
RTI Connext

Core Libraries
Release Notes

Version 7.1.0

Contents
Chapter 1 Introduction 1
Chapter 2 System Requirements

2.1 Introduction 3
2.2 Supported Platforms 4
2.3 Requirements when Using Microsoft Visual Studio 7
2.4 Disk and Memory Usage 8

Chapter 3 Compatibility

3.1 Wire Protocol Compatibility 9
3.2 Code and Configuration Compatibility 10
3.3 Extensible Types Compatibility 10

Chapter 4 What's Fixed in 7.1.0

4.1 Fixes Related to Discovery 11
4.1.1 Potential memory leak when creation of any of the built-in discovery plugins failed 11
4.1.2 Unbounded memory growth when using domain tags or DomainParticipant partitions 11
4.1.3 Error deleting remote endpoints with specific GUID prefixes using debug libraries 12
4.1.4 Most up-to-date participant configuration may not have been received by other participants and

may have led to discovery not completing 12
4.1.5 Participant failed to assert remote participant if usability of shared memory transport changed 12
4.1.6 Unexpected warning during discovery when multicast disabled 13
4.1.7 Unexpected, invalid locator propagated within builtin topics 13

4.2 Fixes Related to Serialization and Deserialization 13
4.2.1 Unexpected union value when receiving a discriminator that does not select any union member on

DataReader's type 13
4.2.2 Serialization of samples failed or produced a segmentation fault for types with max serialized size

larger than 2GB 14
4.2.3 Potential sample corruption when deserializing a malformed RTPS message 15
4.2.4 Unbounded memory growth when deserializing a malformed RTPS message 15

ii

iii

4.3 Fixes Related to Debuggability 16
4.3.1 Hang/crash when invoking a DataReader/DataWriter discovery snapshot within a callback function 16
4.3.2 Memory leak if network capture initialization failed 16
4.3.3 Unexpected log messages at warning verbosity 16
4.3.4 Unexpected fatal error when number of instances reached the limit 16

4.4 Fixes Related to Transports 17
4.4.1 Possible data loss after a Connext application lost its multicast interfaces or gained its first multicast inter-

face 17
4.4.2 DomainParticipant with non-default metatraffic_transport_priority QoS did not complete discovery 17
4.4.3 dds.transport.minimum_compatibility_version property did not properly adjust locator format 17
4.4.4 TCP Transport did not run with Windows debug libraries when socket_monitoring_kind was set to IOCP 18

4.5 Fixes Related to Reliability Protocol and Wire Representation 18
4.5.1 Samples not delivered to Required Subscription DataReaders when DataWriter used durable writer history

and DataReaders disabled positive ACKs 18
4.5.2 DataReader may not have received samples that were sent as gapped samples to another DataReader over

multicast 18
4.5.3 DDS fragmentation may have led to more fragments than expected for a sample 19
4.5.4 Unexpected precondition error with debug libraries on a reliable DataWriter while sending a GAP 19

4.6 Fixes Related to Content Filters and Query Conditions 20
4.6.1 Unexpected "RTIXCdrSampleInterpreter_initializeSampleWInstruction" error log messages when using

QueryConditions, ContentFilteredTopics, TopicQueries, or Multi-Channel 20
4.7 Fixes Related to Dynamic Data 20

4.7.1 DynamicData DataWriters incorrectly serialized optional empty sequences as null 20
4.8 Fixes Related to APIs 21

4.8.1 DynamicData method to get member type missing in Modern C++ and C# APIs 21
4.8.2 Fixes Related to Modern C++ API 21
4.8.3 Fixes Related to C# API 22
4.8.4 Fixes Related to Java API 22
4.8.5 Fixes Related to Python API 23

4.9 Fixes Related to XML Configuration 26
4.9.1 Memory leak after an error parsing XML file with <include> tag 26
4.9.2 Failed to parse XML configuration file containing type member with useVector attribute 26
4.9.3 XML composition overwrote system information properties with defaults instead of correct values 26

4.10 Fixes Related to Request-Reply and RPC 28
4.10.1 RPC interface evolution did not work 28
4.10.2 Exceptions sending result of remote operation may have crashed server application 28
4.10.3 RPC: deadlock when Server::close() was called before Server::run() 29
4.10.4 Possible unbounded memory growth when creating many Requesters 29

4.10.5 Memory leak in Java Request-Reply API 29
4.10.6 Possible data race using Sample and WriteSample classes (Traditional C++ API only) 30

4.11 Fixes Related to Shipped Examples 30
4.11.1 Hello World TCP example always linked TCP Transport library dynamically 30

4.12 Fixes Related to Vulnerabilities 30
4.12.1 Arbitrary read access while parsing malicious RTPS message 30
4.12.2 Out-of-bounds read while parsing malicious RTPS message 31
4.12.3 Out-of-bounds write while parsing malicious RTPS message 31
4.12.4 Buffer overflow in shared memory if memory was tampered 32
4.12.5 Out-of-bounds read while uncompressing malformed data from malicious RTPS message 32

4.13 Fixes Related to Crashes 33
4.13.1 Rare segmentation fault when deleting DomainParticipant or Publisher containing DataWriters using dur-

able writer history 33
4.13.2 Segmentation fault when creation of DomainParticipant failed due to lack of resources 33
4.13.3 Potential hang upon SIGSEGV signal from a Connext application 33
4.13.4 Creating DynamicDataTypePlugin with TypeCode from discovery and using content filtering caused seg-

mentation fault 34
4.13.5 Application crash when calling DDS_DataReader_take_discovery_snapshot on a DataReader with a Con-

tentFilteredTopic 34
4.13.6 Crash with NULL listeners and non-none status masks in C applications that mixed types with and without

Zero Copy 34
4.13.7 Memory was read after it was freed by deleting a Topic with local logging level enabled 35
4.13.8 Possible segmentation fault when disabling loopback interface 35
4.13.9 Segmentation fault could occur if creation of DataReader failed 35
4.13.10 Potential crash when DomainParticipant deleted after creating DataWriter with automatic liveliness kind 35
4.13.11 Possible crash on TCP transport when large number of file descriptors were open 35
4.13.12 Application using Monitoring Libraries may have produced segmentation fault during DataReader cre-

ation 36
4.13.13 Possible segmentation fault when using Monitoring Library 36

4.14 Other Fixes 36
4.14.1 Error sending batch when batch size exceeded transport MTU 36
4.14.2 Broken communication when DataWriter with transport priority discovered DataReader with multicast

receive address 36
4.14.3 Potential hang upon SIGSEGV signal from a Connext application 37
4.14.4 No more than 100 asynchronous publisher threads could be created 37
4.14.5 Potential memory leak when creation of any of the built-in discovery plugins failed 37
4.14.6 Samples could be lost using group order access or collaborative DataWriters 38
4.14.7 Unexpected precondition error while creating a DomainParticipant with debugging libraries using fast data-

base cleanup period 38

iv

v

4.14.8 Release 6.1.2 was not FACE compliant 38
4.14.9 Problems visualizing participants using Generic.MinimalMemoryFootprint profile with Admin Console 38
4.14.10 Using dh_param_files leaked memory 39
4.14.11 Failure to load a string-based private key leaked memory 39
4.14.12 Incorrect "Supported platforms" documentation section for FindRTIConnextDDS.cmake 39
4.14.13 CONNEXTDDS_ARCH environment variable in FindPackage script was not picked up correctly 39
4.14.14 In FindPackage script, low_bandwidth_edisc imported target library was missing 40
4.14.15 Segmentation fault when mixing build types in applications linked against libraries in "Find Package"

Cmake script 40
Chapter 5 What's Fixed in 7.0.0

5.1 Fixes Related to Callbacks and Waitsets 42
5.1.1 Unsafe combinations of masks and Listeners may have led to segmentation fault 42
5.1.2 Failure calling DDS_Subscriber::get_datareaders in DDS_SubscriberListener::on_data_on_readers callback

implementation 42
5.1.3 DDS_SubscriberListener::on_data_on_readers on a participant or subscriber not called when Listener

installed after the entity is enabled 43
5.1.4 Unable to assign callback function for on_sample_removed event using Modern C++ API 43
5.1.5 Using certain callbacks at DomainParticipant or Publisher level may have led to segmentation fault 43

5.2 Fixes Related to Discovery 44
5.2.1 Unexpected memory growth when DataReader could not be matched with DataWriter due to unexpected

error condition 44
5.2.2 Possible crash upon discovery of applications with unreachable locators 44
5.2.3 Communication problems with applications using shared memory on INTEGRITY systems 44
5.2.4 Types containing Typedefs were sent without the typedefs in discovery when using DynamicData 45
5.2.5 Unbounded memory growth in Spy when discovering multiple endpoints with the same Topics and types 45
5.2.6 Unnecessary discovery traffic related to IP mobility events on interfaces irrelevant to the transport 45

5.3 Fixes Related to Transports 46
5.3.1 Communication problems with applications using shared memory on INTEGRITY systems 46
5.3.2 Race condition could cause unbounded memory growth in TCP Transport Plugin 46

5.4 Fixes Related to Filtering and TopicQuery 47
5.4.1 Unnecessary repair traffic for DataWriters using TopicQueries and asynchronous publishing 47
5.4.2 Connext application using filtering feature may have crashed after running out of memory 47
5.4.3 Unnecessary sample filtering on a DataReader for samples already filtered by a DataWriter 47
5.4.4 Creation of a ContentFilteredTopic or reception of TopicQuery samples may have taken long time for com-

plex types 48
5.4.5 Continuous creation of TopicQueries may have led to unnecessary memory fragmentation in OS memory

allocator 48
5.4.6 rti::topic::find_registered_content_filters led to infinite recursion 48
5.4.7 Incorrect results for Unions when using DynamicData or Content Filters 48

5.4.8 Samples may have been unnecessarily filtered by Connext DataReader when DataWriter was from different
DDS vendor 49

5.5 Fixes Related to Group Presentation 50
5.5.1 Application may not have received samples of coherent set when using GROUP access scope and

TRANSIENT_LOCAL durability 50
5.5.2 Application may stop receiving samples from DataReaders using GROUP_PRESENTATION_QOS 50
5.5.3 Segmentation fault when using GROUP_PRESENTATION_QOS or HIGHEST_OFFERED_

PRESENTATION_QOS and setting filter_redundant_samples to FALSE on DataReader 51
5.6 Fixes Related to XML Configuration 51

5.6.1 Parsing error loading XML configuration file containing a const whose expression refers to an enumerator 51
5.6.2 Discrepancy between range defined by schema and that defined by API 51
5.6.3 Parsing error loading XML configuration file with enum type containing enumerator whose value was an

expression referring to a const 52
5.6.4 Parsing error loading an XML configuration file with enum type containing enumerator whose value was an

expression 52
5.6.5 Type limits not checked for some attributes of XML types definition 52
5.6.6 Removed some elements in the XSD that were not supported internally but could be defined in XML 53
5.6.7 Builtin Discovery Plugins was not treated as a mask by the XSD file 54
5.6.8 Parsing error loading an XML configuration file with an enum type containing an enumerator whose value

was an expression referring to another enumerator 54
5.7 Fixes Related to Vulnerabilities 55

5.7.1 Fixes related to Connext 55
5.7.2 Fixes related to third-party dependencies 55

5.8 Fixes Related to APIs 56
5.8.1 Input parameters to Property and DataTag helper functions do not have "const" 56
5.8.2 Standard 64-bit integer types are now supported (Modern C++ API) 57
5.8.3 Assigning DataWriter and DataReaderQos from a TopicQos caused a build error 57
5.8.4 Copy of SampleInfo::coherent_set_info field was not supported 57
5.8.5 In XML-based applications, generated IDL types did not take precedence over XML DynamicTypes (C#

API) 58
5.8.6 Namespaces ignored when a type was explicitly registered in C# for XML-based applications 58
5.8.7 Corruption of LoanedDynamicData object when moved in some situations (Modern C++ API only) 58
5.8.8 Calling DynamicData::set_complex_member with an aliased type failed 59
5.8.9 Possible wrong results when adding Time or Duration objects that used very large numbers 59
5.8.10 Java API did not support RtpsReliableReaderProtocol_t.receive_window_size 60

5.9 Fixes Related to Crashes 60
5.9.1 Simultaneous deletion of an entity by multiple threads caused a crash when using Java 60
5.9.2 DataReader C++ application crashed if it received tampered sample with unsupported encapsulation ID 60
5.9.3 Segmentation fault after calling DomainParticipant::register_durable_subscription with a group containing a 61

vi

vii

long role_name

5.9.4 Segmentation fault when application using MultiChannel ran out of memory 61
5.9.5 Application crashed when capturing traffic for a DomainParticipant created before enabling network cap-

ture 61
5.9.6 Possible crash when writing a sample 61
5.9.7 Potential crash during type registration if system ran out of memory 62
5.9.8 Segmentation fault after calling DomainParticipant::delete_durable_subscription with a group containing a

long role_name 62
5.9.9 Potential crash or memory corruption if user application using thread-specific storage 62

5.10 Other Fixes 63
5.10.1 Serialization/deserialization of non-primitive sequences and arrays for XCDR2_DATA_

REPRESENTATION did not follow Extensible Types specification 63
5.10.2 Possible hang when using best-effort writers and asynchronous publishing 63
5.10.3 Unnecessary sockets created during initialization of library 63
5.10.4 Various issues with RtpsReliableWriterProtocol_t::nack_suppression_duration 63
5.10.5 Possible error message printed during Entity disposal 64
5.10.6 Runtime error when using debug libraries for QNX x86 platform 64
5.10.7 Pushed samples may not have been received by reliable DataReader when DataWriter published Type that

supports Zero Copy transfer over shared memory 65
5.10.8 Unbounded memory growth in Monitoring Library when creating and deleting endpoints 65
5.10.9 Unexpected behavior when two threads crashed at the same time on Windows systems 66
5.10.10 DataReaders setting reader_qos.protocol.expects_inline_qos to TRUE incorrectly matched with

DataWriters 66
5.10.11 Source IP on Spy was not correct when DataWriters with same Topic were on different machines 66
5.10.12 Writer using durable writer history may not have blocked after send window filled up when disable pos-

itive ACKs was enabled 67
5.10.13 Potential truncation of application-level acknowledgment response data 67
5.10.14 Error messages displayed that should not have been, when printing DataReaderQoS objects 67
5.10.15 Potential Valgrind invalid read when logging a message or enabling heap monitoring 68
5.10.16 Malformed IDL printed if multiple labels used for default case of a union 68

Chapter 6 Known Issues

6.1 Known Issues with Usability 69
6.1.1 Cannot open USER_QOS_PROFILES.xml in rti_workspace/examples from Visual Studio 69
6.1.2 DataWriter's Listener callback on_application_acknowledgment() not triggered by late-joining DataReaders 69
6.1.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communication failure when writing

small samples 70
6.1.4 Memory leak if Foo:initialize() called twice 70
6.1.5 Wrong error code after timeout on write() from Asynchronous Publisher 70
6.1.6 Type Consistency enforcement disabled for structs with more than 10000 members 71

6.1.7 Escaping special characters in regular/filter expressions not supported in some cases 71
6.2 Known Issues with Code Generation 71

6.2.1 Examples and generated code for Visual Studio 2017 and later may not compile (Error MSB8036) 71
6.3 Known Issues with Instance Lifecycle 72

6.3.1 Instance does not transition to ALIVE when "live" DataWriter detected 72
6.3.2 Persistence Service DataReaders ignore serialized key propagated with dispose updates 72

6.4 Known Issues with Reliability 73
6.4.1 DataReaders with different reliability kinds under Subscriber with GROUP_PRESENTATION_QOS may

cause communication failure 73
6.5 Known Issues with Content Filters and Query Conditions 73

6.5.1 Writer-side filtering may cause missed deadline 73
6.5.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated correctly 73

6.6 Known Issues with TopicQueries 73
6.6.1 TopicQueries not supported with DataWriters configured to use batching or Durable Writer History 73

6.7 Known Issues with Transports 74
6.7.1 AppAck messages cannot be greater than underlying transport message size 74
6.7.2 DataReader cannot persist AppAck messages greater than 32767 bytes 74
6.7.3 Discovery with Connext Micro fails when shared memory transport enabled 75
6.7.4 Communication may not be reestablished in some IP mobility scenarios 75
6.7.5 Corrupted samples may be forwarded through Routing Service when using Zero-Copy transfer over shared

memory 75
6.7.6 Network Capture does not support frames larger than 65535 bytes 76

6.8 Known Issues with FlatData 76
6.8.1 FlatData language bindings do not support automatic initialization of arrays of primitive values to non-zero

default values 76
6.8.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined behavior 77
6.8.3 FlatData in combination with payload encryption in RTI Security Plugins and/or compression will not save

copies 77
6.9 Known Issues with Coherent Sets 77

6.9.1 Some coherent sets may be lost or reported as incomplete with batching configurations 77
6.9.2 Copy of SampleInfo::coherent_set_info field is not supported 77
6.9.3 Other known issues with coherent sets 78

6.10 Known Issues with Dynamic Data 78
6.10.1 Conversion of data by member-access primitives limited when converting to types that are not supported

on all platforms 78
6.10.2 Types that contain bit fields not supported 78

6.11 Known Issues in RTI Monitoring Library 79
6.11.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Participant Sends Monitoring

Data 79

viii

ix

6.11.2 Participant’s CPU and memory statistics are per application 79
6.11.3 XML-based entity creation nominally incompatible with static monitoring library 79
6.11.4 ResourceLimit channel_seq_max_length must not be changed 80

6.12 Known Issues with Installers 80
6.12.1 RTI Connext Micro 3.0.3 installation package currently compatible only with Connext 6.0.1 installer 80

6.13 Other Known Issues 80
6.13.1 Possible Valgrind still-reachable leaks when loading dynamic libraries 80
6.13.2 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) supported only in Java, no other

languages 81
6.13.3 Creating multiple DataReaders for the same Topic under the same Subscriber configured with Group

Ordered Access is not supported 82
Chapter 7 Experimental Features 83

Chapter 1 Introduction
RTI® Connext® 7.1.0 is a feature release based on release 7.0.0. See the Connext Releases web
page on the RTI website for more information.

This document includes the following:

l System Requirements (Chapter 2 on page 3)
l Compatibility (Chapter 3 on page 9)
l What's Fixed in 7.1.0 (Chapter 4 on page 11)
l What's Fixed in 7.0.0 (Chapter 5 on page 42)
l Known Issues (Chapter 6 on page 69)
l Experimental Features (Chapter 7 on page 83)

For an overview of new features in 7.1.0, see RTI Connext Core Libraries What's New in 7.1.0.

Many readers will also want to look at additional documentation available online. In particular,
RTI recommends the following:

l Use the RTI Customer Portal (https://support.rti.com) to download RTI software and
contact RTI Support. The RTI Customer Portal requires a username and password. You
will receive this in the email confirming your purchase. If you do not have this email,
please contact license@rti.com. Resetting your login password can be done directly at the
RTI Customer Portal.

l The RTI Community Forum (https://community.rti.com) provides a wealth of know-
ledge to help you use Connext, including:

l Documentation, at https://community.rti.com/documentation
l Best Practices,
l Example code for specific features, as well as more complete use-case examples,

1

https://www.rti.com/products/connext-releases
../whats_new/RTI_ConnextDDS_CoreLibraries_WhatsNew.pdf
https://support.rti.com/
https://community.rti.com/
https://community.rti.com/documentation

Chapter 1 Introduction

2

l Solutions to common questions,
l A glossary,
l Downloads of experimental software,
l And more.

l Whitepapers and other articles are available from http://www.rti.com/resources.
l Performance benchmark results for Connext are published online at
http://www.rti.com/products/dds/benchmarks.html. Updated results for new releases are typically
published within two months after general availability of that release.

http://www.rti.com/resources
http://www.rti.com/products/dds/benchmarks.html

Chapter 2 System Requirements
2.1 Introduction

Connext requires a multi-threaded operating system. This section describes the supported host
and target systems.

In this context, a host is the computer on which you will be developing a Connext application.
A target is the computer on which the completed application will run. A host installation
provides the RTI Code Generator tool (rtiddsgen), examples and documentation, as well as the
header files required to build a Connext application for any architecture. You will also need a
target installation, which provides the libraries required to build a Connext application for that
particular target architecture.

Supported platforms, for all products in the Connext suite are listed in these tables:

l Table 1 Supported Platforms for Compiler-Dependent Products on the next page.
This table is for products that are compiled into your application.

l Table 2 Supported Platforms for Connext Tools on page 6
This table is for products that are ready to use, no compilation required.

Early Access releases are intended to showcase the latest Connext features; they support a smal-
ler subset of platforms in comparison to LTS releases. The upcoming LTS release shall support
a larger number of platforms.

Subsequent Early Access and LTS releases may not support all of the platforms supported in
this release, or may support different versions of platforms supported in this release.

See the RTI Connext Core Libraries Platform Notes for more information on each platform.

3

4

2.2 Supported Platforms
Table 1 Supported Platforms for Compiler-Dependent Products

Platforms

Connext Professional

Secured
Transport Infrastructure Services

OS OS Version CPU Toolchain RTI Architecture Core
Libraries

LBED
[10]

TLS Support
for

OpenSSL
1.1.1

TLS Support
for

OpenSSL 3.0

Persistence
Service

Routing
Service

Recording
Service

Web
Integration
Service

Windows

Windows 10 [3]

Windows 11

Server 2016

x64
VS 2017,
2019,
2022

x64Win64VS2017 ● ● ● ● ● ● ● ●

Windows 10

Windows Server 2012 R2, 2016
x64 VS 2015 x64Win64VS2015 ● ● ● ● ● ● ● ●

macOS

macOS 11, 12
(host and target) [9] x64 clang

12.0, 13.0 x64Darwin20clang12.0 ● ● ● ● ● ● ●

macOS 11, 12
(target only) [11] Armv8 clang

12.0, 13.0 arm64Darwin20clang12.0 ● ● ● ● ● ● ●

Linux

Red Hat Enterprise Linux 8, 9

Ubuntu 18.04 LTS, 20.04 LTS,
22.04 LTS

x64 gcc 7.3.0 x64Linux4gcc7.3.0 ● ● ● ● ● ● ● ●

Red Hat Enterprise Linux 7, 7.3,
7.5, 7.6

CentOS 7.0
x64 gcc 4.8.2 x64Linux3gcc4.8.2 ● ● ● ● ● ● ● ●

Ubuntu 18.04 LTS, 22.04 LTS Armv8 [2] gcc 7.3.0 armv8Linux4gcc7.3.0 ● ● ● ● ● ●

QNX QNX Neutrino 7.1 Armv8[2] qcc 8.3.0 armv8QNX7.1qcc_gpp8.3.0 ● ● ● ● ●

5

Table 1 (Continued) Supported Platforms for Compiler-Dependent Products

Platforms Connext Secure Connext Anywhere Add-ons

OS OS Version CPU Toolchain RTI Architecture

Security
Plugins
with

OpenSSL
1.1.1
[1]

Security
Plugins
with

OpenSSL
3.0
[12]

Security
Plugins
for

wolfSSL
5.5
[8]

Security
Plugins
SDK
[1, 12]

Cloud
Discovery
Service

Real-Time
WAN

Transport

Limited
Bandwidth
Plugins

Observability
Framework

Windows

Windows 10 [3]

Windows 11

Server 2016

x64
VS 2017,
2019,
2022

x64Win64VS2017 ● ● ● ● ● ● ●

Windows 10

Windows Server 2012 R2, 2016
x64 VS 2015 x64Win64VS2015 ● ● ● ● ● ● ●

macOS
macOS 11, 12
(host and target) [9] x64 clang 12.0,

13.0 x64Darwin20clang12.0 ● ● ● ● ● ●

macOS 11, 12
(target only) [11] Arm v8 clang 12.0,

13.0 arm64Darwin20clang12.0 ● ● ● ● ●

Linux

Red Hat Enterprise Linux 8, 9

Ubuntu 18.04 LTS, 20.04 LTS,
22.04 LTS

x64 gcc 7.3.0 x64Linux4gcc7.3.0 ● ● ● ● ● ● ●

Red Hat Enterprise Linux 7, 7.3,
7.5, 7.6

CentOS 7.0
x64 gcc 4.8.2 x64Linux3gcc4.8.2 ● ● ● ● ● ● ●

Ubuntu 18.04 LTS, 22.04 LTS Arm v8 [2] gcc 7.3.0 armv8Linux4gcc7.3.0 ● ● ● ●

QNX QNX Neutrino 7.1 Arm v8[2] qcc 8.3.0 armv8QNX7.1qcc_
gpp8.3.0 ● ● ● ● ●

6

Table 2 Supported Platforms for Connext Tools

Platforms Tools

OS OS Version CPU Shapes Demo Launcher Monitor Admin Console System Designer

Windows

Windows 10 [3]

Windows 11

Windows Server 2016 [3]

x64 ● ● ● ● ● [7]

Windows 10

Windows Server 2012 R2, 2016
x64 ● ● ● ● ● [7]

macOS

macOS 11, 12
(host and target) [9] x64 ● ● ● ● ● [6]

macOS 11, 12
(target only) [11] Arm v8

Linux

Red Hat Enterprise Linux 8, 9

Ubuntu 18.04 LTS, 20.04 LTS,
22.04 LTS

x64 ● ● ● ● ● [5]

Red Hat Enterprise Linux 7, 7.3,
7.5, 7.6

CentOS 7.0
x64 ● ● ● ● ● [5]

Ubuntu 18.04, 22.04 LTS Arm v8 [2]

QNX QNX Neutrino 7.1 Arm v8 [2]

● = Supported

1 Tested with OpenSSL 1.1.1t
2 These libraries require a hardware FPU in the processor and are compatible with systems with hard-float libc
3 Per Microsoft, this should be compatible with Windows 10 IoT Enterprise with Windows native application
5 Tested on Ubuntu 18.04 LTS only, with Chrome 77, Firefox 69
6 Tested on macOS 10.14 only, with Chrome 77, Firefox 69, and Safari 12

7 Tested onWindows 10 only, with Chrome 77 and Firefox 69
8 Tested with wolfSSL 5.5.1
10 LBED = Limited Bandwidth Endpoint Discovery Plugin
11 Requires Rosetta® 2 during installation, not required at runtime
12 Tested with OpenSSL 3.0.8

2.3 Requirements when Using Microsoft Visual Studio

2.3 Requirements when Using Microsoft Visual Studio

Note: Debug versions of applications and the various Visual C++ DLLs are not redistributable. There-
fore, if you want to run debug versions, you must have the compiler installed.

When Using Visual Studio 2015 — Update 3 Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2015 Update 3 installed on the
machine where you are running an application linked with dynamic libraries. This includes C/C++
dynamically linked and all Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2015 Update 3 from this
Microsoft website: https://www.microsoft.com/en-us/download/details.aspx?id=53840.

When Using Visual Studio 2017 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2017 installed on the machine where
you are running an application linked with dynamic libraries. This includes C/C++ dynamically linked
and all Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2017 from this Microsoft website:
https://visualstudio.microsoft.com/vs/older-downloads/. Then look in this section: "Redistributables and
Build Tools" for Microsoft Visual C++ Redistributable for Visual Studio 2017".

When Using Visual Studio 2019 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2019 installed on the machine where
you are running an application linked with dynamic libraries. This includes C/C++ dynamically linked
and all Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2019 from this Microsoft website:
https://www.visualstudio.com/downloads/. Then look in this section: "Other Tools and Frameworks"
for Microsoft Visual C++ Redistributable for Visual Studio 2019".

When Using Visual Studio 2022 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2022 installed on the machine where
you are running an application linked with dynamic libraries. This includes C/C++ dynamically linked
and all Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2019 from this Microsoft website:
https://www.visualstudio.com/downloads/. Then look in this section: "Other Tools, Frameworks, and
Redistributables" for Microsoft Visual C++ Redistributable for Visual Studio 2022".

7

https://www.microsoft.com/en-us/download/details.aspx?id=53840
https://visualstudio.microsoft.com/vs/older-downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

2.4 Disk and Memory Usage

8

2.4 Disk and Memory Usage

Disk usage for a typical host-only installation is approximately 802 MB on Linux systems and 821 MB
on Windows systems. Each additional architecture (host or target) requires an additional 498 MB on
Linux systems and 609 MB on Windows systems.

We recommend that you have at least 256 MB RAM installed on your host development system. The
target requirements are significantly smaller and they depend on the complexity of your application and
hardware architecture.

Chapter 3 Compatibility
Below is basic compatibility information for this release.

Note: For backward-compatibility information between this and previous releases, see the
Migration Guide on the RTI Community Portal (https://community.rti.com/documentation).

3.1 Wire Protocol Compatibility

Connext communicates over the wire using the formal Real-Time Publish-Subscribe (RTPS) pro-
tocol. RTPS has been developed from the ground up with performance, interoperability and
extensibility in mind. The RTPS protocol is an international standard managed by the OMG.
The RTPS protocol has built-in extensibility mechanisms that enable new revisions to introduce
new message types, extend the existing messages, or extend the Quality of Service settings in
the product—without breaking interoperability.

RTPS 1.0 was introduced in 2001. The currently supported version is OMG Real-Time Publish-
Subscribe (RTPS) specification, version 2.5, although some features are not supported. Unsup-
ported features currently are FilteredCountFlag in GAP Submessage, HeartbeatFrag Submes-
sage, Checksum, and ALIVE_FILTERED instance state. RTI plans to maintain interoperability
between middleware versions based on RTPS 2.1. For more details, see Table 3.1 RTPS Ver-
sions.

Table 3.1 RTPS Versions shows RTPS versions supported for each Connext release. In general,
RTPS 2.1 and higher versions are interoperable, unless noted otherwise. RTPS 2.0 and RTPS
1.2 are incompatible with current (4.2e and later) versions of Connext.

Although RTPS 2.1 and higher versions are generally interoperable, there may be specific wire
protocol interoperability issues between Connext releases. These issues are documented in the
"Wire Protocol" section for your release, in the Migration Guide on the RTI Community Portal
(https://community.rti.com/documentation). Wire protocol issues between 5.3.1 and previous
releases are documented in the RTI Connext Core Libraries Release Notes for release 5.3.1.

9

https://community.rti.com/documentation
https://www.omg.org/spec/DDSI-RTPS/2.5/
https://www.omg.org/spec/DDSI-RTPS/2.5/
https://community.rti.com/documentation

3.2 Code and Configuration Compatibility

10

Table 3.1 RTPS Versions

Connext Release RTPS Standard Version (a) RTPS Protocol Version on the Wire (b)

Connext 7.1.0 and above 2.5 (partial support) 2.5

Connext 6 and 7.0.0 2.3 (partial support) 2.3

Connext DDS 5.2 and 5.3 2.2 (partial support) 2.1

Connext DDS 4.5f - 5.1 2.1 2.1

Data Distribution Service 4.2e - 4.5e 2.1 2.1

Data Distribution Service 4.2c 2.0 2.0

Data Distribution Service 4.2b and lower 1.2 1.2

(a) Version number of the RTPS standards document, OMG Real-Time Publish-Subscribe (RTPS) specification, version 2.5.

(b) RTPS wire protocol version number that Connext announces in messages it puts on the wire.

3.2 Code and Configuration Compatibility

The Connext core uses an API that is an extension of the OMG Data Distribution Service (DDS) stand-
ard API, version 1.4. RTI strives to maintain API compatibility between versions, but will conform to
changes in the OMG DDS standard.

The Connext core primarily consists of a library and a set of header files. In most cases, upgrading
simply requires you to recompile your source using the new header files and link the new libraries. In
some cases, minor modifications to your application code might be required; any such changes are
noted in the Migration Guide on the RTI Community Portal
(https://community.rti.com/documentation). The Migration Guide also indicates whether and how to
regenerate code.

3.3 Extensible Types Compatibility

This release of Connext includes partial support for the OMG 'Extensible and Dynamic Topic Types for
DDS' specification, version 1.3 (DDS-XTypes) from the Object Management Group (OMG). This sup-
port allows systems to define data types in a more flexible way, and to evolve data types over time
without giving up portability, interoperability, or the expressiveness of the DDS type system.

For information related to compatibility issues associated with the Extensible Types support, see the
Migration Guide on the RTI Community Portal (https://community.rti.com/documentation). See also
the RTI Connext Core Libraries Extensible Types Guide for a full list of the supported and unsupported
extensible types features.

https://www.omg.org/spec/DDSI-RTPS/2.5/
https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS/1.4
https://community.rti.com/documentation
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3
https://community.rti.com/documentation

Chapter 4 What's Fixed in 7.1.0
This section describes bugs fixed in Connext 7.1.0. These fixes have been made since 7.0.0 was
released.

4.1 Fixes Related to Discovery

4.1.1 Potential memory leak when creation of any of the built-in discovery
plugins failed

The first time a DomainParticipant is created in an application, some memory is allocated glob-
ally for each of the built-in discovery plugins (SPDP and SEDP) enabled for that DomainPar-
ticipant. This global memory is released when finalizing the DomainParticipantFactory
instance.

However, if there was a failure in the creation of any of the builtin discovery plugins during the
DomainParticipant creation, the DomainParticipantFactory was not notified properly that this
global memory was allocated. Therefore, finalizing the DomainParticipantFactory instance did
not release the memory, causing a leak.

This problem is fixed. Finalizing the DomainParticipantFactory instance always releases the
memory if it was previously allocated, regardless of whether or not a failure occurred.

[RTI Issue ID CORE-12882]

4.1.2 Unbounded memory growth when using domain tags or
DomainParticipant partitions

Whenever a DomainParticipant discovered another DomainParticipant that it did not match
with, either due to a mismatched domain tag or participant partition, some state was kept that
was never removed if the DomainParticipant never received an announcement from that same
mismatched participant indicating that it had been shut down. This led to unbounded memory
growth, which could become an issue in systems where DomainParticipants with various dif-
ferent domain tags or partitions were coming and going.

11

4.1.3 Error deleting remote endpoints with specific GUID prefixes using debug libraries

12

[RTI Issue ID CORE-12973]

4.1.3 Error deleting remote endpoints with specific GUID prefixes using debug
libraries

An error occurred when using debug libraries in the unlikely case that a DomainParticipant had a zero
value as the hostId, appId, or instanceId. This problem has been fixed.

[RTI Issue ID CORE-13261]

4.1.4 Most up-to-date participant configuration may not have been received by
other participants and may have led to discovery not completing

It was possible that a configuration change in DomainParticipant 'A' may not have been received by
DomainParticipant 'B' if the change occurred while the two participants were discovering each other.
Examples of configuration changes are a change in the PROPERTY QoS policy or an IP mobility event
in which DomainParticipant 'A' changes one of its IP addresses.

Not having the most recent configuration may have led to discovery not happening if the change was
due to an IP mobility event.

The problem only occurred when discovery used multiple transports (e.g, SHMEM and UDPv4). This
problem has been fixed.

[RTI Issue ID CORE-13359]

4.1.5 Participant failed to assert remote participant if usability of shared memory
transport changed

In 7.0.0, a DomainParticipant failed to assert a remote DomainParticipant if the usability of the shared
memory transport changed, resulting in the following log message:
ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}|RECEIVE FROM
0x00000000,0x00000000,0x00000000:0x000100C2|:0x000001C1{Domain=0}|ASSERT REMOTE
DP|LC:DISC]PRESParticipant_assertConfiguredRemoteParticipant:ASSERT FAILURE | compare
immutable remote participant 0x01017851,0x3B428DDD,0x514330AA config RW
ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}|RECEIVE FROM
0x00000000,0x00000000,0x00000000:0x000100C2|LC:DISC]DISCParticipantDiscoveryPlugin_
assertRemoteParticipantConfig:!assert remote participant:
0x01017851,0x3B428DDD,0x514330AA,0x000001C1
ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}|RECEIVE FROM
0x00000000,0x00000000,0x00000000:0x000100C2|LC:DISC]DISCParticipantDiscoveryPlugin_
assertRemoteParticipantFull:ASSERT FAILURE | remote participant
0x01017851,0x3B428DDD,0x514330AA config information
ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}|RECEIVE FROM
0x00000000,0x00000000,0x00000000:0x000100C2|LC:DISC]PRESParticipantAnnouncementChannelReader
ListenerSpdp_onDataAvailable:!assert remote participant

4.1.6 Unexpected warning during discovery when multicast disabled

You may have run into this issue if a shared memory segment was deleted during runtime and a
DomainParticipant updated its configuration information. A change in the shared memory usability will
no longer cause this failure.

[RTI Issue ID CORE-13360]

4.1.6 Unexpected warning during discovery when multicast disabled

Connext logged a warning during the discovery process when multicast was disabled. The message
warned about unreachable multicast locators. The message was unexpected and has been removed.

[RTI Issue ID CORE-13403]

4.1.7 Unexpected, invalid locator propagated within builtin topics

A DataReader could unexpectedly propagate an invalid locator to a DataWriter for certain builtin top-
ics. The issue did not affect functionality, since the locator was discarded on the DataWriter side. The
bug that sent the invalid locator has been fixed.

[RTI Issue ID CORE-13416]

4.2 Fixes Related to Serialization and Deserialization

4.2.1 Unexpected union value when receiving a discriminator that does not
select any union member on DataReader's type

When the property dds.sample_assignability.accept_unknown_union_discriminator was set to 1,
previous Connext releases were not always compliant with the latest OMG 'Extensible and Dynamic
Topic Types for DDS' specification, version 1.3 when a DataWriter publishes a union sample with a
discriminator value that selects a union member, and a DataReader subscribes to a union type that does
not have a union member for the discriminator published by the DataWriter.

For example:
/* Publisher */
union MyUnion switch(int32) {

case 0:
int32 m1;

case 1:
int16 m2;

case 2:
double m3;

};

/* Subscriber */
union MyUnion switch(int32) {

case 0:
int32 m1;

case 1:

13

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

4.2.2 Serialization of samples failed or produced a segmentation fault for types with max serialized size

14

int16 m2;
};

In this example, if the DataWriter published a sample with a discriminator value set to 2 selecting m3,
the DataReader received a sample where the discriminator is set to 0 and m1 is set to 0, the default
value of the union. According to the OMG 'Extensible and Dynamic Topic Types for DDS' spe-
cification, version 1.3, the DataReader should preserve the discriminator value received from the
DataWriter even if this discriminator value does not select any member in the DataReader’s union.

This problem only occurred when one of these conditions was true:

l The unions are mutable regardless of the data encapsulation (XCDR1 or XCDR2).
l The unions are appendable, and the encapsulation is XCDR2.

Note if the union discriminator did not select any member on the DataWriter’s type, such as 3 in the
above example, the DataReader received the expected discriminator 3.

This release accepts a new value for the dds.sample_assignability.accept_unknown_union_dis-
criminator property:

l 0 (existing value and default value): Received samples containing a union discriminator value
that selects a union member on the DataWriter but not on the DataReader are dropped.

l 1 (existing value) : Received samples containing a union discriminator value that selects a union
member on the DataWriter but not on the DataReader are set to the default union value.

l 2 (new value): Received samples containing a union discriminator value that selects a union mem-
ber on the DataWriter but not on the DataReader preserve the discriminator value.

Received samples containing a union discriminator value that does not select a union member on the
DataWriter always preserve the discriminator value on the DataReader with dds.sample_assignab-
ility.accept_unknown_union_discriminator set to 1 or 2, unless the union discriminator value is an
enumerator which is not valid on the DataReader’s type. In this case, the union is set to its default
value.

To be compliant with the OMG 'Extensible and Dynamic Topic Types for DDS' specification, version
1.3, set the value to 2.

[RTI Issue ID CORE-13058]

4.2.2 Serialization of samples failed or produced a segmentation fault for types
with max serialized size larger than 2GB

A DataWriter may have failed to send a sample due to serialization errors when the sample’s type had
a max serialized size with a value larger than 2GB.

For example:

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

4.2.3 Potential sample corruption when deserializing a malformed RTPS message

@nested
struct MyNestedStruct2 {

sequence<octet, 1500000000> m1;
};

@nested
struct MyNestedStruct {

sequence<octet, 1000000000> m1;
MyNestedStruct2 m2;

};

struct MyStruct {
MyNestedStruct m1;

};

In this example, the serialize operation failed with an error like this:
[0x0101C50B,0x0D4E0B41,0xBBFA04AC:0x80000003{E=DW,T=Example MyStruct,C=MyStruct,D=56}|WRITE]
PRESWriterHistoryDriver_serializeSample:serialize sample error in topic 'Example MyStruct'
with type 'MyStruct' and encapsulationId 1

For 32-bit platforms, the application may have produced a segmentation fault instead of failing to seri-
alize.

This problem has been fixed.

[RTI Issue ID CORE-12687]

4.2.3 Potential sample corruption when deserializing a malformed RTPS
message

A sample could be corrupted/incomplete with no error logged in the case of a deserialization failure in
the transport info parameter of the RTPS message. This problem has been fixed.

[RTI Issue ID CORE-13366]

4.2.4 Unbounded memory growth when deserializing a malformed RTPS
message

Potential unbounded memory growth occurred while parsing a malicious RTPS message. This problem
has been fixed.

[RTI Issue ID CORE-13397]

15

4.3 Fixes Related to Debuggability

16

4.3 Fixes Related to Debuggability

4.3.1 Hang/crash when invoking a DataReader/DataWriter discovery snapshot
within a callback function

A hang or even a crash occurred when trying to get a discovery snapshot from a DataReader or
DataWriter within a callback. RTI strongly recommends avoiding calling discovery snapshot APIs in
callback functions in release 7.0.0. This issue has been fixed in 7.1.0.

[RTI Issue ID CORE-12959]

4.3.2 Memory leak if network capture initialization failed

Failure to initialize network capture for a DomainParticipant may have caused a memory leak of 746
kB. The leak only happened (upon DomainParticipant creation) if the initialization failed when cre-
ating the status mutex for a manager:
!create status mutex for the network capture manager

This issue is now fixed. A failure creating the status mutex for a manager does not leak memory any-
more.

[RTI Issue ID CORE-13018]

4.3.3 Unexpected log messages at warning verbosity

You may have seen the following unexpected log messages at the warning verbosity level:
!get xxx remoteWriter
!get xxx remoteReader
!goto WR xxx remote reader
!goto WR xxx remote writer

These warnings did not signal any unexpected scenario, and they have been removed.

[RTI Issue ID CORE-13434]

4.3.4 Unexpected fatal error when number of instances reached the limit

In 7.0.0, an unexpected fatal error could be logged when the following occurred:

l A DataWriter is configured to use durable writer history.
l The number of instances reached the max_instances limit set in the DataWriter’s RESOURCE_
LIMITS QoS.

l Connext could not find an instance to delete (such as an unregistered one), to replace with the
new instance. So the new instance could not be added.

4.4 Fixes Related to Transports

This log message is expected, but it is not a fatal error, so its verbosity has been updated to
WARNING, as follows:
WriterHistoryOdbcPlugin_createResources:FIND FAILURE | Instance for replacement
WriterHistoryOdbcPlugin_addInstance:OUT OF RESOURCES | Exceeded the number of instances.
Current registered instances (128), maximum number of instances (128)(writer_qos.resource_
limits.max_instances)

[RTI Issue ID CORE-13496]

4.4 Fixes Related to Transports

4.4.1 Possible data loss after a Connext application lost its multicast interfaces
or gained its first multicast interface

The IP mobility feature detects when the interfaces of an application change, then propagates these
changes. If an IP mobility event causes either the loss of the last interface that supported multicast or
the gain of the first interface that supports multicast, the way other applications communicate with the
application that experienced the IP mobility event changes.

Previously, that transition did not happen properly and may have led to data losses. This problem has
been fixed. Now, communication is not affected by these interface changes.

[RTI Issue ID CORE-12609]

4.4.2 DomainParticipant with non-default metatraffic_transport_priority QoS did
not complete discovery

A DomainParticipant that had a non-default metatraffic_transport_priority in the DISCOVERY QoS
Policy was not able to complete endpoint discovery due to a unicast metatraffic channel that was not
created correctly. (The channel is used by the participant to send Data(R) and Data(W).)

This issue was introduced in 6.1.0. This issue has been resolved.

[RTI Issue ID CORE-12739]

4.4.3 dds.transport.minimum_compatibility_version property did not properly
adjust locator format

Connext 5.3.0 introduced a new shared memory locator format. DomainParticipants in Connext 5.3.0
(and above) use the new locator format by default. To allow interoperability with Connext versions
before 5.3.0, you must indicate to DomainParticipants to use the old locator format.

There are two properties for telling a DomainParticipant to use the old locator format: dds.trans-
port.use_530_shmem_locator_matching (undocumented and deprecated) and dds.trans-
port.minimum_compatibility_version. The latter is a newer property that combines several other

17

4.4.4 TCP Transport did not run with Windows debug libraries when socket_monitoring_kind was set

18

properties. Its purpose is to set the transport to be compatible with the specified version in a simplified
manner.

The problem with the newer property, dds.transport.minimum_compatibility_version, was that it did
not adjust the locator format depending on the Connext version. The workaround was to use the
dds.transport.use_530_shmem_locator_matching property instead. This issue has been fixed. You
can now use dds.transport.minimum_compatibility_version without issue.

[RTI Issue ID CORE-12789]

4.4.4 TCP Transport did not run with Windows debug libraries when socket_
monitoring_kind was set to IOCP

An internal error prevented the TCP transport from running on Windows with debug libraries when the
socket_monitoring_kind was set to the recommended value of NDDS_TRANSPORT_TCPV4_
SOCKET_MONITORING_KIND_WINDOWS_IOCP. The error has been corrected.

[RTI Issue ID COREPLG-654]

4.5 Fixes Related to Reliability Protocol and Wire Representation

4.5.1 Samples not delivered to Required Subscription DataReaders when
DataWriter used durable writer history and DataReaders disabled
positive ACKs

A sample may not have been delivered to a Required Subscription DataReader if the DataWriter was
using durable writer history and there were matching DataReaders configured with reader_qos.-
protocol.disable_positive_acks. This behavior violated the required subscription contract. This prob-
lem has been resolved.

[RTI Issue ID CORE-12825]

4.5.2 DataReader may not have received samples that were sent as gapped
samples to another DataReader over multicast

A DataReader may not have received samples that were sent as gapped samples to another DataReader
over multicast. A GAP tells a DataReader that it should not expect to receive the samples that are listed
in the GAP message. In some cases, when a DataWriter was responding to a DataReader’s NACK mes-
sage, the response contained a GAP which identified samples that should not have been gapped for any
other DataReader aside from the DataReader whose NACK was being responded to. This was a prob-
lem if the NACK response was sent over multicast and was received by other DataReaders, because
those DataReaders would incorrectly assume those gapped samples were irrelevant and would never
receive them.

This issue has been resolved.

4.5.3 DDS fragmentation may have led to more fragments than expected for a sample

[RTI Issue ID CORE-13104]

4.5.3 DDS fragmentation may have led to more fragments than expected for a
sample

In 7.0.0, you may have noticed that when using middleware-level fragmentation and a flow controller
where bytes_per_token is set to a value smaller than the minimum transport message_size_max across
all installed transports, the number of sample fragments generated for a sample may have been bigger
than expected. Although this was not a functional issue, it may have led to performance degradation.

This problem has been fixed.

[RTI Issue ID CORE-13190]

4.5.4 Unexpected precondition error with debug libraries on a reliable
DataWriter while sending a GAP

In the 6.1.2 and 7.0.0 releases, you may have seen the following precondition error while using the Con-
next debug libraries.
DL Debug: : Backtrace:
141: DL Debug: : #4 COMMENDSrWriterService_sendGapToRR /rti/jenkins/workspace/connextdds_
ci_fastbuild-debug_develop/commend.1.0/srcC/srw/SrWriterService.c:4096 (discriminator 9)
[0x5B101E]
141: DL Debug: : #5 COMMENDSrWriterService_onSendDataEvent
/rti/jenkins/workspace/connextdds_ci_fastbuild-debug_
develop/commend.1.0/srcC/srw/SrWriterService.c:6570 [0x5BACF6]
141: DL Debug: : #6 RTIEventActiveGeneratorThread_loop /rti/jenkins/workspace/connextdds_
ci_fastbuild-debug_develop/event.1.0/srcC/activeGenerator/ActiveGenerator.c:307 [0x28E2FC]
141: DL Debug: : #7 RTIOsapiThreadFactory_onSpawned /rti/jenkins/workspace/connextdds_ci_
fastbuild-debug_develop/osapi.1.0/srcC/threadFactory/ThreadFactory.c:208 [0x1F3A42]
141: DL Debug: : #8 RTIOsapiThreadFactory_onSpawned /rti/jenkins/workspace/connextdds_ci_
fastbuild-debug_develop/osapi.1.0/srcC/threadFactory/ThreadFactory.c:208 [0x1F3A42]
141: DL Debug: : #9 RTIOsapiThreadChild_onSpawned /rti/jenkins/workspace/connextdds_ci_
fastbuild-debug_develop/osapi.1.0/srcC/thread/Thread.c:1941 [0x1EDB64]
141: DL Debug: : #10 start_thread /build/glibc-CVJwZb/glibc-2.27/nptl/pthread_create.c:463
[0x76DB]
141: DL Debug: : #11 clone /build/glibc-CVJwZb/glibc-
2.27/misc/../sysdeps/unix/sysv/linux/x86_64/clone.S:97 [0x12161F]
141: DL Fatal: : FATAL rCoRTInk####Evt [0x01014F91,0x39810444,0x4EC68AEA:0x000004C2|RECEIVE
FROM remote DR (GUID: 0x01015FBD,0x5892DC7E,0x9DB082D4:0x000004C7).
141:] Mx00:/rti/jenkins/workspace/connextdds_ci_fastbuild-debug_
develop/commend.1.0/srcC/srw/SrWriterService.c:4099:RTI0x200003b:!precondition: "
((((gapStartSn)->high) > (((&(gapBitmap)->_lead))->high)) ? 1 : ((((gapStartSn)->high) <
(((&(gapBitmap)->_lead))->high)) ? -1 : ((((gapStartSn)->low) > (((&(gapBitmap)->_lead))-
>low)) ? 1 : ((((gapStartSn)->low) < (((&(gapBitmap)->_lead))->low)) ? -1 : 0)))) >= 0"
141: DL Error: : ERROR [0x01014F91,0x39810444,0x4EC68AEA:0x000004C2|RECEIVE FROM remote DR
(GUID: 0x01015FBD,0x5892DC7E,0x9DB082D4:0x000004C7).
141:] COMMENDSrWriterService_onSendDataEvent:!send GAP

19

4.6 Fixes Related to Content Filters and Query Conditions

20

This error was generated by a reliable DataWriter sending a GAP to a reliable DataReader. After the
error was printed, the DataReader may have stopped receiving data from the DataWriter, leading to a
non-recoverable situation. This problem did not occur with release libraries. This problem has been
fixed.

[RTI Issue ID CORE-13462]

4.6 Fixes Related to Content Filters and Query Conditions

4.6.1 Unexpected "RTIXCdrSampleInterpreter_initializeSampleWInstruction"
error log messages when using QueryConditions,
ContentFilteredTopics, TopicQueries, or Multi-Channel

In releases 6.0.x and 6.1.x, a Connext application using QueryConditions, ContentFilteredTopics, Top-
icQueries, or Multi-Channel may have logged an error message like the following when applying fil-
tering to some samples:
RTIXCdrSampleInterpreter_initializeSampleWInstruction: <Type>:<Field Name> initialize error

A potential workaround was to set the property dds.content_filter.sql.deserialized_sample.min_buf-
fer_size to -1 in the participant_qos.property QoS Policy. However, this may have led to a higher
memory utilization.

This problem has been resolved.

[RTI Issue ID CORE-13328]

4.7 Fixes Related to Dynamic Data

4.7.1 DynamicData DataWriters incorrectly serialized optional empty sequences
as null

In previous 6.0.0 releases and above, a DynamicData DataWriter incorrectly serialized an optional
empty sequence as null. When a DataReader received the sample, it deserialized the wrong value.

For example, assume the following type:
struct AuditLogEntry {

long long Nanoseconds;
@optional sequence<long long, 100> Details;

};

If the publishing application set Details to an empty sequence with zero elements, the serialized value
was incorrectly set to null. When a DataReader received the sample, it incorrectly set Details to null
instead of the empty sequence with zero elements.

This problem has been fixed.

4.8 Fixes Related to APIs

[RTI Issue ID CORE-12866]

4.8 Fixes Related to APIs

4.8.1 DynamicData method to get member type missing in Modern C++ and C#
APIs

The method to retrieve a member type from a DynamicData object was not provided in the Modern
C++ and C# APIs. The following methods have now been added:

l C++: DynamicData::member_type(const std::string& name) and member_type(uint32_t id)
l C#: DynamicData.GetMemberType(string name) and GetMemberType(int id)

[RTI Issue ID CORE-13371]

4.8.2 Fixes Related to Modern C++ API

4.8.2.1 banish and subject_name APIs were unresolved in Modern C++ Windows dynamic
libraries

The Modern C++ APIs banish_ignored_participants, discovered_participant_subject_name, and
discovered_participants_from_subject_name were unresolved symbols in the nddscpp2 Windows
dynamic libraries. If you attempted to use them, you would get LNK2019 unresolved external symbol
errors. This problem has been fixed.

[RTI Issue ID CORE-13053]

4.8.2.2 Unnecessary small memory allocation in some operations, including read/take

Every call to a DataReader read/take operation caused an unnecessary small memory allocation that
was immediately released. More generally, initializing a reference type to dds::core::null caused the
same allocation. For example:
DomainParticipant p = dds::core::null;

This unnecessary allocation has been removed. Constructing a reference type to dds::core::null no
longer allocates memory.

[RTI Issue ID CORE-13262]

4.8.2.3 close() operation of a ContentFilteredTopic created from XML didn't work

The close() operation of a ContentFilteredTopic created from XML didn't actually close it. However,
when its DomainParticipant was closed or destroyed, the ContentFilteredTopic was correctly closed.
This problem has been resolved.

21

4.8.3 Fixes Related to C# API

22

[RTI Issue ID CORE-13367]

4.8.3 Fixes Related to C# API

4.8.3.1 Windows library dependency missing from .NET API NuGet packages

In release 7.0.0, Windows machines that did not have the Visual Studio redistributable may not have
been able to run DDS .NET applications out of the box. This dependency is now managed internally
and no longer required by the user.

[RTI Issue ID CORE-13120]

4.8.3.2 Exception when disposing a DomainParticipant or when entities were not properly
disposed

In previous releases of the .NET API, an exception may have occurred when disposing a DomainPar-
ticipant or whenever unused entities that had not been properly disposed were garbage-collected.

[RTI Issue ID CORE-13231]

4.8.4 Fixes Related to Java API

4.8.4.1 Java API leaked some objects in certain DomainParticipantFactory operations

The Java API created and pinned a number of objects as a result of calling most methods in the
DomainParticipantFactory, including the creation of DomainParticipants. While these objects did not
consume significant amounts of memory, certain JVMs could have exhausted the maximum number of
allowed global references, causing applications to fail. This problem has been resolved.

[RTI Issue ID CORE-12838]

4.8.4.2 get_typecode method of a DomainParticipant in Java API failed when the type
contained a wstring element

In the Java API, calling the get_typecode method on a DomainParticipant for a registered type that
contained a wstring element failed with the following exception:
Exception in thread "main" com.rti.dds.infrastructure.BAD_TYPECODE: Error creating type code
at com.rti.dds.typecode.TypeCodeFactory.create_tc_from_native(TypeCodeFactory.java:984)
at com.rti.dds.domain.DomainParticipantImpl.get_typecode(DomainParticipantImpl.java:2027)

The exception was caused by a problem in the way the Connext Java API interfaced with its internal C
implementation. This problem has been resolved.

[RTI Issue ID CORE-13302]

4.8.5 Fixes Related to Python API

4.8.5 Fixes Related to Python API

4.8.5.1 DynamicData accessor for an enum member in a base type failed (Python API)

Given a DynamicData for a struct type (my_struct) with a base type containing an enum member (my_
enum), the following code failed:
sample = dds.DynamicData(my_struct)
print(sample["my_enum"]) # error: member my_enum doesn't exist

This problem has been resolved.

[RTI Issue ID PY-30]

4.8.5.2 Possible incorrect default values when receiving extensible data

Given the following situation:

l An application uses a dds.DataReader for an extensible IDL type "T1" containing a non-
optional primitive member "a".

l The reader receives data for a different-but-compatible type "T2" that doesn’t define "a".

The reader is expected to return a data sample where "a" is set to its default value (normally 0).
However, in some situations the data sample may have contained an unexpected value for "a". This
problem has been resolved.

[RTI Issue ID PY-77]

4.8.5.3 Some APIs where missing, incorrectly named, or have been deleted

4.8.5.3.1 Removed types, methods, and fields:

l TopicInstance and all related operations in the DataReader and DataWriter have been removed.
l The static properties dds.WriterDataLifecycle.auto_dispose_unregistered_instances and
dds.WriterdataLifecycle.manually_dispose_unregistered_instances have been removed due to
being too similar to the non-static properties.

l The DataReader operations read_next and take_next have been removed.

4.8.5.3.2 Renamed types, methods and fields:

l dds.ReaderDataLifecycle.autopurge_unregistered_instances_delay was incorrectly named
and has been renamed to autopurge_nowriter_samples_delay; autopurge_nowriter_
instances_delay was missing and has been added.

23

4.8.5 Fixes Related to Python API

24

l dds.Filter.sql_filter_name has been renamed to dds.Filter.SQL_FILTER_NAME; dds.Fil-
ter.stringmatch_filter_name has been renamed to dds.Filter.STRINGMATCH_FILTER_
NAME. The same constants have been renamed in dds.MultiChannel.

l dds.DataWriterResourceLimitsInstaceReplacementKind was misspelled and has been
renamed to dds.DataWriterResourceLimitsInstanceReplacementKind.

l dds.TransportMulticast.settings has been renamed to dds.TransportMulticast.value;
dds.TransportMulticastMapping.settings has been renamed to dds.Trans-
portMulticastMapping.value; dds.TransportSelection.enabled_transports has been renamed
to dds.TransportSelection.value; dds.TransportUnicast.settings has been renamed to
dds.TransportUnicast.value.

4.8.5.3.3 Newly added missing types, methods, and fields:

l The DataReader operation acknowledge_sample with ack_response_data was missing and has
been added.

l dds.Presentation.drop_incomplete_coherent_set was missing and has been added.
l dds.DomainParticipant - the following methods have been added: discovered_participant_sub-
ject_name, discovered_participants_from_subject_name, banish_ignored_participants.

l dds.DomainParticipantQos - the following QoS policies have been added: partition, default_
unicast.

l dds.BuiltinTopicReaderResourceLimits was missing max_fragmented_samples_per_
remote_writer, which has now been added.

l The constant dds.DataReaderResourceLimits.AUTO_MAX_TOTAL_INSTANCES was missing
and has been added.

l dds.DataWriterProtocol.initial_virtual_sequence_number was missing and has been added.
l dds.DiscoveryConfigBuiltinChannelKindMask was missing and has been added.
l dds.DomainParticipantResourceLimits.serialized_type_object_dynamic_allocation_
threshold was missing and has been added.

l The constant dds.PublishMode.PUBLICATION_PRIORITY_UNDEFINED was missing and has
been added.

l dds.SystemResourceLimits.initial_objects_per_thread was missing and has been added.
l dds.DataWriterCacheStatus was missing the following read-only properties, which have been
added: alive_instance_count, alive_instance_count_peak, disposed_instance_count, dis-
posed_instance_count_peak, unregistered_instance_count, unregistered_instance_count_
peak.

4.8.5 Fixes Related to Python API

l dds.CompressionSettings was missing the following constants, which have been added:
COMPRESSION_LEVEL_DEFAULT, COMPRESSION_LEVEL_BEST_SPEED,
COMPRESSION_LEVEL_BEST_COMPRESSION.

l dds.Cookie was missing a no-argument constructor, which has been added.
l dds.AcknowledgmentInfo.cookie was missing and has been added.
l The constant dds.FlowControllerProperty.DEFAULT_FLOW_CONTROLLER_NAME was miss-
ing and has been added.

l dds.Property can now be created from a dictionary.

4.8.5.3.4 Other

l In Entity types, listener is now a read-only property; use set_listener to change it with a status
mask.

l The DataReader read/take operations include several changes. See RTI Connext Core Libraries
What's New in 7.1.0.

l dds.GroupData's constructor did not initialize the bytes correctly and has been fixed.
l Setting dds.EntityName.name and role_name to None explicitly was not supported and caused
a crash. This has been fixed.

[RTI Issue ID PY-85]

4.8.5.4 Possible deadlock between creation of a dds.Topic and a listener callback

A possible deadlock could have occurred, leaving the Python interpreter hanging indefinitely when a
dds.Topic was created at the same time as a listener callback was in process. This problem has been
resolved.

[RTI Issue ID PY-88]

4.8.5.5 Listeners may not have been called in some situations

Entity listener callbacks may not have been called in some situations, causing the application to miss
notifications about Entity status changes. This problem was due to a bug in pybind11 version 2.8.1. The
build instructions have been updated to require pybind11 2.9.0, which solves this problem.

[RTI Issue ID PY-92]

25

../whats_new/RTI_ConnextDDS_CoreLibraries_WhatsNew.pdf
../whats_new/RTI_ConnextDDS_CoreLibraries_WhatsNew.pdf

4.9 Fixes Related to XML Configuration

26

4.9 Fixes Related to XML Configuration

4.9.1 Memory leak after an error parsing XML file with <include> tag

If the user’s application failed to parse an XML file containing an <include> tag, this caused a memory
leak. For example:
<types>
<include file=""myFile.xml"">

<struct name=""MyStruct"">
<member name=""m1"" type=""unknownType"" />

</struct>

</types>

This file cannot be parsed because m1 refers to an unknown type. When the application finished, run-
ning a memory profiling tool such as ValgrindTM showed there was a memory leak. This problem has
been resolved.

[RTI Issue ID CORE-12831]

4.9.2 Failed to parse XML configuration file containing type member with
useVector attribute

Connext libraries failed to parse XML files containing a type member with the attribute useVector,
although this is a legal attribute.

For example:
<types>

<struct name= "MyType">
<member name="m1" sequenceMaxLength="100" useVector="true" type="int32"/>

</struct>
</types>

Parsing this file failed with the following error:
RTIXMLParser_validateOnStartTag:Parse error at line xxx: Unexpected attribute 'useVector'

This problem has been fixed.

[RTI Issue ID CORE-12949]

4.9.3 XML composition overwrote system information properties with defaults
instead of correct values

The XML composition mechanism (described in "QoS Profile Inheritance and Composition" in the QoS
Profiles section of the "Configuring QoS with XML" chapter of the RTI Connext Core Libraries User's
Manual) had an issue with the way system properties (described in "System Properties" in the Working

4.9.3 XML composition overwrote system information properties with defaults instead of correct values

with DDS Domains chapter of the RTI Connext Core Libraries User's Manual) set in an XML Snippet
were applied to a <domain_participant_qos> in an XML Profile referencing the Snippet. The properties
set in the XML Snippet were not applied to the <domain_participant_qos>, which ended up using the
automatic values generated by Connext.

Here is an example that illustrates the problem:
<qos_library name="SampleQoSLib">

<qos_profile name="ParentProfile">
<domain_participant_qos>

<property>
<value>

<element>
<name>dds.sys_info.hostname</name>
<value>CustomHostName</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>

<qos_profile name="ChildProfile" is_default_qos="true">
<domain_participant_qos>

<base_name>
<element>SampleQosLib::ParentProfile</element>

</base_name>
<property>

<value>
<element>

<name>dds.sys_info.username</name>
<value>CustomUserName</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>
</qos_library>

The <domain_participant_qos> in the ChildProfile ended up with the following values for the system
information properties:

l dds.sys_info.hostname - The default value rather than the CustomHostName value as set in the
<domain_participant_qos> in ParentProfile, because of the overwriting problem described above.

l dds.sys_info.username - The set value of CustomUserName, which is the correct value.

This issue has been resolved.

[RTI Issue ID CORE-13090]

27

4.10 Fixes Related to Request-Reply and RPC

28

4.10 Fixes Related to Request-Reply and RPC

4.10.1 RPC interface evolution did not work

Remote Procedure Call (RPC) interfaces were designed to be extensible. A service and a client can
communicate even when they have a different number of interfaces. For example:

A base service definition in IDL could be as follows:
@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
float get_speed();

};

If you add new operations to the service interface, such as the following:
@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
float get_speed();
float get_position();

};

Or remove operations from the service interface, such as the following:
@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
};

They should remain interoperable.

However, in the previous release, the service and the client wouldn't communicate in any case.

This problem has been resolved. A client can now invoke an operation in a service with more or fewer
operations. If the operation exists in the service, it will receive a valid response. If the operation doesn't
exist in the service, the service will respond accordingly and the client will throw the standard excep-
tion dds::rpc::RemoteUnknownOperationError.

[RTI Issue ID REQREPLY-105]

4.10.2 Exceptions sending result of remote operation may have crashed server
application

In an RPC server-side application, the user implements the functional interface. The Server uses a
thread pool to call those functions with the input sent from the client (Request) and obtain the result.
The result is then sent to the client (Reply). The Reply is automatically written using a DDS
DataWriter. If the write() operation failed, the resulting exception would crash the current thread in the
thread pool and possibly crash the entire server-side application (a typical write() exception is a

4.10.3 RPC: deadlock when Server::close() was called before Server::run()

Timeout). Since the Reply is sent by the server from a separate thread, the user application has no way
of catching the exception or sending the Reply again.

This problem has been resolved. If an exception occurs, it is caught and logged. The Reply is never
sent. User applications have two ways to react to this event:

l The server application can install a rti::config::Logger::output_handler to monitor errors.
l The client application will see a timeout in the function call. The application can then react
accordingly (e.g., calling the function again later).

[RTI Issue ID REQREPLY-111]

4.10.3 RPC: deadlock when Server::close() was called before Server::run()

In the unlikely scenario that a Server was created and then closed before running (the method Server-
::close() was called before Sever::run()), run() would never return unless a timeout was specified.
This problem has been resolved.

[RTI Issue ID REQREPLY-113]

4.10.4 Possible unbounded memory growth when creating many Requesters

This issue was fixed in release 7.0.0, but not documented at that time.

When a Requester is created, a ContentFilteredTopic is internally created on the Requester's
DomainParticipant. This ContentFilteredTopic is exclusively created for each Requester and was never
deleted until the DomainParticipant was deleted. This may have caused applications that continuously
create and delete Requesters on the same DomainParticipant to see unbounded memory growth.

This problem has been resolved in all language APIs. The Requester destructor or deletion function
now deletes its ContentFilteredTopic.

[RTI Issue ID REQREPLY-35]

4.10.5 Memory leak in Java Request-Reply API

This issue was fixed in release 7.0.0, but not documented at that time.

The Java Request-Reply API leaked a small amount of native heap memory every time a Requester
was created. The leak was caused by a few internal WaitSet objects, which did not have a finalizer and
were not explicitly deleted either.

[RTI Issue ID REQREPLY-94]

29

4.10.6 Possible data race using Sample and WriteSample classes (Traditional C++ API only)

30

4.10.6 Possible data race using Sample and WriteSample classes (Traditional
C++ API only)

This issue was fixed in release 7.0.0, but not documented at that time.

The Sample and WriteSample classes are wrapper classes in the Traditional C++ Request-Reply API
that used to initialize the underlying user data lazily: the data was initialized the first time it was
accessed with the data() member function.

This approach made the access to the data unsafe. A data race could occur when two or more threads
competed to access the same sample object for the first time. This problem has been resolved. The lazy
approach has been reversed, and the data is now initialized in the constructor.

[RTI Issue ID REQREPLY-95]

4.11 Fixes Related to Shipped Examples

4.11.1 Hello World TCP example always linked TCP Transport library
dynamically

The C hello_world_tcp example always linked the RTI TCP Transport library dynamically, even if
you wanted to use static linking. This issue has been fixed. Now, the nddstransporttcp library is
linked statically unless you choose Debug DLL or Release DLL from the configuration pull-down
menu of the provided projects on Windows. Or, when using a makefile, the TCP Transport library is
now linked statically, unless you pass the "SHAREDLIB=1" argument to the make command.

Furthermore, the README file for the example has been updated with further instructions on what
additional libraries need to be added to the makefile or project file when TLS is enabled.

[RTI Issue ID COREPLG-577]

4.12 Fixes Related to Vulnerabilities

4.12.1 Arbitrary read access while parsing malicious RTPS message

Arbitrary read access could occur while parsing a malicious RTPS message. This issue has been fixed.

4.12.1.1 User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

l Arbitrary read access while parsing a malicious RTPS message.
l Remotely exploitable.
l Potential impact on confidentiality of Connext application.

4.12.2 Out-of-bounds read while parsing malicious RTPS message

l CVSS Base Score: 8.2 HIGH
l CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:H

4.12.1.2 User Impact with Security

Same impact as described in "User Impact without Security," above.

[RTI Issue ID CORE-13160]

4.12.2 Out-of-bounds read while parsing malicious RTPS message

An out-of-bounds read could occur while parsing a malicious RTPS message. This issue has been
fixed.

4.12.2.1 User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

l Out-of-bounds read while parsing a malicious RTPS message.
l Remotely exploitable.
l Potential impact on confidentiality of Connext application.
l CVSS Base Score: 6.5 MEDIUM
l CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

4.12.2.2 User Impact with Security

Same impact as described in "User Impact without Security," above.

[RTI Issue IDs CORE-13240 and CORE-13264]

4.12.3 Out-of-bounds write while parsing malicious RTPS message

An out-of-bounds write could occur while parsing a malicious RTPS message. This issue has been
fixed.

4.12.3.1 User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

l Out-of-bounds write while parsing a malicious RTPS message.
l Remotely exploitable.
l Potential impact on integrity of Connext application.

31

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:H
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

4.12.4 Buffer overflow in shared memory if memory was tampered

32

l CVSS Base Score: 8.2 HIGH
l CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H

4.12.3.2 User Impact with Security

Same impact as described in "User Impact without Security," above.

[RTI Issue ID CORE-13279 and CORE-13150]

4.12.4 Buffer overflow in shared memory if memory was tampered

A buffer overflow occurred when publishing or receiving metadata or data over a tampered shared
memory segment. This issue has been fixed.

4.12.4.1 User Impact without Security

l Exploitable from the same node the Connext application is running (needs access to shared
memory segment).

l Application crash. Potential impact to the integrity or confidentiality of the Connext application.
l CVSS Base Score: 7.8 HIGH
l CVSS v3.1 Vector: AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

4.12.4.2 User Impact with Security

Same impact as described in "User Impact without Security," above.

[RTI Issue ID CORE-13300]

4.12.5 Out-of-bounds read while uncompressing malformed data from malicious
RTPS message

An out-of-bounds read occurred while uncompressing malformed data from a malicious RTPS mes-
sage. This issue has been fixed.

4.12.5.1 User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

l Out-of-bounds read while uncompressing malformed data from a malicious RTPS message.
l Remotely exploitable.
l Potential impact on confidentiality of Connext application.

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

4.13 Fixes Related to Crashes

l CVSS Base Score: 4.8 MEDIUM
l CVSS v3.1 Vector: AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:L

4.12.5.2 User Impact with Security

Same impact as described in "User Impact without Security," above.

[RTI Issue ID CORE-13548]

4.13 Fixes Related to Crashes

4.13.1 Rare segmentation fault when deleting DomainParticipant or Publisher
containing DataWriters using durable writer history

A Connext application may have crashed after deleting a DomainParticipant or Publisher containing
DataWriters using durable writer history. This issue has been fixed.

[RTI Issue ID CORE-12297]

4.13.2 Segmentation fault when creation of DomainParticipant failed due to lack
of resources

An application may have produced a segmentation fault using the release libraries if the creation of a
DomainParticipant failed because the following resource limit was exceeded: participant_factory_
qos.resource_limits.max_objects_per_thread.

With debug libraries, you may have seen a precondition error such as this:
FATAL U000000011d1a15c0_ [CREATE
DP|LC:DISC]Mx06:/connextdds/event.1.0/srcC/activeDatabase/ActiveDatabase.c:275:RTI0x2000027:
!precondition

This problem has been fixed.

[RTI Issue ID CORE-12654]

4.13.3 Potential hang upon SIGSEGV signal from a Connext application

For debuggability purposes, Connext applications log a backtrace when a SIGSEGV signal is triggered.

In previous releases, this feature may have triggered a hang during the logging of the backtrace. In this
release, we address this issue by disabling the logging of the backtrace by default in release libraries
(but still keeping it enabled for debug libraries).

This default behavior can be modified by setting the new DomainParticipant-level property dds.-
participant.enable_backtrace_upon_sigsegv. See “New property to manually enable or disable log-
ging backtrace upon SIGSEGV signal from a Connext application” in RTI Connext Core Libraries
What's New in 7.1.0.

33

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:L
../whats_new/RTI_ConnextDDS_CoreLibraries_WhatsNew.pdf
../whats_new/RTI_ConnextDDS_CoreLibraries_WhatsNew.pdf

4.13.4 Creating DynamicDataTypePlugin with TypeCode from discovery and using content filtering

34

[RTI Issue ID CORE-12794]

4.13.4 Creating DynamicDataTypePlugin with TypeCode from discovery and
using content filtering caused segmentation fault

If the TypeCode that was received from endpoint discovery data (PublicationBuiltinTopicData.type_
code or SubscriptionBuiltinTopicData.type_code) was used to create a DynamicDataTypeSupport in
an application that was also using ContentFilteredTopics and setting ResourceLimitsQosPolicy.type_
code_max_serialized_length to a non-zero value, the application issued a segmentation fault.

ResourceLimitsQosPolicy.type_code_max_serialized_length is 0 by default, which avoids the seg-
mentation fault.

This issue has been fixed.

[RTI Issue ID CORE-12992]

4.13.5 Application crash when calling DDS_DataReader_take_discovery_
snapshot on a DataReader with a ContentFilteredTopic

When taking a discovery snapshot by calling the DDS_DataReader_take_discovery_snapshot func-
tion on a DataReader with a ContentFilteredTopic, the application crashed when trying to obtain non-
valid DomainParticipant information. This issue has been fixed. Now, DomainParticipant information
is obtained correctly for DataReaders with ContentFilteredTopics.

[RTI Issue ID CORE-13011]

4.13.6 Crash with NULL listeners and non-none status masks in C applications
that mixed types with and without Zero Copy

In a C application, a crash occurred when both of these were true:

l Types with and without Zero Copy transfer over shared memory were mixed inside the same
DomainParticipantFactory instance.

l A DataReader or DataWriter of the non-Zero Copy types had a NULL listener and a DDS_
StatusMask different than DDS_STATUS_MASK_NONE.

The crash occurred because Connext invoked a NULL listener callback for the statuses enabled in the
endpoints' DDS_StatusMask.

When there is a Zero Copy type inside an application, some extra pre-processing related to Zero Copy
is done before creating the endpoints and setting the listeners. In that extra pre-processing, for non-Zero
Copy types, the NULL listener was incorrectly replaced with a non-null listener object with all its call-
backs set to NULL. Then, Connext was not checking if the callbacks were NULL before calling them

4.13.7 Memory was read after it was freed by deleting a Topic with local logging level enabled

(the listener consistency is checked before the incorrect replacement; therefore, at that point, it was
assumed the listener object was consistent).

This issue is fixed. The listener is no longer replaced with an invalid listener object, and Connext will
always check if the callbacks are NULL before calling them.

[RTI Issue ID CORE-13151]

4.13.7 Memory was read after it was freed by deleting a Topic with local logging
level enabled

If the local logging level was enabled while deleting a topic, Connext would use recently freed memory
from the deleted Topic to print a log message. Using the recently freed memory could cause a crash if
local logging was enabled. A log message is now printed immediately before the Topic is deleted, so
the possibility of using freed memory is eliminated.

[RTI Issue ID CORE-13226]

4.13.8 Possible segmentation fault when disabling loopback interface

When a previously enabled loopback interface on a host computer was disabled, a segmentation fault
could occur. The handling of loopback interfaces has been redesigned to remove this possibility.

[RTI Issue ID CORE-13228]

4.13.9 Segmentation fault could occur if creation of DataReader failed

In some cases, a segmentation fault would occur if the creation of a DataReader failed. This problem
has been fixed.

[RTI Issue ID CORE-13387]

4.13.10 Potential crash when DomainParticipant deleted after creating
DataWriter with automatic liveliness kind

There was a small possibility of a crash occurring when the DomainParticipant was deleted imme-
diately after creating a DataWriter with an AUTOMATIC_LIVELINESS_QOS kind in the
LIVELINESS QoS policy. This problem has been resolved.

[RTI Issue ID CORE-13524]

4.13.11 Possible crash on TCP transport when large number of file descriptors
were open

A Connext application that used the TCP transport and was built using _FORTIFY_SOURCE, which
is set by default by some operating systems, could crash if one of the sockets for TCP had a file

35

4.13.12 Application using Monitoring Libraries may have produced segmentation fault during

36

descriptor higher than FD_SETSIZE (1024). This issue has been fixed. Now, Connext overwrites the
value of FD_SETSIZE, allowing an application using the TCP transport to open up to 32768 file
descriptors, except on Android, where it is not possible to overwrite this value.

[RTI Issue ID COREPLG-644]

4.13.12 Application using Monitoring Libraries may have produced
segmentation fault during DataReader creation

In 6.0.x releases and above, an application using the Monitoring Library may have produced a seg-
mentation fault during DataReader creation. The issue was very rare and only occurred if a
DataReader received a sample immediately after being enabled. This issue has been fixed.

[RTI Issue ID MONITOR-429]

4.13.13 Possible segmentation fault when using Monitoring Library

When using monitoring libraries, a rare race condition may have led to a segmentation fault. This issue
was more likely to occur if the Connext application using the monitoring libraries created and deleted
entities often. This problem has been resolved.

Note: This problem was reported as fixed in MONITOR-252, in release 6.0.1; however, that fix did
not apply to Publishers and Subscribers. This fix protects applications when frequently creating and
deleting Publisher or Subscriber entities as well.

[RTI Issue ID MONITOR-516]

4.14 Other Fixes

4.14.1 Error sending batch when batch size exceeded transport MTU

A DataWriter configured to use batching may have failed to send a batch to the destination addresses
associated with a transport (e.g, UDPv4) if the batch size exceeded the message_size_max (MTU) of
the transport.

This problem has been resolved. Now, the batch is automatically flushed when exceeding the minimum
message_size_max across all installed transports.

[RTI Issue ID CORE-2639]

4.14.2 Broken communication when DataWriter with transport priority
discovered DataReader with multicast receive address

If a DataWriter that had a non-default DataWriterQos.transport_priority value set discovered a
DataReader with a multicast receive address, the DataWriter and any other DataWriters within the
same participant were not able to send any traffic over unicast. This could cause communication

4.14.3 Potential hang upon SIGSEGV signal from a Connext application

failures in a number of different scenarios, including a broken reliability protocol due to the inability to
send heartbeats over unicast or the inability to communicate with other DataReaders that have not been
configured to use a multicast receive address.

This issue was introduced in 6.1.0. This issue has been resolved.

[RTI Issue ID CORE-12772]

4.14.3 Potential hang upon SIGSEGV signal from a Connext application

For debuggability purposes, Connext applications have the ability to log a backtrace when a SIGSEGV
signal is triggered.

In previous releases, this feature may have triggered a hang during the logging of the backtrace. In this
release, we address this issue by disabling the logging of the backtrace in release libraries (but still
keeping it enabled for debug libraries).

This default behavior can be modified by setting a new participant-level property, dds.-
participant.enable_backtrace_upon_sigsegv. The accepted values for this new property are: "auto"
for the default behavior (backtrace only enabled in debug libraries), "true" for enabling the logging of
the backtrace, and "false" for disabling it.

Note: This property takes effect upon the creation of the first DomainParticipant within a process. Con-
sequently, if a SIGSEGV signal is received before the creation of the first DomainParticipant, the
default behavior will be applied (backtrace enabled in debug libraries and disabled in release libraries).

[RTI Issue ID CORE-12794]

4.14.4 No more than 100 asynchronous publisher threads could be created

A change to the thread naming convention inadvertently limited the number of asynchronous publisher
threads to 100. The limit is now 65,536. These limits also apply to receive threads, asynchronous wait-
set threads, and persistence service threads.

[RTI Issue ID CORE-12874]

4.14.5 Potential memory leak when creation of any of the built-in discovery
plugins failed

The first time a DomainParticipant is created in an application, some memory is allocated globally for
each of the builtin discovery plugins (SPDP and SEDP) enabled for that DomainParticipant. This
global memory is released when finalizing the DomainParticipantFactory instance.

However, if there was a failure in the creation of any of the builtin discovery plugins during the
DomainParticipant creation, the DomainParticipantFactory was not notified properly that this global
memory was allocated. Therefore, finalizing the DomainParticipantFactory instance did not release the
memory, causing a leak.

37

4.14.6 Samples could be lost using group order access or collaborative DataWriters

38

This problem is fixed. Finalizing the DomainParticipantFactory instance always releases the memory if
it was previously allocated, regardless of whether or not a failure occurred.

[RTI Issue ID CORE-12882]

4.14.6 Samples could be lost using group order access or collaborative
DataWriters

There was a possibility of DataReader queue corruption, when using group order access or col-
laborative DataWriters, that may have provoked the DataReader to stop receiving samples. The pos-
sibility was very small and may have occurred randomly since it was caused by an uninitialized flag.

[RTI Issue ID CORE-13153]

4.14.7 Unexpected precondition error while creating a DomainParticipant with
debugging libraries using fast database cleanup period

You may have seen the following precondition error while creating a DomainParticipant with debug-
ging libraries if participant_qos.database.cleanup_period was updated to a small value.
FATAL rCo96144####Dtb Mx0D:/rti/jenkins/workspace/connextdds_ci_fastbuild-debug_
develop/pres.1.0/srcC/participant/Participant.c:3102:RTI0x200003b:!precondition: "me->_
service == ((void *)0)"

Release libraries did not have this issue.

This problem has been fixed.

[RTI Issue ID CORE-13204]

4.14.8 Release 6.1.2 was not FACE compliant

The Connext 6.1.2 release was not FACE compliant due to usage of the realpath system call. This prob-
lem has been resolved.

[RTI Issue ID CORE-13340]

4.14.9 Problems visualizing participants using
Generic.MinimalMemoryFootprint profile with Admin Console

RTI Admin Console could not correctly visualize DomainParticipants using the Gen-
eric.MinimalMemoryFootprint profile. Some of the information, such as process ID and host name,
was invalid. This problem has been fixed.

[RTI Issue ID CORE-13509]

4.14.10 Using dh_param_files leaked memory

4.14.10 Using dh_param_files leaked memory

Using the property tls.cipher.dh_param_files leaked memory when deleting the DomainParticipant. A
memory checking tool, such as valgrind, would have reported the leak in the OpenSSL function PEM_
read_bio_DHparams, which is called by the RTI function RTITLS_tmp_dhparam_callback. This
problem only affected applications using OpenSSL 1.0.2 or applications communicating with applic-
ations using OpenSSL 1.0.2. For example, TLS Support 5.3 uses OpenSSL 1.0.2, but version 7.0.0 of
TLS Support could still communicate with version 5.3, so the leak could also happen in version 7.0.0.

This problem has been fixed; memory will no longer be leaked in this scenario. For example, if TLS
Support 7.1.0 communicates with an application using OpenSSL 1.0.2, the leak will not occur.

[RTI Issue ID COREPLG-641]

4.14.11 Failure to load a string-based private key leaked memory

If you set the property tls.identity.private_key or tls.identity.rsa_private_key, and you either spe-
cified a wrong or missing value for the property tls.identity.private_key_password or specified a mal-
formed private key, then memory would be leaked upon DomainParticipant creation failure. A memory
checking tool, such as valgrind, would report the leak in the OpenSSL function BIO_new_mem_buf,
which is called by the RTI function RTITLS_context_init.

This problem has been fixed. Memory will no longer be leaked in this scenario.

[RTI Issue ID COREPLG-643]

4.14.12 Incorrect "Supported platforms" documentation section for
FindRTIConnextDDS.cmake

Now the documentation section in the "FindPackage" script (FindRTIConnextDDS.cmake) file listing
the "Supported platforms" matches the RTI Connext Core Libraries Platform Notes.

[RTI Issue ID INSTALL-548]

4.14.13 CONNEXTDDS_ARCH environment variable in FindPackage script was
not picked up correctly

Previously, only the CONNEXTDDS_ARCH CMake variable in the "FindPackage" script
(FindRTIConnextDDS.cmake) could be used to define the Connext official architecture to use. Now,
the environment variable with the same name can be used, too.

[RTI Issue ID INSTALL-691]

39

4.14.14 In FindPackage script, low_bandwidth_edisc imported target library was missing

40

4.14.14 In FindPackage script, low_bandwidth_edisc imported target library
was missing

In the "FindPackage" script (FindRTIConnextDDS.cmake), the low_bandwidth_edisc imported tar-
get library was missing, incorrectly named low_bandwidth_discovery_static. When you tried to link
against low_bandwidth_discovery_static, the script actually linked against the LOW_BANDWIDTH_
EDISC libraries. And you couldn't link against low_bandwidth_edisc because there was no imported
target with that name.

In the following example, the second TARGET should have been called low_bandwidth_edisc:
######################## Low bandwidth plugins #########################

Discovery Static
create_connext_imported_target(

TARGET "low_bandwidth_discovery_static"
VAR "LOW_BANDWIDTH_DISCOVERY_STATIC"
DEPENDENCIES

RTIConnextDDS::c_api
)

EDISC
create_connext_imported_target(

TARGET "low_bandwidth_discovery_static"
VAR "LOW_BANDWIDTH_EDISC"
DEPENDENCIES

RTIConnextDDS::c_api
)

This problem has been fixed.

[RTI Issue ID INSTALL-719]

4.14.15 Segmentation fault when mixing build types in applications linked
against libraries in "Find Package" Cmake script

Mixing Release and Debug build types in applications linked against Connext libraries in the "Find
Package" script (FindRTIConnextDDS.cmake) could lead to undesired behaviors like double-freeing
pointers, once for the Debug symbol and once for the Release symbol, and in the end causing the applic-
ation to abort.

The new CONNEXT_LIBS_BUILD_TYPE CMake variable has been added to control the Connext lib-
raries build type (Release/Debug). This variable will allow three values: Auto, Release, and Debug.

By default (the Auto value), FindRTIConnextDDS.cmake will populate the IMPORTED_
LOCATION_DEBUG and IMPORTED_LOCATION_RELEASE properties of all the Connext impor-
ted target libraries. This means that the Connext libraries will be provided in the same build type as the
global build (specified by the CMAKE_BUILD_TYPE value).

4.14.15 Segmentation fault when mixing build types in applications linked against libraries in "Find

If you provide Release or Debug values to the CONNEXT_LIBS_BUILD_TYPE variable, the script
will force populating only the IMPORTED_LOCATION property of the Connext imported target lib-
raries. So, regardless of the CMAKE_BUILD_TYPE value, the Connext libraries will have the build
type given in the CONNEXT_LIBS_BUILD_TYPE variable.

[RTI Issue ID INSTALL-793]

41

Chapter 5 What's Fixed in 7.0.0
This section describes bugs fixed in Connext 7.0.0. These fixes have been made since 6.1.1 was
released.

5.1 Fixes Related to Callbacks and Waitsets

5.1.1 Unsafe combinations of masks and Listeners may have led to
segmentation fault

When entities are created, a Listener may be provided by the user to receive calls when spe-
cified events occur. The events of interest are set using a StatusKind mask. If an event set in
the StatusKind mask occurs, but no callback function has been assigned by the user, a null
pointer dereference will occur. Connext checks for many of these errors and prevents the cre-
ation of entities when this error is present. However, some of these cases were not checked,
allowing unsafe combinations of masks and Listeners to be used. This problem has been
resolved. The new, stricter checking may cause entity creation errors when no errors were detec-
ted before.

[RTI Issue ID CORE-12610]

5.1.2 Failure calling DDS_Subscriber::get_datareaders in DDS_
SubscriberListener::on_data_on_readers callback implementation

You may have seen the following errors when invoking DDS_Subscriber::get_datareaders()
within the implementation of the DDS_SubscriberListener::on_data_on_readers() callback:
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS]
REDACursor_modifyReadWriteArea:!freeze read write area
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS]
PRESPsReaderGroup_getEA:!modify pres psReaderGroup
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS]
PRESPsReaderGroup_lock:!take semaphore
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS]
PRESPsReaderGroup_beginGetPsReaders:!get PRESPsReaderGroup_lock

42

5.1.3 DDS_SubscriberListener::on_data_on_readers on a participant or subscriber not called when

43

ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS}
DDS_Subscriber_begin_get_datareadersI:ERROR: Failed to get PRESPsReaderGroup_
beginGetPsReaders
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS]
DDS_Subscriber_get_datareaders:ERROR: Failed to get DDS_Subscriber_begin_get_datareaders

In addition, when using the Traditional C++ API and the legacy .NET API, the application generated a
segmentation fault after printing the error. The problem occurred only when:

l You installed a Listener on the Subscriber using the API DDS_Subscriber::set_listener() after
the Subscriber was enabled.

l Or, you installed a Listener on the DomainParticipant using the API DDS_Participant::set_
listener() after the DomainParticipant was enabled. This problem has been resolved.

[RTI Issue ID CORE-12316]

5.1.3 DDS_SubscriberListener::on_data_on_readers on a participant or
subscriber not called when Listener installed after the entity is enabled

The callback DDS_SubscriberListener::on_data_on_readers() was not invoked when there was data
available, if these two conditions were met:

l The Listener callback on_data_on_readers() was installed after the Subscriber or DomainPar-
ticipant implementing it was enabled.

l The Listener callback on_data_available() was not installed at any level (DomainParticipant,
Publisher, or DataReader).

This problem has been resolved.

[RTI Issue ID CORE-12338]

5.1.4 Unable to assign callback function for on_sample_removed event using
Modern C++ API

You may have been unable to assign a callback function for the on_sample_removed event using the
Modern C++ API. Support for this callback has been added to the Modern C++ API in this release.

[RTI Issue ID CORE-12646]

5.1.5 Using certain callbacks at DomainParticipant or Publisher level may have
led to segmentation fault

Handlers were not correctly implemented for the on_instance_replaced(), on_sample_removed(), on_
application_acknowledgment(), and on_service_request_accepted() callbacks at the

5.2 Fixes Related to Discovery

DomainParticipant and Publisher levels. This could have led to segmentation faults when the cor-
responding events were enabled. This problem has been resolved.

[RTI Issue ID CORE-12647]

5.2 Fixes Related to Discovery

5.2.1 Unexpected memory growth when DataReader could not be matched with
DataWriter due to unexpected error condition

Failing to match a DataReader with a DataWriter because of unexpected error conditions may have led
to unexpected memory growth, because Connext may not have cleaned up the resources associated with
the remote match completely. This problem has been resolved.

[RTI Issue ID CORE-8257]

5.2.2 Possible crash upon discovery of applications with unreachable locators

If an application used DDS_STATUS_MASK_ALL for a DomainParticipant or Publisher Listener
and an unreachable locator was discovered, the application enabling the Listener may have crashed. An
unreachable locator occurs most commonly when a Subscribing application uses a transport that the
Publishing application does not use. For example, the Publishing application could use UDPv4 and the
Subscribing application could use both UDPv4 and UDPv6.

More rarely, a crash may have occurred when a pre-5.2.0 Subscribing application used the shared
memory transport and a 5.2.0+ Publishing application was not using the UDPv6 transport. A log mes-
sage was generated if both participants were running on the same machine and this condition occurred.
This condition was caused by a change to the way that transports are identified starting in version 5.2.0.

[RTI Issue ID CORE-11818]

5.2.3 Communication problems with applications using shared memory on
INTEGRITY systems

If an application on an INTEGRITY platform used the shared-memory transport, the Connext libraries
sometimes incorrectly assessed that a shared-memory segment was stale and could be reclaimed, when
in fact it was not stale. This situation caused problems with communication between DomainPar-
ticipants, since information could be sent to a shared-memory segment that did not get dequeued by the
intended recipient.

You may have seen error messages like these and the application may have hung while deleting the
DomainParticipant:
<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS WaitForSemaphore()
failure, error 0XD: ObjectClosed
<Target Output> ERROR NDDS_Transport_Shmem_receive_rEA:!take semaphore

44

5.2.4 Types containing Typedefs were sent without the typedefs in discovery when using DynamicData

45

<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS WaitForSemaphore()
failure, error 0X9: ObjectIsUseless

This problem has been resolved.

Incompatibility with 6.1.1 and prior releases:
The fix for this issue involved some changes that make shared-memory segments in applications
incompatible with those in 6.1.1 (and earlier) versions.

[RTI Issue ID CORE-12097]

5.2.4 Types containing Typedefs were sent without the typedefs in discovery
when using DynamicData

When an application was using a DynamicDataReader or DynamicDataWriter and using a type that con-
tained a typedef, the type that was sent during endpoint discovery for that endpoint did not contain the
typedef. While this did not cause any mismatches or communication failure, it did cause a number of
issues that may have been noticeable depending on what other products you may have also been using.

See 5.2.5 Unbounded memory growth in Spy when discovering multiple endpoints with the same Top-
ics and types below for details about the specific issues that you may have encountered. The RTI Admin
Console Release Notes and RTI Routing Service Release Notes also have related information. (See
ADMINCONSOLE-997 and ROUTING-971, respectively.)

This issue has been resolved, meaning that the exact type definition that is registered with the par-
ticipant, containing typedefs, is sent during discovery. This is a change in behavior from 6.0.0-based
applications, which sent the type definitions without the typedef information.

[RTI Issue ID CORE-12107]

5.2.5 Unbounded memory growth in Spy when discovering multiple endpoints
with the same Topics and types

Each time DDS Spy discovered an endpoint, it unnecessarily made a copy of the TypeCode that was
associated with the endpoint's Topic, leading to unbounded memory growth. This issue has been fixed.

[RTI Issue ID CORE-12136]

5.2.6 Unnecessary discovery traffic related to IP mobility events on interfaces
irrelevant to the transport

When there is a change on a network interface (an IP mobility event), a Connext application will update
and resend its discovery information to include these changes. The transport can consider a change on
an interface irrelevant (for example, changes on interfaces in the deny_interfaces_list of the transport).
In this case, the new discovery messages are exactly the same as announced before, generating unne-
cessary discovery traffic that could affect the performance of the application.

5.3 Fixes Related to Transports

This problem has been fixed. Now Connext only updates and resends its discovery information if there
was a change on an interface relevant to the transport.

[RTI Issue ID CORE-12664]

5.3 Fixes Related to Transports

5.3.1 Communication problems with applications using shared memory on
INTEGRITY systems

If an application on an INTEGRITY platform used the shared-memory transport, the Connext libraries
sometimes incorrectly assessed that a shared-memory segment was stale and could be reclaimed, when
in fact it was not stale.

This situation caused problems with communication between DomainParticipants, since information
could be sent to a shared-memory segment that did not get dequeued by the intended recipient.

You may have seen error messages like these and the application may have hung while deleting the
DomainParticipant:
<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS WaitForSemaphore()
failure, error 0XD: ObjectClosed
<Target Output> ERROR NDDS_Transport_Shmem_receive_rEA:!take semaphore
<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS WaitForSemaphore()
failure, error 0X9: ObjectIsUseless

This problem has been resolved.

Incompatibility with 6.1.1 and prior releases:
The fix for this issue involved some changes that make the shared memory segments
incompatible with those in 6.1.1 (and earlier) versions.

[RTI Issue ID CORE-12097]

5.3.2 Race condition could cause unbounded memory growth in TCP Transport
Plugin

Due to a race condition, the TCP Transport Plugin may have leaked memory when creating a new con-
nection if the creation happened at the same time the DomainParticipant was being destroyed. The
cause of the leak was the TCP Transport Plugin reallocating memory that was already released by the
DomainParticipant. The race condition was unlikely to happen. However, in a system that frequently
creates and destroys entities (and, therefore, TCP connections) and that runs for long enough, it may
have lead to unbounded memory growth. The issue has been resolved.

[RTI Issue ID COREPLG-618]

46

5.4 Fixes Related to Filtering and TopicQuery

47

5.4 Fixes Related to Filtering and TopicQuery

5.4.1 Unnecessary repair traffic for DataWriters using TopicQueries and
asynchronous publishing

Samples that are sent in response to a TopicQuery are directed to the DataReader that created that Top-
icQuery. This means that those samples are only sent to the DataReader that made the request and have
that DataReader's GUID attached to each sample in the sample's metadata. All other DataReaders
receive GAP protocol messages, indicating to them that a given sequence number or set of sequence
numbers is not meant for them.

Due to a defect, when a DataReader sent a NACK message requesting some TopicQuery samples to be
repaired, if the requested sequence numbers included samples that were meant for a different
DataReader, the DataWriter did not filter these samples and resend a GAP message. Instead, the
DataWriter sent the DataReader samples that were not meant for it and the DataReader had to filter
these samples out itself. As a result, the DataReaders may have received samples that should have been
filtered out on the DataWriter side, leading to an increase in network traffic.

The problem only affected repair traffic. When a sample was filtered out by the DataWriter because it
was directed to a different DataReader, the DataWriter sent a GAP protocol message to the
DataReader. If the GAP message was lost, the DataReader NACKed for the sample; instead of sending
a new GAP message, the DataWriter sent the sample. This problem has been resolved.

[RTI Issue ID CORE-12589]

5.4.2 Connext application using filtering feature may have crashed after running
out of memory

In release 6.1.1.2, a Connext application using filtering features (that is, ContentFilteredTopic,
QueryConditions, or TopicQuery) may have crashed after running out of memory. This problem has
been resolved.

[RTI Issue ID CORE-12661]

5.4.3 Unnecessary sample filtering on a DataReader for samples already
filtered by a DataWriter

When doing writer-side filtering, a late-joining DataReader using a ContentFilteredTopic may have
spent unnecessary CPU cycles evaluating samples that pass the ContentFilteredTopic's expression.
When using writer-side filtering, the filter evaluation is done by the DataWriter and it should not be
necessary for the DataReader to do it again on samples that pass the filter expression. This problem,
which only occurred for late-joining DataReaders, has been fixed.

[RTI Issue ID CORE-11084]

5.4.4 Creation of a ContentFilteredTopic or reception of TopicQuery samples may have taken long time

5.4.4 Creation of a ContentFilteredTopic or reception of TopicQuery samples
may have taken long time for complex types

The creation of a ContentFilteredTopic or reception of TopicQuery samples, may have taken a long
time for complex types. This issue has been resolved.

[RTI Issue ID CORE-12179]

5.4.5 Continuous creation of TopicQueries may have led to unnecessary
memory fragmentation in OS memory allocator

In releases 6.0.x and 6.1.x, the continuous creation of TopicQueries may have led to unnecessary
memory fragmentation in the OS memory allocator of the applications that receive the TopicQuery
requests and dispatch responses. This issue may have resulted in an unexpected increase of the resident
set size (RSS) memory of the application receiving and dispatching the TopicQueries compared to pre-
vious Connext releases. This problem has been fixed.

[RTI Issue ID CORE-12352]

5.4.6 rti::topic::find_registered_content_filters led to infinite recursion

The function rti::topic::find_registered_content_filters() was incorrectly implemented and would
lead to infinite recursion and stack overflow in any application that called it. This problem has been
resolved. This function returns the names of previously registered custom content filters. It is a little-
used feature and does not affect the commonly used SQL content filter.

[RTI Issue ID CORE-12512]

5.4.7 Incorrect results for Unions when using DynamicData or Content Filters

When using a DynamicDataReader, samples containing a union may have had incorrect or invalid data
after deserialization if the DataReader's type contained members that were not present in the
DataWriter's type and those members had non-zero default values.

When using content filters, the filter results may have been incorrect if the type contained a union and
the filter expression filtered on fields within the union that were present in the DataReader's type but
were not present in the DataWriter's type and those members had non-zero default values.

For example, see this DataWriterType:
struct innerStructPub {

short shortMember;
};
@mutable
union ComplexUnionTypePub switch(long) {

case 0:
long longMember;

case 1:

48

5.4.8 Samples may have been unnecessarily filtered by Connext DataReader when DataWriter was

49

innerStructPub structMember;
};

and this DataReaderType:
struct innerStructSub {

short shortMember;
@default(5) long longMemberWithDefault;

};
@mutable
union ComplexUnionTypeSub switch(long) {

case 0:
long longMember;

case 1:
innerStructSub structMember;

};

In the above types, the member longMemberWithDefault is only present in the DataReader's type and
has a default value of 5, so any sample that is received from the DataWriter should have this value set
to 5 when read from the DataReader's queue. Instead, the value was incorrectly 0 when using Dynam-
icData.

In addition, if this member was used as part of a content filter expression, a DataReader always used
the value of 0 instead of 5 when evaluating a sample from a DataWriter using the DataWriterType
which could lead to incorrect filter results. These issues have been fixed.

[RTI Issue ID CORE-12517]

5.4.8 Samples may have been unnecessarily filtered by Connext DataReader
when DataWriter was from different DDS vendor

A Connext DataReader using a ContentFilteredTopic unnecessarily evaluated its filter on samples com-
ing from a different vendor DataWriter that already marked the samples as passing the DataReader fil-
ter. This issue may have led to an increase in CPU utilization on the DataReader side, but it did not
affect functional correctness or bandwidth utilization.

The problem occurred because Connext was not compliant with the way a filter signature is calculated
according to the Section 9.6.4.1, Content filter info (PID_CONTENT_FILTER_INFO), in the Real-time
Publish-Subscribe Protocol DDS Interoperability Wire Protocol (DDSI-RTPSTM) Specification version
2.5).

This problem has been resolved.

[RTI Issue ID CORE-12531]

https://www.omg.org/spec/DDSI-RTPS/2.5/PDF
https://www.omg.org/spec/DDSI-RTPS/2.5/PDF
https://www.omg.org/spec/DDSI-RTPS/2.5/PDF

5.5 Fixes Related to Group Presentation

5.5 Fixes Related to Group Presentation

5.5.1 Application may not have received samples of coherent set when using
GROUP access scope and TRANSIENT_LOCAL durability

An application using GROUP access scope and TRANSIENT_LOCAL (or higher) durability may not
have received the samples for some coherent sets, or it may have received the samples with delay.

Assume a coherent set 'CS1' published by a set of DataWriters that are part of the same group. This
coherent set was not provided to the application if all the following conditions were true:

1. The DataReaders receiving 'CS1' matched with the DataWriters publishing 'CS1' after the coher-
ent set was published.

2. 'CS1' did not contain samples for some of the DataWriters in the group, or the samples were
removed after applying the Lifespan QoS Policy. If 'CS1' contained at least one sample per
DataWriter in the group, this problem did not occur.

3. The application did not publish a new coherent set after 'CS1'; or, if it did, the new coherent set
did not contain samples from at least one of the DataWriters that were missing samples from
'CS1'.

If the third condition was not met, then the delivery of the coherent set would be delayed instead of the
coherent set not being provided.

[RTI Issue ID CORE-12350]

5.5.2 Application may stop receiving samples from DataReaders using
GROUP_PRESENTATION_QOS

An application may have stopped receiving samples from DataReaders that were part of a Subscriber
using GROUP_PRESENTATION_QOS under the following scenario:

l The Publisher's group contained at least one keyed DataWriter and one unkeyed DataWriter.
l The Subscriber's group contained only keyed DataReaders or unkeyed DataReaders, but not
both.

This problem has been resolved.

[RTI Issue ID CORE-12161]

50

5.5.3 Segmentation fault when using GROUP_PRESENTATION_QOS or HIGHEST_OFFERED_

51

5.5.3 Segmentation fault when using GROUP_PRESENTATION_QOS or
HIGHEST_OFFERED_PRESENTATION_QOS and setting filter_
redundant_samples to FALSE on DataReader

An application generated a segmentation fault if it created a DataReader with the following valid con-
figuration:

l subscriber_qos.presentation.access_scope = DDS_GROUP_PRESENTATION_QOS or
DDS_HIGHEST_OFFERED_PRESENTATION_QOS

l datareader_qos.availability.max_data_availability_waiting_time = DDS_DURATION_
ZERO

l datareader_qos.availability.max_endpoint_availability_waiting_time = DDS_DURATION_
ZERO

l datareader_qos.property contained dds.data_reader.state.filter_redundant_samples with the
value “false”

This problem has been resolved by allowing the DataReader to be created.

[RTI Issue ID CORE-12771]

5.6 Fixes Related to XML Configuration

5.6.1 Parsing error loading XML configuration file containing a const whose
expression refers to an enumerator

Connext failed to load an XML configuration file containing a const whose expression referred to an
enumerator. For example:
<enum name="Enum1">

<enumerator name="Enumerator1” value=”1”/>
</enum>
<const name="Const1" type="int32" value="Enumerator1+1"/>

Loading this XML failed with an error similar to this:
DDS_XMLConst_initialize:Parse error at line 10: type 'Enum1' is not typedef

This problem has been fixed.

[RTI Issue ID CORE-5553]

5.6.2 Discrepancy between range defined by schema and that defined by API

There were discrepancies between the ranges defined by the schema files and those defined by the API
for certain elements. This problem has been resolved. Now, validating an XML against the XSD should
not fail when setting a value that is inside the range as defined by the API.

5.6.3 Parsing error loading XML configuration file with enum type containing enumerator whose value

[RTI Issue ID CORE-7099]

5.6.3 Parsing error loading XML configuration file with enum type containing
enumerator whose value was an expression referring to a const

Connext failed to load an XML configuration file with an enum type containing an enumerator whose
value was an expression referring to a const. For example:
<const name="Const1" type="int32" value="10"/>
<enum name="Enum1">

<enumerator name="Enumerator1” value=”Const1”/>
</enum>

Loading this XML failed with an error similar to this:
DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

[RTI Issue ID CORE-10060]

5.6.4 Parsing error loading an XML configuration file with enum type containing
enumerator whose value was an expression

Connext failed to load an XML configuration file with an enum type containing an enumerator whose
value was an expression. For example:
<enum name="Enum1">

<enumerator name="Enumerator1” value=”1 + 1”/>
</enum>

Loading this XML failed with an error similar to this:
DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

[RTI Issue ID CORE-10269]

5.6.5 Type limits not checked for some attributes of XML types definition

When XML was used for defining types (for example, when using DynamicData), type limits were not
checked for some attributes. If the specified value for any of the attributes was too large or too small, a
variable overflow occurred, leading to undefined behavior.

This problem is fixed. Type limits are checked, throwing a meaningful error when they are not met.

The affected attributes were as follows:

52

5.6.6 Removed some elements in the XSD that were not supported internally but could be defined in

53

l value in union's caseDiscriminator. Valid values should be between -2147483648 and
2147483647.

l sequenceMaxLength. Valid values should be between 0 and 2147483647. -1 (unbounded) is
also allowed.

l stringMaxLength. Valid values should be between 0 and 2147483647. -1 (unbounded) is also
allowed.

l arrayDimensions. Valid values should be between 1 and 4294967295.

[RTI Issue ID CORE-12181]

5.6.6 Removed some elements in the XSD that were not supported internally
but could be defined in XML

The following elements were configurable in XML although internally they are not supported:

Publisher QoS:

l presentation.drop_incomplete_coherent_set
l asynchronous_publisher.thread.cpu_list
l asynchronous_publisher.thread.cpu_rotation
l asynchronous_publisher.asynchronous_batch_thread.cpu_list
l asynchronous_publisher.asynchronous_batch_thread.cpu_rotation
l asynchronous_publisher.topic_query_publication_thread.cpu_list
l asynchronous_publisher.topic_query_publication_thread.cpu_rotation

Participant QoS:

l discovery_config.publication_reader.min_app_ack_response_keep_duration
l discovery_config.subscription_reader.min_app_ack_response_keep_duration
l discovery_config.asynchronous_publisher.thread.cpu_list
l discovery_config.asynchronous_publisher.thread.cpu_rotation
l discovery_config.asynchronous_publisher.disable_asynchronous_batch
l discovery_config.asynchronous_publisher.asynchronous_batch_thread
l discovery_config.asynchronous_publisher.disable_topic_query_publication
l discovery_config.asynchronous_publisher.topic_query_publication_thread

5.6.7 Builtin Discovery Plugins was not treated as a mask by the XSD file

EventQosPolicy:

l thread.cpu_list
l thread.cpu_rotation

DatabaseQosPolicy:

l thread.cpu_list
l thread.cpu_rotation

Those elements have been removed from the XSD and are no longer configurable in XML.

[RTI Issue ID CORE-12366]

5.6.7 Builtin Discovery Plugins was not treated as a mask by the XSD file

Because of a bug in the XML Schema Definition (XSD), if you specified more than one value for the
DiscoveryConfigQosPolicy::builtin_discovery_plugins mask, your XML editor reported that the
expression was not valid when it should have been.

For example, according to the XSD, this expression was not allowed:
<domain_participant_qos>

<discovery_config>
<builtin_discovery_plugins>SPDP|SEDP</builtin_discovery_plugins>

</discovery_config>
</domain_participant_qos>

This issue has been fixed, and the XSD now accepts expressions containing more than one Builtin Dis-
covery Plugin. This issue occurred only while editing XML files because of the schema. If you ran an
application with the above configuration, it did not fail.

[RTI Issue ID CORE-12740]

5.6.8 Parsing error loading an XML configuration file with an enum type
containing an enumerator whose value was an expression referring to
another enumerator

Connext failed to load an XML configuration file with an enum type containing an enumerator whose
value was an expression using another enumerator. For example:
<enum name="Enum1">

<enumerator name="Enumerator1” value=”0”/>
</enum>

<enum name="Enum2">

54

5.7 Fixes Related to Vulnerabilities

55

<enumerator name="Enumerator2” value=”Enumerator1”/>
</enum>

Loading this XML would have failed with an error similar to this:
DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

[RTI Issue ID CORE-12781]

5.7 Fixes Related to Vulnerabilities

5.7.1 Fixes related to Connext

This release fixes some potential vulnerabilities, including RTI Issue IDs CORE-12510 and CORE-
12752.

5.7.2 Fixes related to third-party dependencies

This release fixes some potential vulnerabilities related to third-party dependencies, described below.

5.7.2.1 Potential crash or leak of sensitive information in Core Libraries XML parser due to
vulnerabilities in Expat

The Core Libraries XML parser had a third-party dependency on Expat version 2.4.4, which is known
to be affected by a number of publicly disclosed vulnerabilities.

These vulnerabilities have been fixed by upgrading Expat to the latest stable version, 2.4.8. See "Third-
Party Software Upgrades" in RTI Connext Core Libraries What's New in 7.1.0.

The impact on Connext applications of using the previous version varied depending on your Connext
application configuration:

l With Connext Secure (enabling RTPS protection):

l Exploitable through a compromised local file system containing malicious XML/DTD
files.

l Could lead to arbitrary code execution.
l CVSS v3.1 Score: 8.4 HIGH
l CVSS v3.1 Vector: AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

l Without Connext Secure:

l Exploitable through a compromised local file system containing malicious XML/DTD
files.

../whats_new/RTI_ConnextDDS_CoreLibraries_WhatsNew.pdf
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1

5.8 Fixes Related to APIs

l Remotely exploitable through malicious RTPS messages.
l Could lead to arbitrary code execution.
l CVSS v3.1 Score: 9.8 CRITICAL
l CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

[RTI Issue ID CORE-12872]

5.7.2.2 Potential memory corruption when using Zlib compression due to vulnerability in Zlib

The user-data compression feature in the Core Libraries had a third-party dependency on Zlib version
1.2.11, which is known to be affected by a publicly disclosed vulnerability.

This vulnerability has been fixed by upgrading Zlib to the latest stable version, 1.2.12. See "Third-Party
Software Upgrades" in RTI Connext Core Libraries What's New in 7.1.0.

The impacts on Connext applications of using the previous version were as follows:

l Exploitable by triggering the compression of a sample containing a malicious payload.
l The application could crash.
l CVSS v3.1 Score: 7.5 HIGH
l CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

[RTI Issue ID CORE-12877]

5.8 Fixes Related to APIs

5.8.1 Input parameters to Property and DataTag helper functions do not have
"const"

In the C API, the following functions were incorrectly missing a const before the policy parameter:

l DDS_PropertyQosPolicyHelper_lookup_property()
l DDS_PropertyQosPolicyHelper_lookup_property_with_prefix()
l DDS_PropertyQosPolicyHelper_get_properties()
l DDS_DataTagQosPolicyHelper_lookup_tag()

This problem has been fixed. The policies are now "const" because these functions do not change the
policy.

[RTI Issue ID CORE-3166]

56

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
../whats_new/RTI_ConnextDDS_CoreLibraries_WhatsNew.pdf
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H&version=3.1

5.8.2 Standard 64-bit integer types are now supported (Modern C++ API)

57

5.8.2 Standard 64-bit integer types are now supported (Modern C++ API)

Previous releases of the Modern C++ API had platform-specific definitions for 64-bit integers, defined
in rti::core::int64 and rti::core::uint64. This was required to support certain pre-C++11 platforms.

This release redefines those two types as std::int64_t and std::uint64_t.

[RTI Issue ID CORE-10913]

5.8.3 Assigning DataWriter and DataReaderQos from a TopicQos caused a
build error

DataWriterQos and DataReaderQos could not be constructed from a TopicQos assignment. You may
have seen a compiler error such as:
error: conversion from 'TEntityQos<rti::topic::qos::TopicQosImpl>' to
non-scalar type 'TEntityQos<rti::pub::qos::DataWriterQosImpl>' requested.

This problem has been resolved. Now this type of assignment works correctly. Any fields that are not
in the TopicQos will use the default for the DataWriterQos or DataReaderQos.

[RTI Issue ID CORE-11185]

5.8.4 Copy of SampleInfo::coherent_set_info field was not supported

SampleInfo::coherent_set_info was not available when using take/read operations that did not loan
the samples. The SampleInfo::coherent_set_info field was always set to NULL when you called the
take/read operations that did not loan the samples. To get the coherent_set_info value, you had to use
the read/take operations that loan the data.

In addition, the copy constructor and assignment operator in the Traditional C++ and Modern C++
APIs did not copy the SampleInfo::coherent_set_info field. This field was always set to NULL; it was
your responsibility to make the copy and handle memory allocation and deletion for this field.

This problem has been fixed. If you work with the C API, starting with this release you will have to use
the following functions to manipulate SampleInfo structures:

l DDS_SampleInfo_initialize()
l DDS_SampleInfo_copy()
l DDS_SampleInfo_finalize()

[RTI Issue ID CORE-11213]

5.8.5 In XML-based applications, generated IDL types did not take precedence over XML

5.8.5 In XML-based applications, generated IDL types did not take precedence
over XML DynamicTypes (C# API)

In the C# API in previous releases, if a type was declared in XML as a dynamic type and also gen-
erated and registered by the application, the XML dynamic type took precedence. This led to the
DataReaders or DataWriters using DynamicData instead of the generated C# user class. This behavior
was unintuitive and inconsistent with the other language APIs. It has been resolved.

[RTI Issue ID CORE-11389]

5.8.6 Namespaces ignored when a type was explicitly registered in C# for XML-
based applications

When a type was explicitly registered (this is only necessary to support generated IDL types with
XML-Based Application Creation) as follows:
DomainParticipantFactory.RegisterType<A.B.Foo>()

The registered type name was to set to “Foo” instead of the expected “A::B::Foo”. In some situations,
this may have stopped applications written in other languages to communicate with a C# application, if
the regular algorithm of type matching was disabled.

[RTI Issue ID CORE-12074]

5.8.7 Corruption of LoanedDynamicData object when moved in some situations
(Modern C++ API only)

Given a DynamicData sample, accessing a nested member within another nested member via loan_
value() and then moving the latter may have corrupted the former. For example, given a sample such
that "my_sample.a.b" is a member of a constructed type (struct or union):
DynamicData my_sample(my_dynamic_type);
LoanedDynamicData loan1 = my_sample.loan_value(""a"");
LoanedDynamicData loan2 = loan1.get().loan_value(""b"");
// The following corrupts loan2
LoanedDynamicData loan1_moved = std::move(loan1);

This may have affected applications that explicitly move-constructed a double-nested LoanedDy-
namicData or that otherwise indirectly called the move constructor in this situation (for example, by res-
izing a std::vector of LoanedDynamicData elements).

The LoanedDynamicData's move constructor and move-assignment operators have been fixed.

[RTI Issue ID CORE-12272]

58

5.8.8 Calling DynamicData::set_complex_member with an aliased type failed

59

5.8.8 Calling DynamicData::set_complex_member with an aliased type failed

Calling DynamicData::set_complex_member() with an aliased type failed. For example, given the fol-
lowing types:
struct Foo {
long x;
long y;
};
typedef Foo TypedefFoo;
struct MyType {
Foo my_inner_struct;
TypedefFoo my_typedef_struct;
};

The following code should have worked to set the my_typedef_struct member:
DDS_DynamicData *data = DDS_DynamicData_new(

MyType_get_typecode(),
&DDS_DYNAMIC_DATA_PROPERTY_DEFAULT);
DDS_DynamicData *inner_data = DDS_DynamicData_new(
TypedefFoo_get_typecode(),
&DDS_DYNAMIC_DATA_PROPERTY_DEFAULT);

// This call fails. If the above call used Foo_get_typecode instead then it would work

retcode = DDS_DynamicData_set_complex_member(data, ""my_typedef_struct"", 0, inner_data);
if (retcode != DDS_RETCODE_OK) {

fprintf(stderr, ""_set_complex_member %d\n"", retcode);
return -1;

}

But instead, it failed with these errors:
DDS_DynamicData2_copy: Objects have different types. self type = TypedefFoo, other type =
TypedefFoo
DDS_DynamicData2_finalize_ex: finalizing object bound to a member, automatically unbinding
now.
DDS_DynamicData2_set_complex_member:ERROR: Failed to copy value
DDS_DynamicData2_unbind_complex_member:ERROR: Bad parameter: self has no bound member
DDS_DynamicData2_set_complex_member:!unbind complex member

This issue has been fixed. Now, using either the aliased type (TypedefFoo in our example) or the ori-
ginal type (Foo in our example) works to set a complex member using the DynamicData API.

[RTI Issue ID CORE-12273]

5.8.9 Possible wrong results when adding Time or Duration objects that used
very large numbers

Adding Time or Duration objects could have previously produced wrong results when using very large
numbers. Necessary checks are now in place to ensure that wrong results do not occur.

5.8.10 Java API did not support RtpsReliableReaderProtocol_t.receive_window_size

[RTI Issue ID CORE-12413]

5.8.10 Java API did not support RtpsReliableReaderProtocol_t.receive_
window_size

This QoS setting was ignored by the Java API, and readers were always created with the default value
(256). This problem has been resolved.

[RTI Issue ID CORE-12451]

5.9 Fixes Related to Crashes

5.9.1 Simultaneous deletion of an entity by multiple threads caused a crash
when using Java

When two threads deleted an entity at the same time, in Java, this may have caused a crash with the fol-
lowing backtrace:
#7 0x00007f7c630dad3b in REDAWeakReference_getReferent (reference=0x78,
slNode=0x7f7c4407f988, frOut=0x0, tableWithStartedCursor=0x7f7c6452c000) at
WeakReference.c:144
#8 0x00007f7c630d2ff3 in REDACursor_gotoWeakReference (c=0x7f7c4407f950, fr=0x0, wr=0x78) at
Cursor.c:230
#9 0x00007f7c62d5ed46 in PRESPsService_destroyLocalEndpoint (me=0x7f7c64367cc0,
failReason=0x7f7cb0136fc0, group=0x7f7c64dbb340, endpoint=0x7f7c644f0e88,
worker=0x7f7c44015f70) at PsService.c:2130
#10 0x00007f7c62b6fc26 in PRESParticipant_destroyLocalEndpoint (me=0x7f7c64368a00,
failReason=0x7f7cb0136fc0, group=0x7f7c64dbb340, endpoint=0x7f7c644f0e88,
worker=0x7f7c44015f70) at Participant.c:5882
#11 0x00007f7c636fcc32 in DDS_DataReader_deleteI (reader=0x7f7c644f1070) at
DataReader.c:4250
#12 0x00007f7c6372667e in DDS_Subscriber_delete_datareader (self=0x7f7c64dbb620,
reader=0x7f7c644f1070) at Subscriber.c:1159
#13 0x00007f7c63daf24b in Java_com_rti_dds_subscription_SubscriberImpl_DDS_1Subscriber_
1delete_1datareader (env=0x7f7c781061f8, self_class=0x7f7cb0137148, self=140172244792864,
readerL=140172235575408) at SubscriberImpl.c:790

This issue has been resolved. Now one thread will remove the entity and the other thread will throw an
exception with the error code com.rti.dds.infrastructure.RETCODE_ALREADY_DELETED.

[RTI Issue ID CORE-10768]

5.9.2 DataReader C++ application crashed if it received tampered sample with
unsupported encapsulation ID

If a C++ application with a DataReader received a sample with a tampered or malformed encapsulation
kind, a segmentation fault occurred when the DataReader attempted to deserialize the sample, leading
to an application crash. This problem has been fixed.

[RTI Issue ID CORE-12356]

60

5.9.3 Segmentation fault after calling DomainParticipant::register_durable_subscription with a group

61

5.9.3 Segmentation fault after calling DomainParticipant::register_durable_
subscription with a group containing a long role_name

An application using the API DomainParticipant::register_durable_subscription() may have exper-
ienced a segmentation fault if the role_name of the input group was NULL or had a length greater than
512 bytes. This problem has been fixed.

[RTI Issue ID CORE-12460]

5.9.4 Segmentation fault when application using MultiChannel ran out of
memory

A Connext application using MultiChannel might have produced a segmentation fault if the system ran
out of memory. This problem has been fixed.

[RTI Issue ID CORE-12493]

5.9.5 Application crashed when capturing traffic for a DomainParticipant
created before enabling network capture

To capture network traffic, you must enable this feature before creating the DomainParticipants that
will capture the traffic. Applications not satisfying this requirement crashed when starting, pausing, or
resuming the capture.

This problem has been fixed. Connext will no longer crash in this situation, but will fail and log mes-
sages such as the following:
ERROR NDDS_Utility_start_network_capture_w_params_for_participant:!get network capture
manager for DomainParticipant. Network capture must be enabled before creating the
DomainParticipant

ERROR NDDS_Utility_start_network_capture_for_participant:!network capture could not be
started for the participant

ERROR NDDS_Utility_run_network_capture_operation_for_all_participants:!failed to run network
capture operation for participant

ERROR NDDS_Utility_start_network_capture_w_params:!error starting network capture for all
participants

ERROR NDDS_Utility_start_network_capture:!start network capture for all participants. There
was at least one participant that could not be started

[RTI Issue ID CORE-12511]

5.9.6 Possible crash when writing a sample

Due to an internal error, an application could crash when writing a sample using either a best-effort or
reliable DataWriter. Before the crash, an error message in either of the following functions was printed:

5.9.7 Potential crash during type registration if system ran out of memory

* COMMENDBeWriterService_write
* COMMENDSrWriterService_write

This problem has been resolved.

[RTI Issue ID CORE-12561]

5.9.7 Potential crash during type registration if system ran out of memory

A crash may have occurred during type registration if the application ran out of memory. This problem
has been resolved.

[RTI Issue ID CORE-12734]

5.9.8 Segmentation fault after calling DomainParticipant::delete_durable_
subscription with a group containing a long role_name

An application using the API DomainParticipant::register_durable_subscription() may have exper-
ienced a segmentation fault if the role_name of the input group was NULL or had a length greater than
512 bytes. This problem has been fixed.

[RTI Issue ID CORE-12787]

5.9.9 Potential crash or memory corruption if user application using thread-
specific storage

Starting with release 6.1.0, there was an issue that could lead to a potential crash or memory corruption
if the user application was using thread-specific storage.

In particular, when using Activity Context or Heap Monitoring, a race condition could have been
triggered upon creating a thread with the ThreadFactory at the same time the DomainParticipantFactory
instance was initialized or finalized. When this race condition was triggered, Connext might have over-
written the user application's thread-specific storage, leading to memory corruption or crashes.

This issue is now fixed. If the race condition that led to the issue happens in an application, the fol-
lowing benign warning will be logged:
Unexpected RTIOsapiContextSupport_g_tssKey value. This could mean that this thread was
created at the same time you are destroying the DDSDomainParticipantFactory.

If that is the case, Activity Context and Heap Monitoring won’t be available for that thread.

[RTI Issue ID CORE-12966]

62

5.10 Other Fixes

63

5.10 Other Fixes

5.10.1 Serialization/deserialization of non-primitive sequences and arrays for
XCDR2_DATA_REPRESENTATION did not follow Extensible Types
specification

The serialization/deserialization of sequences and arrays with non-primitive members for XCDR2_
DATA_REPRESENTATION did not follow the OMG 'Extensible and Dynamic Topic Types for DDS'
specification, version 1.3. This led to compatibility issues with other DDS implementations.

This problem has been fixed, although the new behavior is not enabled by default, in order to keep
backward compatibility with previous Connext releases. You can configure a DomainParticipant to
align with the specification by setting dds.type_plugin.dheader_in_non_primitive_collections to true
in the DomainParticipant's PROPERTY QoS Policy for all the DomainParticipants created by your
Connext applications.

[RTI Issue ID CORE-12464]

5.10.2 Possible hang when using best-effort writers and asynchronous
publishing

Due to an internal error, an application hung when using a best-effort writer and asynchronous pub-
lishing. Before the hang, the following error message was printed:
COMMENDBeWriterService_write:!retrieveJob
This problem is now fixed.

[RTI Issue ID CORE-12562]

5.10.3 Unnecessary sockets created during initialization of library

The initialization of the Connext libraries always created a socket to obtain the IP address of the first
valid interface of the machine. This IP address is used to generate identifiers when DDS_DomainPar-
ticipantQos::wire_protocol::rtps_auto_id_kind is DDS_RTPS_AUTO_ID_FROM_IP, which is not
the default value. Therefore, the creation of this socket was unnecessary in most cases. This problem
has been solved, and now the socket is only created when it is needed.

[RTI Issue ID CORE-12587]

5.10.4 Various issues with RtpsReliableWriterProtocol_t::nack_suppression_
duration

There were various issues with the RtpsReliableWriterProtocol_t::nack_suppression_duration QoS:

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

5.10.5 Possible error message printed during Entity disposal

l NACKs were being incorrectly suppressed with asynchronous publishing or non-zero min/max_
nack_response_delay if two NACK messages were received within the nack_suppression_dur-
ation window, even if they were NACKing for different sets of sequence numbers. The nack_
suppression_duration is only meant to suppress NACKs with the same leading sequence num-
ber that are received within the nack_suppression_duration window. If two consecutive
NACKs have different leading sequence numbers, this indicates that the reader is making pro-
gress and the second one should not be suppressed, regardless of the nack_suppression_dur-
ation. Incorrect suppression of NACKs was not an issue if min/max_nack_response_delay was
zero and PublishModeQosPolicy.kind was SYNCHRONOUS_PUBLISH_MODE_QOS..

l If a NACK was received and suppressed due to the nack_suppression_duration before the pre-
vious NACK was responded to, then the NACK that had not been responded to yet, along with
all NACKs for the duration of the nack_suppression_duration, were incorrectly suppressed.
This problem did not occur if min/max_nack_response_delay was zero and Pub-
lishModeQosPolicy.kind was SYNCHRONOUS_PUBLISH_MODE_QOS.

l When PublishModeQosPolicy.kind was ASYNCHRONOUS_PUBLISH_MODE_QOS, if
there were no GAP messages sent in response to a NACK, the nack_suppression_duration had
no effect and NACKs were never suppressed. (GAP messages are sent to a DataReader to indic-
ate that a sample or a set of samples are not meant for that DataReader. This can happen, for
example, because the DataWriter has applied writer-side filtering or no longer has those samples
in its queue.)

These issues have been resolved.

[RTI Issue ID CORE-12603]

5.10.5 Possible error message printed during Entity disposal

Upon the disposal of an entity, an error message from a callback associated with an event may have
been printed. An excerpt of what the error may have looked like this:
ERROR [0x01013D3F,0x79453D76,0xA3558BB2:0x00000000|REMOVE REMOTE DR
0x01013D3F,0x79453D76,0xA3558BB2:0x80000007] OnReliableReaderActivityChangedCallback:An
exception was thrown: Omg.Dds.Core.DdsException: DDS operation failed:
at Rti.Dds.NativeInterface.Helpers.ReturnCode.CheckResult(IntPtr result)

...

The disposal of entities has now been modified to ensure this error does not happen.

[RTI Issue ID CORE-12641]

5.10.6 Runtime error when using debug libraries for QNX x86 platform

When using the i86QNX6.6qcc_cpp4.7.3 debug libraries, your application may have had a runtime
error and hung. This was because the debug libraries included the symbol for a math function (“isinff”)

64

5.10.7 Pushed samples may not have been received by reliable DataReader when DataWriter published

65

that was discontinued in QNX 6.3.

This problem has been resolved. The debug libraries now include “isinf” instead, which is supported.

A full list of the math functions that were discontinued in QNX 6.3 can be found here: http://www.qnx.-
com/developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html.

Note: QNX platforms on x86 are not supported in Connext 7.0.0.

[RTI Issue ID CORE-12695]

5.10.7 Pushed samples may not have been received by reliable DataReader
when DataWriter published Type that supports Zero Copy transfer over
shared memory

A reliable DataReader may not have received pushed samples from a DataWriter publishing a Topic
on a type configured with the zero-copy transfer over shared memory@transfer_mode(SHMEM_
REF). This may have led to significant performance degradation because the DataReader has to con-
tinuously NACK the missing samples.

This problem only occurred when the following three conditions were true:

1. The DataWriter ran in a different host, or the DataReader did not have the builtin SHMEM trans-
port enabled.

2. The DataReader used a ContentFilteredTopic, and the DataWriter did writer-side filtering, or the
DataReader created TopicQueries.

3. The DataWriter was not configured to use an asynchronous publisher. This problem has been
resolved.

[RTI Issue ID CORE-12775]

5.10.8 Unbounded memory growth in Monitoring Library when creating and
deleting endpoints

Each time a DataWriter or DataReader is created in an application that has the RTI Monitoring Library
enabled, a new instance is created in the DataWriters of the library. Since, by default, the maximum
number of instances the DataWriter can handle is unlimited, and the instances of already deleted end-
points were not cleaned up automatically, unbounded memory growth was possible in the library's
DataWriters when constantly creating and deleting endpoints in an application that had Monitoring
Library enabled.

This problem has been fixed by setting the writer_data_lifecycle::autopurge_disposed_instances_
delay QoS to DDS_DURATION_ZERO by default in the DataWriters for the Monitoring Library.
That way, disposed instances will be instantly cleared.

http://www.qnx.com/developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html
http://www.qnx.com/developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html

5.10.9 Unexpected behavior when two threads crashed at the same time on Windows systems

[RTI Issue ID MONITOR-244]

5.10.9 Unexpected behavior when two threads crashed at the same time on
Windows systems

When two threads crashed at the same time on Windows systems, Connext may have concurrently
called the function SymInitialize() from DbgHelp from two crashing threads.

SymInitialize() is not thread safe, so the application may have run into unexpected behavior or
memory corruption under this scenario.

This has been resolved, Connext no longer calls SymInitialize() from a crashing thread. Instead,
SymInitialize() is now called during DomainParticipantFactory initialization.

[RTI Issue ID CORE-10066]

5.10.10 DataReaders setting reader_qos.protocol.expects_inline_qos to TRUE
incorrectly matched with DataWriters

Connext DataWriters matched DataReaders that set reader_qos.protocol.expects_inline_qos to
TRUE. This behavior was incorrect because Connext DataWriters do not support sending inline QoS,
and they were not honoring the DataReaders' requests.

This issue has been fixed. The behavior has changed so that DataWriters will not match DataReaders
that request inline QoS (i.e., that set reader_qos.protocol.expects_inline_qos to TRUE).

[RTI Issue ID CORE-10501]

5.10.11 Source IP on Spy was not correct when DataWriters with same Topic
were on different machines

The source IP on Spy may not have been correct when DataWriters with the same Topic were on dif-
ferent machines. This issue has been fixed. Now the source IP is per Entity, not per Topic, and the out-
put will look like this:
11:35:13 New reader from 10.200.130.20 : topic=""Example app"" type=""app""
11:35:18 New writer from 10.200.129.195 : topic=""Example app"" type=""app""
11:35:16 New writer from 10.200.130.3 : topic=""Example app"" type=""app""
11:42:58 New data from 10.200.129.195 : topic=""Example app"" type=""app""
11:42:58 New data from 10.200.130.3 : topic=""Example app"" type=""app""
11:43:00 New data from 10.200.129.195 : topic=""Example app"" type=""app""
11:43:00 New data from 10.200.130.3 : topic=""Example app"" type=""app""

[RTI Issue ID CORE-12169]

66

5.10.12 Writer using durable writer history may not have blocked after send window filled up when

67

5.10.12 Writer using durable writer history may not have blocked after send
window filled up when disable positive ACKs was enabled

In previous releases, a reliable DataWriter configuring a finite send window size may not have blocked
when the send window filled up if all these conditions were met:

l DataWriter was configured to use durable writer history.
l DataWriter was configured to use disable positive ACKs.
l DataWriter was configured with writer_qos.reliability.acknowledgment_kind set to AUTO or
EXPLICIT, or writer_qos.availability.enable_required_subscriptions was set to TRUE.

Because of this issue, the reliability protocol for the DataWriter may have been less efficient. This prob-
lem has been resolved.

[RTI Issue ID CORE-12225]

5.10.13 Potential truncation of application-level acknowledgment response data

Connext enforced a wrong maximum length for application-level acknowledgment response data. Spe-
cifically, Connext incorrectly allowed setting the DATA_READER_RESOURCE_LIMITS QosPolicy's
max_app_ack_response_length longer than the maximum serializable data, which resulted in the trun-
cation of data when the length got close to 64kB.

This problem has been resolved: Connext now enforces a maximum length of 32kB for max_app_ack_
response_length as part of DataReader QoS consistency checks, and it will log an error if you try to
set max_app_ack_response_length longer than 32kB.

[RTI Issue ID CORE-12450]

5.10.14 Error messages displayed that should not have been, when printing
DataReaderQoS objects

When printing DataReaderQoS objects, and the contained DDSOwnershipQosPolicy or DDS_Trans-
portMulticastQosPolicy policies were printed, some error messages were displayed that should not have
been. These error messages could have been safely ignored by an application. These error messages are
no longer printed.

[RTI Issue ID CORE-12462]

5.10.15 Potential Valgrind invalid read when logging a message or enabling heap monitoring

5.10.15 Potential Valgrind invalid read when logging a message or enabling
heap monitoring

When activity context was enabled in logging, or when heap monitoring was enabled, a Valgrind
invalid read similar to the following one may have been reported:
==1344490== Invalid read of size 4
==1344490== at 0x4A3FA0A: RTIOsapiActivityContext_skipResourceGuid (ActivityContext.c:246)
==1344490== by 0x4A417B3: RTIOsapiActivityContext_getString (ActivityContext.c:820)

This issue has been resolved. The Valgrind invalid read error no longer appears.

[RTI Issue ID CORE-12537]

5.10.16 Malformed IDL printed if multiple labels used for default case of a union

The IDL produced by the C API's DDS_TypeCode_print_IDL() function (or the equivalent in other
APIs) may have been malformed if multiple labels were assigned to the default case of a union. All of
the labels were printed as "default: ", instead of their true value. This problem has been resolved.

[RTI Issue ID CORE-12624]

68

Chapter 6 Known Issues
Note: For an updated list of critical known issues, see the Critical Issues List on the RTI Cus-
tomer Portal at https://support.rti.com.

6.1 Known Issues with Usability

6.1.1 Cannot open USER_QOS_PROFILES.xml in rti_
workspace/examples from Visual Studio

When trying to open the USER_QOS_PROFILES.xml file from the resource folder of one of
the provided examples, you may see the following error:
Could not find file : C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\connext_
dds\c\<example>\win32\USER_QOS_PROFILES.xml

The problem is that the Visual Studio project is looking for the file in a wrong location (win32
folder).

You can open the file manually from here:

C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\connext_
dds\c\<example>\USER_QOS_PROFILES.xml

This issue does not affect the functionality of the example.

[RTI Issue ID CODEGENII-743]

6.1.2 DataWriter's Listener callback on_application_acknowledgment()
not triggered by late-joining DataReaders

The DataWriter's listener callback on_application_acknowledgment() may not be triggered by
late-joining DataReaders for a sample after the sample has been application-level acknowledged
by all live DataReaders (no late-joiners).

If your application requires acknowledgment of message receipt by late-joiners, use the
Request/Reply communication pattern with an Acknowledgment type (see the chapter "

69

https://support.rti.com/

6.1.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communication failure when

70

Introduction to the Request-Reply Communication Pattern," in the RTI Connext Core Libraries User's
Manual).

[RTI Issue ID CORE-5181]

6.1.3 HighThroughput and AutoTuning built-in QoS Profiles may cause
communication failure when writing small samples

If you inherit from either the BuiltinQosLibExp::Generic.StrictReliable.HighThroughput or the
BuiltinQosLibExp::Generic.AutoTuning built-in QoS profiles, your DataWriters and DataReaders
will fail to communicate if you are writing small samples.

In Connext 5.1.0, if you wrote samples that were smaller than 384 bytes, you would run into this prob-
lem. In version 5.2.0 onward, you might experience this problem when writing samples that are smaller
than 120 bytes.

This communication failure is due to an interaction between the batching QoS settings in the Gen-
eric.HighThroughput profile and the DataReader's max_samples resource limit, set in the Built-
inQosLibExp::Generic.StrictReliable profile. The size of the batches that the DataWriter writes are
limited to 30,720 bytes (see max_data_bytes). This means that if you are writing samples that are smal-
ler than 30,720/max_samples bytes, each batch will have more than max_samples samples in it. The
DataReader cannot handle a batch with more than max_samples samples and the batch will be
dropped.

There are a number of ways to fix this problem, the most straightforward of which is to overwrite the
DataReader'smax_samples resource limit. In your own QoS profile, use a higher value that accom-
modates the number of samples that will be sent in each batch. (Simply divide 30,720 by the size of
your samples).

[RTI Issue ID CORE-6411]

6.1.4 Memory leak if Foo:initialize() called twice

Calling Foo:initialize() more than once will cause a memory leak.

[RTI Issue ID CORE-7678]

6.1.5 Wrong error code after timeout on write() from Asynchronous Publisher

When using an asynchronous publisher, if write() times out, it will mistakenly return DDS_
RETCODE_ERROR instead of the correct code, DDS_RETCODE_TIMEOUT.

[RTI Issue ID CORE-2016, Bug # 11362]

6.1.6 Type Consistency enforcement disabled for structs with more than 10000 members

6.1.6 Type Consistency enforcement disabled for structs with more than 10000
members

TypeObjects cannot be created from structs with more than 10000 members. Applications that publish
or subscribe to such types may see errors like the following:
RTICdrStream_serializeNonPrimitiveSequence:sequence length (10005) exceeds maximum (10000)
RTICdrTypeObjectTypeLibraryElement_getTypeId:serialization error: Type
RTICdrTypeObject_fillType:!get TypeId
RTICdrTypeObject_assertTypeFromTypeCode:!create Structure Type
RTICdrTypeObject_createFromTypeCode:!create TypeObject

When the TypeObject can't be serialized, the type compatibility check between a reader and a writer
falls back to exact type-name matching.

See the section "Verifying Type Consistency: Type Assignability" in the RTI Connext Core Libraries
Extensible Types Guide for more information.

[RTI Issue ID CORE-8158]

6.1.7 Escaping special characters in regular/filter expressions not supported in
some cases

Escaping special characters is not supported in expressions when using the following features:

l Partitions
l MultiChannel

Every occurrence of a backslash ('\') will be considered its own character and not a way to escape the
character that follows. For example: 'A\?' does not match 'A?' because the first expression is considered
an expression with three characters.

[RTI Issue ID CORE-11858]

6.2 Known Issues with Code Generation

6.2.1 Examples and generated code for Visual Studio 2017 and later may not
compile (Error MSB8036)

The examples provided with Connext and the code generated for Visual Studio 2017 and later will not
compile out of the box if the Windows SDK version installed is not a specific number like
10.0.15063.0. If that happens, you will see the compilation error MSB8036. To compile these projects,
select an installed version of Windows SDK from the Project menu -> Retarget solution.

Another option is to set the enviroment variable RTI_VS_WINDOWS_TARGET_PLATFORM_
VERSION to the SDK version number. For example, set RTI_VS_WINDOWS_TARGET_

71

6.3 Known Issues with Instance Lifecycle

72

PLATFORM_VERSION to 10.0.16299.0. (Note: the environment variable will not work if you have
already retargeted the project via the Project menu.)

For further details, see the Windows chapter of the RTI Connext Core Libraries Platform Notes.

[RTI Issue ID CODEGENII-800]

6.3 Known Issues with Instance Lifecycle

6.3.1 Instance does not transition to ALIVE when "live" DataWriter detected

The "Data Distribution Service for Real-time Systems" specification allows transitioning an instance
from the NO_WRITERS state to the ALIVE state when a "live" DataWriter writing the instance is
detected. Currently, this state transition is not supported in Connext. The only way to transition an
instance from NO_WRITERS to ALIVE state is by receiving a sample for the instance from one of the
DataWriters publishing it.

Example:

1. A DataWriter writes a particular instance. The DataReader receives the sample. The DataWriter
loses liveliness with the DataReader, making the instance transition from ALIVE to NO_
WRITERS. The writer later becomes alive again, but it doesn't resume writing samples of the
instance. In this case, the instance will stay in a NO_WRITERS state.

2. The DataWriter publishes a new sample for the instance. Only then does the instance state
change on the DataReader from NO_WRITERS to ALIVE.

Note: To address this known issue, in 7.1.0, RTI has introduced a new QoS parameter,
instance_state_recovery_kind, with the experimental option RECOVER_INSTANCE_
STATE_RECOVERY, in the RELIABILITY QosPolicy. Because it is an experimental feature,
please do not use the new option in deployed systems. For information, see the "Transition after
NOT_ALIVE_NO_WRITERS" section in Instance States, in the RTI Connext Core Libraries
User's Manual.

[RTI Issue ID CORE-3018]

6.3.2 Persistence Service DataReaders ignore serialized key propagated with
dispose updates

Persistence Service DataReaders ignore the serialized key propagated with dispose updates. Per-
sistence Service DataWriters cannot propagate the serialized key with dispose, and therefore ignore the
serialize_key_with_dispose setting on the DataWriter QoS.

[RTI Issue ID PERSISTENCE-221]

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

6.4 Known Issues with Reliability

6.4 Known Issues with Reliability

6.4.1 DataReaders with different reliability kinds under Subscriber with
GROUP_PRESENTATION_QOS may cause communication failure

Creating a Subscriber with PresentationQosPolicy.access_scope GROUP_PRESENTATION_QOS
and then creating DataReaders with different ReliabilityQosPolicy.kind values creates the potential
for situations in which those DataReaders will not receive any data.

One such situation is when the DataReaders are discovered as late-joiners. In this case, samples are
never delivered to the DataReaders. A workaround for this issue is to set the Avail-
abilityQosPolicy.max_data_availabilty_waiting_time to a finite value for each DataReader.

[RTI Issue ID CORE-7284]

6.5 Known Issues with Content Filters and Query Conditions

6.5.1 Writer-side filtering may cause missed deadline

If you are using a ContentFilteredTopic and you set the Deadline QosPolicy, the deadline may be
missed due to filtering by a DataWriter.

[RTI Issue ID CORE-1634, Bug # 10765]

6.5.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated
correctly

The filter_sample_* statistics in the DDS_DataWriterProtocolStatus are not updated correctly. The
values that you get after calling the following APIs may be smaller than the actual values:

l DDS_DataWriter::get_datawriter_protocol_status
l DDS_DataWriter::get_matched_subscription_datawriter_protocol_status
l DDS_DataWriter::get_matched_subscription_datawriter_protocol_status_by_locator

[RTI Issue ID CORE-5157]

6.6 Known Issues with TopicQueries

6.6.1 TopicQueries not supported with DataWriters configured to use batching
or Durable Writer History

Getting TopicQuery data from a DataWriter configured to use batching or Durable Writer History is
not supported.

[RTI Issue IDs CORE-7405, CORE-7406]

73

6.7 Known Issues with Transports

74

6.7 Known Issues with Transports

6.7.1 AppAck messages cannot be greater than underlying transport message
size

A DataReader with acknowledgment_kind (in the ReliabilityQosPolicy) set to DDS_
APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_EXPLICIT_
ACKNOWLEDGMENT_MODE cannot send AppAck messages greater than the underlying transport
message size.

If a DataReader tries to send an AppAck message greater than the transport message size, Connext will
print the following error message:
COMMENDFacade_sendAppAck:!add APP_ACK to MIG
COMMENDSrReaderService_sendAppAck:!send APP_ACK
PRESPsService_onReaderAppAckSendEvent:!send acknowledgment

To recover from the above error, the DataReader must acknowledge samples until the size of the
AppAck message goes below the transport message size threshold.

Why does an AppAck message increase its size? An AppAck message contains a list of sequence num-
ber intervals where each interval represents a set of consecutive sequence numbers that have been
already acknowledged. As long as samples are acknowledged in order, the AppAck message will
always have a single interval. However, when samples are acknowledged out of order, the number of
intervals and the size of the AppAck will increase.

For more information, see the "Application Acknowledgment" section in the RTI Connext Core Librar-
ies User's Manual.

[RTI Issue ID CORE-5329]

6.7.2 DataReader cannot persist AppAck messages greater than 32767 bytes

A DataReader using durable reader state, whose acknowledgment_kind (in the ReliabilityQosPolicy)
is set to DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_
EXPLICIT_ACKNOWLEDGMENT_MODE, cannot persist an AppAck message greater than 32767
bytes.

To recover from the previous error, the DataReader must acknowledge samples until the size of the
AppAck message goes below the transport message size threshold.

For more information, see the section "Durable Reader State," in the RTI Connext Core Libraries
User's Manual.

[RTI Issue ID CORE-5360]

6.7.3 Discovery with Connext Micro fails when shared memory transport enabled

6.7.3 Discovery with Connext Micro fails when shared memory transport
enabled

Given a Connext application with the shared memory transport enabled, a Connext Micro 2.4.x applic-
ation will fail to discover it. This is due to a bug in Connext Micro that prevents a received participant
discovery message from being correctly processed. This bug will be fixed in a future release of
Connext Micro. As a workaround, you can disable the shared memory transport in the Connext applic-
ation and use UDPv4 instead.

[RTI Issue ID EDDY-1615]

6.7.4 Communication may not be reestablished in some IP mobility scenarios

If you have two Connext applications in different nodes and they change their IP address at the same
time, they may not reestablish communication. This situation may happen in the following scenario:

l The applications see each other only from one single network.
l The IP address change happens at the same time in the network interface cards (NICs) that are in
the network that is in common for both applications.

l The IP address change on one of the nodes happens before the arrival of the DDS discovery mes-
sage propagating the address change from the other side.

[RTI Issue ID CORE-8260]

6.7.5 Corrupted samples may be forwarded through Routing Service when
using Zero-Copy transfer over shared memory

When using Zero Copy transfer over shared memory together with RTI Routing Service, Routing Ser-
vice avoids an additional copy of the data by passing a reference to the sample from the input to the out-
put of a route. If the sample is reused and rewritten by the original application DataWriter during the
time between when the sample was received on the route input and copied into the route output buffer,
the forwarded sample will contain the updated, and now invalid, values for the original sample.

This situation can be avoided in a few different ways, with various tradeoffs.

6.7.5.1 Use automatic application acknowledgment

Using automatic application acknowledgment (acknowledgment_mode = APPLICATION_AUTO_
ACKNOWLEDGMENT in the Reliability QoS Policy) between the Routing Service input DataReader
and its matching DataWriters will avoid the issue.

When using Zero Copy transfer over shared memory, DataWriters must loan samples using the get_
loan API. Only samples that have been fully acknowledged will be returned by the get_loan API. This
means that if automatic application acknowledgment is turned on, that only samples that the Routing

75

6.7.6 Network Capture does not support frames larger than 65535 bytes

76

Service has already copied and written to the route output will be available for reuse by the original
DataWriter, because Routing Service does not return the loan on a sample until after it is forwarded to
the route outputs.

The drawback to this approach is that it requires RELIABLE Reliability. In addition, application-level
acknowledgments are not supported in Connext Micro, so this approach will not work if Connext Micro
is the source of the Zero Copy samples.

6.7.5.2 Ensure that the number of available samples accounts for Routing Service
processing time

Regardless of whether you are using Routing Service, it is important when using Zero Copy transfer
over shared memory to size your resources so that your application can continue to write at the desired
rate while the receiving applications receive and process the samples. If you are using Routing Service
and cannot, or do not wish to, use automatic application acknowledgments, you must take into account
the amount of time it will take to receive and forward a sample when setting writer_loaned_sample_
allocation in the DATA_WRITER_RESOURCE_LIMITS QoS Policy and managing the samples in
your application.

[RTI Issue ID CORE-10782]

6.7.6 Network Capture does not support frames larger than 65535 bytes

Network capture does not support frames larger than 65535 bytes. This limitation affects the TCP trans-
port protocol if the message_size_max property is set to a value larger than the default one.

[RTI Issue ID CORE-11083]

6.8 Known Issues with FlatData

6.8.1 FlatData language bindings do not support automatic initialization of
arrays of primitive values to non-zero default values

RTI FlatData™ language bindings do not support the automatic initialization of arrays of primitive val-
ues to non-zero default values, unless the primitive is an enumeration. It is possible to declare an alias
to a primitive member with a default value using the @default annotation, and then to declare an array
of that alias. For example:
@default(10)
typedef int32 myLongAlias;

struct MyType {
myLongAlias myLongArray[25];

};

The default values of each member of the array in this case should be 10, but in FlatData they will all
be set to 0.

6.8.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined behavior

[RTI Issue ID CORE-9176]

6.8.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined
behavior

The function rti::flat::plain_cast is allowed on FlatData samples containing int64_t members, but
those members are not guaranteed to have an 8-byte alignment (a 4-byte alignment is guaranteed).
Memory checkers such as Valgrind may report errors when accessing such members from the pointer
returned by plain_cast.

[RTI Issue ID CORE-10092]

6.8.3 FlatData in combination with payload encryption in RTI Security Plugins
and/or compression will not save copies

RTI FlatData™ language binding offers a reduced number of end-to-end copies when sending a
sample (from four to two), providing improved latency for large data samples. (See the "FlatData Lan-
guage Binding" section in the RTI Connext Core Libraries User's Manual.) When used with payload
encryption and/or payload compression, however, there are no savings in the number of copies. (See
the section "Interactions with RTI Security Plugins and Compression" in the "Using FlatData Language
Binding" section of the RTI Connext Core Libraries User's Manual). In future releases, other copies
currently being made can potentially be optimized out in order to reduce the number of copies when
using FlatData in combination with security and compression.

[RTI Issue ID CORE-11262]

6.9 Known Issues with Coherent Sets

6.9.1 Some coherent sets may be lost or reported as incomplete with
batching configurations

If Connext 6.1.0 receives coherent sets from Connext 6.0.0 or lower using batching, coherent sets that
are fully received and complete may be lost or marked as incomplete. (If the QoS subscriber_qos.-
presentation.drop_incomplete_coherent_set is set to FALSE, then the samples marked as incomplete
won't be dropped.)

[RTI Issue ID CORE-9691]

6.9.2 Copy of SampleInfo::coherent_set_info field is not supported

SampleInfo::coherent_set_info is not available when using take/read operations that do not loan the
samples. The SampleInfo::coherent_set_info is always set to NULL when you call the take/read oper-
ations that do not loan the samples. To get the coherent_set_info value, make sure you use the read/-
take operations that loan the data.

77

6.9.3 Other known issues with coherent sets

78

In addition, the copy constructor and assignment operator in the Traditional C++ and Modern C++
APIs do not copy the SampleInfo::coherent_set_info field. It is always set to NULL. It is your
responsibility to make the copy and handle memory allocation and deletion for this field.

[RTI Issue ID CORE-11215]

6.9.3 Other known issues with coherent sets

Coherent sets are not propagated through RTI Routing Service [RTI Issue ID ROUTING-657].

Group coherent sets are not supported with ODBC writer history [RTI Issue ID CORE-9746].

Group coherent sets are not persisted by RTI Persistence Service [RTI Issue ID PERSISTENCE-191].

Group coherent sets cannot be stored or replayed with RTI Recording Service [RTI Issue ID RECORD-
1083].

6.10 Known Issues with Dynamic Data

6.10.1 Conversion of data by member-access primitives limited when converting
to types that are not supported on all platforms

The conversion of data by member-access primitives (get_X() operations) is limited when converting to
types that are not supported on all platforms. This limitation applies when converting to a 64-bit int64
type (get_longlong() and get_ulonglong() operations) and a 128-bit long double type (get_longdouble
()). These methods will always work for data members that are actually of the correct type, but will
only support conversion from values that are stored as smaller types on a subset of platforms. Con-
version to 64-bit int64s from a 32-bit or smaller integer type is supported on all Windows and Linux
architectures, and any additional 64-bit architectures. Conversion to 128-bit long doubles from a float
or double is not supported.

[RTI Issue ID CORE-2986]

6.10.2 Types that contain bit fields not supported

Types that contain bit fields are not supported by DynamicData. Therefore, when rtiddsspy discovers
any type that contains a bit field, rtiddsspy will print this message:
DDS_DynamicDataTypeSupport_initialize:type not supported (bitfield member)

[RTI Issue ID CORE-3949]

6.11 Known Issues in RTI Monitoring Library

6.11 Known Issues in RTI Monitoring Library

6.11.1 Problems with NDDS_Transport_Support_set_builtin_transport_property
() if Participant Sends Monitoring Data

If a Connext application uses the NDDS_Transport_Support_set_builtin_transport_property() API
(instead of the PropertyQosPolicy) to set built-in transport properties, it will not work with Monitoring
Library if the user participant is used for sending all the monitoring data (the default settings). As a
workaround, you can configure Monitoring Library to use another participant to publish monitoring
data (using the property name rti.monitor.config.new_participant_domain_id in the Prop-
ertyQosPolicy).

[RTI Issue ID MONITOR-222]

6.11.2 Participant’s CPU and memory statistics are per application

The CPU and memory usage statistics published in the DomainParticipant entity statistics topic are per
application instead of per DomainParticipant.

[RTI Issue ID CORE-7972]

6.11.3 XML-based entity creation nominally incompatible with static monitoring
library

If setting the DomainParticipant QoS programmatically in the application is not possible (i.e., when
using XML-based Application Creation), the monitoring create function pointer may still be provided
via an XML profile by using the environment variable expansion functionality. The monitoring prop-
erty within the DomainParticipant QoS profile in XML must be set as follows:
<domain_participant_qos>

<property>
<value>

<element>
<name>rti.monitor.library</name>
<value>timonitoring</value>

</element>
<element>

<name>rti.monitor.create_function_ptr</name>
<value>$(MONITORFUNC)</value>

</element>
</value>

</property>
</domain_participant_qos>

79

6.11.4 ResourceLimit channel_seq_max_length must not be changed

80

Then in the application, before retrieving the DomainParticipantFactory, the environment variable must
be set programmatically as follows:
...
sprintf(varString, "MONITORFUNC=%p", RTIDefaultMonitor_create);
int retVal = putenv(varString);
...
//DomainParticipantFactory must be created after env. variable setting

[RTI Issue ID CORE-5540]

6.11.4 ResourceLimit channel_seq_max_length must not be changed

The default value of DDS_DomainParticipantResourceLimitsQosPolicy::channel_seq_max_length
can't be modified if a DomainParticipant is being monitored. If this QoS value is modified from its
default value of 32, the monitoring library will fail.

[RTI Issue ID MONITOR-220]

6.12 Known Issues with Installers

6.12.1 RTI Connext Micro 3.0.3 installation package currently compatible only
with Connext 6.0.1 installer

Connext Micro 3.0.3 must be installed with Connext Professional release 6.0.1. Note that, although you
cannot install Connext Micro 3.0.3 with Connext 6.1.0 and higher, it is interoperable with Connext 6.1.0
and higher, except as noted in the Migration Guide on the RTI Community Portal (https://-
community.rti.com/documentation).

6.13 Other Known Issues

6.13.1 Possible Valgrind still-reachable leaks when loading dynamic libraries

If you load any dynamic libraries, you may see "still reachable" memory leaks in "dlopen" and
"dlclose". These leaks are a result of a bug in Valgrind (https://bug-
s.launchpad.net/ubuntu/+source/valgrind/+bug/1160352).

This issue affects the Core Libraries, Security Plugins, and TLS Support.

[RTI Issue IDs CORE-9941, SEC-1026, and COREPLG-510]

https://community.rti.com/documentation
https://community.rti.com/documentation
https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352
https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352

6.13.2 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) supported only in Java,

6.13.2 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31)
supported only in Java, no other languages

Unions with a 64-bit integer discriminator type containing discriminator values that cannot fit in a 32-
bit value are not supported when using the following language bindings:

l C
l Traditional C++
l Modern C++
l New. NET
l DynamicData (regardless of the language)

They are also not supported with ContentFilteredTopics, regardless of the language binding.

Using label values greater than 32-bit may lead to receiving samples with invalid content or to filtering
samples incorrectly.

For example, this is not supported:

81

6.13.3 Creating multiple DataReaders for the same Topic under the same Subscriber configured with

82

union union_uint64 switch (uint64) {
case 0x100000000:

char m_char;
case 0x200000000:

int32 m_int32;
case 0x300000000:

string<5> m_string;
};

This is supported:
union union_uint64 switch (uint64) {

case 1:
char m_char;

case 2:
int32 m_int32;

case 3:
string<5> m_string;

};

[RTI Issue ID CORE-11437]

6.13.3 Creating multiple DataReaders for the same Topic under the same
Subscriber configured with Group Ordered Access is not supported

Creating multiple DataReaders for the same Topic under the same Subscriber configured with Present-
ationQosPolicy access_scope = GROUP and ordered_access = TRUE is not supported. If you try to
create a second reader in this situation, it will fail to be created and this error will be printed:
ERROR [0x0101E967,0x5C3A43B1,0x99D71EB7:0x80000309{Entity=Su,Domain=0}|CREATE DR WITH TOPIC
FooTopic|LC:DISC]PRESPsService_createLocalEndpoint:NOT SUPPORTED | Creating more than one
reader for the same topic within a single subscriber using GROUP presentation and ordered_
access=true.

Instead, in this situation, you will need to use only one DataReader, or you will need to create a new
Subscriber and DataReader in the same DomainParticipant.

[RTI Issue ID CORE-12448]

Chapter 7 Experimental Features
This software may contain experimental features. These are used to evaluate potential new fea-
tures and obtain customer feedback. They are not guaranteed to be consistent or supported and
they should not be used in production.

In the API Reference HTML documentation, experimental APIs are marked with <<exper-
imental>>.

The APIs for experimental features use the suffix _exp to distinguish them from other APIs. For
example:
const DDS::TypeCode * DDS_DomainParticipant::get_typecode_exp(

const char * type_name);

Experimental features are also clearly noted as such in the User’s Manual or Getting Started
Guide for the component in which they are included.

Disclaimers:

l Experimental feature APIs may be only available in a subset of the supported languages
and for a subset of the supported platforms.

l The names of experimental feature APIs will change if they become officially supported.
At the very least, the suffix, _exp, will be removed.

l Experimental features may or may not appear in future product releases.
l Experimental features should not be used in production.

Please submit your comments and suggestions about experimental features to support@rti.com
or via the RTI Customer Portal (https://support.rti.com/). Although the RTI Support team does
not provide support for experimental features, you may be able to get help with experimental
features from the RTI Community forum: https://community.rti.com/.

83

https://support.rti.com/
https://community.rti.com/

© 2003-2023 Real-Time Innovations, Inc.
All rights reserved.

April 2023.

Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems.
Working as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations,
Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of
Real-Time Innovations, Inc. The software described in this document is furnished solely under and sub-
ject to RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance
with your License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate
(MSC), except to the extent otherwise accepted in writing by a corporate officer of RTI.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).

Notices

Early Access Software

“Real-Time Innovations, Inc. (“RTI”) licenses this Early Access release software (“Software”) to you
subject to your agreement to all of the following conditions:

(1) you may reproduce and execute the Software only for your internal business purposes, solely with
other RTI software licensed to you by RTI under applicable agreements by and between you and RTI,
and solely in a non-production environment;

(2) you acknowledge that the Software has not gone through all of RTI’s standard commercial testing,
and is not maintained by RTI’s support team;

(3) the Software is provided to you on an “AS IS” basis, and RTI disclaims, to the maximum extent per-
mitted by applicable law, all express and implied representations, warranties and guarantees, including
without limitation, the implied warranties of merchantability, fitness for a particular purpose, sat-
isfactory quality, and non-infringement of third party rights;

https://www.rti.com/terms
http://www.openssl.org/

(4) any such suggestions or ideas you provide regarding the Software (collectively , “Feedback”), may
be used and exploited in any and every way by RTI (including without limitation, by granting sub-
licenses), on a non-exclusive, perpetual, irrevocable, transferable, and worldwide basis, without any
compensation, without any obligation to report on such use, and without any other restriction or oblig-
ation to you; and

(5) TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL
RTI BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR FOR LOST
PROFITS, LOST DATA, LOST REPUTATION, OR COST OF COVER, REGARDLESS OF THE
FORM OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING WITHOUT LIMITATION,
NEGLIGENCE), STRICT PRODUCT LIABILITY OR OTHERWISE, WHETHER ARISING OUT
OF OR RELATING TO THE USE OR INABILITY TO USE THE SOFTWARE, EVEN IF RTI HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.”

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regard-
ing maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is
deprecated in a release, RTI hereby provides customer notice that RTI reserves the right after one year
from the date of such release and, with or without further notice, to immediately terminate maintenance
(including without limitation, providing updates and upgrades) for the item, and no longer support the
item, in a future release.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

	Chapter 1 Introduction
	Chapter 2 System Requirements
	2.1 Introduction
	2.2 Supported Platforms
	2.3 Requirements when Using Microsoft Visual Studio
	2.4 Disk and Memory Usage

	Chapter 3 Compatibility
	3.1 Wire Protocol Compatibility
	3.2 Code and Configuration Compatibility
	3.3 Extensible Types Compatibility

	Chapter 4 What's Fixed in 7.1.0
	4.1 Fixes Related to Discovery
	4.1.1 Potential memory leak when creation of any of the built-in discovery plugins failed
	4.1.2 Unbounded memory growth when using domain tags or DomainParticipant partitions
	4.1.3 Error deleting remote endpoints with specific GUID prefixes using debug libraries
	4.1.4 Most up-to-date participant configuration may not have been received by other participants and may have led to discovery not completing
	4.1.5 Participant failed to assert remote participant if usability of shared memory transport changed
	4.1.6 Unexpected warning during discovery when multicast disabled
	4.1.7 Unexpected, invalid locator propagated within builtin topics

	4.2 Fixes Related to Serialization and Deserialization
	4.2.1 Unexpected union value when receiving a discriminator that does not select any union member on DataReader's type
	4.2.2 Serialization of samples failed or produced a segmentation fault for types with max serialized size larger than 2GB
	4.2.3 Potential sample corruption when deserializing a malformed RTPS message
	4.2.4 Unbounded memory growth when deserializing a malformed RTPS message

	4.3 Fixes Related to Debuggability
	4.3.1 Hang/crash when invoking a DataReader/DataWriter discovery snapshot within a callback function
	4.3.2 Memory leak if network capture initialization failed
	4.3.3 Unexpected log messages at warning verbosity
	4.3.4 Unexpected fatal error when number of instances reached the limit

	4.4 Fixes Related to Transports
	4.4.1 Possible data loss after a Connext application lost its multicast interfaces or gained its first multicast interface
	4.4.2 DomainParticipant with non-default metatraffic_transport_priority QoS did not complete discovery
	4.4.3 dds.transport.minimum_compatibility_version property did not properly adjust locator format
	4.4.4 TCP Transport did not run with Windows debug libraries when socket_monitoring_kind was set to IOCP

	4.5 Fixes Related to Reliability Protocol and Wire Representation
	4.5.1 Samples not delivered to Required Subscription DataReaders when DataWriter used durable writer history and DataReaders disabled positive ACKs
	4.5.2 DataReader may not have received samples that were sent as gapped samples to another DataReader over multicast
	4.5.3 DDS fragmentation may have led to more fragments than expected for a sample
	4.5.4 Unexpected precondition error with debug libraries on a reliable DataWriter while sending a GAP

	4.6 Fixes Related to Content Filters and Query Conditions
	4.6.1 Unexpected RTIXCdrSampleInterpreter_initializeSampleWInstruction error log messages when using QueryConditions, ContentFilteredTopics, TopicQueries, or Multi-Channel

	4.7 Fixes Related to Dynamic Data
	4.7.1 DynamicData DataWriters incorrectly serialized optional empty sequences as null

	4.8 Fixes Related to APIs
	4.8.1 DynamicData method to get member type missing in Modern C++ and C# APIs
	4.8.2 Fixes Related to Modern C++ API
	4.8.3 Fixes Related to C# API
	4.8.4 Fixes Related to Java API
	4.8.5 Fixes Related to Python API

	4.9 Fixes Related to XML Configuration
	4.9.1 Memory leak after an error parsing XML file with <include> tag
	4.9.2 Failed to parse XML configuration file containing type member with useVector attribute
	4.9.3 XML composition overwrote system information properties with defaults instead of correct values

	4.10 Fixes Related to Request-Reply and RPC
	4.10.1 RPC interface evolution did not work
	4.10.2 Exceptions sending result of remote operation may have crashed server application
	4.10.3 RPC: deadlock when Server::close() was called before Server::run()
	4.10.4 Possible unbounded memory growth when creating many Requesters
	4.10.5 Memory leak in Java Request-Reply API
	4.10.6 Possible data race using Sample and WriteSample classes (Traditional C++ API only)

	4.11 Fixes Related to Shipped Examples
	4.11.1 Hello World TCP example always linked TCP Transport library dynamically

	4.12 Fixes Related to Vulnerabilities
	4.12.1 Arbitrary read access while parsing malicious RTPS message
	4.12.2 Out-of-bounds read while parsing malicious RTPS message
	4.12.3 Out-of-bounds write while parsing malicious RTPS message
	4.12.4 Buffer overflow in shared memory if memory was tampered
	4.12.5 Out-of-bounds read while uncompressing malformed data from malicious RTPS message

	4.13 Fixes Related to Crashes
	4.13.1 Rare segmentation fault when deleting DomainParticipant or Publisher containing DataWriters using durable writer history
	4.13.2 Segmentation fault when creation of DomainParticipant failed due to lack of resources
	4.13.3 Potential hang upon SIGSEGV signal from a Connext application
	4.13.4 Creating DynamicDataTypePlugin with TypeCode from discovery and using content filtering caused segmentation fault
	4.13.5 Application crash when calling DDS_DataReader_take_discovery_snapshot on a DataReader with a ContentFilteredTopic
	4.13.6 Crash with NULL listeners and non-none status masks in C applications that mixed types with and without Zero Copy
	4.13.7 Memory was read after it was freed by deleting a Topic with local logging level enabled
	4.13.8 Possible segmentation fault when disabling loopback interface
	4.13.9 Segmentation fault could occur if creation of DataReader failed
	4.13.10 Potential crash when DomainParticipant deleted after creating DataWriter with automatic liveliness kind
	4.13.11 Possible crash on TCP transport when large number of file descriptors were open
	4.13.12 Application using Monitoring Libraries may have produced segmentation fault during DataReader creation
	4.13.13 Possible segmentation fault when using Monitoring Library

	4.14 Other Fixes
	4.14.1 Error sending batch when batch size exceeded transport MTU
	4.14.2 Broken communication when DataWriter with transport priority discovered DataReader with multicast receive address
	4.14.3 Potential hang upon SIGSEGV signal from a Connext application
	4.14.4 No more than 100 asynchronous publisher threads could be created
	4.14.5 Potential memory leak when creation of any of the built-in discovery plugins failed
	4.14.6 Samples could be lost using group order access or collaborative DataWriters
	4.14.7 Unexpected precondition error while creating a DomainParticipant with debugging libraries using fast database cleanup period
	4.14.8 Release 6.1.2 was not FACE compliant
	4.14.9 Problems visualizing participants using Generic.MinimalMemoryFootprint profile with Admin Console
	4.14.10 Using dh_param_files leaked memory
	4.14.11 Failure to load a string-based private key leaked memory
	4.14.12 Incorrect Supported platforms documentation section for FindRTIConnextDDS.cmake
	4.14.13 CONNEXTDDS_ARCH environment variable in FindPackage script was not picked up correctly
	4.14.14 In FindPackage script, low_bandwidth_edisc imported target library was missing
	4.14.15 Segmentation fault when mixing build types in applications linked against libraries in Find Package Cmake script

	Chapter 5 What's Fixed in 7.0.0
	5.1 Fixes Related to Callbacks and Waitsets
	5.1.1 Unsafe combinations of masks and Listeners may have led to segmentation fault
	5.1.2 Failure calling DDS_Subscriber::get_datareaders in DDS_SubscriberListener::on_data_on_readers callback implementation
	5.1.3 DDS_SubscriberListener::on_data_on_readers on a participant or subscriber not called when Listener installed after the entity is enabled
	5.1.4 Unable to assign callback function for on_sample_removed event using Modern C++ API
	5.1.5 Using certain callbacks at DomainParticipant or Publisher level may have led to segmentation fault

	5.2 Fixes Related to Discovery
	5.2.1 Unexpected memory growth when DataReader could not be matched with DataWriter due to unexpected error condition
	5.2.2 Possible crash upon discovery of applications with unreachable locators
	5.2.3 Communication problems with applications using shared memory on INTEGRITY systems
	5.2.4 Types containing Typedefs were sent without the typedefs in discovery when using DynamicData
	5.2.5 Unbounded memory growth in Spy when discovering multiple endpoints with the same Topics and types
	5.2.6 Unnecessary discovery traffic related to IP mobility events on interfaces irrelevant to the transport

	5.3 Fixes Related to Transports
	5.3.1 Communication problems with applications using shared memory on INTEGRITY systems
	5.3.2 Race condition could cause unbounded memory growth in TCP Transport Plugin

	5.4 Fixes Related to Filtering and TopicQuery
	5.4.1 Unnecessary repair traffic for DataWriters using TopicQueries and asynchronous publishing
	5.4.2 Connext application using filtering feature may have crashed after running out of memory
	5.4.3 Unnecessary sample filtering on a DataReader for samples already filtered by a DataWriter
	5.4.4 Creation of a ContentFilteredTopic or reception of TopicQuery samples may have taken long time for complex types
	5.4.5 Continuous creation of TopicQueries may have led to unnecessary memory fragmentation in OS memory allocator
	5.4.6 rti::topic::find_registered_content_filters led to infinite recursion
	5.4.7 Incorrect results for Unions when using DynamicData or Content Filters
	5.4.8 Samples may have been unnecessarily filtered by Connext DataReader when DataWriter was from different DDS vendor

	5.5 Fixes Related to Group Presentation
	5.5.1 Application may not have received samples of coherent set when using GROUP access scope and TRANSIENT_LOCAL durability
	5.5.2 Application may stop receiving samples from DataReaders using GROUP_PRESENTATION_QOS
	5.5.3 Segmentation fault when using GROUP_PRESENTATION_QOS or HIGHEST_OFFERED_PRESENTATION_QOS and setting filter_redundant_samples to FALSE on DataReader

	5.6 Fixes Related to XML Configuration
	5.6.1 Parsing error loading XML configuration file containing a const whose expression refers to an enumerator
	5.6.2 Discrepancy between range defined by schema and that defined by API
	5.6.3 Parsing error loading XML configuration file with enum type containing enumerator whose value was an expression referring to a const
	5.6.4 Parsing error loading an XML configuration file with enum type containing enumerator whose value was an expression
	5.6.5 Type limits not checked for some attributes of XML types definition
	5.6.6 Removed some elements in the XSD that were not supported internally but could be defined in XML
	5.6.7 Builtin Discovery Plugins was not treated as a mask by the XSD file
	5.6.8 Parsing error loading an XML configuration file with an enum type containing an enumerator whose value was an expression referring to another enumerator

	5.7 Fixes Related to Vulnerabilities
	5.7.1 Fixes related to Connext
	5.7.2 Fixes related to third-party dependencies

	5.8 Fixes Related to APIs
	5.8.1 Input parameters to Property and DataTag helper functions do not have const
	5.8.2 Standard 64-bit integer types are now supported (Modern C++ API)
	5.8.3 Assigning DataWriter and DataReaderQos from a TopicQos caused a build error
	5.8.4 Copy of SampleInfo::coherent_set_info field was not supported
	5.8.5 In XML-based applications, generated IDL types did not take precedence over XML DynamicTypes (C# API)
	5.8.6 Namespaces ignored when a type was explicitly registered in C# for XML-based applications
	5.8.7 Corruption of LoanedDynamicData object when moved in some situations (Modern C++ API only)
	5.8.8 Calling DynamicData::set_complex_member with an aliased type failed
	5.8.9 Possible wrong results when adding Time or Duration objects that used very large numbers
	5.8.10 Java API did not support RtpsReliableReaderProtocol_t.receive_window_size

	5.9 Fixes Related to Crashes
	5.9.1 Simultaneous deletion of an entity by multiple threads caused a crash when using Java
	5.9.2 DataReader C++ application crashed if it received tampered sample with unsupported encapsulation ID
	5.9.3 Segmentation fault after calling DomainParticipant::register_durable_subscription with a group containing a long role_name
	5.9.4 Segmentation fault when application using MultiChannel ran out of memory
	5.9.5 Application crashed when capturing traffic for a DomainParticipant created before enabling network capture
	5.9.6 Possible crash when writing a sample
	5.9.7 Potential crash during type registration if system ran out of memory
	5.9.8 Segmentation fault after calling DomainParticipant::delete_durable_subscription with a group containing a long role_name
	5.9.9 Potential crash or memory corruption if user application using thread-specific storage

	5.10 Other Fixes
	5.10.1 Serialization/deserialization of non-primitive sequences and arrays for XCDR2_DATA_REPRESENTATION did not follow Extensible Types specification
	5.10.2 Possible hang when using best-effort writers and asynchronous publishing
	5.10.3 Unnecessary sockets created during initialization of library
	5.10.4 Various issues with RtpsReliableWriterProtocol_t::nack_suppression_duration
	5.10.5 Possible error message printed during Entity disposal
	5.10.6 Runtime error when using debug libraries for QNX x86 platform
	5.10.7 Pushed samples may not have been received by reliable DataReader when DataWriter published Type that supports Zero Copy transfer over shared memory
	5.10.8 Unbounded memory growth in Monitoring Library when creating and deleting endpoints
	5.10.9 Unexpected behavior when two threads crashed at the same time on Windows systems
	5.10.10 DataReaders setting reader_qos.protocol.expects_inline_qos to TRUE incorrectly matched with DataWriters
	5.10.11 Source IP on Spy was not correct when DataWriters with same Topic were on different machines
	5.10.12 Writer using durable writer history may not have blocked after send window filled up when disable positive ACKs was enabled
	5.10.13 Potential truncation of application-level acknowledgment response data
	5.10.14 Error messages displayed that should not have been, when printing DataReaderQoS objects
	5.10.15 Potential Valgrind invalid read when logging a message or enabling heap monitoring
	5.10.16 Malformed IDL printed if multiple labels used for default case of a union

	Chapter 6 Known Issues
	6.1 Known Issues with Usability
	6.1.1 Cannot open USER_QOS_PROFILES.xml in rti_workspace/examples from Visual Studio
	6.1.2 DataWriter's Listener callback on_application_acknowledgment() not triggered by late-joining DataReaders
	6.1.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communication failure when writing small samples
	6.1.4 Memory leak if Foo:initialize() called twice
	6.1.5 Wrong error code after timeout on write() from Asynchronous Publisher
	6.1.6 Type Consistency enforcement disabled for structs with more than 10000 members
	6.1.7 Escaping special characters in regular/filter expressions not supported in some cases

	6.2 Known Issues with Code Generation
	6.2.1 Examples and generated code for Visual Studio 2017 and later may not compile (Error MSB8036)

	6.3 Known Issues with Instance Lifecycle
	6.3.1 Instance does not transition to ALIVE when live DataWriter detected
	6.3.2 Persistence Service DataReaders ignore serialized key propagated with dispose updates

	6.4 Known Issues with Reliability
	6.4.1 DataReaders with different reliability kinds under Subscriber with GROUP_PRESENTATION_QOS may cause communication failure

	6.5 Known Issues with Content Filters and Query Conditions
	6.5.1 Writer-side filtering may cause missed deadline
	6.5.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated correctly

	6.6 Known Issues with TopicQueries
	6.6.1 TopicQueries not supported with DataWriters configured to use batching or Durable Writer History

	6.7 Known Issues with Transports
	6.7.1 AppAck messages cannot be greater than underlying transport message size
	6.7.2 DataReader cannot persist AppAck messages greater than 32767 bytes
	6.7.3 Discovery with Connext Micro fails when shared memory transport enabled
	6.7.4 Communication may not be reestablished in some IP mobility scenarios
	6.7.5 Corrupted samples may be forwarded through Routing Service when using Zero-Copy transfer over shared memory
	6.7.6 Network Capture does not support frames larger than 65535 bytes

	6.8 Known Issues with FlatData
	6.8.1 FlatData language bindings do not support automatic initialization of arrays of primitive values to non-zero default values
	6.8.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined behavior
	6.8.3 FlatData in combination with payload encryption in RTI Security Plugins and/or compression will not save copies

	6.9 Known Issues with Coherent Sets
	6.9.1 Some coherent sets may be lost or reported as incomplete with batching configurations
	6.9.2 Copy of SampleInfo::coherent_set_info field is not supported
	6.9.3 Other known issues with coherent sets

	6.10 Known Issues with Dynamic Data
	6.10.1 Conversion of data by member-access primitives limited when converting to types that are not supported on all platforms
	6.10.2 Types that contain bit fields not supported

	6.11 Known Issues in RTI Monitoring Library
	6.11.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Participant Sends Monitoring Data
	6.11.2 Participant’s CPU and memory statistics are per application
	6.11.3 XML-based entity creation nominally incompatible with static monitoring library
	6.11.4 ResourceLimit channel_seq_max_length must not be changed

	6.12 Known Issues with Installers
	6.12.1 RTI Connext Micro 3.0.3 installation package currently compatible only with Connext 6.0.1 installer

	6.13 Other Known Issues
	6.13.1 Possible Valgrind still-reachable leaks when loading dynamic libraries
	6.13.2 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) supported only in Java, no other languages
	6.13.3 Creating multiple DataReaders for the same Topic under the same Subscriber configured with Group Ordered Access is not supported

	Chapter 7 Experimental Features

