
RTI Security Plugins Getting Started

Traditional C++

Version 6.1.2

Contents

1 Introduction to RTI Security Plugins 1
1.1 Key Features . 3
1.2 Paths Mentioned in Documentation . 3

2 DDS System Threats 6

3 Securing a DDS Domain 8
3.1 Securing a DomainParticipant . 10

4 Hands-On 1: Securing Connext DDS Applications 12
4.1 Generating a Connext DDS Project . 12
4.2 Adding Security Artifacts to Your Project . 14
4.3 Enabling Security in Your QoS Profiles . 14
4.4 Linking Your Applications Against RTI Security Plugins and OpenSSL Libraries 16

4.4.1 Building the Application . 16
4.5 Running the Applications . 18

4.5.1 Configuring the Environment in Both Command Prompts 18
4.5.2 Checking Communication . 18

4.6 Checking that Your Applications Communicate Securely 20
4.6.1 Verifying that Eavesdropping Attempts are Frustrated 20
4.6.2 Detecting Eavesdropping Attempts . 20

4.7 Further Exercises . 21
4.7.1 Give Different Credentials to Each Application in Your System 21

4.8 Troubleshooting . 23

5 Hands-On 2: Defining Your System’s Security Requirements 25
5.1 Specifying the Security Requirements . 25
5.2 Composing a Governance File with the Security Requirements 27
5.3 Signing the Governance File . 29
5.4 Updating the QoS Profiles in Your Project . 30
5.5 Checking that the Specified Security Rules Are Applied . 30

5.5.1 Verifying Communication . 30
5.5.2 Checking the New Security Rules . 32

5.6 Further Exercises . 32
5.6.1 Protecting the Domain . 33
5.6.2 Adding a Topic Rule for the PatientMonitoring Topic 33

5.7 Troubleshooting . 34

i

6 Hands-On 3: Defining the DomainParticipant Permissions 35
6.1 Granting Permissions to Your Secure Participants . 35
6.2 Binding the Permissions File to Your DomainParticipants 37
6.3 Signing the Permissions Files . 39
6.4 Updating the QoS Profiles in Your Project . 39
6.5 Checking that the New Permissions Are Applied . 40

6.5.1 Communication Only Works in Domain 1 . 40
6.5.2 Alice Is Only Allowed to Publish Data . 43

6.6 Further Exercises . 45
6.6.1 Define Different Permissions for Each Application in Your System 45

6.7 Troubleshooting . 46

7 Hands-On 4: Generating and Revoking Your Own Certificates Using OpenSSL 48
7.1 Preliminary Steps . 49

7.1.1 Initialize the OpenSSL CA Database . 50
7.1.2 Limit the Access of the CA’s Private Key . 50

7.2 Generating a New Identity CA . 51
7.2.1 Specifying the New Identity CA Certificate in QoS Profiles 51

7.3 Generating Identity Certificates . 52
7.3.1 Specifying the New Identity Certificates to Your QoS Profiles 53

7.4 Updating Permissions Files with New Credentials . 53
7.5 Generating a New Permissions CA . 55

7.5.1 Specifying the New Permissions CA Certificate in QoS Profiles 56
7.6 Signing the Governance and Permissions Files . 56

7.6.1 Specifying the New Governance and Permissions Files in Your QoS Profiles 57
7.7 Updating the Subscriber’s Configuration . 57
7.8 Revoking an Identity Certificate . 59

7.8.1 Specifying the New Certificate Revocation List in QoS Profiles 60
7.9 Troubleshooting . 60

8 Hands-On 5: Checking that Your DDS Traffic Is Protected 62
8.1 Disabling Security and Preparing Your Project for Traffic Capturing 62

8.1.1 Analyzing RTPS Packets in Wireshark . 63
8.2 Encrypting the Serialized Payload . 65

8.2.1 Analyzing RTPS Packets in Wireshark . 67
8.3 Troubleshooting . 70

9 Next Steps 72

10 Copyrights 73

ii

Chapter 1

Introduction to RTI Security Plugins

Prerequisites
• RTI Connext® DDS installed, including SDK (see the Connext DDS Installation
Guide)

• RTI Security Plugins installed (see the Security Plugins Installation Guide)
• Familiarity with Connext DDS (i.e., you’ve completed Introduction to Pub-
lish/Subscribe)

• Familiarity with Connext DDS tools, such as RTI Administration Console
• Familiarity with security concepts and techniques (digital certificates, public
key infrastructure, private/public key pairs, authentication, encryption, etc.)

• Familiarity with defining QoS profiles to Connext DDS applications in XML
format

Time to complete 2 hours
Concepts cov-
ered in this
document

• Introduction to DDS Security and RTI Security Plugins
• Enabling Security Plugins in your Connext DDS applications
• Dynamic linking against RTI Security Plugins and OpenSSL
• Translating the security requirements of your system to a Governance File
• Publishing/Subscribing with different protection kinds (authentication, encryp-
tion, etc.)

• Authenticating your applications with custom digital certificates and private
keys

• Defining privileges for your applications with Permissions Files

RTI Security Plugins allow you to address your databus security requirements in a granular and pluggable way.
To support this, each of the Security Plugins covers a different aspect of security:

• Authentication. Provides the means to verify the identity of the application and/or user that invokes
operations on DDS. Includes facilities to perform mutual authentication between DomainParticipants
and establish a shared secret.

• Access Control. Provides the means to enforce policy decisions on what DDS-related operations an

1

../../../../manuals/connext_dds_professional/installation_guide/index.htm
../../../../manuals/connext_dds_professional/installation_guide/index.htm
../../../../manuals/connext_dds_secure/installation_guide/index.htm
../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html
../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html

RTI Security Plugins Getting Started Guide, Version 6.1.2

authenticated entity can perform. For example, which Domains it can join, which Topics it can publish
or subscribe to, etc.

• Cryptography. Implements (or interfaces with libraries that implement) all cryptographic operations
including encryption, decryption, hashing, digital signatures, etc. This includes the means to derive keys
from a shared secret.

• Logging. Supports auditing of all DDS security-relevant events.

The OMGDDS Security specification defines a set of builtin plugins for providing interoperable authentication,
access control, cryptography, and a logging Topic. The Security Plugins are the Connext DDS implementation of
these OMG DDS Security builtin interoperability plugins. This way, the Security Plugins offer a DDS Security
solution that can interoperate with DDS implementations from other vendors.

Figure 1.1: Architecture of an application using Security Plugins. All the currently available security plugins
(Authentication, Access Control, Cryptography and Logging) are implemented in a single nddssecurity library.

2

https://www.omg.org/spec/DDS-SECURITY/

RTI Security Plugins Getting Started Guide, Version 6.1.2

1.1 Key Features

• The OMG DDS Security specification decouples the different security aspects in a set of plugins:

– Authentication: Ensures that DDS entities are authenticated.

– Access Control: Enforces access control for Domains, Topics, etc.

– Cryptography: Maintains data integrity and confidentiality.

– Logging: Supports auditing of all DDS security-relevant events, allowing you to increase the sys-
tem’s visibility, which may help track and improve system’s availability.

• The Security Plugins can potentially run over any transport, including the builtin UDP transport with
multicast and TCP transport.

• Secure multicast support enables efficient and scalable distribution of data to many Subscribers.

• You can customize the Security Plugins to accommodate proprietary or FIPS 140-2 compliant cryptog-
raphy solutions, take advantage of custom security hardware or change the behavior of the plugins in any
number of ways. The Security Plugins SDK enables you to customize the Security Plugins to meet your
system’s security requirements.

• The OMG DDS Security specification addresses the security aspect of the communication in a
one-to-many, friendly, data-centric way, enabling applications to define different security policies based
on the nature of the shared data. This aligns with the decentralized nature of DDS and asserts its benefits:

– No single point of failure

– High performance and scalability

• The Security Plugins support all of the cryptographic algorithms specified by the OMG DDS Security
specification. For more information about the supported algorithms, refer to Supported Cryptographic
Algorithms in the Security Plugins User’s Manual.

1.2 Paths Mentioned in Documentation

This documentation refers to the following directories, depending on your operating system:

Linux

• $NDDSHOME This refers to the installation directory for Connext DDS.

The default installation paths are:

– Non-root user:

/home/<your user name>/rti_connext_dds-<version>

– Root user:

/opt/rti_connext_dds-<version>

$NDDSHOME is an environment variable set to the installation path.

1.1. Key Features 3

../../../../manuals/connext_dds_secure/users_manual/p1_welcome/overview.html#supported-cryptographic-algorithms
../../../../manuals/connext_dds_secure/users_manual/p1_welcome/overview.html#supported-cryptographic-algorithms

RTI Security Plugins Getting Started Guide, Version 6.1.2

• <path to examples> By default, examples are copied into your home directory the first time you
run RTI Launcher or any script in $NDDSHOME/bin. This document refers to the location of the copied
examples as <path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:

/home/<your user name>/rti_workspace/<version>/examples

macOS

• $NDDSHOME This refers to the installation directory for Connext DDS.

The default installation path is:

/Applications/rti_connext_dds-<version>

$NDDSHOME is an environment variable set to the installation path.

• <path to examples> By default, examples are copied into your home directory the first time you
run RTI Launcher or any script in $NDDSHOME/bin. This document refers to the location of the copied
examples as <path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:

/Users/<your user name>/rti_workspace/<version>/examples

Windows

• %NDDSHOME% This refers to the installation directory for Connext DDS.

The default installation paths are:

– User without Administrator privileges:

<your home directory>\rti_connext_dds-<version>

– User with Administrator privileges:

"C:\Program Files\rti_connext_dds-<version>"

%NDDSHOME% is an environment variable set to the installation path.

Note: When using a command prompt to enter a command that includes the path C:\Program
Files (or any directory name that has a space), enclose the path in quotation marks. For example:
“C:\Program Files\rti_connext_dds-<version>\bin\rtilauncher.bat”. Or
if you have defined the NDDSHOME environment variable: "%NDDSHOME%\bin\rtilauncher.
bat".

• <path to examples> By default, examples are copied into your home directory the first time you
run RTI Launcher or any script in %NDDSHOME%/bin. This document refers to the location of the
copied examples as <path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

1.2. Paths Mentioned in Documentation 4

RTI Security Plugins Getting Started Guide, Version 6.1.2

Default path to the examples:

<your Windows documents folder>\rti_workspace\<version>\examples

Where 'your Windows documents folder' depends on your version of Windows. For ex-
ample, on Windows 10 systems, the folder is C:\Users\<your user name>\Documents.

Sometimes this documentation uses <NDDSHOME> to refer to the installation path. Whenever you see
<NDDSHOME> used in a path, replace it with $NDDSHOME for Linux or macOS, with %NDDSHOME% for
Windows, or with your installation path.

1.2. Paths Mentioned in Documentation 5

Chapter 2

DDS System Threats

One of the key values of Connext DDS — and the OMG DDS standard — is data-centricity. Applications in
the same domain can exchange data freely by just publishing and subscribing to the Topics they are interested
in.

Suppose that in a hospital we have a patient monitoring device, Alice, that has aDataWriter publishing samples
to a given Topic T, in a certain domain. A remotemonitor in the control room, Bob, has aDataReader interested
in Topic T. After Alice and Bob discover each other, they will start exchanging data samples for Topic T.

Both Alice and Bob are legitimate applications, so they should be able to communicate as they were designed
to. In this case, nothing should prevent them from communicating. However, consider that a person from
outside the hospital’s organization has been able to connect to the hospital’s network. This person has a device,
Eve, with a DataReader, that isn’t supposed to subscribe to Topic T. In a non-secure scenario, Eve and Alice
will discover each other, then Alice will start sending data samples to Eve. Note that the original version of
the DDS and RTPS standards do not define any mechanism to verify whether Eve is authorized1 to subscribe
to Topic T. Although eavesdropping is not always a problem on every Topic or every system, the medical data
in Topic T is very sensitive and should be protected against eavesdropping. In other words, we should have a
mechanism to guarantee that only authorized DataReaders are able to subscribe to Topic T and to make sense
of data published to it.

A more severe problem comes when a malicious participant, Mallory, breaks into the network and joins the
domain to publish random data to Topic T. Even worse, in a non-secure scenario she could easily perform
tampering and/or replay attacks by subscribing to the Topic with a DataReader, then publishing modified data
samples with aDataWriter. This could have severe consequences, such as nurses and doctors in the control room
receiving false alarms regarding the vital signs of random patients, causing serious problems to the hospital.

Finally, these attacks could cross DDS Domains if an infrastructure service, such as RTI Routing Service, joins
a domain being attacked by malicious DomainParticipants.

The diagram in Figure 2.1 depicts these attacks in a system with the following participants:

• Alice: a legitimate application publishing to Topic T, allowed to publish these samples.

• Bob: a legitimate application subscribing to Topic T, allowed to access that information.
1 There are somemeasures that you can apply in order to not blindly trust everyone that joins the domain, such as the accept_un-

known_peers setting in the DISCOVERY QosPolicy (see DISCOVERY QosPolicy (DDS Extension) in the Core Libraries User’s
Manual). However, these methods are not enough when your system is under a security attack.

6

http://www.omg.org/spec/DDS/
../../../../manuals/connext_dds_professional/users_manual/index.htm#users_manual/DISCOVERY_Qos.htm
../../../../manuals/connext_dds_professional/users_manual/index.htm#users_manual/DISCOVERY_Qos.htm

RTI Security Plugins Getting Started Guide, Version 6.1.2

• Eve: an eavesdropper trying to subscribe to Topic T without authorization - to perform unauthorized
subscription (1).

• Trudy: an intruder trying to publish into the databus without authorization - to perform unauthorized
publication (2).

• Mallory: a malicious insider (for instance, authorized to subscribe to data but not to publish) trying to
perform tampering and replay (3).

• Trent: an Infrastructure Service that legitimately subscribes to and publishes data.

Figure 2.1: Threats affecting the OMG DDS standard in a non-secure scenario.

Given its data-centricity, traditional security solutions — mostly focused on securing a pipeline for byte ex-
change — do not fit OMG DDS well. Moreover, using a pipeline requires one-to-one sessions between peers,
which doesn’t allow multicast, so scalability is limited. In Securing a DDS Domain, we’ll see how the Security
Plugins solve these problems.

7

Chapter 3

Securing a DDS Domain

In a DDS Secure system, a Governance File defines the security requirements for communication. This file
contains a mapping between Domain IDs and the security policies that DomainParticipants must follow to
interact in that Domain. Some examples of those rules are:

Governance rule Description Possible values
discovery_protec-
tion_kind

The level of protection DomainPar-
ticipants must use for discovery

NONE, SIGN,
SIGN_WITH_ORI-
GIN_AUTHENTICA-
TION, ENCRYPT or
ENCRYPT_WITH_ORI-
GIN_AUTHENTICA-
TION

allow_unauthen-
ticated_partici-
pants

Whether unauthenticated Domain-
Participants may communicate
within the Domain

TRUE or FALSE

data_protec-
tion_kind

The level of protection that should
be used for data of individual Topics
within that Domain

NONE, SIGN,
SIGN_WITH_ORI-
GIN_AUTHENTICA-
TION, ENCRYPT or
ENCRYPT_WITH_ORI-
GIN_AUTHENTICA-
TION

Going back to our example, the hospital can now protect the confidentiality of Topic T by setting its
data_protection_kind to ENCRYPT in the Domains where it is published. With this, Eve will not
be able to guess the vital signs of the patients, even if she has access to the messages being exchanged in the
Secure Domain.

As you can see, the rules that compose the Governance File specify how your system is protected. All the
DomainParticipants in your secure system need to load the same2 Governance File, either by having a copy of

2 If not the same, at least Governance Files loaded by different DomainParticipants need to be compatible. For further information,

8

RTI Security Plugins Getting Started Guide, Version 6.1.2

it, or by accessing a single Governance File from a common location.

In addition to meeting the security requirements specified in the Governance File, every DomainParticipant
joining a Secure Domain must be associated with a Permissions File. This Permissions File contains a set of
grants, which determine what the local participant is allowed to do in the Domain.

For example, Alice should only have permission to publish Topic T, since her only mission is to monitor patient
vitals. On the other hand, Bob’s role is to display everything related to patients’ health conditions. Therefore,
he should have permission to subscribe to any Topic related to patients’ health, but he should not be allowed to
publish any Topics. This step of creating Permissions Files goes beyond many traditional methods of security,
where an application that is allowed to communicate within a secure system is generally assumed to be safe,
and may be able to access data that it should not. The use of Permissions Files locks down the specific access
that trusted applications have, so if one becomes compromised, the damage to the system is limited.1

Key Terms

A Governance File defines how your system is protected, while Permissions Files define who can access
what.

To prevent Mallory from pretending to have permission to both publish and subscribe to Topic T, both Gover-
nance and Permissions Files are signed by the Permissions Certificate Authority (CA). The Permissions CA
must be shared by all DomainParticipants3, therefore any DomainParticipant trusting that Permissions CA can
verify whether another DomainParticipant has the permissions it claims.

As you can see, Governance and Permissions Files allow you to define the security requirements of your system
in a data-centric way.

InHands-On 2: Defining Your System’s Security Requirements, you will define the security requirements of your
secure DDS Domain. All the DomainParticipants joining your Secure Domain will have to meet these require-
ments in order to communicate. System-wide security requirements are completely defined by the following
files:

• Permissions CA certificate: Shared by all the DomainParticipants in your secure system.3 The Per-
missions CA certificate is used to verify that Permissions and Governance Files are legitimate.

• Identity CA certificate: Shared by all the DomainParticipants in your secure system.4 The Identity CA
certificate is used to authenticate the remote DomainParticipants, by verifying that the Identity Certifi-
cates are legitimate (see Securing a DomainParticipant).

• Governance File: Shared by all the DomainParticipants in your secure system.2 The Governance File
specifies which Domains should be secured and how. It is signed by the Permissions CA.

see Governance File in the Security Plugins User’s Manual.
1 This approach is based on the Principle of Least Privilege. For further information, see Applying DDS Protection in the Security

Plugins User’s Manual.
3 In systems where multiple Permissions Certificate Authorities may exist, you can use the access_control.

alternative_permissions_authority_files property to specify alternative Permissions CA certificates. For further
details, see Governance and Permissions in the Security Plugins User’s Manual.

4 Depending on your use case, different DomainParticipants may trust a different Identity CA, for example, when several interme-
diate CAs exist in your PKI. For further details, see Alternative CAs in the Security Plugins User’s Manual.

9

../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#governance-file
../../../../manuals/connext_dds_secure/users_manual/p1_welcome/overview.html#applying-dds-protection
../../../../manuals/connext_dds_secure/users_manual/p1_welcome/overview.html#applying-dds-protection
../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#governance-and-permissions
../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#alternative-cas

RTI Security Plugins Getting Started Guide, Version 6.1.2

Note: The Identity CA and Permissions CA may be the same, depending on your use case.

3.1 Securing a DomainParticipant

As introduced in the previous section, the Permissions File defines what a specific DomainParticipant is al-
lowed to do in a secure DDS Domain. However, Permissions Files need to be exchanged to claim and verify
permissions. This means that Mallory, who will not give up that easily, may intercept some Permissions Files
and pretend to be the legitimate holder of those permissions. To avoid this situation, DomainParticipants in
a Secure Domain need to be mutually authenticated. To achieve this, every secure DomainParticipant has an
Identity Certificate and a Private Key.5 These documents are needed to perform mutual authentication and
to establish shared secrets in a secure way, by using the Diffie-Hellman public-key protocol.

To prevent Mallory from forging her own identity, all the Identity Certificates in your system have to be signed
by an Identity CA. As part of the authentication process, secure DomainParticipants will use the Identity CA
certificate to validate the identity of discovered peers.

If a DomainParticipant cannot be authenticated, it won’t be allowed to publish or subscribe to protected Topics.
Depending on the policies defined in the Governance File, it will be restricted to unprotected Topics or it
won’t be allowed to communicate at all (see allow_unauthenticated_participants in the Related
Governance Attributes for Authentication, in the RTI Security Plugins User’s Manual).

Because Mallory cannot forge her own identity, she will fail to authenticate, thus she will not be able to claim
any permissions. That guarantees that Mallory will not be able to publish or subscribe to Topic T.

In Hands-On 3: Defining the DomainParticipant Permissions, you will provide an identity to your DomainPar-
ticipants and set the permissions for each of them. The steps in this hands-on exercise guarantee that if an
attacker is able to compromise a trusted application in the system, the damage they can do is limited. The
following files define the identity and permissions of a DomainParticipant entirely:

• Identity Certificate signed by the Identity CA. Other participants will request this certificate to verify
the identity of the local participant.

• Private Key, only known to the local participant. It is needed to complete the authentication process,
which provides a way of verifying the identity and setting a Shared Secret.

• Permissions File signed by the Permissions CA. This document specifies what Domains and Partitions6
the local participant can join and what Topics it can read/write.

5 Private keys need to be securely stored and securely accessed by the local application. The Security Plugins do not provide a secure
storage mechanism. You are responsible for storing your private keys in a secure place.

6 Partitions are outside the scope of this document. For more information, see Partitions in the Security Plugins User’s Manual and
the PARTITION QosPolicy in the Connext DDS Core Libraries User’s Manual.

3.1. Securing a DomainParticipant 10

../../../../manuals/connext_dds_secure/users_manual/p2_core/authentication.html#related-governance-rules
../../../../manuals/connext_dds_secure/users_manual/p2_core/authentication.html#related-governance-rules
../../../../manuals/connext_dds_secure/users_manual/p2_core/access_control.html#partitions
../../../../manuals/connext_dds_professional/users_manual/index.htm#users_manual/PARTITION_QosPolicy.htm

RTI Security Plugins Getting Started Guide, Version 6.1.2

Figure 3.1: TwoDomainParticipants (P1 and P2) using the Security Plugins, along with all the security artifacts
needed for communication.

3.1. Securing a DomainParticipant 11

Chapter 4

Hands-On 1: Securing Connext DDS
Applications

Suppose you are the Secure DDS expert in a company called Patient Monitoring Innovations (PMI). In this
exercise, we will secure a Connext DDS project created with RTI Code Generator (rtiddsgen).

Tip: For a brief introduction to RTI Code Generator, see Run Code Generator, in the Introduction to Pub-
lish/Subscribe. Full details are in the RTI Code Generator User’s Manual.

As a first step, we will use some security artifacts provided with Connext DDS. The applications in your project
will use these artifacts to provide the required configuration and credentials to the Security Plugins, including
the identity and permissions of the DomainParticipants. Then we will run the applications to check that we
have communication. Finally, we will verify that eavesdropping is not possible with the configured level of
security.

4.1 Generating a Connext DDS Project

1. Run rtisetenv_<architecture> in a new command prompt window, to avoid issues with paths
and licensing.

Where <architecture> depends on your target machine (where you will deploy your completed
application). Architecture strings are listed in the RTI Connext DDS Core Libraries Platform Notes.
Examples are x64Win64VS2017 and x64Linux4gcc7.3.0.

(See Set Up Environment Variables, in Introduction to Publish/Subscribe.)

2. Generate an example from an IDL file. Youmaywant to use the following type definition for this example
project:

Listing 4.1: Sample contents of PatientMonitoring.idl
struct PatientMonitoring {

string<128> patient_condition;
};

12

../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html#run-code-generator
../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html#run-code-generator
../../../../manuals/connext_dds_professional/code_generator/users_manual/index.htm
../../../../manuals/connext_dds_professional/platform_notes/index.htm
../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html#set-up-environment-variables-rtisetenv

RTI Security Plugins Getting Started Guide, Version 6.1.2

3. Put the IDL file in a directory called patient_monitoring_project.

4. Run RTI Code Generator (rtiddsgen) from that directory:

Linux

$ cd patient_monitoring_project
$ rtiddsgen -example <architecture> -language C++ PatientMonitoring.idl

macOS

$ cd patient_monitoring_project
$ rtiddsgen -example <architecture> -language C++ PatientMonitoring.idl

Windows

> cd patient_monitoring_project
> rtiddsgen -example <architecture> -language C++ -ppDisable␣
→˓PatientMonitoring.idl

Note: We’ll usepatient_monitoring_project as the working directory. Unless otherwise indicated,
we’ll run all commands from this directory.

The generated example will be composed of the following files:

Table 4.1: Generated Files
Files Description
PatientMonitoring.cxx
PatientMonitoring.h
PatientMonitoringPlugin.cxx
PatientMonitoringPlugin.h
PatientMonitoringSupport.cxx
PatientMonitoringSupport.h

Support for your types in C++

PatientMonitoring_publisher.cxx
PatientMonitoring_subscriber.cxx

Example publisher/subscriber application.
Contains a DomainParticipant with a single
DataWriter/DataReader for the last type defined in
PatientMonitoring.idl.

Makefiles and Visual Studio® project files (for Win-
dows applications)

Architecture-dependent build files

USER_QOS_PROFILES.xml QoS profiles
README_<architecture>.txt See this README for instructions on how to open

and modify the files.

Our goal is to secure the generated publisher and subscriber applications (Alice and Bob, respectively, using
the example from the previous sections).

4.1. Generating a Connext DDS Project 13

RTI Security Plugins Getting Started Guide, Version 6.1.2

4.2 Adding Security Artifacts to Your Project

We’ll rely on some files from the examples directory in rti_workspace to define the security setup
(see Paths Mentioned in Documentation). These files will provide the applications you’ll build with the security
configuration and credentials required by the Security Plugins.

For convenience, copy these files into your project’s top level:

Linux

$ cp -r <path to examples>/dds_security/* ./

Alternatively, copy/paste all the directories in <path to examples>/dds_security/ to pa-
tient_monitoring_project (the working directory).

macOS

$ cp -r <path to examples>/dds_security/* ./

Alternatively, copy/paste all the directories in <path to examples>/dds_security/ to pa-
tient_monitoring_project (the working directory).

Windows

> robocopy /E <path to examples>\dds_security\ .

Alternatively, copy/paste all the directories in <path to examples>dds_security` to
:file:`patient_monitoring_project (the working directory).

4.3 Enabling Security in Your QoS Profiles

Now modify the QoS profiles (XML) so that the applications will load the security libraries and the required
security artifacts. To do so, define a profile named Alice in your USER_QOS_PROFILES.xml by replacing
the existing default profile with the following sample profile:

Listing 4.2: Sample QoS profile with security enabled.
<qos_profile name="Alice" base_name="BuiltinQosLib::Generic.Security" is_
→˓default_qos="true">

<domain_participant_qos>
<property>

<value>
<!-- Certificate Authorities -->
<element>

<name>dds.sec.auth.identity_ca</name>
<value>file:./cert/ecdsa01/ca/ecdsa01RootCaCert.pem</

→˓value>
</element>
<element>

<name>dds.sec.access.permissions_ca</name>
<value>file:./cert/ecdsa01/ca/ecdsa01RootCaCert.pem</

→˓value>

4.2. Adding Security Artifacts to Your Project 14

RTI Security Plugins Getting Started Guide, Version 6.1.2

</element>
<!-- Participant Public Certificate and Private Key -->
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>file:./cert/ecdsa01/identities/ecdsa01Peer01Cert.

→˓pem</value>
</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>file:./cert/ecdsa01/identities/ecdsa01Peer01Key.

→˓pem</value>
</element>
<!-- Signed Governance and Permissions files -->
<element>

<name>dds.sec.access.governance</name>
<value>file:./xml/signed/signed_Governance.p7s</value>

</element>
<element>

<name>dds.sec.access.permissions</name>
<value>file:./xml/signed/signed_PermissionsA.p7s</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>

This profile inherits from the builtin BuiltinQosLib::Generic.Security profile. This tells your
DomainParticipant to use the Security Plugins as the security plugin suite. (For further details, see Properties
for Enabling Security in the RTI Security Plugins User’s Manual.) Note that not indicating a security plugin
suite will result in a working but unsecure application.

The profile also configures the following properties:

• dds.sec.auth.identity_ca Configures the Identity CA certificate, used to verify that Identity
Certificates from other DomainParticipants are legitimate. Usually, all the participants in your secure
system will load the same Identity CA certificate.1

• dds.sec.access.permissions_ca Configures the Permissions CA certificate, used to verify
that the Governance and Permissions Files are legitimate. All the participants in your secure system
must load the same Permissions CA certificate.2

• dds.sec.auth.identity_certificate Configures the Identity Certificate for the local Do-
mainParticipant. Every secure participant should have its own unique Identity Certificate, signed by the
Identity CA.

• dds.sec.auth.private_key Configures the Private Key for the local DomainParticipant, used
during the authentication process. Every secure participant should have its own unique Private Key, only
known to the local participant.

1 Depending on your use case, different DomainParticipants may trust a different Identity CA, for example, when several interme-
diate CAs exist in your PKI. For further details, see Alternative CAs in the Security Plugins User’s Manual.

2 In systems where multiple Permissions Certificate Authorities may exist, you can use the access_control.
alternative_permissions_authority_files property to specify alternative Permissions CA certificates. For further
details, see Governance and Permissions in the Security Plugins User’s Manual.

4.3. Enabling Security in Your QoS Profiles 15

../../../../manuals/connext_dds_secure/users_manual/p2_core/building_apps.html#properties-for-enabling-security
../../../../manuals/connext_dds_secure/users_manual/p2_core/building_apps.html#properties-for-enabling-security
../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#alternative-cas
../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#governance-and-permissions

RTI Security Plugins Getting Started Guide, Version 6.1.2

• dds.sec.access.governance Configures the Governance File, which defines how your system
is protected. All the participants in your secure system must load the same Governance File3, signed by
the Permissions CA.

• dds.sec.access.permissions Configures the Permissions File for the local DomainPartici-
pant, which specifies what it is allowed to do in every Secure Domain. Every secure participant should
have its own Permissions File, signed by the Permissions CA.

Important: A participant that is not configured to use a security plugin suite will omit any security-related
properties, resulting in a working but unsecure DomainParticipant. Make sure your QoS profile inherits from
the builtin BuiltinQosLib::Generic.Security profile or refer to Building and Running Security
Plugins-Based Applications in the RTI Security Plugins User’s Manual.

In later hands-on exercises, you will learn how to generate all the files listed above. For now, we’ll use the
example files you copied in the previous step.

4.4 Linking Your Applications Against RTI Security Plugins and
OpenSSL Libraries

So far, you have generated a Connext DDS project and configured its QoS profiles to load the required security
artifacts and enable the Security Plugins. Now we will build the applications, so you can see them in action.
For convenience, we will link the applications dynamically to both Connext DDS and the OpenSSL libraries
(for other linking options, see Building and Running Security Plugins-Based Applications in the RTI Security
Plugins User’s Manual.

Note: We use RTI_OPENSSLHOME to refer to the path where the OpenSSL bundle is installed in your
system4 (in Connext DDS 6.1.2, RTI_OPENSSLHOME is the path to openssl-1.1.1n). The installation process
is described in the RTI Security Plugins Installation Guide.

4.4.1 Building the Application

Linux

Use the generated Makefile with the SHAREDLIB variable set to 1 to force dynamic linking; set DEBUG=1 to
build in debug mode:

$ make -f makefile_PatientMonitoring_<architecture> SHAREDLIB=1 DEBUG=1

macOS
3 If not the same, at least Governance Files loaded by different DomainParticipants need to be compatible. For further information,

see Governance File in the Security Plugins User’s Manual.
4 In the license-managed version (with “lm” in the bundle name), OpenSSL is installed automatically when you install the Connext

DDS host bundle. After installation, OpenSSL will be in <installdir>/third_party/openssl-<version>.

4.4. Linking Your Applications Against RTI Security Plugins and OpenSSL Libraries 16

../../../../manuals/connext_dds_secure/users_manual/p2_core/building_apps.html
../../../../manuals/connext_dds_secure/users_manual/p2_core/building_apps.html
../../../../manuals/connext_dds_secure/users_manual/p2_core/building_apps.html
../../../../manuals/connext_dds_secure/users_manual/p2_core/building_apps.html
../../../../manuals/connext_dds_secure/installation_guide/index.htm
../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#governance-file

RTI Security Plugins Getting Started Guide, Version 6.1.2

Use the generated Makefile with the SHAREDLIB variable set to 1 to force dynamic linking; set DEBUG=1 to
build in debug mode:

$ make -f makefile_PatientMonitoring_<architecture> SHAREDLIB=1 DEBUG=1

Windows

We will build the solution generated by RTI Code Generator with the Debug DLL configuration. You can do
this by using the msbuild command-line tool provided with Visual Studio. To do this, open a Visual Studio
command prompt and change to the patient_monitoring_project directory (cd patient_mon-
itoring_project). Then build the Debug DLL solution, which is configured for dynamic linking:

> msbuild /property:Configuration="Debug DLL" PatientMonitoring-<architecture>
→˓.sln

Alternatively, you can open PatientMonitoring-<architecture>.sln with Visual Studio, as
shown in the following screenshot. If you choose this method, select the Debug DLL option in the Solution
Configurations dropdown menu (1), then select Build for both PatientMonitoring_publisher and Patient-
Monitoring_subscriber (2).

Figure 4.1: Building the application with Visual Studio 2015.

4.4. Linking Your Applications Against RTI Security Plugins and OpenSSL Libraries 17

RTI Security Plugins Getting Started Guide, Version 6.1.2

4.5 Running the Applications

It’s time to see your secure publisher and subscriber working together! Open two command prompts and
configure the environment in both to point to the location of the dynamic libraries, as explained below.

4.5.1 Configuring the Environment in Both Command Prompts

1. Configure the environment for Connext DDS by running rtisetenv_<architecture> from the
Connext DDS installation path.

For details, see Set Up Environment Variables, in Introduction to Publish/Subscribe.

This will update your PATH to include the location of the Connext DDS binaries.

2. Update the shared library environment variable to include the directory where the OpenSSL libraries
reside. For this example, you may want to use OpenSSL debug libraries.

Linux

$ export LD_LIBRARY_PATH=$RTI_OPENSSLHOME/<architecture>/debug/lib:$LD_
→˓LIBRARY_PATH

macOS

$ export DYLD_LIBRARY_PATH=$RTI_OPENSSLHOME/<architecture>/debug/lib:
→˓$DYLD_LIBRARY_PATH

Windows

> set PATH=%RTI_OPENSSLHOME%\<architecture>\debug\bin;%PATH%

If you run the applications from within Visual Studio, you need to set up the environment before opening
the solution in Visual Studio.

Tip: Make sure you set the environment in both command prompts.

4.5.2 Checking Communication

1. Run the publisher in one of the command prompts and the subscriber in the other.

Do not provide any arguments to the applications, so that they communicate in Domain 0. This will be
your Secure Domain.

2. You should see the message Received data in the subscriber’s command prompt, which indicates suc-
cessful communication:

Linux

Publisher:

4.5. Running the Applications 18

../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html#set-up-environment-variables-rtisetenv

RTI Security Plugins Getting Started Guide, Version 6.1.2

$./objs/<architecture>/PatientMonitoring_publisher
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber
No data after 1 second
Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

macOS

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber
No data after 1 second
Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

Windows

Publisher:

> objs\<architecture>\PatientMonitoring_publisher.exe
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

4.5. Running the Applications 19

RTI Security Plugins Getting Started Guide, Version 6.1.2

> objs\<architecture>\PatientMonitoring_subscriber.exe
No data after 1 second
Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

Congratulations! You have added Security Plugins to your applications.

4.6 Checking that Your Applications Communicate Securely

To check that communication is actually secure, now let’s have a non-secure Connext DDS application try to
subscribe to the PatientMonitoring Topic. For convenience, we will use RTI Administration Console as the
non-secure subscriber.

4.6.1 Verifying that Eavesdropping Attempts are Frustrated

1. Open Administration Console and join Domain 0.

(For details on using Administration Console, see Viewing Your Data, in Introduction to Publish/Sub-
scribe.

2. Notice that your secure DomainParticipants do not show up in Administration Console.

The security configuration of your Secure Domains requires DomainParticipants to authenticate in order
to join the Domain. Any participant with wrong or no credentials will fail to authenticate and will be
disallowed from communicating in theDomain. In this example, the Governance File you copied into the
project (and added to Alice’s XML QoS configuration) protects the endpoint discovery with encryption.
As a result, intruders and eavesdroppers will not have any information regarding the Topics in your
secure system. We will show the configuration values to force authentication and to enable encryption in
Hands-On 2: Defining Your System’s Security Requirements.

4.6.2 Detecting Eavesdropping Attempts

When Administration Console runs in Domain 0, it sends discovery information to all other DomainParticipants
in the same Domain. When your secure participants receive this information, they will require Administra-
tion Console to authenticate. However, Administration Console does not hold a valid credential and cannot
authenticate, making discovery fail and preventing further communication.

You might want to detect that an unauthorized DomainParticipant tried to communicate in your secure system.
To do this:

1. Modify your QoS profile to increase the verbosity of the Logging Plugin:

4.6. Checking that Your Applications Communicate Securely 20

../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html#hands-on-2-viewing-your-data
../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html#hands-on-2-viewing-your-data

RTI Security Plugins Getting Started Guide, Version 6.1.2

<qos_profile name="Alice" base_name="BuiltinQosLib::Generic.Security" is_
→˓default_qos="true">

<domain_participant_qos>
<property>

<value>
<!-- Logging Plugin setup -->
<element>

<name>com.rti.serv.secure.logging.verbosity</name>
<value>WARNING</value>

</element>
...

2. Rerun your secure publisher or/and subscriber.

A message like this should show up in its command prompt:

PRESParticipant_getRemoteParticipantInitialSecurityState:unauthenticated␣
→˓remote participant 1018db2.74f9482c.2712840d denied

This message indicates a failure during the authentication of a remote DomainParticipant. It will
be logged every time an unauthenticated participant attempts to join a Secure Domain where al-
low_unauthenticated_participants is set to FALSE.

4.7 Further Exercises

So far, we have defined a single QoS profile named Alice to enable the Security Plugins. Since this profile has
the attribute is_default_qos=true, any Connext DDS application loading USER_QOS_PROFILES.
xml will have the same security artifacts. This makes it convenient to load the same Governance File and CA
certificates in an example. However, all your applications will have the same identity and permissions, which is
strongly discouraged. Please note that the authentication succeeds in this situation since theDomainParticipants
still have valid credentials, i.e., the Identity CA has issued all the identities. Also note that the Permissions File
the publisher and the subscriber are loading gives them permission to publish and subscribe to anyTopic, making
communication possible.

4.7.1 Give Different Credentials to Each Application in Your System

1. To maximize security, different applications should always have different identities and permissions.
Write a second QoS profile for your project in the same XML QoS file. You should end up with the
following:

• A profile called Alice for the publisher application

• A profile called Bob for the subscriber application

Tip: You may want to have Bob’s profile inherit from Alice’s, with base_name="Al-
ice". This way, you don’t need to specify the CA certificates and the Governance File twice in
USER_QOS_PROFILES.xml.

4.7. Further Exercises 21

RTI Security Plugins Getting Started Guide, Version 6.1.2

2. Modify Bob’s identity and permissions.

For example, use ecdsa01Peer02Cert.pem, ecdsa01Peer02Key.pem, and
signed_PermissionsB.p7s.

Note that ecdsa01Peer02Key.pem is password-protected, so use the dds.sec.auth.
password property to specify the password in Bob’s QoS profile:

<qos_profile name="Bob" base_name="Alice">
<domain_participant_qos>

<property>
<value>

<!-- Participant Public Certificate and Private Key -->
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>file:./cert/ecdsa01/identities/

→˓ecdsa01Peer02Cert.pem</value>
</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>file:./cert/ecdsa01/identities/

→˓ecdsa01Peer02Key.pem</value>
</element>
<element>

<name>dds.sec.auth.password</name>
<value>VG9tQjEy</value>

</element>
<!-- Signed Permissions file -->
<element>

<name>dds.sec.access.permissions</name>
<value>file:./xml/signed/signed_PermissionsB.p7s</

→˓value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>

3. Modify the applications’ source code in PatientMonitoring_publisher.cxx and
PatientMonitoring_subscriber.cxx to use these QoS profiles. The publisher’s Do-
mainParticipant should use the Alice QoS profile, and the subscriber’s DomainParticipant should use
the Bob QoS profile.

To do so, you can create your DomainParticipants with DDSDomainParticipantFac-
tory::create_participant_with_profile (see DomainParticipantFactory in the Tradi-
tional C++ API Reference).

4. Rebuild your project and run your publisher and subscriber applications. You should see communication.

4.7. Further Exercises 22

../../../../api/connext_dds/api_cpp/classDDSDomainParticipantFactory.html
../../../../api/connext_dds/api_cpp/classDDSDomainParticipantFactory.html

RTI Security Plugins Getting Started Guide, Version 6.1.2

4.8 Troubleshooting

• When I try to run Code Generator (rtiddsgen), my system does not recognize or find the command.

Make sure Connext DDS is installed correctly.

Also make sure you’ve correctly set the PATH environment variable (your PATH should include
<NDDSHOME>/bin). You can run rtisetenv_<architecture> to add the location of the Con-
next DDS binaries to your PATH (see Set Up Environment Variables, in Introduction to Publish/Sub-
scribe).

• When I run Code Generator (rtiddsgen), I get this error:

The preprocessor 'CL.EXE' cannot be found in your path.

Make sure your toolchain’s preprocessor is available. If you are using Visual Studio, make sure you
are using a Visual Studio command prompt. Alternatively, run rtiddsgen with the -ppDisable
option.

• When I run Code Generator (rtiddsgen), I get warnings stating:

File exists and will not be overwritten

Some files that would normally be generated already exist and will not be overwritten. These errors are
expected.

• When I run the publisher/subscriber, I get this error:

error while loading shared libraries: libnddscpp.so

Make sure the shared library environment variable includes the directory where theConnext DDS libraries
reside. See Configuring the Environment in Both Command Prompts for a solution.

• When I run the publisher/subscriber, I get this error:

!open library=libnddssecurity.so

– Make sure the OpenSSL target bundle provided by RTI is installed correctly.4

– Make sure the shared library environment variable includes the directory where OpenSSL libraries
reside. See Configuring the Environment in Both Command Prompts for a solution.

– Make sure your environment is pointing to the correct version of the OpenSSL libraries.

• When I run the publisher and subscriber, communication does not occur.

– Make sure you run both applications from the patient_monitoring_project directory,
so they load the same USER_QOS_PROFILES.xml file. Note: If the project file for your IDE
was auto-generated and you are running from within your IDE, it should run from that directory
automatically.

– Make sure your applications are loading the right security artifacts or artifacts combinations (that
is, you don’t get a !certificate verify fail error).

4.8. Troubleshooting 23

../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html#set-up-environment-variables-rtisetenv
../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html#set-up-environment-variables-rtisetenv

RTI Security Plugins Getting Started Guide, Version 6.1.2

– Be careful with Bob’s QoS profile depending on Alice’s — you may be changing properties in
Alice’s profile and loading Bob’s, or the opposite.

• When I run the publisher/subscriber, I get this error:

!certificate verify fail

Make sure your applications are loading the right security artifacts or artifacts combinations.

4.8. Troubleshooting 24

Chapter 5

Hands-On 2: Defining Your System’s
Security Requirements

In this Hands-On, we will define the security requirements for your project, expressing them in the form of
a Governance File. We will sign this Governance File with the provided Permissions CA. Lastly, we will
tell your secure participants where to find the new Governance File and we will see how the new security
requirements are applied to your system.

Note: We will use the OpenSSL CLI to perform the security operations in the generation of the security ar-
tifacts. Make sure to include in the path your OpenSSL binary directory8. The installation process is described
in the RTI Security Plugins Installation Guide.

Note that the Security Plugins do not depend on OpenSSL to generate these artifacts; you can use the security
toolkit of your choice. With that said, we recommend using OpenSSL 1.1.1n to make sure that the certificates
are in the right format.

5.1 Specifying the Security Requirements

If you completed Hands-On 1: Securing Connext DDS Applications, you should have two applications using
Security Plugins to communicate securely. But what does “securely” actually mean? What kind or what level of
security is being applied? As mentioned in Introduction to RTI Security Plugins, the answers to these questions
are in the Governance File, which defines the security rules that everyDomainParticipant in your Secure Domain
needs to follow. Wewill now focus on writing a Governance File to specify your project’s security requirements.

Governance Files define two levels of rules that can be configured:

• Domain-level rules, which affect participants in the Domain;

• Topic-level rules, which affect Endpoints (DataReaders and DataWriters) for that Topic.
8 In the license-managed version (with “lm” in the bundle name), OpenSSL is installed automatically when you install the Connext

DDS host bundle. After installation, OpenSSL will be in <installdir>/third_party/openssl-<version>.

25

../../../../manuals/connext_dds_secure/installation_guide/index.htm

RTI Security Plugins Getting Started Guide, Version 6.1.2

You will find a description of the currently available rules in the tables below. For more information, see these
sections in the RTI Security Plugins User’s Manual:

• Related Governance Rules for Authentication

• Related Governance Rules for Access Control

• Related Governance Rules for Cryptography

Table 5.1: Domain-Level Rules
Rule Description Possible values
allow_unauthenti-
cated_participants

Determines if a secure DomainPartici-
pant is allowed to match a participant that
is not able to successfully complete the
authentication process. By disallowing
unauthenticated participants, we prevent
them from publishing or subscribing to
Topics in our Secure Domain.1

TRUE or FALSE

enable_join_ac-
cess_control

Determines if the participant-level per-
missions configured in the Permissions
File are enforced for remote participants.

TRUE or FALSE

discovery_protec-
tion_kind

Configures the Discovery Protection, de-
termining what level of protection is ap-
plied to the Builtin Secure Discovery
Topics.

ENCRYPT, EN-
CRYPT_WITH_ORI-
GIN_AUTHENTICATION,
SIGN, SIGN_WITH_ORI-
GIN_AUTHENTICATION,
NONE

liveliness_protec-
tion_kind

Configures the Liveliness Protection, de-
termining what level of protection is ap-
plied to the Builtin Secure Liveliness
Topic.

ENCRYPT, EN-
CRYPT_WITH_ORI-
GIN_AUTHENTICATION,
SIGN, SIGN_WITH_ORI-
GIN_AUTHENTICATION,
NONE

rtps_protec-
tion_kind

Configures the RTPS Protection, deter-
mining what level of protection is applied
to RTPS messages.

ENCRYPT, EN-
CRYPT_WITH_ORI-
GIN_AUTHENTICATION,
SIGN, SIGN_WITH_ORI-
GIN_AUTHENTICATION,
NONE

1 A system may allow unauthenticated participants as a way of combining older, unsecured applications with newer secure applica-
tions (not recommended, see Using Separate Domains for Secure and Unsecure Participants in the Security Plugins User’s Manual).

5.1. Specifying the Security Requirements 26

../../../../manuals/connext_dds_secure/users_manual/p2_core/authentication.html#related-governance-rules
../../../../manuals/connext_dds_secure/users_manual/p2_core/access_control.html#related-governance-rules
../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#related-governance-rules
../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#builtin-secure-discovery-topics
../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#builtin-secure-discovery-topics
../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#builtin-secure-liveliness-topic
../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#builtin-secure-liveliness-topic
../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#rtps-protection
../../../../manuals/connext_dds_secure/users_manual/p3_advanced/best_practices.html#using-separate-domains-for-secure-and-unsecure-participants

RTI Security Plugins Getting Started Guide, Version 6.1.2

Table 5.2: Topic-Level Rules
Rule Description Possible values
enable_discov-
ery_protection

Determines if discovery information up-
dates related to Endpoints from this Topic
will be sent with the level of security
defined in the discovery_protec-
tion_kind domain-level rule.

TRUE or FALSE

enable_liveli-
ness_protection

Determines if liveliness updates related
to Endpoints from this Topic will be
sent with the level of security de-
fined in the liveliness_protec-
tion_kind domain-level rule.

TRUE or FALSE

enable_read_ac-
cess_control

Determines if endpoint-level permissions
configured in the Permissions File are en-
forced for local and remote DataReaders.

TRUE or FALSE

enable_write_ac-
cess_control

Determines if endpoint-level permissions
configured in the Permissions File are en-
forced for local and remote DataWriters.

TRUE or FALSE

metadata_protec-
tion_kind

Configures the Submessage Protection,
determining what level of protection is
applied to RTPS submessages from End-
points of the associated Topic.

ENCRYPT, EN-
CRYPT_WITH_ORI-
GIN_AUTHENTICATION,
SIGN, SIGN_WITH_ORI-
GIN_AUTHENTICATION,
NONE

data_protec-
tion_kind

Configures the Serialized Data Protec-
tion, determining what level of protection
is applied to the serialized payload from
DataWriters of the associated Topic.

ENCRYPT, SIGN, NONE

5.2 Composing a Governance File with the Security Requirements

As the DDS Security expert at Patient Monitoring Innovations (PMI), you are going to specify the security
requirements of your system in a file called pmiGovernance.xml.

Create pmiGovernance.xml in the xml directory (along with the XML files we copied from the Connext
DDS examples) and add the following content:

Listing 5.1: Sample Governance File that applies to all theDomains.
Different Topics will have a different kind of protection.

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://community.rti.com/schema/6.1.1/dds_
→˓security_governance.xsd">
<!-- Rules affecting different domains are defined under this tag -->
<domain_access_rules>

<domain_rule>
<!-- 1. This determines when to apply this rule. In this case, any␣

→˓domain -->

5.2. Composing a Governance File with the Security Requirements 27

../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#submessage-protection
../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#serialized-data-protection
../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#serialized-data-protection

RTI Security Plugins Getting Started Guide, Version 6.1.2

<domains>
<id_range>

<min>0</min>
</id_range>

</domains>

<!-- 2. The following fields determine behavior of
DomainParticipants matching this rule -->

<allow_unauthenticated_participants>TRUE</allow_unauthenticated_
→˓participants>

<enable_join_access_control>FALSE</enable_join_access_control>
<discovery_protection_kind>ENCRYPT</discovery_protection_kind>
<liveliness_protection_kind>ENCRYPT</liveliness_protection_kind>
<rtps_protection_kind>NONE</rtps_protection_kind>

<!-- 3. Rules affecting topics are defined under this tag -->
<topic_access_rules>

<!-- 3.1 Let's have a rule for all topics -->
<topic_rule>

<!-- This determines when to apply the rule -->
<topic_expression>*</topic_expression>

<!-- The following fields determine the behavior of
topics/endpoints matching this rule -->
<enable_discovery_protection>FALSE</enable_discovery_protection>
<enable_liveliness_protection>FALSE</enable_liveliness_protection>
<enable_read_access_control>FALSE</enable_read_access_control>
<enable_write_access_control>FALSE</enable_write_access_control>
<metadata_protection_kind>NONE</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_protection_kind>

</topic_rule>

<!-- 3.2 Later we will define other topic rules for specific topics --
→˓>

</topic_access_rules>
</domain_rule>

</domain_access_rules>
</dds>

Note: The following references to (1), (2), etc. correspond to comments in the above XML.

This Governance File defines just one configuration, to be applied to any Domain in the system (1). Conse-
quently, all the Domains and Topics in the system are protected in the same way. In particular, the following
rules are defined (2):

5.2. Composing a Governance File with the Security Requirements 28

RTI Security Plugins Getting Started Guide, Version 6.1.2

Domain rule (domain_rule) Value Security implications
allow_unauthenticated_par-
ticipants

TRUE Non-authenticated participants are
allowed to publish/subscribe unpro-
tected Topics

enable_join_access_control FALSE Remote participant-level permis-
sions are not checked

discovery_protection_kind ENCRYPT Endpoint Discovery will be pro-
tected with encryption for Topics
setting enable_discov-
ery_protection to TRUE2

liveliness_protection_kind ENCRYPT Liveliness assertions will be pro-
tected with encryption for Topics
setting enable_liveli-
ness_assertion to TRUE3

rtps_protection_kind NONE RTPS messages are sent without
any additional protection (required
to allow unauthenticated partici-
pants)

Then we can define different levels of protection depending on the Topic to protect (3). This Governance
specifies a single rule that applies to every Topic and protects the user’s data with encryption (3.1). We will
define the protection of the PatientMonitoring Topic (3.2) as part of a later exercise.

5.3 Signing the Governance File

As mentioned in Securing a DDS Domain, both Governance and Permissions Files must be signed by the Per-
missions CA. This way, allDomainParticipants trusting that Permissions CA canmake sure that the Governance
File was not forged by an attacker.

We will use the provided Permissions CA’s certificate and key to sign the Governance File that we composed.4

Run the command below to create the signed Governance File (with PKCS#7 format) named xml/signed/
signed_pmiGovernance.p7s:

Linux

$ openssl smime -sign -in xml/pmiGovernance.xml -text -out xml/signed/signed_
→˓pmiGovernance.p7s -signer cert/ecdsa01/ca/ecdsa01RootCaCert.pem -inkey cert/
→˓ecdsa01/ca/private/ecdsa01RootCaKey.pem

macOS

2 Enabling Discovery Protection has further implications, as described in discovery_protection_kind (domain_rule).
3 Enabling Liveliness Protection has further implications, as described in discovery_protection_kind (domain_rule).
4 In this example, we have control of the Permissions CA. This is not always the case and wemay be required to send the Governance

File to an external entity to get it signed.

5.3. Signing the Governance File 29

../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#discovery-protection-kind-domain-rule
../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#liveliness-protection-kind-domain-rule

RTI Security Plugins Getting Started Guide, Version 6.1.2

$ openssl smime -sign -in xml/pmiGovernance.xml -text -out xml/signed/signed_
→˓pmiGovernance.p7s -signer cert/ecdsa01/ca/ecdsa01RootCaCert.pem -inkey cert/
→˓ecdsa01/ca/private/ecdsa01RootCaKey.pem

Windows

> openssl smime -sign -in xml\pmiGovernance.xml -text -out xml\signed\signed_
→˓pmiGovernance.p7s -signer cert\ecdsa01\ca\ecdsa01RootCaCert.pem -inkey cert\
→˓ecdsa01\ca\private\ecdsa01RootCaKey.pem

5.4 Updating the QoS Profiles in Your Project

Now we need to update USER_QOS_PROFILES.xml to make your DomainParticipants load the new Gov-
ernance File. Replace the value of the dds.sec.access.governance property as follows:

...
<!-- Signed Governance and Permissions Files -->
<element>

<name>dds.sec.access.governance</name>
<value>file:./xml/signed/signed_pmiGovernance.p7s</value>

</element>
...

Here, the file: prefix means that the signed Governance File will be loaded from the specified path in the
file system. Note that the path is relative to the working directory from which you run your application (unless
you specify an absolute path).

Another option is to set the value of the dds.sec.access.governance property to the contents of the
Governance File. You can do that by using the data:, prefix. This is useful when your application does not
have access to a file system. For details, see DDS Security Properties for Configuring Access Control in the
RTI Security Plugins User’s Manual.

5.5 Checking that the Specified Security Rules Are Applied

It’s time to see the changes in your security requirements! We will start by verifying that your DomainPartici-
pants can communicate when they load the new Governance File.

5.5.1 Verifying Communication

1. Run your publisher and subscriber as explained in Running the Applications.

Note that building the applications is not required, but you still may have to set up your environment.

2. You should see the message “Received data” on the subscriber side, which indicates that it received
samples from the publisher.

Linux

5.4. Updating the QoS Profiles in Your Project 30

../../../../manuals/connext_dds_secure/users_manual/p2_core/access_control.html#properties-for-configuring-access-control
../../../../manuals/connext_dds_secure/users_manual/p2_core/access_control.html#properties-for-configuring-access-control

RTI Security Plugins Getting Started Guide, Version 6.1.2

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber
No data after 1 second
Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

macOS

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber
No data after 1 second
Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

Windows

Publisher:

> objs\<architecture>\PatientMonitoring_publisher.exe
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

5.5. Checking that the Specified Security Rules Are Applied 31

RTI Security Plugins Getting Started Guide, Version 6.1.2

> objs\<architecture>\PatientMonitoring_subscriber.exe
No data after 1 second
Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

5.5.2 Checking the New Security Rules

So far, your Governance File protects the privacy of the user’s data by encrypting the messages’ payload. How-
ever, it does not protect discovery data, allowing unauthenticated participants to receive this information. To
verify that these rules are applied, we’ll try to subscribe to the PatientMonitoring Topic with RTI Administration
Console.

1. Open Administration Console and join Domain 0.

(For details on using Administration Console, see Viewing Your Data, in Introduction to Publish/Sub-
scribe.)

Your secure participants should show up in the DDS Logical View window.

2. Right-click on the Example PatientMonitoring Topic and select Subscribe….

3. A dialog will prompt you to select the data type; click OK.

4. Go to the Data Visualization perspective — by default, a dialog will give you the option to switch per-
spectives.

5. Notice that Administration Console’s subscriber is unable to receive any data samples, while your secure
subscriber is receiving them.

At this point, you can be sure5 that your applications are using the security rules you have defined. Congratu-
lations!

5.6 Further Exercises

The Governance File we defined allows unauthenticated participants to join the Secure Domains and to receive
discovery data. This may be acceptable for some Topics or some systems. However, you may have more
restrictive security requirements and want to prevent unauthenticated participants from communicating at all.
Perhaps your security requirements may vary from one Topic to another. We will address these two issues in
the following exercises.

Note: Defining the security requirements for a real system is not a trivial task. If you plan to deploy a secure
system, your organization will need an in-house security expert to define the security requirements your system

5 In Hands-On 5: Checking that Your DDS Traffic Is Protected we will use Wireshark to verify that the messages from the publisher
application are encrypted on the network.

5.6. Further Exercises 32

../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html#hands-on-2-viewing-your-data
../../../../manuals/connext_dds_professional/getting_started_guide/cpp98/intro_pubsub_cpp.html#hands-on-2-viewing-your-data

RTI Security Plugins Getting Started Guide, Version 6.1.2

needs.

5.6.1 Protecting the Domain

Now, we want to disallow unauthenticated participants from performing any kind of communication in your
Secure Domains.

To do so, modify your Governance File to meet the following domain-level rules:

Domain rule
(domain_rule)

Value Security implications

allow_unauthenti-
cated_participants

FALSE Only authenticated participants are allowed in the system

enable_join_ac-
cess_control

TRUE Permissions are checked for any discovered DomainParticipant

rtps_protec-
tion_kind

SIGN All RTPS messages in the system are signed

Make sure the Permissions CA signs the modified Governance File (see Signing the Governance File); otherwise
the changes will not be applied.

After applying this configuration, only authenticated and authorized participants will be allowed to join the
system. Since RTPS messages are signed, only authenticated and authorized participants will be allowed to
write messages to the system.

5.6.2 Adding a Topic Rule for the PatientMonitoring Topic

Your Governance may define different levels of protection, depending on the Topic to be protected.

Write a second Topic rule (topic_rule) to protect the Example PatientMonitoring Topic as follows:

Topic rule (topic_rule) Value Security implications
enable_discov-
ery_protection

TRUE Endpoint discovery data is protected (encrypted, as specified by
discovery_protection_kind)

enable_liveli-
ness_protection

TRUE Liveliness assertions are protected6 (encrypted, as specified by
liveliness_protection_kind)

enable_read_ac-
cess_control

TRUE Enforce local endpoint-level permissions on locally created
DataReaders; enforce remote endpoint-level permissions on re-
motely discovered DataReaders

enable_write_ac-
cess_control

TRUE Enforce local endpoint-level permissions on locally created
DataWriters; enforce remote endpoint-level permissions on re-
motely discovered DataWriters

metadata_protec-
tion_kind

EN-
CRYPT

DataWriters’ and DataReaders’s outgoing submessages are en-
crypted7

data_protec-
tion_kind

EN-
CRYPT

Payloads are encrypted

5.6. Further Exercises 33

RTI Security Plugins Getting Started Guide, Version 6.1.2

The Governance Document is parsed from top to bottom (for more information, see How the Governance File
is Interpreted in the Security Plugins User’s Manual). Therefore, you must add your new topic_rule before
the wildcard rule that matches all topics (the one with a topic_expression value of *).

After applying the configuration, PatientMonitoring updates are exchanged encrypted, so an eavesdropper will
not be able to have access to that data. Make sure the Permissions CA signs the modified Governance File (see
Signing the Governance File); otherwise the changes will not be applied.

5.7 Troubleshooting

• When I run openssl smime, I get this error:

WARNING: can't open config file: <default openssl built-in path>/openssl.
→˓cnf

Set the environment variable OPENSSL_CONF to ./cert/openssl.cnf.

6 The value of this attribute matters only if the DataWriter’s LIVELINESS QosPolicy is AUTOMATIC or MANUAL_BY_PAR-
TICIPANT. See enable_liveliness_protection (topic_rule) in the Security Plugins User’s Manual.

7 These submessages include, but are not limited to, DATA, HEARTBEAT, ACKNACK, and GAP. For more information, see
Submessage Protection in the RTI Security Plugins User’s Manual.

5.7. Troubleshooting 34

../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#how-the-governance-file-is-interpreted
../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#how-the-governance-file-is-interpreted
../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#enable-liveliness-protection-topic-rule
../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#submessage-protection

Chapter 6

Hands-On 3: Defining the
DomainParticipant Permissions

In this Hands-On, we will specify what the DomainParticipants in your project will be allowed to do within
your secure system. We will achieve this by writing a Permissions File for each of your participants.

Going back to our example, Alice will only have permission to publish the PatientMonitoring data, while Bob
will be restricted to subscribe to patient-related Topics. We will associate each Permissions File with its corre-
sponding participant based on their identities, limiting the system damage if one of your applications becomes
compromised. To put the Permissions Files into effect, we will sign them with the provided Permissions CA.
Finally, we will modify your secure participants’ QoS profiles to point to the new Permissions Files and see
how the new permissions are applied.

Note: We will use the OpenSSL CLI to perform the security operations in the generation of the security ar-
tifacts. Make sure to include in the path your OpenSSL binary directory3. The installation process is described
in the RTI Security Plugins Installation Guide.

Note that the Security Plugins do not depend on OpenSSL to generate these artifacts; you can use the security
toolkit of your choice. With that said, we recommend using OpenSSL 1.1.1n to make sure that the certificates
are in the right format.

6.1 Granting Permissions to Your Secure Participants

As the DDS Security expert at Patient Monitoring Innovations (PMI), you are going to specify the permissions
of every DomainParticipant in your system. You will define what Topics your publisher, Alice, can read/write
by associating rules with the subject in her Identity Certificate.

Create a file called pmiPermissionsAlice.xml in the xml directory (along with the rest of XML files)
and add the following content:

3 In the license-managed version (with “lm” in the bundle name), OpenSSL is installed automatically when you install the Connext
DDS host bundle. After installation, OpenSSL will be in <installdir>/third_party/openssl-<version>.

35

../../../../manuals/connext_dds_secure/installation_guide/index.htm

RTI Security Plugins Getting Started Guide, Version 6.1.2

Listing 6.1: Sample Permissions File configuring a single grant for
ParticipantAlice

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://community.rti.com/schema/6.1.1/dds_
→˓security_permissions.xsd">
<permissions>

<!-- Grants for a specific DomainParticipant will be grouped under this␣
→˓tag -->

<grant name="ParticipantAlice">
<!-- 1. The rules below will apply to the DomainParticipant
whose Identity certificate contains this subject name -->

<subject_name>Alice's X.509 subject (see below)</subject_name>
<!-- 2. Validity dates for this grant -->
<validity>

<!-- Format is CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm] in GMT -->
<not_before>2019-10-31T13:00:00</not_before>
<not_after>2029-10-31T13:00:00</not_after>

</validity>

<!-- 3. Allow this participant to publish the
PatientMonitoring topic -->

<allow_rule>
<domains>

<id>1</id>
</domains>
<publish>

<topics>
<topic>Example PatientMonitoring</topic>

</topics>
</publish>

</allow_rule>

<!-- 4. This participant will not be allowed to publish or
subscribe to any other topic -->

<default>DENY</default>
</grant>

</permissions>
</dds>

This Permissions File configures a grant for ParticipantAlice, identified by its Identity Certificate (1). We
will define the grant’s subject name to make it apply to your publisher in Binding the Permissions File to Your
DomainParticipants. The validity of this grant is restricted in time (2). This grant has a single allow rule (3),
so ParticipantAlice will only be allowed to:

• Join Domain 1

• Publish the Topic “Example PatientMonitoring” — only in Domain 1

ParticipantAlice will be denied attempts to perform any other action (4).

In addition to configuring allow rules, we can specify deny rules with the opposite effect. For details, see the
Permissions Document in the RTI Security Plugins User’s Manual).

6.1. Granting Permissions to Your Secure Participants 36

../../../../manuals/connext_dds_secure/users_manual/p2_core/access_control.html#permissions-document

RTI Security Plugins Getting Started Guide, Version 6.1.2

Note: Permissions Files are always exchanged during authentication. The larger a Permissions File is, the
more network overhead it will cause. As such, we recommend that you keep separate Permissions Files per
identity (i.e., per DomainParticipant). For further details, see Choosing the Granularity of Your Permissions
Files for DomainParticipants in the Security Plugins User’s Manual.

6.2 Binding the Permissions File to Your DomainParticipants

When a DomainParticipant loads a Permissions File, it looks for a grant with a subject_name match-
ing its identity. In other words, the subject_name identifies the DomainParticipant to which the grant’s
permissions apply. The contents of the subject_name tag should be the X.509 subject name for the Do-
mainParticipant, as given in the Subject field of its Identity Certificate.

If you followed the steps in Hands-On 1: Securing Connext DDS Applications, Alice’s Identity Certifi-
cate should be cert/ecdsa01/identities/ecdsa01Peer01Cert.pem. The subject of Al-
ice’s certificate does not match the subject_name section in grant ParticipantAlice. We will modify
pmiPermissionsAlice.xml to make this grant apply to Alice.

1. Check the information from Alice’s Identity Certificate (ecdsa01Peer01Cert.pem) with the fol-
lowing command:

Linux

$ openssl x509 -in cert/ecdsa01/identities/ecdsa01Peer01Cert.pem -text -
→˓noout
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

7b:ba:b9:c9:2c:be:ee:b9:71:d0:62:4e:59:6b:de:89:3a:33:5c:ad
Signature Algorithm: ecdsa-with-SHA256

Issuer: C=US, ST=CA, L=Santa Clara, O=Real Time Innovations,␣
→˓CN=RTI CA, emailAddress=secure@rti.com

Validity
Not Before: Jan 28 21:26:58 2021 GMT
Not After : Jan 27 21:26:58 2026 GMT

Subject: C=US, ST=CA, O=Real Time Innovations,␣
→˓emailAddress=meECdsa@rti.com, CN=dtlsexampleECdsa

Subject Public Key Info:
...

macOS

$ openssl x509 -in cert/ecdsa01/identities/ecdsa01Peer01Cert.pem -text -
→˓noout
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

7b:ba:b9:c9:2c:be:ee:b9:71:d0:62:4e:59:6b:de:89:3a:33:5c:ad

6.2. Binding the Permissions File to Your DomainParticipants 37

../../../../manuals/connext_dds_secure/users_manual/p3_advanced/best_practices.html#choosing-the-granularity-of-your-permissions-files-for-domainparticipants
../../../../manuals/connext_dds_secure/users_manual/p3_advanced/best_practices.html#choosing-the-granularity-of-your-permissions-files-for-domainparticipants

RTI Security Plugins Getting Started Guide, Version 6.1.2

Signature Algorithm: ecdsa-with-SHA256
Issuer: C=US, ST=CA, L=Santa Clara, O=Real Time Innovations,␣

→˓CN=RTI CA, emailAddress=secure@rti.com
Validity

Not Before: Jan 28 21:26:58 2021 GMT
Not After : Jan 27 21:26:58 2026 GMT

Subject: C=US, ST=CA, O=Real Time Innovations,␣
→˓emailAddress=meECdsa@rti.com, CN=dtlsexampleECdsa

Subject Public Key Info:
...

Windows

> openssl x509 -in cert\ecdsa01\identities\ecdsa01Peer01Cert.pem -text -
→˓noout
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

7b:ba:b9:c9:2c:be:ee:b9:71:d0:62:4e:59:6b:de:89:3a:33:5c:ad
Signature Algorithm: ecdsa-with-SHA256

Issuer: C=US, ST=CA, L=Santa Clara, O=Real Time Innovations,␣
→˓CN=RTI CA, emailAddress=secure@rti.com

Validity
Not Before: Jan 28 21:26:58 2021 GMT
Not After : Jan 27 21:26:58 2026 GMT

Subject: C=US, ST=CA, O=Real Time Innovations,␣
→˓emailAddress=meECdsa@rti.com, CN=dtlsexampleECdsa

Subject Public Key Info:
...

2. Replace the subject_name in the Permissions File (pmiPermissionsAlice.xml) with the
Subject field of the Identity Certificate (ecdsa01Peer01Cert.pem).

3. Youmay also want to update the validity tag with the information from the Identity Certificate. Note
that you are not required to have the same validity dates in the Permissions File and the Identity Certificate
(upon creation, your DomainParticipant will independently verify that the Identity Certificate and the
grant in your Permissions File are valid for the current date). If you decide to update the validity
tag, pay attention to the date/time format.

This is the result of updating Alice’s grant in pmiPermissionsAlice.xml:

...
<!-- Grants for a specific DomainParticipant will be grouped under␣
→˓this tag -->
<grant name="ParticipantAlice">

<!-- 1. The rules below will apply to the DomainParticipant
whose identity certificate contains this subject name -->

<subject_name>C=US, ST=CA, O=Real Time Innovations,␣
→˓emailAddress=meECdsa@rti.com, CN=dtlsexampleECdsa</subject_name>
→˓

<!-- 2. Validity dates for this grant -->
<validity>

6.2. Binding the Permissions File to Your DomainParticipants 38

RTI Security Plugins Getting Started Guide, Version 6.1.2

<!-- Format is CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm] in GMT -->
<not_before>2019-11-15T20:24:34</not_before>
<not_after>2024-11-13T20:24:34</not_after>

</validity>
...

6.3 Signing the Permissions Files

Wewill use the provided Permissions CA’s certificate and key to sign the Permissions Files that we composed.1

Run the command below to create the signed Permissions File (with PKCS#7 format) named xml/signed/
signed_pmiPermissionsAlice.p7s:

Linux

$ openssl smime -sign -in xml/pmiPermissionsAlice.xml -text -out xml/signed/
→˓signed_pmiPermissionsAlice.p7s -signer cert/ecdsa01/ca/ecdsa01RootCaCert.
→˓pem -inkey cert/ecdsa01/ca/private/ecdsa01RootCaKey.pem

macOS

$ openssl smime -sign -in xml/pmiPermissionsAlice.xml -text -out xml/signed/
→˓signed_pmiPermissionsAlice.p7s -signer cert/ecdsa01/ca/ecdsa01RootCaCert.
→˓pem -inkey cert/ecdsa01/ca/private/ecdsa01RootCaKey.pem

Windows

> openssl smime -sign -in xml\pmiPermissionsAlice.xml -text -out xml\signed\
→˓signed_pmiPermissionsAlice.p7s -signer cert\ecdsa01\ca\ecdsa01RootCaCert.
→˓pem -inkey cert\ecdsa01\ca\private\ecdsa01RootCaKey.pem

6.4 Updating the QoS Profiles in Your Project

Update USER_QOS_PROFILES.xml so that your DomainParticipants will load the new Permissions File:

<qos_profile name="Alice" base_name="BuiltinQosLib::Generic.Security" is_
→˓default_qos="true">

<domain_participant_qos>
<property>

<value>
...
<element>

<name>dds.sec.access.permissions</name>
<value>file:./xml/signed/signed_pmiPermissionsAlice.p7s</

→˓value>

1 In this example, we have control of the Permissions CA. This is not always the case, andwemay be required to send the Permissions
File to an external entity to get it signed.

6.3. Signing the Permissions Files 39

RTI Security Plugins Getting Started Guide, Version 6.1.2

</element>
...

Here again, the file: prefix means that the signed Permissions File will be loaded from the specified path
in the file system. Note that the path is relative to the working directory from which you run your application
(unless you specify an absolute path). For more details, see DDS Security Properties for Configuring Access
Control in the RTI Security Plugins User’s Manual.

6.5 Checking that the New Permissions Are Applied

To verify that Alice is correctly loading her new permissions, we will do two tests. First, we will check that
communication only works in Domain 1, as specified in the Permissions File. Then we will make sure that
Alice is only allowed to publish data.

6.5.1 Communication Only Works in Domain 1

1. Run your publisher and subscriber as explained in Running the Applications.

Do not provide any arguments to the applications, so that they will try to communicate in Domain 0.

If the publisher has loaded the new permissions, communication should not occur.

Linux

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher
RTI_Security_AccessControl_create_participant:{"DDS:Security:LogTopic
→˓":{"f":"10","s":"3","t":{"s":"1602772527","n":"484987999"},"h":"rti-
→˓10636","i":"0.0.0.0","a":"RTI Secure DDS Application","p":"15137","k
→˓":"security","x":[{"DDS":[{"domain_id":"<unknown>"},{"guid":"<unknown>
→˓"},{"plugin_class":"Access Control"},{"plugin_method":"RTI_Security_
→˓AccessControl_create_participant"}]}],"m":"participant not allowed: no␣
→˓rule found for the participant's domainId; default DENY"}}
DDS_DomainParticipantTrustPlugins_getLocalParticipantSecurityState:!
→˓security function check_create_participant returned false
DDS_DomainParticipant_createI:!get local participant security state
DDS_DomainParticipantFactory_create_participant_disabledI:!create␣
→˓participant
Exception in run_publisher_application(): Failed to create␣
→˓DomainParticipant

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber
No data after 1 second
No data after 1 second
No data after 1 second
No data after 1 second

6.5. Checking that the New Permissions Are Applied 40

../../../../manuals/connext_dds_secure/users_manual/p2_core/access_control.html#properties-for-configuring-access-control
../../../../manuals/connext_dds_secure/users_manual/p2_core/access_control.html#properties-for-configuring-access-control

RTI Security Plugins Getting Started Guide, Version 6.1.2

macOS

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher
RTI_Security_AccessControl_create_participant:{"DDS:Security:LogTopic
→˓":{"f":"10","s":"3","t":{"s":"1602772527","n":"484987999"},"h":"rti-
→˓10636","i":"0.0.0.0","a":"RTI Secure DDS Application","p":"15137","k
→˓":"security","x":[{"DDS":[{"domain_id":"<unknown>"},{"guid":"<unknown>
→˓"},{"plugin_class":"Access Control"},{"plugin_method":"RTI_Security_
→˓AccessControl_create_participant"}]}],"m":"participant not allowed: no␣
→˓rule found for the participant's domainId; default DENY"}}
DDS_DomainParticipantTrustPlugins_getLocalParticipantSecurityState:!
→˓security function check_create_participant returned false
DDS_DomainParticipant_createI:!get local participant security state
DDS_DomainParticipantFactory_create_participant_disabledI:!create␣
→˓participant
Exception in run_publisher_application(): Failed to create␣
→˓DomainParticipant

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber
No data after 1 second
No data after 1 second
No data after 1 second
No data after 1 second

Windows

Publisher:

> objs\<architecture>\PatientMonitoring_publisher.exe
RTI_Security_AccessControl_create_participant:{"DDS:Security:LogTopic
→˓":{"f":"10","s":"3","t":{"s":"1602772527","n":"484987999"},"h":"rti-
→˓10636","i":"0.0.0.0","a":"RTI Secure DDS Application","p":"15137","k
→˓":"security","x":[{"DDS":[{"domain_id":"<unknown>"},{"guid":"<unknown>
→˓"},{"plugin_class":"Access Control"},{"plugin_method":"RTI_Security_
→˓AccessControl_create_participant"}]}],"m":"participant not allowed: no␣
→˓rule found for the participant's domainId; default DENY"}}
DDS_DomainParticipantTrustPlugins_getLocalParticipantSecurityState:!
→˓security function check_create_participant returned false
DDS_DomainParticipant_createI:!get local participant security state
DDS_DomainParticipantFactory_create_participant_disabledI:!create␣
→˓participant
Exception in run_publisher_application(): Failed to create␣
→˓DomainParticipant

Subscriber:

> objs\<architecture>\PatientMonitoring_subscriber.exe
No data after 1 second
No data after 1 second
No data after 1 second

6.5. Checking that the New Permissions Are Applied 41

RTI Security Plugins Getting Started Guide, Version 6.1.2

No data after 1 second

2. Run your publisher and subscriber using Domain 1 (specified with the -d option in the command line).

Now communication should succeed.

Linux

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber -d 1
No data after 1 second
Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

macOS

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber -d 1
No data after 1 second
Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

Windows

Publisher:

6.5. Checking that the New Permissions Are Applied 42

RTI Security Plugins Getting Started Guide, Version 6.1.2

> objs\<architecture>\PatientMonitoring_publisher.exe -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

> objs\<architecture>\PatientMonitoring_subscriber.exe -d 1
No data after 1 second
Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

6.5.2 Alice Is Only Allowed to Publish Data

Wewill now verify that a subscriber application with Alice’s permissions is not able to receive data. This means
that even if Alice becomes compromised, she can’t listen for data she is not authorized to access.

1. Temporarily change your subscriber’s QoS profile to load the same security artifacts as Alice, including
her identity and permissions:

<qos_profile name="Bob" base_name="Alice">
</qos_profile>

This means we are now configuring Bob with Alice’s permissions.

2. Run your publisher and subscriber using Domain 1.

Communication should not occur:

Linux

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber -d 1
RTI_Security_AccessControl_check_create_datareader:{
→˓"DDS:Security:LogTopic":{"f":"10","s":"3","t":{"s":"1603104751","n
→˓":"420884999"},"h":"rti-10636","i":"0.0.0.0","a":"RTI Secure DDS␣
→˓Application","p":"29279","k":"security","x":[{"DDS":[{"domain_id":"1
→˓"},{"guid":"b3339b76.d20f2657.11caf180.1c1"},{"plugin_class":"Access␣
→˓Control"},{"plugin_method":"RTI_Security_AccessControl_check_create_
→˓datareader"}]}],"m":"endpoint not allowed: no rule found; default DENY
→˓"}}6.5. Checking that the New Permissions Are Applied 43

RTI Security Plugins Getting Started Guide, Version 6.1.2

DDS_DomainParticipantTrustPlugins_getLocalDataReaderSecurityState:!
→˓security function check_create_datareader
DDS_DataReader_create_presentation_readerI:ERROR: Failed to get local␣
→˓datareader security state
DDS_DataReader_createI:!create reader
DDS_Subscriber_create_datareader_disabledI:!create reader
DDSDataReader_impl::create_disabledI:!create reader
DDSDataReader_impl::createI:!create reader
create_datareader error

macOS

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber -d 1
RTI_Security_AccessControl_check_create_datareader:{
→˓"DDS:Security:LogTopic":{"f":"10","s":"3","t":{"s":"1603104751","n
→˓":"420884999"},"h":"rti-10636","i":"0.0.0.0","a":"RTI Secure DDS␣
→˓Application","p":"29279","k":"security","x":[{"DDS":[{"domain_id":"1
→˓"},{"guid":"b3339b76.d20f2657.11caf180.1c1"},{"plugin_class":"Access␣
→˓Control"},{"plugin_method":"RTI_Security_AccessControl_check_create_
→˓datareader"}]}],"m":"endpoint not allowed: no rule found; default DENY
→˓"}}
DDS_DomainParticipantTrustPlugins_getLocalDataReaderSecurityState:!
→˓security function check_create_datareader
DDS_DataReader_create_presentation_readerI:ERROR: Failed to get local␣
→˓datareader security state
DDS_DataReader_createI:!create reader
DDS_Subscriber_create_datareader_disabledI:!create reader
DDSDataReader_impl::create_disabledI:!create reader
DDSDataReader_impl::createI:!create reader
create_datareader error

Windows

Publisher:

> objs\<architecture>\PatientMonitoring_publisher.exe -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

6.5. Checking that the New Permissions Are Applied 44

RTI Security Plugins Getting Started Guide, Version 6.1.2

> objs\<architecture>\PatientMonitoring_subscriber.exe -d 1
RTI_Security_AccessControl_check_create_datareader:{
→˓"DDS:Security:LogTopic":{"f":"10","s":"3","t":{"s":"1603104751","n
→˓":"420884999"},"h":"rti-10636","i":"0.0.0.0","a":"RTI Secure DDS␣
→˓Application","p":"29279","k":"security","x":[{"DDS":[{"domain_id":"1
→˓"},{"guid":"b3339b76.d20f2657.11caf180.1c1"},{"plugin_class":"Access␣
→˓Control"},{"plugin_method":"RTI_Security_AccessControl_check_create_
→˓datareader"}]}],"m":"endpoint not allowed: no rule found; default DENY
→˓"}}
DDS_DomainParticipantTrustPlugins_getLocalDataReaderSecurityState:!
→˓security function check_create_datareader
DDS_DataReader_create_presentation_readerI:ERROR: Failed to get local␣
→˓datareader security state
DDS_DataReader_createI:!create reader
DDS_Subscriber_create_datareader_disabledI:!create reader
DDSDataReader_impl::create_disabledI:!create reader
DDSDataReader_impl::createI:!create reader
create_datareader error

This test requires your Governance File to set enable_read_access_control to TRUE (see Further
Exercises in Hands-On 2); otherwise, endpoint-level permissions related to DataReaders will not be checked
and Bob will be able to receive the data. When adding new rules to your Governance File, keep in mind (as we
mentioned in Adding a Topic Rule for the PatientMonitoring Topic) that the Governance File is processed from
top to bottom, and that only the first matching rule is applied. Also, make sure the Permissions CA signs the
modified Governance File (see Signing the Governance File); otherwise the changes will not be applied.

This exercise illustrates what happens if an application tries to do something it does not have permissions to
do, by temporarily giving Bob (the subscriber) the wrong permissions.

Tip: Make sure you revert the changes to your subscriber’s QoS profile before continuing the exercises.

6.6 Further Exercises

At this point, you have defined the permissions that will be applied to your publisher application, restricting it
to publish PatientMonitoring data. However, we have not modified your subscriber’s permissions.

6.6.1 Define Different Permissions for Each Application in Your System

To minimize the damage in case one of your secure applications is compromised, a DomainParticipant should
only have permissions to perform the actions that are necessary for its legitimate purpose.2

1. Define the permissions for Bob in a file called pmiPermissionsBob.xml. This Permissions File
should contain a single grant named ParticipantBob, defining permissions to subscribe to any Topic con-
taining the string Patient— only in Domain 1.

2 This is known as the Principle of Least Privilege. For further information, see Applying DDS Protection in the Security Plugins
User’s Manual.

6.6. Further Exercises 45

../../../../manuals/connext_dds_secure/users_manual/p1_welcome/overview.html#applying-dds-protection
../../../../manuals/connext_dds_secure/users_manual/p1_welcome/overview.html#applying-dds-protection

RTI Security Plugins Getting Started Guide, Version 6.1.2

You may want to use the following allow_rule as a reference:

<allow_rule>
<domains>

<id>1</id>
</domains>
<subscribe>

<topics>
<topic>*Patient*</topic>

</topics>
</subscribe>

</allow_rule>

ParticipantBob should be denied any other actions.

2. Bind Bob’s permissions to your subscriber application (see Binding the Permissions File to Your Domain-
Participants).

If you completed the exercises in Hands-On 1: Securing Connext DDS Applications), Bob’s identity cer-
tificate should be cert/ecdsa01/identities/ecdsa01Peer02Cert.pem. You will have
to bind Bob’s permissions to the subject of this certificate.

3. Make sure the Permissions CA signs the new Permissions File and modify Bob’s QoS profile to load it.

After applying this configuration, your subscriber application, Bob, will only be allowed to subscribe to
any Topic containing the string Patient in Domain 1, while your publisher application, Alice, will
only be allowed to publish Topic “Example PatientMonitoring” in Domain 1.

6.7 Troubleshooting

• When I run the publisher/subscriber, I get this error:

RTI_Security_PermissionsCfgFileParser_getGrantFromCertificate:XML file␣
→˓doesn't contain a grant for subject name

Make sure your DomainParticipants load the correct Identity Certificate and Permissions File.

Make sure the subject in your Permissions File’s grant matches the information in your participant’s
identity certificate (see Binding the Permissions File to Your DomainParticipants). Pay attention to the
format.

• When I run the publisher/subscriber, I get this error:

RTI_Security_AccessControl_create_participant:participant not allowed:␣
→˓no rule found for the participant's domainId; default DENY

Make sure you run your applications in the right Domain, by specifying the Domain ID with the -d
option in the command line. In this example, we are using Domain 1.

• The subscriber is able to receive data, even if it does not have permissions to subscribe.

Make sure your Governance File sets enable_read_access_control TRUE. Otherwise, per-
missions will not be enforced on locally created or remotely discovered DataReaders.

6.7. Troubleshooting 46

RTI Security Plugins Getting Started Guide, Version 6.1.2

Youmay be using theGovernance File fromComposing a Governance File with the Security Requirements,
with a specific topic rule appearing after the wildcard rule that applies to all topics. If your topic rule is
more restrictive than the wildcard rule, it must be located first. The Governance File is processed from
top to bottom, and the first matching rule is applied.

• When I run the publisher/subscriber, I get an error I do not understand.

See Logging Messages in the RTI Security Plugins User’s Manual.

6.7. Troubleshooting 47

../../../../manuals/connext_dds_secure/users_manual/p2_core/logging.html#logging-messages

Chapter 7

Hands-On 4: Generating and Revoking
Your Own Certificates Using OpenSSL

In this Hands-On, you will take control of your project’s keys and certificates. This way, you will not need
to rely on the example artifacts provided with Connext DDS to secure your applications. We will start by
generating a self-signed Identity CA, which will issue the Identity Certificates for Alice and Bob. This will
require us to set up a minimal security infrastructure first. Then we will generate a new Permissions CA that
will sign the Governance File and all the Permissions Files. After each certificate generation, we will refer to the
modifications needed tomake your project load the new artifacts. Finally, we will revoke one Identity Certificate
and use a Certificate Revocation List (CRL) to avoid communicating with the revoked DomainParticipant.

We will show examples for ECDSA and RSA as the public-key algorithm to generate the certificates. Note that
you can use any public-key algorithm listed in Supported Cryptographic Algorithms in the Security Plugins
User’s Manual.

Note: We will use the OpenSSL CLI to perform the security operations in the generation of the security ar-
tifacts. Make sure to include in the path your OpenSSL binary directory3. The installation process is described
in the RTI Security Plugins Installation Guide.

Note that the Security Plugins do not depend on OpenSSL to generate these artifacts; you can use the security
toolkit of your choice. With that said, we recommend using OpenSSL 1.1.1n to make sure that the certificates
are in the right format.

3 In the license-managed version (with “lm” in the bundle name), OpenSSL is installed automatically when you install the Connext
DDS host bundle. After installation, OpenSSL will be in <installdir>/third_party/openssl-<version>.

48

../../../../manuals/connext_dds_secure/users_manual/p1_welcome/overview.html#section-supported-cryptographic-algorithms
../../../../manuals/connext_dds_secure/users_manual/p1_welcome/overview.html#section-supported-cryptographic-algorithms
../../../../manuals/connext_dds_secure/installation_guide/index.htm

RTI Security Plugins Getting Started Guide, Version 6.1.2

7.1 Preliminary Steps

Setting up a security infrastructure requires some preliminary configuration. We will cover a minimal setup
here.

1. If you followed the steps in Hands-On 1: Securing Connext DDS Applications, you should have
an OpenSSL configuration file named cert/ecdsa01/ca/ecdsa01RootCa.cnf1. Make two
copies of this file and call them pmiIdentityCa.cnf and pmiPermissionsCa.cnf. To better
organize your project, save these copies in a new directory called cert/pmi/ca, along with a new
folder called newCerts:

Linux

$ mkdir -p cert/pmi/ca/newCerts
$ cp cert/ecdsa01/ca/ecdsa01RootCa.cnf cert/pmi/ca/pmiIdentityCa.cnf
$ cp cert/ecdsa01/ca/ecdsa01RootCa.cnf cert/pmi/ca/pmiPermissionsCa.cnf

macOS

$ mkdir -p cert/pmi/ca/newCerts
$ cp cert/ecdsa01/ca/ecdsa01RootCa.cnf cert/pmi/ca/pmiIdentityCa.cnf
$ cp cert/ecdsa01/ca/ecdsa01RootCa.cnf cert/pmi/ca/pmiPermissionsCa.cnf

Windows

> mkdir cert\pmi\ca\newCerts

> copy cert\ecdsa01\ca\ecdsa01RootCa.cnf cert\pmi\ca\pmiIdentityCa.cnf
1 file(s) copied.

> copy cert\ecdsa01\ca\ecdsa01RootCa.cnf cert\pmi\ca\pmiPermissionsCa.cnf
1 file(s) copied.

Hint: If you want to use RSA as your public-key algorithm, you may want to copy the homologous
example files from the cert/rsa01/ directory.

2. Modify pmiIdentityCa.cnf to redefine the name variable. Note that this configuration file uses
this variable to derive some filenames, such as those used in the next section:

...
Variables defining this CA
name = pmiIdentityCa # Name
desc = # Description
...

1 Read the official documentation for more information on the OpenSSL configuration files.

7.1. Preliminary Steps 49

https://www.openssl.org/docs/manmaster/man5/config.html

RTI Security Plugins Getting Started Guide, Version 6.1.2

7.1.1 Initialize the OpenSSL CA Database

When using a CA to perform an operation, OpenSSL relies on special database files to keep track of the issued
certificates, serial numbers, revoked certificates, etc. We need to create these database files to be able to use
the openssl x509 -req command:

Linux

$ mkdir cert/pmi/ca/database
$ touch cert/pmi/ca/database/pmiIdentityCaIndex
$ echo 01 > cert/pmi/ca/database/pmiIdentityCaSerial

macOS

$ mkdir cert/pmi/ca/database
$ touch cert/pmi/ca/database/pmiIdentityCaIndex
$ echo 01 > cert/pmi/ca/database/pmiIdentityCaSerial

Windows

> mkdir cert\pmi\ca\database
> type nul > cert\pmi\ca\database\pmiIdentityCaIndex
> echo 01> cert\pmi\ca\database\pmiIdentityCaSerial

7.1.2 Limit the Access of the CA’s Private Key

It is also a good practice to store the CA’s private key in a separate directory with more restrictive access rights,
so only you can sign certificates.

Linux

$ mkdir cert/pmi/ca/private
$ chmod 700 cert/pmi/ca/private

macOS

$ mkdir cert/pmi/ca/private
$ chmod 700 cert/pmi/ca/private

Windows

> mkdir cert\pmi\ca\private

> icacls cert\pmi\ca\private /t /inheritance:d
processed file: cert\pmi\ca\private
Successfully processed 1 files; Failed processing 0 files

> icacls cert\pmi\ca\private /t /remove Administrator "Authenticated Users"␣
→˓BUILTIN Everyone System Users
processed file: cert\pmi\ca\private
Successfully processed 1 files; Failed processing 0 files

7.1. Preliminary Steps 50

RTI Security Plugins Getting Started Guide, Version 6.1.2

> icacls cert\pmi\ca\private /grant %USERNAME%:F
processed file: cert\pmi\ca\private
Successfully processed 1 files; Failed processing 0 files

7.2 Generating a New Identity CA

1. Modify cert/pmi/ca/pmiIdentityCa.cnf and specify the fields in the req_distin-
guished_name section. This information will be incorporated into your certificate:

...
[req_distinguished_name]

countryName = US
stateOrProvinceName = CA
localityName = Santa Clara
0.organizationName = Patient Monitoring Innovations
commonName = PMI Identity CA
emailAddress = identityca@pmi.com
...

2. Use the OpenSSL CLI to generate a self-signed certificate using the Identity CA’s configuration. Run
the following command from the cert/pmi directory:

ECDSA

openssl req -nodes -x509 -days 1825 -text -sha256 -newkey ec -pkeyopt ec_
→˓paramgen_curve:prime256v1 -keyout ca/private/pmiIdentityCaKey.pem -out␣
→˓ca/pmiIdentityCaCert.pem -config ca/pmiIdentityCa.cnf

RSA

openssl req -nodes -x509 -days 1825 -text -sha256 -newkey rsa:2048 -
→˓keyout ca/private/pmiIdentityCaKey.pem -out ca/pmiIdentityCaCert.pem␣
→˓-config ca/pmiIdentityCa.cnf

This will produce a new private key, pmiIdentityCaKey.pem in the cert/pmi/ca/private
directory, and a new certificate, pmiIdentityCaCert.pem, in the cert/pmi/ca directory. This
certificate will be valid for 1825 days (5 years) starting today.

7.2.1 Specifying the New Identity CA Certificate in QoS Profiles

Modify USER_QOS_PROFILES.xml to make yourDomainParticipants load the certificate of the new Iden-
tity CA:

...
<element>

<name>dds.sec.auth.identity_ca</name>
<value>file:./cert/pmi/ca/pmiIdentityCaCert.pem</value>

7.2. Generating a New Identity CA 51

RTI Security Plugins Getting Started Guide, Version 6.1.2

</element>
...

7.3 Generating Identity Certificates

As explained in Introduction to RTI Security Plugins, Identity Certificates are verified against the Identity CA
when authenticating remote DomainParticipants. Therefore, in the simplest scenario, it is the Identity CA that
is responsible for issuing Identity Certificates.2 We will create a certificate signing request (CSR) for Alice.
Then we will use the new Identity CA to issue the certificate requested by the CSR.

1. Add the information you want to include in Alice’s certificate in a file called pmiAlice.cnf. Save this
file in a new directory called cert/pmi/identities. You may want to use the following contents
as a reference:

Listing 7.1: Sample contents of pmiAlice.cnf
prompt = no
distinguished_name = req_distinguished_name

[req_distinguished_name]
countryName = US
stateOrProvinceName = CA
localityName = Santa Clara
organizationName = Patient Monitoring Innovations
emailAddress = alice@pmi.com
commonName = Alice

You are free to modify any field except countryName, stateOrProvinceName, and organi-
zationName. These fields must match the ones of the Identity CA; otherwise it will refuse to issue
the requested certificate (note that a commonName is also required). These requirements are specified
in pmiIdentityCa.cnf, in the policy_match section.

2. Generate Alice’s key and CSR. Run the following command from the cert/pmi directory:

ECDSA

openssl req -nodes -new -newkey ec -pkeyopt ec_paramgen_curve:prime256v1␣
→˓-config identities/pmiAlice.cnf -keyout identities/pmiAliceKey.pem -
→˓out identities/pmiAlice.csr

RSA

openssl req -nodes -new -newkey rsa:2048 -config identities/pmiAlice.cnf␣
→˓-keyout identities/pmiAliceKey.pem -out identities/pmiAlice.csr

This will produce an RSA private key, pmiAliceKey.pem, and a CSR based on that key,
pmiAlice.csr. Since CSRs have all the information and cryptographic material that a CA needs
to issue a certificate, Alice’s private key must never be known to anyone but her.

2 Depending on your use case, the Identity Certificates may be issued by an intermediate CA in your PKI instead. For further
information, see Public Key Infrastructure (PKI) in the Security Plugins User’s Manual.

7.3. Generating Identity Certificates 52

../../../../manuals/connext_dds_secure/users_manual/p2_core/elements_dds_secure_system.html#public-key-infrastructure-pki

RTI Security Plugins Getting Started Guide, Version 6.1.2

3. Use the new Identity CA’s certificate and private key to issue Alice’s Identity Certificate. Run the fol-
lowing command from the cert/pmi directory:

openssl x509 -req -days 730 -text -CAserial ca/database/
→˓pmiIdentityCaSerial -CA ca/pmiIdentityCaCert.pem -CAkey ca/private/
→˓pmiIdentityCaKey.pem -in identities/pmiAlice.csr -out identities/
→˓pmiAliceCert.pem

The Identity CA will issue Alice’s public certificate, pmiAliceCert.pem, which will be valid for
730 days (2 years) starting today.

7.3.1 Specifying the New Identity Certificates to Your QoS Profiles

Modify USER_QOS_PROFILES.xml to make your publisher application load the new pair of certificate and
private key:

...
<!-- Participant Public Certificate and Private Key -->
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>file:./cert/pmi/identities/pmiAliceCert.pem</value>

</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>file:./cert/pmi/identities/pmiAliceKey.pem</value>

</element>
...

7.4 Updating Permissions Files with New Credentials

As explained in Binding the Permissions File to Your DomainParticipants, grants in a Permissions File are bound
toDomainParticipant identities. Wewill update Alice’s Permissions File with the same information we included
in Alice’s Identity Certificate.

1. To meet the format requirements of the Permissions File, you may want to check your certificate’s in-
formation with the following command:

Linux

$ openssl x509 -in cert/pmi/identities/pmiAliceCert.pem -text -noout
Certificate:

Data:
Version: 1 (0x0)
Serial Number: 1 (0x1)

Signature Algorithm: ecdsa-with-SHA256
Issuer: C=US, ST=CA, L=Santa Clara, O=Patient Monitoring␣

→˓Innovations, CN=PMI Identity CA, emailAddress=identityca@pmi.com
Validity

Not Before: Feb 7 15:37:09 2021 GMT
Not After : Feb 7 15:37:09 2023 GMT

7.4. Updating Permissions Files with New Credentials 53

RTI Security Plugins Getting Started Guide, Version 6.1.2

Subject: C=US, ST=CA, O=Patient Monitoring Innovations, CN=Alice,
→˓ emailAddress=alice@pmi.com

Subject Public Key Info:
...

macOS

$ openssl x509 -in cert/pmi/identities/pmiAliceCert.pem -text -noout
Certificate:

Data:
Version: 1 (0x0)
Serial Number: 1 (0x1)

Signature Algorithm: ecdsa-with-SHA256
Issuer: C=US, ST=CA, L=Santa Clara, O=Patient Monitoring␣

→˓Innovations, CN=PMI Identity CA, emailAddress=identityca@pmi.com
Validity

Not Before: Feb 7 15:37:09 2021 GMT
Not After : Feb 7 15:37:09 2023 GMT

Subject: C=US, ST=CA, O=Patient Monitoring Innovations, CN=Alice,
→˓ emailAddress=alice@pmi.com

Subject Public Key Info:
...

Windows

> openssl x509 -in cert\pmi\identities\pmiAliceCert.pem -text -noout
Certificate:

Data:
Version: 1 (0x0)
Serial Number: 1 (0x1)

Signature Algorithm: ecdsa-with-SHA256
Issuer: C=US, ST=CA, L=Santa Clara, O=Patient Monitoring␣

→˓Innovations, CN=PMI Identity CA, emailAddress=identityca@pmi.com
Validity

Not Before: Feb 7 15:37:09 2021 GMT
Not After : Feb 7 15:37:09 2023 GMT

Subject: C=US, ST=CA, O=Patient Monitoring Innovations, CN=Alice,
→˓ emailAddress=alice@pmi.com

Subject Public Key Info:
...

2. Modify the subject_name in the Permissions File, xml/pmiPermissionsAlice.xml, to
match the certificate’s subject.

3. Youmay also want to update the validity tag with the information from the Identity Certificate. Note
that you are not required to have the same validity dates in the Permissions File and the Identity Certificate
(upon creation, your DomainParticipant will independently verify that the Identity Certificate and the
grant in your Permissions File are valid for the current date). If you decide to update the validity
tag, pay attention to the date/time format.

...
<!-- Grants for a specific DomainParticipant will be grouped under this␣
→˓tag -->

7.4. Updating Permissions Files with New Credentials 54

RTI Security Plugins Getting Started Guide, Version 6.1.2

<grant name="ParticipantAlice">
<!-- 1. The rules below will apply to the DomainParticipant

whose identity certificate contains this subject name -->
<subject_name>C=US, ST=CA, O=Patient Monitoring Innovations,␣

→˓CN=Alice, emailAddress=alice@pmi.com</subject_name>
<!-- 2. Validity dates for this grant -->
<validity>

<!-- Format is CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm] in GMT -->
<not_before>2019-11-25T16:17:07</not_before>
<not_after>2021-11-24T16:17:07</not_after>

</validity>
...

7.5 Generating a New Permissions CA

Note:

• The Identity CA and Permissions CA may be the same, depending on your use case.

• This section is analogous to Generating a New Identity CA.

1. Modify cert/pmi/ca/pmiPermissionsCa.cnf and specify the fields under the req_dis-
tinguished_name section.

This information will be incorporated into your certificate:

...
[req_distinguished_name]

countryName = US
stateOrProvinceName = CA
localityName = Santa Clara
0.organizationName = Patient Monitoring Innovations
commonName = PMI Permissions CA
emailAddress = permissionsca@pmi.com
...

2. Use the OpenSSL CLI to generate a self-signed certificate using the Permissions CA’s configuration.
Run the following command from the cert/pmi directory:

ECDSA

openssl req -nodes -x509 -days 1825 -text -sha256 -newkey ec -pkeyopt ec_
→˓paramgen_curve:prime256v1 -keyout ca/private/pmiPermissionsCaKey.pem -
→˓out ca/pmiPermissionsCaCert.pem -config ca/pmiPermissionsCa.cnf

RSA

7.5. Generating a New Permissions CA 55

RTI Security Plugins Getting Started Guide, Version 6.1.2

openssl req -nodes -x509 -days 1825 -text -sha256 -newkey rsa:2048 -
→˓keyout ca/private/pmiPermissionsCaKey.pem -out ca/pmiPermissionsCaCert.
→˓pem -config ca/pmiPermissionsCa.cnf

This will produce a new private key, pmiPermissionsCaKey.pem in the cert/pmi/ca/
private directory, and a new certificate, pmiPermissionsCaCert.pem, in thecert/pmi/ca
directory. This certificate will be valid for 1825 days (5 years) starting today.

7.5.1 Specifying the New Permissions CA Certificate in QoS Profiles

Modify USER_QOS_PROFILES.xml to make your DomainParticipants load the certificate of the new Per-
missions CA:

...
<element>

<name>dds.sec.access.permissions_ca</name>
<value>file:./cert/pmi/ca/pmiPermissionsCaCert.pem</value>

</element>
...

7.6 Signing the Governance and Permissions Files

Note: This section was covered in Signing the Governance File and Signing the Permissions Files.

We will use the Permissions CA’s certificate and key that we generated to sign the Governance and Permissions
Files that we composed in previous Hands-On sections.

1. Run the command below to create the signed Governance File (with PKCS#7 format) named xml/
signed/pmiSigned_pmiGovernance.p7s:

openssl smime -sign -in xml/pmiGovernance.xml -text -out xml/signed/
→˓pmiSigned_pmiGovernance.p7s -signer cert/pmi/ca/pmiPermissionsCaCert.
→˓pem -inkey cert/pmi/ca/private/pmiPermissionsCaKey.pem

2. Run the command below to create the signed Permissions File (with PKCS#7 format) named xml/
signed/pmiSigned_pmiPermissionsAlice.p7s:

openssl smime -sign -in xml/pmiPermissionsAlice.xml -text -out␣
→˓xml/signed/pmiSigned_pmiPermissionsAlice.p7s -signer cert/
→˓pmi/ca/pmiPermissionsCaCert.pem -inkey cert/pmi/ca/private/
→˓pmiPermissionsCaKey.pem

7.6. Signing the Governance and Permissions Files 56

RTI Security Plugins Getting Started Guide, Version 6.1.2

7.6.1 Specifying the New Governance and Permissions Files in Your QoS Profiles

Lastly, update USER_QOS_PROFILES.xml so that your DomainParticipants will load the Governance and
Permissions Files signed by your Permissions CA:

...
<!-- Signed Governance and Permissions Files -->
<element>

<name>dds.sec.access.governance</name>
<value>file:./xml/signed/pmiSigned_pmiGovernance.p7s</value>

</element>
<element>

<name>dds.sec.access.permissions</name>
<value>file:./xml/signed/pmiSigned_pmiPermissionsAlice.p7s</value>

</element>
...

7.7 Updating the Subscriber’s Configuration

At this point, you have control of the keys and certificates used in your project. Congratulations!

In the previous steps, we have focused on updating your publisher application, Alice, with a new identity and
matching permissions. Now, we will update Bob’s identity and permissions accordingly.

1. Create an identity for your subscriber application, Bob, as described in Generating Identity Certificates.
After this step, Bob’s QoS profile in USER_QOS_PROFILES.xml should load his new Identity Cer-
tificate, pmiBob.pem, and private key, pmiBobKey.pem.

2. Update Bob’s Permissions File, pmiPermissionsBob.xml, to match his new credentials (see Up-
dating Permissions Files with New Credentials).

3. Finally, sign Bob’s Permissions File with your new Permissions CA, as explained in Signing the Gover-
nance and Permissions Files. After this step, Bob’s QoS profile inUSER_QOS_PROFILES.xml should
load the signed version of his new Permissions File, pmiSigned_pmiPermissionsBob.p7s.

Now, run your publisher and subscriber using Domain 1 (specified with the -d option in the command line).
You should see communication.

Linux

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber -d 1
No data after 1 second

7.7. Updating the Subscriber’s Configuration 57

RTI Security Plugins Getting Started Guide, Version 6.1.2

Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

macOS

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/<architecture>/PatientMonitoring_subscriber -d 1
No data after 1 second
Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

Windows

Publisher:

> objs\<architecture>\PatientMonitoring_publisher.exe -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

> objs\<architecture>\PatientMonitoring_subscriber.exe -d 1
No data after 1 second
Received data

patient_condition: ""
No data after 1 second
Received data

patient_condition: ""

7.7. Updating the Subscriber’s Configuration 58

RTI Security Plugins Getting Started Guide, Version 6.1.2

7.8 Revoking an Identity Certificate

At this point, Alice and Bob are communicating using Identity Certificates that you generated yourself. Con-
gratulations!

Now, we will learn how to revoke Alice’s Identity Certificate and how Bob can react to Alice’s change in status.

1. To revoke Alice’s Identity Certificate, run the following command from the cert/pmi directory:

Linux

$ openssl ca -config ca/pmiIdentityCa.cnf -batch -revoke identities/
→˓pmiAliceCert.pem

macOS

$ openssl ca -config ca/pmiIdentityCa.cnf -batch -revoke identities/
→˓pmiAliceCert.pem

Windows

> openssl ca -config ca\pmiIdentityCa.cnf -batch -revoke identities\
→˓pmiAliceCert.pem

You may repeat this command to revoke more certificates issued by the same CA.

2. When you are done revoking certificates, you have to inform the DomainParticipants about the revoked
certificates by generating a list of the revoked identities, which is called a Certificate Revocation List
(CRL). To generate the list, run the following commands from the cert/pmi directory:

Linux

$ echo 01 > ca/database/pmiIdentityCaCrlNumber
$ openssl ca -config ca/pmiIdentityCa.cnf -batch -gencrl -out ca/pmi.crl

macOS

$ echo 01 > ca/database/pmiIdentityCaCrlNumber
$ openssl ca -config ca/pmiIdentityCa.cnf -batch -gencrl -out ca/pmi.crl

Windows

> echo 01> ca\database\pmiIdentityCaCrlNumber
> openssl ca -config ca\pmiIdentityCa.cnf -batch -gencrl -out ca\pmi.crl

7.8. Revoking an Identity Certificate 59

RTI Security Plugins Getting Started Guide, Version 6.1.2

7.8.1 Specifying the New Certificate Revocation List in QoS Profiles

Each DomainParticipant that cares about avoiding communication with revoked DomainParticipants
needs to load this list. Let’s assume Bob cares about avoiding communication with Alice. Modify
USER_QOS_PROFILES.xml to make Bob’s DomainParticipant load the new CRL:

...
<element>

<name>com.rti.serv.secure.authentication.crl</name>
<value>file:./cert/pmi/ca/pmi.crl</value>

</element>
...

The CRL only takes effect when the DomainParticipant using the CRL is deleted and recreated. Stop and
restart the subscriber application, Bob. Now when Bob discovers Alice, Bob will print this error:

"X509_verify_cert returned 0 with error 23: certificate revoked
subject name: /C=US/ST=CA/L=Santa Clara/O=Patient Monitoring Innovations/
→˓emailAddress=alice@pmi.com/CN=Alice
issuer name: /C=US/ST=CA/L=Santa Clara/O=Patient Monitoring Innovations/
→˓CN=PMI Identity CA/emailAddress=identityca@pmi.com"

Communication will not occur between Alice and Bob.

7.9 Troubleshooting

• When I run my subscriber, I get the following error:

[CREATE Participant] RTI_Security_CertHelper_loadPrivateKey:private_
→˓key is not encrypted, yet password is supplied. Aborting participant␣
→˓creation due to inconsistent configuration.

In previous Hands-On sections, your subscriber used the ecdsa01Peer02Key.pem private key,
which is password protected. If you did not specify a password for BobKey.pem, make sure you
remove the dds.sec.auth.password property from Bob’s profile in USER_QOS_PROFILES.
xml.

• How can I verify whether a CA correctly issued an Identity Certificate?

openssl verify -CAfile <identityCACert> <peerIdentityCert>

• How can I verify the signed Governance and Permissions Files?

openssl smime -verify -CAfile <permissionsCACert> -in <signedFile>

• I am using the Security PluginswithwolfSSL and see the following error when running eithermy publisher
or my subscriber:

RTI_Security_CertHelper_loadCertsCrls:WolfSSL function PEM_X509_INFO_
→˓read_bio failed with error: (error details not available)
RTI_Security_CertHelper_loadCertsCrls:Error loading certificates

7.9. Troubleshooting 60

RTI Security Plugins Getting Started Guide, Version 6.1.2

This might be caused by the certificates being in an incompatible format. We recommend generating the
certificates using OpenSSL 1.1.1n.

For further troubleshooting, see Troubleshooting in Hands-On 3.

7.9. Troubleshooting 61

Chapter 8

Hands-On 5: Checking that Your DDS
Traffic Is Protected

In this Hands-On, you will learn about the effects that enabling DDS Security has on the wire. We will start
by disabling security in our project and viewing the contents of RTPS packets with Wireshark. Then we will
re-enable the protections defined in Hands-On 2: Defining Your System’s Security Requirements. We will use
Wireshark again to verify that messages from the publisher are encrypted.

Note: We will use Wireshark to capture and analyze the packets on the network. For instructions on getting
and installing Wireshark, please refer to Building and Installing Wireshark in Wireshark’s User’s Guide. For
instructions on enabling convenient coloring rules for the RTPS protocol, see How To configure Wireshark to
show RTPS packets with specific colors from our Knowledge Base.

8.1 Disabling Security and Preparing Your Project for Traffic Captur-
ing

InHands-On 1: Securing Connext DDS Applications we defined a QoS profile named Alice to enable the Security
Plugins. This profile inherits from the builtin profile, BuiltinQosLib::Generic.Security, which
tells your DomainParticipant to enable the Security Plugins. (See Properties for Enabling Security in the RTI
Security Plugins User’s Manual). We can instead use the BuiltinQosLib::Generic.Common profile
to have an application that does not load the Security Plugins.

We will also need to force communication over UDPv4 to capture traffic using Wireshark. We need to do this
because, by default, applications running on the same machine will communicate using shared memory (for
more details, see How to capture traffic if my Connext DDS applications are communicating through shared
memory from our Knowledge Base).

1. Modify USER_QOS_PROFILES.xml to load the BuiltinQosLib::Generic.Common profile
and force communication over the UDPv4 transport protocol:

62

https://www.wireshark.org/docs/wsug_html/#ChapterBuildInstall
https://community.rti.com/howto/how-configure-wireshark-show-rtps-packets-specific-colors
https://community.rti.com/howto/how-configure-wireshark-show-rtps-packets-specific-colors
../../../../manuals/connext_dds_secure/users_manual/p2_core/building_apps.html#properties-for-enabling-security
../../../../manuals/connext_dds_secure/users_manual/p2_core/building_apps.html#properties-for-enabling-security
https://community.rti.com/kb/how-capture-traffic-if-my-connext-dds-applications-are-communicating-through-shared-memory
https://community.rti.com/kb/how-capture-traffic-if-my-connext-dds-applications-are-communicating-through-shared-memory

RTI Security Plugins Getting Started Guide, Version 6.1.2

<qos_profile name="Alice" base_name="BuiltinQosLib::Generic.Common" is_
→˓default_qos="true">

<domain_participant_qos>
<!-- Disable shared memory to capture UDP packets on Wireshark --

→˓>
<transport_builtin>

<mask>UDPv4</mask>
</transport_builtin>
...

Please note that this change affects both the publisher and subscriber applications.

2. Change your publisher’s source code to send a message that we will read using Wireshark:

int run_publisher_application(unsigned int domain_id, unsigned int␣
→˓sample_count)
{

...
// Main loop, write data
for (unsigned int samples_written = 0;
!shutdown_requested && samples_written < sample_count;
++samples_written) {

// Modify the data to be written here
snprintf(data->patient_condition, 128,

"{heart_rate: %d}", 100 + samples_written%10);
...

After this step, you will need to rebuild your project (see Linking Your Applications Against RTI Security
Plugins and OpenSSL Libraries).

8.1.1 Analyzing RTPS Packets in Wireshark

1. Open Wireshark and start capturing packets on the loopback interface1. Alternatively, you may want to
use another interface if your publisher and subscriber applications are on different machines2. To filter
out packets that are not related to your applications, apply the following display filter:

rtps.domain_id == 1

Note: In most cases, you want to start capturing packets before you start your DDS applications. This
way, you will be able to analyze the communication from the beginning, including DDSDiscovery traffic.

2. Run your publisher and subscriber as explained in Running the Applications. Specify Domain 1 with the
-d option in the command line. You should see communication:

1 Recording on the loopback interface on a Windows system may require additional software (see How to capture traffic from the
loopback interface using Wireshark in Windows from our Knowledge Base).

2 The screenshots in this Hands-On show the publisher and subscriber running on two different machines (with different IP ad-
dresses). We have edited the Resolved Name in Wireshark to better identify the applications. If the publisher and subscriber run on
the same machine, you can still differentiate them by looking at the UDP ports.

8.1. Disabling Security and Preparing Your Project for Traffic Capturing 63

https://community.rti.com/kb/how-capture-traffic-loopback-interface-using-wireshark-windows
https://community.rti.com/kb/how-capture-traffic-loopback-interface-using-wireshark-windows

RTI Security Plugins Getting Started Guide, Version 6.1.2

Linux

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/x64Linux3gcc5.4.0/PatientMonitoring_subscriber -d 1
No data after 1 second
Received data

patient_condition: "{heart_rate: 101}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 102}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 103}"

macOS

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/x64Linux3gcc5.4.0/PatientMonitoring_subscriber -d 1
No data after 1 second
Received data

patient_condition: "{heart_rate: 101}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 102}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 103}"

Windows

Publisher:

8.1. Disabling Security and Preparing Your Project for Traffic Capturing 64

RTI Security Plugins Getting Started Guide, Version 6.1.2

> objs\<architecture>\PatientMonitoring_publisher.exe -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

> objs\<architecture>\PatientMonitoring_subscriber.exe -d 1
No data after 1 second
Received data

patient_condition: "{heart_rate: 101}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 102}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 103}"

3. In the Wireshark capture, you should see a series of RTPS packets, as shown in the following screenshot.
You can see the DDS data samples by looking at the serializedData field of DATA submessages. Since
the current scenario does not load the Security Plugins, security is completely disabled and the payload
can be decoded as ASCII plaintext.

If we focus on the structure of captured packets, we can see that RTPS messages consist of a header and
one or several submessages. In turn, every submessage has its header, metadata, and contents. In the previous
screenshot, we can see a DATA submessage with some Flags in its header, then some metadata such as the
writerEntityId, and finally, its serialized payload for the content. The following diagram outlines the structure
of an unprotected RTPS packet.

When our application uses security, the contents of the RTPS packets will show some differences. For example,
cryptographic metadata will be added around the protected parts, which may be encrypted depending on the
configured protection. For further details, see Securing DDS Messages on The Wire in the Security Plugins
User’s Manual.

8.2 Encrypting the Serialized Payload

In the previous section, you configured your DomainParticipants so they did not load the Security Plugins,
making PatientMonitoring data vulnerable to eavesdropping and tampering attacks. In this section, we will
analyze the effects that encrypting the payload has on the RTPS packets.

1. Modify USER_QOS_PROFILES.xml to load the BuiltinQosLib::Generic.Security
profile:

<qos_profile name="Alice" base_name="BuiltinQosLib::Generic.Security" is_
→˓default_qos="true">

<domain_participant_qos>

8.2. Encrypting the Serialized Payload 65

../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#securing-dds-messages-on-the-wire
../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#securing-dds-messages-on-the-wire

RTI Security Plugins Getting Started Guide, Version 6.1.2

Figure 8.1: Wireshark capture of unprotected communication. The payload can be decoded as ASCII plaintext.

Figure 8.2: Structure of an unprotected RTPS packet.

8.2. Encrypting the Serialized Payload 66

RTI Security Plugins Getting Started Guide, Version 6.1.2

...

Please note that this change affects both the publisher and subscriber applications.

2. Make sure that this profile loads the Governance File that we defined in Hands-On 2: Defining Your
System’s Security Requirements, which configures payload protection by setting the data_protec-
tion_kind to ENCRYPT.

8.2.1 Analyzing RTPS Packets in Wireshark

1. Rerun your publisher and subscriber as explained in Running the Applications. Specify Domain 1 with
the -d option in the command line. You should see communication:

Linux

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

$./objs/x64Linux3gcc5.4.0/PatientMonitoring_subscriber -d 1
No data after 1 second
Received data

patient_condition: "{heart_rate: 101}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 102}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 103}"

macOS

Publisher:

$./objs/<architecture>/PatientMonitoring_publisher -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

8.2. Encrypting the Serialized Payload 67

RTI Security Plugins Getting Started Guide, Version 6.1.2

$./objs/x64Linux3gcc5.4.0/PatientMonitoring_subscriber -d 1
No data after 1 second
Received data

patient_condition: "{heart_rate: 101}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 102}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 103}"

Windows

Publisher:

> objs\<architecture>\PatientMonitoring_publisher.exe -d 1
Writing PatientMonitoring, count 0
Writing PatientMonitoring, count 1
Writing PatientMonitoring, count 2
Writing PatientMonitoring, count 3

Subscriber:

> objs\<architecture>\PatientMonitoring_subscriber.exe -d 1
No data after 1 second
Received data

patient_condition: "{heart_rate: 101}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 102}"
No data after 1 second
Received data

patient_condition: "{heart_rate: 103}"

2. Go back to Wireshark and look at the serializedData field of DATA submessages. You can check that
the payload is now encrypted. Therefore it cannot be decoded as ASCII plaintext and trying to do so
results in garbled output, as seen here:

Notice that the length of the data field has increased. The reason is that the serializedData field now includes a
header and a footer with cryptographic information. The CryptoHeader includes information such as an iden-
tifier for the key used to encrypt the payload. The CryptoFooter includes the generated message authentication
code (MAC). This additional information allows the receiver to decrypt the message and verify its integrity.
For further details, see Securing DDS Messages on The Wire in the Security Plugins User’s Manual.

You may also notice that the field named encapsulation options has changed to 0x0002. Although a Crypto-
Header is now at the beginning of the serializedData, Wireshark does not have enough information to parse
it. In fact, Wireshark does not know whether or not the serializedData is encrypted. For this reason, it always

8.2. Encrypting the Serialized Payload 68

../../../../manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#securing-dds-messages-on-the-wire

RTI Security Plugins Getting Started Guide, Version 6.1.2

Figure 8.3: Wireshark capture of communication protected with data_protection_kind set to EN-
CRYPT. The payload is encrypted.

8.2. Encrypting the Serialized Payload 69

RTI Security Plugins Getting Started Guide, Version 6.1.2

displays the encapsulation header (encapsulation kind and encapsulation options) at the beginning of the seri-
alizedData field. In this case, the payload is encrypted and these four bytes correspond to the transformation
kind field in the CryptoHeader, where 0x00000002 means that the AES128 GCM transformation has been
applied (the default for ENCRYPT).

The following diagram depicts the structure of an RTPS packet protected with payload encryption:

Figure 8.4: Structure of an RTPS packet with payload protection kinds, configured by the
<data_protection_kind> rule.

Congratulations! You have verified that your payload is safe from a potential eavesdropper in your network.

8.3 Troubleshooting

• My Wireshark captures are hard to read because message-type coloring is not active:

Make sure that your Wireshark contains the coloring rules for the RTPS protocol (see How To configure
Wireshark to show RTPS packets with specific colors from our Knowledge Base).

• When I run the publisher/subscriber, they don’t communicate:

Make sure that the Governance File is the same for both applications (publisher and subscriber). Oth-
erwise, communication won’t work. Remember to sign the Governance File after modifying it and to
restart your applications so changes take effect (see Signing the Governance File).

• When I run the publisher/subscriber, I get this error:

RTI_Security_AccessControl_create_participant:participant not allowed:␣
→˓no rule found; default DENY

Make sure your applications are running in the allowed domain, in this caseDomain 1 (requirement from
Hands-On 3: Defining the DomainParticipant Permissions).

• When I run the publisher/subscriber, I get this error:

RTI_Security_AccessControl_validate_remote_permissions:failed to␣
→˓validate permissions

8.3. Troubleshooting 70

https://community.rti.com/howto/how-configure-wireshark-show-rtps-packets-specific-colors
https://community.rti.com/howto/how-configure-wireshark-show-rtps-packets-specific-colors

RTI Security Plugins Getting Started Guide, Version 6.1.2

Make sure both your publisher and subscriber have permissions signed by the same Permissions CA.

• When I run the publisher/subscriber, I get this error:

RTI_Security_AccessControl_get_participant_sec_attributes:failed to␣
→˓verify governance document signature

Make sure that the Governance File has been signed by the right Permissions CA.

• I cannot capture traffic from the loopback interface on a Windows system:

Recording on the loopback interface on a Windows system may require additional software (see How to
capture traffic from the loopback interface using Wireshark in Windows from our Knowledge Base).

8.3. Troubleshooting 71

https://community.rti.com/kb/how-capture-traffic-loopback-interface-using-wireshark-windows
https://community.rti.com/kb/how-capture-traffic-loopback-interface-using-wireshark-windows

Chapter 9

Next Steps

Congratulations! You have enabled Security Plugins in your Connext DDS applications. In these exercises, you
have protected your DDS Domain and sensitive Topics with a Governance File specifying both domain-level
and topic-level rules. You have also defined the permissions of your DomainParticipants, allowing them to
access only the data and resources they need for their legitimate purpose. Finally, you have taken control of
the security infrastructure by creating cryptographic identities for your secure DomainParticipants.

As you can see, enabling Security Plugins requires trivial or no changes to existing Connext DDS applications. It
just requires modifying the QoS profiles (usually an XML file) to point to the security artifacts and plugin suite,
and configuring some environment variables before running your applications. Nevertheless, keep in mind that
enabling security always has an impact on the resources needed by your applications and their performance.

Now you’re ready to start implementing. You may want to consult the RTI Security Plugins User’s Manual as
a reference. In particular, make sure to read these chapters:

• Building and Running Security Plugins-Based Applications

• Best Practices

72

../../../../manuals/connext_dds_secure/users_manual/index.html
../../../../manuals/connext_dds_secure/users_manual/p2_core/building_apps.html
../../../../manuals/connext_dds_secure/users_manual/p3_advanced/best_practices.html

Chapter 10

Copyrights

© 2022 Real-Time Innovations, Inc. All rights reserved. Printed in U.S.A. First printing. February 2022.

Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Working
as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All other
trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form (in-
cluding electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time
Innovations, Inc. The software described in this document is furnished under and subject to the RTI software
license agreement. The software may be used or copied only under the terms of the license agreement.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved by,
Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Notice

Any deprecations noted in this document serve as notice under the Real-Time Innovations, Inc. Maintenance
Policy #4220.

Technical Support Real-Time Innovations, Inc. 232 E. Java Drive Sunnyvale, CA 94089 Phone: (408)
990-7444 Email: support@rti.com Website: https://support.rti.com/

© 2022 RTI

73

http://www.openssl.org/
mailto:eay@cryptsoft.com
mailto:tjh@cryptsoft.com
mailto:support@rti.com
https://support.rti.com/

	1 Introduction to RTI Security Plugins
	1.1 Key Features
	1.2 Paths Mentioned in Documentation

	2 DDS System Threats
	3 Securing a DDS Domain
	3.1 Securing a DomainParticipant

	4 Hands-On 1: Securing Connext DDS Applications
	4.1 Generating a Connext DDS Project
	4.2 Adding Security Artifacts to Your Project
	4.3 Enabling Security in Your QoS Profiles
	4.4 Linking Your Applications Against RTI Security Plugins and OpenSSL Libraries
	4.4.1 Building the Application

	4.5 Running the Applications
	4.5.1 Configuring the Environment in Both Command Prompts
	4.5.2 Checking Communication

	4.6 Checking that Your Applications Communicate Securely
	4.6.1 Verifying that Eavesdropping Attempts are Frustrated
	4.6.2 Detecting Eavesdropping Attempts

	4.7 Further Exercises
	4.7.1 Give Different Credentials to Each Application in Your System

	4.8 Troubleshooting

	5 Hands-On 2: Defining Your System’s Security Requirements
	5.1 Specifying the Security Requirements
	5.2 Composing a Governance File with the Security Requirements
	5.3 Signing the Governance File
	5.4 Updating the QoS Profiles in Your Project
	5.5 Checking that the Specified Security Rules Are Applied
	5.5.1 Verifying Communication
	5.5.2 Checking the New Security Rules

	5.6 Further Exercises
	5.6.1 Protecting the Domain
	5.6.2 Adding a Topic Rule for the PatientMonitoring Topic

	5.7 Troubleshooting

	6 Hands-On 3: Defining the DomainParticipant Permissions
	6.1 Granting Permissions to Your Secure Participants
	6.2 Binding the Permissions File to Your DomainParticipants
	6.3 Signing the Permissions Files
	6.4 Updating the QoS Profiles in Your Project
	6.5 Checking that the New Permissions Are Applied
	6.5.1 Communication Only Works in Domain 1
	6.5.2 Alice Is Only Allowed to Publish Data

	6.6 Further Exercises
	6.6.1 Define Different Permissions for Each Application in Your System

	6.7 Troubleshooting

	7 Hands-On 4: Generating and Revoking Your Own Certificates Using OpenSSL
	7.1 Preliminary Steps
	7.1.1 Initialize the OpenSSL CA Database
	7.1.2 Limit the Access of the CA’s Private Key

	7.2 Generating a New Identity CA
	7.2.1 Specifying the New Identity CA Certificate in QoS Profiles

	7.3 Generating Identity Certificates
	7.3.1 Specifying the New Identity Certificates to Your QoS Profiles

	7.4 Updating Permissions Files with New Credentials
	7.5 Generating a New Permissions CA
	7.5.1 Specifying the New Permissions CA Certificate in QoS Profiles

	7.6 Signing the Governance and Permissions Files
	7.6.1 Specifying the New Governance and Permissions Files in Your QoS Profiles

	7.7 Updating the Subscriber’s Configuration
	7.8 Revoking an Identity Certificate
	7.8.1 Specifying the New Certificate Revocation List in QoS Profiles

	7.9 Troubleshooting

	8 Hands-On 5: Checking that Your DDS Traffic Is Protected
	8.1 Disabling Security and Preparing Your Project for Traffic Capturing
	8.1.1 Analyzing RTPS Packets in Wireshark

	8.2 Encrypting the Serialized Payload
	8.2.1 Analyzing RTPS Packets in Wireshark

	8.3 Troubleshooting

	9 Next Steps
	10 Copyrights

