<domain_id>0</domain_id>

</participant>
<connection name="MyConnection">
</connection>
... <!-- other connections/participants -->

<session name="MySession">
<auto_route name="MyAutoRoute">
<publish_with_original_timestamp>true</publish_with_original_timestamp>

...
<input name="MyInput">

...
<property>

...
</property>

</input>
<output name="MyOutput">

...
<property>

...
</property>

</output>
</auto_route>
<auto_topic_route name="MyAutoTopicRoute">

<publish_with_original_info>true</publish_with_original_info>
...
<input name="MyInput">

...
<datareader_qos>

...
</datareader_qos>

</input>
<output name="MyOutput">

...
<datawriter_qos>

...
</datawriter_qos>

</output>
</auto_topic_route>
... <!-- other auto (Topic) routes -->
<route name="MyRoute">

<route_types>true</route_types>
<input name="MyInput">

(continues on next page)

5.3. Example: Configuration Reference 90

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
...
<property>

...
</property>

</input>
... <!-- other inputs -->
<output name="MyOutput">

...
<property>

...
</property>

</output>
... <!-- other outputs -->

</route>
... <!-- other (Topic) routes -->
<topic_route name="MyTopicRoute">

<route_types>true</route_types>
...
<input name="MyInput">

...
<datareader_qos>

...
</datareader_qos>

</input>
... <!-- other inputs -->
<output name="MyOutput">

...
<datawriter_qos>

...
</datawriter_qos>

</output>
... <!-- other outputs -->

</topic_route>
</session>
... <!-- other sessions -->

</domain_route>
... <!-- other domain routes -->

</routing_service>
</dds>

5.3. Example: Configuration Reference 91

Chapter 6

Monitoring

This section provides documentation on Routing Service remote monitoring.

Note: Routing Service monitoring is based on the Monitoring Distribution Platform described in
Section 12.3. We recommend that you read Section 12.3 before using Routing Service monitoring.

6.1 Overview

6.1.1 Enabling Service Monitoring
By default, monitoring is disabled in Routing Service. To enable monitoring you can use the
<monitoring> tag (see Section 4.5.1) or the -remoteMonitoringDomainId command-line param-
eter, which enables remote monitoring and sets the domain ID for data publication (see Section
3.1).

6.1.2 Monitoring Types
The available Keyed Resource classes and their types that can be present in the distribution moni-
toring topics are listed in Table 6.1. The complete type relationship is shown in Figure 6.1.

Table 6.1: Routing Service Keyed Resources
Keyed Resource Class Config Event Periodic
Service ServiceConfig ServiceEvent ServicePeriodic
DomainRoute DomainRouteConfig DomainRouteEvent DomainRoutePeriodic
Session SessionConfig SessionEvent SessionPeriodic
AutoRoute/AutoTopi-
cRoute

AutoRouteConfig AutoRouteEvent AutoRoutePeriodic

Route/TopicRoute RouteConfig RouteEvent RoutePeriodic
Input InputConfig InputEvent InputPeriodic
Output OutputConfig OutputEvent OutputPeriodic

All the type definitions for Routing Service monitoring information are in [NDDSHOME]/resource/

92

RTI Routing Service User’s Manual, Version 6.0.1

Figure 6.1: Keyed Resource Types for Routing Service monitoring

idl/ServiceCommon.idl and [NDDSHOME]/resource/idl/RoutingServiceMonitoring.idl.

Routing Service creates a DataWriter for each distribution Topic. All DataWriters are created
from a single Publisher, which is created from a dedicated DomainParticipant. See Section 4.5.1
for details on configuring the QoS for these entities.

6.2 Monitoring Metrics Reference
This section provides a reference to all the monitoring metrics Routing Service distributes, organized
by service resource class.

6.2.1 Service

Listing 6.1: Routing Service Types
@mutable @nested
struct ServiceConfig : Service::Monitoring::EntityConfig {

BoundedString application_name;
Service::Monitoring::ResourceGuid application_guid;
@optional Service::Monitoring::HostConfig host;
@optional Service::Monitoring::ProcessConfig process;

};

@mutable @nested
struct ServiceEvent : Service::Monitoring::EntityEvent {

(continues on next page)

6.2. Monitoring Metrics Reference 93

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
};

@mutable @nested
struct ServicePeriodic {

@optional Service::Monitoring::HostPeriodic host;
@optional Service::Monitoring::ProcessPeriodic process;

};

Table 6.2: ServiceConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 12.13.

application_name Name of the Routing Service instance. The application name is provided
through:

• appName command-line option when run as executable.
• ServiceProperty::application_name field when run as a li-

brary.

application_guid GUID of the Routing Service instance. Unique across all service in-
stances.

host See Table 12.9.
process See Table 12.11.

Table 6.3: ServiceEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 12.14.

Table 6.4: ServicePeriodic
Field Name Description
host See Table 12.10.
process See Table 12.12.

6.2.2 DomainRoute

Listing 6.2: DataReader Types
@mutable @nested
struct ConnectionConfigInfo {

BoundedString name;
AdapterClassKind class;

(continues on next page)

6.2. Monitoring Metrics Reference 94

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
BoundedString plugin_name;
XmlString configuration;

};
@mutable @nested
struct ConnectionEventInfo {

BoundedString name;
@optional Service::BuiltinTopicKey participant_key;

};

@mutable @nested
struct DomainRouteConfig : Service::Monitoring::EntityConfig {

@optional sequence<ConnectionConfigInfo> connections;
};

@mutable @nested
struct DomainRouteEvent : Service::Monitoring::EntityEvent {

@optional sequence<ConnectionEventInfo> connections;
};

@mutable @nested
struct DomainRoutePeriodic {

@optional Service::Monitoring::StatisticVariable in_samples_per_sec;
@optional Service::Monitoring::StatisticVariable in_bytes_per_sec;
@optional Service::Monitoring::StatisticVariable out_samples_per_sec;
@optional Service::Monitoring::StatisticVariable out_bytes_per_sec;
@optional Service::Monitoring::StatisticVariable latency_millisec;

};

Table 6.5: DomainRouteConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 12.13.

connections Sequence of ConnectionInfo objects, one for each Connection inside
the DataReader. See Table 6.6.

6.2. Monitoring Metrics Reference 95

RTI Routing Service User’s Manual, Version 6.0.1

Table 6.6: ConnectionInfo
Field Name Description
name Name of the Connection instance, as specified in the name attribute of

the corresponding configuration tag.
class Indicates the adapter class as AdapterClassKind:

• DDS_ADAPTER_CLASS: The Connection object is a DDS
adapter connection, hence it corresponds to a <participant> el-
ement.

• GENERIC_ADAPTER_CLASS: The Connection object is a
custom, generic adapter connection, hence it corresponds to a
<connection> element.

plugin_name Name of the adapter plugin as specified in the plugin_name attribute
of the corresponding configuraiton tag. For the DDS adapter, this field
has the constant value of rti.routingservice.adapters.dds.

configuration String representation of the XML configuration of the object.

Table 6.7: DomainRouteEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 12.14.

Table 6.8: DomainRoutePeriodic
Field Name Description
in_samples_per_sec Statistic variable that provides information about the input samples

per second as an aggregation of the same metric across the contained
Sessions.

in_bytes_per_sec Statistic variable that provides information about the input bytes per
second as an aggregation of the same metric across the contained Ses-
sions.

output_sam-
ples_per_sec

Statistic variable that provides information about the output samples
per second as an aggregation of the same metric across the contained
Sessions.

out-
put_bytes_per_sec

Statistic variable that provides information about the output bytes per
second as an aggregation of the same metric across the contained Ses-
sions.

latency_millisec Statistic variable that provides information about the latency in mil-
liseconds as an aggregation of the same metric across the contained
Sessions.

6.2.3 Session

6.2. Monitoring Metrics Reference 96

RTI Routing Service User’s Manual, Version 6.0.1

Listing 6.3: Session Types
@mutable @nested
struct SessionConfig : Service::Monitoring::EntityConfig {
};

@mutable @nested
struct SessionEvent : Service::Monitoring::EntityEvent {
};

@mutable @nested
struct SessionPeriodic {

@optional Service::Monitoring::StatisticVariable in_samples_per_sec;
@optional Service::Monitoring::StatisticVariable in_bytes_per_sec;
@optional Service::Monitoring::StatisticVariable out_samples_per_sec;
@optional Service::Monitoring::StatisticVariable out_bytes_per_sec;
@optional Service::Monitoring::StatisticVariable latency_millisec;

};

Table 6.9: SessionConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 12.13.

Table 6.10: SessionEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 12.14.

6.2. Monitoring Metrics Reference 97

RTI Routing Service User’s Manual, Version 6.0.1

Table 6.11: SessionPeriodic
Field Name Description
in_samples_per_sec Statistic variable that provides information about the input samples

per second as an aggregation of the same metric across the contained
Routes/TopicRoutes.

in_bytes_per_sec Statistic variable that provides information about the input bytes per
second as an aggregation of the same metric across the contained
Routes/TopicRoutes.

output_sam-
ples_per_sec

Statistic variable that provides information about the output samples
per second as an aggregation of the same metric across the contained
Routes/TopicRoutes.

out-
put_bytes_per_sec

Statistic variable that provides information about the output bytes
per second as an aggregation of the same metric across the contained
Routes/TopicRoutes.

latency_millisec Statistic variable that provides information about the latency in mil-
liseconds as an aggregation of the same metric across the contained
Routes/TopicRoutes.

6.2.4 AutoRoute

Listing 6.4: AutoRoute/AutoTopicRoute Types
@mutable @nested
struct AutoRouteStreamPortInfo {

XmlString configuration;
};

@mutable @nested
struct AutoRouteConfig : Service::Monitoring::EntityConfig {

@optional AutoRouteStreamPortInfo input;
@optional AutoRouteStreamPortInfo output;

};

@mutable @nested
struct AutoRouteEvent : Service::Monitoring::EntityEvent {
};

@mutable @nested
struct AutoRoutePeriodic {

@optional Service::Monitoring::StatisticVariable in_samples_per_sec;
@optional Service::Monitoring::StatisticVariable in_bytes_per_sec;
@optional Service::Monitoring::StatisticVariable out_samples_per_sec;
@optional Service::Monitoring::StatisticVariable out_bytes_per_sec;
@optional Service::Monitoring::StatisticVariable latency_millisec;
int64 route_count;

};

6.2. Monitoring Metrics Reference 98

RTI Routing Service User’s Manual, Version 6.0.1

Table 6.12: AutoRouteConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 12.13.

input See Table 6.13.
output See Table 6.13.

Table 6.13: AutoRouteStreamPortInfo
Field Name Description
configuration String representation of the XML configuration of the object.

Table 6.14: AutoRouteEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 12.14.

Table 6.15: AutoRoutePeriodic
Field Name Description
in_samples_per_sec Statistic variable that provides information about the input samples

per second as an aggregation of the same metric across all current
Routes/TopicRoutes created from this AutoRoute/AutoTopicRoute.

in_bytes_per_sec Statistic variable that provides information about the input bytes
per second as an aggregation of the same metric across all current
Routes/TopicRoutes created from this AutoRoute/AutoTopicRoute.

output_sam-
ples_per_sec

Statistic variable that provides information about the output samples
per second as an aggregation of the same metric across all current
Routes/TopicRoutes created from this AutoRoute/AutoTopicRoute.

out-
put_bytes_per_sec

Statistic variable that provides information about the output bytes
per second as an aggregation of the same metric across all current
Routes/TopicRoutes created from this AutoRoute/AutoTopicRoute.

latency_millisec Statistic variable that provides information about the latency in mil-
liseconds as an aggregation of the same metric across all current
Routes/TopicRoutes created from this AutoRoute/AutoTopicRoute.

route_count Current number of Routes/TopicRoutes created from this Au-
toRoute/AutoTopicRoute.

6.2.5 Route

6.2. Monitoring Metrics Reference 99

RTI Routing Service User’s Manual, Version 6.0.1

Listing 6.5: Route/TopicRoute Types
@mutable @nested
struct RouteConfig : Service::Monitoring::EntityConfig {

@optional Service::Monitoring::ResourceGuid auto_route_guid;
};

@mutable @nested
struct RouteEvent : Service::Monitoring::EntityEvent {
};

@mutable @nested
struct RoutePeriodic {

@optional Service::Monitoring::StatisticVariable in_samples_per_sec;
@optional Service::Monitoring::StatisticVariable in_bytes_per_sec;
@optional Service::Monitoring::StatisticVariable out_samples_per_sec;
@optional Service::Monitoring::StatisticVariable out_bytes_per_sec;
@optional Service::Monitoring::StatisticVariable latency_millisec;

};

Table 6.16: RouteConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 12.13.

auto_route_guid GUID of the AutoRoute/AutoTopicRoute from which this
Route/TopicRoute was created. This field is set to zero for stan-
dalone routes.

Table 6.17: RouteEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 12.14.

6.2. Monitoring Metrics Reference 100

RTI Routing Service User’s Manual, Version 6.0.1

Table 6.18: RoutePeriodic
Field Name Description
in_samples_per_sec Statistic variable that provides information about the input samples per

second as an aggregation of the same metric across its contained Inputs.
in_bytes_per_sec Statistic variable that provides information about the input bytes per

second as an aggregation of the same metric across its contained Inputs.
output_sam-
ples_per_sec

Statistic variable that provides information about the output samples
per second as an aggregation of the same metric across its contained
Outputs.

out-
put_bytes_per_sec

Statistic variable that provides information about the output bytes per
second as an aggregation of the same metric across its contained Out-
puts.

latency_millisec Statistic variable that provides information about the latency in mil-
liseconds for the route. The latency in a route refers to the total time
elapsed during the forwarding of a sample, which includes reading, pro-
cessing, and writing.

route_count Current number of Routes/TopicRoutes created from this Au-
toRoute/AutoTopicRoute.

6.2.6 Input/Output

Listing 6.6: Input/Output Types
@mutable @nested
struct TransformationInfo {

BoundedString plugin_name;
XmlString configuration;

};

@mutable @nested
struct StreamPortConfig : Service::Monitoring::EntityConfig {

BoundedString stream_name;
BoundedString registered_type_name;
BoundedString connection_name;
@optional TransformationInfo transformation;

};

@mutable @nested
struct StreamPortEvent : Service::Monitoring::EntityEvent{

@optional Service::BuiltinTopicKey endpoint_key;
};

@mutable @nested
struct StreamPortPeriodic {

@optional Service::Monitoring::StatisticVariable samples_per_sec;
@optional Service::Monitoring::StatisticVariable bytes_per_sec;

};

/*
(continues on next page)

6.2. Monitoring Metrics Reference 101

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
* Input
*/
@mutable @nested
struct InputConfig : StreamPortConfig {
};

@mutable @nested
struct InputEvent: StreamPortEvent {
};

@mutable @nested
struct InputPeriodic : StreamPortPeriodic {
};

/*
* Output
*/
@mutable @nested
struct OutputConfig : StreamPortConfig {
};

@mutable @nested
struct OutputEvent: StreamPortEvent {
};

@mutable @nested
struct OutputPeriodic : StreamPortPeriodic {
};

Table 6.19: InputConfig and OutputConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 12.13.

stream_name Input/output stream name as specified in the configuration. For DDS
Inputs/Outputs, this value matches the underlying Topic name.

regis-
tered_type_name

Input/Output registered type name. This is the name used to register
the type of the input/output stream.

connection_name Name of the Connection from which the Input/Output is created. The
value of this field can be used to determine the adapter plugin (DDS
or generic) from which the underlying StreamReader/StreamWriter are
created.

transformation Optional field. If present, it provides information about the installed
Transformation. See Table 6.20. For Inputs, this field will never be
present.

6.2. Monitoring Metrics Reference 102

RTI Routing Service User’s Manual, Version 6.0.1

Table 6.20: TransformationInfo
Field Name Description
plugin_name Name of the adapter plugin as specified in the plugin_name attribute

of the corresponding configuration tag.
configuration String representation of the XML configuration of the object.

Table 6.21: InputEvent and OutputEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 12.14.

Table 6.22: InputPeriodic and OutputPeriodic
Field Name Description
samples_per_sec Statistic variable that provides information about the samples per sec-

ond provided by this input/output:
• If the resource is Input, this field provides the value of the samples

returned by the underlying StreamReader::read() operation.
• If the resource is Output, this field provides the value of the sam-

ples provided to the underlying StreamWriter::write() operation.

bytes_per_sec1 Statistic variable that provides information about the bytes per second
provided by this input/output. The bytes refer only to the serialized
samples, excluding protocol headers (RTPS, UDP, etc).

1 The throughput measured in bytes can only be computed if the samples are DynamicData samples. If not, only
the throughput, measured in samples per second, is available. This statement applies to all the statistic variables
described in this chapter that measure throughput in bytes per second.

6.2. Monitoring Metrics Reference 103

Chapter 7

Software Development Kit

You can extend the out-of-the-box behavior of Routing Service through its Software Development
Kit (SDK). The SDK provides a set of public interfaces that allow you to control Routing Service
execution as well as extend its capabilities.

The SDK is divided in the following modules:

• RTI Routing Service Service API: This module offers a set of APIs that allow you to instan-
tiate Routing Service instances in your application. This allows you to run Routing Service
as a library, as described in Section 3.2.

• RTI Routing Service Adapter API: Adapters are pluggable components that allow Routing
Service to consume and produce data for different data domains (e.g. Connext DDS, MQTT,
raw Socket, etc.). This module offers a set of pluggable APIs to develop custom Adapters,
which you can use through shared libraries or through the Service API. By default, Routing
Service is distributed with a builtin DDS adapter that is part of the service library.

• RTI Routing Service Processor API: Processors are event-oriented pluggable components that
allow you to control the forwarding process that occurs within a Route. This module offers
a set of pluggable APIs to develop custom Processors, which you can use through shared
libraries or through the Service API.

• RTI Routing Service Transformation API: Transformations are data-oriented pluggable com-
ponents that allow you to perform conversions of the representation and content of the data
that goes through Routing Service. This module offers a set of pluggable APIs to develop
custom Transformations, which you can use through shared libraries or through the Service
API.

Table 7.1 shows which modules are available for each API, along with links to the API documen-
tation.

104

RTI Routing Service User’s Manual, Version 6.0.1

Table 7.1: API Documentation for the SDK
Language API Available Modules
RTI Routing Service C API

• Service
• Adapter
• Processor
• Transformation

RTI Routing Service C++ API
• Service
• Adapter
• Processor
• Transformation

RTI Routing Service Java API
• Service
• Adapter

105

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/api//routing_service/api_c/index.html
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/api//routing_service/api_cpp/index.html
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/api//routing_service/api_java/index.html

Chapter 8

Propagating Content Filters

Routing Service can be configured to propagate the content filter information associated with user
DataReaders to the user DataWriters.

When this functionality is enabled, the user DataWriters receive information about the data sets
subscribed to by the user DataReaders. The DataWriters can use that information to do writer-side
filtering1 and propagate only the samples belonging to the subscribed data sets. This results in
more efficient bandwidth usage as well as in less CPU consumption in the Routing Service instances
and user DataReaders.

Figure 8.1 shows a scenario where communication between DataWriters and DataReaders is relayed
through one or more Routing Services that do not propagate content filters. The user DataWriters
will send on the wire all the samples they publish, since they cannot make assumptions about
what the user DataReaders want. This default behavior incurs unnecessary bandwidth and CPU
utilization since the filtering will occur on the DDS DataWriter SWN.

Enabling filter propagation makes it possible to perform writer-side filtering from the user DataWrit-
ers, since they receive a composed filter that represents the data set subscribed to by all the user
DataReaders, as shown in Figure 8.2.

8.1 Enabling Filter Propagation
Filter propagation is disabled by default in Routing Service. You can enable filter propagation with
the <filter_propagation> tag available under the TopicRoute configuration (see Section 4.5.6)
and AutoTopicRoute configuration (see Section 4.5.8).

8.2 Filter Propagation Behavior
Without filter propagation, the only way to enforce writer-side filtering in a scenario involving
one or more Routing Services between the user DataWriters and user DataReaders is by statically
configuring the content filter individually for each DDS StreamReader. This method has two main
disadvantages:

1 The ability to perform writer-side filtering is subject to some restrictions. For the sake of this discussion, we will
assume that the configuration of DataReaders, DataWriters, and Routing Services is such that writer-side filtering is
allowed

106

RTI Routing Service User’s Manual, Version 6.0.1

Figure 8.1: Without propagation, user DataWriters send all the samples; filtering occurs on the
last route’s StreamWriter

Figure 8.2: With propagation, user DataWriters receive a composed filter that allows writer-side
filtering, thus sending only the samples of interest to the DataReaders

8.2. Filter Propagation Behavior 107

RTI Routing Service User’s Manual, Version 6.0.1

1. It requires knowing beforehand the data set subscribed to by the user DataReaders.

2. The filters in the StreamReaders are not automatically updated based on changes to the filters
in the user DataReaders. This may affect not only bandwidth utilization but also correctness.
For example, a user DataReader may not receive a sample because it has been filtered out by
one of the StreamReaders.

Filter propagation can address the above issues by dynamically updating the StreamReaders filters.
The composed filter associated with a StreamReader in a Route is built by aggregating the filter
information associated with all DataReaders that match the Route’s StreamWriter, as shown in
Figure 8.3.

Figure 8.3: Filter Propagation Through Routing Service

The composed filter (CF) is the union of the matching DataReaders filters; it allows passing any
sample that passes at least one of the DataReader filters.

𝐶𝐹 = 𝐹1 ∪ 𝐹2... ∪ 𝐹𝑁

For the SQL filter, the union operator is OR:

𝐶𝐹𝑆𝑄𝐿 = 𝐹𝑆𝑄𝐿1 ∪ 𝐹𝑆𝑄𝐿2... ∪ 𝐹𝑆𝑄𝐿𝑁

Filter propagation occurs within a Route as follows: the Route output StreamWriter gathers the
filter information coming from all of its matching DataReaders and provides the resulting composed
filter to the Route input StreamReader, whose DataReader is responsible for sending this information
to all of its matching DataWriters.

8.3 Filter Propagation Events
The following events will cause a StreamReader ’s filter to be updated and propagated:

8.3. Filter Propagation Events 108

RTI Routing Service User’s Manual, Version 6.0.1

• Route StreamReader creation: The initial filter is set to the stop-band filter, which is a special
kind of filter that does not let any sample pass. This filter is propagated upon StreamReader
creation and it will remain unchanged until a matching DataReader to the Route StreamWriter
is discovered.

• Discovery of a matching DataReader in a DataReader : The filter of the discovered DataReader
will be aggregated to the existing StreamReader ’s filter, which will be propagated after being
updated. If the discovered DataReader does not have a filter (subscribes to all the samples)
or it has a non-SQL filter, the StreamReader ’s filter is set to the all-pass filter (a special
filter that lets all sample pass). The all-pass filter will remain set until there are no matching
DataReaders to the Route StreamWriter without a filter or with a non-SQL filter.

• A matching DataReader changes its filter, either in the expression or in the parameters:
The StreamReader ’s filter is updated to incorporate the latest changes and is propagated
afterwards.

8.4 Restrictions
Filter propagation cannot be enabled when:

• Using Routes or AutoRoutes, since they are meant to work with other adapters different than
the builtin DDS one.

• A transformation is present in the TopicRoute’s output.

• Using remote administration, if the TopicRoute was enabled and started with filter propaga-
tion initially disabled.

• If the StreamReader ’s ContentFilter class is not the builtin SQL filter. Filter propagation is
not currently supported with other filter classes.

8.4. Restrictions 109

Chapter 9

Topic Query Support

Routing Service is fully compatible with TopicQueries (see Topic Queries in the RTI Connext DDS
Core Libraries User’s Manual). You can enable this functionality in TopicRoutes and AutoTopi-
cRoutes with two different query modes:

• Dispatch mode: The TopicRoute’s DataWriter configured with TRANSIENT_LOCAL
durability will accept matching TopicQueries and dispatch them from its own sample cache.

• Propagation mode: TopicQueries are propagated from the user DataReaders to the user
DataWriters. These DataWriters will be the final endpoints that dispatch the propagated
TopicQueries.

Routing Service allows propagating TopicQueries from DataReaders to DataWriters acting as a
proxy of TopicQueries. Routing Service supports TopicQuery proxy in either of the above modes.
It is not possible to enable both modes within the same TopicRoute. However, you can create
multiple TopicRoutes/AutoTopicRoutes with different TopicQuery proxy modes.

You can enable a TopicQuery proxy with the <topic_query_proxy> tag available under the Top-
icRoute configuration (see Section 4.5.6) and AutoTopicRoute configuration (see Section 4.5.8).

The following sections describe the Routing Service proxy modes. Figure 9.1 summarizes the
symbols you will see in the figures that illustrate the modes’ behaviors.

9.1 Dispatch Mode
Dispatch mode refers to enabling TopicQuery dispatch in a TRANSIENT_LOCAL TopicRoute’s
DataWriter. This is done by configuring its TopicQueryDispatchQosPolicy. It no different than
enabling a TopicQuery for a DataWriter in a user application.

Figure 9.2 shows a simple scenario. A TopicQuery (TQn) issued by a user DataReader (DRn) will
be received by the TopicRoute’s StreamWriter. The StreamWriter will process the TopicQuery and
dispatch it, providing the corresponding samples from the available history in the StreamWriter.
As a result, the user DataReader will receive live samples (SLive) and TopicQuery samples (STQ).

Dispatch mode can be useful when the user DataWriter on the publication side is part of an
application with low-resources requirements, such as low power consumption and small memory

110

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/TopicQueries.htm

RTI Routing Service User’s Manual, Version 6.0.1

Figure 9.1: Symbol Legend for Proxy Modes Figures

9.1. Dispatch Mode 111

RTI Routing Service User’s Manual, Version 6.0.1

Figure 9.2: TopicRoute Enabling TopicQuery Proxy in Dispatch Mode

capacity. In this case, a Routing Service instance connected to the application can cache a set of
data published by the user DataWriter and dispatch the TopicQueries issued by user DataReaders.

To enable TopicQuery proxy dispatch mode, use the following configuration tags within a Topi-
cRoute/AutoTopicRoute configuration:

<topic_query_proxy>
<mode>DISPATCH</mode>

</topic_query_proxy>

The above configuration will cause the Durability QoS setting for the TopicRoute’s output
DataWriter to be TRANSIENT_LOCAL and will enable TopicQuery dispatch. If you want to
configure advanced dispatch features, you can set other options in the TopicQueryDispatchQosPol-
icy within the corresponding DataWriter QoS tag.

9.2 Propagation Mode
Propagation mode refers to having Routing Service act as a proxy of TopicQueries. The Topi-
cRoutes propagate the TopicQueries issued by the matching user DataReaders to the matching
user DataWriters. Then the samples generated for both the TopicQuery and live stream are ‘prop-
agated’ to the original user DataReaders. Figure 9.3 shows a simple scenario.

The TopicRoute propagates the TopicQuery requests from user DataReaders on the subscription
side to the user DataWriters on the publication side. User DataWriters eventually dispatch the
TopicQuery requests and generate samples for the TopicQuery stream. The samples for a specific
TopicQuery are routed to the corresponding original user DataReader that issued such TopicQuery.

For a given TopicRoute, the propagation of TopicQuery requests and samples for both the Top-
icQuery and live stream occurs sequentially. The expected traffic pattern consists of TopicQuery

9.2. Propagation Mode 112

RTI Routing Service User’s Manual, Version 6.0.1

Figure 9.3: TopicRoute Enabling TopicQuery Proxy in Propagation Mode

requests, TopicQuery samples, and live samples interleaved.

TopicQuery propagation is also compatible with filter propagation (see Section 8). You can enable
both at the same time and expect live samples to be filtered accordingly, and TopicQuery samples
to be unaffected by the filters.

To enable TopicQuery proxy dispatch mode, you can use the following configuration tags within a
TopicRoute/AutoTopicRoute configuration:

<topic_query_proxy>
<mode>PROPAGATION</mode>

</topic_query_proxy>

Note that the above configuration will cause the TopicRoute’s output DataWriter durability QoS
setting to be VOLATILE.

9.3 Restrictions
TopicQuery proxy in PROPAGATION mode cannot be enabled when:

• Using Routes or AutoRoutes, since they are meant to work with other adapters different than
the builtin DDS one.

• A transformation is present in the TopicRoute’s output.

• The TopicRoute has a custom processor.

9.3. Restrictions 113

Chapter 10

Traversing Wide Area Networks

Many systems today already rely on Connext DDS to distribute their information across a Local
Area Network (LAN). However, more and more of these systems are being integrated in Wide Area
Networks (WANs). With Routing Service, you can scale Connext DDS real-time publish/subscribe
data-distribution beyond the current local networks and make it available throughout a WAN.

Out of the box, Routing Service only uses UDPv4 and Shared Memory transports to communicate
with other Routing Services and Connext DDS applications. This configuration is appropriate for
systems running within a single LAN. However, using UDPv4 introduces several problems when
trying to communicate with Connext DDS applications running in different LANs:

• UDPv4 traffic is usually filtered out by the LAN firewalls for security reasons.

• Forwarded ports are usually TCP ports.

• Each LAN may run in its own private IP address space and use NAT (Network Address
Translation) to communicate with other networks.

To overcome these issues, Routing Service is distributed with a TCP transport that is NAT friendly.
The transport can be configured via XML using the PropertyQosPolicy of the Routing Services
participants.

Figure 10.1 shows a typical scenario where two Routing Services are used to bridge two Connext
DDS applications running in two different LANs.

10.1 TCP Configuration elements
The TCP transport distributed with Routing Service can be used to address multiple communication
scenarios that range from simple communication within a single LAN to complex communication
scenarios across LANs where NATs and firewalls may be involved.

10.1.1 TCP Transport Initial Peers
With the TCP transport, the addresses of the initial peers (NDDS_DISCOVERY_PEERS) that
will be contacted during the discovery process have the following format:

114

RTI Routing Service User’s Manual, Version 6.0.1

Figure 10.1: WAN Communication Using TCP Transport

For WAN communication: tcpv4_wan://<IP address or hostname>:<port>
For LAN communication: tcpv4_lan://<IP address or hostname>:<port>
For WAN+TLS communication: tlsv4_wan://<IP address or hostname>:port
For LAN+TLS communication: tlsv4_lan://<IP address or hostname>:port

Example: Setting discovery peers for TCP wan/lan

setenv NDDS_DISCOVERY_PEERS tcpv4_wan://10.10.1.165:7400,tcpv4_wan://10.10.1.111:7400,
→˓tcpv4_lan://192.168.1.1:7500

When the TCP transport is configured for LAN communication (with the parent.classid prop-
erty), the IP address is the LAN address of the peer and the port is the server port used by the
transport (the server_bind_port property).

When the TCP transport is configured for WAN communication (with the parent.classid prop-
erty), the IP address is the WAN or public address of the peer and the port is the public port that
is used to forward traffic to the server port in the TCP transport.

When TLS is enabled, the transport settings are similar to WAN and LAN over TCP. See Figure
10.2.

10.1. TCP Configuration elements 115

RTI Routing Service User’s Manual, Version 6.0.1

Figure 10.2: Initial Peers in WAN Communication

10.1.2 TCP Transport Property
You can configure the TCP transport in Routing Service in the same manner as a Connext DDS
application. Transports are configured at the DomainParticipant level by means of the Proper-
tyQosPolicy. For details, see transport plugins in RTI Connext DDS Users Manual. For a list of
available transport properties for TCP, see RTI TCP Transport configuration.

10.2 Support for External Hardware Load Balancers in TCP Transport
Plugin

For two Connext DDS applications to communicate, the TCP Transport Plugin needs to establish
4-6 connections between the two communicating applications. The plugin uses these connections
to exchange DDS data (discovery or user data) and TCP Transport Plugin control messages.

With the default configuration, the TCP Transport Plugin does not support external load balancers.
This is because external load balancers do not forward the traffic to a unique TCP Transport Plugin
server, but they divide the connections among multiple servers. Because of this behavior, when
an application running a TCP Transport Plugin client tries to establish all the connections to an
application running a TCP Transport Plugin server, the server may not receive all the required
connections.

In order to support external load balancers, the TCP Transport Plugin provides a session-ID ne-
gotiation feature. When session-ID negotiation is enabled (by setting the negotiate_session_id
property to true), the TCP Transport Plugin will perform the negotiation depicted in Figure 10.3.

During the session-ID negotiation, the TCP Transport Plugin exchanges three types of messages:

• Session-ID Request: This message is sent from the client to the server. The server must
respond with a session-ID response.

10.2. Support for External Hardware Load Balancers in TCP Transport Plugin 116

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/transports.htm
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/TCP_TLS_Transport_Properties.htm

RTI Routing Service User’s Manual, Version 6.0.1

Figure 10.3: Session-ID Negotiation

• Session-ID Response: This message is sent from the server to the client as a response to
a session-ID request. The client will store the session ID contained in this message.

• Session-ID Indication: This message is sent from the client to the server; it does not
require a response from the server.

The negotiation consists of the following steps:

1. The TCP client sends a session-ID request with the session ID set to zero.

2. The TCP server sends back a session-ID response with the session ID set to zero.

3. The external load balancer modifies the session-ID response, setting the session ID with a
value that is meaningful to the load balancer and identifies the session.

4. The TCP client receives the session-ID response and stores the received session ID.

5. For each new connection, the TCP client sends a session-ID indication containing the stored
session ID. This will allow the load balancer to redirect to the same server all the connections
with the same session ID.

Figure 10.4 depicts the TCP payload of a session-ID message. The payload consists of 48 bytes. In
particular, your load balancer needs to read/modify the following two fields:

• CTRLTYPE: This field allows a load balancer to identify session-ID messages. Its value (two
bytes) varies according to the session-ID message type: 0x0c05 for a request, 0x0d05 for a
response, or 0x0c15 for an indication.

• SESSION-ID: This field consists of 16 bytes that the load balancer can freely modify according

10.2. Support for External Hardware Load Balancers in TCP Transport Plugin 117

RTI Routing Service User’s Manual, Version 6.0.1

to its requirements.

Figure 10.4: TCP Payload for Session-ID Message

To ensure all the TCP connections within the same session are directed to the same server, you
must configure your load balancer to perform the two following actions:

1. Modify the SESSION-ID field in the session-id response with a value that identifies the session
within the load balancer.

2. Make the load-balancing decision according to the value of the SESSION-ID field in the
session-ID indication.

10.2. Support for External Hardware Load Balancers in TCP Transport Plugin 118

Chapter 11

Tutorials

This chapter describes several examples, all of which use RTI Shapes Demo to publish and subscribe
to topics which are colored moving shapes.

In each example, you can start all the applications on the same computer or on different computers
in your network. If you don’t have Shapes Demo installed already, you should download and install
it from RTI’s Downloads page or the RTI Support Portal (the latter requires an account name and
password). If you are not already familiar with how to start Shapes Demo and change its domain
ID, please see the Shapes Demo User’s Manual for details.

Important Notes:

• Please review Section 1.2 to understand where to find the examples (referred to as <path to
examples>).

• The following instructions include commands that you will enter in a command shell. These
instructions use forward slashes in directory paths, such as bin/rtiroutingservice. If you are
using a Windows platform, replace all forward slashes in such paths with backwards slashes,
such as bin\rtiroutingservice.

• If you run Shapes Demo and Routing Service on different machines and these machines do not
communicate over multicast, you will have to set the environment variable NDDS_DISCOV-
ERY_PEERS to enable communication. For example, assume that you run Routing Service
on Host 1 and Shapes Demo on Host 2 and Host 3. In this case, the environment variable
would be set as follows:

Host 1:

set NDDS_DISCOVERY_PEERS=<host2>,<host3> (on Windows systems)
export NDDS_DISCOVERY_PEERS=<host2>,<host3> (on UNIX-based systems)

Host 2:

set NDDS_DISCOVERY_PEERS=<host1>

Host 3:

119

https://support.rti.com

RTI Routing Service User’s Manual, Version 6.0.1

export NDDS_DISCOVERY_PEERS=<host1>

11.1 Starting Shapes Demo
You can start Shapes Demo from the Learn tab in RTI Launcher.

Or from a command shell:

<NDDSHOME>/bin/rtishapesdemo

NDDSHOME is described in Section 1.2.

11.2 Example: Routing All Data from One Domain to Another

This example uses the default configuration file1 for Routing Service, which routes all data published
on domain 0 to subscribers on domain 1.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).
1 <NDDSHOME>/resource/xml/RTI_ROUTING_SERVICE.xml

11.1. Starting Shapes Demo 120

RTI Routing Service User’s Manual, Version 6.0.1

• Press Stop.

• Change the domain ID to 1.

• Press Start.

3. In the Publishing Demo, publish some Squares, Circles, and Triangles.

4. In the Subscribing Demo, subscribe to Squares, Circles and Triangles.

Notice that the Subscribing Demo does not receive any shapes. Since we haven’t started
Routing Service yet, data from domain 0 isn’t routed to domain 1.

5. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice -cfgName default

Now you should see all the shapes in the Subscribing Demo.

6. Stop Routing Service by pressing Ctrl-c.

You should see that the Subscribing Demo stops receiving shapes.

Additionally, you can start Routing Service (Step 5) with the following parameters:

• -verbosity 3, to see messages from Routing Service including events that have triggered the
creation of routes.

• -domainIdBase X, to use domains X and X+1 instead of 0 and 1 (in this case, you need
to change the domain IDs used by Shapes Demo accordingly). This option adds X to the
domain IDs in the configuration file.

Note: -domainIdBase only affects the domain IDs of DomainRoute participants; it does
not affect the domain IDs of participants used for monitoring or administration.

11.3 Example: Changing Data to a Different Topic of Same Type
In this example, Routing Service receives samples of topic Square and republishes them as samples
of topic Circle.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).

• Press Stop.

• Change the domain ID to 1.

• Press Start.

3. In the Publishing Demo, publish some Squares, Circles, and Triangles.

4. Start Routing Service by entering the following in a command shell:

11.3. Example: Changing Data to a Different Topic of Same Type 121

RTI Routing Service User’s Manual, Version 6.0.1

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/topic_bridge.xml \
-cfgName example

5. In the Subscribing Demo, subscribe to Squares, Circles and Triangles.

Notice that the Subscribing Demo does not receive any shapes. Since we haven’t started
Routing Service yet, data from domain 0 isn’t routed to domain 1.

6. Stop Routing Service by pressing Ctrl-c.

7. Try writing your own topic route that republishes triangles on domain 0 to circles on domain
1. Create some Triangle publishers and a Circle subscriber in the respective Shapes Demo
windows.

11.4 Example: Changing Some Values in Data
So far, we have learned how to route samples from one topic to another topic of the same data
type. Now we will see how to change the value of some fields in the samples and republish them.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).

• Press Stop.

• Change the domain ID to 1.

• Press Start.

3. In the Publishing Demo, publish some Squares, Circles, and Triangles.

4. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/topic_bridge_w_transf1.
→˓xml \
-cfgName example

5. In the Subscribing Demo, subscribe to Squares, Circles and Triangles.

Notice that the (x,y) coordinates of the shapes are inverted form what appears in
the Publishing Demo.

6. Stop Routing Service by pressing Ctrl-c.

7. Try changing the transformation to assign the output shapesize to the input x.

11.4. Example: Changing Some Values in Data 122

RTI Routing Service User’s Manual, Version 6.0.1

11.5 Example: Transforming the Data’s Type and Topic with an Assign-
ment Transformation

This example shows how to transform the data topic and type. We will use rtiddsspy to verify the
result. rtiddsspy is a utility provided with Connext DDS ; it monitors publications on any DDS
domain.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. In the Publishing Demo, publish some Squares, Circles, and Triangles.

3. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/topic_bridge_w_transf2.
→˓xml \
-cfgName example

4. We will use the rtiddsspy utility to verify the transformation of the data topic and type. Run
these commands:

cd <NDDSHOME>
bin/rtiddsspy -domainId 0 -printSample
bin/rtiddsspy -domainId 1 -printSample

You will notice that the publishing samples received by rtiddsspy for domain 0
are of type ShapeType and topic Square. The subscribing samples received by
rtiddsspy for domain 1 are of type Point and topic Position. Notice that the two
data structures are different.

5. Stop Routing Service by pressing Ctrl-c.

11.6 Example: Transforming the Data with a Custom Transformation
Now we will use our own transformation between shapes. Routing Service allows you to install
plug-ins that implement the Transformation API to create custom transformations. To build a
custom transformation, you must have the Connext DDS libraries installed.

Note: This example assumes your working directory is <path to examples>/routing_ser-
vice/shapes/transformation/[make or windows]. If your working directory is different, you will
need to modify the configuration topic_bridge_w_custom_transf.xml to update the paths.

1. Compile the transformation in <path to examples>/routing_service/shapes/transforma-
tion/[make or windows]:

• On UNIX-based systems:

– Set the environment variable NDDSHOME (see Section 1.2). For details on how to
set it, see the RTI Connext DDS Core Libraries Getting Started Guide.

11.5. Example: Transforming the Data’s Type and Topic with an Assignment Transformation123

RTI Routing Service User’s Manual, Version 6.0.1

– Enter:

cd <path to examples>/routing_service/shapes/transformation/make
gmake -f Makefile.<architecture>

• On Windows systems:

– Set the environment variable NDDSHOME (see Section 1.2). For details on how to
set it, see the RTI Connext DDS Core Libraries Getting Started Guide.

– Open the Visual Studio solution under <path to examples>\routing_ser-
vice\shapes\transformation\windows.

– Select the Release DLL build mode and build the solution.

2. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

3. In the Publishing Demo, publish some Squares.

4. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/topic_bridge_w_custom_
→˓transf.xml \
-cfgName example

5. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).

• Press Stop.

• Change the domain ID to 1.

• Press Start.

6. In the Subscribing Demo, subscribe to Squares.

Notice that squares on domain 1 have only two possible values for x.

7. Stop Routing Service by pressing Ctrl-c.

8. Change the fixed ‘x’ values for the Squares in the configuration file and restart Routing Service.

9. Stop Routing Service by pressing Ctrl-c.

10. Edit the source code (in shapestransf.c) to make the transformation multiply the value of the
field by the given integer constant instead of assigning the constant.

Hint: Look for the function ShapesTransformationPlugin_create-
OutputSample(), called from ShapesTransformation_transform()
and use DDS_DynamicData_get_long() before DDS_Dynamic-
Data_set_long().

11.6. Example: Transforming the Data with a Custom Transformation 124

RTI Routing Service User’s Manual, Version 6.0.1

11. Recompile the transformation (the new shared library will be copied automatically) and run
Routing Service as before.

11.7 Example: Using Remote Administration
In this example, we will configure Routing Service remotely. We won’t see data being routed until
we remotely enable an AutoTopicRoute after the application is started. Then we will change a QoS
value and see that it takes effect on the fly.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. In the Publishing Demo, publish some Squares, Circles and Triangles.

3. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/administration.xml \
-cfgName example -appName MyRoutingService

4. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).

• Press Stop.

• Change the domain ID to 1.

• Press Start.

5. In the Subscribing Demo, subscribe to Squares, Circles and Triangles.

Notice that no data is routed to domain 1.

6. On a different or the same machine, start the Routing Service remote shell:

cd <NDDSHOME>
bin/rtirssh -domainId 0

Note: We use domain 0 in the shell because Routing Service is configured in
administration.xml to receive remote commands on that domain. You could have
started Routing Service with the -remoteAdministrationDomainId command-
line option and then used domain X for the shell.

7. In the shell, enter the following command:

enable MyRoutingService RemoteConfigExample::Session::Shapes

Notice that the shapes are now received on domain 1. The above command consists
of two parts: the name of the Routing Service, which you gave when you launched
the application with the option -appName, and the name of the entity you wanted

11.7. Example: Using Remote Administration 125

RTI Routing Service User’s Manual, Version 6.0.1

to enable. That name is formed by appending its parent entities’ names starting
from the domain route as defined in the configuration file administration.xml.

You could have run Routing Service without -appName. Then the name would
be the one provided with -cfgName (“example”). You could also have used -
identifyExecution to generate the name based on the host and application ID.
In this case, you would have used this automatic name in the shell.

8. Examine the file <path to examples>/routing_service/shapes/time_fil-
ter_qos.xml on the Routing Service machine. It contains an XML snippet that
defines a QoS value for an auto topic route’s DataReader. Execute the following command
in the shell:

update MyRoutingService RemoteConfigExample::Session::Shapes \
<path to examples>/routing_service/shapes/time_filter_qos.xml

Notice that the receiving application only gets shapes every 2 seconds. The Au-
toTopicRoute has been configured to read (and forward) samples with a minimum
separation of 2 seconds.

Routing Service can be configured remotely using files located on the remote ma-
chine or the shell machine. In the next step you will edit the configuration files on
both machines. Then you will see how to specify which of the two configuration
files you want to use.

Note: If you are running the shell and Routing Service on the same machine, skip
steps 9 and 10.

9. Edit the XML configuration files on both machines:

• In <path to examples>/routing_service/shapes/time_filter_qos.xml on the
service machine, change the minimum separation to 0 seconds.

• In <path to examples>/routing_service/shapes/time_filter_qos.xml on the
shell machine, change the minimum separation to 5 seconds.

10. Run the following commands in the shell:

• Enter the following command. Notice the use of remote at the end—this means you
want to use the XML file on the service machine (the remote machine, which is the
default if nothing is specified).

update MyRoutingService RemoteConfigExample::Session::Shapes \
<path to examples>/routing_service/shapes/time_filter_qos.xml remote

Note: The path to the XML file in this example is relative to the working directory
from which you run Routing Service.

Since no time filter applies, the shapes are received as they are published.

11.7. Example: Using Remote Administration 126

RTI Routing Service User’s Manual, Version 6.0.1

• Enter the following command. This time use local at the end—this means you want to
use the XML file on the shell machine (the local machine).

update MyRoutingService RemoteConfigExample::Session::Shapes \
<path to examples>/routing_service/shapes/time_filter_qos.xml local

Note: The path to the XML file in this example is relative to the working directory
from which you run the Routing Service shell.

You will see that now the shapes are only received every 5 seconds.

• Enter the following command. Once again, we use remote at the end to switch back to
the XML file on the remote machine.

update MyRoutingService RemoteConfigExample::Session::Shapes \
<path to examples>/routing_service/shapes/time_filter_qos.xml remote

Shapes are once again received as they are published

11. Disable the AutoTopicRoute again by entering:

disable MyRoutingService RemoteConfigExample::Session::Shapes

The shapes are no longer received on Domain 1.

Note: At this point, you could still update the AutoTopicRoute’s configuration.
You could also change immutable QoS values, since the DataWriter and DataReader
haven’t been created yet. These changes would take effect the next time you called
enable.

12. Run these commands in the shell and see what happens after each one:

enable MyRoutingService RemoteConfigExample::Session::SquaresToCircles
disable MyRoutingService RemoteConfigExample::Session::SquaresToCircles
enable MyRoutingService RemoteConfigExample::Session::SquaresToTriangles

These commands change the output topic that is published after receiving the input
Square topic. As you can see, you can use the shell to switch TopicRoutes after
Routing Service has been started.

13. Perform a remote shutdown of the service. Run the following command:

shutdown MyRoutingService

You should receive a reply indicating that the shutdown sequence has been initiated.
Verify in the terminal in which Routing Service was running that the process is
exiting or has already exited.

14. Stop the shell by running this command in the shell:

11.7. Example: Using Remote Administration 127

RTI Routing Service User’s Manual, Version 6.0.1

exit

11.8 Example: Monitoring
You can publish status information with Routing Service. The monitoring configuration is quite
flexible and allows you to select the entities that you want to monitor and how often they should
publish their status.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. In the Publishing Demo, publish two Squares, two Circles and two Triangles.

3. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).

• Press Stop.

• Change the domain ID to 1.

• Press Start.

4. In the Subscribing Demo, subscribe to Squares, Circles and Triangles.

At this point you will not see any shapes moving in the Subscribing Demo. It isn’t
receiving shapes from the Publishing Demo because they use different domain IDs.

5. On a different or the same machine, start the Routing Service remote shell:

cd <NDDSHOME>
bin/rtirssh -domainId 0

Note: We use domain 0 in the shell because Routing Service is configured in
administration.xml to receive remote commands on that domain. You could have
started Routing Service with the -remoteAdministrationDomainId command-
line option and then used domain X for the shell.

6. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/monitoring.xml \
-cfgName example -appName MyRoutingService

This configuration file routes Squares and Circles using two different TopicRoutes.

7. Now you can subscribe to the monitoring topics (see Section 6). You can do it in your own
application, or by using RTI Admin Console or rtiddsspy. Enter the following in a terminal:

cd <NDDSHOME>
bin/rtiddsspy -domainId 2 –printSample

11.8. Example: Monitoring 128

RTI Routing Service User’s Manual, Version 6.0.1

Note: We use domain 2 because Routing Service is configured in monitoring.xml
to publish status information on that domain. You could have started Routing Ser-
vice with the -remoteMonitoringDomainId X command-line option and then
used domain X for rtiddsspy.

8. Depending on the publication period of the entity in the XML file we used, you will receive
status samples at different rates. In the output from rtiddsspy, check the statistics about the
two topic routes we are using.

We will focus on the input samples per second. The number of samples per second in our
case is 32. That value depends on the publication rate of Shapes Demo configurable with the
option -pubInterval <milliseconds between writes>.

9. Create two additional Square publishers in the Publishing Demo (domain 0).

10. Check rtiddsspy again for new status information.

In the TopicRoute for Squares, we are receiving double the amount of data.

11. Look at the status of the DataReader in the output from rtiddsspy.

It contains an aggregation of the two contained TopicRoutes, giving us a mean of nearly 48
samples per second.

12. We can update the monitoring configuration at run time using the remote administration
feature. In the configuration file, we enabled remote administration on domain 0.

On a different or the same machine, start the Routing Service remote shell:

cd <NDDSHOME>
bin/rtirssh -domainId 0

13. We are receiving the status of the TopicRoute Circles every five seconds. To receive it more
often, use the following command:

update MyRoutingService DomainRoute::Session::Circles \
topic_route.entity_monitoring.status_publication_period.sec=2

14. In some cases, you might want to know only about one specific TopicRoute. If you only
want to know about the topic route Circles but not Squares, you can disable monitoring for
Squares:

update MyRoutingService DomainRoute::Session::Squares \
topic_route.entity_monitoring.enabled=false

15. To enable it again, enter:

update MyRoutingService DomainRoute::Session::Squares \
topic_route.entity_monitoring.enabled=true

16. If you are no longer interested in monitoring this service, you can completely disable it with
the following command:

11.8. Example: Monitoring 129

RTI Routing Service User’s Manual, Version 6.0.1

update MyRoutingService routing_service.monitoring.enabled=false

Now you won’t receive any more status samples.

17. You can enable it again any time by entering:

update MyRoutingService routing_service.monitoring.enabled=true

18. Stop rtiddsspy by pressing Ctrl-c.

19. Stop the shell:

exit

20. Stop Routing Service by pressing Ctrl-c.

11.9 Example: Using the TCP Transport
This example shows how to use Routing Service to bridge data between different LANs over TCP.
Routing Service will act as the gateway in a LAN with which other Connext DDS applications can
communicate to send or receive data. Section 10 has more information about scenarios and detailed
configuration parameters.

You will run two copies of Routing Service. One copy will run on a machine that is behind a
firewall/network router with a public IP (First Peer); the other will run on a machine in another
LAN (Second Peer).

• On the First Peer (behind a firewall/router with a public IP):

1. In the First Peer’s network, configure the firewall to forward the TCP ports used by
Routing Service.

In this example, we will use port 7400. You do not need to configure your firewall
for every single Connext DDS application in your LAN; doing it just once for Routing
Service will allow other applications to communicate through the firewall.

2. Include the Second Peer’s public IP address and port in the NDDS_DISCOVERY_PEERS
environment variable.

For example, on a UNIX-based system:

export NDDS_DISCOVERY_PEERS=tcpv4_wan://<server’s public IP address>:
→˓<port>

On a Windows system:

set NDDS_DISCOVERY_PEERS=tcpv4_wan://<server’s public IP address>:
→˓<port>

When you configure NDDS_DISCOVERY_PEERS, make sure to use a transport class prefix
(tcpv4_wan, udpv4, shmem) for each entry. See discovery peer configuration for details.

3. Set the public IP address and port in the configuration file:

11.9. Example: Using the TCP Transport 130

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/ConfigPeersListUsed_inDiscov.htm

RTI Routing Service User’s Manual, Version 6.0.1

11.9. Example: Using the TCP Transport 131

RTI Routing Service User’s Manual, Version 6.0.1

– Open the file <path to examples>/routing_service/shapes/tcp_trans-
port.xml.

– The file contains several configurations. Find the configuration with name “TCP_1”.
Then find the “public_address” property (<name>dds.transport.TCPv4.tcp1.pub-
lic_address</name>) within that configuration.

– Set the local public IP address and port. For example, to set the address to
10.10.1.150 and port 7400:

<element>
<name>dds.transport.TCPv4.tcp1.public_address</name>
<value>10.10.1.150:7400</value>

</element>

– Save and close the file.

4. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice

-cfgFile <path to examples>/routing_service/shapes/tcp_transport.xml \
-cfgName TCP_1

5. On any computer in this LAN, start Shapes Demo and publish some shapes on domain
0.

• On the Second Peer (a machine in any other LAN):

1. Include the First Peer’s public IP address and port in the NDDS_DISCOVERY_PEERS en-
vironment variable the same way you did before.

2. Set the public IP address and port in the configuration file:

– Open the file <path to examples>/routing_service/shapes/tcp_trans-
port.xml.

– The file contains several configurations. Find the configuration with name “TCP_2”.
Then find the “public_address” property (<name>dds.transport.TCPv4.tcp1.pub-
lic_address</name>) within that configuration.

– Set the local public IP address and port. For example, to set the address to
10.10.1.10 and port 7400:

<element>
<name>dds.transport.TCPv4.tcp1.public_address</name>
<value>10.10.1.10:7400</value>

</element>

– Save and close the file.

3. Start Routing Service by entering the following in a command shell:

11.9. Example: Using the TCP Transport 132

RTI Routing Service User’s Manual, Version 6.0.1

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/tcp_transport.xml \
-cfgName TCP_2

4. On any computer in this LAN, start Shapes Demo and create subscribers on domain 2.
Do not use an already running instance of Shapes Demo—you need a new one that uses
a different domain ID. You should receive what is being published in the server’s LAN.

• Notes:

– Running Shapes Demo on a Different Computer

If the computer running Shapes Demo is different than the computer running the
client Routing Service, add the address of the client (IP address or host name) to
the Shapes Demo discovery peers before starting Shapes Demo. To do so, set the
NDDS_DISCOVERY_PEERS environment variable.

– Using Two Computers in the Same LAN

If both machines are in the same LAN, run both Routing Service with the configuration
file tcp_transport_lan.xml and use tcpv4_lan:// as the peer prefix in the environ-
ment variable NDDS_DISCOVERY_PEERS. At least one of the peer descriptors must contain
the port number.

For example, suppose the first peer is 192.168.1.3, the second peer is 192.168.1.4, and you
want to use port 7400. On the first peer set NDDS_DISCOVERY_PEERS to tcpv4_lan://
192.168.1.4:7400 and on the second peer set it to tcpv4_lan://192.168.1.3:7400.
You don’t need to specify an IP address in the configuration file.

– Running the Example on One Computer

To run the example on the same machine, open the file <path to exam-
ples>/routing_service/ shapes/tcp_transport_lan.xml and change the prop-
erty dds.transport.TCPv4.tcp1.server_bind_port within TCP_1 to 7401.
Run both Routing Service with the modified tcp_transport_lan.xml configura-
tion file and use tcpv4_lan:// as the peer prefix in the environment variable
NDDS_DISCOVERY_PEERS. You will also need to specify port 7401 in the tcpv4_lan
peer in the NDDS_DISCOVERY_PEERS environment variable of the Routing Service in the
Second Peer to reflect this port change in the configuration file.

– Using a Secure Connection over WAN

To run the example using a secure connection between the two Routing Service in-
stances, use the configuration file tcp_transport_tls.xml. You will also need to set
the peer prefix to tlsv4_wan:// in the NDDS_DISCOVERY_PEERS environment variable.
The tcp_transport_tls.xml file is based on tcp_transport.xml and uses a WAN
configuration to establish communication. Because TLS is enabled, you must ensure
that the RTI TLS Support and OpenSSL libraries are present in your library path
before starting the applications.

Note: To run this example, you need the RTI TCP Transport, which is shipped with

11.9. Example: Using the TCP Transport 133

RTI Routing Service User’s Manual, Version 6.0.1

RTI Connext DDS. Additionally, you will need to install the optional packages RTI TLS
support and OpenSSL.

– Using a Secure Connection over LAN

Similar to the previous point, but instead you will use the file tcp_trans-
port_tls_lan.xml and prefix tlsv4_lan://.

11.10 Example: Using a File Adapter
The previous examples showed how to use Routing Service with Connext DDS. In this one you will
learn how to use RTI Routing Service Adapter SDK to create an adapter that writes and reads data
from files. Routing Service allows you to bridge data from different data domains with a pluggable
adapter interface.

To learn how to implement your own adapter, you can follow this example and the next examples
and inspect the code that is distributed with these adapters. The file adapter can read data from
files with a specific format and provide it to Routing Service, or receive data from Routing Service
and write it into files.

In this example, we will first write topic data (a colored square and circle) into a file and then use
that file to write it back into Connext DDS, allowing us to modify the data with a text editor.

• Compile the Adapter in adapters/file/src:

– Set NDDSHOME to point to your RTI Connext DDS installation.

– On UNIX-based systems, enter:

cd <path to examples>/routing_service/adapters/file/make
gmake -f Makefile.<architecture>

11.10. Example: Using a File Adapter 134

https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/tls_support/RTI_TLS_Support_InstallationGuide.pdf
https://community.rti.com/static/documentation/connext-dds/6.0.1/doc/manuals/tls_support/RTI_TLS_Support_InstallationGuide.pdf

RTI Routing Service User’s Manual, Version 6.0.1

The adapter shared library, libfileadapter.so, will be copied to <path to exam-
ples>/routing_service/adapters/file.

– On Windows systems:

∗ Open the Visual Studio solution under <path to examples>/routing_ser-
vice/adapters/file/windows. For example, if you are using Visual Studio 2013,
open fileadapter-vs2013.sln.

∗ Build the solution. The adapter shared library, fileadapter.dll, will be copied to
<path to examples>/routing_service/adapters/file.

• From Connext DDS to files:

1. Run Shapes Demo and Routing Service as in the previous examples:

– Start Shapes Demo on domain 0 (the default domain).

– Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/file_bridge.xml \
-cfgName dds_to_file

2. In Shapes Demo, publish some Squares.

3. Wait a few seconds and then stop Routing Service by pressing Ctrl-c.

4. A file called MySquare.txt should have been created in the current directory. Open
it with a text editor of your choice. It should contain several lines, each consisting of a
list of <field>=<value> elements. Each line represents a sample (Square) published by
Shapes Demo and written by Routing Service and the file adapter.

On UNIX-based systems, you can see how new samples are appended to the file by
running the following command while Routing Service runs:

tail - f MySquare.txt

• From a file to Connext DDS :

1. In Shapes Demo, delete the Square publisher and create a Square subscriber.

2. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice

-cfgFile <path to examples>/routing_service/shapes/file_bridge.xml \
-cfgName file_to_dds

You should see squares being received by Shapes Demo. These samples come from what
we recorded before.

You might have noticed that the rate at which the shape moves is much slower. This
is the rate at which the file adapter is providing data to Routing Service. To change
this rate, open file_bridge.xml and look for <route name=”square_file”> within

11.10. Example: Using a File Adapter 135

RTI Routing Service User’s Manual, Version 6.0.1

<routing service name=”file_to_dds”>. In the <property>` tag, change the prop-
erty ReadPeriod from 1000 (milliseconds) to 100.

3. Stop Routing Service and restart it as described in previous steps. The squares should
be received and displayed about ten times faster.

4. Other properties that you can configure in the file adapter are: In the input, FileName,
MaxSampleSize, Loop and SamplesPerRead; in the output, FileName.

5. You can also edit the text file and publish the new data. Open MySquare.txt and
replace all the occurrences of “shapesize=30” with “shapesize=100”.

6. Stop Routing Service and restart it as described in previous steps. The squares will have
the same position and color, but they will be bigger now.

• Customize the File Adapter:

In the example, the file adapters use a specific format, which you already saw in the file
MySquare.txt. Now try adapting the example to your own format.

The code that reads/writes from the file is in adapters/file/src/LineConversion.c.

1. Edit the function RTI_RoutingServiceFileAdapter_read_sample to implement how
file data maps into a sample.

2. Edit the function RTI_RoutingServiceFileAdapter_write_sample to implement how
a sample is written to a file.

11.11 Example: Using a Shapes Processor
This example shows how to implement a custom Processor plug-in, build it into a shared library
and load it with Routing Service.

This example illustrates the realization of two common enterprise patterns: aggregation and split-
ting. There is a single plug-in implementation, ShapesProcessor that is a factory of two types of
Processor, one for each pattern implementation:

• ShapesAggregator : Processor implementation that performs the aggregation of two ShapeType
objects into a single ShapeType object.

• ShapesSplitter : Processor implementation that performs the separation of a single ShapeType
object into two ShapeType objects.

In the example, these processors are instantiated as part of a TopicRoute, in which all its inputs
and outputs represent instantiations of the Connext DDS Adapter StreamReader and StreamWriter,
respectively.

You can find the full example in the RTI Community Examples Repository.

11.11. Example: Using a Shapes Processor 136

https://github.com/rticommunity/rticonnextdds-examples/tree/master/examples/routing_service/routing_service_shapes_processor

Chapter 12

Common Infrastructure

12.1 Application Resource Model
RTI services are described through a hierarchical application resource model. In this model, an
application is composed of a set of Resources, each representing a particular component within the
application. Resources have a parent-child relationship. Figure 12.1 shows a general view of this
concept.

Figure 12.1: Application modeled as a set of related Resources

Each application specifies its resource model by indicating the available resources and their rela-
tionship. A Resource is determined by its class and a concrete object instance. It can belong to
one of the following categories:

• Simple–Represents a single object.

137

RTI Routing Service User’s Manual, Version 6.0.1

• Collection–Represents a set of objects of the same class.

A Resource may be composed of one or more Resources. In this relationship, the parent Resource
is composed of one ore more child Resources.

12.1.1 Example: Simple Resource Model of a Connext DDS Application
Figure 12.2 depicts a UML class diagram to provide a generic resource model for Connext DDS
applications.

Figure 12.2: Connext DDS application resource model

In this diagram, the composition relationship is used to denote the parents and children in the
hierarchy. The direct relationship denotes a dependency between resources that is not parent-child.

12.1.2 Resource Identifiers
A resource identifier is a string of characters that uniquely address a concrete resource object within
an application. It is expressed as a hierarchical sequence of identifiers separated by /, including all
the parent resources and the target resource itself:

/𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑1/𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑2.../𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑𝑁

where each individual identifier references a concrete resource object by its name. The object name
is either:

1. Fixed and specified by the resource model of the parent Resource class.

2. Given by the user of the application. This is the case where the parent resource is a collection
in which the user can insert objects, providing a name for each of them.

The individual identifier can refer to one of the two kinds of resources, simple and collection
resources. For example:

12.1. Application Resource Model 138

RTI Routing Service User’s Manual, Version 6.0.1

/collection_id1/resource_id1/resource_id2

If the identifier refers to a collection resource, the following child identifier must refer to a simple re-
source. Both simple and collection resources can be parents (or children). In the previous example,
resource_id1 is a simple resource child of collection_id1; it is also the parent of resource_id2.

The hierarchy of identifiers is known as the full resource identifier path, where each resource on the
left represents a parent resource. The full resource identifier path is composed of collection and
simple resources. Each child resource identifier is known as the relative resource to the parent.

The resource identifier format follows these conventions:

• The first character is /, which represents the root resource and parent of all the available
resources across the applications.

• A collection identifier is defined in lower snake_case, and it is always specified by the resource
class.

• A simple resource identifier is defined in camelCase (lower and upper) and may be specified
by both the resource class or the user.

Escaped Identifiers

An identifier can be escaped by enclosing it within double quotes ("). For example:

/”escaped_identifier”

An escaped identifier is interpreted as a whole and indivisible unit. Escaping a resource identifier
is useful; it is also required when the identifier contains the resource separator / or the custom
method separator :.

For example, the following full resource path:

/resource_1/"escaped/resource_2"

is composed of two relative resources, resource_id1and escaped/resource2. The use of the double
quotes to escape the identifier indicates that the enclosing string shall be interpreted as a single
identifier, and therefore Routing Service ignores the resource separator. If the identifier was not
escaped, then Routing Service would interpret the resource path as two separate relative resources.

Any time an RTI service sees a resource separator character (/) or the custom method separator
: in an entity name (such as in the attribute name), it automatically escapes the name when it
constructs the resource identifier. For example:

<service name="A/B">

<service name="A:B">

becomes

12.1. Application Resource Model 139

RTI Routing Service User’s Manual, Version 6.0.1

/routing_service/"A/B"

/routing_service/"A:B"

in the resource identifier.

Example: Resource Identifiers of a Generic Connext DDS Application

Consider the Connext DDS application resource model in Section 12.1.1. The following resource
identifier addresses a concrete DomainParticipant named “MyParticipant” in a given application:

/domain_participants/MyParticipant

In this case, “domain_participants” is the identifier of a collection resource that represents a set
of DomainParticipants in the application and its value is fixed and specified by the application.
In contrast, “MyParticipant” is the identifier of a simple resource that represents a particular
DomainParticipant and its value is given by the user of the application at DomainParticipant
creation time.

The following resource identifier addresses the implicit Publisher of a concrete DomainParticipant
in a given application:

/domain_participants/MyParticipant/implicit_publisher

where “implicit_publisher” is the identifier of a simple resource that represents the always-present
implicit Publisher and its value is fixed and specified by the DomainParticipant resource class.

Example: Resource Identifiers Generated from XML Entity Model

Consider the following XML configuration that models a generic RTI service:

<service name="MyService">
<entity_class1 name="MyEntity1"> ... </entity_class1>
<entity_class1 name="Domain/MyEntity2"> ... </entity_class1>

</service>

The resulting generated resource identifiers will look as follows:

/service/MyService/entity_class1/MyEntity1
/service/MyService/entity_class1/"Domain/MyEntity2"

12.2 Remote Administration Platform
This section describes details of the RTI Remote Administration Platform, which represents the
foundation of the remote access capabilities available in RTI Routing Service, RTI Recording Ser-
vice, and RTI Queuing Service. The RTI Remote Administration Platform provides a common
infrastructure that unifies and consolidates the remote interface to all RTI services.

Note: Remote administration of RTI services requires an understanding of the application resource

12.2. Remote Administration Platform 140

RTI Routing Service User’s Manual, Version 6.0.1

model. We recommend that you read Application Resource Model (Section 12.1) before continuing
with this section.

The RTI Remote Administration Platform addresses two areas:

• Resource Interface: How to perform operations on a set of resource objects that are avail-
able as part of the public interface of the remote service.

• Communication: How the remote service receives and sends information.

The combination of these two areas provides the general view of the RTI Remote Administration
Platform, as shown in Figure 12.3. The RTI Remote Administration Platform is defined as a
request/reply architecture. In this architecture, the service is modeled as a set of resources upon
which the requester client can perform operations. Resources represent objects that have both state
and behavior.

Figure 12.3: General View of the RTI Remote Administration Platform Architecture

Clients issue requests indicating the desired operation and receive replies from the service with the
result of the requests. If multiple clients issue multiple requests to one or more services, the client
will receive only replies to its own requests.

12.2.1 Remote Interface
Services offer their available functionality through their set of resources. The RTI Remote Adminis-
tration Platform defines a Representational State Transfer (REST)-like interface to address service
resources and perform operations on them. A resource operation is determined by a REST request
and the associated result by a REST reply.

12.2. Remote Administration Platform 141

RTI Routing Service User’s Manual, Version 6.0.1

Table 12.1: REST Interface
Element Description
REST Request

[method] + [resource_identifier] + [body]
• method: Specifies the action to be performed on a service re-

source. There is only a small subset of methods, known as stan-
dard methods (see Section 12.2.1).

• resource_identifier: Addresses a concrete service resource.
Each concrete service has its own set of resources (see Section
12.1.2).

• body: Optional request data that contains necessary information
to complete the operation.

REST Reply
[return code] + [body]

• return code: Integer indicating the result of the operation.
• body: Optional reply data that contains information associated

with the processing of the request.

Standard Methods

The RTI Remote Administration Platform defines the methods listed in Table 12.2.

Table 12.2: Standard Methods
Method URI Request Body Reply Body
CREATE Parent collec-

tion resource
identifier

Resource representation N/A

GET Resource identi-
fier

N/A Resource representation

UPDATE Resource identi-
fier

Resource representation N/A

DELETE Resource identi-
fier

Undefined N/A

Custom Methods

There are certain cases in which an operation on a service resource cannot be mapped intuitively
to a standard method and resource identifier. Custom methods address this limitation.

A custom method can be specified as part of the resource identifier, after the resource path, sepa-
rated by a :.

UPDATE + [resource_identifier] : [custom_verb]

It is up to each service implementation to define which custom methods are available and on what

12.2. Remote Administration Platform 142

RTI Routing Service User’s Manual, Version 6.0.1

resources they apply. Custom methods follow these conventions:

• They are invoked through the UPDATE standard method.

• They are named using lower snake_case.

• They may use the request body and reply body if necessary.

Example: Database Rollover

This example shows the REST request to perform a file rollover operation on a file-based database:

UPDATE /databases/MyDatabase:rollover

12.2.2 Communication
The information exchange between client and server is based on the DDS request-reply pattern, as
shown in Figure 12.4. The client maps to a Requester, whereas the server maps to a Replier.

Figure 12.4: Communication in RTI Remote Administration Platform is Based on DDS Request-
Reply

The communication is performed over a single request-reply channel, composed of two topics:

• Command Request Topic: Topic through which the client sends the requests to the server.

• Command Reply Topic: Topic through which the server sends the replies to the received
requests.

The definition of these topics is shown in Table 12.3:

12.2. Remote Administration Platform 143

RTI Routing Service User’s Manual, Version 6.0.1

Table 12.3: Remote Administration Topics
Topic Name Top-level Type Name
CommandRequestTopic rti/service/administra-

tion/command_request
rti::service::admin::CommandRequest

CommandReplyTopic rti/service/administra-
tion/command_reply

rti::service::admin::CommandReply

The definition for each Topic type is described below.

Listing 12.1: CommandRequest Type
@appendable
struct CommandRequest {

@key int32 instance_id;
@optional string<BOUNDED_STRING_LENGTH_MAX> application_name;
CommandActionKind action;
ResourceIdentifier resource_identifier;
StringBody string_body;
OctetBody octet_body;

};

Table 12.4: CommandRequest
Field Name Description
instance_id Associates a request with a given instance in the CommandRequestTopic.

This can be used if your requester application model wants to leverage out-
standing requests. In general, this member is always set to zero, so all
requests belong to the same CommandRequestTopic instance.

application_nameOptional member that indicates the target service instance where the request
is sent. If NULL, the request will be sent to all services.

action Indicates the resource operation.
resource_identifierAddresses a service resource.
string_body Contains content represented as a string.
octet_body Contains content represented as binary.

12.2. Remote Administration Platform 144

RTI Routing Service User’s Manual, Version 6.0.1

Listing 12.2: CommandReply Type
@appendable
struct CommandReply {

CommandReplyRetcode retcode;
int32 native_retcode;
StringBody string_body;
OctetBody octet_body;

};

Table 12.5: CommandReply
Field Name Description
retcode Indicates the result of the operation.
native_retcode Provides extra information about the result of the operation.
string_body Return value of the operation, represented as a string.
octet_body Return value of the operation, represented as binary.

The type definitions for both the CommandRequestTopic and CommandReplyTopic are in the file
[NDDSHOME]/resource/idl/ServiceAdmin.idl.

The definition of the request and reply topics is independent of any specific service implementation.
In fact, the topic names are fixed, unique, and shared across all services that rely on the RTI Remote
Administration Platform. Clients can target specific services through two mechanisms:

• Specifying a concrete service instance by providing its application name. The application
name is a service attribute and can be set at service creation time.

• Specifying the configuration name loaded by the target services. The target service configu-
ration shall be present in the service resource part of the resource_identifier.

Reply Sequence

Usually a request is expected to generate a single reply. Sometimes, however, a request may trigger
the generation of multiple replies, all associated with the same request.

The RTI Remote Administration Platform communication architecture allows services to respond
to certain requests with a reply sequence. All the samples in a reply sequence use the the metadata
SampleFlagBits to indicate whether it belongs to a reply sequence and whether there are more
replies pending.

The SampleFlagBits may contain different flags that indicate the status of the reply procedure.
For a given reply sequence, the associated sample flags for each reply may contain:

• SEQUENTIAL_REPLY: If present, this indicates that the sample is the first reply of a reply
sequence and there are more on the way.

• FINAL_REPLY: If present, this indicates that the sample is the last one belonging to a reply
sequence. This flag is valid only if the SEQUENTIAL_REPLY is also set.

12.2. Remote Administration Platform 145

RTI Routing Service User’s Manual, Version 6.0.1

For more on SampleFlagBits, see documentation on the DDS_SampleInfo structure in the Connext
DDS API Reference HTML documentation.

Example: Accessing from Connext DDS Application

This example shows a Modern C++ snippet on how to use Connext DDS Request-Reply to disable
a Routing Service instance.

using namespace rti::request;
using namespace dds::core;
using namespace RTI::Service;
using namespace RTI::Service::Admin;

const unsigned int WAIT_TIMEOUT_SEC_MAX = 10;
const unsigned int ADMIN_DOMAIN_ID = 55;

int main(int, char *[]) {

try {

dds::domain::DomainParticipant participant(ADMIN_DOMAIN_ID);

// create requester params
rti::request::RequesterParams requester_params(participant);
requester_params.request_topic_name(COMMAND_REQUEST_TOPIC_NAME);
requester_params.reply_topic_name(COMMAND_REPLY_TOPIC_NAME);

// Wait for Routing Service Discovery
dds::core::status::PublicationMatchedStatus matched_status;
unsigned int wait_count = 0;

std::cout << "Waiting for a matching replier..." << std::endl;
int wait_count = 0;
while (matched_status.current_count() < 1

&& wait_count < WAIT_TIMEOUT_SEC_MAX) {
matched_status = requester.request_datawriter().publication_matched_status();
wait_count++;
rti::util::sleep(Duration(1));

}

if (matched_status.current_count() < 1) {
throw dds::core::Error("No matching replier found.");

}

/*
* Setup command
*/
CommandRequest request;
request.action(CommandActionKind::RTI_SERVICE_COMMAND_ACTION_UPDATE);
request.resource_identifier("/routing_services/MyRouter/state");
dds::topic::topic_type_support<EntityState>::to_cdr_buffer(

reinterpret_cast<std::vector<char> &>(request.octet_body()),
EntityState(EntityStateKind::DISABLED));

(continues on next page)

12.2. Remote Administration Platform 146

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)

/*
* Send disable
*/
requester.send_request(request);
CommandReply reply = requester.receive_reply(

Duration(WAIT_TIMEOUT_SEC_MAX));
if (reply.retcode() == CommandReplyRetcode::OK_RETCODE) {

std::cout << "Command returned: " << reply.string_body() << std::endl;
} else {

std::cout << "Unsuccessful command returned value "
<< reply.retcode() << "." << std::endl;

throw dds::core::Error("Error in replier");
}

} catch (const std::exception& ex) {
std::cout << "Exception: " << ex.what() << std::endl;
return -1;

}

return 0;
}

12.2.3 Common Operations
The set of services that use the RTI Remote Administration Platform to implement remote admin-
istration also share a base remote interface that consolidates and unifies the semantics and behavior
of certain common operations.

Services containing resources that implement the common operations conform to the base remote
interface, making sure that signatures, semantics, behavior, and conditions are respected.

The following sections describe each of these common operations.

Create Resource

CREATE [resource_identifier]
Creates a resource object from its configuration in XML representation.

This operation creates a resource object and its contained entities. The created object becomes
a child of the parent specified in the resource_identifier.

After successful creation, the resource object is fully addressable for additional remote ac-
cess, and the associated object configuration is inserted into the currently loaded full XML
configuration.

Request body

• string_body: XML representation of the resource object provided as file:// or str:/
/.

• Example str:// request body:

12.2. Remote Administration Platform 147

RTI Routing Service User’s Manual, Version 6.0.1

str://"<my_resource name="NewResourceObject">
...

</my_resource>"

• Example file:// request body:

file:///home/rti/config/service_my_resource.xml

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• The specified configuration is schematically invalid.

• There was an error creating the resource object.

Get Resource

GET [resource_identifier]
Returns an equivalent XML string that represents the current state of the resource object
configuration, including any updates performed during its lifecycle.

Request body

• Empty.

Reply body

• string_body: XML representation of the resource object.

• Example reply body:

<my_resource name="MyObject">
...

</my_resource>

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

Update Resource

UPDATE [resource_identifier]
Updates the specified resource object from its configuration in XML representation.

This operation modifies the properties of the resource object, including the associated config-
uration. Only the mutable properties of the resource class can be updated while the object
is enabled. To update immutable properties, the resource object must be disabled first.

12.2. Remote Administration Platform 148

RTI Routing Service User’s Manual, Version 6.0.1

Implementations may validate the receive configuration against a scheme (DTD or XSD) that
defines the valid set of accepted parameters (for example, only mutable elements).

Request body

• string_body: XML representation of the resource object provided as file:// or str:/
/.

• Example str:// request body:

str://"<my_resource name="MyResourceObject">
...

</my_resource>"

• Example file:// request body:

file:///home/rti/config/service_update_my_resource.xml

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• The specified configuration is schematically invalid.

• The specified configuration contains changes in immutable properties.

• There was an error updating the resource object.

Set Resource State

UPDATE [resource_identifier]/state
Sends a state change request to the specified resource object.

This operation attempts to change the state of the specified resource object and propagates
the request to the resource object’s contained entities.

The target state must be one of the resource class’s valid accepted states.

Request body

• octet_body: CDR representation of an entity state.

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• The target request is invalid.

12.2. Remote Administration Platform 149

RTI Routing Service User’s Manual, Version 6.0.1

• The resource object reported an error while performing the state transition.

Delete Resource

DELETE [resource_identifier]
Deletes the specified resource object.

This operation deletes a resource object and its contained entities. The deleted object is
removed from its parent resource object.

The associated object configuration is removed from the currently loaded full XML configu-
ration.

After a successful deletion, the resource object is no longer addressable for additional remote
access.

Request body

• Empty.

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• There was an error deleting the resource object.

12.3 Monitoring Distribution Platform
Monitoring refers to the distribution of health status information metrics from instrumented RTI
services. This section describes the architecture of the monitoring capability supported in RTI
Routing Service and RTI Recording Service. You will learn what type of information these appli-
cation can provide and how to access it.

RTI services provide monitoring information through a Distribution Topic, which is a DDS Topic
responsible for distributing information with certain characteristics about the service resources. An
RTI service provides monitoring information through the following three distribution topics:

• ConfigDistributionTopic: Distributes metrics related to the description and configuration of
a Resource. This information may be immutable or change rarely.

• EventDistributionTopic: Distributes metrics related to Resource status notifications of asyn-
chronous nature. This information is provided asynchronously when Resources change after
the occurrence of an event.

• PeriodicDistributionTopic: Distribute metrics related to periodic, sampling-based updates of
a Resource. Information is provided periodically at a configurable publication period.

These three Topics are shared across all services for the distribution of the monitoring information.
Table 12.6 provides a summary of these topics.

12.3. Monitoring Distribution Platform 150

RTI Routing Service User’s Manual, Version 6.0.1

Table 12.6: Monitoring Distribution Topics
Topic Name Top-level Type Name
ConfigDistributionTopic rti/service/monitoring/config rti::service::monitor-

ing::Config
EventDistributionTopic rti/service/monitoring/event rti::service::monitor-

ing::Event
PeriodicDistributionTopic rti/service/monitoring/periodic rti::service::monitor-

ing::Periodic

Figure 12.5 shows the mapping of the monitoring information into the distribution Topics. A
distribution Topic is keyed on service resources categorized as keyed Resources. These are resources
whose related monitoring information is provided as an instance on the distribution Topic.

Figure 12.5: Monitoring Distribution Topics of RTI Services

12.3.1 Distribution Topic Definition
All distribution Topics have a common type structure that is composed of two parts: a base type
that identifies a resource object and a resource-specific type that contains actual status monitoring
information.

The definition of a distribution Topic is shown in Figure 12.6.

Keyed Resource Base Type Fields

This is the base type of all distribution Topics and consists of two fields:

• object_guid: Key field. It represents a 16-byte sequence that uniquely identifies a Keyed
Resource across all the available services in the monitoring domain. Hence, the associated
instance handle key hash will be the same for all distribution Topics, allowing easy correlation

12.3. Monitoring Distribution Platform 151

RTI Routing Service User’s Manual, Version 6.0.1

Figure 12.6: Monitoring Distribution Topic Definition

of a resource. It will also facilitate, as we will discuss later, easy instance data manipulation
in a DataReader.

• parent_guid: It contains the object GUID of the parent resource. This field will be set to
all zeros if the object is a top-level resource thus with no parent.

This base type, KeyedResource, is defined in [NDDSHOME]/resource/idl/ServiceCommon.idl.

Resource-Specific Type Fields

This is the type that conveys monitoring information for a concrete resource object. Since a
distribution Topic is responsible for providing information about different resource classes, the
resource-specific type consists of a single field that is a Union of all the possible representations
for the keyed resources that provide that on the topic.

As expected, there must be consistency between the two parts of the distribution topic type. That
is, a sample for a concrete resource object must contain the resource-specific union discriminator
corresponding to the resource object’s class.

Example: Monitoring of Generic Application

Assume a generic application that provides monitoring information about the modes of transports
Car, Boat and Plane. Each mode is mapped to a keyed resource, each with a custom type that
contains metrics specific to each class.

The monitoring distribution Topic top-level type, TransportModeDistribution, would be defined
as follows, using IDL v4 notation:

#include "ServiceCommon.idl"

@nested
struct CarType {

float speed;
String color;
String plate_number;

(continues on next page)

12.3. Monitoring Distribution Platform 152

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
};

@nested
struct BoatType {

float knots;
float latitude;
float longitude;

};

@nested
struct PlaneType {

float ground_speed;
int32 air_track;

};

enum TransportModeKind {
CAR_TRANSPORT_MODE,
BOAT_TRANSPORT_MODE,
PLANE_TRANSPORT_MODE

};

@nested
union TransportModeUnion switch (TransportModeKind) {

case CAR_TRANSPORT_MODE:
CarType car;

case BOAT_TRANSPORT_MODE:
BoatType boat;

case PLANE_TRANSPORT_MODE:
PlaneType plane;

}

struct TransportModeDistribution : KeyedResource {
TransportModeUnion value;

};

Assume now that in the monitoring domain there are three resource objects, one for each resource
class: a Car object ‘CarA’, a Boat object ‘Boat1’, and a Plane object ‘PlaneX’. They all have
unique resource GUIDs and each object represents an instance in the distribution Topic. The table
shows the example of potential sample values:

Table 12.7: Samples in TransportModeDistribution Topic
CarA Boat1 PlaneX

object_guid 0x0C 0xAB 0xf2
parent_guid 0x00 0x00 0x00
value discrimi-
nator

CAR_TRANS-
PORT_MODE

BOAT_TRANS-
PORT_MODE

PLANE_TRANS-
PORT_MODE

12.3. Monitoring Distribution Platform 153

RTI Routing Service User’s Manual, Version 6.0.1

12.3.2 DDS Entities
RTI services allow you to distribute monitoring information in any domain. For that, they create
the following DDS entities:

• A DomainParticipant on the monitoring domain.

• A single Publisher for all DataWriters.

• A DataWriter for each distribution Topic.

A service will create these entities with default QoS or otherwise the corresponding service user’s
manual will specify the actual values. Services allow you to customize the QoS of the DDS entities,
typically in the service monitoring configuration under the <monitoring> tag. You will need to
refer to each service’s user’s manual.

12.3.3 Monitoring Metrics Publication
How services publish monitoring samples depends on the distribution Topic.

Configuration Distribution Topic

There are two events that cause the publication of samples in this topic:

• As soon as a Resource object is created. This event generates the first sample in the Topic
for the resource object just created. Since these first samples are published as resources are
created, it is guaranteed to be in hierarchical order; that is, the sample for a parent Resource is
published before its children. When Resources are created depends on the service. Typically,
Resources are created on service startup. Other cases include manual creation (e.g., through
remote administration) or external event-driven creation (e.g., discovery of matching streams,
in the case of AutoRoute in Routing Service).

• On Resource object update. This event occurs when the properties of the object change due
to a set or update operation (e.g., through remote administration).

Event Distribution Topic

Services publish samples in this Topic in reaction to an internal event, such as a Resource state
change. Which events and their associated information and when they occur is highly dependent
on concrete service implementations.

Periodic Distribution Topic

Samples in this Topic are published periodically, according to a fixed configurable period. The
metrics provided in this Topic are generated in two different ways:

• As a snapshot of the current value, taken at the publication time (e.g., current number of
matching DataReaders). This represents a simple case and the metric is typically represented
with an adequate primitive member.

• As a statistic variable generated from a set of discreet measurements, obtained periodically.
This represents a continous flow of metrics, represented with the StatisticVariable type
(see Section 12.3.4).

12.3. Monitoring Distribution Platform 154

RTI Routing Service User’s Manual, Version 6.0.1

There are two activities involved in the generation of the statistic variables: Calculation and Pub-
lication. All the configuration elements for these activities are available under the <monitoring>
tag.

Calculation

The instrumented service periodically performs measurements on the metric. This activity is also
known as sampling (don’t confuse with data samples). The frequency of the measurements can
be configured with the tag <statistics_sampling_period>. As a general recommendation, the
sampling period should be a few times smaller than the publication period. A small sampling
period provides more accurate statistics generation at the expense of increasing memory and CPU
consumption.

Publication

The service periodically publishes a data sample containing a snapshot of the statistics gen-
erated during the calculation phase. The publication period can be configured with the tag
<statistics_publication_period>.The value of a statistic variable corresponds to the time win-
dow of a publication period.

12.3.4 Monitoring Metrics Reference
This section describes the types used as common metrics across services. All the type definitions
listed here are in [NDDSHOME]/resource/idl/ServiceCommon.idl.

Statistic Variable

12.3. Monitoring Distribution Platform 155

RTI Routing Service User’s Manual, Version 6.0.1

Listing 12.3: Statistics
@appendable @nested
struct StatisticMetrics {

int64 period_ms;
int64 count;
float mean;
float minimum;
float maximum;
float std_dev;

};

@appendable @nested
struct StatisticVariable {

StatisticMetrics publication_period_metrics;
};

Table 12.8: StatisticMetrics
Field Name Description
period_ms Period in milliseconds at which the metrics are published.
count Sum of all the measurement values obtained during the publication period.
mean Arithmetic mean of all the measurement values during publication period.

For aggregated metrics, this value is the mean of all the aggregated metrics
means.

min Minimum of all the measurement values during publication period. For ag-
gregated metrics, this value is the minimum of all the aggregated metrics
minimums.

max Maximum of all the measurement values during publication period. For
aggregated metrics, this value is the maximum of all the aggregated metrics
minimums.

std_dev Standard deviation of all the measurement values during publication period.
For aggregated metrics, this value is the standard deviation of all the aggre-
gated metrics minimums.

Host Metrics

Listing 12.4: Host Types
@appendable @nested
struct HostPeriodic {

@optional StatisticVariable cpu_usage_percentage;
@optional StatisticVariable free_memory_kb;
@optional StatisticVariable free_swap_memory_kb;
int32 uptime_sec;

};
(continues on next page)

12.3. Monitoring Distribution Platform 156

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)

@appendable @nested
struct HostConfig {

BoundedString name;
uint32 id;
int64 total_memory_kb;
int64 total_swap_memory_kb;

};

Table 12.9: HostConfig
Field Name Description
name Name of the host where the service is running.
id ID of the host where the service is running.
total_mem-
ory_kb

Total memory in KiloBytes of the host where the service is running. Avail-
ability of this value is platform dependent.

to-
tal_swap_mem-
ory_kb

Total swap memory in KiloBytes of the host where the service is running.
Availability of this value is platform dependent.

Table 12.10: HostPeriodic
Field Name Description
cpu_usage_per-
centage

Statistic variable that provides the global percentage of CPU usage on the
host where the service is running. Availability of this value is platform de-
pendent.

free_mem-
ory_kb

Statistic variable that provides the amount of free memory in KiloBytes of
the host where the service is running. Availability of this value is platform
dependent.

free_wap_mem-
ory_kb

Statistic variable that provides the amount of free swap memory in KiloBytes
of the host where the service is running. Availability of this value is platform
dependent.

uptime_sec Time in seconds elapsed since the host on which the running service started.
Availability of this value is platform dependent.

Process Metrics

Listing 12.5: Process Types
@appendable @nested
struct ProcessConfig {

uint64 id;
};
@mutable @nested
struct ProcessPeriodic {

(continues on next page)

12.3. Monitoring Distribution Platform 157

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
@optional StatisticVariable cpu_usage_percentage;
@optional StatisticVariable physical_memory_kb;
@optional StatisticVariable total_memory_kb;
int32 uptime_sec;

};

Table 12.11: ProcessConfig
Field Name Description
id Identifies the process where the service is running. The meaning of this value

is platform dependent.

Table 12.12: ProcessPeriodic
Field Name Description
cpu_usage_per-
centage

Statistic variable that provides the percentage of CPU usage of the pro-
cess where the service is running. The field count of the variable contains
the total CPU time that the processor spent during the publication period.
Availability of this value is platform dependent.

physical_mem-
ory_kb

Statistic variable that provides the physical memory utilization in KiloBytes
of the process where the service is running. Availability of this value is
platform dependent.

total_mem-
ory_kb

Statistic variable that provides the virtual memory utilization in KiloBytes of
the process where the service is running. Availability of this value is platform
dependent.

uptime_sec Time in seconds elapsed since the running service process started. Availabil-
ity of this value is platform dependent.

Base Entity Resource Metrics

12.3. Monitoring Distribution Platform 158

RTI Routing Service User’s Manual, Version 6.0.1

Listing 12.6: Base Entity Types
@mutable @nested
struct EntityConfig {

ResourceId resource_id;
XmlString configuration;

};
@mutable @nested
struct EntityEvent{

EntityStateKind state;
};

Table 12.13: EntityConfig
Field Name Description
resource_id String representation of the resource identifier associated with the entity

resource.
configuration String representation of the XML configuration of the entity resource. The

XML contains only children elements that are not entity resources.

Table 12.14: EntityEvent
Field Name Description
state State of the resource entity expressed as an enumeration of type

EntityStateKind.

Network Performance Metrics

12.3. Monitoring Distribution Platform 159

RTI Routing Service User’s Manual, Version 6.0.1

Listing 12.7: Network Performance Type
@appendable @nested
struct NetworkPerformance {

@optional StatisticVariable samples_per_sec;
@optional StatisticVariable bytes_per_sec;
@optional StatisticVariable latency_millisec;

};

Table 12.15: NetworkPerformance
Field Name Description
sam-
ples_per_sec

Statistic variable that provides information about the number of samples
processed (received or sent) per second.

bytes_per_sec Statistic variable that provides information about the number of bytes pro-
cessed (received or sent) per second.

latency_millisec Statistic variable that provides information about the latency in milliseconds
for the data processed. The latency in a refers to the total time elapsed
during the associated processing of the data, which depends on the type of
application.

12.4 Plugin Management
Some RTI services allows for custom behavior through the use of pluggable components or plugins .
The type of plugins is described in Section 7. A plugin is represented as a top-level service-owned
object whose main role is a factory of other pluggable components, which themselves are responsible
for providing the user-defined behavior.

Figure 12.7 shows that for each class of pluggable components there is a top-level object with the
suffix Plugin. This is the object that the Service obtains at the moment of loading the plugin.
Multiple Plugin objects can be registered from the same class, each uniquely identified by its
registered name.

Figure 12.7 also shows that there are two mechanisms through which a Service obtains a plugin
object: a shared library or the Service API. Both mechanisms are complementary and are described
with more detail in the next sections.

12.4.1 Shared Library
A plugin object is instantiated through a create function, which is included and addressable as part
of a shared library. This function is also known as the entry point and each RTI service defines the
signature for each plugin class. This method requires specifying the path to the shared library and
the name of the entry point (see Section 12.4.1). The Service loads the library the first time an
instance of the plugin is needed (lazy initialization) and looks up the specified entry point symbol
in the loaded library. The Service will always delete the plugin on Service stop.

This is the only method suitable when a RTI service is deployed through an already linked exe-
cutable, such as the shipped command-line executable (Section 3.1).

12.4. Plugin Management 160

RTI Routing Service User’s Manual, Version 6.0.1

Figure 12.7: Plugin object management

The plugin lifecycle is as follows:

1. After start, Service creates a plugin object for each registered plugin in the configuration.
The plugin object is instantiated through the shared library entry point, specified in the
configuration.

2. Service calls operations on the plugin objects as needed and keeps them alive while the Service
remains started.

3. During stop, the Service deletes each plugin object by calling the class abstract deleter.

Configuration

An RTI service configures the pluggable components within the <plugin_library> tag. RTI
services that support plugins will define a set of tags within in the form:

• <[class]_plugin> for C/C++ plugins

• <java_[class]_plugin> for Java plugins

where [class] refers to the name of the plugin class. For example, in Routing Service an available
tag is <adapter_plugin>.

The definition of these tags is the same regardless of the plugin class and is described in the tables
below.

Table 12.16 and Table 12.17 describe the configuration of each different plugin language.

12.4. Plugin Management 161

RTI Routing Service User’s Manual, Version 6.0.1

Table 12.16: Configuration tags for C/C++ plugins.
Tags within <[class]_plu-
gin>

Description Multi-
plicity

<dll> Shared library containing the implementation of the
adapter plugin. This tag may specify the exact path
(absolute or relative) of the file (for example, lib/lib-
myplugin.so) or a general name (no file extension).
If no extension is provided, the path will be completed
based on the running platform. For example, assuming
a value for this tag of dir/myplugin:

• UNIX-based systems: dir/libmyplugin.so
• Windows systems: dir/myplugin.dll

If the library specified in this tag cannot be loaded (be-
cause the environment library path is not pointing to the
path where the library is located), Routing Service will
look for the library in the following locations, in this or-
der:

• [plugin_search_path]: Provided as part of the
service parameters (see Section 3)

• [executable_dir]: Directory where the exe-
cutable lives

1

<create_function> Entry point. This tag must contain the name of the
function used to create the plugin instance. The function
symbol must be present in the shared library specified in
<dll>

1

<property> A sequence of name-value string pairs that allow you to
configure the plugin instance.
Example:

<property>
<value>

<element>
<name>myplugin.user_name</name>
<value>myusername</value>

</element>
</value>

</property>

0..1

12.4. Plugin Management 162

RTI Routing Service User’s Manual, Version 6.0.1

Table 12.17: Configuration tags for Java plugins
Tags within
<java_[class]_plugin>

Description Multi-
plicity

<class_name> Name of the class that implements the plugin.
For example: com.myplugins.CustomPlugin
The classpath required to run the Java plugin must be
part of the RTI service JVM configuration. See the <jvm>
tag within the specific service configuration for additional
information on JVM creation and configuration.

1

<property> A sequence of name-value string pairs that allow you to
configure the plugin instance.
Example:

<property>
<value>

<element>
<name>myplugin.user_name</name>
<value>myusername</value>

</element>
</value>

</property>

0..1

12.4.2 Service API
The user provides the plugin object via the Service API, through one of the available
attach_[class]_plugin() operations. Upon successful return of the operation, the Service takes
ownership of the plugin object and will delete it on Service stop.

Plugin lifecycle goes as follows:

1. User instantiates plugin objects and provides them to the Service through the
attach_[class]_plugin() operation. This is allowed only before the Service starts.

2. After start, the Service becomes the owner of the registered plugin objects, calls operations
on the plugin objects as needed, and keeps them alive while the Service remains started.

3. On stop, the Service deletes each registered plugin object by calling the class abstract deleter.

12.4. Plugin Management 163

Chapter 13

Release Notes

13.1 Supported Platforms
RTI Routing Service is supported on the platforms in Table 13.1.

It can also be deployed as a C library linked into your application. This is true for all platforms in
Table 13.1 except INTEGRITY®.

Table 13.1: Supported Platforms
Platform Operating System
INTEGRITY INTEGRITY 10.0.2 on x86 CPU

INTEGRITY 11.0.4 on x86 CPU
Linux® All Linux platforms in the RTI Connext DDS Core Libraries Release Notes

for the same version number, except Wind River® Linux 7.
macOS® All macOS platforms in the RTI Connext DDS Core Libraries Release Notes

for the same version number.
QNX® All QNX Neutrino® 7.0 platforms in the RTI Connext DDS Core Libraries

Release Notes for the same version number.
Windows® All Windows platforms in the RTI Connext DDS Core Libraries Release

Notes for the same version number.

Routing Service is also supported on the platforms in Table 13.2; these are target platforms for
which RTI offers custom support. If you are interested in these platforms, please contact your local
RTI representative or email sales@rti.com.

Table 13.2: Custom Platforms
Platform Operating System
Linux Wind River Linux 8 on Arm® v7 and PPC e6500

Yocto Project 2.5 on Arm v7
QNX QNX Neutrino 6.5 on PPC (e500v2)

QNX Neutrino 7 on Arm v7

164

mailto:sales@rti.com

RTI Routing Service User’s Manual, Version 6.0.1

13.2 Compatibility
For backward compatibility information between Routing Service 6.0.1 and previous releases, please
see the Migration Guide on the RTI Community portal.

Routing Service can be used to forward and transform data between applications built with Connext
DDS, as well as RTI Data Distribution Service 4.5[b-e], 4.4d, 4.3e, and 4.2e except as noted below.

• Routing Service is not compatible with applications built with RTI Data Distribution Service
4.5e and earlier releases when communicating over shared memory. For more information,
please see the Transport Compatibility section in the Migration Guide on the RTI Community
portal.

• Starting in Connext DDS 5.1.0, the default message_size_max for the UDPv4, UDPv6,
TCP, Secure WAN, and shared-memory transports changed to provide better out-of-the-box
performance. Routing Service also uses the new value for message_size_max. Consequently,
Routing Service is not out-of-the-box compatible with applications running older versions of
Connext DDS. Please see the RTI Connext DDS Core Libraries Release Notes for instructions
on how to resolve this compatibility issue with older Connext DDS applications.

• The types of the remote administration and monitoring topics in 5.1.0 are not compatible
with 5.0.0. Therefore:

– The 5.0.0 RTI Routing Service shell, RTI Admin Console 5.0.0, and RTI Connext DDS
5.0.0 user applications performing monitoring/administration are not compatible with
RTI Routing Service 5.1.0.

– The 5.1.0 RTI Routing Service shell, RTI Admin Console 5.1.0, and RTI Connext DDS
5.1.0 user applications performing monitoring/administration are not compatible with
RTI Routing Service 5.0.0.

13.3 What’s New in 6.0.1

13.3.1 New platforms
Routing Service now includes support for these platforms:

• macOS 10.14 (x64)

• QNX Neutrino 7.0 (x64 and Arm v8 x64)

• Red Hat® Enterprise Linux 8 (x64)

• Wind River Linux 8 (PPC e6500) (custom target platform)

• Windows 10 (x86, x64) with Visual Studio® 2019

• Windows Server 2016 (x86, x64) with Visual Studio 2019

• Yocto Project® 2.5 (Arm v7) (custom target platform)

For more information on these platforms, see the RTI Connext DDS Core Libraries Platform Notes
for this release.

13.2. Compatibility 165

https://community.rti.com/Documentation/
https://community.rti.com/Documentation/
https://community.rti.com/Documentation/

RTI Routing Service User’s Manual, Version 6.0.1

13.3.2 Removed platforms
• macOS 10.11

• Windows 7

• Windows Server 2008 R2

13.3.3 Earlier detection of invalid configurations
Routing Service successfully loaded configurations that contained an invalid definition. Specifically,
it loaded a configuration in which a DomainRoute that contained one or more Sessions but no
Participants/Connections. Nevertheless, the service failed to start because the corresponding Do-
mainRoute object failed to instantiate. This problem has been resolved and the service will not
load an invalid DomainRoute configuration.

13.3.4 Added Support for Proxy of TopicQueries in Routes with Multiple Inputs and
Outputs

TopicQuery proxy mode is now supported in TopicRoutes that contain more than one input and/or
more than one output.

13.4 What’s Fixed in 6.0.1

13.4.1 QoS Topic Filters were not supported
Routing Service entities previously ignored QoS Topic Filters. This problem has been resolved.
The entities listed below will obtain the QoS within the selected profile having a matching topic
filter based on the actual name of the Topic they are associated with.

• Route’s DDS inputs and outputs

• AutoRoute’s DDS input and output

• Remote Administration Replier

• Monitoring DataWriters

For example, consider the following QoS profile, which uses topic filters:

<qos_library name="QosLib">
<qos_profile name="QosProfile"">

<datawriter_qos>...</datawriter_qos>
<datawriter_qos topic_filter="MyTopic">

...
</datawriter_qos>
<datareader_qos topic_filter="MyTopic">

...
</datareader_qos>
<datawriter_qos topic_filter="rti/service/admin/command_reply">

...
</datawriter_qos>
<datareader_qos topic_filter="rti/service/admin/command_request">

(continues on next page)

13.4. What’s Fixed in 6.0.1 166

RTI Routing Service User’s Manual, Version 6.0.1

(continued from previous page)
...

</datareader_qos>
<datawriter_qos topic_filter="rti/service/monitoring/periodic">

...
</datawriter_qos>

</qos_profile>
</qos_library>

And the following Routing Service configuration:

<routing_service name="MyRouter">
<administration>

<writer_qos base_name="QosLib::QosProfile" />
<reader_qos base_name="QosLib::QosProfile" />

</administration>
<monitoring>

<writer_qos base_name="QosLib::QosProfile" />
</monitoring>

....
<topic_route>

<input>
<topic_name>MyTopic>
<reader_qos base_name="QosLib::QosProfile" />

</input>
<output>

<topic_name>MyTopic>
<writer_qos base_name="QosLib::QosProfile" />

</output>
</topic_route>

<auto_topic_route>
<input>

<reader_qos base_name="QosLib::QosProfile" />
</input>
<output>

<writer_qos base_name="QosLib::QosProfile" />
</output>

</auto_topic_route >
...

</routing_service>

The corresponding DDS entities below will be created with the QoS that matches the topic filter
based on the topic name:

13.4. What’s Fixed in 6.0.1 167

RTI Routing Service User’s Manual, Version 6.0.1

DDS Entity QoS from
QosLib::QosPro-
file

Topic filter

TopicRoute’s input DataReader reader QoS MyTopic
TopicRoute’s output DataWriter writer QoS MyTopic
AutoTopicRoute’s input DataReader for
topic name=MyTopic

reader QoS MyTopic

AutoTopicRoute’s output DataWriter for
topic name=MyTopic

writer QoS MyTopic

AutoTopicRoute’s input DataReader for
topic name=Other

reader QoS NULL

AutoTopicRoute’s output DataWriter for
topic name=MyTopic

writer QoS NULL

Administration Replier’s DataReader reader QoS rti/service/admin/com-
mand_request

Administration Replier’s DataWriter writer QoS rti/service/admin/com-
mand_reply

Monitoring Periodic DataWriter writer QoS rti/service/monitor-
ing/periodic

Monitoring Config and Event DataWriter writer QoS NULL

[RTI Issue ID ROUTING-37]

13.4.2 Executable did not log build ID for DDS libraries
The executable version of Routing Service did not log the build ID of DDS libraries, no matter
which verbosity level was specified. This was a regression from the previous version where the build
ID was logged for the warning verbosity. This problem has been resolved.

[RTI Issue ID ROUTING-601]

13.4.3 Remote create operation failed with resource identifiers formatted as noted in
User’s Manual

The remote create operation failed when the resource identifier was formatted as stated in the
user’s manual API reference: <parent_resource_id>/collectionA

The operation failed with an unsupported resource error. Instead, the operation succeeded when
the resource identifier was provided as follows: <parent_resource_id>

This problem has been resolved. The remote create operation now accepts the resource identifier
formatted as indicated in the user’s manual remote API reference. Although syntactically incorrect,
it also continues to accept the previous format to preserve backwards compatibility.

[RTI Issue ID ROUTING-603]

13.4.4 Unbounded generation of file handles if monitoring enabled on QNX platforms
If monitoring was enabled, a new file handle was periodically generated and never released. Even-
tually this situation led to the following errors:

13.4. What’s Fixed in 6.0.1 168

RTI Routing Service User’s Manual, Version 6.0.1

DL Debug: : RTIOsapiInterfaceTracker_updateInterfacesUnsafe:!get interfaces failed
DL Error: : ROUTERProcess_getMemoryUsage:!get open /proc/self/as (QNX)
DL Error: : ROUTERProcess_getProcessInfo:!memory usage
DL Error: : ROUTERMonitorableApplication_sampleStatus:!get process info

This problem, which only affected QNX platforms, has been resolved.

[RTI Issue ID ROUTING-614]

13.4.5 Inconsistent state if remote operation performed on disabled DomainRoute
If a remote operation was performed on a disabled DomainRoute, Routing Service entered an
inconsistent state that may have caused a crash during shutdown or while processing other remote
operations. This problem has been resolved.

[RTI Issue ID ROUTING-616]

13.4.6 Changing Session period through Route’s API updated the period, but with a
delay

Calling the route API to change the period of the parent Session within Processor implementations
resulted in a period update delay that was at least equal to the current period. (This periodic
event can be enabled via the <periodic_action> tag in XML.)

The observed behavior was that the new period value did not occur until after one more periodic
event notifications occurred at the current period value. This problem has been resolved.

[RTI Issue ID ROUTING-620]

13.4.7 Added operations in Processor API to access DataReader/Writer of a DDS
input/output

The Processor API has been extended with operations to access the underlying DataReader and
DataWriter of a DDS input and output, respectively. Namely, the following two operations have
been added:

dds::sub::DataReader<Data> rti::routing::processor::Input::dds_data_reader();

dds::pub::DataWriter<Data> rti::routing::processor::Output::dds_data_writer();

You can use these new operations when the Input and Output hold an instance of a DDS Stream-
Reader and DDS StreamWriter, respectively (the case of <topic_route/auto_topic_route>, or
<dds_input> and <dds_output>). In this case, you can use these operations as follows:

using dds::core::xtypes::DynamicData;

dds::sub::DataReader<DynamicData> input_reader =
route.input<DynamicData>(0).dds_data_reader();

...
dds::pub::DataWriter<DynamicData> output_writer =

route.output<DynamicData>(0).dds_data_writer();

13.4. What’s Fixed in 6.0.1 169

RTI Routing Service User’s Manual, Version 6.0.1

[RTI Issue ID ROUTING-623]

13.4.8 Unexpected routes created after disabling and enabling AutoRoutes
Issuing two successive commands to disable and enable an AutoRoute caused the generation of
unexpected Routes, if there were already existing and matching streams. This problem has been
resolved.

[RTI Issue ID ROUTING-626]

13.4.9 Routing Service failed to detect configuration with duplicate names
When loading a configuration file, Routing Service did not detect that the configuration contained
more than one entity with the same name and within the same parent configuration. It allowed
this configuration to be loaded.

For example, the following is invalid because the <route> entities within the same session have the
same name:

<session>
<route name="Route">...</route>
<route name="Route">...</route>

</session>

This problem has been resolved. Now Routing Service will prevent such a configuration from being
loaded and will log a message indicating the reason.

[RTI Issue ID ROUTING-634]

13.4.10 Executable always ignored logging QoS
Logging settings specified in the DomainParticipantFactory QoS were always ignored when running
Routing Service with the shipped executable. This problem has been resolved. Now the logging
settings are applied and overwritten only when the -logFormat option is provided.

[RTI Issue ID ROUTING-641]

13.4.11 Out of memory error if Monitoring enabled on QNX platforms
On QNX platforms, you may have received the following output when enabling service monitoring:

ROUTERProcess_getMemoryUsage:!get Number of entries greater than the limit,
you should consider increasing such limit

This issue occurred because some memory was statically reserved to allocate the data structure
necessary to measure memory usage. As the application grew, however, the structure should have
also grown, but didn’t. This problem has been resolved. Now the structure is reserved dynamically
and can measure bigger applications.

[RTI Issue ID ROUTING-643]

13.4. What’s Fixed in 6.0.1 170

RTI Routing Service User’s Manual, Version 6.0.1

13.4.12 Segmentation fault when reading from custom processor if underlying Stream-
Reader didn’t return SampleInfo list

Reading data from an rti::routing::Processor::Input caused a segmentation fault if its under-
lying rti::routing::adapter::StreamReader returned a NULL sample info list. This problem
has been resolved.

[RTI Issue ID ROUTING-645]

13.4.13 Failure to remotely create entity resulted in XML object inserted in loaded
DOM

If a remote operation to create an entity failed due to an error instantiating the entity object,
the associated XML object remained loaded in the service configuration Document Object Model
(DOM). This could cause issues such as:

• An entity duplication error if a retry to create the entity was issued.

• Failures when remotely restarting Routing Service due to an attempt to instantiate the object
associated with the XML configuration object.

This problem has been resolved and the service DOM will remain unchanged in case of a creation
failure.

[RTI Issue ID ROUTING-646]

13.4.14 Undefined behavior if entity names contained characters “:” or “/”
Routing Service’s behavior was undefined if it loaded a configuration that defined elements with a
name attribute containing the characters / or :. This issue was caused by a conflict in the generation
resource identifiers, which uses / as a resource separator and : as a custom method separator.

This problem has been resolved. If the name of an Entity contains any of these characters (for
example, when specified in the name attribute of their corresponding element in XML), the name
will be enclosed in double quotation marks (").

For example:

...
<routing_service name="Service">

<domain_route name="DomainRoute/Wan"> ... </domain_route>
<domain_route name="DomainRoute::Lan"> ... </domain_route>

</routing_service >
...

will generate as Resource identifiers:

/routing_services/Service/"DomainRoute/Wan"
/routing_services/Service/"DomainRoute::Lan"

[RTI Issue ID ROUTING-652]

13.4. What’s Fixed in 6.0.1 171

RTI Routing Service User’s Manual, Version 6.0.1

13.4.15 XML variables outside of <routing_service> were not expanded
Routing Service failed to expand any XML variables defined in any element that was not part of
the <routing_service> tag, such as those in a <qos_profile>. This problem has been resolved.
All XML variables will be expanded, regardless of their location.

[RTI Issue ID ROUTING-653]

13.5 Previous releases

13.5.1 What’s New in 6.0.0

New platforms

Routing Service is now supported on the platforms in Table 13.3. For more information, see the
Connext DDS Core Libraries Platform Notes.

Table 13.3: New Platforms
Platform Operating System
Linux Ubuntu 18.04 LTS on x64

Wind River Linux 8 on ARMv7 (custom support)

Support for multiple connections in a domain route

Routing Service has been enhanced to support the creation of more than two connections within
a domain route. This includes the ability to specify more than two builtin DDS adapter Domain-
Participants.

The XML tags <connection_1>, <connection_2>, <participant_1> and <participant_2> have
been deprecated. Routing Service will still load legacy configurations, but support may be dropped
in future releases. Instead of these tags, new tags <connection> and <participant> have been
introduced. They are defined just like the legacy tags, with the addition of a mandatory ‘name’
attribute. This attribute is used by a route’s input and output to indicate the connection the inputs
and outputs are created from. For example, the snippet below defines a domain route with two
participants and a custom, adapter-based connection:

<domain_route name="MyDomainRoute">
<participant name="participant_0">

...
</participant>
<participant name="participant_1">

...
</participant>
<connection

name="customConnection"
plugin_name="MyAdapteRPlugin>
...

</connection>
...

<domain_route>

13.5. Previous releases 172

RTI Routing Service User’s Manual, Version 6.0.1

See Section 4.5.4.

Support for multiple inputs and outputs in routes or topic routes

Routing Service has been enhanced to support the creation of multiple inputs and outputs in a route.
This enhancement includes the ability to specify more than one builtin DDS adapter DataReader
(<input>, <dds_input>) and DataWriter (<output>, <dds_output>).

For example, the snippet below defines a topic route with a single input in domain 0 and two
outputs in domains 1 and 2 (assume the participants for each input and output have been previously
defined):

<topic_route name="Route">
<input participant="domain_0">

<topic_name>TopicA</topic_name>
<registered_type_name>

MyType
</registered_type_name>
...

</input>
<output participant="domain_1">

<topic_name>TopicB</topic_name>
<registered_type_name>

MyType
</registered_type_name>
...

</output>
<output participant="domain_2">

<topic_name>TopicA</topic_name>
<registered_type_name>

MyType
</registered_type_name>
...

</output>
</topic_route>

See Section 4.5.6.

Support for C++ Adapter, Transformation and Service APIs

Adapter, Transformation and Service APIs are now supported in C++.

See Section 7.

New pluggable processor API

One of the star features of Routing Service is a new pluggable component, the Processor, which
allows you to control the operation and data forwarding logic of Routes.

A Processor defines an interface with access to the Route and its inputs and outputs, allowing you
to read, manipulate, and write user data under events such as data arrival or periodic notification.

For example, the following snippet shows a simple example of data aggregation:

13.5. Previous releases 173

RTI Routing Service User’s Manual, Version 6.0.1

on_data_available(Route& route)
{

auto output = route.output<DynamicData>("info");
auto info = output.create_data();
for(const auto& status : route.input<DynamicData>("status_in").take()) {

auto periodic = route.input<DynamicData>("periodic_in")
.select(status.info().instance_handle()).take();

info.value<int>("id", status.data().get<int>("id"));
info.value<int>("config", status.data().get<string>("config"));
info.value<int>("latency", periodic[0].data().get<int>("latency"));
output.write(info);

}
}

See Section 7.

Redesigned remote administration architecture

Routing Service’s remote administration functionality has been redesigned to have a new, consistent,
more usable and scalable architecture. Among the changes in this evolution, it includes:

• A homogenous API based on REST that standardizes the mechanism to invoke remote oper-
ations on the service entities.

• A common DDS communication model based on Connext DDS Request-Reply, which is
service-independent and represents a common communication channel for all RTI services.

• Enhanced administration Topic definitions for increased scalability, with support for content-
filtering and instance management.

See Section 5.

Redesigned remote monitoring architecture

Routing Service’s remote monitoring functionality has been redesigned to have a new, consistent,
more usable and scalable architecture. Among the changes in this evolution, it includes:

• A common DDS communication model that defines only three Topics to provide all the
monitoring information from the service entities. This DDS model is service-independent and
a common communication channel for all RTI services.

• Enhanced monitoring Topic definitions to represent a more scalable, instance-based mapping
between the service entities and their associated monitoring entities.

See Section 6.

Support for advanced logging

Routing Service internal logging has improved to provide more detailed logging context. With
advanced logging, all the operation logs will be part of an activity context that contains information
about the entity and the operation. This facilitates the identification of potential issues in the
configuration or runtime behavior.

For example, the following log message:

13.5. Previous releases 174

RTI Routing Service User’s Manual, Version 6.0.1

[/routing_services/default|CREATE]

represents a context of a Routing Service create operation. Then any logs generated by operations
occurring in this context will be appended to the activity context. For example:

[/routing_services/default|CREATE] load URL group='../../resource/xml/RTI_ROUTING_
→˓SERVICE.xml'

Support for XML variables expansion from command-line and service API

XML configuration variables defined in the form

<element>$(MY_VAR)</element>

can be expanded, in addition to the existing runtime shell environment, from two new mechanisms:

• A new command-line option, using the notation -DMY_VAR=my_value

• A new ServiceProperty::user_environment member, which represents a map of variable
name-value pairs.

See Section 3.

Paused and disabled state is cleared after disabling an entity

In previous releases, Routing Service remembered the paused state of an entity that was disabled.
When that entity was re-enabled, it entered the paused or disabled state. This behavior has
changed, so that now the paused state is cleared and if the entity is re-enabled, it will not enter
the paused state.

This same behavior affected the child entities of the disabled entity. After re-enabling the entity,
Routing Service remembered its state and re-enabled the child entities. This behavior has changed,
so that after enabling an entity, each of its child entities is enabled based its own ‘enabled’ attribute.

Removed warning caused by multiple registrations of a type

Routing Service with Routes using the DDS adapter may have output the following message:

PRESParticipant_registerType:name 'MyTypeRegisteredName ' is not unique

This was caused by multiple registrations of the same type with the same registered name. This
behavior has changed and the warning has been removed.

13.5.2 What’s Fixed in 6.0.0

Remotely disabling TopicRoute/Route could fail while forwarding data

A remote command to disable a TopicRoute or Route may have resulted in an error if the Topi-
cRoute or Route was receiving data at a high rate. In this case, the TopicRoute or Route remained
enabled and kept forwarding data. This problem has been resolved.

[RTI Issue ID ROUTING-531]

13.5. Previous releases 175

RTI Routing Service User’s Manual, Version 6.0.1

Routing Service in debug mode did not link with debug version of Distributed Logger

The debug version of Routing Service linked with the release version of the RTI Distributed Logger
library, rather than the debug version. This may have lead to unexpected behavior, including
potential segmentation faults. This problem has been resolved.

[RTI Issue ID ROUTING-533]

Route stream matching not applied correctly in presence of certain partitions

When partitions in either the publication or subscription side were composed of patterns only, route
streams would not match correctly. This problem has been resolved.

[RTI Issue ID ROUTING-538]

Crash on shutdown if types provided through both discovery and XML

Routing Service could have randomly crashed during shutdown if it obtained types from both
discovery and XML configuration. This problem has been resolved.

[RTI Issue ID ROUTING-539]

Sample loan not returned to DDS input upon DDS_DataReader::get_key() failure

TopicRoutes did not return the sample loan to the DDS inputs if the StreamReader::read() opera-
tion failed due to DataReader::get_key() failures.

This situation could occur very rarely and only if the same StreamReader::read() call returned valid
samples in combination with samples discarded by a get_key() failure.

This problem could cause memory growth and errors upon service shutdown. For example, the
following logs were the output upon service shutdown:

[D0330|DELETE_CONTAINED]PRESPsService_destroyAllLocalEndpointsInGroupWithCursor:!delete␣
→˓local reader
[D0330|DELETE_CONTAINED]PRESPsService_destroyAllEntities:!destroyAllLocalEndpointsInGroupWithCursor
[D0330|DELETE_CONTAINED]PRESParticipant_destroyAllEntities:!delete service entities
[D0330|DELETE_CONTAINED]PRESParticipant_destroyAllEntities:!delete topic
[D0330|DELETE_CONTAINED]DDS_DomainParticipant_delete_contained_entities:!delete␣
→˓contained entities

This problem has been resolved.

[RTI Issue ID ROUTING-552]

Enabling monitoring through ServiceProperty::enable_monitoring only worked if <monitoring>
tag present

Enabling monitoring by setting ServiceProperty::enable_monitoring did not take effect unless the
<monitoring> tag was also part of the XML configuration. This problem has been resolved.

[RTI Issue ID ROUTING-564]

13.5. Previous releases 176

RTI Routing Service User’s Manual, Version 6.0.1

Logged message included inaccurate number of dropped samples

Routing Service logged a message for a StreamWriter::write failure that included an inaccurate
number of dropped samples. For example:

ROUTERRoutingProcessor_routeToMatchingOutputs: write error on output
at index 1. 1024 samples have been dropped

This problem has been resolved.

[RTI Issue ID ROUTING-572]

Deserialization errors may have occurred under some conditions

Routing Service generated deserialization errors if a publication type was compatible but different
than the TopicRoute’s input type, and the TopicRoute’s input was created after the discovery of
such publication type. This situation was unlikely to occur. This problem has been resolved.

[RTI Issue ID ROUTING-578]

TopicRoutes with TopicQuery proxy mode enabled forwarded live data only to first output

A TopicRoute with multiple outputs that enabled TopicQuery proxy mode forwarded live data only
to the first output. This problem has been resolved; live data is now forwarded to all outputs.

[RTI Issue ID ROUTING-579]

Routing Service Java API did not work with some TypeCodes

Types larger than 65,535 bytes and types that used extensible type features only available in
TypeObject weren’t properly serialized when using Routing Service’s Java API. This issue caused
participant creation to produce a BAD_TYPECODE exception for large types and could have
prevented communication between Java applications and applications using a different language
binding for types using extensibility features. This problem has been resolved.

[RTI Issue ID ROUTING-583]

13.5. Previous releases 177

Chapter 14

Copyrights

© 2019 Real-Time Innovations, Inc. All rights reserved. Printed in U.S.A. First printing. January
2019.

Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems.
Working as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations,
Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc. The software described in this document is furnished
under and subject to the RTI software license agreement. The software may be used or copied only
under the terms of the license agreement.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or
approved by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use
in the OpenSSL Toolkit (http://www.openssl.org/).

Technical Support Real-Time Innovations, Inc. 232 E. Java Drive Sunnyvale, CA 94089 Phone:
(408) 990-7444 Email: support@rti.com Website: https://support.rti.com/

© 2019 RTI

178

http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

	1 Introduction
	1.1 How To Read This Manual
	1.2 Paths Mentioned in Documentation
	1.3 Files Mentioned in Documentation

	2 Core Concepts
	2.1 Resource Model
	2.1.1 Directory
	2.1.2 Service
	Plugin Interaction
	Service States

	2.1.3 DomainRoute
	DataReader States

	2.1.4 Connection
	Plugin Interaction
	Connection States
	Type Registration

	2.1.5 Session
	Plugin Interaction
	Session States

	2.1.6 Route
	Plugin Interaction
	Route States

	2.1.7 AutoRoute
	AutoRoute States

	2.1.8 Input
	Plugin Interaction
	Input States

	2.1.9 Output
	Plugin Interaction
	Output States

	2.2 Builtin plugins
	2.2.1 DDS Adapter
	DDS AdapterPlugin
	DDS Connection
	DDS Session
	DDS StreamReader
	DDS StreamWriter

	2.2.2 Forwarding Processor

	3 Usage
	3.1 Command-Line Executable
	3.1.1 Starting Routing Service
	3.1.2 Stopping Routing Service
	3.1.3 Routing Service Command-Line Parameters

	3.2 Routing Service Library
	3.2.1 Example

	4 Configuration
	4.1 Configuring Routing Service
	4.2 Terms to Know
	4.3 How to Load the XML Configuration
	4.4 XML Syntax and Validation
	4.5 XML Tags for Configuring RTI Routing Service
	4.5.1 Routing Service Tag
	Example: Specifying a configuration in XML

	4.5.2 Administration
	4.5.3 Monitoring
	Monitoring Configuration Inheritance

	4.5.4 Domain Route
	Example: Mapping between Two DDS Domains
	Example: Mapping between a DDS Domain and raw Sockets

	4.5.5 Session
	4.5.6 Route
	4.5.7 Input/Output
	Creation Modes
	Specifying Types
	Data Transformation

	4.5.8 Auto Route
	4.5.9 Plugins

	4.6 Enabling Distributed Logger
	4.7 Support for Extensible Types
	4.7.1 Example: Samples Published by Two Writers of Type A and B, Respectively

	4.8 Support for RTI FlatData and Zero Copy Transfer Over Shared Memory
	4.8.1 Example: Configuration to enable both FlatData and zero-copy transfer over shared memory

	5 Remote Administration
	5.1 Overview
	5.1.1 Enabling Remote Administration
	5.1.2 Available Service Resources
	Example

	5.1.3 Resource Object Representations

	5.2 API Reference
	5.2.1 Remote API Overview
	5.2.2 Service
	5.2.3 DomainRoute
	5.2.4 Connection
	5.2.5 Session
	5.2.6 AutoRoute
	5.2.7 Route
	5.2.8 Input/Output

	5.3 Example: Configuration Reference

	6 Monitoring
	6.1 Overview
	6.1.1 Enabling Service Monitoring
	6.1.2 Monitoring Types

	6.2 Monitoring Metrics Reference
	6.2.1 Service
	6.2.2 DomainRoute
	6.2.3 Session
	6.2.4 AutoRoute
	6.2.5 Route
	6.2.6 Input/Output

	7 Software Development Kit
	8 Propagating Content Filters
	8.1 Enabling Filter Propagation
	8.2 Filter Propagation Behavior
	8.3 Filter Propagation Events
	8.4 Restrictions

	9 Topic Query Support
	9.1 Dispatch Mode
	9.2 Propagation Mode
	9.3 Restrictions

	10 Traversing Wide Area Networks
	10.1 TCP Configuration elements
	10.1.1 TCP Transport Initial Peers
	Example: Setting discovery peers for TCP wan/lan

	10.1.2 TCP Transport Property

	10.2 Support for External Hardware Load Balancers in TCP Transport Plugin

	11 Tutorials
	11.1 Starting Shapes Demo
	11.2 Example: Routing All Data from One Domain to Another
	11.3 Example: Changing Data to a Different Topic of Same Type
	11.4 Example: Changing Some Values in Data
	11.5 Example: Transforming the Data’s Type and Topic with an Assignment Transformation
	11.6 Example: Transforming the Data with a Custom Transformation
	11.7 Example: Using Remote Administration
	11.8 Example: Monitoring
	11.9 Example: Using the TCP Transport
	11.10 Example: Using a File Adapter
	11.11 Example: Using a Shapes Processor

	12 Common Infrastructure
	12.1 Application Resource Model
	12.1.1 Example: Simple Resource Model of a Connext DDS Application
	12.1.2 Resource Identifiers
	Escaped Identifiers
	Example: Resource Identifiers of a Generic Connext DDS Application
	Example: Resource Identifiers Generated from XML Entity Model

	12.2 Remote Administration Platform
	12.2.1 Remote Interface
	Standard Methods
	Custom Methods

	12.2.2 Communication
	Reply Sequence
	Example: Accessing from Connext DDS Application

	12.2.3 Common Operations
	Create Resource
	Get Resource
	Update Resource
	Set Resource State
	Delete Resource

	12.3 Monitoring Distribution Platform
	12.3.1 Distribution Topic Definition
	Example: Monitoring of Generic Application

	12.3.2 DDS Entities
	12.3.3 Monitoring Metrics Publication
	Configuration Distribution Topic
	Event Distribution Topic
	Periodic Distribution Topic

	12.3.4 Monitoring Metrics Reference
	Statistic Variable
	Host Metrics
	Process Metrics
	Base Entity Resource Metrics
	Network Performance Metrics

	12.4 Plugin Management
	12.4.1 Shared Library
	Configuration

	12.4.2 Service API

	13 Release Notes
	13.1 Supported Platforms
	13.2 Compatibility
	13.3 What’s New in 6.0.1
	13.3.1 New platforms
	13.3.2 Removed platforms
	13.3.3 Earlier detection of invalid configurations
	13.3.4 Added Support for Proxy of TopicQueries in Routes with Multiple Inputs and Outputs

	13.4 What’s Fixed in 6.0.1
	13.4.1 QoS Topic Filters were not supported
	13.4.2 Executable did not log build ID for DDS libraries
	13.4.3 Remote create operation failed with resource identifiers formatted as noted in User’s Manual
	13.4.4 Unbounded generation of file handles if monitoring enabled on QNX platforms
	13.4.5 Inconsistent state if remote operation performed on disabled DomainRoute
	13.4.6 Changing Session period through Route’s API updated the period, but with a delay
	13.4.7 Added operations in Processor API to access DataReader/Writer of a DDS input/output
	13.4.8 Unexpected routes created after disabling and enabling AutoRoutes
	13.4.9 Routing Service failed to detect configuration with duplicate names
	13.4.10 Executable always ignored logging QoS
	13.4.11 Out of memory error if Monitoring enabled on QNX platforms
	13.4.12 Segmentation fault when reading from custom processor if underlying StreamReader didn’t return SampleInfo list
	13.4.13 Failure to remotely create entity resulted in XML object inserted in loaded DOM
	13.4.14 Undefined behavior if entity names contained characters “:” or “/”
	13.4.15 XML variables outside of <routing_service> were not expanded

	13.5 Previous releases
	13.5.1 What’s New in 6.0.0
	New platforms
	Support for multiple connections in a domain route
	Support for multiple inputs and outputs in routes or topic routes
	Support for C++ Adapter, Transformation and Service APIs
	New pluggable processor API
	Redesigned remote administration architecture
	Redesigned remote monitoring architecture
	Support for advanced logging
	Support for XML variables expansion from command-line and service API
	Paused and disabled state is cleared after disabling an entity
	Removed warning caused by multiple registrations of a type

	13.5.2 What’s Fixed in 6.0.0
	Remotely disabling TopicRoute/Route could fail while forwarding data
	Routing Service in debug mode did not link with debug version of Distributed Logger
	Route stream matching not applied correctly in presence of certain partitions
	Crash on shutdown if types provided through both discovery and XML
	Sample loan not returned to DDS input upon DDS_DataReader::get_key() failure
	Enabling monitoring through ServiceProperty::enable_monitoring only worked if <monitoring> tag present
	Logged message included inaccurate number of dropped samples
	Deserialization errors may have occurred under some conditions
	TopicRoutes with TopicQuery proxy mode enabled forwarded live data only to first output
	Routing Service Java API did not work with some TypeCodes

	14 Copyrights

