
RTI Connext DDS
Core Libraries

Extensible Types Guide

Version 6.1.0

© 2021 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
April 2021.

Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Work-
ing as one,” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All
other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license agree-
ment.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Extensible Types 1
Chapter 2 Type Safety and System Evolution

2.1 Defining Extensible Types 5
2.1.1 @id Annotation 6
2.1.2 @hashid Annotation 7
2.1.3 @autoid Annotation 7

2.2 Verifying Type Consistency: Type Assignability 8
2.3 Type-Consistency Enforcement 11

2.3.1 Rules For Type-Consistency Enforcement 13
2.3.2 Prevent Type Widening 13
2.3.3 Type Assignability Properties 15

2.4 Verifying Sample Consistency: Sample Assignability 16
2.5 Notification of Inconsistencies: INCONSISTENT_TOPIC Status 18
2.6 Built-in Topics 18

Chapter 3 Type System Enhancements

3.1 Structure Inheritance 19
3.2 Optional Members 20

3.2.1 Defining Optional Members 20
3.2.2 Using Optional Members in an Application 21

3.3 Default Value 29
3.3.1 @default annotation 30
3.3.2 @default_literal annotation 32

3.4 Ranges 33
3.4.1 Restrictions 33

Chapter 4 Data Representation

4.1 Configuring the CDR 34

iii

iv

4.1.1 @allowed_data_representation annotation 34
4.2 Extended CDR (encoding version 1) 35
4.3 Extended CDR (encoding version 2) 36
4.4 Choosing the Right Data Representation 37

Chapter 5 Type Representation

5.1 TypeObject and TypeCode Type Representation 38
5.1.1 TypeObject Resource Limits 39

5.2 XML and XSD Type Representations 40
Chapter 6 TypeCode API Changes 41
Chapter 7 DynamicData API 42
Chapter 8 ContentFilteredTopics 43
Chapter 9 RTI Spy

9.1 Type Version Discrimination 45
Chapter 10 Compatibility with Previous Releases 46

Chapter 1 Extensible Types
This release of Connext DDS includes partial support for the OMG 'Extensible and Dynamic
Topic Types for DDS' specification, version 1.3 from the Object Management Group. This support
allows systems to define data types in a more flexible way, and to evolve data types over time
without giving up portability, interoperability, or the expressiveness of the DDS type system.

Specifically, these are supported:

l Type definitions are now checked as part of the Connext DDS discovery process to ensure
that DataReaders will not deserialize the data sent to them incorrectly.

l Type definitions need not match exactly between a DataWriter and its matching DataRead-
ers. For example, a DataWriter may publish a subclass while a DataReader subscribes to a
superclass, or a new version of a component may add a field to a preexisting data type.

l Data-type designers can annotate type definitions to indicate the degree of flexibility allowed
when the middleware enforces type consistency.

l Type members can be declared as optional, allowing applications to set or omit them in
every published sample.

l QoS policies DataRepresentationQosPolicy and TypeConsistencyEnforcementQosPolicy.

l The following builtin-annotations are supported: @id, @hashid, @autoid, @external, @ex-
tensibility, @appendable, @mutable, @final, @key, @optional.

l The following builtin-annotations are supported but not propagated as part of the typeobject:
@min, @max, @range, @default, @default_literal, @nested, @allowed_data_rep-
resentation.

l Standard syntax to apply annotations.

l The following fixed-width integer types introduced in Interface Definition Language (IDL)
4.2, shown here with their old type names:

1

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

Chapter 1 Extensible Types

2

IDL 4.2 Old Type Name

int16 short

int32 long

int64 long long

uint16 unsigned short

uint32 unsigned long

uint64 unsigned long long

Note: You can continue to use the old type names; however, it is preferable to use the new type
names because they make the value range explicit.

l Custom annotation definition in IDL. Custom annotations can be defined in IDL, although they are
ignored by the middleware (i.e., they will not be part of the typeobject).

l TypeObject v1.

l Extended Common Data Representation (CDR) encoding version 1 and 2.

l The above features are supported in the RTI core middleware in all programming languages except
Ada.

The following Extensible Types features are not supported:

l These types: BitMask, BitSet, Map.

l Fixed-width integer types int8 and uint8 are not fully supported, both are always mapped to octets
on the wire. However, some language bindings offer support for these types; following is the sup-
port by language:

l In Java, both uint8 and int8 map to a byte, which is signed.

l In .NET, both uint8 and int8 map to a byte, which is unsigned.

l In Modern C++, uint8 maps to uint8_t, and int8 maps to int8_t.

l In C and Traditional C++, uint8 maps to DDS_UInt8, and int8 maps to DDS_Int8.

l Union inheritance

l Custom annotation definition in IDL. Custom annotations can be defined in IDL, although they are
ignored by the middleware (i.e., they will not be part of the typeobject).

l TypeObject v2.

l Builtin TypeLookup service.

Chapter 1 Extensible Types

l The following builtin-annotations can be defined in IDL, although they will be ignored by the mid-
dleware (i.e., they will not be part of the typeobject): verbatim, must_understand, bit_bound, non_
serialized, oneway, position, try_construct.

l XML data representation (XML type representation is supported).

l Dynamic language binding compliant with the Extensible Types specification: DynamicType and
DynamicData (see DynamicData API (Chapter 7 on page 42)).

l The type member in PublicationBuiltinTopicData and SubscriptionBuiltinTopicData.

l Association of a topic to multiple types within a single DomainParticipant

To see a demonstration of Extensible Types, run RTI Shapes Demo, which can publish and subscribe to
two different data types: the "Shape" type or the "Shape Extended" type. If you don't have Shapes Demo
installed already, you can download it from https://www.rti.com/free-trial/shapes-demo. If you are not
already familiar with how to start Shapes Demo, please see the Shapes Demo User's Manual.

Besides RTI Shapes Demo, several other RTI components include partial support for Extensible Types.

3

https://www.rti.com/free-trial/shapes-demo

Chapter 2 Type Safety and System
Evolution

In some cases, it is desirable for types to evolve without breaking interoperability with deployed
components already using those types. For example:

l A new set of applications to be integrated into an existing system may want to introduce addi-
tional fields into a structure, or create extended types using inheritance. These new fields can
be safely ignored by already deployed applications, but applications that do understand the
new fields can benefit from their presence.

l A new set of applications to be integrated into an existing system may want to increase the
maximum size of some sequence or string in a Type. Existing applications can receive data
samples from these new applications as long as the actual number of elements (or length of
the strings) in the received data sample does not exceed what the receiving applications
expects. If a received data sample exceeds the limits expected by the receiving application,
then the sample can be safely ignored (filtered out) by the receiver.

To support use cases such as the above, the type system introduces the concept of appendable
(extensible) and mutable types. A type may be final, appendable (extensible), or mutable:

l Final: The type’s range of possible data values is strictly defined. In particular, it is not pos-
sible to add elements to members of a collection or aggregated types while maintaining type
assignability.

l Appendable (Extensible): Two types, where one contains all of the elements/members of
the other plus additional elements/members appended to the end, may remain assignable.

l Mutable: Two types may differ from one another with the addition, removal, and/or trans-
position of elements/members while remaining assignable.

For example, suppose you have:

4

2.1 Defining Extensible Types

5

struct A {
@id(10) int32 a;
@id(20) int32 b;
@id(30) int32 c;

}

and
struct B {

@id(20) int32 b;
@id(10) int32 a;
@id(40) int32 x;

}

In this case, if a DataWriter writes [1, 2, 3], the DataReader will receive [2, 1, 0] (because 0 is the default
value of x, which doesn't exist in A's sample).

The type being written and the type(s) being read may differ—maybe because the writing and reading
applications have different needs, or maybe because the system and its data design have evolved across ver-
sions. Whatever the reason, the databus must detect the differences and mediate them appropriately. This
process has several steps:

1. Define what degree of difference is acceptable for a given type.

2. Express your intention for compatibility at run time.

3. Verify that the data can be safely converted.

At run time, the databus will compare the types it finds with the contracts you specified.

2.1 Defining Extensible Types

A type’s kind of extensibility is applied with the Extensibility annotations seen in Table 2.1 Extensibility
Annotations. If you do not specify any particular extensibility, the default is appendable.

IDL

@final
struct MyFinalType {

int32 x;
};

@appendable
struct MyExtensibleType {

int32 x;
};

@mutable
struct MyMutableType {

int32 x;
};

Table 2.1 Extensibility Annotations

2.1.1 @id Annotation

XML

<struct name="MyFinalType" extensibility="final">
<member name="x" type="long"/>

</struct>

<struct name="MyExtensibleType" extensibility="appendable">
<member name="x" type="long"/>

</struct>

<struct name="MyMutableType" extensibility="mutable">
<member name="x" type="long"/>

</struct>

XSD

<xsd:complexType name="MyFinalType">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
<!-- @struct true -->
<!-- @extensibility final -->

<xsd:complexType name="MyExtensibleType">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
<!-- @struct true -->
<!-- @extensibility appendable -->

<xsd:complexType name="MyMutableType">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
<!-- @struct true -->
<!-- @extensibility mutable -->

Table 2.1 Extensibility Annotations

Members IDs can be set using the optional @id, @hashid, and @autoid annotations.

2.1.1 @id Annotation

The @id annotation allows assigning a 32-bit integer identifier to an element, with the underlying assump-
tion that an identifier should be unique inside its scope of application.

For example:

IDL

struct MyType {
@id(10) int32 x;
@id(20) int32 y;

};

XML

<struct name= "MyType">
<member name="x" id="10" type="int32"/>
<member name="y" id="20" type="int32"/>

</struct>

XSD

<xsd:complexType name= "MyType">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @id 10 -->
<xsd:element name="y" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @id 20 -->

</xsd:sequence>
</xsd:complexType>

6

2.1.2 @hashid Annotation

7

When not specified, the ID of a member is one plus the ID of the previous one. The first member has ID 0
by default.
struct MyType {

int32 a;
int32 b;
@id(100) int32 c;
int32 d;

};

The IDs of 'a', 'b', 'c' and 'd' are 0, 1, 100 and 101.

Member IDs must have a value in the interval [0, 268435455]. The wire representation of mutable or
optional members with IDs in the range [0,16128] is more efficient than the wire representation of member
IDs in the range [16129, 268435455]. Consequently, the use of IDs in the range [0,16128] is recom-
mended (see Data Representation (Chapter 4 on page 34) for additional details).

2.1.2 @hashid Annotation

The @hashid annotation provides the value to hash to generate the member ID. If the annotation is used
without any parameter or with the empty string as a value then the Member ID will be the hash of the mem-
ber name.

IDL

struct HashIdStruct {
@hashid("hash_text") int32 data;

int32 data2;
};

XML

<struct name= "HashIdStruct">
<member name="data" hashid="hash_text" type="int32"/>
<member name="data2" type="int32"/>

</struct>

XSD

<xsd:complexType name= "HashIdStruct">
<xsd:sequence>

<xsd:element name="data" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @hashid hash_text-->
<xsd:element name="data2" minOccurs="1" maxOccurs="1" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

2.1.3 @autoid Annotation

The @autoid annotation can be applied to modules, structs, or valuetypes and allows you indicate how the
identifiers are going to be set for its members.

The values allowed are:

l @autoid(sequential): The next identifier should be computed by incrementing the previous one

l @autoid(hash) or @autoid: Indicates that the identifiers should be computed with a hashing
algorithm based on the name of the member.

2.2 Verifying Type Consistency: Type Assignability

If no annotation is specified, the values will be sequential. The @autoid notation is not supported in XSD
when applied to modules.

IDL

@autoid
struct AutoIdStruct{

int32 data;
int32 data2;

};

XML

<struct name= "AutoIdStruct" autoid="hash">
<member name="data" type="long"/>
<member name="data2" type="long"/>

</struct>

XSD

<xsd:complexType name= "AutoIdStruct">
<xsd:sequence>

<xsd:element name="data" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @hashid -->
<xsd:element name="data2" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @hashid -->

</xsd:sequence>
</xsd:complexType>
<!-- @struct true -->

<!-- @autoid hash-->

2.2 Verifying Type Consistency: Type Assignability

Connext DDS determines if a DataWriter and a DataReader can communicate by comparing the structure
of their topic types.

In Connext DDS releases before 5.0.0, the topic types were represented and propagated on the wire using
TypeCodes. The Extensible Types specification introduces TypeObjects as the wire representation for a
type.

To maintain backward compatibility, Connext DDS can be configured to propagate both TypeCodes and
TypeObjects. However, type comparison is only supported with TypeObjects.

Depending on the value for extensibility annotation used when the type is defined, Connext DDS will use
a different set of rules to determine if matching shall occur.

If the type extensibility is final, the types will be assignable if they don't add or remove any elements. If
they are declared as extensible, one type can have more fields at the end as long as they are not keys.

If the type extensibility is mutable, a type can add, remove or shuffle members in at any position, as long
as:

l The type does not add or remove key members

l Members that have the same name also have the same ID, and members that have the same ID also
have the same name. (It is possible to change this behavior, see 2.3 Type-Consistency Enforcement
on page 11.)

For example, in Table 2.2 Mutable Types Example 1 the middleware can assign MyMutableType1 to or
fromMyMutableType2, but not to or fromMyMutableType3.

8

2.2 Verifying Type Consistency: Type Assignability

9

@mutable struct MyMutableType1
{

int32 x;
int32 y;

}

@mutable struct MyMutableType2
{

@id(1) int32 y;
@id(2) int32 z;
@id(0) int32 x;

}

@mutable struct MyMutableType3 {
int32 y;
@key int32 z;
int32 x;

}

Note: If you do not explicitly declare mem-
ber IDs, they are assigned automatically
starting with 0.

MyMutableType1 and MyMutableType2
can be assigned to each other.

MyMutableType3 has two issues:

The member IDs x and y do not match those of MyMut-
ableType1. For example, the member ID of x is 0 in
MyMutableType1 but 2 in MyMutableType3.

MyMutableType3 has an extra keymember (z).

Table 2.2 Mutable Types Example 1

The type of a member in a mutable type can also change if the new type is assignable. For example, in
Table 2.3 Mutable Types Example 2, MyMutableType4 is assignable to or fromMyMutableType5 but not
to or fromMyMutableType6.

@mutable
struct NestedMutableType1 {

@id(10) int32 a;
}

struct NestedExtensibleType1 {
string text;

};

@mutable
struct MyMutableType4 {

NestedMutableType1 m1;
NestedExtensibleType1 m2;

}

@mutable
struct
NestedMutableType2 {

@id(20) int16 b;
@id(10) int32 a;

};

struct
NestedExtensibleType2 {

string text;
string title;

};

@mutable
struct MyMutableType5 {

NestedMutableType2 m1;
NestedExtensibleType2

m2;
}

@mutable
struct NestedMutableType3 {

@id(20) int16 b;
@id(10) int16 a;

};

struct NestedExtensibleType3 {
string title;
string text;

};

@mutable
struct MyMutableType6 {

NestedMutableType3 m1;
NestedExtensibleType3 m2;

}

Table 2.3 Mutable Types Example 2

MyMutableType6 and MyMutableType4 are not assignable because the types of m1 and m2 are not
assignable. NestedExtensibleType3 is just extensible but adds a new member at the beginning. Nes-
tedMutableType3 changes the type of ‘a’ but the new type (int16) is not assignable.

The member types in an Extensible or Final type can also change as long as the member types are both
mutable and assignable. If the new member types are extensible or final, they need to be structurally
identical.

If you use CDR encoding version 2 (XCDR2) (see 4.3 Extended CDR (encoding version 2) on page 36),
appendable types that are nested into another type can add members at the end of their definition. In the fol-
lowing example, ObservedPosition1 and ObservedPosition2 will not be assignable when using XCDR,
but they will be assignable if the encoded version is XCDR2.

2.2 Verifying Type Consistency: Type Assignability

Table 2.4 Type Assignability Example

@appendable
struct Coordinates1 {

float x;
float y;

};

@appendable
struct ObservedPosition1 {

Coordinates1 position;
int64 timestamp;

};

@appendable
struct Coordinates2 {

float x;
float y;
float z; // Extra field

};

@appendable
struct ObservedPosition2 {

Coordinates2 position;
int64 timestamp;

};

In the case of union types, it has to be possible, given any possible discriminator value in the DataWriter's
type (T2), to identify the appropriate member in the DataReader's type (T1) and to transform the T2 mem-
ber into the T1 member.

A mutable type that declares a member as optional (see 3.2 Optional Members on page 20) is compatible
with a different mutable type that declares the same member as non-optional (the default). This rule does
not apply to optional members in final and extensible types.

The following rules apply to other types:

l Primitive types are always final: primitive members cannot change their type.

l Sequences and strings are always mutable: their bounds can change as long as the maximum length
in the DataReader type are greater or equal to that of the DataWriter (it is possible to change this
behavior, see 2.3 Type-Consistency Enforcement on the next page). A sequence element type can
change only if it’s mutable and the new type is assignable.

l Arrays are always final: their bounds cannot change and their element type can only change if it is
mutable and the new type assignable.

l Enumerations can be final (they cannot change), extensible (new versions can add constants at the
end), or mutable (new versions can add, rearrange or remove constants in any position).

For more information on the rules that determine the assignability of two types, refer to the OMG 'Extens-
ible and Dynamic Topic Types for DDS' specification, version 1.3.

By default, the TypeObjects are compared to determine if they are assignable in order to match a
DataReader and a DataWriter of the same topic. You can control this behavior in the DataReader’s
TypeConsistencyEnforcementQosPolicy (see 2.3 Type-Consistency Enforcement on the next page).

The DataReader's and DataWriter's TypeObjects need to be available in order to be compared; otherwise
their assignability will not be enforced. Depending on the complexity of your types (how many fields, how
many different nested types, etc.), you may need to change the default resource limits that control the
internal storage and propagation of the TypeObject (see 5.1.1 TypeObject Resource Limits on page 39).

10

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

2.3 Type-Consistency Enforcement

11

If the logging verbosity is set to NDDS_CONFIG_LOG_VERBOSITY_WARNING or higher, Connext
DDS will print a message when a type is discovered that is not assignable, along with the reason why the
type is not assignable.

2.3 Type-Consistency Enforcement

The DataReader's TypeConsistencyEnforcementQosPolicy defines the rules that determine whether the
type used to publish a given topic is consistent with that used to subscribe to it.

The QosPolicy structure includes the members in the following table.

Type Field
Name Description

DDS_TypeCon-
sistencyKind

kind

Can be any of the following values:

l AUTO_TYPE_COERCION (default)

l ALLOW_TYPE_COERCION

l DISALLOW_TYPE_COERCION

See below for details.

DDS_Boolean
ignore_se-
quence_
bounds

Controls whether sequence bounds are taken into consideration for type assignability.

If false, a sequence with a largermaximum length may not be assigned to a sequence with a smallermax-
imum length.

If true, sequences and strings in a DataReader type can have a maximum length smaller than that of the
DataWriter type. When the length of the sequence in a particular sample is larger than the maximum length,
that sample is discarded.

Default: true

DDS_Boolean
ignore_
string_
bounds

Controls whether string bounds are taken into consideration for type assignability. If false, then a string with a
largermaximum length may not be assigned to a string with a smallermaximum length.

Default: true

DDS_Boolean
ignore_
member_
names

Controls whethermember names are taken into consideration for type assignability.

If false, members with the same ID and different names are not assignable to each other.

If true, members of a type can change their name while keeping theirmember ID. For example, MyType and
MyTypeSpanish are only assignable if ignore_member_names is true:

struct MyType {
@id(10) int32 x;
@id(20) int32 angle;

};
struct MyTypeSpanish {

@id(10) int32 x;
@id(20) int32 angulo;

};

Default: false

Table 2.5 DDS_TypeConsistencyEnforcementQosPolicy

2.3 Type-Consistency Enforcement

Type Field
Name Description

DDS_Boolean
prevent_
type_
widening

Controls whether type widening is allowed. A type T2 widens a type T1 when T2 contains required members
that are not present in T1. If a DataReader of T2 sets prevent_type_widening to true, then the DataReader
will not be matched with a DataWriter of T1 because T1 is not assignable to T2.

Default: false

DDS_Boolean
force_
type_val-
idation

Controls whether type information must be available in order to complete matching between a DataWriter
and thisDataReader.

If false, matching may occur as long as the type namesmatch. Note that if the types have the same name but
are not assignable,DataReadersmay fail to deserialize incoming data samples.

Default: false

DDS_Boolean

ignore_
enum_lit-
eral_
names

Controls whether enumeration constant names are taken into consideration for type assignability. If the op-
tion is set to true, then enumeration constants may change their names, but not their values, and still maintain
assignability. If the option is set to false, then in order for enumerations to be assignable, any constant that
has the same value in both enumerations must also have the same name. For example, enumColor {RED=
0} and enumColor {ROJO = 0} are assignable if and only if ignore_enum_literal_names is true.

Default: false

Table 2.5 DDS_TypeConsistencyEnforcementQosPolicy

This QoSPolicy defines a type consistency kind, which allows applications to choose to either allow or dis-
allow data type matching:

l AUTO_TYPE_COERCION (default): For a regular DataReader, this default value is translated to
ALLOW_TYPE_COERCION. For a Zero Copy DataReader, this default value is translated to
DISALLOW_TYPE_COERCION. (See the "Zero Copy Transfer Over Shared Memory" section
in the RTI Connext DDS Core Libraries User's Manual for information on why a Zero Copy
DataReader requires the DISALLOW_TYPE_COERCION option.)

l DISALLOW_TYPE_COERCION: The DataWriter and DataReader must support the same data
type in order for them to communicate. (This is the degree of enforcement required by the OMG
DDS Specification prior to the OMG ‘Extensible and Dynamic Topic Types for DDS’
Specification.)

l ALLOW_TYPE_COERCION: The DataWriter and DataReader need not support the same data
type in order for them to communicate as long as the DataReader’s type is assignable from the
DataWriter’s type. The concept of assignability is explained in 2.2 Verifying Type Consistency:
Type Assignability on page 8.

This policy applies only to DataReaders; it does not have request-offer semantics. The value of the policy
cannot be changed after the DataReader has been enabled.

The default enforcement kind is AUTO_TYPE_COERCION. This default kind translates to ALLOW_
TYPE_COERCION, except in the following cases:

12

http://www.omg.org/spec/DDS-XTypes/
http://www.omg.org/spec/DDS-XTypes/

2.3.1 Rules For Type-Consistency Enforcement

13

l When a Zero Copy DataReader is used, the kind is translated to DISALLOW_TYPE_
COERCION.

l When the middleware is introspecting the built-in topic data declaration of a remote DataReader in
order to determine whether it can match with a local DataWriter, if it observes that no TypeCon-
sistencyEnforcementQosPolicy value is provided (as would be the case when communicating with a
Service implementation not in conformance with this specification), it assumes a kind of
DISALLOW_TYPE_COERCION.

2.3.1 Rules For Type-Consistency Enforcement

The type-consistency enforcement rules consist of two steps applied on the DataWriter and DataReader
side:

l Step 1. If both the DataWriter and DataReader specify a TypeObject, it is considered first. If the
DataReader allows type coercion, then its type must be assignable from the DataWriter’s type, tak-
ing into account the values of prevent_type_widening, ignore_sequence_bounds, ignore_string_
bounds, ignore_member_names, and ignore_enum_literal_names. If the DataReader does not
allow type coercion, then its type must be equivalent to the type of the DataWriter.

l Step 2. If either the DataWriter or the DataReader does not provide a TypeObject definition, then
the registered type names are examined. The DataReader’s and DataWriter’s registered type names
must match exactly, as was true in Connext DDS releases prior to 5.0. This step will fail if force_
type_validation is true, regardless of the type names.

If either Step 1 or Step 2 fails, the Topics associated with the DataReader and DataWriter are considered
to be inconsistent (see 2.5 Notification of Inconsistencies: INCONSISTENT_TOPIC Status on page 18).

2.3.2 Prevent Type Widening

The prevent_type_widening field determines whether type widening is allowed. In Figure 2.1: prevent_
type_widening = false on the next page, VehicleData_v2 has three members and VehicleData_v1 two
members. With type widening allowed, the narrower car (VehicleData_v1, with two members) can write
to the wider car (VehicleData_v2), but notice that the DataReader assumes a value that might be mis-
leading (in this case, a default speed of zero).

2.3.2 Prevent Type Widening

Figure 2.1: prevent_type_widening = false

If widening is not allowed (Figure 2.2: prevent_type_widening = true below), VehicleData_v1 and
VehicleData_v2 do not communicate with each other.
Figure 2.2: prevent_type_widening = true

14

2.3.3 Type Assignability Properties

15

2.3.3 Type Assignability Properties

The properties in Table 2.6 Type Assignability Properties relax some of the rules in the standard type-
assignability algorithm. These properties can be set in the QoS of the DataReader, DataWriter, and
DomainParticipant (in this case all DataReaders and DataWriters created by that DomainParticipant
inherit the property). By default they are disabled.

Property Name Description

dds.sample_assignability.accept_un-
known_union_discriminator

When set to 1, samples containing an unknown union discriminator can be successfully deserialized to
the default discriminator value. For example, given the following two types:

Publisher Type:
@mutable
union MyUnion switch(int32) {

case 0:
int32 m1;

case 1:
int16 m2;

case 2:
double m3;

};

Subscriber Type:
@mutable
union MyUnion switch(int32) {

case 0:
int32 m1;

case 1:
int16 m2;

};

By default, if the DataWriter sends a union with the discriminator set to 2, the DataReader cannot
deserialize the sample. However if this property is set to 1, the Subscribing application will receive a
sample with the discriminator set to 0 and memberm1 set to the default value for an int32 (0). The de-
fault discriminator value is defined as the default element if one is specified, otherwise the lowest value
associated with any discriminator value. The member identified by the default discriminator is also ini-
tialized to its default value.

You can set this property as part of the Property QoS for either the DomainParticipant or the
DataReader. If it is set in both the DomainParticipant and DataReader, the value in the DataReader's
QoS will be applied.

This functionality is supported both in generated code as well as when using the DynamicData API.

Table 2.6 Type Assignability Properties

2.4 Verifying Sample Consistency: Sample Assignability

Property Name Description

dds.sample_assignability.accept_un-
known_enum_value

When set to 1 samples containing an unknown enumerator to be successfully deserialized to the
default enumeration value. For example, given the following two types:

Publisher Type:
enum MyEnum {

ONE = 1,
TWO = 2,
THREE = 3

};
struct MyType {

MyEnum m1;
};

Subscriber Type:
enum MyEnum {

ONE = 1,
TWO = 2

};
struct MyType {

MyEnum m1;
};

By default, if the DataWriter sendsm1 = THREE, the DataReader cannot deserialize the sample.
However if this property is set to 1 then the Subscribing application will receive a sample with m1 = ONE.
The default enumeration value is defined as the first declared member of the enumeration.

You can set this property as part of the Property QoS for either the DomainParticipant or the
DataReader. If it is set in both the DomainParticipant and DataReader, the value in the DataReader's
QoS will be applied.

This functionality is supported both in generated code as well as when using the DynamicData API.

dds.type_consistency.ignore_member_
names

This property has been replaced with ignore_member_names and ignore_enum_literal_names in
the TypeConsistencyEnforcementQosPolicy (see 2.3 Type-ConsistencyEnforcement on page 11),
but is still supported for compatibility with previous releases. If this property is set, its value supersedes
the values in the QosPolicy.

dds.type_consistency.ignore_se-
quence_bounds

This property has been replaced with ignore_sequence_bounds and ignore_string_bounds in the
TypeConsistencyEnforcementQosPolicy (see 2.3 Type-ConsistencyEnforcement on page 11), but is
still supported for compatibility with previous releases. If this property is set, its value supersedes the val-
ues in the QosPolicy.

Table 2.6 Type Assignability Properties

2.4 Verifying Sample Consistency: Sample Assignability

As described in section 2.2 Verifying Type Consistency: Type Assignability on page 8, Connext DDS
determines if a DataWriter and a DataReader can communicate by comparing the structure of their topic
types. When the type published by a DataWriter is assignable to the type subscribed by a DataReader, the
two entities can communicate.

Even if two types are considered assignable, however, some samples may not be assignable. In these
cases, the DataReader loses the sample. For example, consider a DataWriter publishing Position_v1, and
a DataReader subscribing to Position_v2:
@mutable
struct Position_v1 {

@range(min=100, max=200) long x;

16

2.4 Verifying Sample Consistency: Sample Assignability

17

@range(min=100, max=200) long y;
};

@mutable
struct Position_v2 {

@range(min=100, max=150) long x;
@range(min=100, max=150) long y;

};

Position_v2 is considered assignable from Position_v1 as both types are structurally the same; however,
not all the samples published by the DataWriter will be received by the DataReader. For instance, the
DataReader will lose the sample {x=170,y=100} and will not provide it to the application because x is out-
side the valid range [100,150].

When a DataReader loses a sample, Connext DDS logs a warning and updates the SAMPLE_LOST
Status with the reason DDS_LOST_BY_DESERIALIZATION_FAILURE.

Another example in which a DataReader may lose samples coming from a DataWriter is when the
DataWriter sends a sequence or string with more elements than the DataReader can accept. For example,
consider the following types, a DataWriter publishing Poligon_v1 and a DataReader subscribing to Poli-
gon_v2:
@mutable
struct Poligon_v1 {

string<10> name;
sequence<Point, 4> vertex;

};

@mutable
struct Poligon_v2 {

string<5> name;
sequence<Point, 2> vertex;

};

Out of the box, the type Poligon_v1 is assignable to Poligon_v2. Even though the maximum sequence
length in Poligon_v2 is smaller than the maximum length in Poligon_v1, ignore_sequence_bounds and
ignore_string_bounds are set to TRUE by default on the DataReader TypeCon-
sistencyEnforcementQosPolicy (see 2.3 Type-Consistency Enforcement on page 11).

With ignore_sequence_bounds and ignore_string_bounds set to TRUE, the two types are assignable;
however, the DataReader will lose, with the reason DDS_LOST_BY_DESERIALIZATION_
FAILURE, samples published with an actual sequence or string length greater than the maximum lengths
in Poligon_v2.

If ignore_sequence_bounds and ignore_string_bounds are set to FALSE, the two types will not be
assignable.

Note that DataReaders for FlatData types do not deserialize the data and therefore do not drop unas-
signable samples. (See the “Sending Large Data” chapter in the RTI Connext DDS Core Libraries User's
Manual.)

2.5 Notification of Inconsistencies: INCONSISTENT_TOPIC Status

For more information on the rules that determine the assignability of a sample, refer to the column “Object
construction” in the assignability tables of the ‘Extensible and Dynamic Topic Types for DDS’ (DDS-
Xtypes) specification.

2.5 Notification of Inconsistencies: INCONSISTENT_TOPIC Status

Every time a DataReader and DataWriter do not match because the type-consistency enforcement check
fails, the INCONSISTENT_TOPIC status is increased.

Notice that the condition under which the middleware triggers an INCONSISTENT_TOPIC status update
has changed (starting in release 5.0.0) with respect to previous Connext DDS releases where the change of
status occurred when a remote Topic inconsistent with the locally created Topic was discovered.

2.6 Built-in Topics

The type consistency value used by a DataReader can be accessed using the type_consistency field in the
DDS_SubscriptionBuiltinTopicData (see Table 2.7 New Field in Subscription Builtin Topic Data).

Type New
Field Description

DDS_TypeCon-
sistencyEnforcementQosPolicy

type_con-
sistency

Indicates the type_consistency requirements of the remote DataReader (see 2.3 Type-
ConsistencyEnforcement on page 11).

Table 2.7 New Field in Subscription Builtin Topic Data

You can retrieve this information by subscribing to the built-in topics and using the DataReader’s get_
matched_publication_data() operations.

18

http://www.omg.org/spec/DDS-XTypes/

Chapter 3 Type System Enhancements
3.1 Structure Inheritance

A structure can define a base type as seen in Table 3.1 Base Type Definition in a Structure. Note
that when the types are extensible, MyBaseType is assignable fromMyDerivedType, and MyDe-
rivedType is assignable fromMyBaseType.

IDL

struct MyBaseType {
int32 x;

};

struct MyDerivedType : MyBaseType {
int32 y;

};

XML

<struct name="MyBaseType">
<member name="x" type="long"/>

</struct>

<struct name=" MyDerivedType" baseType="MyBaseType">
<member name="y" type="long"/>

</struct>

XSD

<xsd:complexType name="MyBaseType">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
<!-- @struct true -->
<xsd:complexType name="MyDerivedType">
<xsd:complexContent>

<xsd:extension base="tns:MyBaseType">
<xsd:sequence>

<xsd:element name="y" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!-- @struct true -->

Table 3.1 Base Type Definition in a Structure

In Connext DDS 5.0 and higher, value types are equivalent to structures. You can still use the
valuetype keyword, but using struct is recommended.

19

3.2 Optional Members

20

For example:
struct MyType {

int32 x;
};
valuetype MyType {

public int32 x;
};

The above two types are considered equivalent. Calling the method equal() in their TypeCodes will return
true. Calling the method print_IDL() in the valuetype’s TypeCode will print the value type as a struct.

3.2 Optional Members

In a structure type, an optionalmember is a member that an application can decide to send or not as part of
every published sample.

A subscribing application can determine if the publishing application sent an optional member or not. Note
that this is different from getting a default value for a non-optional member that did not exist in the pub-
lished type (see example in Type Safety and System Evolution (Chapter 2 on page 4)), optional members
can be explicitly unset.

Using optional members in your types can be useful if you want to reduce bandwidth usage—Connext
DDS will not send unset optional members on the wire. They are especially useful for designing large
sparse types where only a small subset of the data is updated on every write.

This section explains how to define optional members in your types in IDL, XML and XSD and how to
use them in applications written in C, C++, Java and in applications that use the DynamicData API. It also
describes how optional members affect SQL content filters.

3.2.1 Defining Optional Members

The@optional annotation allows you to declare a struct member as optional (see Table 3.2 Declaring
Optional Members). If you do not apply this annotation, members are considered non-optional.

In XSD, to declare a member optional, set theminOccurs attribute to “0” instead of “1”.

Key members cannot be optional.

IDL

struct MyType {
@optional int32 optional_member;
int32 non_optional_member;

};

XML

<struct name="MyType">
<member name="optional_member" optional="true" type="long"/>
<member name="non_optional_member" type="long"/>

</struct>

Table 3.2 Declaring Optional Members

3.2.2 Using Optional Members in an Application

XSD

<xsd:complexType name="MyType">
<xsd:sequence>

<xsd:element name="optional_member" minOccurs="0"
maxOccurs="1" type="xsd:int"/>

<xsd:element name="non_optional_member" minOccurs="1"
maxOccurs="1" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>
<!-- @struct true -->

Table 3.2 Declaring Optional Members

3.2.2 Using Optional Members in an Application

This section describes how to use optional members in code generated for C/C++ and Java and with
DynamicData API and SQL filters.

3.2.2.1 Using Optional Members in C and the Traditional C++ API

An optional member of type T in a DDS type maps to a pointer-to-T member in a C and C++ struct. Both
optional and non-optional strings map to char *.

For example, consider the following IDL type:
struct Foo {

string text;
};

struct MyType {
@optional int32 optional_member1;
@optional Foo optional_member2;
int32 non_optional_member;

};

This type maps to this C or C++ structure:
typedef struct Foo {

DDS_Char *text;
} Foo ;

typedef struct MyType {
DDS_Long *optional_member1;
Foo *optional_member2;
DDS_Long non_optional_member;

} MyType;

An optional member is set when it points to a valid value and is unset when it is NULL. By default, when
you create a data sample all optional members are NULL. The TypeSupport API includes the following
operations that allow changing that behavior:

C

MyType *MyTypeTypeSupport_create_data_w_params(
const struct DDS_TypeAllocationParams_t *alloc_params)

DDS_ReturnCode_t MyTypeTypeSupport_delete_data_w_params(
struct Foo *a_data,
const struct DDS_TypeDeallocationParams_t *dealloc_params);

21

3.2.2 Using Optional Members in an Application

22

C++

MyType *MyTypeTypeSupport::create_data(
const DDS_TypeAllocationParams_t& alloc_params);

DDS_ReturnCode_t FooTypeSupport::delete_data(
MyType *a_data,
const DDS_TypeDeallocationParams_t& dealloc_params);

Set alloc_params.allocate_optional_members to true if you want to have all optional members allocated
and initialized to default values.

To allocate or release specific optional string members, use the following functions both in C and tra-
ditional C++ without the command-line option -useStdString:

l DDS_String_alloc()

l DDS_String_free()

For traditional C++ code generated using the command line option -useStdString use:

l new ()

l delete

To allocate or release other specific optional members, use the following functions:

In C :

l DDS_Heap_malloc()

l DDS_Heap_calloc()

l DDS_Heap_free()

In traditonal C++:

l new ()

l delete

You can also make an optional member point to an existing variable as long as you set it to NULL before
deleting the sample.

The following C code shows several examples of how to set and unset optional members when writing
samples (note: error checking has been omitted for simplicity):
/* Create and send a sample where all optional members are set */
struct DDS_TypeAllocationParams_t allocParams = DDS_TYPE_ALLOCATION_PARAMS_DEFAULT;
allocParams.allocate_optional_members = DDS_BOOLEAN_TRUE;
MyType *sample = MyTypeTypeSupport_create_data_w_params(&allocParams);
*sample->optional_member1 = 1;
strcpy(sample->optional_member2->text, "hello");

3.2.2 Using Optional Members in an Application

sample->non_optional_member = 2;
MyTypeDataWriter_write(

MyType_writer,
instance,
&DDS_HANDLE_NIL);

/* This time, don't send optional_member1 */
DDS_Heap_free(sample->optional_member1);
sample->optional_member1 = NULL;
MyTypeDataWriter_write(MyType_writer, sample, &DDS_HANDLE_NIL);

/* Delete the sample */
retcode = MyTypeTypeSupport_delete_data_ex(sample, DDS_BOOLEAN_TRUE);

/* Create and send a sample where all optional members are unset */
sample = MyTypeTypeSupport_create_data_ex(DDS_BOOLEAN_FALSE);
sample->non_optional_member = 3;
MyTypeDataWriter_write(MyType_writer, sample, &DDS_HANDLE_NIL);

/* Now send optional_member1 */
sample->optional_member1 = (DDS_Long *)DDS_Heap_malloc(sizeof(DDS_Long));
*sample->optional_member1 = 1;
sample->non_optional_member = 3;
MyTypeDataWriter_write(MyType_writer, sample, &DDS_HANDLE_NIL);

/* Delete the sample */
retcode = MyTypeTypeSupport_delete_data_ex(sample, DDS_BOOLEAN_TRUE);

And this example shows how to read samples that contain optional members in C:
/* Create a sample (no need to allocate optional members here) */
struct DDS_SampleInfo info;
MyType *sample = MyTypeTypeSupport_create_data();

/* Read or take as usual */
MyTypeDataReader_take_next_sample(MyType_reader, sample, &info);
if (info.valid_data)
{

printf("optional_member 1");
if (sample->optional_member1 != NULL)
{

printf(" = %d", *sample->optional_member1);
}
else
{

printf("is not set \n");
}
printf("non_optional_member = %d", sample->non_optional_member);

}
MyTypeTypeSupport_delete_data(sample);

The following C++ code shows several examples of how to set and unset optional members when writing
samples (note: error checking has been omitted for simplicity):

23

3.2.2 Using Optional Members in an Application

24

// Create and send a sample where all optional members are set
MyType *sample = MyTypeTypeSupport::create_data(

DDS_TypeAllocationParams_t().set_allocate_optional_members(
DDS_BOOLEAN_TRUE));

*sample->optional_member1 = 1;
strcpy(sample->optional_member2->text, "hello");
sample->non_optional_member = 2;
writer->write(*sample, DDS_HANDLE_NIL);

// This time, don't send optional_member1
delete sample->optional_member1;
sample->optional_member1 = NULL;
writer->write(*sample, DDS_HANDLE_NIL);

// Delete the sample
MyTypeTypeSupport::delete_data(sample);
// Create and send a sample where all optional members are unset
sample = MyTypeTypeSupport::create_data();
sample->non_optional_member = 3;
writer->write(*sample, DDS_HANDLE_NIL);

// Now send optional_member1:
sample->optional_member1 = new DDS_Long();
*sample->optional_member1 = 4;
writer->write(*sample, DDS_HANDLE_NIL);

// Delete the sample
MyTypeTypeSupport::delete_data(sample);

And this example shows how to read samples that contain optional members in traditional C++:
// Create a sample (no need to allocate optional members here)
DDS_SampleInfo info;
sample = MyTypeTypeSupport::create_data();

// Read or take as usual
reader->take_next_sample(*sample, info);
if (info.valid_data)
{

std::cout << "optional_member1 ";
if (sample->optional_member1 != NULL)
{

std::cout << "= " << *sample->optional_member1 << "\n";
}
else
{

std::cout << "is not set\n";
}
std::cout << “non_optional_member = “

<< sample->non_optional_member << “\n”;
}
// Delete the sample
MyTypeTypeSupport::delete_data(sample);

3.2.2 Using Optional Members in an Application

3.2.2.2 Using Optional Members in the Modern C++ API

An optional member of type T in a DDS type maps to the value-type dds::core::optional<T> in the mod-
ern C++ API.

For example, consider the following IDL type:
struct MyType {

@optional int32 optional_member1;
@optional Foo optional_member2;
int32 non_optional_member;

};

This type maps to this C++ class:
class NDDSUSERDllExport MyType {
public:

// ...
dds::core::optional<int32_t>& optional_member1();
const dds::core::optional<int32_t>& optional_member1() const;
void optional_member1(const dds::core::optional<int32_t>& value);
dds::core::optional<Foo>& optional_member2();
const dds::core::optional<Foo>& optional_member2() const;
void optional_member2(const dds::core::optional<Foo>& value);
int32_t non_optional_member() const;
void non_optional_member(int32_t value);
// ...

};

By default optional members are unset (dds::core::optional<T>::is_set() is false). To set an optional mem-
ber, simply assign a value; to reset it use reset() or assign a default-constructed optional<T>:
MyType sample; // all optional members created unset
sample.optional_member1() = 5; // now sample.optional_member1().is_set() == true
sample.optional_member1(5); // alternative way of setting the optional member
sample.optional_member2() = Foo(/* ... */);
sample.optional_member1().reset(); // now sample.optional_member1().is_set == false
sample.optional_member1() = dds::core::optional<int32_t>(); // alternative way of resetting the
optional member

To get the value by reference, use get():
int x = sample.optional_member1().get(); // if !is_set(), throws
dds::core::PreconditionNotMetError.
sample.optional_member2().get().foo_member(10);

Note that dds::core::optionalmanages the creation, assignment and destruction of the contained value, so
unlike the traditional C++ API you don't need to reserve and release a pointer.

3.2.2.3 Using Optional Members in Java

Optional members have the same mapping to Java class members as non-optional members, except that
null is a valid value for an optional member. Primitive types map to their corresponding Java wrapper
classes (to allow nullifying).

25

3.2.2 Using Optional Members in an Application

26

Generated Java classes also include a clear()method that resets all optional members to null.

For example, consider the following IDL type:
struct MyType {

@optional int32 optional_member1;
@optional Foo optional_member2;
int32 non_optional_member;

};

This type maps to this Java class:
class MyType {

public Integer optional_member1 = null;
public Foo optional_member2 = null;
public int non_optional_member = 0;
// ...
public void clear() { /* … */ }
// ...

}

An optional member is set when it points to an object and is unset when it is null.

The following code shows several examples on how to set and unset optional members when writing
samples:
// Create and send a sample with all the optional members set
MyType data = new MyType(); // All optional members are null
data.optional_member1 = 1; // Implicitly converted to Integer
data.optional_member2 = new Foo(); // Create Foo object
data.optional_member2.text = "hello";
data.non_optional_member = 2;
writer.write(data, InstanceHandle_t.HANDLE_NIL);

// This time, don't send optional_member1
data.optional_member1 = null;
writer.write(data, InstanceHandle_t.HANDLE_NIL);

// Send a sample where all the optional members are unset
data.clear(); // Set all optional members to null
data.non_optional_member = 3;
writer.write(data, InstanceHandle_t.HANDLE_NIL);

// Now send optional_optional_member1
data.optional_member1 = 4;
writer.write(data, InstanceHandle_t.HANDLE_NIL);

And this example shows how to read samples that contain optional members:
// Create a sample
MyType data = new MyType();
SampleInfo info = new SampleInfo();

// Read or take as usual
reader.take_next_sample(data, info);
if (info.valid_data) {

3.2.2 Using Optional Members in an Application

System.out.print("optional_member1 ");
if (data.optional_member1 != null) {

System.out.println("= " + data.optional_member1);
} else {

System.out.println("is unset");
}
System.out.println("non_optional_member = " + data.non_optional_member);

}

3.2.2.4 Using Optional Member with DynamicData

This version of Connext DDS supports a pre-standard version of DynamicData (see DynamicData API
(Chapter 7 on page 42)). However it does support optional members.

Any optional member can be set with the regular setter methods in the DynamicData API, such as DDS_
DynamicData::set_long(). An optional member is considered unset until a value is explicitly assigned
using a ‘set’ operation.

To unset a member, use DDS_DynamicData::clear_optional_member().

The C and C++ ‘get’ operations, such as DDS_DynamicData::get_long(), return DDS_RETCODE_
NO_DATA when an optional member is unset; in Java, the ‘get’ methods throw a RETCODE_NO_
DATA exception.

The following C++ example shows how to set and unset optional members before writing a sample. The
example uses the same type (MyType) as in previous sections. This example assumes you already know
how to use the DynamicData API, in particular how to create a DynamicDataTypeSupport and a Dynam-
icData topic. More information and examples are available in the API Reference HTML documentation
(selectModules, RTI Connext DDS API Reference, Topic Module, Dynamic Data).
// Note: error checking omitted for simplicity
DDS_DynamicData * data = type_support.create_data();

// Set all optional members and write a sample
data->set_long("optional_member1",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, 1);

// Bind optional_member2 and set the text field
DDS_DynamicData optionalMember2(NULL, DDS_DYNAMIC_DATA_PROPERTY_DEFAULT);
data->bind_complex_member(optionalMember2, "optional_member2",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
optionalMember2.set_string("text",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, "hello");
data->unbind_complex_member(optionalMember2);
data->set_long("non_optional_member",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, 2);
writer->write(*data, DDS_HANDLE_NIL);

// This time, don't send optional_member1
data->clear_optional_member("optional_member1",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
writer->write(*data, DDS_HANDLE_NIL);

27

3.2.2 Using Optional Members in an Application

28

// Delete the sample
type_support.delete_data(data);

In this example we read samples that contain optional members:
DDS_SampleInfo info;
DDS_DynamicData * data = type_support->create_data();
reader->take_next_sample(*data, info);
if (info.valid_data) {

DDS_Long value;
DDS_ReturnCode_t retcode = data->get_long(value,

"optional_member1",
DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);

if (retcode == DDS_RETCODE_OK) {
std::cout << "optional_member1 = " << value << "\n";

} else if (retcode == DDS_RETCODE_NO_DATA){
std::cout << "optional_member1 is not set\n";

} else {
std::cout << "Error getting optional_member1\n";

}
retcode = data->get_long(value, "non_optional_member",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
if (retcode == DDS_RETCODE_OK) {

std::cout << "non_optional_member = " << value << "\n";
} else {

std::cout << "Error getting non_optional_member\n";
}

}
// Delete the sample
type_support->delete_data(data);

3.2.2.5 Using Optional Members in SQL Filter Expressions

SQL filter expressions used in ContentFilteredTopics and QueryConditions (see ContentFilteredTopics
(Chapter 8 on page 43) in this document and Section 4.6.7 (ReadConditions and QueryConditions) and
Section 5.4 (ContentFilteredTopics) in the RTI Connext DDS Core Libraries User's Manual) can refer to
optional members. The syntax is the same as for any other member.

For example, given the type MyType:
struct Foo {

string text;
};
struct MyType {

@optional int32 optional_member1;
@optional Foo optional_member2;
int32 non_optional_member;

};

This is a valid SQL filter expression:

“optional_member1 = 1 AND optional_member2.text = ‘hello’ AND non_optional_member = 2”

Any comparison involving an optional member (=, <>, <, or >) evaluates to false if the member is unset.

3.3 Default Value

For example, both “optional_member1 <> 1” and “optional_member1 = 1” will evaluate to false if
optional_member1 is unset; however “optional_member1 = 1 OR non_optional_member = 1” will be
true if non_optional_member is equal to 1 (even if optional_member1 is unset). The expression
“optional_member2.text = ‘hello’” will also be false if optional_member2 is unset.

3.3 Default Value

If the value for an optional member is not provided on the wire, the member is initialized to NULL. For
non-optional members, the member is considered to have the default value defined in Table 3.3 Default
Values for Non-Optional Members from XTypes Specification.

Table 3.3 Default Values for Non-Optional Members from XTypes Specification, taken from the "Extens-
ible and Dynamic Topic Types for DDS" (DDS-XTypes) specification, describes the default values for
non-optional members.

Table 3.3 Default Values for Non-Optional Members from XTypes Specification

Type Kind Default Value

BYTE 0x00

BOOLEAN FALSE

INT_16_TYPE, UINT_16_TYPE, INT_32_TYPE, UINT_32_
TYPE, INT_64_TYPE, UINT_64_TYPE, FLOAT_32_TYPE,
FLOAT_64_TYPE, FLOAT_128_TYPE

0

CHAR_8_TYPE, CHAR_16_TYPE ‘\0’

STRING_TYPE “”

ARRAY_TYPE
An array of the same dimensions and same element type whose elements take the
default value for their corresponding type.

ALIAS_TYPE The default type of the alias’s base type.

SEQUENCE_TYPE A zero-length sequence of the same element type.

MAP_TYPE An empty map of the same element type.

ENUM_TYPE The first value in the enumeration.

UNION_TYPE
A union with the discriminator set to select the default element, if one is defined, or
otherwise to the lowest value associated with anymember. The value of that mem-
ber set to the default value for its corresponding type.

STRUCTURE_TYPE
A structure without any of the optionalmembers and with othermembers set to their
default values based on their corresponding types.

29

http://www.omg.org/spec/DDS-XTypes/
http://www.omg.org/spec/DDS-XTypes/

3.3.1 @default annotation

30

3.3.1 @default annotation

This annotation allows you to specify a default value for a primitive, enum, or string member. It overwrites
the default value in Table 3.3 Default Values for Non-Optional Members from XTypes Specification). For
example:
struct Position {

int32 x;
@default(70) int32 y;
@default(80) int32 z;

};

In the above example, when a new Position data object is created (TypeSupport::create_data, for
example), the members y and z will get the values 50 and 70 respectively, while the member x will get the
default 0.

The members will also get the same default values when they are not received on the wire. For example,
assume a DataWriter publishing PubPosition and a DataReader subscribing to Position:
struct PubPosition {

int32 x;
};

Position is assignable from PubPosition according to the assignability rules described in Chapter 2 Type
Safety and System Evolution on page 4. When the DataReader receives a new sample from the
DataWriter, the members y and z (not present on the wire) will get the values 70 and 80.

The default annotation can be applied to members with the following types: boolean, octet, int16, uint16,
int32, uint32, int64, uint64, float, double, char, wchar, string, wstring, and enums. The annotation is not
currently supported for long double members.

The default annotation can also be applied to aliases of the previous types. For example:
typedef int32 XCoordinate;
@default(70)
typedef int32 YCoordinate;
@default(80)
typedef int32 ZCoordinate;

struct Position {
XCoordinate x;
YCoordinate y;
ZCoordinate int32 z;

};

The advantage of assigning a default to Alias types is that you do not have to duplicate the annotation
value in every structure using coordinates.

The value in the @default annotation can refer to constants declared in the IDL file and can contain expres-
sions using the constants. For example:

3.3.1 @default annotation

const int32 Y_DEFAULT = 70;
const int32 Z_DEFAULT = 79;
struct Position {

int32 x;
@default(Y_DEFAULT) int32 y;
@default(Z_DEFAULT + 1) int32 z;

};

3.3.1.1 Restrictions

l The default annotation cannot be applied to optional and external members even if their types are
types in which the annotation is supported. For example:

struct Position {
int32 x;
@default(70) int32 y;
@default(80) @optional int32 z; // Not supported. Code generation error

};

l The default annotation is not currently supported on arrays and sequences even if their types are
types in which the annotation is supported. For example:

struct Positions {
int32 x[1024];
@default(50)
int32 y[1024]; // Not supported. Code generation error
@default(80)
int32 z[1024]; // Not supported. Code generation error

};

A workaround for this limitation is to encapsulate the primitive members into a structure. For
example:
struct Position {

int32 x;
@default(70) int32 y;
@default(80) int32 z;

};

struct Positions {
Position position[1024];

};

l The default annotation value for a uint64 type cannot refer to a constant. For example:

const uint64 MY_UINT64 = 9223372036854775808;
struct Example {

@default(MY_UINT64)
uint64 x;

};

A workaround for this limitation is to not use the constant but the literal value instead. For example:

31

3.3.2 @default_literal annotation

32

struct Example {
@default(9223372036854775808)
uint64 x;

};

l Expressions are not supported when converting to XSD for the following types:
l Long long

l Unsigned long long

l Float

l Double

l Long double

l The TypeCode API (DynamicType API in Modern C++) does not provide a public API to obtain
the value of the default annotation.

3.3.2 @default_literal annotation

By default, the default value of an enumeration corresponds to the first value of the enumeration. In the fol-
lowing example, the default value is GREEN:
enum Color {

GREEN,
RED,
BLUE

};

The annotation @default_literal can be used to select a different enumerator as the default value. In the fol-
lowing example, the default value is RED:
enum Color {

GREEN,
@default_literal RED,
BLUE

};

The default value for an enumeration can be overwritten for a structure/union member referring to this enu-
meration using the @default annotation. For example:
enum Color {

GREEN,
@default_literal RED,
BLUE

};

struct Shape {
@default(BLUE)
Color shape_color;

}

3.4 Ranges

3.3.2.1 Restrictions

The TypeCode API (DynamicType API in Modern C++) does not provide a public API to obtain the
value of the default_literal annotation.

3.4 Ranges

The annotations @range, @min, and @max can be used to restrict the possible values for a primitive mem-
ber. For example:
struct Position {

@range(min = 0, max = 200) int32 x;
@min(50) @default(70) int32 y;
@max(200) @default(80) int32 z;

};

The annotations are enforced at serialization/deserialization time, not when the value of an object is set.
For example, assume the following Position: {x= -3, y= 60, z = 150}. If you try to publish a Position
sample with this value, the DataWriter::write operation will fail with a DDS_RETCODE_ERROR. If a
DataReader receives this sample, the sample will be lost with the reason DDS_LOST_BY_
DESERIALIZATION_FAILURE and it will not be provided to the application. In both cases, you will
see a log message indicating that x was outside its valid range.

The range annotations can be applied to the following types: octet, int16, uint16, int32, uint32, int64,
uint64, float, double. These annotations are not supported in long double.

If you specify a @default value for a member that is outside the valid range, the code generation will fail.
For example:
struct Position {

@default(300) @range(min = 0, max = 200) int32 x; // Failure. Default outside valid range
@min(50) @default(70) int32 y;
@max(200) @default(80) int32 z;

};

3.4.1 Restrictions

l For performance reasons, the range annotations are not currently applied to samples of types marked
with @language_binding(FLAT_DATA). The annotations can be used for the type members, but
they are only informational.

l The TypeCode API (DynamicType API in Modern C++) does not provide a public API to obtain
the value of the @range, @min, and @max annotations.

33

Chapter 4 Data Representation
The data representation specifies the ways in which a data sample of a given type are com-
municated over the network.

The OMG 'Extensible and Dynamic Topic Types for DDS' specification, version 1.3 defines three
different data representations:

l Extended Common Data Representation (CDR) encoding version 1 (XCDR)

l Extended CDR encoding version 2 (XCDR2)

l XML data representation

Connext DDS 6.0.0 and above implements both XCDR and XCDR2. Connext DDS 5.3.1 and
below implements only XCDR. XML data representation is not supported.

4.1 Configuring the CDR

You may use the DataRepresentationQosPolicy in the DataWriterQos to configure which version
of Extended CDR, version 1 or version 2, the DataWriter will use to serialize its data. The same
QosPolicy exists in the DataReaderQos to configure which version(s) the DataReader will accept
from DataWriters. DataWriters can offer only one data representation, while DataReaders can
request multiple data representations.

For more information, see "DATA_REPRESENTATION QosPolicy" in the RTI Connext DDS
Core Libraries User's Manual.

4.1.1 @allowed_data_representation annotation

The data representations that you are allowed to configure in the DataRepresentationQosPolicy for
a type ‘T’ are limited to the allowed data representations for the type.

The @allowed_data_representation annotation lets you restrict the data representations that may be
used to encode a data object of a specific type. (You can select from this restricted set when setting

34

https://www.omg.org/spec/DDS-XTypes/1.3

4.2 Extended CDR (encoding version 1)

35

the DataRepresentationQosPolicy.) The IDL definition of the @allowed_data_representation annotation is
as follows:
// Positions are defined to match the values of the DataRepresentationId_t
// XCDR_DATA_REPRESENTATION, XML_DATA_REPRESENTATION, and
// XCDR2_DATA_REPRESENTATION
@bit_bound(32)
bitmask DataRepresentationMask {

@position(0) XCDR,
@position(1) XML,
@posiiton(2) XCDR2

}

@annotation allowed_data_representation {
DataRepresentationMask value;

};

For example:
@allowed_data_representation(XCDR2)
struct Position
{

int32 x;
int32 y;

};

DataWriters and DataReaders using the previous type can publish and subscribe to only an XCDR2 rep-
resentation, regardless of the value set in the DataRepresentationQosPolicy. (If a DataWriter or
DataReader in this case sets its DataRepresentationQosPolicy to XCDR, Connext DDS will automatically
change it to XCDR2 and print a log message indicating this change.)

If the @allowed_data_representation annotation is not present, Connext DDS interprets the data rep-
resentation as if the DataRepresentationMask value was set to XCDR|XCDR2 for PLAIN language bind-
ing and XCDR2 for FLAT_DATA language binding. For information about the RTI FlatData™
language binding, see the "Sending Large Data" chapter in the RTI Connext DDS Core Libraries User's
Manual.

4.2 Extended CDR (encoding version 1)

The "traditional" OMG CDR (PLAIN_CDR) is used for final and extensible types. It is also used for prim-
itive, string, and sequence types.

Mutable types and optional members use parameterized CDR (PL_CDR), in which each member is pre-
ceded by a member header that consists of the member ID and member serialized length.

The member header can be 4 bytes (2 bytes for the member ID and 2 bytes for the serialized length) or 12
bytes (where 4 bytes are used for the member ID and 4 bytes are used for the length).

Member IDs greater than 16,128 require a 12-byte header. Therefore, to reduce network bandwidth, the
recommendation is to use member IDs less than or equal to 16,128.

4.3 Extended CDR (encoding version 2)

Also, members with a serialized size greater than 65,535 bytes require a 12-byte header.

Notice that for members with a member ID less than 16,129 and a serialized size less than 65,536 bytes, it
is up to the implementation to decide whether or not to use a 12-byte header. For this version of Connext
DDS, the header selection rules are as follows:

l If the member ID is greater than 16,128, use a 12-byte header.

l Otherwise, if the member is a primitive type (int16, uint16, int32, uint32, int64, uint64, float, double,
long double, boolean, octet, char), use a 4-byte header.

l Otherwise, if the member is an enumeration, use a 4-byte header.

l Otherwise, if the maximum serialized size of the type is less than 65,536 bytes, use a 4-byte header.

l Otherwise, use a 12-byte header.

4.3 Extended CDR (encoding version 2)

From the ‘Extensible and Dynamic Topic Types for DDS’ specification:

The specification defines three encoding formats used with encoding version 2: PLAIN_CDR2,
DELIMITED_CDR, and PL_CDR2.

l PLAIN_CDR2 shall be used for all primitive, string, and enumerated types. It is also used for
any type with an extensibility kind of FINAL. The encoding is similar to PLAIN_CDR except
that INT64, UINT64, FLOAT64, and FLOAT128 are serialized into the CDR buffer at offsets
that are aligned to 4 [bytes] instead of 8

l DELIMITED_CDR shall be used for types with an extensibility kind of APPENDABLE. It seri-
alizes a UINT32 delimiter header (DHEADER) before serializing the object using PLAIN_
CDR2. The delimiter encodes the endianness and the length of the serialized object that follows.

l PL_CDR2 shall be used for aggregated types with an extensibility kind of MUTABLE. Similar
to DELIMITED_CDR, it also serializes a DHEADER before serializing the object. In addition,
it serializes a member header (EMHEADER) ahead of each serialized member. The member
header encodes the member ID, the must-understand flag, and the length of the serialized mem-
ber that follows.

In Extended CDR encoding version 2, wchar sizes changed from 4 bytes (Char32) to 2 bytes (Char16).

For more information about encoding version 2, please see the OMG 'Extensible and Dynamic Topic
Types for DDS' specification, version 1.3.

36

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

4.4 Choosing the Right Data Representation

37

4.4 Choosing the Right Data Representation

Extended CDR encoding 2 (XCDR2) is more efficient on the wire than Extended CDR encoding 1
(XCDR). For new applications, Extended CDR encoding 2 is the recommended data representation; how-
ever, if you need to keep compatibility and interoperability with old Connext DDS applications (5.3.1 and
below), you may have to continue using Extended CDR encoding 1.

DataReaders can be configured to receive data using both XCDR2 and XCDR. This way, a DataReader
can still interoperate and receive data from old Connext DDS DataWriters using XCDR, while receiving
data from new DataWriters using XCDR2.

The opposite is not true. DataWriters can publish only one data representation. Therefore, if there is a
requirement to receive data for a topic 'T' with old Connext DDS DataReaders, you will have to continue
to publish data for topic 'T' with XCDR representation on the new DataWriters or use a bridge such as
Routing Service to translate between XCDR and XCDR2.

Chapter 5 Type Representation
The type representation specifies the ways in which a type can be externalized so that it can be
stored in a file or sent over the network.

The OMG 'Extensible and Dynamic Topic Types for DDS' specification, version 1.3 describes
four different type representations: IDL, TypeObject, XML, and XSD.

5.1 TypeObject and TypeCode Type Representation

Earlier versions of Connext DDS (4.5f and lower) used TypeCodes as the wire representation to
communicate types over the network and the TypeCode API to introspect and manipulate the types
at run time.

The Extensible Types specification uses TypeObjects as the wire representation and the Dynam-
icType API to introspect and manipulate the types. Types are propagated by serializing the asso-
ciated TypeObject representation.

This release does not enable TypeCode propagation by default, but to maintain backward com-
patibility with previous releases it can be enabled; see the section, "TypeCode information is not
sent by default" in theMigration Guide on the RTI Community Portal (https://-
community.rti.com/documentation). Support for the TypeCodes feature may be discontinued in
future releases.

Connext DDS 5.x and higher supports TypeObjects v1 as the wire representation. (TypeObjects
v2, which were introduced in Extensible and Dynamic Topic Types for DDS 1.2, are not sup-
ported.)

In this release, only Modern C++ supports the DynamicType API to introspect the types at
runtime. Other language bindings must use the TypeCode API.

You can introspect the discovered type independently of the wire format by using the type_code
member in the PublicationBuiltinTopicData and SubscriptionBuiltinTopicData structures for all lan-
guage bindings but Modern C++. In Modern C++, the type information can be accessed using the
type() or get_type_no_copy() accessors.

38

https://www.omg.org/spec/DDS-XTypes/1.3
https://community.rti.com/documentation
https://community.rti.com/documentation

5.1.1 TypeObject Resource Limits

39

One important limitation of using TypeCodes as the wire representation is that their serialized size
is limited to 65 KB. This is a problem for services and tools that depend on the discovered types,
such as RTI Routing Service and RTI Spreadsheet Add-in for Microsoft Excel. With the
introduction of TypeObjects, this limitation is removed since the size of the serialized
representation is not bounded.

To summarize:

Connext DDS 5.x and Higher Connext DDS 4.5f and Earlier

Wire Representation
TypeObjects

or TypeCodes (for backwards compatibility)
TypeCodes

For Introspection at Run Time
TypeCode API

(DynamicType API forModern C++)
TypeCode API

MaximumSize of Serialized Representation
When using TypeObjects: Unbounded

When using TypeCodes: 65 KB
65 KB

5.1.1 TypeObject Resource Limits

Table 5.1 TypeObject Fields in DomainParticipantResourceLimitsQosPolicy lists fields in the DomainPar-
ticipantResourceLimitsQosPolicy that control resource utilization when the TypeObjects in a DomainPar-
ticipant are stored and propagated.

Note that memory usage is optimized; only one instance of a TypeObject will be stored, even if multiple
local or remote DataReaders or DataWriters use it.

Type Field Description

DDS_
Long

type_object_
max_serialized_
length

The maximum length, in bytes, that the buffer to serialize a TypeObject can consume.

This parameter limits the size of the TypeObject that a DomainParticipant is able to propagate. Since TypeObjects con-
tain all of the information of a data structure, including the strings that define the names of the members of a structure,
complex data structures can result in TypeObjects larger than the default maximumof 3072 bytes. This field allows you
to specify a larger value.

Cannot be UNLIMITED.

Default: 8192

DDS_
Long

type_object_
max_deseri-
alized_length

The maximumnumber of bytes that a deserialized TypeObject can consume. This parameter limits the size of the
TypeObject that a DomainParticipant is able to store.

Default: UNLIMITED

DDS_
Long

deserialized_
type_object_dy-
namic_al-
location_
threshold

A threshold, in bytes, for dynamic memory allocation for the deserialized TypeObject. Above it, the memory for a
TypeObject is allocated dynamically. Below it, the memory is obtained froma pool of fixed-size buffers. The size of the
buffers is equal to this threshold.

Default: 4096

Table 5.1 TypeObject Fields in DomainParticipantResourceLimitsQosPolicy

5.2 XML and XSD Type Representations

The TypeObject is needed for type-assignability enforcement.

Since TypeObjects contain all of the information of a data structure, including the strings that define the
names of the members of a structure, complex data structures can result in large TypeObjects that fre-
quently require enabling asynchronous publication for discovery data.

To reduce bandwidth usage during discovery for large TypeObjects, Connext DDS allows compressing
the TypeObject information. Compression is enabled by default, and it can be configured using the QoS
value DDS_DiscoveryConfigQosPolicy::endpoint_type_object_lb_serialization_threshold. For addi-
tional information, see the section “DISCOVERY_CONFIG QosPolicy” in the RTI Connext DDS Core
Libraries User's Manual.

By default, Connext DDS 5.3.1 and lower propagated both the pre-standard TypeCode and the TypeOb-
ject. Connext DDS 6.0.0 and higher only propagates TypeObjects by default. You can change this beha-
vior:

To propagate TypeOb-
ject only:

Set type_code_max_serialized_length = 0

To propagate TypeCode
only:

Set type_object_max_serialized_length = 0

To propagate none: Set type_code_max_serialized_length = 0 and type_object_max_serialized_length = 0

To propagate both (de-
fault):

Use the default values of type_code_max_serialized_length and type_object_max_serialized_length ormodify
them if the type size requires so.

5.2 XML and XSD Type Representations

The XML and XSD type-representation formats available in Connext DDS formed the basis for the DDS-
XTypes specification of these features.

The XML format is compatible with the format described in the XTypes specification.

The XSD format, however, has not been completely updated to the new standard format. For example, in
Connext DDS, built-in annotations are applied using comments, whereas in the XTypes specification they
are applied using <xsd:annotation>.

For additional information on how to apply built-in annotations using XSD Type Representation in Con-
next DDS see the section "Creating User Data Types with XML Schemas (XSD)" in the RTI Connext
DDS Core Libraries User's Manual.

For additional information on how to apply built-in annotations using XSD Type Representation in the
XTypes specification, see the section “XSD Type Representation” in the OMG 'Extensible and Dynamic
Topic Types for DDS' specification, version 1.3.

40

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

Chapter 6 TypeCode API Changes
As described in Type Representation (Chapter 5 on page 38), in Connext DDS 5.x and higher,
only Modern C++ supports the DynamicType API described in the Extensible Types specification.
For other language bindings, user applications can continue to use the TypeCode API to introspect
the types at runtime.

The TypeCode API includes two operations to retrieve the extensibility kind of a type and the ID
of a member:

l DDS_TypeCode_extensibility_kind()

l DDS_TypeCode_member_id()

The value of the following annotations currently cannot be accessed using the TypeCode API:
@default, @default_literal, @range, @min, @max.

For information on these operations, see the API Reference HTML documentation (open
ReadMe.html1 and select the API for your language, then selectModules, DDS API Reference,
Topic Module, Type Code Support, DDS_TypeCode).

1After installing Connext DDS, you will find ReadMe.html in the ndds.<version> directory.

41

Chapter 7 DynamicData API
Connext DDS 5.x and higher does not currently support the DynamicData API described in the
Extensible Types specification. User applications should continue using the traditional Dynam-
icData API.

The traditional DynamicData API has been extended to support optional members (see 3.2.2.4
Using Optional Member with DynamicData on page 27).

The traditional API does not currently support setting/getting the value of a DynamicData sample
using member IDs as defined in the Extensible types specification. The member values of the fol-
lowing types should be accessed using the member name:

l Unions

l Struct

l Valuetypes

Although it is possible to use themember_id field in the get/set operations provided by the Dynam-
icData API, the meaning of the ID in the API is not compliant with the member ID described in the
Extensible Types specification.

For example, in the Extensible Types specification, the members of a union are identified by both
the case values associated with them and their member IDs. When using the DynamicData API to
set/get the value of a union member, themember_id parameter in the APIs corresponds to the case
value of the member instead of the member ID.

42

Chapter 8 ContentFilteredTopics
Writer-side filtering using the built-in filters (SQL and STRINGMATCH) is supported as long as
the filter expression contains members that are present in both the DataReader’s type and the
DataWriter’s type. For example, consider the following types:

DataWriter:
struct MyBaseType {

int32 x;
};

DataReader:
struct MyDerivedType : MyBaseType {

public int32 y;
};

If the DataReader creates a ContentFilteredTopic with the expression “x>5”, the DataWriter will
perform writer-side filtering since it knows how to find x in the outgoing samples.

If the DataReader creates a ContentFilteredTopic with the expression “x>5 and y>5” the
DataWriter will not do writer side filtering since it does not know anything about “y”. Also, when
the DataWriter tries to compile the filter expression from the DataReader, it will report an error
such as the following:
DDS_TypeCode_dereference_member_name:member starting with [y >] not found
PRESParticipant_createContentFilteredTopicPolicy:content filter compile error 1

To learn how to use optional members in filter expressions, see 3.2.2.5 Using Optional Members
in SQL Filter Expressions on page 28.

43

Chapter 9 RTI Spy
RTI Spy, rtiddsspy, includes limited support for Extensible Types:

l rtiddspy will automatically create a DataReader for each version of a type discovered for a
topic. In Connext DDS 5.x and higher, it is not possible to associate more than one type to a
topic within a single DomainParticipant, therefore each version of a type will require its
own DomainParticipant.

l The TypeConsistencyEnforcementQosPolicy’s kind in each of the DataReaders created by
rtiddsspy is set to DISALLOW_TYPE_COERCION. This way, a DataReader will only
receive samples from DataWriters with the same type, without doing any conversion.

l The -printSample option will print each of the samples using the type version of the original
publisher.

For example:
struct A {

int32 x;
};
struct B {

int32 x;
int32 y;

};

Let’s assume that we have two DataWriters of Topic “T” publishing type “A” and type “B” and
sending TypeObject information. After we start Spy, we will see output like this:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NddsSpy is listening for data, press CTRL+C to stop it.
source_timestamp Info  Src HostId  topic type
-----------------  ----  ----------  ------------------  ------------------
1345847910.453969  W +N  0A1E01C0  Example A A
1345847912.056410  W +N  0A1E01C0  Example B B
1345847914.454385  d +N  0A1E01C0  Example A A
x: 1
1345847916.056787  d +N  0A1E01C0  Example B B
x: 2
y: 3

44



9.1 Type Version Discrimination

45

1345847918.455104  d +M  0A1E01C0  Example A A
x: 2
1345847920.057084  d +M  0A1E01C0  Example B B
x: 4
y: 6

9.1 Type Version Discrimination

Rtiddsspy uses the rules described in 2.3.1 Rules For Type-Consistency Enforcement on page 13 to
decide whether or not to create a new DataReader when it discovers a DataWriter for a topic “T”.

For DataWriters created with previous Connext DDS releases (4.5f and lower), rtiddsspy will select the
first DataReader with a registered type name equal to the discovered registered type name, since
DataWriters created with previous releases do not send TypeObject information.



Chapter 10 Compatibility with Previous
Releases

For important information about compatibility issues when communicating with applications using
an older (5.x) version of Connext DDS, please see the following documentation:

l If you are upgrading to 6.1.0 from a release older than 5.3.1, please first see this chapter in
the Connext DDS Core Libraries Getting Started Guide Addendum for Extensible Types for
5.3.1. Then see theMigration Guide on the RTI Community Portal (https://-
community.rti.com/documentation) for migration issues related to upgrading from 5.3.1 to
6.1.0.

l If you are upgrading to 6.1.0 from 5.3.1, please see theMigration Guide on the RTI Com-
munity Portal (https://community.rti.com/documentation).

46

https://community.rti.com/documentation
https://community.rti.com/documentation
https://community.rti.com/documentation

	Chapter 1 Extensible Types
	Chapter 2 Type Safety and System Evolution
	2.1 Defining Extensible Types
	2.1.1  @id Annotation
	2.1.2  @hashid Annotation
	2.1.3  @autoid Annotation

	2.2 Verifying Type Consistency: Type Assignability
	2.3 Type-Consistency Enforcement
	2.3.1  Rules For Type-Consistency Enforcement
	2.3.2  Prevent Type Widening
	2.3.3  Type Assignability Properties

	2.4 Verifying Sample Consistency: Sample Assignability
	2.5 Notification of Inconsistencies: INCONSISTENT_TOPIC Status
	2.6 Built-in Topics

	Chapter 3 Type System Enhancements
	3.1 Structure Inheritance
	3.2 Optional Members
	3.2.1  Defining Optional Members
	3.2.2  Using Optional Members in an Application

	3.3 Default Value
	3.3.1  @default annotation
	3.3.2  @default_literal annotation

	3.4 Ranges
	3.4.1  Restrictions


	Chapter 4 Data Representation
	4.1 Configuring the CDR
	4.1.1  @allowed_data_representation annotation

	4.2 Extended CDR (encoding version 1)
	4.3 Extended CDR (encoding version 2)
	4.4 Choosing the Right Data Representation

	Chapter 5 Type Representation
	5.1 TypeObject and TypeCode Type Representation
	5.1.1  TypeObject Resource Limits

	5.2 XML and XSD Type Representations

	Chapter 6 TypeCode API Changes
	Chapter 7 DynamicData API
	Chapter 8 ContentFilteredTopics
	Chapter 9 RTI Spy
	9.1 Type Version Discrimination

	Chapter 10 Compatibility with Previous Releases

