
RTI Connext
Core Libraries

Platform Notes

Version 7.1.0

© 2003-2023 Real-Time Innovations, Inc.
All rights reserved.

April 2023.

Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems.
Working as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations,
Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of
Real-Time Innovations, Inc. The software described in this document is furnished solely under and sub-
ject to RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance
with your License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate
(MSC), except to the extent otherwise accepted in writing by a corporate officer of RTI.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).

Notices

Early Access Software

“Real-Time Innovations, Inc. (“RTI”) licenses this Early Access release software (“Software”) to you
subject to your agreement to all of the following conditions:

(1) you may reproduce and execute the Software only for your internal business purposes, solely with
other RTI software licensed to you by RTI under applicable agreements by and between you and RTI,
and solely in a non-production environment;

(2) you acknowledge that the Software has not gone through all of RTI’s standard commercial testing,
and is not maintained by RTI’s support team;

(3) the Software is provided to you on an “AS IS” basis, and RTI disclaims, to the maximum extent per-
mitted by applicable law, all express and implied representations, warranties and guarantees, including
without limitation, the implied warranties of merchantability, fitness for a particular purpose, sat-
isfactory quality, and non-infringement of third party rights;

https://www.rti.com/terms
http://www.openssl.org/

(4) any such suggestions or ideas you provide regarding the Software (collectively , “Feedback”), may
be used and exploited in any and every way by RTI (including without limitation, by granting sub-
licenses), on a non-exclusive, perpetual, irrevocable, transferable, and worldwide basis, without any
compensation, without any obligation to report on such use, and without any other restriction or oblig-
ation to you; and

(5) TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL
RTI BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR FOR LOST
PROFITS, LOST DATA, LOST REPUTATION, OR COST OF COVER, REGARDLESS OF THE
FORM OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING WITHOUT LIMITATION,
NEGLIGENCE), STRICT PRODUCT LIABILITY OR OTHERWISE, WHETHER ARISING OUT
OF OR RELATING TO THE USE OR INABILITY TO USE THE SOFTWARE, EVEN IF RTI HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.”

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regard-
ing maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is
deprecated in a release, RTI hereby provides customer notice that RTI reserves the right after one year
from the date of such release and, with or without further notice, to immediately terminate maintenance
(including without limitation, providing updates and upgrades) for the item, and no longer support the
item, in a future release.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Introduction

1.1 Paths Mentioned in Documentation 3
Chapter 2 Building Applications—Notes for All Platforms

2.1 Running on a Computer Not Connected to a Network 6
2.2 Connext Header Files — All Platforms 6
2.3 Choosing the Right Libraries 7

2.3.1 Required Libraries 7
2.3.2 Mixing Static and Dynamic Libraries is not Supported 7

2.4 Building for Java Platforms 8
2.5 Building with CMake 8

Chapter 3 Linux Platforms

3.1 Building Applications for Linux Platforms 10
3.1.1 Required Libraries and Compiler Flags 11
3.1.2 Additional Libraries for Other Features 13
3.1.3 Linux Compatibility and Determining Factors 17
3.1.4 How the Connext Libraries were Built 19

3.2 Running Your Applications 20
3.3 Support for Modern C++ API 21
3.4 Support for .NET 21
3.5 Multicast Support 21
3.6 Transports 21

3.6.1 Shared Memory Support 22
3.7 Unsupported Features 22
3.8 Monotonic Clock Support 22
3.9 Thread Configuration 22

3.9.1 Support for Controlling CPU Core Affinity for RTI Threads 22

iv

v

3.9.2 Using REALTIME_PRIORITY 24
3.10 Durable Writer History and Durable Reader State Features 24
3.11 Support for 'Find Package' CMake Script 25
3.12 Backtrace Support 25
3.13 Support for Remote Procedure Calls (RPC) 25

Chapter 4 macOS Platforms

4.1 Installation Note for Arm v8 Platforms—Rosetta 2 Required 26
4.2 Building Applications for macOS Platforms 27

4.2.1 Additional Libraries for Other Features 29
4.2.2 How the Connext Libraries were Built 32

4.3 Running User Applications 33
4.4 Support for Modern C++ API 33
4.5 Support for .NET/C# API 34
4.6 Multicast Support 34
4.7 Transports 34
4.8 Unsupported Features 34
4.9 System Integrity Protection (SIP) 34

4.9.1 SIP and Java Applications 35
4.9.2 SIP and Connext Tools, Infrastructure Services, and Utilities 36

4.10 Thread Configuration 36
4.11 Support for 'Find Package' CMake Script 37
4.12 Backtrace Support 38
4.13 Resolving NDDSUtility_sleep() Issues 38
4.14 Support for Remote Procedure Calls (RPC) 39

Chapter 5 QNX Platforms

5.1 Building Applications for QNX Platforms 40
5.1.1 Required Change for Building with C++ Libraries 42
5.1.2 Additional Libraries for Other Features 42
5.1.3 How the Connext Libraries were Built 45

5.2 Running Your Application 46
5.3 Support for Modern C++ API 46
5.4 Multicast Support 47
5.5 Transports 47
5.6 Unsupported Features 47
5.7 Monotonic Clock Support 48
5.8 Thread Configuration 48

5.8.1 Support for Controlling CPU Core Affinity for RTI Threads 49
5.9 Support for 'Find Package' CMake Script 49
5.10 Support for Remote Procedure Calls (RPC) 49
5.11 Restarting Applications on QNX Systems 49

Chapter 6 Windows Platforms

6.1 Building Applications for Windows Platforms 51
6.1.1 Using Visual Studio 51
6.1.2 Linking Windows C Run-Time Libraries 56
6.1.3 Use the Dynamic MFC Library, Not Static 57
6.1.4 Additional Libraries for Other Features 57
6.1.5 How the Connext Libraries were Built 60
6.1.6 Location of OpenSSL Libraries 61

6.2 Running Your Applications 62
6.2.1 Requirements when Using Visual Studio 62

6.3 Support for Modern C++ API 63
6.4 Multicast Support 63
6.5 Transports 64
6.6 Unsupported Features 64
6.7 Monotonic Clock Support 64
6.8 Thread Configuration 64
6.9 Support for 'Find Package' CMake Script 66
6.10 Backtrace Support 66
6.11 Support for Remote Procedure Calls (RPC) 67
6.12 Domain ID Support 67

vi

Chapter 1 Introduction
This document provides platform-specific instructions that you will need to build and run RTI®
Connext® applications.

For each supported OS, this document describes:

l Supported combinations of OS versions, CPUs, and compilers
l Building your application

l Required Connext and system libraries
l Required compiler and linker flags
l Additional required libraries when using features such as Distributed Logger, Mon-
itoring, Real-Time WAN Transport, TCP and TLS Support, and Zero Copy Trans-
fer Over Shared Memory

l Details on how the Connext libraries were built

l Running your application
l Whether or not certain features, APIs, and transports are supported, such as:

l Modern C++ API
l Multicast
l Transports
l Monotonic clock
l Durable Writer History and Durable Reader State
l 'Find Package' CMake script
l Backtraces
l Remote Procedure Calls

1

Chapter 1 Introduction

2

l Thread configuration
l Other platform-specific information

To see all supported platforms, refer to the table of Supported Platforms for Compiler-Dependent
Products, in the RTI Connext Core Libraries Release Notes.

1.1 Paths Mentioned in Documentation

1.1 Paths Mentioned in Documentation

The documentation refers to:

l <NDDSHOME>

This refers to the installation directory for RTI® Connext®. The default installation paths are:
l macOS® systems:
/Applications/rti_connext_dds-7.1.0

l Linux systems, non-root user:
/home/<your user name>/rti_connext_dds-7.1.0

l Linux systems, root user:
/opt/rti_connext_dds-7.1.0

l Windows® systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-7.1.0

l Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-7.1.0

You may also see $NDDSHOME or%NDDSHOME%, which refers to an environment vari-
able set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users:When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:
“C:\Program Files\rti_connext_dds-7.1.0\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

l <path to examples>

By default, examples are copied into your home directory the first time you run RTI Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples
as <path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:
l macOS systems: /Users/<your user name>/rti_workspace/7.1.0/examples
l Linux systems: /home/<your user name>/rti_workspace/7.1.0/examples

3

1.1 Paths Mentioned in Documentation

4

l Windows systems: <your Windows documents folder>\rti_workspace\7.1.0\examples

Where 'your Windows documents folder' depends on your version of Windows. For
example, on Windows 10, the folder is C:\Users\<your user name>\Documents.

Note: You can specify a different location for rti_workspace. You can also specify that you do
not want the examples copied to the workspace. For details, see Controlling Location for
RTI Workspace and Copying of Examples in the RTI Connext Installation Guide.

Chapter 2 Building Applications—Notes for
All Platforms

This chapter provides general information on how to build Connext applications, for all plat-
forms. Details such as exactly which libraries to link, compiler flags, etc., are in the platform-
specific chapters in this document.

l First, make sure you've installed Connext 7.x.y. For installation instructions, see the RTI
Connext Installation Guide.

l Make sure the NDDSHOME environment variable is set to the root directory of the Con-
next installation (such as /home/user/rti_connext_dds-7.x.y or C:\Program Files\rti_
connext_dds-7.x.y). To confirm, type this at a command prompt:
echo %NDDSHOME%

l To become familiar with Connext and the build process, follow the hands-on exercises in
the RTI Connext Getting Started Guide.

l Review this chapter, which applies to all platforms.
l Build and test your applications on a Linux or Windows platform. They are both good
starting points. See the instructions in either:

l Chapter 3 Linux Platforms on page 10
l Chapter 6 Windows Platforms on page 50

l Finally, build and run your applications on other platforms as needed. See the instructions
in the other platform-specific chapters in this document.

To build a non-Java application using Connext, you must specify:

l NDDSHOME environment variable
l Connext header files

5

../installation_guide/RTI_ConnextDDS_InstallationGuide.pdf
../installation_guide/RTI_ConnextDDS_InstallationGuide.pdf
../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf

2.1 Running on a Computer Not Connected to a Network

6

l Connext libraries to link
l Compatible system libraries
l Compiler options

To build Java applications using Connext, you must specify:

l NDDSHOME environment variable
l Connext JAR files
l Compatible Java virtual machine (JVM)
l Compiler options

2.1 Running on a Computer Not Connected to a Network

If you want to run two or more Connext applications on the same computer, and that computer is not
connected to a network, you must set the environment variable NDDS_DISCOVERY_PEERS so that it
will only use shared memory. For example:
set NDDS_DISCOVERY_PEERS=4@shmem://

(The number 4 is only an example. This is the maximum participant ID.)

2.2 Connext Header Files — All Platforms

You must include the appropriate Connext header files, As you will see in Table 2.1 Header Files to
Include for Connext (All Platforms), the header files that need to be included depend on the API being
used.

Connext API Header Files

C #include “ndds/ndds_c.h”

C++ #include “ndds/ndds_cpp.h”

C++/CLI, C#, Java none

Table 2.1 Header Files to Include for Connext (All Platforms)

For the compiler to find the included files, the path to the appropriate include directories must be
provided. Table 2.2 Include Paths for Compilation (All Platforms) lists the appropriate include path for
use with the compiler. The exact path depends on where you installed Connext. See 1.1 Paths Men-
tioned in Documentation on page 3.

2.3 Choosing the Right Libraries

Connext API Include Path Directories

C and C++
<NDDSHOME>/include

<NDDSHOME>/include/ndds

C++/CLI, C#, Java none

Table 2.2 Include Paths for Compilation (All Platforms)

You must also include the header files that define the data types you want to use in your application.
For example, Table 2.3 Header Files to Include for User Data Types (All Platforms) lists the files to be
include for type “Foo” (these are the filenames generated by RTI Code Generator, described in Data
Types and DDS Data Samples chapter in the RTI Connext Core Libraries User's Manual).

Connext API User Data Type Header Files

C and C++
#include “Foo.h”

#include “FooSupport.h”

C++/CLI, C#, Java none

Table 2.3 Header Files to Include for User Data Types (All Platforms)

2.3 Choosing the Right Libraries

2.3.1 Required Libraries

All required system and Connext libraries are listed in the chapters for each platform.

Choose between dynamic (shared) and static libraries. Do not mix the different types of libraries during
linking. The benefit of linking against the dynamic libraries is that your final executables’ sizes will be
significantly smaller. You will also use less memory when you are running several Connext applic-
ations on the same node. However, shared libraries require more setup and maintenance during
upgrades and installations.

To see if dynamic libraries are supported for your target platform, review the Building Instructions
table in the chapter for that platform.

2.3.2 Mixing Static and Dynamic Libraries is not Supported

You must choose either static or dynamic linking. Mixing static and dynamic RTI libraries—for
example, using RTI static core libraries and dynamic TCP Transport—is not supported.

The examples in this section are for Linux systems, but except for small differences in names, the same
concepts apply to Windows and macOS systems.

7

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

2.4 Building for Java Platforms

8

Suppose you have a Connext-based application myApp, and you want to use the TCP Transport plugin.
The library dependency looks something like Figure 2.1: Library Dependency below. This shows a
simple and common situation, but make sure that the core libraries that your application uses are the
same kinds of libraries that the TCP Transport plugin uses. For example, if myApp links statically with
nddsc, but you load nddstransporttcp dynamically, there will be a mismatch between the libraries,
potentially creating a dangerous situation. You must use static or dynamic linking, but not both.
Figure 2.1: Library Dependency

Important: Even if a combination of static and dynamic libraries seems to work, RTI cannot
guarantee there won't be issues when running the Connext application.

2.4 Building for Java Platforms

Before building an application for a Windows or Linux Java platform, make sure that:

l Connext 7.x.y is installed (where 7.x.y stands for the version numbers of the current release).
l A supported JDK version is installed. See the Supported Platforms table at the beginning of the
chapter for your platform.

Java Libraries: Certain Java archive (JAR) files must be on your classpath when running Connext
applications.

Native Libraries: Connext for Java is implemented using Java Native Interface (JNI), so it is necessary
to provide your Connext distributed applications with access to certain native shared libraries.

See the Building Instructions and Running Instructions tables in the chapter for your platform.

2.5 Building with CMake

Connext allows you to integrate the Connext libraries with build systems implemented using CMake®.

A “Find Package” CMake script is provided as part of the Connext installation. This script helps the
build system find all the RTI Connext libraries and include directories needed by your application. So,

2.5 Building with CMake

instead of setting the variables manually in your CMake scripts, you can call the Connext “Find Pack-
age CMake” script to set all the variables needed by your application.

Note: This script is not supported on all platforms. The chapter for your platform will show if it is sup-
ported.

You can find the script (FindRTIConnextDDS.cmake) in <NDDSHOME>/resource/cmake. To learn
about the input and output variables, see the documentation included in the script.

9

Chapter 3 Linux Platforms
This release supports the Linux platforms in Table 3.1 Supported Linux Platforms in Connext
7.1.0 below.

Operating System CPU GLIBC GLIBCXX Compiler RTI Architecture
Abbreviation

CentOS 7.0 x64 2.17 6.0.19

gcc 4.8.2 x64Linux3gcc4.8.2

Java Platform, Stand-
ard Edition JDK 11 x64Linux3gcc4.8.2

Red Hat Enterprise Linux 7.0, 7.3, 7.5, 7.6 x64 2.17 6.0.19

gcc 4.8.2 x64Linux3gcc4.8.2

Java Platform, Stand-
ard Edition JDK 11 x64Linux3gcc4.8.2

Red Hat Enterprise Linux 8.0, 9.0 x64 2.28 6.0.25

gcc 7.3.0 x64Linux4gcc7.3.0

Java Platform, Stand-
ard Edition JDK 11 x64Linux4gcc7.3.0

Ubuntu 18.04, 20.04, 22.04 LTS x64 2.27 6.0.25

gcc 7.3.0 x64Linux4gcc7.3.0

Java Platform, Stand-
ard Edition JDK 11 x64Linux4gcc7.3.0

Ubuntu 18.04 LTS, 22.04 LTS Arm v8 2.27 6.0.25

gcc 7.3.0

armv8Linux4gcc7.3.0
Java Platform, Stand-
ard Edition JDK 11

Table 3.1 Supported Linux Platforms in Connext 7.1.0

3.1 Building Applications for Linux Platforms

First, see the basic instructions in Chapter 2 Building Applications—Notes for All Platforms on
page 5.

Then make sure that:

10

3.1.1 Required Libraries and Compiler Flags

11

l Connext 7.x.y is installed (where 7.x.y stands for the version number of the current release). For
installation instructions, refer to the RTI Connext Installation Guide.

l A “make” tool is installed. RTI recommends GNU Make. If you do not have it, you may be able
to download it from your operating system vendor. Learn more at www.gnu.org/software/make/
or download from ftpmirror.gnu.org/make as source code.

l The NDDSHOME environment variable is set to the root directory of the Connext installation
(such as /home/user/rti_connext_dds-7.x.y).

l To confirm, type this at a command prompt:

echo $NDDSHOME
env | grep NDDSHOME

l If it is not set or is set incorrectly, type:

export NDDSHOME=<correct directory>

3.1.1 Required Libraries and Compiler Flags

To compile a Connext application of any complexity, either modify the auto-generated makefile created
by running RTI Code Generator or write your own makefile. See 3.1 Building Applications for Linux
Platforms on the previous page for required compiler flags.

Table 3.2 Building Instructions for Linux Architectures lists the compiler flags and libraries you will
need to link into your application.

Depending on which Connext features you want to use, you may need additional libraries; see 3.1.2
Additional Libraries for Other Features on page 13

Make sure you are consistent in your use of static, dynamic, debug and release versions of the
libraries. Do not link both static and dynamic libraries. Similarly, do not mix release and debug
libraries.

../installation_guide/RTI_ConnextDDS_InstallationGuide.pdf
http://www.gnu.org/software/make/
http://ftpmirror.gnu.org/make

3.1.1 Required Libraries and Compiler Flags

API Library
Format

Required RTI
Libraries

or Jar Filesab

Required
System
Libraries

Required Compiler Flags

C++
(Traditional and
Modern APIs)

Static Release

libnddscorez.a
libnddscz.a

libnddscppz.a
or
libnddscpp2z.a

librticonnextmsgcppz.a
or
librticonnextmsgcpp2z.a

-ldl -lm
-lpthread -lrt

For 64-bit architectures: -DRTI_LINUX -DRTI_UNIX -m64

For any Linux platform with GCC 6 or higher linker flag (see
Note below table), also add: -no-pie

For all architectures, if you want backtrace information, also
add:

Compiler flag: -fno-omit-frame-pointer

Linker flag: -rdynamic

Arm architectures: -funwind-tables

(see 3.12 Backtrace Support on page 25)

Static Debug

libnddscorezd.a
libnddsczd.a

libnddscppzd.a
or
libnddscpp2zd.a

librticonnextmsgcppzd.a
or
librticonnextmsgcpp2zd.a

Dynamic Release

libnddscore.so
libnddsc.so

libnddscpp.so
or
libnddscpp2.so

librticonnextmsgcpp.so
or
librticonnextmsgcpp2.so

Dynamic Debug

libnddscored.so
libnddscd.so

libnddscppd.so
or
libnddscpp2d.so

librticonnextmsgcppd.so
or
librticonnextmsgcpp2d.so

Table 3.2 Building Instructions for Linux Architectures

aChoose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
bRTI C/C++/Java libraries are in <NDDSHOME>/lib/<architecture>. The jar files are in
<NDDSHOME>/lib/java.

12

3.1.2 Additional Libraries for Other Features

13

API Library
Format

Required RTI
Libraries

or Jar Filesab

Required
System
Libraries

Required Compiler Flags

C

Static Release
libnddscorez.a
libnddscz.a
librticonnextmsgcz.a

-ldl -lm
-lpthread -lrt

For 64-bit architectures:
-DRTI_LINUX -DRTI_UNIX -m64

For any Linux platform with GCC 6 or higher linker flag (see
Note below table), also add: -no-pie

For all architectures, if you want backtrace information, also
add:

Compiler flag: -fno-omit-frame-pointer

Linker flag: -rdynamic

Arm architectures: -funwind-tables

(see 3.12 Backtrace Support on page 25)

Static Debug
libnddscorezd.a
libnddsczd.a
librticonnextmsgczd.a

Dynamic Release
libnddscore.so
libnddsc.so
librticonnextmsgc.so

Dynamic Debug
libnddscored.so
libnddscd.so
librticonnextmsgcd.so

Java

Release nddsjava.jar
rticonnextmsg.jar

N/A None required

Debug nddsjavad.jar
rticonnextmsgd.jar

Table 3.2 Building Instructions for Linux Architectures

Note: For Linux platforms with GCC 6 or higher, it's possible to configure the compiler driver to link,
by default, executables with PIE (position independent executable) support on the amd64 and ppc64el
architectures. Depending on the distributor of the GCC package, the automatic PIE generation may or
may not be enabled. PIE executables cannot be used with RTI's libraries, due to Address Space Layout
Randomization (ASLR). For this reason, RTI has linked Linux executables using the -no-pie flag when
the GCC version is 6 or higher. If you are using GCC 6 or higher, you must link the executable with -
no-pie to prevent PIE generation.

3.1.2 Additional Libraries for Other Features

3.1.2.1 Libraries Required for Distributed Logger

RTI Distributed Logger is supported on all the platforms in Table 3.1 Supported Linux Platforms in
Connext 7.1.0 on page 10.

To use the Distributed Logger APIs, link against the additional libraries in Table 3.3 Additional Librar-
ies for using RTI Distributed Logger .

aChoose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
bRTI C/C++/Java libraries are in <NDDSHOME>/lib/<architecture>. The jar files are in
<NDDSHOME>/lib/java.

3.1.2 Additional Libraries for Other Features

Language
Static Dynamic

Release Debug Release Debug

C librtidlcz.a librtidlczd.a librtidlc.so librtidcd.so

C++
(Traditional API)

librtidlcz.a

librtidlcppz.a

librtidlczd.a

librtidlcppzd.a

librtidlc.so

librtidlcpp.so

librtidlcd.so

librtidlcppd.so

Java N/A N/A
distlog.jar

distlogdatamodel.jar

distlogd.jar

distlogdatamodeld.jar

Table 3.3 Additional Libraries for using RTI Distributed Logger

3.1.2.2 Libraries Required for Monitoring

RTI Distributed Logger is supported on all the platforms in Table 3.1 Supported Linux Platforms in
Connext 7.1.0 on page 10 . Make sure you are consistent in your use of static, dynamic, debug and
release versions of the libraries. For example, if your Connext application is linked with the static
release version of the Connext libraries, you will need to also use the static release version of the mon-
itoring library. Do not link both static and dynamic libraries. Similarly, do not mix release and debug
libraries.

If you are statically linking your application with DDS libraries and you want to add monitoring to
your application, you will also need to statically link the monitoring library. The library cannot be
loaded dynamically strictly through the QoS profile because it also depends on DDS to publish its data.
Therefore, it depends on DDS; the DDS functionality would cause duplicate symbols to be found res-
ulting, in the termination of the process.

Note: If you plan to use static libraries, the RTI library in Table 3.4 Additional Libraries for Using
Monitoring on the next page must appear first in the list of libraries to be linked.

14

3.1.2 Additional Libraries for Other Features

15

Library Format Monitoring Librariesa

Dynamic Release librtimonitoring.so

Dynamic Debug librtimonitoringd.so

Static Release librtimonitoringz.a

Static Debug librtimonitoringzd.a

Table 3.4 Additional Libraries for Using Monitoring

3.1.2.3 Libraries Required for Real-Time WAN Transport

If you choose to use Real-Time WAN Transport, you must download and install a separate package that
contains the transport libraries. See the RTI Real-Time WAN Transport Installation Guide for details.

Using Real-Time WAN Transport requires one of the libraries in Table 3.5 Additional Libraries for
Using Real-Time WAN Transport APIs. Select the file appropriate for your chosen library format.

For more information, see the "Enabling Real-Time WAN Transport" section in the RTI Real-Time
WAN Transport part of the RTI Connext Core Libraries User's Manual.

Library Format Real-Time WAN Transport Librariesb

Dynamic Release libnddsrwt.so

Dynamic Debug libnddsrwtd.so

Static Release libnddsrwtz.a

Static Debug libnddsrwtzd.a

Table 3.5 Additional Libraries for Using Real-Time WAN Transport APIs

RTI Distributed Logger is supported on all the platforms in Table 3.1 Supported Linux Platforms in
Connext 7.1.0 on page 10.

3.1.2.4 Libraries Required for TCP Transport and TLS Support

To use the TCP Transport APIs, link against the additional libraries in Table 3.6 Additional Libraries
for using RTI TCP Transport APIs on the next page.

aThese libraries are in <NDDSHOME>/lib/<architecture>.
bThese libraries are in <NDDSHOME>/lib/<architecture>.

https://community.rti.com/static/documentation/connext-dds/7.1.0/doc/manuals/addon_products/realtime_wan_transport/installation_guide/RTI_RealTime_WAN_Transport_InstallationGuide.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

3.1.2 Additional Libraries for Other Features

Library Format RTI TCP Transport Librariesa

Dynamic Release libnddstransporttcp.so

Dynamic Debug libnddstransporttcpd.so

Static Release libnddstransporttcpz.a

Static Debug libnddstransporttcpzd.a

Table 3.6 Additional Libraries for using RTI TCP Transport APIs

If you are using RTI TLS Support, see Table 3.7 Additional Libraries for using RTI TCP Transport
APIs with TLS Enabled below. Select the files appropriate for your chosen library format.

RTI TLS Support is an optional product for use with the TCP transport that is included with
RTI Connext®. If you choose to use TLS Support, it must be installed on top of a Connext installation
with the same version number; it can only be used on architectures that support TCP transport (see the
RTI TLS Support Release Notes).

Library Format RTI TLS Librariesb OpenSSL Librariesc

Dynamic Release libnddstls.so

libssl.so

libcrypto.so

Dynamic Debug libnddstlsd.so

Static Release libnddstlsz.a

Static Debug libnddstlszd.a

Table 3.7 Additional Libraries for using RTI TCP Transport APIs with TLS Enabled

3.1.2.5 Libraries Required for Zero Copy Transfer Over Shared Memory

To use the Zero Copy Transfer Over Shared Memory feature, link against the additional library in
Table 3.8 Additional Libraries for Zero Copy Transfer Over Shared Memory on the next page.

aThese libraries are in <NDDSHOME>/lib/<architecture>.
bThese libraries are in <NDDSHOME>/lib/<architecture>.
cOpenSSL libraries are in <NDDSHOME>/third_party/openssl-3.0.8/<architecture>/<format>/lib.

16

https://community.rti.com/static/documentation/connext-dds/7.1.0/doc/manuals/connext_dds_professional/transports/tls_support/release_notes/RTI_TLS_Support_ReleaseNotes.pdf

3.1.3 Linux Compatibility and Determining Factors

17

Library Format Zero Copy Transfer Over Shared Memory Librariesa

Dynamic Release libnddsmetp.so

Dynamic Debug libnddsmetpd.so

Static Release libnddsmetpz.a

Static Debug libnddsmetpzd.a

Table 3.8 Additional Libraries for Zero Copy Transfer Over Shared Memory

3.1.3 Linux Compatibility and Determining Factors

RTI has concluded that there are four factors that can be used to determine the compatibility of RTI's
Linux core libraries on a specific Linux distribution or system. You can use this information to identify
which Connext Linux libraries are suitable for your system. If a system matches the compatibility
factors, RTI has a high level of confidence that the core libraries will work with no issues.

RTI has identified four Linux compatibility factors:

l CPU architecture (such as x64, Arm v8, ppc)
l Minimum GLIBC version
l GLIBCXX version
l Floating-Point scheme

3.1.3.1 Compatibility factors explained

The CPU architecture is the CPU family of the target system. Note that this important value is not for
the physical CPU used to run, but the configuration of the system where it will be executed. For
example, you may have an x64 CPU but your system kernel may run as if it were an x86 CPU. In this
case, a 32-bit version of the Connext library should be selected.

The minimum GLIBC is the minimum required value of the GLIBC library used in the target system. If
the target system's GLIBC version is less than the minimum version required by Connext, run-time
errors can occur, such as undefined symbol errors.

The GLIBCXX range is the range of the Standard C++ Library that the target system must support. In
some cases this value is a range and in others it’s a minimum value just like the minimum GLIBC sup-
port.

aThese libraries are in <NDDSHOME>/lib/<architecture>.

3.1.3 Linux Compatibility and Determining Factors

The floating-point scheme defines how the assembly code is generated relative to the floating-point
registers and instructions; this should only be a concern on Arm v7 architectures. The options available
are soft floating-point and hard floating-point. All newer architectures use hard floating-point.

Table 3.9 Compatibility Ranges

Library Name CPU Minimum GLIBC GLIBCXX Range

x64Linux3gcc4.8.2 x64 2.17 6.0.15 <= X < 6.0.21

x64Linux4gcc7.3.0 x64 2.25 6.0.21 <= X

armv8Linux4gcc7.3.0 Arm v8 2.25 6.0.21 <= X

3.1.3.2 How to determine the GLIBC version on your target system

There are two ways to determine the GLIBC version in a target system. In most systems, you can run
ldd --version. If the command ldd is not available, you must find where the libc.so library is located,
then execute it. This will provide you the version of the library in the terminal. Note that you must per-
form this process in the target system in the case of cross-compiled architectures.

As an example, you can see the following output from an Ubuntu 20.04 system:
$ ldd --version
ldd (Ubuntu GLIBC 2.31-0ubuntu9.2) 2.31
Copyright (C) 2020 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Written by Roland McGrath and Ulrich Drepper.
$./lib/x86_64-linux-gnu/libc.so.6
GNU C Library (Ubuntu GLIBC 2.31-0ubuntu9.2) stable release version 2.31.
Copyright (C) 2020 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Compiled by GNU CC version 9.3.0.
libc ABIs: UNIQUE IFUNC ABSOLUTE
For bug reporting instructions, please see:
<https://bugs.launchpad.net/ubuntu/+source/glibc/+bugs>.

Given the output of both commands, we can say that the GLIBC version of this system is 2.31.

3.1.3.3 How to determine the GLIBCXX version on your target system

To determine the GLIBCXX version of the target system, you must find the libstdc++.so.6.0.XX lib-
rary on your system. On some systems, you may have a libstdc++.so file, which is a symbolic link to
the actual library.

The name of the libstdc++ library provides the version number, such as "6.0.XX" at the end of its
name. Note that you must perform this process in the target system in the case of cross-compiled archi-
tectures. As an example, you can see the following output from an Ubuntu 20.04 system:

18

3.1.4 How the Connext Libraries were Built

19

$ ls -l lib/x86_64-linux-gnu/libstdc++.so.6
lrwxrwxrwx 1 root root 19 May 29 2021 lib/x86_64-linux-gnu/libstdc++.so.6 ->
libstdc++.so.6.0.28

Given this output, we can determine that the GLIBCXX version for this system is 6.0.28.

3.1.4 How the Connext Libraries were Built

Table 3.10 Library-Creation Details for Linux Architectures provides details on how RTI built the
Linux libraries. This table is provided strictly for informational purposes. You do not need to use these
parameters to compile your application. You may find this information useful if you are involved in
any in-depth debugging.

3.2 Running Your Applications

RTI Architecture Library Format Compiler Flags Used by RTI

armv8Linux4gcc7.3.0

Static Release -O -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -funwind-tables -O -DNDEBUG
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"armv8Linux4gcc7.3.0\"

Static Debug -O0 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -funwind-tables -O0 -g
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"armv8Linux4gcc7.3.0\"

Dynamic Release -O -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -funwind-tables -O -DNDEBUG
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"armv8Linux4gcc7.3.0\"

Dynamic Debug -O0 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -funwind-tables -O0 -g
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"armv8Linux4gcc7.3.0\"

x64Linux3gcc4.8.2

Static Release -O -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O -DNDEBUG
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux3gcc4.8.2\"

Static Debug -O0 -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O0 -g
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux3gcc4.8.2\"

Dynamic Release -O -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O -DNDEBUG
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux3gcc4.8.2\"

Dynamic Debug -O0 -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O0 -g
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux3gcc4.8.2\"

x64Linux4gcc7.3.0

Static Release -O -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O -DNDEBUG
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0\"

Static Debug -O0 -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O0 -g
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0\"

Dynamic Release -O -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O -DNDEBUG
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0\"

Dynamic Debug -O0 -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O0 -g
-fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0\"

All supported Linux
architectures for Java

Dynamic Release -target 1.8 -source 1.8

Dynamic Debug -target 1.8 -source 1.8 -g

Table 3.10 Library-Creation Details for Linux Architectures

3.2 Running Your Applications

For the environment variables that must be set at run time, see Table 3.11 Running Instructions for
Linux Architectures below.

RTI Architecture Library Format Environment Variables

All supported Linux
architectures when using
Java

N/A
LD_LIBRARY_PATH= ${NDDSHOME}/lib/<architecture>: ${LD_LIBRARY_PATH}

Note: For all 64-bit Java architectures (...64Linux...), use -d64 in the command line.

Table 3.11 Running Instructions for Linux Architectures

20

3.3 Support for Modern C++ API

21

RTI Architecture Library Format Environment Variables

All supported Linux
architectures when not
using Java

Static (Release & Debug) None required

Dynamic (Release &
Debug) LD_LIBRARY_PATH= ${NDDSHOME}/lib/<architecture>: ${LD_LIBRARY_PATH}

Table 3.11 Running Instructions for Linux Architectures

3.3 Support for Modern C++ API

Connext provides two C++ APIs, which we refer to as the "Traditional C++" and "Modern C++" APIs.

l The Modern C++ API requires C++11 compilers or newer.
l The Traditional C++ API supports C++98 compilers or newer.

For more information, see Traditional vs. Modern C++, in the RTI Connext Core Libraries User's
Manual.

3.4 Support for .NET

The C# API is supported on all Linux platforms. For more information on .NET, see the C# API Refer-
ence.

3.5 Multicast Support

Multicast is supported on all Linux platforms and is configured out of the box. That is, the default
value for the initial peers list (NDDS_DISCOVERY_PEERS) includes a multicast address. See the
API Reference HTML documentation for more information.

3.6 Transports

l Shared memory: Supported and enabled by default. To clean up shared memory resources,
reboot the kernel.

l UDPv4: Supported and enabled by default.
l UDPv6: Supported for all platforms.

The UDPv6 transport is not enabled by default, and the peers list must be modified to support
IPv6.

Traffic Class support is only provided on architectures with gcc 4.1.0 or later that support the
UDPv6 transport.

l TCP/IPv4: Supported for all Linux platforms. This is not a built-in transport.

https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_csharp/index.html
https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_csharp/index.html

3.6.1 Shared Memory Support

3.6.1 Shared Memory Support

To see a list of shared memory resources in use, please use the 'ipcs' command. To clean up shared
memory and shared semaphore resources, please use the 'ipcrm' command.

The shared memory keys used by Connext are in the range of 0x400000. For example:
ipcs -m | grep 0x004

The shared semaphore keys used by Connext are in the range of 0x800000; the shared mutex keys are
in the range of 0xb00000. For example:
ipcs -s | grep 0x008
ipcs -s | grep 0x00b

Please refer to the shared-memory transport online documentation for details on the shared memory and
semaphore keys used by Connext.

3.7 Unsupported Features

l Remote Procedure Calls are not supported on x64Linux3gcc4.8.2 platforms.
l Durable Writer History and Durable Reader State are not supported.

3.8 Monotonic Clock Support

The monotonic clock (described in Configuring the Clock per DomainParticipant, in the RTI Connext
Core Libraries User's Manual) is supported.

3.9 Thread Configuration

Table 3.12 Thread Settings for Linux Platforms on the next page lists the thread settings for Linux plat-
forms.

See also: Table 3.13 Thread-Priority Definitions for Linux Platforms on page 24 and Table 3.14 Thread
Kinds for Linux Platforms on page 24.

3.9.1 Support for Controlling CPU Core Affinity for RTI Threads

Support for controlling CPU core affinity (described in "Controlling CPU Core Affinity" in the User's
Manual) is available on all supported Linux platforms.

22

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

3.9.1 Support for Controlling CPU Core Affinity for RTI Threads

23

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

Asynchronous Publisher,
Asynchronous flushing thread

mask OS default thread type

priority OS default thread priority

stack_size OS default thread stack size

cpu_list Empty CPU list (Supported on Linux platforms)

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Database thread

mask DDS_THREAD_SETTINGS_STDIO

priority OS default thread priority

stack_size OS default thread stack size

cpu_list Empty CPU list

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Event thread

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_
FLOATING_POINT

priority OS default thread priority

stack_size OS default thread stack size

cpu_list Empty CPU list

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

ReceiverPool threads

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_
FLOATING_POINT

priority OS default thread priority

stack_size OS default thread stack size

cpu_list Empty CPU list

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Table 3.12 Thread Settings for Linux Platforms

3.9.2 Using REALTIME_PRIORITY

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_DEFAULT

If any of these constants are used to set the priority of the thread in
the QoS, the OS's default thread priority will be used.

THREAD_PRIORITY_HIGH

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_LOW

Table 3.13 Thread-Priority Definitions for Linux Platforms

Thread Kinds Operating-System Configurationa

DDS_THREAD_SETTINGS_FLOATING_POINT N/A

DDS_THREAD_SETTINGS_STDIO N/A

DDS_THREAD_SETTINGS_REALTIME_PRIORITY Set schedule policy to SCHED_FIFO

DDS_THREAD_SETTINGS_PRIORITY_ENFORCE N/A

Table 3.14 Thread Kinds for Linux Platforms

3.9.2 Using REALTIME_PRIORITY

If the mask field includes DDS_THREAD_SETTINGS_REALTIME_PRIORITY, a value must also be
explicitly specified for the "priority" field in the QoS. (This is because using DDS_THREAD_
SETTINGS_REALTIME_PRIORITY changes the scheduler used by Linux for the thread to SCHED_
FIFO. If the priority field is not explicitly set, it will default to a value of 0, but this is an invalid value
for a priority when using SCHED_FIFO.) Note that running with REALTIME_PRIORITY requires the
appropriate privileges: the process will need to be run with root privileges on Linux in order to set the
scheduler.

3.10 Durable Writer History and Durable Reader State Features

The Durable Writer History and Durable Reader State features are temporarily disabled in this release.
A future feature release will resume support for them. For further clarification, see RTI Connext Core
Libraries What's New in 7.1.0 or contact RTI Support at support@rti.com.

aSee the Linux programmer’s manuals for more information.

24

../whats_new/RTI_ConnextDDS_CoreLibraries_WhatsNew.pdf
../whats_new/RTI_ConnextDDS_CoreLibraries_WhatsNew.pdf
mailto:support@rti.com

3.11 Support for 'Find Package' CMake Script

25

3.11 Support for 'Find Package' CMake Script

The 'Find Package' CMake script is supported on Linux platforms on Intel CPUs (see Table 3.1 Sup-
ported Linux Platforms in Connext 7.1.0 on page 10).

For information on using this script, see 2.5 Building with CMake on page 8.

3.12 Backtrace Support

l If you are using GCC 6 or newer, you must link the executable with -no-pie to prevent PIE gen-
eration. See the Note below Table 3.2 Building Instructions for Linux Architectures.

l You will also need to compile with -fno-omit-frame-pointer.
l For Linux architectures on Arm CPUs, also use the -funwind-tables compiler option. This cre-
ates a table that allows the program to walk back through the function call stack from a given exe-
cution point.

l Symbol names may be unavailable without the use of special linker options. RTI has compiled
Linux architectures using the linker option -rdynamic to display backtrace information. To dis-
play backtrace information on your Linux architecture, you must also compile with
-rdynamic.

See Logging a Backtrace for Failures, in the RTI Connext Core Libraries User's Manual.

3.13 Support for Remote Procedure Calls (RPC)

RPC is an experimental feature. It is only available for the C++11 API. It is supported all Linux archi-
tectures except x64Linux3gcc4.8.2.

See Remote Procedure Calls (RPC) in the RTI Connext Core Libraries User's Manual.

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

Chapter 4 macOS Platforms
Table 4.1 Supported macOS Platforms in Connext 7.0.0 lists the architectures supported on
macOS® operating systems.

Operating System CPU Compiler RTI Architecture
Abbreviation

macOS 11, 12 (host and target) a x64

clang 12.0, 13.0

x64Darwin20clang12.0
Java Platform, Standard Edition
JDK 11

macOS 11 and 12 (target only)

Requires Rosetta® 2 during installation.
See 4.1 Installation Note for Arm v8 Platforms—Rosetta 2 Re-
quired below

Arm v8 clang 12.0, 13.0 arm64Darwin20clang12.0

Table 4.1 Supported macOS Platforms in Connext 7.0.0

4.1 Installation Note for Arm v8 Platforms—Rosetta 2 Required

Rosetta® 2 must be installed and enabled before installing the host and target bundles for
macOS 11 or 12 on an Arm v8 (M1) CPU.

Rosetta 2 is an Apple® tool for translating third party software applications; without it, you will
see an error message when attempting to install Connext. Installation instructions for Rosetta 2
can be found at https://support.apple.com/en-us/HT211861.

Rosetta 2 is only required during installation. It is not required at runtime.

aFuture releases may support a different version

26

https://support.apple.com/en-us/HT211861

4.2 Building Applications for macOS Platforms

27

4.2 Building Applications for macOS Platforms

Table 4.2 Building Instructions for macOS Architectures lists the compiler flags and libraries you will
need to link into your application.

Depending on which Connext features you want to use, you may need additional libraries; see 4.2.1
Additional Libraries for Other Features on page 29.

Make sure you are consistent in your use of static, dynamic, debug and release versions of the
libraries. Do not link both static and dynamic libraries. Similarly, do not mix release and debug
libraries.

4.2 Building Applications for macOS Platforms

API Library
Format Required RTI Librariesab Required System

Libraries Required Compiler Flags

C++
(Traditional
and Modern
APIs)

Static Release

libnddscorez.a
libnddscz.a

libnddscppz.a
or
libnddscpp2z.a

librticonnextmsgcppz.a
or
librticonnextmsgcpp2z.a

-ldl -lm -lpthread

For x64 architectures:

-dynamic

-lpthread

-lc

-single_module

-DRTI_UNIX

-DRTI_DARWIN

-DRTI_64BIT

For Arm v8 architectures:

-DRTI_UNIX

-DRTI_DARWIN

Static Debug

libnddscorezd.a
libnddsczd.a

libnddscppzd.a
or
libnddscpp2zd.a

librticonnextmsgcppzd.a
or
librticonnextmsgcpp2zd.a

Dynamic Release

libnddscore.dylib
libnddsc.dylib

libnddscpp.dylib
or
libnddscpp2.dylib

librticonnextmsgcpp.dylib
or
librticonnextmsgcpp2.dylib

Dynamic Debug

libnddscored.dylib
libnddscd.dylib

libnddscppd.dylib
or
libnddscpp2d.dylib

librticonnextmsgcppd.dylib
or
librticonnextmsgcpp2d.dylib

Table 4.2 Building Instructions for macOS Architectures

aChoose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
bThe Connext C/C++ libraries are in <NDDSHOME>/lib/<architecture>/.
<NDDSHOME> is where Connext is installed, see 1.1 Paths Mentioned in Documentation on page 3

28

4.2.1 Additional Libraries for Other Features

29

API Library
Format Required RTI Librariesab Required System

Libraries Required Compiler Flags

C

Static Release

libnddscorez.a

libnddscz.a

librticonnextmsgcz.a

-ldl -lm -lpthread

-dynamic -lpthread

-lc -single_module

-DRTI_UNIX

-DRTI_DARWIN

-DRTI_64BIT

Static Debug

libnddscorezd.a

libnddsczd.a

librticonnextmsgczd.a

Dynamic Release

libnddscore.dylib

libnddsc.dylib

librticonnextmsgc.dylib

Dynamic Debug

libnddscored.dylib

libnddscd.dylib

librticonnextmsgcd.dylib

Java

Release
nddsjava.jar

rticonnextmsg.jar
N/A None required

Debug
nddsjavad.jar

rticonnextmsgd.jar

Table 4.2 Building Instructions for macOS Architectures

4.2.1 Additional Libraries for Other Features

4.2.1.1 Libraries Required for Distributed Logger

RTI Distributed Logger is supported on macOS platforms. Table 4.3 Additional Libraries for using RTI
Distributed Logger lists the additional libraries you will need in order to use Distributed Logger.

Language
Static Dynamic

Release Debug Release Debug

C++
(Traditional API)

librtidlcz.a
librtidlcppz.a

librtidlczd.a
librtidlcppzd.a

librtidlc.dylib
librtidlcpp.dylib

librtidlcd.dylib
librtidlcppd.dylib

C librtidlcz.a librtidlczd.a librtidlc.dylib librtidlcd.dylib

Table 4.3 Additional Libraries for using RTI Distributed Logger

aChoose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
bThe Connext C/C++ libraries are in <NDDSHOME>/lib/<architecture>/.
<NDDSHOME> is where Connext is installed, see 1.1 Paths Mentioned in Documentation on page 3

4.2.1 Additional Libraries for Other Features

Language
Static Dynamic

Release Debug Release Debug

Java N/A N/A distlog.jar
distlogdatamodel.jar

distlogd.jar
distlogdatamodeld.jar

Table 4.3 Additional Libraries for using RTI Distributed Logger

4.2.1.2 Libraries Required for Monitoring

Make sure you are consistent in your use of static, dynamic, debug and release versions of the libraries.
For example, if your Connext application is linked with the static release version of the Connext lib-
raries, you will need to also use the static release version of the monitoring library. Do not link both
static and dynamic libraries. Similarly, do not mix release and debug libraries.

If you are statically linking your application with DDS libraries and you want to add monitoring to
your application, you will also need to statically link the monitoring library. The library cannot be
loaded dynamically strictly through the QoS profile because it also depends on DDS to publish its data.
Therefore, it depends on DDS; the DDS functionality would cause duplicate symbols to be found res-
ulting, in the termination of the process.

Note: If you are plan to use static libraries, the RTI library in Table 4.4 Additional Libraries for Using
Monitoring must appear first in the list of libraries to be linked.

Library Format Monitoring Librariesa

Dynamic Release librtimonitoring.dylib

Dynamic Debug librtimonitoringd.dylib

Static Release librtimonitoringz.a

Static Debug librtimonitoringzd.a

Table 4.4 Additional Libraries for Using Monitoring

4.2.1.3 Libraries Required for Real-Time WAN Transport

If you choose to use Real-Time WAN Transport, you must download and install a separate package that
contains the transport libraries. See the See the RTI Real-Time WAN Transport Installation Guide for
details.

Using Real-Time WAN Transport requires one of the libraries in Table 4.5 Additional Libraries for
Using Real-Time WAN Transport APIs. Select the file appropriate for your chosen library format.

aThese libraries are in <NDDSHOME>/lib/<architecture>.

30

https://community.rti.com/static/documentation/connext-dds/7.1.0/doc/manuals/addon_products/realtime_wan_transport/installation_guide/RTI_RealTime_WAN_Transport_InstallationGuide.pdf

4.2.1 Additional Libraries for Other Features

31

For more information, see the "Enabling Real-Time WAN Transport" section in the RTI Real-Time
WAN Transport part of the RTI Connext Core Libraries User's Manual.

Library Format Real-Time WAN Transport Librariesa

Dynamic Release libnddsrwt.dylib

Dynamic Debug libnddsrwtd.dylib

Static Release libnddsrwtz.a

Static Debug libnddsrwtzd.a

Table 4.5 Additional Libraries for Using Real-Time WAN Transport APIs

4.2.1.4 Libraries Required for TCP Transport

To use the TCP Transport APIs, link against the additional libraries in Table 4.6 Additional Libraries
for using RTI TCP Transport APIs. If you are using RTI TLS Support, see Table 4.7 Additional Librar-
ies for using RTI TCP Transport APIs with TLS Enabled. Select the files appropriate for your chosen
library format.

Library Format RTI TCP Transport Librariesb

Dynamic Release libnddstransporttcp.dylib

Dynamic Debug libnddstransporttcpd.dylib

Static Release libnddstransporttcpz.a

Static Debug libnddstransporttcpzd.a

Table 4.6 Additional Libraries for using RTI TCP Transport APIs

Library Format RTI TLS Librariesc OpenSSL Librariesd

Dynamic Release libnddstls.dylib
libssl.dylib
libcrypto.dylib

Dynamic Debug libnddstlsd.dylib

Table 4.7 Additional Libraries for using RTI TCP Transport APIs with TLS Enabled

aThese libraries are in <NDDSHOME>/lib/<architecture>.
bThese libraries are in <NDDSHOME>/lib/<architecture>.
cThese libraries are in <NDDSHOME>/lib/<architecture>.
dOpenSSL libraries are in <NDDSHOME>/third_party/openssl-3.0.8/<architecture>/<format>/lib.

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

4.2.2 How the Connext Libraries were Built

Library Format RTI TLS Librariesa OpenSSL Librariesb

Static Release libnddstlsz.a
libsslz.a
libcryptoz.a

Static Debug libnddstlszd.a

Table 4.7 Additional Libraries for using RTI TCP Transport APIs with TLS Enabled

4.2.1.5 Libraries Required for Zero Copy Transfer Over Shared Memory

To use the Zero Copy Transfer Over Shared Memory feature, link against the additional library in
Table 4.8 Additional Libraries for Zero Copy Transfer Over Shared Memory .

Library Format Zero Copy Transfer Over Shared Memory Library

Dynamic Release libnddsmetp.dylib

Dynamic Debug libnddsmetpd.dylib

Static Release libnddsmetpz.a

Static Debug libnddsmetpzd.a

Table 4.8 Additional Libraries for Zero Copy Transfer Over Shared Memory

4.2.2 How the Connext Libraries were Built

Table 4.9 Library-Creation Details for macOS Architectures provides details on how the libraries were
built by RTI. This table is provided strictly for informational purposes; you do not need to use these
parameters to compile your application. You may find this information useful if you are involved in
any in-depth debugging.

RTI Architecture Library Format
(Static & Dynamic) Compiler Flags Used by RTI

arm64Darwin20clang12.0

Release -Dunix -O -Wall -Wno-unknown-pragmas -Wno-trigraphs
-Wmissing-field-initializers -Wuninitialized -O -DNDEBUG -fPIC

Debug -Dunix -O0 -Wall -Wno-unknown-pragmas -Wno-trigraphs
-Wmissing-field-initializers -Wuninitialized -O0 -g -fPIC

Table 4.9 Library-Creation Details for macOS Architectures

aThese libraries are in <NDDSHOME>/lib/<architecture>.
bOpenSSL libraries are in <NDDSHOME>/third_party/openssl-3.0.8/<architecture>/<format>/lib.

32

4.3 Running User Applications

33

RTI Architecture Library Format
(Static & Dynamic) Compiler Flags Used by RTI

x64Darwin20clang12.0

Release
-arch x86_64 -Wno-trigraphs -fpascal-strings
-fasm-blocks -O -Wall -Wno-unknown-pragmas -DPtrIntType=long
-DTARGET=\"x64Darwin20clang12.0\" -DNDEBUG

Debug
-arch x86_64 -Wno-trigraphs -fpascal-strings
-fasm-blocks -g -O -Wall -Wno-unknown-pragmas -DPtrIntType=long
-DTARGET=\"x64Darwin20clang12.0\"

x64Darwin20clang12.0 for Java
Release -target 1.8 -source 1.8

Debug -target 1.8 -source 1.8 -g

Table 4.9 Library-Creation Details for macOS Architectures

4.3 Running User Applications

Table 4.10 Running Instructions for macOS Architectures provides details on the environment variables
that must be set at run time for a macOS architecture.

RTI Architecture
Library Format
(Release &
Debug)

Required Environment Variablesa

arm64Darwin20clang12.0 Dynamic DYLD_LIBRARY_PATH=${NDDSHOME}/lib/arm64Darwin20clang12.0:${DYLD_LIBRARY_PATH}

x64Darwin20clang12.0
Static None required

Dynamic DYLD_LIBRARY_PATH=${NDDSHOME}/lib/x64Darwin20clang12.0:${DYLD_LIBRARY_ PATH}

x64Darwin20clang12.0 for
Java N/A DYLD_LIBRARY_PATH=${NDDSHOME}/lib/x64Darwin20clang12.0:${DYLD_LIBRARY_ PATH}

Table 4.10 Running Instructions for macOS Architectures

4.4 Support for Modern C++ API

Connext provides two C++ APIs, which we refer to as the "Traditional C++" and "Modern C++" APIs.

a${NDDSHOME} is where Connext is installed. ${DYLD_LIBRARY_PATH} represents the value of
the DYLD_LIBRARY_PATH variable prior to changing it to support Connext. When using
nddsjava.jar, the Java virtual machine (JVM) will attempt to load release versions of the native libraries
(nddsjava.dylib, nddscore.dylib, nddsc.dylib). When using nddsjavad.jar, the JVM will attempt to load
debug versions of the native libraries (nddsjava.dylib, nddscore.dylib, nddsc.dylib).

4.5 Support for .NET/C# API

l The Modern C++ API requires C++11 compilers or newer.
l The Traditional C++ API supports C++98 compilers or newer.

For more information, see Traditional vs. Modern C++, in the RTI Connext Core Libraries User's
Manual.

4.5 Support for .NET/C# API

The C# API is supported on macOS platforms with x64 and Arm v8 CPUs. For more information on
.NET, see the C# API Reference.

4.6 Multicast Support

Multicast is supported on macOS platforms and is configured out of the box. That is, the default value
for the initial peers list (NDDS_DISCOVERY_PEERS) includes a multicast address. See the online
documentation for more information.

4.7 Transports

l Shared memory: Supported and enabled by default.
l UDPv4: Supported and enabled by default.
l UDPv6: Supported.
l TCP/IPv4: Supported.

4.8 Unsupported Features

These features are not supported on macOS platforms:

l Controlling CPU Core Affinity
l Durable Writer History and Durable Reader State
l Monotonic clock
l Find Package CMake script on Arm v8 platforms

4.9 System Integrity Protection (SIP)

A feature called System Integrity Protection (SIP) was introduced in macOS 10.11. If enabled, this fea-
ture strips out the environment variable DYLD_LIBRARY_PATH, which is used to specify the loc-
ation of shared libraries for a program. For more details, see https://support.apple.com/en-
us/HT204899.

34

https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_csharp/index.html
https://support.apple.com/en-us/HT204899
https://support.apple.com/en-us/HT204899

4.9.1 SIP and Java Applications

35

4.9.1 SIP and Java Applications

If you run Connext applications using a Java Runtime Environment located under one of the paths pro-
tected by SIP (e.g., /usr/bin) and rely on the DYLD_LIBRARY_PATH environment variable to set the
path to the Connext run-time libraries (or any other third party run-time libraries, such as OpenSSL),
Java will fail to load them with an error message such as:
The library libnddsjava.dylib could not be loaded by your operating system

To overcome this limitation, when running Java applications on macOS systems, you must use the
java.library.path variable instead of the DYLD_LIBRARY_PATH environment variable to indicate
the path to the Connext libraries. This is automatically performed by the scripts to run applications gen-
erated by the RTI Code Generator. However, if you are manually running your Connext application
using the Java Runtime Environment, or you are writing our own scripts to run your Java application,
you can indicate it as follows:
java -Djava.library.path="<installation_dir>/lib/<architecture>" -classpath
.:"<installation_dir>/lib/java/nddsjava.jar" <your_class>

Additionally, some Connext applications may need to dynamically load functionality that is imple-
mented in separate libraries (e.g., for the RTI Monitoring Library or transport plugins such as
RTI TLS Support). In that case, specifying the path to the lib directory using java.library.path is not
sufficient, because the path to those libraries is not exposed to the underlying Connext infrastructure.

To work around this limitation, you must provide the full path and extension of the dynamic libraries
that are loaded at run time. In the case of the RTI Monitoring Library, this implies adding the following
to your XML configuration file:
<domain_participant_qos>

<property>
<value>

<element>
<name>rti.monitor.library</name>
<value>/full-path-to-librtimonitoring.dylib</value>

</element>
<!-- ... -->

</value>
</property>

</domain_participant_qos>

Likewise, for transport plugins that are loaded dynamically (e.g., the TCP transport plugin), you must
add the full path to the XML configuration file:
<domain_participant_qos>

<property>
<!-- ... -->
<value>

<element>
<name>dds.transport.TCPv4.tcp1.library</name>
<value>/full-path-to-libnddstransporttcp.dylib</value>

</element>

4.9.2 SIP and Connext Tools, Infrastructure Services, and Utilities

<!-- ... -->
</value>

</property>
</domain_participant_qos>

For more on transport plugins, see 4.2.1.4 Libraries Required for TCP Transport on page 31.

4.9.2 SIP and Connext Tools, Infrastructure Services, and Utilities

The SIP feature also makes it impossible for the scripts under <installation_dir>/bin to pick up the
value of the DYLD_LIBRARY_PATH environment variable at run time. To workaround this issue,
Connext tools, infrastructure services, and utilities rely on RTI_LD_LIBRARY_PATH, an alternative
environment variable that can be used in lieu of DYLD_LIBRARY_PATH and LD_LIBRARY_PATH
to add library paths on Linux systems.

For example, to add <OPENSSLHOME>/lib and <NDDSHOME/lib/<architecture> (i.e., the library
paths required for running RTI Routing Service with the TLS transports) to your library path, you can
export the RTI_LD_LIBRARY_PATH environment variable and run Routing Service as follows:
export RTI_LD_LIBRARY_PATH=<OPENSSLHOME>/lib:<NDDSHOME>/lib/<ARCHITECTURE>

<installation_dir>/bin/rtiroutingservice -cfgName <your_configuration>

4.10 Thread Configuration

See Table 4.11 Thread Settings for macOS Platforms and Table 4.12 Thread-Priority Definitions for
macOS Platforms.

Applicable Thread DDS_
ThreadSettings_t Platform-Specific Setting

Asynchronous Publisher, Asynchronous flushing
thread

mask OS default thread type

priority OS default thread priority

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Database thread

mask DDS_THREAD_SETTINGS_STDIO

priority OS default thread priority

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Table 4.11 Thread Settings for macOS Platforms

36

4.11 Support for 'Find Package' CMake Script

37

Applicable Thread DDS_
ThreadSettings_t Platform-Specific Setting

Event thread

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_
FLOATING_POINT

priority OS default thread priority

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

ReceiverPool threads

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_
FLOATING_POINT

priority OS default thread priority

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Table 4.11 Thread Settings for macOS Platforms

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_DEFAULT

If any of these constants are used to set the priority of the thread in the QoS,
the OS's default thread priority will be used.

THREAD_PRIORITY_HIGH

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_LOW

Table 4.12 Thread-Priority Definitions for macOS Platforms

4.11 Support for 'Find Package' CMake Script

The 'Find Package' CMake script is supported on all macOS platforms in Table 4.1 Supported
macOS Platforms in Connext 7.0.0 except macOS systems on Arm v8 CPUs.

For information on using this script, see 2.5 Building with CMake on page 8.

4.12 Backtrace Support

4.12 Backtrace Support

Backtrace is supported on macOS platforms and is configured out of the box. See Logging a Backtrace
for Failures, in the RTI Connext Core Libraries User's Manual.

4.13 Resolving NDDSUtility_sleep() Issues

When running on a macOS system, you may experience timing issues in your calls to NDDSUtility_
sleep(). If you request to sleep for a small enough time period, you will notice that the actual sleep time
is significantly longer.

macOS systems have a timer coalescing feature, enabled by default. This is a power-saving technique
that reduces the precision of software timers, achieving a reduction in CPU usage.

What effect does this have on your Connext application? Suppose you send samples from your pub-
lisher at a 5 ms rate, using NDDSUtility_sleep() to calculate that wait time. You have a subscriber with
a deadline set to 6 ms. The timer coalescing feature could make your sleep last much longer than 5-6
ms, so when the next sample reaches the subscriber, the deadline period has expired and you will exper-
ience missed samples.

If you are having similar issues, see if your kernel has timer coalescing enabled. You can tell by using
this command:
user@osx:~$ /usr/sbin/sysctl -a | grep coalescing_enabled

In the reply, a 1 means enabled, 0 means disabled.
kern.timer.coalescing_enabled: 1

To overcome this situation, you must disable timer coalescing in the kernel configuration. (Note that
you must have sudo or root access to be able to edit this kernel parameter.)
user@osx:~$ sudo /usr/sbin/sysctl -w kern.timer.coalescing_enabled=0

The reply should be:
kern.timer.coalescing_enabled: 1 -> 0

This change won’t be permanent though, and will go back to the default when the system is rebooted.

38

4.14 Support for Remote Procedure Calls (RPC)

39

To make this change permanent, add the configuration line in the file /etc/sysctl.conf. You can use
your favorite editor to do it, or use this command:
user@osx:~$ sudo echo "kern.timer.coalescing_enabled=0" >> /etc/sysctl.conf

4.14 Support for Remote Procedure Calls (RPC)

RPC is an experimental feature. It is only available for the C++11 API. It is supported on macOS archi-
tectures.

See Remote Procedure Calls (RPC) in the RTI Connext DDS Core Libraries User's Manual.

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

Chapter 5 QNX Platforms
Table 5.1 Supported QNX Platforms for Connext 7.1.0 lists the architectures supported on QNX
operating systems.a

Operating System CPU Compiler RTI Architecture

QNX Neutrino 7.1 Arm v8 (64-bit) qcc 8.3.0 armv8QNX7.1qcc_gpp8.3.0

Table 5.1 Supported QNX Platforms for Connext 7.1.0

5.1 Building Applications for QNX Platforms

The libraries on Arm CPUs require a hardware FPU in the processor and are compatible with
systems that have hard-float libc. See Table 5.9 Library-Creation Details for QNX Architectures
for compiler flag details.

Table 5.2 Building Instructions for QNX Architectures lists the libraries you will need to link
into your application.

Depending on which Connext features you want to use, you may need additional libraries; see
5.1.2 Additional Libraries for Other Features on page 42.

Additional Documentation: You should also review the QNX chapter of the RTI Connext
Core Libraries Getting Started Guide Addendum for Embedded Systems.

Make sure you are consistent in your use of static, dynamic, debug and release versions
of the libraries. Do not link both static and dynamic libraries. Similarly, do not mix
release and debug libraries.

aFor use with Windows or Linux hosts as supported by QNX and RTI.

40

../getting_started_platforms/embedded_systems_addendum/RTI_ConnextDDS_CoreLibraries_GettingStarted_EmbeddedSystemsAddendum.pdf
../getting_started_platforms/embedded_systems_addendum/RTI_ConnextDDS_CoreLibraries_GettingStarted_EmbeddedSystemsAddendum.pdf

5.1 Building Applications for QNX Platforms

41

API Library Format RTI Librariesab Required
System Libraries

Required
Compiler Flags

C++
(Traditional and Modern APIs)

Static Release

libnddscorez.a
libnddscz.a

libnddscppz.a
or
libnddscpp2z.a

librticonnextmsgcppz.a
or
librticonnextmsgcpp2z.a

-lm -lsocket -DRTI_QNX

Static Debug

libnddscorezd.a
libnddsczd.a

libnddscppzd.a
or
libnddscpp2zd.a

librticonnextmsgcppzd.a
or
librticonnextmsgcpp2zd.a

Dynamic Release

libnddscore.so
libnddsc.so

libnddscpp.so
or
libnddscpp2.so

librticonnextmsgcpp.so
or
librticonnextmsgcpp2.so

Dynamic Debug

libnddscored.so
libnddscd.so

libnddscppd.so
or
libnddscpp2d.so

librticonnextmsgcppd.so
or
librticonnextmsgcpp2d.so

Table 5.2 Building Instructions for QNX Architectures

aChoose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
bThe DDS C/C++ libraries are in $(NDDSHOME)/lib/<architecture>.

5.1.1 Required Change for Building with C++ Libraries

API Library Format RTI Librariesab Required
System Libraries

Required
Compiler Flags

C

Static Release
libnddscorez.a
libnddscz.a
librticonnextmsgcz.a

-lm -lsocket -DRTI_QNX

Static Debug
libnddscorezd.a
libnddsczd.a
librticonnextmsgczd.a

Dynamic Release
libnddscore.so
libnddsc.so
librticonnextmsgc.so

Dynamic Debug
libnddscored.so
libnddscd.so
librticonnextmsgcd.so

Table 5.2 Building Instructions for QNX Architectures

5.1.1 Required Change for Building with C++ Libraries

The C++ libraries for QNX platforms are built without the -fno-rtti flag and with the -fexceptions flag.
You must build your C++ applications without -fno-exceptions in order to link with the RTI libraries.
In summary:

l Do not use -fno-exceptions when building a C++ application or the build will fail.
l It is not necessary to use -fexceptions, but doing so will not cause a problem.
l It is not necessary to use -fno-rtti, but doing so will not cause a problem.

5.1.2 Additional Libraries for Other Features

5.1.2.1 Libraries Required for Distributed Logger

RTI Distributed Logger is supported on all QNX platforms.

Table 5.3 Additional Libraries for using RTI Distributed Logger lists the additional libraries you will
need in order to use Distributed Logger.

aChoose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
bThe DDS C/C++ libraries are in $(NDDSHOME)/lib/<architecture>.

42

5.1.2 Additional Libraries for Other Features

43

Language
Static Dynamic

Release Debug Release Debug

C librtidlcz.a librtidlczd.a librtidlc.so librtidcd.so

C++
(Traditional API)

librtidlcz.a
librtidlcppz.a

librtidlczd.a
librtidlcppzd.a

librtidlc.so
librtidlcpp.so

librtidlcd.so
librtidlcppd.so

Table 5.3 Additional Libraries for using RTI Distributed Logger

5.1.2.2 Libraries Required for Monitoring

Make sure you are consistent in your use of static, dynamic, debug and release versions of the libraries.
For example, if your Connext application is linked with the static release version of the Connext lib-
raries, you will need to also use the static release version of the monitoring library. Do not link both
static and dynamic libraries. Similarly, do not mix release and debug libraries.

If you are statically linking your application with DDS libraries and you want to add monitoring to
your application, you will also need to statically link the monitoring library. The library cannot be
loaded dynamically strictly through the QoS profile because it also depends on DDS to publish its data.
Therefore, it depends on DDS; the DDS functionality would cause duplicate symbols to be found res-
ulting, in the termination of the process.

Notes:

l To use static libraries: the RTI library from Table 5.4 Additional Libraries for Using Monitoring
must appear first in the list of libraries to be linked.

l To use dynamic libraries: make sure the permissions on the .so library files are readable by every-
one.

Library Format Monitoring Librariesa

Dynamic Release librtimonitoring.so

Dynamic Debug librtimonitoringd.so

Static Release librtimonitoringz.a

Static Debug librtimonitoringzd.a

Table 5.4 Additional Libraries for Using Monitoring

aThese libraries are in <NDDSHOME>/lib/<architecture>.

5.1.2 Additional Libraries for Other Features

5.1.2.3 Libraries Required for Real-Time WAN Transport

If you choose to use RTI Real-Time WAN Transport, you must download and install a separate package
that contains the transport libraries. See the RTI Real-Time WAN Transport Installation Guide for
details.

Using Real-Time WAN Transport requires one of the libraries in Table 5.5 Additional Libraries for
Using RTI Real-Time WAN Transport APIs. Select the file appropriate for your chosen library format.

For more information, see the "Enabling Real-Time WAN Transport" section in the RTI Real-Time
WAN Transport part of the RTI Connext Core Libraries User's Manual.

Library Format Real-Time WAN Transport Librariesa

Dynamic Release libnddsrwt.so

Dynamic Debug libnddsrwtd.so

Static Release libnddsrwtz.a

Static Debug libnddsrwtzd.a

Table 5.5 Additional Libraries for Using RTI Real-Time WAN Transport APIs

5.1.2.4 Libraries Required for TCP Transport APIs and TLS Support

To use the TCP Transport APIs, link against the additional libraries in Table 5.6 Additional Libraries
for using RTI TCP Transport APIs .

Note: Not all platforms support the TCP Transport - see 5.5 Transports on page 47.

Library Format RTI TCP Transport Librariesb

Dynamic Release libnddstransporttcp.so

Dynamic Debug libnddstransporttcpd.so

Static Release libnddstransporttcpz.a

Static Debug libnddstransporttcpzd.a

Table 5.6 Additional Libraries for using RTI TCP Transport APIs

If you are using RTI TLS Support, also see Table 5.7 Additional Libraries for using RTI TCP Transport
APIs with TLS Enabled. (Select the files appropriate for your chosen library format.) See the RTI TLS
Support Release Notes for a list of supported platforms.

aThese libraries are in <NDDSHOME>/lib/<architecture>.
bThese libraries are in <NDDSHOME>/lib/<architecture>.

44

https://community.rti.com/static/documentation/connext-dds/7.1.0/doc/manuals/addon_products/realtime_wan_transport/installation_guide/RTI_RealTime_WAN_Transport_InstallationGuide.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
https://community.rti.com/static/documentation/connext-dds/7.1.0/doc/manuals/connext_dds_professional/transports/tls_support/release_notes/RTI_TLS_Support_ReleaseNotes.pdf
https://community.rti.com/static/documentation/connext-dds/7.1.0/doc/manuals/connext_dds_professional/transports/tls_support/release_notes/RTI_TLS_Support_ReleaseNotes.pdf

5.1.3 How the Connext Libraries were Built

45

Library Format RTI TLS Librariesa OpenSSL Librariesb

Dynamic Release libnddstls.so

libssl.so
libcrypto.so

Dynamic Debug libnddstlsd.so

Static Release libnddstlsz.a

Static Debug libnddstlszd.a

Table 5.7 Additional Libraries for using RTI TCP Transport APIs with TLS Enabled

5.1.2.5 Libraries Required for Zero Copy Transfer Over Shared Memory

To use the Zero Copy Transfer Over Shared Memory feature, link against the additional library in
Table 5.8 Additional Libraries for Zero Copy Transfer Over Shared Memory.

Library Format Zero Copy Transfer Over Shared Memory Librariesc

Dynamic Release libnddsmetp.so

Dynamic Debug libnddsmetpd.so

Static Release libnddsmetpz.a

Static Debug libnddsmetpzd.a

Table 5.8 Additional Libraries for Zero Copy Transfer Over Shared Memory

5.1.3 How the Connext Libraries were Built

Table 5.9 Library-Creation Details for QNX Architectures on the next page shows the compiler flags
that RTI used to build the Connext libraries. This is provided strictly for informational purposes; you do
not need to use these parameters to compile your application. You may find this information useful if
you are involved in any in-depth debugging.

The details for building user applications are in 5.1 Building Applications for QNX Platforms on
page 40.

aThese libraries are in <NDDSHOME>/lib/<architecture>.
bOpenSSL libraries are in <NDDSHOME>/third_party/openssl-3.0.8/<architecture>/<format>/lib.
cThese libraries are in <NDDSHOME>/lib/<architecture>.

5.2 Running Your Application

RTI Architecture Library Format Compiler Flags Used by RTI

armv8QNX7.1qcc_gpp8.3.0

Static
Release

-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fPIC -fexceptions -DFD_SETSIZE=512 -O
-DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_gpp8.3.0\" -DNDEBUG -DRTI_QNX

Static
Debug

-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fPIC -fexceptions -DFD_SETSIZE=512 -O0 -g
-DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_gpp8.3.0\" -DRTI_QNX

Dynamic
Release

-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fexceptions -DFD_SETSIZE=512 -O
-DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_gpp8.3.0\"-DNDEBUG -DRTI_QNX -fPIC

Dynamic
Debug

-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fexceptions -DFD_SETSIZE=512 -O0 -g
-DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_gpp8.3.0\" -DRTI_QNX -fPIC

Table 5.9 Library-Creation Details for QNX Architectures

5.2 Running Your Application

Table 5.10 Running Instructions for QNX Architectures provides details on the environment variables
that must be set at run time for a QNX architecture.

Starting with Connext 6.0.1, you need the dirname tool to run the scripts in the bin directory.

RTI Architecture Library Format
(Release & Debug) Environment Variables

All supported QNX architectures

Static None required

Dynamic LD_LIBRARY_PATH=
${NDDSHOME}/lib/<architecture>: ${LD_LIBRARY_PATH}a

Table 5.10 Running Instructions for QNX Architectures

5.3 Support for Modern C++ API

Connext provides two C++ APIs, which we refer to as the "Traditional C++" and "Modern C++" APIs.

l The Modern C++ API requires C++11 compilers or newer.
l The Traditional C++ API supports C++98 compilers or newer.

a${NDDSHOME} represents the root directory of your Connext installation. ${LD_LIBRARY_
PATH} represents the value of the LD_LIBRARY_PATH variable prior to changing it to support Con-
next. When using nddsjava.jar, the Java virtual machine (JVM) will attempt to load release versions of
the native libraries. When using nddsjavad.jar, the JVM will attempt to load debug versions of the nat-
ive libraries.

46

5.4 Multicast Support

47

For more information, see Traditional vs. Modern C++, in the RTI Connext Core Libraries User's
Manual.

5.4 Multicast Support

Multicast is supported on QNX platforms and is configured out of the box. That is, the default value for
the initial peers list (NDDS_DISCOVERY_PEERS) includes a multicast address. See the online doc-
umentation for more information.

5.5 Transports

l Shared Memory: Supported and enabled by default.

To see a list of the shared memory resources, enter:
'ls /dev/shmem/RTIOsapiSharedMemorySegment-*'

To clean up the shared memory resources, remove the files listed in /dev/shmem/. The shared
resource names used by Connext begin with 'RTIOsapiSharedMemorySem-'. To see a list of
shared semaphores, enter:
'ls /dev/sem/RTIOsapiSharedMemorySemMutex*'

To clean up the shared semaphore resources, remove the files listed in /dev/sem/.

The permissions for the semaphores created by Connext are modified by the process' umask
value. If you want to have shared memory support between different users, run the command
"umask 000" to change the default umask value to 0 before running your Connext application.

l UDPv4: Supported and enabled by default.
l UDPv6: Supported. The transport is not enabled by default; the peers list must be modified to
support IPv6. No Traffic Class support.

To use the UDPv6 transport, the network stack must provide IPv6 capability. Enabling UDPv6
may involve switching the network stack server and setting up IPv6 route entries.

l TCP/IPv4: Supported.

5.6 Unsupported Features

These features are not supported on QNX platforms:

l Backtrace
l Durable Writer History and Durable Reader State

5.7 Monotonic Clock Support

5.7 Monotonic Clock Support

The monotonic clock (described in Configuring the Clock per DomainParticipant in the RTI Connext
Core Libraries User's Manual) is supported on all QNX platforms.

5.8 Thread Configuration

See Table 5.11 Thread Settings for QNX Platforms and Table 5.12 Thread-Priority Definitions for
QNX Platforms.

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

Asynchronous Publisher,
Asynchronous flushing thread

mask OS default thread type

priority 10

stack_size 64 * 1024

cpu_list Empty CPU list (Supported on QNX platforms)

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Database thread

mask DDS_THREAD_SETTINGS_STDIO

priority 8

stack_size 64 * 1024

cpu_list Empty CPU list (Supported on QNX platforms)

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Event thread

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority 9

stack_size 4 * 64 * 1024

cpu_list Empty CPU list (Supported on QNX platforms)

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

ReceiverPool threads

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority 12

stack_size 4 * 64 * 1024

cpu_list Empty CPU list (Supported on QNX platforms)

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Table 5.11 Thread Settings for QNX Platforms

48

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

5.8.1 Support for Controlling CPU Core Affinity for RTI Threads

49

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_DEFAULT 10

THREAD_PRIORITY_HIGH 14

THREAD_PRIORITY_ABOVE_NORMAL 12

THREAD_PRIORITY_NORMAL 10

THREAD_PRIORITY_BELOW_NORMAL 8

THREAD_PRIORITY_LOW 6

Table 5.12 Thread-Priority Definitions for QNX Platforms

5.8.1 Support for Controlling CPU Core Affinity for RTI Threads

Support for controlling CPU core affinity (described in Controlling CPU Core Affinity in the RTI Con-
next DDS Core Libraries User's Manual) is available on all supported QNX platforms.

5.9 Support for 'Find Package' CMake Script

The 'Find Package' CMake script is supported on QNX 7.1 platforms. For information on using this
script, see 2.5 Building with CMake on page 8.

5.10 Support for Remote Procedure Calls (RPC)

RPC is an experimental feature available only for the C++11 API. It is supported on all QNX plat-
forms.

See Remote Procedure Calls (RPC) in the RTI Connext Core Libraries User's Manual.

5.11 Restarting Applications on QNX Systems

Due to a limitation in the POSIX API, if a process is unexpectedly interrupted in the middle of a crit-
ical section of code that is protected by a shared mutex semaphore, the OS is unable to automatically
release the semaphore, making it impossible to reuse it by another application.

The Connext shared-memory transport uses a shared mutex to protect access to the shared memory area
across multiple processes.

It is possible under some extreme circumstances that if one application crashes or terminates ungrace-
fully while executing code inside a critical section, the other applications sharing the same resource will
not be able to continue their execution. If this situation occurs, you must manually delete the shared-
memory mutex before re-launching any application in the same DDS domain.

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

Chapter 6 Windows Platforms
This release supports the Windows platforms in Table 6.1 Supported Windows Platforms in
Connext 7.1.0.

Operating System CPU Visual Studio®
Version

RTI Architecture
Abbreviation

.NET
Version

JDK
Version

Windows 10, 11

x64

VS 2015 Update 3 x64Win64VS2015

.NET Standard
2.0 JDK 11

VS 2017 Update 2

VS 2019 Version 16.0.0

VS 2022

x64Win64VS2017

Windows Server 2012 R2 VS 2015 x64Win64VS2015

Windows Server 2016

VS 2015 Update 3 x64Win64VS2015

VS 2017 Update 2

VS 2019 Version 16.0.0

VS 2022

x64Win64VS2017

Table 6.1 Supported Windows Platforms in Connext 7.1.0

Note regarding C# API Support: The C# API is supported on Windows 10 systems, but it
doesn't support Visual Studio 2015 for development. Development is supported on Visual Stu-
dio 2017 or newer, Visual Studio Code, and the .NET command-line interface. For more inform-
ation on .NET, see the C# API Reference.

50

https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_csharp/index.html

6.1 Building Applications for Windows Platforms

51

6.1 Building Applications for Windows Platforms

First, see the basic instructions in Chapter 2 Building Applications—Notes for All Platforms on page 5.

Then make sure that:

l Supported versions of Windows and Visual Studio are installed (see Table 6.1 Supported Win-
dows Platforms in Connext 7.1.0 on the previous page).

l You are using the dynamic MFC Library (not static).

To avoid communication problems in your Connext application, use the dynamic MFC library,
not the static version. (If you use the static version, your Connext application may stop receiving
DDS samples once the Windows sockets are initialized.)

To compile a Connext application of any complexity, use a project file in Microsoft Visual Studio. The
project settings are described below.

6.1.1 Using Visual Studio

1. Select the multi-threaded project setting:
a. From the Project menu, select Properties.

b. Select the C/C++ folder.

c. Select Code Generation.

d. Set the Runtime Library field to one of the options in Table 6.2 Runtime Library Settings
for Visual Studio below.

If you are using this Library Format... Set the Runtime Library field to...

Release version of static libraries Multi-threaded DLL (/MD)

Debug version of static libraries Multi-threaded Debug DLL (/MDd)

Release version of dynamic libraries Multi-threaded DLL (/MD)

Debug version of dynamic libraries Multi-threaded Debug DLL (/MDd)

Table 6.2 Runtime Library Settings for Visual Studio

2. Link against the Connext libraries:
a. Select the Linker folder in the Project, Properties dialog box.

b. Select the Input properties.

c. See which libraries you need by consulting these tables:

6.1.1 Using Visual Studio

o Table 6.3 Building Instructions for Windows Host Architectures
o Table 6.4 Building Instructions for Windows Target Architectures

Choose whether to link with Connext’s static or dynamic libraries, and whether you want
debugging symbols on or off.

Add the libraries to the beginning of the Additional Dependencies field. Be sure to use a
space as a delimiter between libraries, not a comma.

Depending on which Connext features you want to use, you may need additional lib-
raries; see 6.1.4 Additional Libraries for Other Features on page 57

d. Select the General properties.

e. Add the following to the Additional library path field (replace <architecture> to match
your installed system):

$(NDDSHOME)\lib\<architecture>

3. Specify the path to the Connext header files:
a. Select the C/C++ folder.

b. Select the General properties.

c. In the Additional include directories: field, add paths to the “include” and “include\ndds”
directories. For example: (your paths may differ, depending on where you installed Con-
next).

c:\Program Files\rti_connext_dds-7.x.y\include\
c:\Program Files\rti_connext_dds-7.x.y\include\ndds

Make sure you are consistent in your use of static (.lib), dynamic (.dll), debug and release
versions of the libraries. Do not link both static and dynamic libraries. Similarly, do not mix
release and debug libraries.

52

6.1.1 Using Visual Studio

53

API Library
Format

RTI Libraries
or Jar Files ab

Required
System Libraries

Required
Compiler Flags

C

Static
Release

nddscorez.lib
nddscz.lib
rticonnextmsgcz.lib

netapi32.lib
advapi32.lib
user32.lib
ws2_32.lib

/D “RTI_WIN32” /MD
/D "WIN32_LEAN_AND_MEAN

Static
Debug

nddscorezd.lib
nddsczd.lib
rticonnextmsgczd.lib

/D “RTI_WIN32” /MDd
/D "WIN32_LEAN_AND_MEAN

Dynamic
Release

nddscore.lib
nddsc.lib
rticonnextmsgc.lib

/D “RTI_WIN32”
/D “NDDS_DLL_VARIABLE” /MD
/D "WIN32_LEAN_AND_MEAN

Dynamic
Debug

nddscored.lib
nddscd.lib
rticonnextmsgcd.lib

/D “RTI_WIN32”
/D “NDDS_DLL_VARIABLE” /MDd
/D "WIN32_LEAN_AND_MEAN

Table 6.3 Building Instructions for Windows Host Architectures

aChoose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
bThe RTI C/C++/Java libraries are in <NDDSHOME>\lib\<architecture>. Jar files are in
<NDDSHOME>\lib\java.

6.1.1 Using Visual Studio

API Library
Format

RTI Libraries
or Jar Files ab

Required
System Libraries

Required
Compiler Flags

C++
(Traditional
and
Modern APIs)

Static
Release

nddscorez.lib
nddscz.lib

nddscppz.lib
or
nddscpp2z.lib

rticonnextmsgcppz.lib
or
rticonnextmsgcpp2z.lib

netapi32.lib
advapi32.lib
user32.lib
ws2_32.lib

/D “RTI_WIN32” /MD
/D "WIN32_LEAN_AND_MEAN

Static
Debug

nddscorezd.lib
nddsczd.lib

nddscppzd.lib
or
nddscpp2zd.lib

rticonnextmsgcppzd.lib
or
rticonnextmsgcpp2zd.lib

/D “RTI_WIN32” /MDd
/D "WIN32_LEAN_AND_MEAN

Dynamic
Release

nddscore.lib
nddsc.lib

nddscpp.lib
or
nddscpp2.lib

rticonnextmsgcpp.lib
or
rticonnextmsgcpp2.lib

/D “RTI_WIN32”
/D “NDDS_DLL_VARIABLE” /MD
/D "WIN32_LEAN_AND_MEAN

Dynamic
Debug

nddscored.lib
nddscd.lib

nddscppd.lib
or
nddscpp2d.lib

rticonnextmsgcppd.lib
or
rticonnextmsgcpp2d.lib

/D “RTI_WIN32”
/D “NDDS_DLL_VARIABLE” /MDd
/D "WIN32_LEAN_AND_MEAN

Java

Release nddsjava.jar
rticonnextmsg.jar

N/A N/A

Debug nddsjavad.jar
rticonnextmsgd.jar

Table 6.3 Building Instructions for Windows Host Architectures

aChoose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
bThe RTI C/C++/Java libraries are in <NDDSHOME>\lib\<architecture>. Jar files are in
<NDDSHOME>\lib\java.

54

6.1.1 Using Visual Studio

55

API Library
Format

RTI Libraries
or Jar Files a

Required
System Libraries

Required
Compiler Flags

C

Static
Release

nddscorez.lib
nddscz.lib
rticonnextmsgcz.lib

netapi32.lib
advapi32.lib
user32.lib
ws2_32.lib

/Gd /MD /D “WIN32” /D “RTI_WIN32”
/D “NDEBUG”
/D “WIN32_LEAN_AND_MEAN”

Static
Debug

nddscorezd.lib
nddsczd.lib
rticonnextmsgczd.lib

/Gd /MDd /D “WIN32” /D “RTI_WIN32”
/D “WIN32_LEAN_AND_MEAN”

Dynamic
Release

nddscore.lib
nddsc.lib
rticonnextmsgc.lib

/Gd /MD /D “WIN32”
/D “NDDS_DLL_VARIABLE”
/D “RTI_WIN32” /D “NDEBUG”
/D “WIN32_LEAN_AND_MEAN”

Dynamic
Debug

nddscored.lib
nddscd.lib
rticonnextmsgcd.lib

/Gd /MDd /D “WIN32”
/D “NDDS_DLL_VARIABLE” /D “RTI_WIN32”
/D “WIN32_LEAN_AND_MEAN”

C++
(Traditional
and Modern
APIs)

Static
Release

nddscorez.lib
nddscz.lib

nddscppz.lib
or
nddscpp2z.lib

rticonnextmsgcppz.lib
or
rticonnextmsgcpp2z.lib netapi32.lib

advapi32.lib
user32.lib
ws2_32.lib

/Gd /EHsc /MD /D “WIN32”
/D “RTI_WIN32” /D “NDEBUG”
/D “WIN32_LEAN_AND_MEAN”

Static
Debug

nddscorezd.lib
nddsczd.lib

nddscppzd.lib
or
nddscpp2zd.lib

rticonnextmsgcppzd.lib
or
rticonnextmsgcpp2zd.lib

/Gd /EHsc /MDd /D “WIN32”
/D “RTI_WIN32”
/D “WIN32_LEAN_AND_MEAN”

Table 6.4 Building Instructions for Windows Target Architectures

aThe RTI C/C++/Java libraries are in <NDDSHOME>\lib\<architecture>. Jar files are in
<NDDSHOME>\lib\java.

6.1.2 Linking Windows C Run-Time Libraries

API Library
Format

RTI Libraries
or Jar Files a

Required
System Libraries

Required
Compiler Flags

C++
(Traditional
and Modern
APIs)

(cont'd)

Dynamic
Release

nddscore.lib
nddsc.lib

nddscpp.lib
or
nddscpp2.lib

rticonnextmsgcpp.lib
or
rticonnextmsgcpp2.lib netapi32.lib

advapi32.lib
user32.lib
ws2_32.lib

/Gd /EHsc /MD /D “WIN32”
/D “NDDS_DLL_VARIABLE”
/D “RTI_WIN32” /D “NDEBUG”
/D “WIN32_LEAN_AND_MEAN”

Dynamic
Debug

nddscored.lib
nddscd.lib

nddscppd.lib
or
nddscpp2d.lib

rticonnextmsgcppd.lib
or
rticonnextmsgcpp2d.lib

/Gd /EHsc /MDd /D “WIN32”
/D “NDDS_DLL_VARIABLE”
/D “RTI_WIN32”
/D “WIN32_LEAN_AND_MEAN”

Java

Release nddsjava.jar
rticonnextmsg.jar

N/A N/A

Debug nddsjavad.jar
rticonnextmsgd.jar

Table 6.4 Building Instructions for Windows Target Architectures

6.1.2 Linking Windows C Run-Time Libraries

Starting with Connext 5.2.5, all Connext libraries for Windows platforms (static release/debug, dynamic
release/debug) now link with the dynamic Windows C Run-Time (CRT). Previously, the static Connext
libraries statically linked the CRT.

If you have an existing Windows project that was linking with the Connext static libraries, you will
need to change the RunTime Library settings:

l In Visual Studio, select C/C++, Code Generation, Runtime Library and use Multi-threaded DLL
(/MD) instead of Multi-threaded (/MT) for static release libraries, and Multi-threaded Debug
DLL (/MDd) instead of Multi-threaded Debug (/MTd) for static debug libraries.

l For command-line compilation, use /MD instead of /MT for static release libraries, and /MDd
instead of /MTd for static debug libraries.

In addition, you may need to ignore the static run-time libraries in their static configurations:

aThe RTI C/C++/Java libraries are in <NDDSHOME>\lib\<architecture>. Jar files are in
<NDDSHOME>\lib\java.

56

6.1.3 Use the Dynamic MFC Library, Not Static

57

l In Visual Studio, select Linker, Input in the project properties and add libcmtd;libcmt to the
'Ignore Specific Default Libraries' entry.

l For command-line linking, add /NODEFAULTLIB:"libcmtd" /NODEFAULTLIB:"libcmt"
to the linker options.

6.1.3 Use the Dynamic MFC Library, Not Static

To avoid communication problems in your Connext application, use the dynamic MFC library, not the
static version.

If you use the static version, your Connext application may stop receiving DDS samples once the Win-
dows sockets are initialized.

6.1.4 Additional Libraries for Other Features

6.1.4.1 Libraries Required for Distributed Logger

RTI Distributed Logger is supported on all Windows platforms. Table 6.5 Additional Libraries for
using RTI Distributed Logger lists the additional libraries you will need to use Distributed Logger.

Language
Statica Dynamicb

Release Debug Release Debug

C rtidlcz.lib rtidlczd.lib rtidlc.lib
rtidlc.dll

rtidlcd.lib
rtidlcd.dll

C++ (Traditional API) rtidlcz.lib
rtidlcppz.lib

rtidlczd.lib
rtidlcppzd.lib

rtidlc.lib
rtidlc.dll

rtidlcpp.lib
rtidlcpp.dll

rtidlcd.lib
rtidlcd.dll

rtidlcppd.lib
rtidlcppd.dll

Java N/A N/A distlog.jar
distlogdatamodel.jar

distlogd.jar
distlogdatamodeld.jar

Table 6.5 Additional Libraries for using RTI Distributed Logger

6.1.4.2 Libraries Required for Monitoring

To use the Monitoring APIs, reference the libraries in Table 6.6 Additional Libraries for Using Mon-
itoring.

Make sure you are consistent in your use of static, dynamic, debug and release versions of the libraries.
For example, if your Connext application is linked with the static release version of the Connext

aThese libraries are in <NDDSHOME>\lib\<architecture>.
bThese libraries are in <NDDSHOME>\lib\<architecture>.

6.1.4 Additional Libraries for Other Features

libraries, you will need to also use the static release version of the monitoring library. Do not link both
static and dynamic libraries. Similarly, do not mix release and debug libraries.

If you are statically linking your application with DDS libraries and you want to add monitoring to
your application, you will also need to statically link the monitoring library. The library cannot be
loaded dynamically strictly through the QoS profile because it also depends on DDS to publish its data.
Therefore, it depends on DDS; the DDS functionality would cause duplicate symbols to be found res-
ulting, in the termination of the process.

Library Format Monitoring Librariesa

Dynamic Release rtimonitoring.lib
rtimonitoring.dll

Dynamic Debug rtimonitoringd.lib
rtimonitoringd.dll

Static Release rtimonitoringz.lib
Psapi.lib

Static Debug rtimonitoringzd.lib
Psapi.lib

Table 6.6 Additional Libraries for Using Monitoring

6.1.4.3 Libraries Required for Real-Time WAN Transport

If you choose to use Real-Time WAN Transport, you must download and install a separate package that
contains the transport libraries. See the RTI Real-Time WAN Transport Installation Guide for details.

Using Real-Time WAN Transport requires one of the libraries in 6.1.4 Additional Libraries for Other
Features. Select the file appropriate for your chosen library format.

For more information, see the "Enabling Real-Time WAN Transport" section in the RTI Real-Time
WAN Transport part of the RTI Connext Core Libraries User's Manual.

Library Format Real-Time WAN Transport Librariesb

Dynamic Release nddsrwt.lib
nddsrwt.dll

Dynamic Debug nddsrwtd.lib
nddsrwtd.dll

Table 6.7 Additional Libraries for Using Real-Time WAN Transport APIs

aThese libraries are in <NDDSHOME>\lib\<architecture>.
bThese libraries are in <NDDSHOME>\lib\<architecture>.

58

https://community.rti.com/static/documentation/connext-dds/7.1.0/doc/manuals/addon_products/realtime_wan_transport/installation_guide/RTI_RealTime_WAN_Transport_InstallationGuide.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

6.1.4 Additional Libraries for Other Features

59

Library Format Real-Time WAN Transport Librariesa

Static Release nddsrwtz.lib

Static Debug nddsrwtzd.lib

Table 6.7 Additional Libraries for Using Real-Time WAN Transport APIs

For details on the OpenSSL libraries, see 6.1.6 Location of OpenSSL Libraries on page 61.

6.1.4.4 Libraries Required for RTI TCP Transport

To use the TCP Transport APIs, reference the libraries in Table 6.8 Additional Libraries for Using RTI
TCP Transport APIs.

Library Format RTI TCP Transport Librariesb

Dynamic Release nddstransporttcp.lib
nddstransporttcp.dll

Dynamic Debug nddstransporttcpd.lib
nddstransporttcpd.dll

Static Release nddstransporttcpz.lib

Static Debug nddstransporttcpzd.lib

Table 6.8 Additional Libraries for Using RTI TCP Transport APIs

If you are also using RTI TLS Support, see Table 6.9 Additional Libraries for using RTI TCP Transport
APIs with TLS Enabled. (Select the files appropriate for your chosen library format.)

Library Format RTI TLS Librariesc OpenSSL Libraries System
Libraries

Dynamic Release nddstls.lib
nddstls.dll

libssl.lib
libssl-<version>.dll

libcrypto.lib
libcrypto-<version>.dll

(none)

Dynamic Debug nddstlsd.lib
nddstlsd.dll

Table 6.9 Additional Libraries for using RTI TCP Transport APIs with TLS Enabled

aThese libraries are in <NDDSHOME>\lib\<architecture>.
bThe libraries are in <NDDSHOME>\lib\<architecture>.
cThe libraries are in <NDDSHOME>\lib\<architecture>.

6.1.5 How the Connext Libraries were Built

Library Format RTI TLS Librariesa OpenSSL Libraries System
Libraries

Static Release nddstlsz.lib libsslz.lib

libcryptoz.lib
crypt32.lib

Static Debug nddstlszd.lib

Table 6.9 Additional Libraries for using RTI TCP Transport APIs with TLS Enabled

For details on the OpenSSL libraries, see 6.1.6 Location of OpenSSL Libraries on the next page.

6.1.4.5 Libraries Required for Zero Copy Transfer Over Shared Memory

To use the Zero Copy Transfer Over Shared Memory feature, reference the libraries in Table 6.10 Addi-
tional Libraries for Zero Copy Transfer Over Shared Memory.

Library Format Zero Copy Transfer Over Shared Memory Librariesb

Dynamic Release nddsmetp.lib
nddsmetp.dll

Dynamic Debug nddsmetpd.lib
nddsmetpd.dll

Static Release nddsmetpz.lib

Static Debug nddsmetpzd.lib

Table 6.10 Additional Libraries for Zero Copy Transfer Over Shared Memory

6.1.5 How the Connext Libraries were Built

Table 6.11 Library-Creation Details for Windows Architectures shows the compiler flags that RTI used
to build the Connext libraries. This is provided strictly for informational purposes; you do not need to
use these parameters to compile your application. You may find this information useful if you are
involved in any in-depth debugging.

The details for building user applications are in 6.1 Building Applications for Windows Platforms on
page 51

aThe libraries are in <NDDSHOME>\lib\<architecture>.
bThe libraries are in <NDDSHOME>\lib\<architecture>.

60

6.1.6 Location of OpenSSL Libraries

61

RTI Architecture Library
Format Compiler Flags Used by RTI

x64Win64VS2015

Note: linker requires
/MACHINE:X64 option.

Static
Release

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2015\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0501
-DWIN32_LEAN_AND_MEAN /O2 /Zi /MD /nodefaultlib:"libcmt.lib" /defaultlib:"msvcrt.lib"
/EHsc -D_CRT_SECURE_NO_DEPRECATE -DNDEBUG -c

Dynamic
Release

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2015\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0501
-DWIN32_LEAN_AND_MEAN /O2 /Zi /MD /EHsc -D_CRT_SECURE_NO_DEPRECATE
-DNDEBUG -c

Static
Debug

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2015\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0501
-DWIN32_LEAN_AND_MEAN /Od /ZI /MDd /nodefaultlib:"libcmtd.lib" /defaultlib:"msvcrtd.lib"
/EHsc /RTC1 -D_CRT_SECURE_NO_DEPRECATE -c

Dynamic
Debug

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2015\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0501
-DWIN32_LEAN_AND_MEAN /Od /ZI /MDd /EHsc /RTC1
-D_CRT_SECURE_NO_DEPRECATE -c

x64Win64VS2017

Note: linker requires
/MACHINE:X64 option

Static
Release

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2017\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0501
-DWIN32_LEAN_AND_MEAN /O2 /Zi /MD /nodefaultlib:"libcmt.lib" /defaultlib:"msvcrt.lib"
/EHsc -D_CRT_SECURE_NO_DEPRECATE -DNDEBUG -c

Dynamic
Release

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2017\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0501
-DWIN32_LEAN_AND_MEAN /O2 /Zi /MD /EHsc -D_CRT_SECURE_NO_DEPRECATE
-DNDEBUG -c

Static
Debug

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2017\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0501
-DWIN32_LEAN_AND_MEAN /Od /ZI /MDd /nodefaultlib:"libcmtd.lib" /defaultlib:"msvcrtd.lib"
/EHsc /RTC1 -D_CRT_SECURE_NO_DEPRECATE -c

Dynamic
Debug

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2017\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0501
-DWIN32_LEAN_AND_MEAN /Od /ZI /MDd /EHsc /RTC1
-D_CRT_SECURE_NO_DEPRECATE -c

x64 Windows
architectures for Java

Dynamic
Release -target 1.8 –source 1.8

Dynamic
Debug -target 1.8 –source 1.8 -g

Table 6.11 Library-Creation Details for Windows Architectures

6.1.6 Location of OpenSSL Libraries

The OpenSSL libraries are installed here:

l OpenSSL .lib files are in <NDDSHOME>\third_party\openssl-3.0.8\<architecture>\<format>\lib.
l OpenSSL .dll files are in <NDDSHOME>\third_party\openssl-3.0.8\<architecture>\<format>\bin.

6.2 Running Your Applications

Where:

l <architecture> is your architecture string, as listed in Table 6.1 Supported Windows Platforms in
Connext 7.1.0 on page 50, such as x64Win64VS2017.

l <format> is debug, release, static_debug, or static_release.

The .dll filenames have a <version> suffix. For example, libssl-1_1-x64.dll is for OpenSSL 1.1 on an
x64 CPU.

6.2 Running Your Applications

For the environment variables that must be set at run time, see Table 6.12 Running Instructions for Win-
dows Architectures below.

RTI Architecture Library Format Environment Variablesa

All supported Windows architectures for Java N/A Path=%NDDSHOME%\lib\<architecture>; %Path%

All other supported Windows architectures
Static (Release and Debug) None required

Dynamic (Release and Debug) Path=%NDDSHOME%\lib\<architecture>; %Path%

Table 6.12 Running Instructions for Windows Architectures

6.2.1 Requirements when Using Visual Studio

Note: Debug versions of applications and the various Visual C++ DLLs are not redistributable. There-
fore, if you want to run debug versions, you must have the compiler installed.

When Using Visual Studio 2015 — Update 3 Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2015 Update 3 installed on the
machine where you are running an application linked with dynamic libraries. This includes C/C++
dynamically linked and all Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2015 Update 3 from this
Microsoft website: https://www.microsoft.com/en-us/download/details.aspx?id=53840.

a%Path% represents the value of the Path variable prior to changing it to support Connext. When
using nddsjava.jar, the Java virtual machine (JVM) will attempt to load release versions of the native
libraries. When using nddsjavad.jar, the JVM will attempt to load debug versions of the native
libraries.

62

https://www.microsoft.com/en-us/download/details.aspx?id=53840

6.3 Support for Modern C++ API

63

When Using Visual Studio 2017 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2017 installed on the machine where
you are running an application linked with dynamic libraries. This includes C/C++ dynamically linked
and all Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2017 from this Microsoft website:
https://visualstudio.microsoft.com/vs/older-downloads/. Then look in this section: "Redistributables and
Build Tools" for Microsoft Visual C++ Redistributable for Visual Studio 2017".

When Using Visual Studio 2019 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2019 installed on the machine where
you are running an application linked with dynamic libraries. This includes C/C++ dynamically linked
and all Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2019 from this Microsoft website:
https://www.visualstudio.com/downloads/. Then look in this section: "Other Tools and Frameworks"
for Microsoft Visual C++ Redistributable for Visual Studio 2019".

When Using Visual Studio 2022 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2022 installed on the machine where
you are running an application linked with dynamic libraries. This includes C/C++ dynamically linked
and all Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2019 from this Microsoft website:
https://www.visualstudio.com/downloads/. Then look in this section: "Other Tools, Frameworks, and
Redistributables" for Microsoft Visual C++ Redistributable for Visual Studio 2022".

6.3 Support for Modern C++ API

Connext provides two C++ APIs, which we refer to as the "Traditional C++" and "Modern C++" APIs.

l The Modern C++ API requires C++11 compilers or newer.
l The Traditional C++ API supports C++98 compilers or newer.

For more information, see Traditional vs. Modern C++, in the RTI Connext Core Libraries User's
Manual.

6.4 Multicast Support

Multicast is supported on all platforms and is configured out of the box. That is, the default value for
the initial peers list (NDDS_DISCOVERY_PEERS) includes a multicast address. See the online doc-
umentation for more information.

https://visualstudio.microsoft.com/vs/older-downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

6.5 Transports

6.5 Transports

l Shared memory: Shared memory is supported and enabled by default. The Windows operating
system manages the shared memory resources automatically. Cleanup is not required.

l UDPv4: Supported and enabled by default.
l UDPv6: Supported but disabled on architectures that use Visual Studio. The peers list (NDDS_
DISCOVERY_PEERS) must be modified to support UDPv6. No Traffic Class support.

l TCP/IPv4: Supported on architectures that use Visual Studio. (This is not a built-in transport.)

6.6 Unsupported Features

These features are not supported on Windows platforms:

l Controlling CPU Core Affinity
l Durable Writer History and Durable Reader State
l Setting thread names by Connext at the operating-system level in release mode

6.7 Monotonic Clock Support

The monotonic clock (described in Configuring the Clock per DomainParticipant in the RTI Connext
Core Libraries User's Manual) is supported on all Windows platforms.

6.8 Thread Configuration

See these tables:

l Table 6.13 Thread Settings for Windows Platforms
l Table 6.14 Thread-Priority Definitions for Windows Platforms
l Table 6.15 Thread Kinds for Windows Platforms

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

Asynchronous Publisher,
Asynchronous flushing thread,

mask OS default thread type

priority 0

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Table 6.13 Thread Settings for Windows Platforms

64

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

6.8 Thread Configuration

65

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

Database thread

mask DDS_THREAD_SETTINGS_STDIO

priority -3

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Event thread

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority -2

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

ReceiverPool threads

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority 2

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Table 6.13 Thread Settings for Windows Platforms

6.9 Support for 'Find Package' CMake Script

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_DEFAULT 0

THREAD_PRIORITY_HIGH 3

THREAD_PRIORITY_ABOVE_NORMAL 2

THREAD_PRIORITY_NORMAL 0

THREAD_PRIORITY_BELOW_NORMAL -2

THREAD_PRIORITY_LOW -3

Table 6.14 Thread-Priority Definitions for Windows Platforms

Thread Kinds Operating-System Configurationa

DDS_THREAD_SETTINGS_FLOATING_POINT

N/A
DDS_THREAD_SETTINGS_STDIO

DDS_THREAD_SETTINGS_REALTIME_PRIORITY

DDS_THREAD_SETTINGS_PRIORITY_ENFORCE

Table 6.15 Thread Kinds for Windows Platforms

6.9 Support for 'Find Package' CMake Script

The 'Find Package' CMake script is supported on all Windows platforms.

For information on using this script, see 2.5 Building with CMake on page 8.

6.10 Backtrace Support

To support the display of the backtrace on Windows systems, you need the Dbghelp.dll and NtDll.dll
libraries. Without these libraries, the backtrace will not be available.

l To get the latest version of DbgHelp.dll, go to https://developer.microsoft.com/en-us/win-
dows/downloads/windows-10-sdk and download Debugging Tools for Windows. Refer to
“Calling the DbgHelp Library” for information on proper installation.

l NtDll.dll exports the Windows Native API. It is installed automatically during the installation of
the Windows operating system.

aSee Windows manuals for additional information.

66

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk

6.11 Support for Remote Procedure Calls (RPC)

67

When using release-mode libraries, backtrace support on Windows 32-bit architectures requires you to
use the /Oy- optimization flag to disable "Frame-Pointer Omission" optimization.

See https://docs.microsoft.com/en-us/cpp/build/reference/oy-frame-pointer-omission?view=vs-2019.

See also Logging a Backtrace for Failures, in the RTI Connext Core Libraries User's Manual.

6.11 Support for Remote Procedure Calls (RPC)

RPC is an experimental feature available only for the C++11 API. It is supported on all Windows plat-
forms.

See Remote Procedure Calls (RPC) in the RTI Connext Core Libraries User's Manual.

6.12 Domain ID Support

On Windows platforms, you should avoid using ports 49152 through 65535 for inbound traffic. Con-
next’s ephemeral ports (see Ports Used for Discovery, in the Discovery chapter of the RTI Connext
Core Libraries User's Manual) may be within that range (see https://msdn.microsoft.com/en-us/lib-
rary/windows/desktop/ms737550(v=vs.85).aspx).

With the default RtpsWellKnownPorts settings, port 49152 corresponds to domain ID 167, so using
domain IDs 168 through 232 on Windows platforms introduces the risk of a port collision and failure to
create the DomainParticipant when using multicast discovery. You may see this error:
RTIOsapiSocket_bindWithIP:OS bind() failure, error 0X271D: An attempt was made to access a
socket in a way forbidden by its access permissions.

https://docs.microsoft.com/en-us/cpp/build/reference/oy-frame-pointer-omission?view=vs-2019
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/ms737550(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms737550(v=vs.85).aspx

	Chapter 1 Introduction
	1.1 Paths Mentioned in Documentation

	Chapter 2 Building Applications—Notes for All Platforms
	2.1 Running on a Computer Not Connected to a Network
	2.2 Connext Header Files — All Platforms
	2.3 Choosing the Right Libraries
	2.3.1 Required Libraries
	2.3.2 Mixing Static and Dynamic Libraries is not Supported

	2.4 Building for Java Platforms
	2.5 Building with CMake

	Chapter 3 Linux Platforms
	3.1 Building Applications for Linux Platforms
	3.1.1 Required Libraries and Compiler Flags
	3.1.2 Additional Libraries for Other Features
	3.1.3 Linux Compatibility and Determining Factors
	3.1.4 How the Connext Libraries were Built

	3.2 Running Your Applications
	3.3 Support for Modern C++ API
	3.4 Support for .NET
	3.5 Multicast Support
	3.6 Transports
	3.6.1 Shared Memory Support

	3.7 Unsupported Features
	3.8 Monotonic Clock Support
	3.9 Thread Configuration
	3.9.1 Support for Controlling CPU Core Affinity for RTI Threads
	3.9.2 Using REALTIME_PRIORITY

	3.10 Durable Writer History and Durable Reader State Features
	3.11 Support for 'Find Package' CMake Script
	3.12 Backtrace Support
	3.13 Support for Remote Procedure Calls (RPC)

	Chapter 4 macOS Platforms
	4.1 Installation Note for Arm v8 Platforms—Rosetta 2 Required
	4.2 Building Applications for macOS Platforms
	4.2.1 Additional Libraries for Other Features
	4.2.2 How the Connext Libraries were Built

	4.3 Running User Applications
	4.4 Support for Modern C++ API
	4.5 Support for .NET/C# API
	4.6 Multicast Support
	4.7 Transports
	4.8 Unsupported Features
	4.9 System Integrity Protection (SIP)
	4.9.1 SIP and Java Applications
	4.9.2 SIP and Connext Tools, Infrastructure Services, and Utilities

	4.10 Thread Configuration
	4.11 Support for 'Find Package' CMake Script
	4.12 Backtrace Support
	4.13 Resolving NDDSUtility_sleep() Issues
	4.14 Support for Remote Procedure Calls (RPC)

	Chapter 5 QNX Platforms
	5.1 Building Applications for QNX Platforms
	5.1.1 Required Change for Building with C++ Libraries
	5.1.2 Additional Libraries for Other Features
	5.1.3 How the Connext Libraries were Built

	5.2 Running Your Application
	5.3 Support for Modern C++ API
	5.4 Multicast Support
	5.5 Transports
	5.6 Unsupported Features
	5.7 Monotonic Clock Support
	5.8 Thread Configuration
	5.8.1 Support for Controlling CPU Core Affinity for RTI Threads

	5.9 Support for 'Find Package' CMake Script
	5.10 Support for Remote Procedure Calls (RPC)
	5.11 Restarting Applications on QNX Systems

	Chapter 6 Windows Platforms
	6.1 Building Applications for Windows Platforms
	6.1.1 Using Visual Studio
	6.1.2 Linking Windows C Run-Time Libraries
	6.1.3 Use the Dynamic MFC Library, Not Static
	6.1.4 Additional Libraries for Other Features
	6.1.5 How the Connext Libraries were Built
	6.1.6 Location of OpenSSL Libraries

	6.2 Running Your Applications
	6.2.1 Requirements when Using Visual Studio

	6.3 Support for Modern C++ API
	6.4 Multicast Support
	6.5 Transports
	6.6 Unsupported Features
	6.7 Monotonic Clock Support
	6.8 Thread Configuration
	6.9 Support for 'Find Package' CMake Script
	6.10 Backtrace Support
	6.11 Support for Remote Procedure Calls (RPC)
	6.12 Domain ID Support

