RTI Cloud Discovery Service

User's Manual

Version 7.2.0

Your systems.
Working as one.

Contents

1 Table of Contents 2
1.1 Introduction L 2
1.1.1 TheBasics o 3

1.1.2 Available Documentation o 6

1.1.3 Paths Mentioned in Documentation 6

1.2 Imstallation L e e 7
1.2.1 Installing an Evaluationor LM Version 7

1.2.2 Installinga Regular Version 7
Installing from RTI Launcher 8

Installing from the command line, 8
Otherdependencies e 8

1.3 Core CONCEPLS .« . v v v v o e e e e e e e e e e e e e e e e e 8
1.3.1 Domain Lists e 9
Domain Tags e 9

Domain Participant Partitions Lo 12

1.3.2 Transport e e e e e e e 15
RTPS Peer Descriptor o .. e 16

About Ports 18

1.3.3 Forwarder e 18

Flow Controller 20

1.34 Database 21

1.4 NAT Traversal e 21
1.41 Introduction L e 21

1.4.2 Running Cloud Discovery Service with RTI Real-Time WAN Transport 23

Cloud Discovery Service configurationo 23

Application DomainParticipant configuration 24
Communication between DomainParticipants 26

1.4.3 Communication scenarios using Cloud Discovery Service 27

1.4.4 Debugging Cloud Discovery Service with the UDP WAN Transport 28
Logging e 28
Administration oL e 30

Identifying the NAT type o . o o 31

145 KeyTerms o e e e 31

1.5 Usage o o e 32
1.5.1 Command-Line Executable 32
Starting Cloud Discovery Service o 32

Stopping Cloud Discovery Service 33

1.6

1.7

1.8

1.9

1.10

Command-Line Options 33

1.5.2 Cloud Discovery Serviceasa Library 35
1.5.3 Operating System Daemon 36
Configuration e 36
1.6.1 Configuring Cloud Discovery Service 36
1.6.2 XML Tags for Configuring RTI Cloud Discovery Service 36
Cloud Discovery Service o . i v v i et e e e 37
Administration Lo e e e e e e 40
Monitoring i e e e e e e e e e e e e e 41
Domain List 41
Transport e e e e e e e e e e 43
SECUTILY . . . o o o o o e e e e e e 47
ProtocolMode 49
Forwarder 49
Database 53
Resource Limits 54
Enabling Distributed Logger L o 56
1.6.3 Builtin Configuration 57
1.6.4 Overriding XML Settings e 57
Remote Administration 58
1.7.1 Enabling Remote Administration 58
1.7.2 Available Service Resources Lo 58
Example 59
1.7.3 Remote API Overview 59
1.7.4 Cloud Discovery Service i i ittt 60
1.7.5 Database 61
MoONitoring o e e e e e e e e e e e e e 63
L8.1 Overview o e e e 64
Enabling Service Monitoring 64
Monitoring Types e 64
1.8.2 Monitoring Metrics Reference 64
SEIVICE . . . o o e e e 66
Forwarder 67
Sender e e 68
Receiver e 69
Database e 70
SECUTILY o o o e e e e e 71
1.9.1 Configuration 71
1.9.2 Pre-Shared Key Mutability, 72
Tutorials e 72
1.10.1 Example: Using a Builtin UDP Transport 72
Setup e e 73
Disable Multicast and Shared Memory, and unset default Initial Peers 74
Cloud Discovery Service in Action i 74
1.10.2 Example: Using a Custom Listening Port 75
1.10.3 Example: Using RTI TCP Transport 76
SEtUP . . . o e e e e e 76
Cloud Discovery Service in Action o 77

1.11
1.12

1.13

1.14

Configuration for TCP transport in WAN Mode using a public address 78

1.10.4 Example: Using RTI TCP Transport with RTI TLS Support 80
Setup e e e 80
Cloud Discovery Service in Actiono 81
1.10.5 Example: Using RTI Real-Time WAN Transport 83
SEtup . . . e 84
Cloud Discovery Service in Action i 84
1.10.6 Example: Discovering Connext Micro applications with Cloud Discovery Service . . 86
Installing Connext Micro o i i it 86
SEtUP . . o o e e 86
Understanding the Connext Micro Peer Descriptor 87
Configure by Port 88
Configure by DomainID 89
Software Development Kit L 91
Common Infrastructure L 92
1.12.1 Configuring RTI Services it 92
How to Load and Select an XML Configuration 92
How to Load Default QoS Profiles 99
How to Set Logging Properties 99
How to Run as an Operating System Daemon 101
How to use a License File with RTI Services 103
Key Terms e e 103
1.12.2 Application Resource Model 104
Example: Simple Resource Model of a Connext Application 104
Resource Identifiers 105
1.12.3 Remote Administration Platform oL 0oL 107
Remote Interface 108
Communicationo e e e e 110
Common Operations v v v v i e e e e e 112
1.12.4 Monitoring Distribution Platform L. 117
Distribution Topic Definition L 117
DDS Entities e e e e e e 121
Monitoring Metrics Publication 121
Monitoring Metrics Reference L o oL 122
1.12.5 Plugin Management e 128
Shared Library e 128
Library APL« . o e 131
Troubleshooting e e e 131
1.13.1 My Applications don’t Communicate 131
Make Sure Your Application can Accept Unknown Peers 131
Check that Your Initial Peers List Points to Cloud Discovery Service 132
See Where Your Cloud Discovery Service Instance is Listening 132
Identifying NAT traversal address resolutions 132
1.13.2 Cloud Discovery Service Log Errors 133
Invalid Port 133
Port AlreadyinUse e 133
Release Notes o 133
1.14.1 Supported Platforms L 133

1.142 Compatibility 134

Connext compatibility 134

1.143 Whats Newin7.2.0 e 134

Third-party software changes L oL 134

Simple Participant Discovery Protocol 2.0 Integration 134

RTI Lightweight Security Plugins Integration 135

1.144 Whats Fixedin 7.2.0 e 135

Fixes Related to Discovery 135

Fixes Related to Usability 135

1.14.5 PreviousReleases 136

What's Newin7.1.0 136

Whats Fixedin7.1.0 136

What's Newin 7.0.0 L 137

What's Fixedin 7.0.0 138

1.146 Knownlssues e 139
Cloud Discovery Service does not terminate when its internal DomainParticipant does

not initialize properly L 139

Fourth digit of product version not logged by Cloud Discovery Service at startup . . . 140

1.15 Copyrightsand Notices e 140

Index 142

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Welcome to RTI® Cloud Discovery Service an out-of -the-box solution for provisioning discovery in cloud-based
environments.

Contents 1

Chapter 1

Table of Contents

1.1 Introduction

RTI® Cloud Discovery Service is a stand-alone application that deploys RTI Connext® applications in dy-
namic environments where UDP/IP multicast is not available. This is typical of wide-area networks or some
cloud-based environments where the routers and switches may disable IP multicast forwarding. Cloud Dis-
covery Service also works in conjunction with the RTI Real-Time WAN Transport to provide peer-to-peer
communication between DomainParticipants situated behind Network Address Translators (NATS).

DDS has a builtin Discovery Service that allows all DDS applications to automatically detect the presence of
other applications and discover the Topics they publish and subscribe along with the associated data types and
Quality of Service (QoS).

The builtin discovery service primarily relies on UDP/IP multicast to bootstrap the detection of other DDS
applications and learn their network addresses. The use of UDP/IP multicast allows DDS discovery to be
completely peer-to-peer. That is, it can operate without requiring any additional services or brokers. The
applications themselves can discover each other directly.

However, if Connext applications run in environments where UDP/IP multicast is not available, then builtin
(peer-to-peer) discovery is not sufficient. Connext offers two mechanisms to help with those scenarios:

* For static environments where the network addresses of all the applications are known a-priori, you can
configure your application to automatically check on these addresses for the presence of other applica-
tions. This is accomplished by configuring the Initial Peers.

* For dynamic environments where the network addresses are not known in advance, or in cases where the
list is too large or cumbersome to manage, you can leverage RTI Cloud Discovery Service. This external
service acts as a reliable “rendezvous” point for Connext applications to learn about the presence and
network addresses of other DDS applications. You can do this by setting the Initial Peers to include
Cloud Discovery Service.

* For WAN deployments where applications require Network Address Translator (NAT) traversal. Cloud
Discovery Service can aid in this process in combination with RTI Real-Time WAN Transport. See RTI
Real-Time WAN Transport.

Figure 1.1 shows a simple representation of the operation of Cloud Discovery Service. It acts as a “relay” service
that forwards the bootstrap (participant announcement) messages that allow DomainParticipants to learn about

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/ConfigPeersListUsed_inDiscov.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/ConfigPeersListUsed_inDiscov.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/PartRealtimeWAN.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/PartRealtimeWAN.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Multicast-less
network
Participant B

N\ y
;\ A
C C
Cloud Discovery Service

Participant A

A
65

B
Participant C

Figure 1.1: Cloud Discovery Service Overview

the presence of other DomainParticipants.

1.1.1 The Basics

Cloud Discovery Service operates using the default Simple Participant Discovery Protocol (SPDP)! or the new
Simple Participant Discovery Protocol 2.0 (SPDP2)?. In either case, DomainParticipants initially announce their
presence to all the specified Initial Peers. These participant announcements contain the necessary information
for other DomainParticipants to discover their presence and bootstrap communications. In Simple Participant
Discovery Protocol, these messages are also used to maintain participant liveliness.

Cloud Discovery Service listens for participant announcements to dynamically learn about the current list of
DomainParticipants, their DDS domain IDs, and their network addresses.

Figure 1.2 illustrates that each DomainParticipant includes a Cloud Discovery Service instance in its Initial
Peers. Hence, the DomainParticipant will send participant announcements to Cloud Discovery Service, which
will forward those announcements to the list of DomainParticipants it knows about, enabling them to initiate
the discovery process among themselves.

Figure 1.3 illustrates that once a DomainParticipant discovers the presence of another one (via the forwarded
message from Cloud Discovery Service) it sends its Participant Announcement messages directly. This step is

! Simple Participant Discovery Protocol discovers all other DomainParticipants in the same DDS Domain by sending participant
announcements. Such announcements include the DomainParticipant unique identifying key, transport locators, and QoS. These an-
nouncements are sent on a periodic basis using best-effort communication.

2 Simple Participant Discovery Protocol 2.0 is an alternative to the original Simple Participant Discovery Protocol. SPDP2 is designed
to decrease bandwidth usage and improve the reliability of the participant discovery and update process.

1.1. Introduction 3

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/ConfigPeersListUsed_inDiscov.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/ConfigPeersListUsed_inDiscov.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/ConfigPeersListUsed_inDiscov.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

[

Cloud Discovery Service]

Participant
Announcements
(relayed)

E

Participant A Participant B

Participant C

Figure 1.2: Cloud Discovery Service forwards Participant Announcement messages

[Cloud Discovery Service]

Participant Announcement

Participant Announcement

Participant A Participant B Participant C

Figure 1.3: DomainParticipants exchange Participant Announcement messages

1.1.

Introduction 4

RTI Cloud Discovery Service User's Manual, Version 7.2.0

the same as if the DomainParticipant had included the other DomainParticipant in its Initial Peers or was using
multicast to announce its presence. These messages are also used to maintain participant liveliness.

[Cloud Discovery Service J

Reader/Writer Discovery

Reader/Writer Discovery

Participant A Participant B Participant C

Figure 1.4: DomainParticipants exchange Endpoint Discovery messages

Figure 1.4 illustrates that once DomainParticipants know about each other, they exchange Endpoint discovery
information. That is, they exchange information about the DataWriters and DataReaders each one has. This
step is unaltered by the presence of Cloud Discovery Service.

Direct benefits of Cloud Discovery Service:

* Dynamic discovery remains possible even if multicast is not available, without the need to anticipate or
maintain a list of peers.

* Cloud Discovery Service integrates seamlessly in a DDS environment. Because it operates at the RTPS?
level, Connext applications do not need any special behavior or protocol. They just need to configure
their Initial Peers to contain the location where Cloud Discovery Service is running. Since this is all
configurable at runtime, there is no need to recompile your application. This implies that Cloud Discovery
Service will also work with existing services such as RTI Routing Service, RTI Connext Micro, or other
implementations of DDS-RTPS.

» Discovery remains a distributed process performed among all the DomainParticipants. This allows you
to scale the system dynamically. It also avoids having centralized and bottleneck servers.

For a deeper understanding of discovery, refer to Discovery Overview in the RTI Connext Core Libraries User’s
Manual.

3 Real-Time Publish-Subscribe Protocol

1.1. Introduction 5

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/ConfigPeersListUsed_inDiscov.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/ConfigPeersListUsed_inDiscov.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Discovery.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.1.2 Available Documentation

In this manual you can find:

* Introduction

* Installation

* Core Concepts
 Configuration

* Usage

* Tutorials
 Troubleshooting

e Release Notes

1.1.3 Paths Mentioned in Documentation

This documentation refers to:

* <NDDSHOME> This refers to the installation directory for Connext. The default installation paths are:
— macOS® systems: /Applications/rti_connext_dds-version

— Linux® systems, non-root user: /home/your user name/
rti_connext_dds-version

— Linux systems, root user: /opt/rti_connext_dds-version

— Windows® systems, user without Administrator privileges: <your home directory>\
rti connext_dds-version

— Windows systems, user with Administrator privileges: C:\Program Files\
rti_connext_dds-version

You may also see SNDDSHOME or $NDDSHOME %, which refers to an environment variable set to the
installation path.

Whenever you see <NDDSHOME > used in a path, replace it with your installation path.

Note for Windows Users: When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quo-
tation marks. For example: “C:\Program Files\rti_connext_dds-version\bin\
rticlouddiscoveryservice.bat”

Or if you have defined the NDDSHOME environment variable: "$NDDSHOME%\bin\
rticlouddiscoveryservice.bat"

* <path to examples> By default, examples are copied into your home directory the first time you

run RTT Launcher or any script in <NDDSHOME>/bin. This document refers to the location of the
copied examples as <path to examples>.

1.1.

Introduction 6

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Wherever you see <path to examples>, replace it with the appropriate path. Default path to the
examples:

— macOS systems: /Users/your user name/rti_workspace/version/examples
— Linux systems: /home/your user name/rti_workspace/version/examples

— Windows systems: your Windows documents folder\rti_workspace\
version\examples. Where 'your Windows documents folder' depends
on your version of Windows. For example, on Windows 7, the folder is C:\Users\your
user name\Documents; on Windows Server 2003, the folder is C: \Documents and
Settings\your user name\Documents.

* <RTIMEHOME> This environment variable must be set to the installation directory path
for Connext Micro. 1If you installed Connext Professional with default settings, this will be
in: <path_to_connext_dds_installation>/rti_connext_dds-version/
rti_connext_micro-version. If you have copied Connext Micro to another place, set
RTIMEHOME to point to that location.

References
1.2 Installation

Cloud Discovery Service is not installed as part of a Connext package, unless you
are installing an evaluation (“eval”’) or LM (“Im”) package (such as rti_con-
next dds—|CONNEXT_ currentVersion|-eval-x64Win64vS2017.exe or rti con-—
next_dds—|CONNEXT_currentVersion|-1m-x64Win64VS2017.exe), which includes Cloud
Discovery Service. Unless you are installing an “eval” or “Im” package, Cloud Discovery Service must be
downloaded and installed separately. Contact support@rti.com for information on how to obtain a Cloud
Discovery Service package for your platform.

1.2.1 Installing an Evaluation or LM Version
Install the evaluation (“eval”) or LM (“Im”) package as described in the RTI Connext Installation Guide. The
package includes Cloud Discovery Service.

After installing the eval or Im package, see How to use a License File with RTI Services.

1.2.2 Installing a Regular Version

There are two ways to install Cloud Discovery Service: using RTI Launcher or the rtipkginstall
command-line utility. For each of the methods, make sure that you install the correct host and target for
your environment (see Cloud Discovery Service now shipped as host and target). Additional information about
installation can be found at Installing Connext, in the Getting Started Guide.

Note: Cloud Discovery Service is supported with Connext 5.3.0 and higher. Before 6.1.0, Cloud Discovery
Service was an RTI Labs product that came installed with Connext. As of 6.1.0, it must be downloaded and

1.2. Installation 7

mailto:support@rti.com
../../../../doc/manuals/connext_dds_professional/installation_guide/index.htm
../../../../doc/manuals/connext_dds_professional/getting_started_guide/cpp11/before.html#installing-connext-heading

RTI Cloud Discovery Service User's Manual, Version 7.2.0

installed separately (unless you have an Im package).

Installing from RTI Launcher

To install Cloud Discovery Service from RTI Launcher:

1. Start RTT Launcher from the Start menu or from the command line, by running: <NDDSHOME>/bin/
rtilauncher.

2. From Launcher’s Configuration tab, click on Install RTI Packages.
3. Use the + sign to add the . rt ipkg file(s) that you want to install.
4. Click Install.

Installing from the command line

To install Cloud Discovery Service from the command line, run:

SNDDSHOME /bin/rtipkginstall \
/<path-to-cloud-discovery-service>/rtipkgfile.rtipkg

Other dependencies

Cloud Discovery Service may have dependencies on other packages as follows:
* RTI TLS support and OpenSSL: If using TLS as a transport.
* RTI Security and OpenSSL: If using the Security provisions provided by Cloud Discovery Service.

1.3 Core Concepts

This section aims to provide a deeper understanding of what Cloud Discovery Service is made of, to give you
the required insight to configure and use it effectively.

You will learn about:
* Domain lists: Sets the context for Cloud Discovery Service in DDS domains.

» Transport: Shows how the transports are modeled in Cloud Discovery Service, which is the basis for
communication with DomainParticipants.

» Forwarder: Explains the active logic of Cloud Discovery Service that is in charge of processing the
incoming participant announcements, building the system discovery state, and providing the information
to all DomainParticipants.

* Database: Describes the collection of discovered DomainParticipant information that Cloud Discovery
Service maintains to represent the current state of the system.

1.3. Core Concepts 8

https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_professional/transports/tls_support/installation_guide/index.htm
https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/installation_guide/index.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.3.1 Domain Lists

A single Cloud Discovery Service can forward participant announcements in multiple DDS domains. Yet Cloud
Discovery Service preserves the isolation of DDS domain IDs such that a DomainParticipant only discovers
other DomainParticipants with the same DDS domain ID.

|

/~ S ™ / R N
f Domain ID=1 f Domain ID=2 \

A - /
\/ ~N 7 '
Iu
AN

B 7_‘\?/,—7.._.}/,_.,7——-.\\ /_______‘(/-— ~/ "'""\/"'_"-\

Cloud Discovery Service

Figure 1.5: Cloud Discovery Service works with Multiple Domains

By providing a domain list, you can control on which domains Cloud Discovery Service operates. A domain list
is a representation of domains by their IDs. You can learn more about configuring domain lists in Domain List.

Support for multiple domain IDs can simplify system deployments, allowing a few Cloud Discovery Service
instances to provide discovery services for all possible expected domain IDs, even if all these domain IDs are
not known in advance.

Domain Tags

In large-scale systems or multi-tenant networks, such as those found in Cloud deployments, the isolation pro-
vided by the DDS domain ID may not be sufficient:

* The maximum number of domain IDs is limited and not sufficiently large. In deployments that require
many independent DDS systems in a common network, the domain ID would not be sufficient to provide
isolation.

* Managing the assignment of numeric domain IDs to independent systems or projects can be cumbersome.
Numeric IDs cannot easily leverage existing organizational or project boundaries such as project name,

1.3. Core Concepts 9

RTI Cloud Discovery Service User's Manual, Version 7.2.0

department, organization, etc.
For these reasons, the DDS domain concept has been extended to include Domain Tags.

A domain tag is a logical sub-division within a domain. It is defined as a string. DomainParticipants associated
to different domain tags will not discover each other even if they are in the same domain ID. You can think of
a Domain Tag as the DDS equivalent of a network VLAN.

Figure 1.6 shows an overview of the domain tag concept.

PA PA
i
Participant B I Participant D Participant F
TagX TagY TagZ
{-____ o ___________ - _____j
PA
- Participant)
Participant — - - lgnored «—» discovery
PA announcement announcoment - g path path
(ignored)

Figure 1.6: Domain Tags

A DomainParticipant can be associated with only one domain tag. In a given domain, all the DomainParticipants
may exchange participant announcements in order to initiate the discovery process between them. However,
only DomainParticipants that have the same domain tag will discover each other.

Domain tags allow you to divide your domain into as many logically isolated spaces as you need. A domain tag
is represented by a string tag name. You can define as many tags as you need. The tag name may include any
ASCII character.

Note: The absence of a domain tag is treated like a special value of the tag. DomainParticipants that do not
specify a domain tag will communicate only with each other.

Characteristics of domain tags:
1. Single Tag per DomainParticipant: A DomainParticipant can be associated with a single domain tag.

2. Immutability: Domain tags are immutable. DomainParticipants specify the domain tag at creation time
and it cannot be modified.

1.3. Core Concepts 10

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Cloud Discovery Service supports domain tags and forwards discovery information only to DomainParticipants
with matching tuple of (domainID, domainTag). Figure 1.7 shows the domain tags’ effect when Cloud Discovery
Service drives the discovery process.

Cloud Discovery Service

Figure 1.7: Cloud Discovery Service with Domain Tags

Cloud Discovery Service detects the domain tag of each DomainParticipant and remembers that association.
That way it can forward the participant announcements only to those DomainParticipants that belong to the
same domain ID and tag.

You can specify the domain tag for a DomainParticipant at creation time via DomainParticipantQos. In particu-
lar, you need to propagate the well-known property dds .domain_participant.domain_tag, whose
value contains the name of the tag associated with the DomainParticipant. You can specify this property through
the PropertyQosPolicy. For more information, see Choosing a Domain Tag in RTI Connext Core Libraries User’s
Manual.

Specifying the Domain Tag in XML

The following XML snippet shows how to specify the domain tag within <domain_participant_gos>.

<domain_participant_gos>
<property>
<element>
<name>dds.domain_participant.domain_tag</name>
<value>TagX</value>
<propagate>true</propagate>

(continues on next page)

1.3. Core Concepts 11

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/ChoosingDomainTag.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

</element>
</property>
</domain_participant_gos>

Domain Participant Partitions

Domain Participant Partitions provide a way to create different communication planes within a (domain ID,
domain Tag). DomainParticipants can join and leave these communication planes at any time while they are
running. Partitioning at the DomainParticipant level can be particularly useful in large, WAN, distributed
systems (with thousands of DomainParticipants) in which not all DomainParticipants need to know about each
other at any given time. Partitioning at the DomainParticipant level helps reduce network, CPU, and memory
utilization, because DomainParticipants without matching partitions will not exchange information about their
DataWriters and DataReaders.

To summarize, the characteristics of Domain Participant Partitions are:

1. Mutable: A DomainParticipant can change its partition values at runtime. This allows flexibility within
a running system.

2. Multiple Values: A DomainParticipant can contain multiple values including wildcard characters for
its partitions. This allows a DomainParticipant to be a member of multiple partitions simultaneously.

3. Efficient: They are more efficient than Endpoint Partitions, since traffic is restricted only until the Partic-
ipant Discovery level. No Endpoint Discovery takes place if partition values for two DomainParticipants
don’t match.

Cloud Discovery Service supports systems that utilize Domain Participant Partitions. It forwards announce-
ments to DomainParticipants with matching tuple of (domainID, domainTag) and matching Domain Partici-
pant Partitions. In this way, Cloud Discovery Service increases bandwidth reduction even further, because an
announcement from a DomainParticipant is only forwarded to DomainParticipants with a matching partition.
(Cloud Discovery Service accomplishes this targeted forwarding by maintaining an internal state to help with
the filtering related to partitions.)

Figure 1.8 shows the Domain Participant Partitions’ effect when Cloud Discovery Service drives the discovery
process.

Cloud Discovery Service detects the Domain Participant Partitions of each DomainParticipant and maintains
a mapping for its matching DomainParticipants. That way it can forward the participant announcements only
to those DomainParticipants that pass the matching criteria highlighted above. When a DomainParticipant
changes its Domain Participant Partitions value, Cloud Discovery Service updates the mapping for the new
value before forwarding the incoming participant announcement.

You can specify the Domain Participant Partitions for a DomainParticipant at creation time via DomainPartici-
pantQos in its Partition QoS Policy. For XML, you need to set the <part it ion> tag, whose value contains the
list of partitions associated with the DomainParticipant. You can also change the value for Domain Participant
Partitions at runtime while the DomainParticipant is running. For more information, see Domain Participant
Partitions in RTI Connext Core Libraries User’s Manual.

Note: All DomainParticipants are members of at least one concrete partition. If a DomainParticipant does

1.3. Core Concepts 12

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Creating_ParticipantPartitions.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Creating_ParticipantPartitions.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

[Cloud Discovery Service]

Partition = [Africa] Partition = [US, A"]
—>‘ Participant C [Participant D

Partition = [US]
Participant B

Partition = [US, Africa]

Partition = [Asia]

Participant E

Participant A

Figure 1.8: Cloud Discovery Service with Domain Participant Partitions

not specify any partition or if it only specifies wildcard partitions, the DomainParticipant is considered a mem-
ber of the empty partition. The absence of a partition tag is treated like a special value (empty partition).
DomainParticipants that do not specify a partition tag will communicate only with each other.

Specifying Domain Participant Partitions in XML

The following XML snippet shows how to specify the partition values within
<domain_participant_gos>.

<domain_participant_gos>
<partition>
<name>
<element>US</element>
<element>A*</element>
</name>
</partition>
</domain_participant_qgos>

1.3. Core Concepts 13

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Changing Domain Participant Partitions in code

The following code snippet shows how to change the Domain Participant Partitions value at runtime via code.

C

DDS_DomainParticipant *participant = NULL;
struct DDS_DomainParticipantQos participantQos =
DDS_DomainParticipantQos_INITIALIZER;

/* QoS configuration happens here */

/* Create the participant */

participant = DDS_DomainParticipantFactory_create_participant (
DDS_TheParticipantFactory,
domainId,
&participantQos,
NULL,
DDS_STATUS_MASK_NONE) ;
if (participant == NULL) {

/* Handle error */

/* Participant is now up and running */

/* Get the QoS */
if (DDS_DomainParticipant_get_qgos (participant, &participantQos))
!= DDS_RETCODE_OK) {
/* Handle error */

/* Set the sequence length and values */
if (!DDS_StringSeqg_ensure_length (
&participantQos.partition.name,
3/
3)) A

/* Handle error */

*DDS_StringSeq_get_reference (&participantQos.partition.name, 0) =
DDS_String_dup ("US");
if (*DDS_StringSeqg get_reference (&¢participantQos.partition.name, 0)
== NULL) {
/* Handle error */

*DDS_StringSeq _get_reference (&participantQos.partition.name, 1) =
DDS_String_dup ("Africa");
if (*DDS_StringSeqg_get_reference (&participantQos.partition.name, 1)
== NULL) {
/* Handle error */

(continues on next page)

1.3. Core Concepts 14

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

*DDS_StringSeq _get_reference (&participantQos.partition.name, 2) =
DDS_String_dup ("Asia");
if (*DDS_StringSeqg _get_reference (&participantQos.partition.name, 2)
== NULL) {
/* Handle error */

/* Assign the new QoS */
if (DDS_DomainParticipant_set_gos (participant, &participantQos))
!= DDS_RETCODE_OK) {
/* Handle error */

C++

using namespace dds::domain;

using namespace dds::domain: :qgos;

using namespace dds::core::policy;

using namespace dds: :core;

DomainParticipantQos gos = DomainParticipant::default_participant_gos();

// QoS configuration happens here

// Create the participant
DomainParticipant participant (domain_id (), gos);

// Participant is now up and running

// Create a new partition value
Partition newPartitionValues (StringSeqg({ "US", "Africa", "Asia" }));

// Update the QoS
gos << newPartitionValues;

// Assign the new QoS
participant << qgos;

1.3.2 Transport

Cloud Discovery Service allows you to select which transports to use to send and receive discovery traffic. The
selection of transports defines the possible locations where the service can be reached. DomainParticipants
require this information to communicate with the service.

In a Connext application, DomainParticipants automatically configure the underlying transport ports based on
the domain ID and the network capabilities of the host machine where the application runs. In Cloud Discovery
Service, this configuration is manual and explicit.

Note: Cloud Discovery Service only works with unicast transports. In this manual, any reference to the

1.3. Core Concepts 15

RTI Cloud Discovery Service User's Manual, Version 7.2.0

transport will always imply unicast.

In particular, Cloud Discovery Service allows you to choose:

* Transport class instance: A transport class is a concrete realization of a networking transport (e.g.,
UDP, TCP, etc.). You can instantiate this class and uniquely identify it with a fransport alias. In ad-
dition, for each instantiation you can configure properties specific to the implementation (e.g., network
interfaces, receive buffer sizes, etc.).

* Transport Address: A transport address represents an interface for a specific transport class (for exam-
ple, an IP address for the UDP or TCP transport).

* Receive Port: Identifies where the service listens for incoming data. For more information about ports,
see About Ports.

Each transport instance-address tuple constitutes a Transport Locator, which is a unique data-reception end-
point. Cloud Discovery Service creates send resources to put discovery traffic on the wire. Connext uses
ephemeral ports for outbound data, hence a send resource is specified by a transport instance only. Cloud
Discovery Service creates a send resource for each transport instance specified.

Cloud Discovery Service relies on the same pluggable transport framework that is available for Connext applica-
tions to create and access transport resources. This implies you can use not only R7T Connext builtin transports,
but also your own transport implementations. For more information, see transport plugins in R7I Connext Core
Libraries User’s Manual.

DomainParticipants can communicate with Cloud Discovery Service as long as they are configured with the
proper transport settings. Then they can reach a specific service instance in two ways:

1. By addressing the service instance through an RTPS peer descriptor which allows you to identify a DDS
service in a generic way by its locator. DomainParticipants can include these in their lists of initial peers.

2. By addressing the service instance through a peer participant descriptor such that the resulting destina-
tion port, computed from the domain ID of the DomainParticipant and well-known ports configuration,
matches the listening port of the service.

Cloud Discovery Service determines how to reach DomainParticipants based on the locator information they
propagate as part of their participant announcements. Cloud Discovery Service sends discovery traffic to a
DomainParticipant by sending data to each of its locators.

RTPS Peer Descriptor

A peer descriptor is a string representation of a set of locators for DDS DomainParticipants. It provides a
compact way to indicate a list of locators where a DomainParticipant can find other DomainParticipants. This
is known as a participant peer descriptor, or simply a peer descriptor.

RTI Connext applications use the peer descriptor to bootstrap the participant discovery process with other Do-
mainParticipants. Refer to discovery peer configuration in the R7TI Connext Core Libraries User’s Manual.

The RTPS peer descriptor is another kind of peer descriptor that allows addressing a service with which you
communicate through the RTPS protocol, and that does not necessarily imply the existence of a DomainPar-
ticipant. Cloud Discovery Service is an example of such a service.

1.3. Core Concepts 16

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/transports.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/ConfigPeersListUsed_inDiscov.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Note: The RTPS peer descriptor format is supported only by applications using RTI DDS Connext versions
5.3.0 and higher.

The RTPS peer descriptor format is shown below:

rMps @ <locator> ; <port>

Figure 1.9: RTPS Peer Descriptor Format

Table 1.1 describes all the elements in the RTPS peer descriptor.

Table 1.1: RTPS Peer Descriptor Elements

Element Description Required Default
rtps Keyword to indicate the RTPS descriptor | Yes
kind.
@ Separator. Only when
<locator> is speci-
fied.
<locator> Specifies a transport and an address. See | No udpv4://local-
locator format. host
Separator. Only when <port> is
specified.
<port> RTPS Peer receive port. See About Ports. | No 7400

Example: RTPS Peer Descriptors

Table 1.2: RTPS Peer Descriptor for UDP/IP Version 4 Transport
rtps IE | udpv4://192.169.1.1 E [7400

Table 1.3: RTPS Peer Descriptor for a Generic Starfabric Trans-
port

rtps ‘ @ ‘ starfabric://FA::0#0/0/R ‘ ‘

1.3. Core Concepts 17

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Peer_Descriptor_Format.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Example: Transport Setup and Resulting RTPS Descriptor

Assume Cloud Discovery Service is configured with the following transport settings and running on host with
address CDS-Host—-IP-Address:

<transport>
<element>
<alias>udpvid</alias>
<receive_port>57410</receive_port>
</element>
</transport>

DomainParticipants can send discovery traffic to this service by adding the following peer to their initial peer
lists:

rtps@udpvd://<CDS-Host-IP-Address>:57410

About Ports

Discovery traffic through RTPS relies on well-known ports to establish communication between peers. These
ports are a logical concept that allow multiplexing communications at the middleware layer.

It is up to the underlying transport implementation to decide how to map these logical port numbers into the
physical transport address scheme. For instance, the RTI builtin UDP transport directly maps the logical port
number into the physical UDP port.

The port mapping is especially important in Cloud environments where UDP and TCP dominate the transport
layer. The presence of these protocols often requires knowing details about the communication ports to properly
set up application services.

In a DomainParticipant, unless explicitly configured, ports are determined automatically based on the domain
ID and participant ID. Also, the port mapping is fully controlled by the underlying transport. In Cloud Discovery
Service, the ports must be configured explicitly. Moreover, for the direct known RTI transport implementations
that rely on UDP and TCP, Cloud Discovery Service maps the (logical) receive port directly to the transport
physical port.

See RTPS Ports Used for Communication to learn more about RTPS ports.

1.3.3 Forwarder

The forwarder is the Cloud Discovery Service component where all the discovery logic resides. Its responsibility
is to build/maintain the discovery state and forward participant announcements to the peer DomainParticipants
so that they can discover each other.

Figure 1.10 shows a representation of the forwarder element of Cloud Discovery Service.

The forwarder is composed of four main blocks:

1.3. Core Concepts 18

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Ports_Used_for_Discovery.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

UDPwv4 WAN Locator Resolution

PA.
. PA 7 Event
Announcement Resend Manager
Receive 1 | | PA
Resources U v
s ™~
Refresh/Repeat
| Pa PA .. PA
. J
s ™ Flow
Change/Update Controller
Receiver | PA PA PA
_ J
[
s ~
New Send
Resources
> — PA
PA PA PA -
~ o PA

Figure 1.10: Participant Announcement Forwarder

* Receiver: The element in charge of retrieving incoming participant announcements. This element inter-
faces with the receive resources, which provide the participant announcements received from all the peer
DomainParticipants.

* Announcement Queues: The received participant announcements are placed in queues so they can be
forwarded to their proper destinations. Participant announcements can be categorized in three classes:

— New: Announcements from DomainParticipants that are considered new from the service perspec-
tive.

— Change/Update: Announcements from DomainParticipants that the service has already seen but
that contain content changes relative to the previous announcement from the same DomainPartici-
pant. For example, QoS or Locator changes or Locator resolutions for the DomainParticipant.

— Refresh/Repeat: Announcements from DomainParticipants that the service has already seen and
that do not contain any content changes from the previously received announcement.

This classification allows the forwarder to process the different categories differently, allowing you to
prioritize and regulate the bandwidth used by each traffic class.

* Flow Controller: The entity that removes announcements from the queue and forwards them to the
proper destinations. The flow controller regulates the output announcement traffic. The flow controller
uses the send resources to direct the announcements to the proper DomainParticipants.

» Event Manager: This element is in charge of handling events like UDPv4 WAN locator resolution and
announcement resend. Each of these events is described below:

— UDPv4 WAN Locator Resolution: This event happens when the Real-Time WAN Transport is used
as a transport in a WAN scenario. In such an environment due to the presence of a NAT, locators

1.3. Core Concepts 19

RTI Cloud Discovery Service User's Manual, Version 7.2.0

in the incoming participant announcement are resolved asynchronously to their public IP addresses.
Once the locator is resolved by Cloud Discovery Service, it creates a job of the Change type. For
more details on this scenario refer to section NAT Traversal.

— Announcement Resend: This event is triggered when Cloud Discovery Service has been configured
to perform resends. Resends are performed when a New or Change announcement is received. It
is also performed after a UDPv4 WAN Locator Resolution event occurs, which is considered as a
Change. Resend artifically generates jobs of the announcement kind Repeat that send out multiple
copies of an incoming or resolved participant announcement.

Resends are particularly useful in networks with high probability of packet loss that hampers dis-
covery speed. This is especially true when using the Real-Time WAN Transport for connectivity
over the internet. For more details on configuring this mechanism refer to section Forwarder.

Flow Controller

Cloud Discovery Service incorporates a configurable flow controller, which allows shaping the generated output
traffic as a result of forwarding participant announcements. The parameters that configure a flow controller are:

* Output capacity: The maximum amount of announcements forwarded in a period of time. It is mea-
sured in jobs-per-time units (e.g., announcements per second). Each received announcement represents
a job to forward the announcement to all discovered DomainParticipants. This parameter allows setting
an upper bound to the output traffic to avoid network congestion.

* Maximum job burst: The maximum amount of consecutive jobs that can be forwarded in a period of
time. This parameter allows setting an upper limit to the output traffic peak.

* Flush period: The period at which the flow controller attempts to forward pending announcements.

Note: Because forwarding an announcement requires sending each announcement to multiple discovered
participants, the actual output bandwidth depends on the number of participants.

Operation Mode

The flow controller generates job tokens at the rate specified by the output capacity. Forwarding an announce-
ment takes exactly one job token. The forwarder queues announcements upon reception and attempts to forward
them as soon as tokens are available.

If tokens are not available, the announcement jobs will remain in the queue in a pending state. The forwarder
wakes up at every flush period to check for available tokens to forward the pending announcements.

If tokens are generated faster than jobs are received, the flow controller accumulates the tokens for future jobs.
The flow controller will accumulate no more than the maximum job burst tokens.

1.3. Core Concepts 20

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.3.4 Database

Cloud Discovery Service uses an internal database to keep information about remote entities. This is the infor-
mation that represents the discovery state of the system.

This state is maintained upon reception of discovery information. Remote entries in the database are added or
removed based on the received information. The database will release the resources for each removed entry as
needed.

Cloud Discovery Service relies on a dedicated thread, which periodically cleans up any removed state from the
database. This model enhances concurrency while maintaining thread safety.

This element is equivalent to the Database Thread of a DomainParticipant.

1.4 NAT Traversal

1.4.1 Introduction

RTI Cloud Discovery Service incorporates functionality that allows Connext applications situated behind Net-
work Address Translators (NATS) to discover and communicate with each other using UDP. This is possible
when Cloud Discovery Service is configured to use RTI® RTI Real-Time WAN Transport'. For further details,
see the Real-Time WAN Transport in the Core Libraries User’s Manual.

Note: For a better understanding of this section, we recommend that you become familiar with the basic
concepts explained in The Basics. We also assume that you are familiar with NAT traversal concepts and
challenges. You can refer to Key Terms for a list of definitions and conventions used in this section.

Cloud Discovery Service can assist in the discovery and NAT traversal in the scenario depicted in Figure
1.11. Communication between two remote DomainParticipants that sit behind NATSs cannot occur by any
means, because they are unable to know how to reach each other.

NAT NAT

iAddrl:iPortl eAddrl:ePortl eAddr2:ePort2 iAddr2:iPort2

(= = = =)

Figure 1.11: Communication challenge between applications behind NATSs

U RTI Real-Time WAN Transport may require an additional license. Contact support@rti.com or your sales representative at RTI
for further information.

1.4. NAT Traversal 21

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Database_Thread.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/PartRealtimeWAN.htm
mailto:support@rti.com

RTI Cloud Discovery Service User's Manual, Version 7.2.0

DomainParticipants sitting behind a NAT are only aware of their own private IP transport addresses
(1Addr:iPort). These are the only addresses they can exchange as part of the locators list they announce
in their DomainParticipant announcements. In addition, their actual public IP transport addresses depend on
the NAT forwarding rules, which are for the most part dynamic and impossible to know beforehand — unless a
static configuration is set in the NAT-enabled routers.

In this situation, the only alternative is to consider a third player that can inform the remote DomainParticipants
how they can reach each other through their public addresses. This third player is Cloud Discovery Service, in
combination with the RTT Real-Time WAN Transport (RWT), which is used in the DomainParticipants.

- NAT | e2:eP2] | | [eAl:ePl] | W W2 NAT r: am
i - [(P 1 - e
| iAl:ip1 ! 1 \‘ | iA2:ip2 !
PAL | 1 PA2

Figure 1.12: Public address resolution through Cloud Discovery Service

Figure 1.12 shows how Cloud Discovery Service acts as the entity that provides the resolution of public IP
transport addresses. Cloud Discovery Service acts as an externally reachable service that obtains the public IP
transport addresses from a DomainParticipant and provides them to the other DomainParticipants using RTPS
locators. A resolved public IP transport address is called a service reflexive address (SRA).

Let’s examine Figure 1.12 in more detail to understand how Cloud Discovery Service assists with the NAT
traversal. The scenario depicts two DomainParticipants behind NATs. Each DomainParticipant sends a partic-
ipant announcement (or PA) to Cloud Discovery Service containing WAN locators. These locators can be UUID
locators or UUID+PUBLIC locators depending on the configuration of RTI Real-Time WAN Transport. Cloud
Discovery Service cannot forward the original PAs to peer DomainParticipants if they contain UUID locators,
which are unreachable. Instead, Cloud Discovery Service will obtain the service reflexive address eA : eP, where
eA is the public IPv4 address and eP is the public UDP port, and use it to replace the original UUID locator
in the PA with a UUID+PUBLIC locator. DomainParticipants receive the forwarded and modified PAs from
Cloud Discovery Service. These contain the public service reflexive addresses that are potentially reachable,
thus making peer-to-peer communication possible.

Note that we say the SRAs are potentially reachable. The point is that these addresses will be reachable depend-
ing on the type of NAT that the DomainParticipant sits behind. We will see in further sections that only Cone
NATs allow this communication, whereas Symmetric NATs don’t.

To help you understand this behavior, see Example: Using RTI Real-Time WAN Transport, where you will
emulate the scenario described above in Figure 1.12. In that example, we will analyze step-by-step what you

1.4. NAT Traversal 22

RTI Cloud Discovery Service User's Manual, Version 7.2.0

need to configure in Cloud Discovery Service and the application DomainParticipants. You can run the example
first if you want to see it in action.

See also:
Network Address Translation

UDP Hole Punching

1.4.2 Running Cloud Discovery Service with RTI Real-Time WAN Transport

To perform the public address resolution needed to assist in the discovery and communication of remote Do-
mainParticipants behind NATS, you will need to run a Cloud Discovery Service instance on a publicly reachable
host and enable RT1 Real-Time WAN Transport (RWT). For that, you will need to configure the following
Cloud Discovery Service parameters:

 Service or host port host_port: This is the UDP port number where the Cloud Discovery Service
instance will listen for PAs. This number shall be within the valid range for UDP ports and not taken by
any other application running on the host.

* Public IPv4 address public_addr: This is the publicly reachable address that external DomainPar-
ticipants can use to access the service host.

* Public port public_port: This is the UDP port number that external remote DomainParticipants use
to communicate with the service running on host_port.

If the service host is directly accessible to the WAN with no firewalls/NAT, the host_port is the same as
the public_port, and public_addr also matches the local host address. If the service host is behind
a NAT, then public_port represents the forwarded port statically configured in the NAT device, and can
be a different number than host_port; also the public_addr will be different than the local host
address.

Cloud Discovery Service configuration

To run Cloud Discovery Service using RWT, we will need to specify the host_port and public_addr.
For example, in the following configuration:

<cloud_discovery_service name="CdsWanUdp">
<transport>
<element>
<alias>builtin.udpv4_wan</alias>
<receive_port>7400</receive_port>
<property>
<element>
<name>dds.transport .UDPv4_WAN.builtin.public_address</
—name>
<value>216.58.194.174</value>
</element>
</property>
</element>

(continues on next page)

1.4. NAT Traversal 23

https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/UDP_hole_punching

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

</transport>
</cloud_discovery_service>

e <receive_port>issettothe host_port.
e The RWT property public_address is set to the public_addr.

In our example, we use one of the builtin configurations that enables RWT and parameterizes the values for the
<receive_port>and public_address property using XML configuration variables. This way allows
you to reuse the configuration with different values for each deployed Cloud Discovery Service instance.

Note: With the above configuration, if CDS is behind a NAT-enabled router, the host_port must be the
same as the public_port. If you want to use a different public_port, it will be necessary to configure
the property dds.transport .UDPv4_WAN.builtin.comm_ports. For additional information on
this property, see the Real-Time WAN Transport in the Core Libraries User’s Manual.

Application DomainParticipant configuration
This is a very simple step where the application DomainParticipant is configured to use RWT and include the
Cloud Discovery Service instance as part of the initial peers.

To enable RWT, simply select the corresponding builtin transport element in the DomainParticipant QoS con-
figuration:

<domain_participant_qgos>

<transport_builtin>
<mask>UDPv4_WAN</mask>
</transport_builtin>
</domain_participant_gos>

Then when you run the application, set the initial peers to the Cloud Discovery Service, which is identified as
follows:

rtps@public_addr:public_port

where public_addr and public_port are the properties described above and determine the public IP
transport address that shall be reachable by external applications. To set the initial peers, you can use two
methods:

» Using the NDDS_DISCOVERY_PEERS environment:

export NDDS_DISCOVERY_PEERS=rtps@udpv4_wan://216.58.194.174:7400

* Configuring the initial_peers QoS:

1.4. NAT Traversal 24

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/PartRealtimeWAN.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

<domain_participant_gos>

<discovery>
<initial_peers>
<element>rtps@udpv4_wan://216.58.194.174:7400</element>
</initial_peers>
</discovery>
</domain_participant_gos>

Warning: The assumption is that <accept_unknown_peers> is set to true (which is the default
value). This is important or else communication between DomainParticipants will not occur.

Then just run your applications with this setup and they will communicate over the WAN using DDS, purely
peer-to-peer. To understand how this is possible, let’s look at Figure 1.13.

eAl:ePl >io eA2:eP2

UUID: 1 UuUIiD: 2
[iAl:iP1] [1A2:iP2]
PAL | PA2' | | pr 1 paz

a NAT HOm ‘ aUID: 2 ‘ ‘ . NAT ve
S] :

PA1 PA2'

PA2
e -
, iAl:ip1 ! | iA2:ip2 :
GUID: 1 I GUID: 2
[iAl:iP1] [iA2:1iP2]

Figure 1.13: Resolution of public address for DomainParticipants behind Cone NATs

In this scenario, there are two DomainParticipants behind Cone NATSs, each uniquely identified by a global
unique identifier (GUID). The DomainParticipant with GUID=1 has two private IP transport addresses,
iAl:1P1 and 1Al :1P2 (for simplicity, Figure 1.13 only shows iA1:iP1). 1A1:1iP1 is used to exchange
DDS discovery traffic, 1A1:1P2 is used to exchange user data traffic. DomainParticipant GUID=1 sends a
DomainParticipant announcement PA1 containing two UUID locators, each one associated with one of the
private IP transport addresses.

Upon reception of PA1, Cloud Discovery Service inspects the received UDP packet that contains the announce-
ment and extracts the public IP transport addresses (eAl:eP1 and eA2:eP?2) for each one of the UUID

1.4. NAT Traversal 25

RTI Cloud Discovery Service User's Manual, Version 7.2.0

locators. These are the service reflexive addresses (SRAs) described above. The key step occurs when Cloud
Discovery Service modifies the original announcement P21 to extend each UUID WAN locator so it con-
tains the associated SRA. This extended announcement PA1 ' is the one forwarded to the DomainParticipant
with GUID=2, which can then use the SRA addresses to communicate peer-to-peer with DomainParticipant
GUID=1. The same process applies to DomainParticipant GUID=2 and, in general, to any remote Domain-
Participant in the domain.

In some cases, it is desirable to use a single public address for communication. This can be achieved by updating
the configuration of RWT in the DomainParticipants as follows:

<domain_participant_qgos>

<transport_builtin>
<udpv4_wan>
<comm_ports>
<default>
<host>16000</host>
</default>
</comm_ports>
</udpv4_wan>
</transport_builtin>
</domain_participant_gos>

With this configuration, the DomainParticipant with GUID=1 will have only one private IP transport address,
iAl1:1iP1, where iP1 is 16000. The communication with the DomainParticipant will occur on a single public
address eAl:eP1.

For additional details on how to configure RWT, see the Real-Time WAN Transport in the Core Libraries
User’s Manual.

Communication between DomainParticipants

So far, we have explained the address resolution step that Cloud Discovery Service provides so that application
DomainParticipants that sit behind NATs can communicate between themselves.

The address resolution is just the first step in providing the DomainParticipants with the public addresses of
their peers. The second step is to establish communication between them: that occurs solely through RWT,
without needing Cloud Discovery Service. Figure 1.14 provides a simplified view of how the communication
is possible when the DomainParticipants are configured to use a single UDP port for communication (single
WAN locator).

A local DomainParticipant P 1 will receive the resolved public address of a peer application DomainParticipant
P2 from Cloud Discovery Service, that is, eA2 : eP2. This is the address DomainParticipant P 1 uses to reach
the peer remote DomainParticipant P2. In the process of sending DDS traffic D1 to DomainParticipant P2,
the NAT will temporarily open a hole H1. When D1 arrives at the host of P2, the NAT will let the incoming
traffic come through hole H2. This is possible because:

* DomainParticipant P2 is in parallel performing the same communication protocol, hence opening a
temporary hole H2.

* Both DomainParticipants sit behind NATSs that always perform the same mapping between a private
address 1A : 1P and a public address eA : eP, no matter the destination. This category of NATS includes:

1.4. NAT Traversal 26

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/PartRealtimeWAN.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/PartRealtimeWAN.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

=

NAT Sub

Figure 1.14: Direct communication over the WAN between DomainParticipants behind Cone NATSs

— Full-cone
— Restricted-cone
— Port-restricted cone

This is not true for Symmetric NATs, which change the mapping based on the destination, so it’s not
possible to use the SRA that Cloud Discovery Service obtains.

1.4.3 Communication scenarios using Cloud Discovery Service

Cloud Discovery Service support two basic WAN connectivity secenarios:
1. Communication between DomainParticipants behind Cone-NATs.

2. Communication with a DomainParticipant with well-known, reachable public IP addresses. If the
DomainParticipant is behind a NAT, these public addresses must be statically configured in the
NAT-enabled router.

For additional information see the Real-Time WAN Transport in the Core Libraries User’s Manual.

1.4. NAT Traversal 27

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/PartRealtimeWAN.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.4.4 Debugging Cloud Discovery Service with the UDP WAN Transport

You can find out how Cloud Discovery Service is resolving addresses and for which DomainParticipants. Locator
content depends on the transport implementation. The locators for RTI Real-Time WAN Transport convey the
following information:

* Flags: Indicate the type of WAN locator and included information.
» UUID: Unique identifier that typically refers to a single network interface.
* Public address: Contains the public IPv4 network address and UDP public port.

See the locator format section in RTI Connext DDS Core Libraries User’s Manual for more information about
locators.

You can obtain locator resolution information in two ways: logging and remote administration.

Logging

Run Cloud Discovery Service with —verbosity ALL to enable the output of resolution log messages. The
WAN locators will be represented with the following string format:

f=<flags>,u={<uuid>, P=<eAddr:ePort>}

You will find two type of messages:

* New resolution: This is a log message generated in the event of resolving the IP public address for a
UUID WAN locator. The log message will provide two important pieces of information. In the log

context, in the content between the [], you will find the full WAN locator address in hexadecimal; in
the message portion of the log, you will find the UUID and its resolved IP public address. For example,
this log:

[...|RESOLVE{UUID+PUBLIC=0x07BD73FC, 0x9ED500AR, 0x6D40DCD4:0xBC4E31D3}] \
f=7,u={BD,73,FC, 9E,D5,00,AB,6D,40},P=188.78.49.211:56532

shows the following information:

- UuID:BD, 73, FC, 9E, D5, 00, AB, 6D, 40. Note that these nine bytes are the same as the first
portion of the hexadecimal address in the log context.

— Public IPv4 Address: 188.78.49.211
— Public UDP Source Port: 56532

* Resolution status: This is a log message displayed upon reception and forwarding of a DomainPartici-
pant announcement (PA). This message displays the set of DomainParticipant locators in JSON format,
for both meta-traffic and user-traffic, including the original locators received in the announcement and
their resolved equivalent. For example:

[...|DATAP{GUID=0x0101C372, 0x17D4CED6, OxEATB3DA5:0x000001C1}]
{

"locators": {

(continues on next page)

1.4. NAT Traversal 28

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Peer_Descriptor_Format.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

"original":{
"metatraffic": [
"udpv4_wan://f=1,u={BD,73,FC,9E,D5,00,2B, 6D,40},P=10.0.
—2.15:0:32410"
]I
"default": [
"udpv4_wan://f=1,u={BD,73,FC, 9E,D5,00,AR,6D,40},P=10.0.
—2.15:0:32411"
]
}I
"resolved":{
"metatraffic": [
"udpv4_wan://f=7,u={BD,73,FC,9E,D5,00,AB, 6D,40},P=188.78.49.
—211:56532:32410"
1,
"default": [
"udpv4_wan://f=7,u={BD,73,FC, 9E,D5,00,AB, 6D, 40},P=188.78.49.
—211:51788:32411"
]

The last part of the context portion of the log identifies the remote DomainParticipant for which the
locators are displayed; in this case it provides the GUID in hexadecimal format (GUID=0x0101C372,
. . .). The message portion of the log shows that there are two UUID locators, one for each type of traffic,
and it shows that each of them has been resolved properly, displaying the resolved public address in a
format similar to the resolution log shown above.

Note that the number of items between the original and resolved lists may differ and, in fact,
length (resolved) <= length (original). If aUUID locator is not resolved or the resolved
list is empty, it may be an indication of a connectivity problem. For example, the following log indicates
that UUID locators have not been resolved:

[...|DATAP{GUID=0x0101C372, 0x17D4CED6, OxEA7B3DA5:0x000001C1}]
{
"locators": {
"original": {
"metatraffic": [

"udpv4_wan://f=1,u={BD,73,FC, 9E,D5, 00,AB, 6D, 40},P=10.0.2.
—15:0:32410"

1,
"default": [
"udpv4_wan://f=1,u={BD, 73,FC, 9E,D5,00,AB, 6D, 40},P=10.0.2.
—15:0:32411"
]

} 4
"resolved":{
"metatraffic": [],
"default": []
}
(continues on next page)
1.4. NAT Traversal 29

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

If you run into this situation, you can check that:

— Cloud Discovery Service and the host it runs on are properly configured to receive external traffic
on the receive port.

— The remote DomainParticipants have properly set their initial peers to the public transport address
where Cloud Discovery Service is reachable. Note that this address will be different than the host
address of Cloud Discovery Service if it runs behind a NAT.

Administration

You can obtain a one-time snapshot of the locator resolution state for a given DomainParticipant using the
remote administration capabilities (Remote Administration). Cloud Discovery Service offers a remote operation
to retrieve the locator resolution state for a specified remote DomainParticipant (see the API specification).

For example, consider the resolution state log shown above. You could obtain the DomainParticipant locators
by issuing the following command:

method: GET
: /cloud_discovery_services/[name] /database/locators
"0x0101C372,0x17D4CED6, OXEA7B3DA5:0x000001C1"

resourc

and you will get a response containing the resolution state in JSON format:

{
"locators": {
"original":{
"metatraffic": [
"udpv4_wan://f=1,u={BD,73,FC, 9E,D5,00,AR,6D,40},P=10.0.2.
—15:0:32410"
]I
"default": [
"udpv4_wan://f=1,u={BD,73,FC, 9E,D5,00,AR,6D,40},P=10.0.2.
—15:0:32411"
]
}I
"resolved":{
"metatraffic": [
"udpv4_wan://f=7,u={BD,73,FC, 9E,D5,00,AB,6D,40},P=188.78.49.
—211:56532:32410"
]I
"default": [
"udpv4_wan://f=7,u={BD,73,FC, 9E,D5,00,AB,6D,40},P=188.78.49.
—211:51788:32411"
]

1.4. NAT Traversal 30

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Identifying the NAT type

As we have mentioned, peer-to-peer communication between the remote DomainParticipants can only occur if
they sit behind Cone NATs. Communication will not be possible if any of them is behind a Symmetric NAT.
Therefore, it is mandatory that you verify the type of NAT your applications run.

There are multiple third-party utilities that you can download to find out about the NAT shielding your com-
puter. One example is natat, a small open-source utility you can run locally to find out your NAT kind.

1.4.5 Key Terms

NAT Traversal A mechanism to establish peer-to-peer connections across gateways that sit behind NATS.

IP Transport Address (or Address) The combination of the IPv4 address and the UDP port where an ap-
plication accepts incoming traffic. Sometimes you will also see the term “address” being used to refer to
an IP transport address when the context is clear.

Public IP Transport Address (or Public Address) An IP transport address for an application that is
routable on a WAN. When the WAN is the Internet, the term “Internet-routable address” can be used
instead.

Private IP Transport Address (or Private Address) The IP transport address of an application that sits be-
hind a NAT. This address is not reachable from external applications running outside the NAT.

eAddr:ePort A public IP transport address, where eAddr is the public or external IPv4 address and
ePort is the UDP public or external port.

iAddr:iPort A private IP transport address, where 1Addr is the private IPv4 address and iPort is the
UDP host port.

Service Reflexive Address The public IP transport address that Cloud Discovery Service obtains from the
incoming UDP packets and is used for address resolution.

RTPS Locator (or Locator) A DDS endpoint (DataWriter or DataReader) address unit that consists of a
transport class, RTPS port, and locator transport address (128-bit).

Reachable locator: Locator associated with a DDS endpoint (DataWriter or DataReader) to which an-
other DDS endpoint can send data.

RTPS WAN Locator (or WAN Locator) A locator for RTI Real-Time WAN Transport.

RTPS UUID WAN Locator (or UUID Locator) A WAN locator for RTI Real-Time WAN Transport that
is not reachable. Cloud Discovery Service transforms UUID locators into UUID+PUBLIC locators by
associating a public IP transport address to the UUID. The public IP transport address for the UUID
locator is the service reflexive address.

RTPS UUID+PUBLIC WAN Locator (or UUID+PUBLIC Locator) A WAN locator for RTI Real-Time
WAN Transport that is reachable. The locator encapsulates a public IP transport address as part of the
locator address.

Address Resolution The process of identifying the public address at which an application behind a NAT is
reachable.

1.4. NAT Traversal 31

https://github.com/songjiayang/natat

RTI Cloud Discovery Service User's Manual, Version 7.2.0

NAT forwarding mapping A static configuration in the NAT device that allows mapping a public address to
a private address, so external applications can send and receive data.

Application or Remote DomainParticipant A DomainParticipant that is part of a Connext application.

UDP Hole-Punching A NAT traversal mechanism that consists of creating a temporary UDP forwarding
mapping for an internal address.

GUID string representation A representation of a DomainParticipant GUID, in a hexadecimal string with
the following notation: host_id, app_id, instance_id:object_id.

1.5 Usage

This chapter explains how to run Cloud Discovery Service either from the distributed command-line executable
or as a library within your application.

1.5.1 Command-Line Executable

Cloud Discovery Service runs as a separate application. The script to run the executable is in <NDDSHOME >/
bin.

rticlouddiscoveryservice [options]

This section explains how to run Cloud Discovery Service from a command-line tool. In particular, it describes:
* Starting Cloud Discovery Service (Section 1.5.1).
* Stopping Cloud Discovery Service (Section 1.5.1).

* Command-line Options (Section 1.5.1).

Starting Cloud Discovery Service

Cloud Discovery Service runs as a separate application. The script to run the executable is in <NDDSHOME >/
bin.

rticlouddiscoveryservice [options]

To start Cloud Discovery Service with a default configuration, enter:

SNDDSHOME /bin/rticlouddiscoveryservice

This command will run Cloud Discovery Service indefinitely until you stop it. See Section 1.5.1.

Note: Cloud Discovery Service is pre-loaded with a builtin configuration that has default settings. See Section
1.6.3.

Table 1.4 describes the command-line parameters.

1.5. Usage 32

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Stopping Cloud Discovery Service

To stop Cloud Discovery Service, press Ctrl-c. Cloud Discovery Service will perform a clean shutdown.

Command-Line Options

The following table describes all the command-line parameters available in Cloud Discovery Service. To list
the available commands, run rticlouddiscoveryservice -—h.

1.5. Usage 33

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.4: Cloud Discovery Service Command-line Options

Parameter

Description

—allowDomain <string>

Subset of domain IDs where Cloud Discovery Service operates. Use
this argument in order to indicate which domain IDs Cloud Discovery
Service should process announcements for. Remaining ones will be
automatically ignored. Default: DOMAIN_LIST_ALL (forward all
domains)

—appName <string>

Assigns a name to the execution of the Cloud Discovery Service. Re-
mote commands and status information will refer to the instances using
this name. Default: (same as configuration name).

-cfgFile <string>

Path to the configuration file. Default: (unspecified)

—-cfgName <string>

Name of the Cloud Discovery Service configuration to be loaded. It
must match a <cloud_discovery_service> tag in the config-
uration file. Default: rti.cds.builtin.config.default.

—denyDomain <string>

Subset of domain IDs ignored by Cloud Discovery Service. Use
this argument in order to indicate which domain IDs Cloud Discov-
ery Service shouldn’t process announcements from. Default: Empty
string (no domain IDs are ignored) Overrides: domain_list/
allow_domain_idor —allowDomain

~heapSnapshotDir Output directory where the heap monitoring snapshots are dumped.

<dir> The filename format is RTI_heap_<appName>_<processld>_<in-
dex>. Used only if heap monitoring is enabled. Default: current work-
ing directory

-heapSnapshotPeriod Period at which heap monitoring snapshots are dumped. Enables heap

<sec> monitoring if > 0. Default: O (disabled)

~help Prints this help and exits.

—ignoreXsdvValidation

Loads the configuration even if the XSD validation fails.

—-listConfig

Prints the available configurations and exits.

—logFormat <format>

A mask to configure the format of the log messages for both the service
and DDS. It allows the following values:
* DEFAULT - Print message, method name, log level, activity con-
text, and logging category
* VERBOSE - Print DEFAULT information, plus: module, thread
ID, and message location (and spread the message over two lines)
* TIMESTAMPED - Print VERBOSE information, timestamped
* MINIMAL - Print only message number and message location
* MAXIMAL - Print all available fields
Default: DEFAULT

-maxObjectsPerThread
<int>

Maximum number of thread-specific objects that can be created. De-
fault: Same as the Connext default for max_objects_per_thread

—-remoteAdministrationDd
<int>

mBrables remote administration and sets the domain ID for communi-

cation. Overrides: administration/domain_id

—remoteMonitoringDomain
<int>

TEnables remote monitoring and sets the domain ID for status publica-

tion. Overrides: monitoring/domain_id

—stopAfter <int>

Number of seconds the Cloud Discovery Service runs before it stops.
Default: (infinite).

—transport <string>

A comma separated list of transport resources, where each resource

1s—specified—in—the form- [l 3 5c . ort Default:

13
v

1.5. Usage

lreeo EaY
BH—peaHCa—hH—HC—1oHh- T Potrt—erdults

udpv4:7400 Overrides: transport 34

(=3 = yeur

—licenseFile <string>

Specifies the license file path to be used. See How to use a License File
with RTI Services. Default: Empty string

TN v v o~ S e L m 1 4 a o~

NNAG A o

1t 1t nadrlAa fFlhat et kA 11emad an am aleAasimatficrma vemevd st caemt e

RTI Cloud Discovery Service User's Manual, Version 7.2.0

All the command-line options are optional; if specified, they override the values of their corresponding settings
in the loaded XML configuration. See Section 1.6 for the set of XML elements that can be overriden with
command-line options.

1.5.2 Cloud Discovery Service as a Library

Cloud Discovery Service can be deployed as a library linked into your application on selected architectures
(see Section 1.14). This allows you to create, configure, and start Cloud Discovery Service instances from your
application.

To build your application, add the dependency with the Cloud Discovery Service library under <NDDSHOME >/
1ib/<ARCHITECTURE>, where <ARCHITECTURE> is a valid and installed target architecture.

Here is an example of using Cloud Discovery Service as a library with the Library API:

C

struct RTI_CDS_Property property =
RTI_CDS_Property_ INITIALIZER;
struct RTI_CDS_Service *service = NULL;

/* Initialize property */

property.cfg_file = "my_cds_service_cfg.xml";
property.service_name = "my_cds_service";

service = RTI_CDS_Service_new (&property);

if (service == NULL) A

/* Log error */

if (!RTI_CDS_Service_start (service)) {
/* Log error */

while (keep_running) {
sleep();

RTI_CDS_Service_delete (service);

C++

using namespace rti::cds;

CloudDiscoveryService service (
ServiceProperty ()
.cfg_file("my_cds_service_cfg.xml")

(continues on next page)

1.5. Usage 35

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

.service_name ("my_cds_service"));

service.start ();

1.5.3 Operating System Daemon

See generic instructions in How to Run as an Operating System Daemon.

1.6 Configuration

1.6.1 Configuring Cloud Discovery Service
This section provides a reference for the XML elements that conform a Routing Service configuration. For

details on how to provide XML configurations to Routing Service. refer to Configuring RTI Services. This
chapter describes how to write an XML configuration.

1.6.2 XML Tags for Configuring RTI Cloud Discovery Service

This section describes the XML tags you can use in a Cloud Discovery Service configuration file. The following
diagram and Table 1.5 describe the top-level tags allowed within the root <dds> tag.

<dds>

<cloud_discovery_service>

Figure 1.15: Top-level Tags in the Configuration File

1.6. Configuration 36

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.5: Top-level Tags in the Configuration File
Tags within <dds> Description Multiplic-
ity
<cloud_discov- Specifies a Cloud Discovery Service configuration. 1%,

ery_service> Attributes
* name: uniquely identifies a service configuration. Re-

quired.

Example

<cloud_discovery_service name=
—"ExampleService">

<!-- your service settings ... ——>
</cloud_discovery_service>

Cloud Discovery Service

A configuration file must have at least one <cloud_discovery_service> tag. This tag is
used to configure an execution of Cloud Discovery Service. A configuration file may contain multiple

<cloud_discovery_service> tags.

When you start Cloud Discovery Service, you can specify which <cloud_discovery_service> tag to
use to configure the service using the —c fgName command-line option.

Because a configuration file may contain multiple <cloud_discovery_service> tags, one file can be
used to configure multiple Cloud Discovery Service executions.

Figure 1.16 and Table 1.6 describe the tags allowed within a <cloud_discovery_service> tag.

1.6. Configuration 37

RTI Cloud Discovery Service User's Manual, Version 7.2.0

<cloud_discovery_service>

. I
Optional ~—| 1 <security> |
I

Figure 1.16: Cloud Discovery Service Tag Structure

1.6. Configuration 38

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.6: Cloud Discovery Service Tag

Tags within | Description Multiplic-
<cloud_discovery_|service> ity
<administra- Enables remote administration. 0..1
tion> When administration is enabled, monitoring is also enabled by de-
fault. If no domain ID is specified for monitoring, Cloud Discovery
Service will use the same domain as administration by default. See
Administration.
<monitoring> Enables monitoring for Cloud Discovery Service, including the pe- | 0..1
riodic publication of statistics. See Section 1.6.2.
<domain_list> Set of domains for which the service forwards participant an- | 0..1
nouncements. See Domain List.
<transport> Selection of unicast transport resources where the service receives | 0..1
and sends participant announcements. See Transport.
<security> Configures the security features provided by the RTT Security Plu- | 0..1
gins. See Security.
<forwarder> Configures the behavior of the participant announcement forward- | 0..1
ing logic. See Forwarder.
<database> Configures the behavior of the service’s internal database, which | 0..1
contains information about the discovery state. See Database.
<resource_lim- Service resource management policies. See Resource Limits. 0..1
its>
Example: Specify a Configuration in XML
<dds>
<cloud_discovery_service name="EmptyConfiguration"/>
<cloud_discovery_service name="ShapesDemoConfiguration">
<>
</cloud_discovery_service>
</dds>
Starting Cloud Discovery Service with the following command will use the
<cloud_discovery_service> tag with the name EmptyConfiguration.
SNDDSHOME /bin/rticlouddiscoveryservice \
—cfgFile file.xml -cfgName EmptyConfiguration
1.6. Configuration 39

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Administration

The <administration> tagallows you to enable and configure remote administration of Cloud Discovery
Service, including stopping, starting, and deleting a Cloud Discovery Service instance.

See Remote Administration for details on using remote administration.

Table 1.7: Administration Tags in Cloud Discovery Service’s Con-
figuration File

tributed_log-
ger>

its log messages to Connext. See Enabling Distributed Logger .

Tags within | Description Multi-
<administration> plicity
<domain_id> Domain ID used for remote administration. Also used for monitoring by | 0..1
default.
<domain_par- | QoS used by the administration DomainParticipant. If the tag is not de- | 0..1
tici- fined, Connext defaults will be used.
pant_qgos>
<pub- QoS used by the administration Publisher. If the tag is not defined, Connext | 0..1
lisher_gos> defaults will be used.
<sub- QoS used by the administration Subscriber. If the tag is not defined, Con- | 0..1
scriber_qgos> | next defaults will be used.
<datawriter_qgp€eS used by administration DataWriter(s). If the tag is not defined, Con- | 0..1
next defaults will be used, with the following changes:
* history.kind = DDS_KEEP_ALL_HISTORY_QOS
e resource_limits.max_samples = 32
<datareader_qgo$®uality of Service (QoS) used by administration DataReader(s). If the | 0..1
tag is not defined, the Connext defaults will be used, with the following
changes:
* reliability.kind = DDS_RELIABLE_RELIABILITY_QOS (this
value cannot be changed)
* history.kind = DDS_KEEP_ALL_HISTORY_QOS
* resource_limits.max_samples = 32
<dis- When you enable Distributed Logger, Cloud Discovery Service will publish | 0..1

The contents of the tags for configuring QoS are specified in the same manner as for the Connext XML QoS
Profiles file. See Configuring QoS with XML, in the RTI Connext Core Libraries User’s Manual.

1.6. Configuration

40

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/XMLConfiguration.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Monitoring

The <monitoring> tag allows you to enable and configure remote monitoring of Cloud Discovery Service.

See Monitoring.

Table 1.8: Monitoring Tags in Cloud Discovery Service’s Configura-

tion File
Tags within | Description Multi-
<monitoring> plicity
<enabled> Whether to enable monitoring of the service. 0..1
Default: Disabled, unless administration is enabled.
<domain_id> Domain ID used for monitoring. 0..1
Default: The domain ID specified for monitoring.
<datawriter_qgp€eS used by monitoring DataWriter(s) 0..1
<pub- QoS used by monitoring Publisher(s) 0..1
lisher_gos>
<domain_par— | QoS used by monitoring DomainParticipant 0..1
tici-
pant_qgos>
<statis- How frequently to sample the service’s statistics, using the tags <sec>and | 0..1
tics_sam- <nanosec>. For example, <sec>1</sec> samples the service’s statistics
pling_pe- every second.
riod>
<status_pub- | How frequently to publish the service status, using the tags <sec> and | 0..1
lication_pe—- | <nanosec>. For example, <sec>1</sec> publishes the service’s status ev-
riod> ery second.

The contents of the tags for configuring QoS are specified in the same manner as for the Connext XML QoS
Profiles file. See Configuring QoS with XML, in the RTT Connext Core Libraries User’s Manual.

Domain List

A <domain_list> allows you to control for which domains the discovery traffic is propagated. Table 1.9
describes the tags allowed.

Figure 1.17 and Table 1.9 describe the tags allowed within a <domain_11ist> tag.

Table 1.9: Domain List Tag

Tags within | Description Multiplic-
<domain_list> ity
<allow_do- Set of domain IDs where the service forwards participant an- | 0..1
main_id> nouncements.
Default: DOMAIN_LIST_ALL

<deny_do- Subset of the allowed domain IDs for which the service ignores | 0..1
main_id> announcements. Default: [empty string]

1.6. Configuration 41

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/XMLConfiguration.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

<domain_list>

Optional ~— | r=~ -~~~ ~"~="=-====°--

Figure 1.17: Domain List Tag Structure

The <allow_domain_id> and <deny_domain_ id> filters both allow the same syntax, in which a sub-
set of domains can be specified as a comma-separated list containing one or more of the following elements:

¢ Individual domains: 5, 6, 7
* Domain Range: [1 - 10]
¢ Special values:
— DOMAIN_LIST_ALL: specifies all the available domains.

— (empty string): specifies none of the domains.

Example: Deny a Few Specific Domains

<domain_list>
<allow_domain_id>DOMAIN_LIST_ALL</allow_domain_id>
<deny_domain_id>5, 7, 10</deny_domain_id>
</domain_list>

Example: Allow a Subset of Domains

<domain_list>
<allow_domain_id>[10 - 30], 40, [50 - 100]</allow_domain_id>
</domain_list>

1.6. Configuration 42

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Transport

The <t ransport> element allows you to select and configure the resources used to receive and send discov-
ery traffic. A receive resource is uniquely specified by a transport class-receive port pair. For each different
transport instance specified, Cloud Discovery Service creates a send resource.

Figure 1.18 and Table 1.10 shows the description of this element.

<transport>

_ |mmmmmmmmmmm—mm— -
: <element> :
|

| Ir==—=—==========
Lo L
I : <alias> S

|

| Lo mmmmm o2
| r—-—=—=-=-—=-======= 1]
Optional —| | ! . ;o
| : <receive_port>] I
|
: L_____________I 1
I : _____________ 1 :

| |
I : <property> I :

| |
| lmmmmmmem o !
_ e e e e e e e o

Figure 1.18: Transport Tag Structure

Table 1.10: Transport Tag

Tags within | Description Multiplic-
<transport> ity
<element> Individual transport receive resource. See Table 1.11. 0..*

Each <element> within <t ransport > is a transport unicast receive resource, specified by a transport alias
and a receive port. Table 1.11 describes the tags allowed.

1.6. Configuration 43

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.11: Transport Element Tag

Tags within
<element> of a
<transport>

Description

Multiplic-
ity

<alias>

Identifies a concrete transport class instantiation. Default: udpv4
If the transport supports it, you can reuse the same transport in-
stance by specifying the same alias.

Note: If you attempt to reuse a transport instance of a class that
does not support reuse, Cloud Discovery Service will log a warning
and continue loading.

0..1

<receive_port>

Port that the service listens on to receive participant announce-
ments. Default: 7400
Attributes:
* kind: Specifies the port representation. Optional.
— PORT: An integer that represents a port number
within the valid range allowed by the transport.
— DOMAIN_ID_DERIVED: A domain ID that
represents the discovery receive port computed
from the well-known RTPS port mapping:
= participant Id: 0
+ well-known ports: DDS_INTEROPERA-
BLE_RTPS_WELL_KNOWN_PORTS

0..1

<property>

A sequence of name-value string pairs that allows configuring the
underlying transport instance.
Example:

<property>
<value>
<element>
<name>dds.transport .UDPv4.
—builtin.allow_interfaces_list</name>
<value>eth0</value>
</element>
</value>
</property>

Note: When reusing a transport instance, if you specify
the same property twice, Cloud Discovery Service will log a
warning.

0..1

Cloud Discovery Service comes with the following preconfigured transport instances, which you can use and

configure directly.

1.6. Configuration

44

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Note: You can override any of the preset transport properties. In such a case, Cloud Discovery Service will

log a warning.

Table 1.12: Available Transports

(nddstransporttcp) and additionally, if enabling TLS, RTI TLS Sup-
port (nddst1s) and OpenSSL.

Alias Description Prefix

udpv4 or | Builtin implementation of UDPv4. dds.

builtin. e Class ID: NDDS_TRANSPORT_CLASSID_UDPv4 transport]|

udpvi * Reuse: Yes UDPv4.
builtin

udpv4_wan| Implementation of UDPv4 for WAN networks. dds.

or e Class ID: NDDS_TRANSPORT_CLASSID UDPv4_WAN transport]|

builtin. * Reuse: No UDPv4_WAN|

udpv4_wan builtin

Note: Your library path requires libraries from RTI Real-Time WAN Trans-
port Support (nddsrwt).

udpv6 or | Builtin implementation of UDPv6. dds.

builtin. e Class ID: NDDS_TRANSPORT_CLASSID_UDPv6 transport|

udpvo * Reuse: Yes UDPV6.
builtin

tcpv4_lan| Implementation of TCPv4 for LAN and WAN networks. dds.

tcpv4_wan * Class ID: See parent.classid in Table 1.13 transport|

tlsv4_lan * Reuse: No cds.tcpl

or

tlsv4_wan| Note: Your library path requires libraries from RTI TCP Support

Preregistered UDP Transports

Cloud Discovery Service registers an instance for the following UDP transports:

« UDPv4

* UDPv4 WAN or the RTI Real-Time WAN Transport

» UDPvo6

There are no preset properties for any of these instances.

See the following links for properties for each of these UDP transports respectively:

* Connext UDPv4 configuration

1.6. Configuration

45

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Setting_Builtin_Transport_Properties_wit.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

* Connext Real-Time WAN Transport configuration

* Connext UDPv6 configuration

Preregistered TCP Transport

Cloud Discovery Service registers an instance of the RTI TCP transport. Table 1.13 shows a list of preset

properties.

See RTI TCP Transport configuration for a list of available properties.

Table 1.13: TCP Transport preset properties

Property name (prefix with dds.transport.
cds.tcpl)

Property value

library nddstransporttcp
create_function NDDS_Transport_TCPv4_create
server_bind_port The value of the corresponding

<receive_port>

parent.classid

* NDDS_TRANSPORT_CLASSID_TCPV4_LAN

— For alias tcpv4_lan
* NDDS_TRANSPORT_CLASSID_TCPV4_WAN

— For alias tcpv4_wan
* NDDS_TRANSPORT_CLASSID_TLSV4_LAN

— Foraliastlsv4 lan
+ NDDS_TRANSPORT_CLASSID_TLSV4_WAN

— For alias t1sv4_wan

Example: Reusing UDP Transport Instance for Multiple Receive Resources

<transport>
<element>
<alias>udpv4</alias>
<receive_port>7400</receive_port>
</element>
<element>
<alias>udpvid</alias>
<receive_port>7500</receive_port>
</element>
</transport>

1.6. Configuration

46

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Setting_RWT_Properties.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Setting_Builtin_Transport_Properties_wit.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/TCP_TLS_Transport_Properties.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Example: A Receive Resource for Each UDP and TCP Transport

This example shows how to specify different receive resources from different transport instances. Additionally,
it shows how to extend the behavior of the preregistered TCP transport through the specification of additional
transport properties using the transport prefix dds . transport.cds.tcpl.

<transport>
<element>
<alias>builtin.UDPv4</alias>
<receive_port>7400</receive_port>
</element>
<element>
<alias>tcpv4_wan</alias>
<receive_port>8400</receive_port>
<property>
<element>
<name>dds.transport.cds.tcpl.tcpl.public_address</name>
<value>35.6.9.10</value>
</element>
</property>
</element>
</transport>

Security

The <security> element allows you to enable and configure the security features provided by the RT7
Lightweight Security Plugins. For further details, see Security.

Table 1.14 shows the description of this element.

1.6. Configuration 47

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.14: Security Tag

Tags within | Description Multiplic-
<security> ity
<property> A sequence of name-value string pairs that allows configuring se- | 0..1
curity. These are the valid properties you can configure within this
tag:
Attention:
The following
properties are
deprecated and
should only be
used to commu-
nicate with legacy
systems:
* com.
rti.
serv.
secure.
authentig¢ation.
participant_discovery_protection_key
e com.
rti.
serv.
secure.
cryptography.
rtps_protection_key
* com.rti.serv.secure.cryptography.
rtps_protection_preshared_key
e com.rti.serv.secure.cryptography.
rtps_protection_preshared_key_algorithm
e dds.participant.discovery_config.
signature_validation_persistent_state_file
For further details, see Security.
Example:
<property>
<element>
<name>com.rti.serv.secure.
—authentication.rtps_protection_
—preshared_key</name>
<value>str:10:KeySeed</value>
</element>
<element>
<name>com.rti.serv.secure.
—authentication.rtps_protection_
—preshared_key_algorithm</name>
<value>AES256+GCM</value>
</element>
1.6. Configuration <element> 48
<name>dds.participant.discovery_
—config.signature_validation_persistent_
—state_file</name>

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Protocol Mode

The <protocol_mode> element allows you to select the discovery protocol that Cloud Discovery Service
should support. DomainParticipants using a different discovery protocol than the one used by Cloud Discovery
Service will be completely ignored.

The valid values for <protocol_mode> are:

* SPDP - Cloud Discovery Service forwards the messages from DomainParticipants that use Simple Par-
ticipant Discovery Protocol. This is the default value.

* SPDP2 - Cloud Discovery Service forwards only the bootstrap messages from DomainParticipants that
use Simple Participant Discovery Protocol 2.0. Cloud Discovery Service does not forward the configura-
tion or liveliness messages, since these are exchanged peer-to-peer after the bootstrapping completes.
DomainParticipants using Simple Participant Discovery Protocol 2.0 do not send the configuration or
liveliness messages to Cloud Discovery Service.

For further details about the new Simple Participant Discovery Protocol 2.0, refer to Simple Participant
Discovery 2.0.

Note: When you choose SPDP2 for the <protocol_mode> in XML, you need to ensure that the
DomainParticipants are configured to use Simple Participant Discovery Protocol 2.0. Here is the snippet
that you need to use in the XML QoS configuration file:

<domain_participant_qgos>
<discovery_config>
<builtin_discovery_plugins>SDP2</builtin_discovery_
—plugins>
</discovery_config>

</domain_participant_gos>

Forwarder

The <forwarder> element allows you to configure the attributes and behavior of the active component
involved in the participant announcement forwarding process.

Figure 1.19 and Table 1.15 describe this element.

1.6. Configuration 49

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Simple_Participant_Discovery_2.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Simple_Participant_Discovery_2.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

optional

<forwarder>

vy

Figure 1.19: Forwarder Tag Structure

Table 1.15: Forwarder Tag

Tags within | Description Multiplic-
<forwarder> ity
<event> Configures the behavior of the Event Manager resend events. Re- | 0..1

send involves Cloud Discovery Service forwarding multiple copies
of an incoming participant announcement. The <event> tag
handles the count and interval between the announcement copies.
It only applies to a New or Change announcement type. For more
details refer to section Forwarder.

Note: The <refresh_period> tag from previous versions
has been replaced by the following new tags. Using this new mech-
anism allows for higher efficiency in bandwidth usage without sac-
rificing discovery speed.

Elements:

* <new_or_change_participant_announcements>:

Sets the number of times a New or Change announce-
ment is resent by the forwarder. This can be set to a
value greater than 0 in networks where the probability

of packet loss is high.
Default: 5.

* <min_new_or_change_participant_announcen
Sets the minimum duration for the inter-

val between successive resends from the for-
warder. A random interval is generated by
the forwarder to schedule a resend between
<min_new_or_change_participant_annouy
and <max_new_or_change_participant_an
Default: 1s.

nents_peri

ncements_|
nouncemen

Lod>:

period>
Ls_period>.

* <max_new_or_change_participant_announcements_period>:
Sets the maximum duration for the inter-
1.6. Configuration val Dbetween successwe. resends. from the for- 50
warder. A random interval is generated by
the forwarder to schedule a resend between
<min_new_or_change_participant_announcements_|period>

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Flow Controller

The <flow_controller> element allows you to configure the output traffic of Cloud Discovery Service.
With the flow controller, you can limit the output capacity, assign more of the output capacity to certain par-
ticipant announcements, and also throttle the output traffic.

Figure 1.20 and Table 1.16 describe this element.

<flow_controller>

optional ~— |

__

Figure 1.20: Flow Controller Tag Structure

1.6. Configuration 51

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.16: Flow Controller Tag

Tags

<flow_controller

within

Description

Multiplic-
ity

<output_capac—

ity>

Specifies a limit for the output capacity in jobs per second. De-
fault: LENGTH_UNLIMITED

0..1

<max_burst_jobs>

Maximum amount of announcement jobs that can be dispatched
at once. Default: <output_capacity> * 1 second

0..1

<output_capac—
ity_allocation>

Configures the output capacity distribution depending on the par-
ticipant announcement class. See Table 1.17.
Example

<output_capacity_allocation>
<new>50</new>
<update>30</update>
<refresh>20</refresh>

</output_capacity_allocation>

0..1

<flush_period>

Configures the maximum period at which the forwarder will
attempt to send pending announcements. Default: DURA-
TION_INFINITE.

Example

<flush_period>
<sec>1</sec>
<nanosec>0</nanosec>

</flush_period>

0..1

Note:

Configuring only one flow controller parameter in isolation may result in inaccurate performance of

the forwarder. It is recommended to configure all the flow controller parameters, to guarantee the expected

behavior.

The <output_capacity_allocation> allows you to distribute the output capacity to each participant
announcement class. Each class element is an integer that represents the percentage of the total output capacity
used to forward announcements of such class.

Table 1.17 describes this element.

Table 1.17: Output Capacity Allocation Tag

Tags within | Description Multiplic-

<output_capacity_lallocation> ity

<new> Percentage of the maximum output capacity dedicated to the new | 0..1
participant announcement class. Default: 40

<update> Percentage of the maximum output capacity dedicated to the up- | 0..1
date participant announcement class. Default: 30

<refresh> Percentage of the maximum output capacity dedicated to the re- | 0..1
fresh participant announcement class. Default: 30

1.6. Configuration 52

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Note that the sum of the percentages from the three classes can never be greater than 100. Otherwise Cloud
Discovery Service will log an error message and fail to start. Unless default values are used, if the allocation
for one or more classes are not specified, Cloud Discovery Service will equally split the remaining of the output
capacity among them.

Example: Flow Controller

This example shows how to set up a flow controller with a maximum output capacity of 5000 jobs/s, of which
half is reserved only for new participant announcements, and the other half is equally distributed among the
update and refresh classes (25/25).

<flow_controller>
<output_capacity>5000</output_capacity>
<output_capacity_allocation>
<new>50</new>
</output_capacity_allocation>
</flow_controller>

Database

The <database> element allows you to configure the behavior of the internal database that contains the
information that represents the discovery state of the system.

Figure 1.21 and Table 1.18 describe this element.

<database>

|
Optional ~— I <cleanup_period> :
|

Figure 1.21: Database Tag Structure

1.6. Configuration 53

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.18: Database Tag

Relevant tags within | Description Multiplic-
<database> ity
<thread> Database thread settings. See thread in DatabaseQosPolicy. 0..1
<cleanup_pe- The period at which the service database thread wakes up to clean | 0..1
riod> up expired information. See cleanup_period in DatabaseQosPol-
icy.
Example
<cleanup_period>
<sec>1</sec>
<nanosec>0< /nanosec>
</cleanup_period>
<ini- The initial number of total records. See initial_records in | 0..1
tial records> DatabaseQosPolicy.

Resource Limits

The <resource_1limit s> element allows you to specify upper limits of memory consumption. In general,
Cloud Discovery Service incorporates mechanisms to clean up unused memory and maintain the execution
within bounds when possible. Nevertheless, you may need to tune the memory usage if you have special

memory requirements.

Figure 1.22 and Table 1.19 describe this element.

1.6. Configuration

54

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DATABASE_QosPolicy__DDS_Extension_.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DATABASE_QosPolicy__DDS_Extension_.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DATABASE_QosPolicy__DDS_Extension_.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DATABASE_QosPolicy__DDS_Extension_.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Optional

——

<resource_limits>

e e e

e e e e e e e e e o o = o =

Figure 1.22: Resource Limits Tag Structure

1.6. Configuration

55

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.19: Resource Limits Tag

Tags within | Description Multiplic-

<resource_limits ity

<remote_partic— | Allocation settings applied to remote DomainParticipants. See | 0..1

ipant_alloca- remote_participant_allocation in DomainParticipantResource-

tion> LimitsQosPolicy.

<remote_par-— Number of hash buckets for remote DomainParticipants. See | 0..1

tici- remote_participant_hash_buckets in DomainParticipantRe-

pant_hash_buck- sourceLimitsQosPolicy.

ets>

<partici- Maximum number of properties associated with the Domain- | 0..1

pant_prop- Participant. See participant_property_list_ max_length in Do-

erty_1list_max_1lengmhiaParticipantResourceLimitsQosPolicy.

<partici- Maximum string length of the properties associated | O..1

pant_prop- with the DomainParticipant. See participant_prop-

erty_string_max_lleerty.tstring max_length in DomainParticipantResource-
LimitsQosPolicy.

<partici- Maximum length of user data to send and receive in a participant | 0..1

pant_user_data_maxanhenagehient. See participant_user_data_max_length in Do-
mainParticipantResourceLimitsQosPolicy.

<trans- Maximum number of installed transports to send and receive | O..1

port_info_list_maxinfermgtibrr about a participant announcement. See trans-
port_info_list_max_length in DomainParticipantResourcel.im-
itsQosPolicy.

Enabling Distributed Logger

Distributed Logger is included in Connext but it is not supported on all platforms; see the RTI Connext Core
Libraries Platform Notes for the set of platforms that support Distributed Logger.

When you enable Distributed Logger, the Cloud Discovery Service will publish its log messages to Connext.
Then you can use RTI Admin Console to visualize the log message data. Since the data is provided in a topic,
you can also use rtiddsspy or even write your own visualization tool.

To enable Distributed Logger, use the tag <distributed_logger> within <adminstration>. For
example:

<cloud_discovery_service name="MyCDS">
<administration>

<distributed_logger>
<enabled>true</enabled>
</distributed_logger>
</administration>

</cloud_discovery_service>

For more details, see Enabling Distributed Logger in RTI Services, in the RTI Connext Core Libraries User’s

1.6. Configuration 56

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/DOMAINPARTICIPANTRESOURCELIMITSQos.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/EnablingDistributedLoggerInRTIServices.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Manual.

1.6.3 Builtin Configuration

Cloud Discovery Service comes pre-loaded with a builtin configuration, which is selected on startup if no con-
figuration name is specified. This builtin configuration is equivalent to the following:

<cloud_discovery_service name="rti.cds.builtin.config.default">
<transport>
<element>
<alias>builtin.udpvid</alias>
<receive_port>7400</receive_port>
</element>
</transport>
<domain_list>
<allow_domain_id>DOMAIN_LIST_ALL</allow_domain_id>
</domain_list>
<forwarder>
<thread_pool>
<size>2</size>
</thread_pool>
</forwarder>
<database>
<cleanup_period>
<sec>50</sec>
</cleanup_period>
</database>
</cloud_discovery_service>

The builtin configuration has the name rti.cds.builtin.config.default, which is reserved; no
additional configurations can have this name.

1.6.4 Overriding XML Settings

Cloud Discovery Service allows you to override certain XML settings through the use of the command-line
options. When these options are explicitly specified, their values will override the values of the equivalent
XML elements.

See Command-Line Options for a list of the available options that can override XML settings.

1.6. Configuration 57

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.7 Remote Administration

A control client (such as RTT Admin Console) can use this interface to remotely control Cloud Discovery Service.

Note: Cloud Discovery Service remote administration is based on the RTI Remote Administration Platform
described in Remote Administration Platform. Please refer to that manual for a detailed discussion on the
workings of remote administration in Cloud Discovery Service.

Below you will find an API reference for all the supported operations.

1.7.1 Enabling Remote Administration

By default, remote administration is disabled in Cloud Discovery Service.

To enable remote administration you can use the <administration> XML tag (see Administration) or the
-remoteAdministrationDomainId command-line parameter (see Command-Line Options). Both of
these methods enable remote administration and set the domain ID for remote communication.

1.7.2 Available Service Resources

Table 1.20 lists the public resources specific to Cloud Discovery Service. Each resource identifier is expressed
as a hierarchical sequence of identifiers, including parent and target resources. (See Resource Identifiers for
details.)

In the table below, the element (cds) refers to the name of an entity of the corresponding class as specified
in the configuration in the name attribute. For example, in the following configuration:

<cloud_discovery_service name="MyCDS">...</cloud_discovery_service>

The resource identifier is:

/cloud_discovery_services/MyCDS

In the table below, the resource identifier is written as /cloud_discovery_services/(cds), where (cds) is the
service name. This nomenclature is used in the table to give you an idea of the structure of the resource
identifiers. For actual example resource identifier names, see the example section that follows.

1.7. Remote Administration 58

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.20: Resources and their identifiers in Cloud Discovery Ser-

vice

Resource Resource Identifier
Cloud Discovery | /cloud_discovery_services/(cds)
Service
Database /cloud_discovery_services/(cds)/database/[subset_info]

where [subset_info] represents a specific smaller piece of the stored discovery

information. The current available subsets are:

* locators: List of original and resolved locators for a specified participant.
Example

This example shows you how to address a resource of each possible resource class in Cloud Discovery Service.

Cloud Discovery Service

Entity with name “MyCDS”:

<cloud_discovery_service name="MyCDS">...</cloud_discovery_service>

Resource identifier:

/cloud_discovery_services/MyCDS

1.7.3 Remote API Overview

Table 1.21: Remote Interface Overview

Re- Operation Description

source

Cloud- DELETE /cloud_discovery_services/(cds) Shuts down a running Cloud Dis-
Discov- covery Service instance.

erySer-

vice

UPDATE /cloud_discovery_services/(cds)/state

Sets a Cloud Discovery Service
state.

GET /cloud_discovery_services/(cds)/state

Gets a Cloud Discovery Service
state.

GET /cloud_discovery_services/cds)/database/locators

Gets the list of original and re-
solved locators for a concrete par-
ticipant.

1.7. Remote Administration

59

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.7.4 Cloud Discovery Service

DELETE /cloud_discovery_services/ (cds)
Operation shutdown

This operation will cause Cloud Discovery Service to shutdown.

UPDATE /cloud_discovery_services/ (cds) /state
Operation set_state

Sets the state of a Cloud Discovery Service object. The action is parameterized on octet_body, which
could have the following values:

See Set Resource State.
Valid requested states:
e STARTED
e STOPPED

e ENABLED

DISABLED

* Example

To stop an instance of Cloud Discovery Service with the name “MyCDS”:

Request Field Value

action UPDATE

resource_iden- /cloud_discovery_services/MyCDS/state
tifier

octet_body

to_cdr_buffer (RTI::Service::EntityStateKind: :STOPPED)
For example code refer to Example: Controlling services re-
motely from a Connext Application.

GET /cloud_discovery_services/ (cds) /state
Operation get_state

Gets the state of a Cloud Discovery Service object. The value is contained in the reply octet_body, which
could have the following values:

See Get Resource State
Valid reply states:
e STARTED

e STOPPED

* Example

1.7. Remote Administration 60

RTI Cloud Discovery Service User's Manual, Version 7.2.0

To inspect the current state of an instance of Cloud Discovery Service with the name

“MyCDS”:

Request Field Value

action GET

resource_iden- /cloud_discovery_services/MyCDS/state

tifier

Reply Field Value

octet_body
from_cdr_buffer (RTI::Service: :Admin: :CommandReply: :octet_

~body)

For example code refer to Example: Controlling services re-
motely from a Connext Application.

1.7.5 Database

GET /cloud_discovery_services/ (cds) /database/locators
Operation get_participant_locators

Gets the list of resolved and original locators for a specified participant. The result is returned in the
reply’s string body as a JSON string with the following format:

{
"locators": {
"original":{
"metatraffic": [
"original_mt_locatorl",
"original_mt_locatorl",

]I

"default": [
"original_def_locatorl",
"original_def_locator2",

}I
"resolved":{
"metatraffic": [
"resolved_mt_locatorl",
"resolved_mt_locator2",

1,

"default": [
"resolved_def_ locatorl",
"resolved_def_locator2",

(continues on next page)

1.7. Remote Administration 61

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

The original locator set represent the locators contained in the participant announcement as it is received.
The resolved locator set represent the locators Cloud Discovery Service updates or extend to contain

additional information necessary for the peer participants. This is for example important when using the
IRTI_RWT).

The participant is provided in the string body as the string representation of the GUID with format:

0x0101C372,0x17D4CED6, OxEATB3DA5:0x000001C1

* Example

To locator information for a specific participant existing in the database of a Cloud Dis-
covery Service instance with the name “MyCDS”:

Request Field Value

action GET

resource_iden- /cloud_discovery_services/MyCDS/database/locators
tifier

string_body

0x0101C372,0x17D4CEDSG,
< 0xEA7B3DA5:0x000001C1

1.7. Remote Administration 62

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Reply Field Value
string_body

"locators": {
"original":{
"metatraffic": [
"udpv4_wan://f=1,u={BD,73,FC,
—~9E, D5, 00,AB,6D,40},P=10.0.2.15:0:32410"
]I
"default": [
"udpv4_wan://f=1,u={BD, 73, FC,
—~9E,D5,00,AB,6D,40},P=10.0.2.15:0:32411"
]
}’
"resolved":{
"metatraffic": [
"udpv4_wan://f=7,u={BD, 73,
—~FC, 9E,D5,00,AB, 6D,40},P=188.78.49.
—211:56532:32410"
1,
"default": [
"udpv4_wan://f=7,u={BD, 73,
—~FC, 9E,D5,00,AB, 6D,40},P=188.78.49.
—211:56532:32410"
]

1.8 Monitoring

This section provides documentation on Cloud Discovery Service remote monitoring.

Note: Cloud Discovery Service monitoring is based on the Monitoring Distribution Platform described in
Monitoring Distribution Platform. We recommend that you read Monitoring Distribution Platform before using
Cloud Discovery Service monitoring.

1.8. Monitoring 63

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.8.1 Overview
Enabling Service Monitoring
By default, monitoring is disabled in Cloud Discovery Service. To enable monitoring you can use the

<monitoring> tag(see Monitoring) or the —remoteMonitoringDomainIdcommand-line parameter,
which enables remote monitoring and sets the domain ID for data publication (see Command-Line Options).

Monitoring Types

The available Keyed Resource classes and their types that can be present in the distribution monitoring topics
are listed in Table 1.22. The complete type relationship is shown in Figure 1.23.

Table 1.22: Cloud Discovery Service Keyed Resources

Keyed Resource | Config Event Periodic

Class

Service ServiceConfig ServiceEvent ServicePeriodic

Forwarder ForwarderConfig ForwarderEvent ForwarderPeri-
odic

Sender SenderConfig SenderEvent SenderPeriodic

Receiver ReceiverConfig ReceiverEvent ReceiverPeri-
odic

Database DatabaseConfig DatabaseEvent DatabasePeri-
odic

All the type definitions for Cloud Discovery Service monitoring information are in [NDDSHOME] /
resource/idl/ServiceCommon.idl and [NDDSHOME] /resource/idl/CdsMonitoring.
idl.

Cloud Discovery Service creates a Data Writer for each distribution Topic. All Data Writers are created from a
single Publisher, which is created from a dedicated DomainParticipant. See Cloud Discovery Service for details
on configuring the QoS for these entities.

1.8.2 Monitoring Metrics Reference

This section provides a reference to all the monitoring metrics Cloud Discovery Service distributes, organized
by service resource class.

1.8. Monitoring 64

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Cloud
Discovery
Service

Forwarder

Sender
Receiver

Database

Figure 1.23: Keyed Resource Types for Cloud Discovery Service monitoring

N

Keyed Resource

| ConfigUnion |

| EventUnion ‘

| PeriodicUnion |

o

—

——| EntityConfig |

—-| EntityEvent ‘

S

1 1

l ServiceConfig |‘— | ServiceEvent }-— | ServicePeriodic }——
1 1

l ForwarderConfig |~— | ForwarderEvent }E | ForwarderPeriodic }‘—
1 [

l SenderConfig |-— | SenderEvent }-— | SenderPeriodic }-—
1

| ReceiverConfig |-— | ReceiverEvent]-— | ReceiverPeriodic }-—
1]

[DatabaseConfig |_7

| DatabaseEvent]_7

| DatabasePeriodic }_7

1.8. Monitoring

65

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Service
Listing 1.1: Cloud Discovery Service Types
@mutable @nested
struct ServiceConfig Service::Monitoring: :EntityConfig {
Service: :BoundedString application_name;
Service::Monitoring: :ResourceGuid application_guid;
@optional Service::Monitoring::HostConfig host;
@optional Service::Monitoring::ProcessConfig process;
bi
@mutable @nested
struct ServiceEvent Service::Monitoring::EntityEvent {
bi
@mutable @nested
struct ServicePeriodic {
@optional Service::Monitoring::HostPeriodic host;
@optional Service::Monitoring::ProcessPeriodic process;
bi
Table 1.23: ServiceConfig
Field Name Description
Inherited fields from | See Table 1.52.
EntityConfig
applica- Name of the Cloud Discovery Service instance. The application name is provided
tion_name through:

* appName command-line option when run as executable.

* ServiceProperty: :service_name field when run as a library.
applica- GUID of the Cloud Discovery Service instance. Unique across all service in-
tion_guid stances.
host See Table 1.48.
process See Table 1.50.

Table 1.24: ServiceEvent

Field Name Description

Inherited fields from | See Table 1.53.

EntityEvent

Table 1.25: ServicePeriodic

Field Name Description

host See Table 1.49.

process See Table 1.51.

1.8. Monitoring

66

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Forwarder
Listing 1.2: Forwarder Types
@mutable @nested
struct ForwarderConfig : Service::Monitoring::EntityConfig {
bi
@mutable @nested
struct ForwarderEvent : Service::Monitoring::EntityEvent {
bi
@mutable @nested
struct ForwarderPeriodic {
@optional Service::Monitoring::NetworkPerformance
new_participant_announcements;
@optional Service::Monitoring::NetworkPerformance
repeat_participant_announcements;
@optional Service::Monitoring::NetworkPerformance
change_participant_announcements;
@optional Service::Monitoring::ThreadPoolPeriodic thread_pool;
bi
Table 1.26: ForwarderConfig
Field Name Description
Inherited fields from | See Table 1.52.
EntityConfig
Table 1.27: ForwarderEvent
Field Name Description
Inherited fields from | See Table 1.53.
EntityEvent

1.8. Monitoring 67

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.28: ForwarderPeriodic

Field Name

Description

new_partici-
pant_announce-—
ments

Provides network performance metrics as an aggregation of the same metrics
across the contained Sender and Receiver. See Network Performance Metrics.

repeat_partici-
pant_announce-—
ments

Provides network performance metrics as an aggregation of the same metrics
across the contained Sender and Receiver. See Network Performance Metrics.

change_partici-
pant_announce-—
ments

Provides network performance metrics as an aggregation of the same metrics
across the contained Sender and Receiver. See Network Performance Metrics.

thread_pool

Sequence of ThreadPeriodic objects, one for each thread of the For-
warder’s thread pool. See Table 1.55.

Sender
Listing 1.3: Sender Types
@mutable @nested
struct SenderConfig Service::Monitoring::EntityConfig {
ti
@mutable @nested
struct SenderEvent Service::Monitoring: :EntityEvent {
bi
@mutable @nested
struct SenderPeriodic {
@optional Service::Monitoring::NetworkPerformance
new_participant_announcements;
@optional Service::Monitoring::NetworkPerformance
repeat_participant_announcements;
@optional Service::Monitoring::NetworkPerformance
change_participant_announcements;
bi
Table 1.29: SenderConfig
Field Name Description
Inherited fields from | See Table 1.52.
EntityConfig
Table 1.30: SenderEvent
Field Name Description
Inherited fields from | See Table 1.53.
EntityEvent

1.8. Monitoring

68

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.31: SenderPeriodic

Field Name

Description

new_partici-
pant_announce-—
ments

Provides network performance metrics for the new participant announcements
class dispatched by the Sender. See Network Performance Metrics.

repeat_partici-
pant_announce-—
ments

Provides network performance metrics for the repeat participant announce-
ments class dispatched by the Sender. See Network Performance Metrics.

change_partici-
pant_announce-—
ments

Provides network performance metrics for the change participant announce-
ments class dispatched by the Sender. See Network Performance Metrics.

Receiver
Listing 1.4: Receiver Types
@mutable @nested
struct ReceiverConfig Service::Monitoring::EntityConfig {
bi
@mutable @nested
struct ReceiverEvent Service::Monitoring: :EntityEvent ({
i
@mutable @nested
struct ReceiverPeriodic {
@optional Service::Monitoring::NetworkPerformance
new_participant_announcements;
@optional Service::Monitoring::NetworkPerformance
repeat_participant_announcements;
@optional Service::Monitoring::NetworkPerformance
change_participant_announcements;
bi
Table 1.32: ReceiverConfig
Field Name Description
Inherited fields from | See Table 1.52.
EntityConfig
Table 1.33: ReceiverEvent
Field Name Description
Inherited fields from | See Table 1.53.
EntityEvent

1.8. Monitoring

69

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.34: ReceiverPeriodic

Field Name

Description

new_partici-
pant_announce-—
ments

Provides network performance metrics for the new participant announcements
class received by the Receiver. See Network Performance Metrics.

repeat_partici-
pant_announce-—
ments

Provides network performance metrics for the repeat participant announce-
ments class received by the Receiver. See Network Performance Metrics.

change_partici-
pant_announce-—

Provides network performance metrics for the change participant announce-
ments class received by the Receiver. See Network Performance Metrics.

ments
Database
Listing 1.5: Database Types
@mutable @nested
struct DatabaseConfig Service::Monitoring::EntityConfig {
ti
@mutable @nested
struct DatabaseEvent Service::Monitoring::EntityEvent {
bi
@mutable @nested
struct DatabasePeriodic {
@optional Service::Monitoring::ThreadPoolPeriodic thread_pool;
bi
Table 1.35: DatabaseConfig
Field Name Description
Inherited fields from | See Table 1.52.
EntityConfig
Table 1.36: DatabaseEvent
Field Name Description
Inherited fields from | See Table 1.53.
EntityEvent

1.8. Monitoring

70

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.37: DatabasePeriodic

Field Name Description

thread_pool Sequence of ThreadPeriodic objects, one for each thread of the Database’s
thread pool. See Table 1.55.

1.9 Security

You can use symmetric cryptography using pre-shared keys to protect the communication between Cloud Dis-
covery Service and the user’s DomainParticipants, as described in Security Considerations when Using Cloud
Discovery Service.

Cloud Discovery Service uses the RTI Lightweight Security Plugins to protect the integrity and/or confidentiality
of RTPS messages. By operating at the RTPS level, the protection is applied to all messages exchanged between
the DomainParticipants and Cloud Discovery Service. These include the participant announcements and the
BINDING_PING messages when using the Real-Time WAN Transport.

Attention: In the prior releases, Cloud Discovery Service and Real-Time WAN Trans-
port can be protected with <<deprecated>> com.rti.serv.secure.cryptography.
rtps_protection_key and <<deprecated>> com.rti.serv.secure.authentication.
participant_discovery_protection_key properties. They are still functional and intended
for communicating with legacy systems only. This functionality will be removed in the future and is not
suitable for new deployments. For detailed description about legacy properties, please refer to Connext
DDS Secure and Cloud Discovery Service 6.1.2 documentation.

1.9.1 Configuration

To configure security in Cloud Discovery Service, you can set the following properties:

e com.rti.serv.secure.cryptography.rtps_protection_preshared_key - This
is the key value used by the RTI Lightweight Security Plugins inside Cloud Discovery Service to pro-
tect the integrity and/or confidentiality of RTPS messages. The value should be the same on all the
DomainParticipants and Cloud Discovery Service. For further details, see Configuring the Lightweight
Security Plugins.

* com.rti.serv.secure.cryptography.rtps_protection_preshared_key_algorithm
- This is the Pre-Shared Key Protection algorithm used by DomainParticipants and Cloud Discovery
Service. The value should be the same on all the DomainParticipants and Cloud Discovery Service. For
further details, see Configuring the Lightweight Security Plugins.

* dds.participant.discovery_config.signature_validation_persistent_state_file
- This property allows protection against a Cloud Discovery Service participant announcement replay
attack. It is useful when a running Cloud Discovery Service instance configured with the above security
properties could be restarted. For further details, see Protection Against a Cloud Discovery Service
Participant Announcement Replay Attack.

1.9. Security 71

https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p4_integrations/real-time_wan_transport.html#security-considerations-when-using-cloud-discovery-service
https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p4_integrations/real-time_wan_transport.html#security-considerations-when-using-cloud-discovery-service
https://community.rti.com/documentation/rti-connext-dds-612
https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p3_advanced/lightweight_security.html#configuring-the-light-sp-heading
https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p3_advanced/lightweight_security.html#configuring-the-light-sp-heading
https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p3_advanced/lightweight_security.html#configuring-the-light-sp-heading
https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p4_integrations/real-time_wan_transport.html#protection-against-a-cloud-discovery-service-participant-announcement-replay-attack
https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p4_integrations/real-time_wan_transport.html#protection-against-a-cloud-discovery-service-participant-announcement-replay-attack

RTI Cloud Discovery Service User's Manual, Version 7.2.0

In Cloud Discovery Service, set the above properties by updating the <property> tag inside the
<security> tag (see Configuration for Security).

1.9.2 Pre-Shared Key Mutability

For a running Cloud Discovery Service instance, the RTI Lightweight Security Plugins also supports mutability
for the com.rti.serv.secure.cryptography.rtps_protection_preshared_key prop-
erty. You are allowed to change the pre-shared key dynamically. The reasons for changing the key could
be overuse, leaks or compromise, or proactive prevention of these security problems.

To change the pre-shared key, leverage the Cloud Discovery Service Library API:
* C Library API - RTI_CDS_Service_update_rtps_protection_preshared_key.
e C++11 Library API - update_rtps_protection_preshared_key.

1.10 Tutorials

Note: The commands shown in these examples are for the x64Linux3gcc5. 4.0 architecture. For sim-
plicity, all the examples assume that all the applications run on the same host machine and the environment
variable NDDSHOME is set to point to your RT] Connext installation.

Note: Some of the examples require OpenSSL libraries and you must ensure they are present in your library
path before starting the applications. Example commands assume the existence of the environment variable
OPENSSLHOMELIB set to the directory that contains the OpenSSL libraries.

If you use the OpenSSL libraries distributed by RTI, the libraries will have the following locations:
* On Linux and macOS systems: NDDSHOME/third_party/openssl-<version>/<architecture>/release/lib

* On Windows systems: NDDSHOME\third_party\openssl-<version>\<architecture>\release\lib

1.10.1 Example: Using a Builtin UDP Transport

This example illustrates the basic functionality of Cloud Discovery Service. 1t shows how Connext DDS appli-
cations discover each other through an instance of Cloud Discovery Service.

1.10. Tutorials 72

https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/api/cloud_discovery_service/api_c/group__RTI__CDS__ServiceLibModule.html#ga52990f557115f25f9efaca1fe0bc5248
https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/api/cloud_discovery_service/api_cpp/classrti_1_1cds_1_1Service.html#a16b34c555f9d99f47a43a8e10808d3f9

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Setup

The first step is to have two Connext applications that can talk to each other. For that, you can use an IDL
file of your choice and run rtiddsgen to generate the example. For instance, you can create a file named
CDSHelloWorld. id1l with the following content:

struct CDSHelloWorld {
long count;
}i

Generate the publisher and subscriber examples by running the following command (you can replace C++11
with any other supported language of your choice):

SNDDSHOME /bin/rtiddsgen —-language C++11 —-example x64Linux3gcc5.4.0 \
-ppDisable CDSHelloWorld.idl

To compile the generated code, run:

make —-f makefile_CDSHelloWorld x64Linux3gcc5.4.0

You should have two executables, CDSHelloWorld_publisher and
CDSHelloWorld_subscriber. Now you can run the examples to make sure everything is fine.
You need to run the examples from the directory that contains the generated USER_QOS_PROFILES. xml.

From one terminal run:

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_publisher -s 30
Writing CDSHelloWorld, count O
Writing CDSHelloWorld, count 1

From a different terminal, run:

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_subscriber
CDSHelloWorld subscriber sleeping for 4 sec...
[count: 3]

CDSHelloWorld subscriber sleeping for 4 sec...
[count: 4]

You should see that the subscriber application receives the samples generated by the publisher application.
This occurs because by default, DomainParticipants enable multicast. That is, participant announcements are
automatically sent to a multicast destination.

1.10. Tutorials 73

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Disable Multicast and Shared Memory, and unset default Initial Peers

Stop the applications and disable multicast and the shared memory transport. Then unset the default ini-
tial peers, which enable applications on the same host to discover each other. To do that, open the
USER_QOS_PROFILES.xml file and add the following snippet to <domain_participant_gos>.

<domain_participant_gos>

<!-— Only enable the UDPv4 transport ——>
<transport_builtin>

<mask>UDPv4</mask>
</transport_builtin>

<discovery>
<!-- This effectively disables multicast -->
<multicast_receive_addresses />
<!-- This eliminates the default initial peers ——>
<initial_peers />

</discovery>

</domain_participant_gos>

Now if you run the publisher and subscriber applications again, notice that the subscriber does not receive any
samples:

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_subscriber
CDSHelloWorld subscriber sleeping for 4 sec...
CDSHelloWorld subscriber sleeping for 4 sec...
CDSHelloWorld subscriber sleeping for 4 sec...

You can stop the applications now.

Cloud Discovery Service in Action

To make the applications communicate, we need to run Cloud Discovery Service. From a terminal, run the
following command:

SNDDSHOME /bin/rticlouddiscoveryservice —-verbosity LOCAL

This command will run Cloud Discovery Service with the builtin configuration that listens on port 7400 over
the UDP transport.

Re-run the publisher and subscriber applications, but this time set the initial peers to talk to Cloud Discovery
Service (see RTPS Peer Descriptor). To do that, open the USER_QOS_PROFILES.xml file and add the
following snippet to <domain_participant_gos>.

<domain_participant_qgos>

<discovery>

(continues on next page)

1.10. Tutorials 74

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

<initial_peers>
<element>rtps@localhost:7400</element>
</initial_peers>
</discovery>
</domain_participant_qgos>

Now run the applications and verify that the subscriber receives samples. In addition, you can start more
publishers and subscribers, then see how they all discover each other and communicate. You can also stop
Cloud Discovery Service and see that the applications continue communicating because once Discovery has
completed, Cloud Discovery Service is no longer needed.

1.10.2 Example: Using a Custom Listening Port

This example extends Example: Using a Builtin UDP Transport to run Cloud Discovery Service on a custom
listening port over UDP. For that, you can run Cloud Discovery Service as follows:

SNDDSHOME /bin/rticlouddiscoveryservice —-transport <port>

where <port> represents the port number you want to use. This example will use 10000.

SNDDSHOME /bin/rticlouddiscoveryservice —transport 10000

To see which exact address Cloud Discovery Service is using to listen for participant announcements, run the
service with —verbosity LOCAL and look for the line:

[/cloud_discovery_services/rti.cds.builtin.config.default/forwarder/
—receiver |ENABLE] listening for announcements on:
{
"locator": [
"udpv4://172.17.0.2:10000"

Set the initial peers accordingly to indicate where Cloud Discovery Service is listening:

<domain_participant_qgos>

<discovery>

<initial_peers>
<element>rtps@localhost:10000</element>
</initial_peers>
</discovery>
</domain_participant_gos>

1.10. Tutorials 75

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.10.3 Example: Using RTI TCP Transport

This example extends Example: Using a Builtin UDP Transport to use the RTI TCP transport for both discovery
and user data. The example shows how to run Cloud Discovery Service using the preregistered instance of RTI
TCP transport.

Note: To run this example, you need RTI TCP Transport, which is included with Connext.

Setup

The first step of this example is to configure the publisher and subscriber applications so they communicate
over the RTI TCP transport in LAN mode. For that, you can include the following XML code within the
<domain_participant_gos> tag of the file USER_QOS_PROFILES.xml generated by riddsgen.

<property>
<value>

<element>
<name>dds.transport.load_plugins</name>
<value>dds.transport.tcp.tcpl</value>

</element>

<element>
<name>dds.transport.tcp.tcpl.library</name>
<value>nddstransporttcp</value>

</element>

<element>
<name>dds.transport.tcp.tcpl.create_function</name>
<value>NDDS_Transport_TCPv4_create</value>

</element>

<element>
<name>dds.transport.tcp.tcpl.server_bind_port</name>
<value>S$ (BIND_PORT) </value>

</element>

<element>
<name>dds.transport.tcp.tcpl.parent.classid</name>
<value>NDDS_TRANSPORT_CLASSID_TCPV4_LAN</value>

</element>

</value>
</property>

The server bind port property value is obtained from the environment variable $ (BIND_PORT) . This is a
convenience for this example so you can reuse the same file to specify a different port for the publisher and
subscriber applications, which is required when running on the same host machine.

Now you can run the applications. You need to run from the directory that contains the generated
USER_QOS_PROFILES.xml you just modified.

From the terminal, run the Publisher application:

1.10. Tutorials 76

RTI Cloud Discovery Service User's Manual, Version 7.2.0

export LD_LIBRARY_PATH=S$NDDSHOME/lib/x64Linux3gcc5.4.0
export BIND_PORT=7401
export NDDS_DISCOVERY_PEERS=tcpv4_lan://localhost:7402

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_publisher -s 30

Then run the Subscriber application:

export LD_LIBRARY_PATH=S$NDDSHOME/lib/x64Linux3gcc5.4.0
export BIND_PORT=7402
export NDDS_DISCOVERY_PEERS=tcpv4_lan://localhost:7401

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_subscriber

You should see the subscriber receive samples. This is possible since in the initial peers list, you indicated how
the applications can reach each other.

Cloud Discovery Service in Action

Now you will use Cloud Discovery Service to provide the discovery for the applications.

From a terminal, run the following:

export LD_LIBRARY_PATH=$NDDSHOME/lib/x64Linux3gcc5.4.0

SNDDSHOME /bin/rticlouddiscoveryservice —transport tcpv4_lan:7400

This will run Cloud Discovery Service with the builtin configuration and override the transport selection to use
RTI TCP with bind port 7400.

Re-run the publisher and subscriber application, but this time set the initial peers to talk to Cloud Discovery
Service (see RTPS Peer Descriptor). For that, you can set the environment from the application terminal as
follows:

For the Publisher application:

export LD_LIBRARY_PATH:$NDDSHOME/lib/x64LinuX3gCC5.4.0
export BIND_PORT=7401
export NDDS_DISCOVERY_PEERS=rtps@tcpv4_lan://localhost:7400

For the Subscriber application:

export LD_LIBRARY_PATH=$SNDDSHOME/lib/x64Linux3gcc5.4.0
export BIND_PORT=7402
export NDDS_DISCOVERY_PEERS=rtps@tcpv4_lan://localhost:7400

Now run the applications and verify that the subscriber receives samples. You can also stop Cloud Discovery
Service and see how the applications continue communicating.

1.10. Tutorials 77

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Configuration for TCP transport in WAN Mode using a public address

In this example, we have seen how to configure the TCP transport in the publisher and subscriber applications,
and how to configure Cloud Discovery Service to operate in LAN mode. However, there can be situations where
Cloud Discovery Service or the publisher and subscriber applications are located across LANs or firewalls. In
such a use case, it would be typical to have Cloud Discovery Service expose a public IP address which can be
used for asymmetric discovery by the publisher or subscriber application.

To apply this example in that context, you will need to make the following changes:

USER_QOS_PROFILES.xml

First, change the classid for the TCP transport. The publisher and subscriber also need a publicly reachable
address when communicating with Cloud Discovery Service or other peers in the domain. To achieve both of
these changes, add the following to configuration of the RTI TCP transport:

<property>
<value>
<element>
<name>dds.transport.tcp.tcpl.parent.classid</name>
<value>NDDS_TRANSPORT_CLASSID_TCPV4_WAN</value>
</element>
<element>
<name>dds.transport.tcp.tcpl.public_address</name>
<value>S (PUBLIC_ADDRESS) </value>
</element>
</value>
</property>

The $ (PUBLIC_ADDRESS) environment variable allows us to use the same configuration file for the pub-
lisher and subscriber applications.

Cloud Discovery Service

Create a configuration file for Cloud Discovery Service, select the TCP transport for the WAN alias, and set
the public address. This public address will be used by the publisher and the subscriber applications in their
discovery peers.

<?xml version="1.0" ?>
<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="../../resource/schema/rti_cloud_
—discovery_service.xsd">
<cloud_discovery_ service name="ExampleTCPWAN">
<annotation>
<documentation>
<![CDATA[
Example that configures the pre-registered instance of the
RTI TCP WAN transport with a public IP address.

(continues on next page)

1.10. Tutorials 78

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

17>
</documentation>
</annotation>
<transport>
<element>
<alias>tcpv4_wan</alias>
<receive_port>9000</receive_port>
<property>
<element>
<name>dds.transport.cds.tcpl.public_address</name>
<value>35.6.9.10:4589</value>
</element>
</property>
</element>
</transport>
</cloud_discovery_service>
</dds>

You can download the configuration file from here: rti_cds_example_tcp_wan.xml

You can read more about the public_address property of the RTI TCP transport in RTI TCP Transport con-
figuration. An important thing to note here is the format of the specified address. It follows the [ip:port]
format, where the IP is the public address of the router that provides access to the WAN. The port is the router
port that is used to reach the private server_bind_port inside the LAN from the outside. In this example,
the private server_bind_port is 9000 and the external port is 4589.

You should change these values as per your network configuration.

To use this configuration, from the terminal, run:

SNDDSHOME /bin/rticlouddiscoveryservice \
—-cfgFile <working_dir>/rti_cds_example_tcp_wan.xml —-cfgName.
—ExampleTCPWAN

NDDS_DISCOVERY_PEERS

Run the publisher and subscriber applications exactly the way you did in Sefup, but with one modification.

export NDDS_DISCOVERY_PEERS=rtps@tcpv4_wan://35.6.9.10:4589

Make sure you set the PUBLIC_ADDRESS environment variable for the publisher and subscriber applications.

Replace the [ip:port] pair depending upon the mapping setup in your router
export PUBLIC_ADDRESS=10.20.30.40:7000

You will see that until Cloud Discovery Service is started, the publisher and subscriber applications won’t dis-
cover each other. Once Cloud Discovery Service starts, these applications will complete discovery and start
communicating with each other.

1.10. Tutorials 79

../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/TCP_TLS_Transport_Properties.htm
../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/TCP_TLS_Transport_Properties.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.10.4 Example: Using RTI TCP Transport with RTI TLS Support

This example extends Example: Using a Builtin UDP Transport to enable TLS for secure communication. The
example shows how to run Cloud Discovery Service using the preregistered transport instance of the RTI TCP
transport with TLS enabled.

Note: To run this example, you need the RTI TCP Transport, which is shipped with Connext. Additionally,
you will need to install the optional packages RTI TLS support and OpenSSL.

Setup

The first step in this example is to configure the publisher and subscriber applications to communicate over the
RTI TCP transport in LAN mode with TLS enabled. For that, you can include the following XML code within
the <domain_participant_gos> tagof the file USER_QOS_PROFILES.xml generated by rtiddsgen.

<property>
<value>

<element>
<name>dds.transport.load_plugins</name>
<value>dds.transport.tcp.tcpl</value>

</element>

<element>
<name>dds.transport.tcp.tcpl.library</name>
<value>nddstransporttcp</value>

</element>

<element>
<name>dds.transport.tcp.tcpl.create_function</name>
<value>NDDS_Transport_TCPv4_create</value>

</element>

<element>
<name>dds.transport.tcp.tcpl.server_bind_port</name>
<value>S (BIND_PORT) </value>

</element>

<element>
<name>dds.transport.tcp.tcpl.parent.classid</name>
<value>NDDS_TRANSPORT_CLASSID_TLSV4_LAN</value>

</element>

<element>

<name>dds.transport.tcp.tcpl.tls.verify.ca_file</name>
<value>$ (PATH_TO_EXAMPLES) /dds_security/cert/tls_rsall/ca/
—rsa0lRootCaCert .pem</value>
</element>
<element>
<name>dds.transport.tcp.tcpl.tls.identity.certificate_chain_file</
—name>
<value>$ (PATH_TO_EXAMPLES) /dds_security/cert/tls_rsall/identities/
—rsallPeer0l.pem</value>
</element>

(continues on next page)

1.10. Tutorials 80

https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_professional/transports/tls_support/installation_guide/index.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

</value>
</property>

Note: This Cloud Discovery Service example reuses the security artifacts in other examples shipped with
Connext. To identify what the value of the environment variable $ (PATH_TO_EXAMPLES) should be, refer
to Paths Mentioned in Documentation

The server bind port property value is obtained from the environment variable $ (BIND_PORT) . This is a
convenience for this example so you can reuse the same file to specify different ports for the publisher and
subscriber applications, which is required when running on the same host machine.

Now you can run the applications. You need to run from the directory that contains the generated
USER_QOS_PROFILES.xml that you just modified and the certificates.

Because TLS is enabled, you must ensure that the R7T TLS Support and OpenSSL libraries are present in your
library path before starting the applications. See the beginning of this section for a note on how to locate the
OpenSSL libraries.

From the terminal, run the Publisher application:

export LD_LIBRARY_PATH=$NDDSHOME/lib/x64Linux3gcc5.4.0:S$0OPENSSLHOMELIB
export BIND_PORT=7401
export NDDS_DISCOVERY_PEERS=tlsv4_lan://localhost:7402

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_publisher -s 30

Then run the Subscriber application:

export LD_LIBRARY_PATH=$NDDSHOME/lib/x64Linux3gcc5.4.0:S$0OPENSSLHOMELIB
export BIND_PORT=7402
export NDDS_DISCOVERY_PEERS=tlsv4_lan://localhost:7401

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_subscriber

You should see the subscriber receives samples. This is possible since in the initial peers list, you indicated
how the applications can reach each other.

Cloud Discovery Service in Action

Now you will use Cloud Discovery Service to provide the discovery for the applications. In this case, you need
to configure the transport with an instance of the RTI TCP transport with TLS enabled.

The configuration required for this example is shown below:

<?xml version="1.0"7?>

<dds =xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="../../resource/schema/rti_cloud_

—discovery_service.xsd">

(continues on next page)

1.10. Tutorials 81

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

<cloud_discovery_ service name="ExampleTls">
<annotation>
<documentation><! [CDATA[
Example that configures the pre-registered instance of the
RTI TCP transport with TLS enabled.
17>
</documentation>
</annotation>
<transport>
<element>
<alias>tlsv4_lan</alias>
<receive_port>7400</receive_port>
<property>
<element>
<name>dds.transport.cds.tcpl.tls.verify.ca_file</name>
<value>$ (PATH_TO_EXAMPLES) /dds_security/cert/tls_
—rsall/ca/rsa0lRootCaCert .pem</value>
</element>
<element>
<name>dds.transport.cds.tcpl.tls.identity.certificate_
—chain_file</name>
<value>$ (PATH_TO_EXAMPLES) /dds_security/cert/tls_
—rsall/identities/rsa0lPeer0l.pem</value>
</element>
</property>
</element>
</transport>
</cloud_discovery_service>

</dds>

You can download the configuration file from here: rti_cds_example_tls.xml

From a terminal, run:

export LD_LIBRARY_PATH=$OPENSSLHOMELIB
SNDDSHOME /bin/rticlouddiscoveryservice \
—-cfgFile <working_dir>/rti_cds_example_tls.xml —-cfgName ExampleTls

This command will run Cloud Discovery Service with the custom configuration for this example, located under
the directory <working_dir>.

Re-run the publisher and subscriber applications, but this time set the initial peers to talk to Cloud Discovery
Service (see RTPS Peer Descriptor). For that, you can set the environment from the application terminal as
follows:

For the Publisher application:

export LD_LIBRARY_PATH:$NDDSHOME/lib/x64LinuX3gCC5.4.0:$OPENSSLHOMELIB
export BIND_PORT=7401
export NDDS_DISCOVERY_PEERS=rtps@tlsv4_lan://localhost:7400

1.10. Tutorials 82

RTI Cloud Discovery Service User's Manual, Version 7.2.0

For the Subscriber application:

export LD_LIBRARY_PATH=SNDDSHOME/lib/x64Linux3gcc5.4.0:SOPENSSLHOMELIB
export BIND_PORT=7402
export NDDS_DISCOVERY_PEERS=rtps@tlsv4_lan://localhost:7400

Now run the applications and verify that the subscriber receives samples. You can also stop Cloud Discovery
Service and see how the applications continue communicating.

1.10.5 Example: Using RTI Real-Time WAN Transport

This example extends the example in Example: Using a Builtin UDP Transport to use RTI RTI Real-Time
WAN Transport to assist in the communication when the publisher and subscriber applications sit behind Cone
NATs. This example shows how to run Cloud Discovery Service with the pre-registered transport instance of
RTI Real-Time WAN Transport.

Note: To run this example, you will need an additional license to run R71 Real-Time WAN Transport. Contact
support@rti.com or your sales representative for further information.

Figure 1.24: Example setup and network layout

Figure 1.24 shows the different hosts and applications involved in this example:

* The publisher and subscriber applications sit behind different Cone NATs. You will run these appli-
cations in hosts belonging to different networks, in remote locations preferably. These hosts have private
transport addresses represented as 12 : 1P and public or external addresses e2 : eP. The values of these
addresses are irrelevant in this example.

* A Cloud Discovery Service instance also sitting behind a NAT of any kind and that is configured to
allow incoming traffic by statically mapping a public address p2 : pP to the private address of Cloud

1.10. Tutorials 83

mailto:support@rti.com

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Discovery Service hA :hP. You will run Cloud Discovery Service in a host from a different network
different to the ones the publisher and subscriber applications run. For example, you could run Cloud
Discovery Service in an EC2 instance from the Amazon Web Services <https://aws.amazon.com>.

Warning: This example only works if the publisher and application NATS are of any of the Cone type.
Symmetric NATs are not supported in this setup.

Setup

The first step in this example is to configure the publisher and subscriber applications to communicate over RT7
Real-Time WAN Transport. You will simply need to configure the corresponding builtin transport mask. For
that, you can modify the <domain_participant_gos> tag of the file USER_QOS_PROFILES.xml
generated by rtiddsgen to look as follows:

<domain_participant_qgos>

<transport_builtin>
<mask>UDPv4_WAN</mask>
</transport_builtin>
</domain_participant_gos>

Now you can run the applications making sure each is behind a NAT. You need to run from the directory that
contains the generated USER_QOS_PROFILES.xml

For the Publisher application in the host behind NAT Pub:

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_publisher -s 30

For the Subscriber application in the host behind NAT Sub:

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_subscriber

You will naturally observe that the applications cannot communicate. This is expected since none of them
know how reach each other out.

Cloud Discovery Service in Action

Now you will use Cloud Discovery Service to provide discovery for the applications. In this case, we will use a
builtin configuration part of Cloud Discovery Service that enables the UDP WAN Transport. The configuration
has name rti.cds.builtin.config.default_wan and looks as follows:

<cloud_discovery_service name="rti.cds.builtin.config.default_wan">
<annotation>
<documentation><! [CDATA[
Enables Real-Time WAN Transport.
XML variables:

(continues on next page)

1.10. Tutorials 84

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

— RTI_CDS_PORT: CDS public and host port number
- RTI_CDS_PUBLIC_ADDR: CDS WAN public address
17>
</documentation>
</annotation>
<transport>
<element>

<alias>builtin.udpv4_wan</alias>
<receive_port>$ (RTI_CDS_PORT) </receive_port>
<property>
<element>
<name>dds.transport.UDPv4_WAN.builtin.public_address</
—name>
<value>$ (RTI_CDS_PUBLIC_ADDR) </value>
</element>
</property>
</element>
</transport>
</cloud_discovery_service>

Note two important elements in this configuration:

* <receive_port>: This is the host UDP port where Cloud Discovery Service runs. By default this is
also the public port that should be reachable externally.

* Property dds.transport.UDPv4_WAN.builtin.public_address: specifies the public
IPv4 address for the host where Cloud Discovery Service runs. Note that this address may be dif-
ferent than the host private address if Cloud Discovery Service sits behind a NAT as well. If this is the
case, it’s expected that the NAT configuration has a port forwarding rule to map the host port to a pub-
lic port statically. The default value for RTI_CDS_PUBLIC_ADDR is localhost (the default host
address, typically chosen by the OS).

You will need to deploy Cloud Discovery Service in a host machine that is publicly reachable. You may need to
configure port forwarding rules if a NAT is present (like the case of EC2 in AWS). For this example we will
assume the following values:

* public IPv4 address: 107.21.118.142
* public UDP port: 39170 (and a forwarding rule to a private port with the same number).

From a terminal in this host machine, run the following command:

SNDDSHOME /bin/rticlouddiscoveryservice \
—cfgName rti.cds.builtin.config.default_wan \
—-DRTI_CDS_PORT=39170 \
-DRTI_CDS_PUBLIC_ADDR=107.21.118.142

Re-run the publisher and subscriber application, but this time set the initial peers to talk to Cloud Discovery
Service (see RTPS Peer Descriptor). For that, you can set the environment in the application terminal as follows,
for both the publisher and subscriber applications:

1.10. Tutorials 85

RTI Cloud Discovery Service User's Manual, Version 7.2.0

export NDDS_DISCOVERY_PEERS=rtps@udpv4_wan://107.21.118.142:39170

Now run the applications and verify that the subscriber receives samples. You can also stop Cloud Discovery
Service and see how the applications continue communicating.

1.10.6 Example: Discovering Connext Micro applications with Cloud Discovery
Service

This example illustrates how a Connext Micro publisher application discovers a subscriber application via an
instance of Cloud Discovery Service. To reiterate, we are assuming that we are on a network that doesn’t support
multicast.

Installing Connext Micro

Before we move to how Cloud Discovery Service is configured, you first need to have Connext Micro installed.
This example assumes that you have Connext Micro version 3.0.0 or higher installed. This includes the rtidds-
gen code generator. rtiddsgen can be used to generate example applications for publishing and subscribing to
data. Earlier versions of rtiddsgen shipped with Connext Micro didn’t support this functionality of generating
examples. Please follow the step by step instructions in the Connext Micro documentation to build the source
code before moving on to the next steps.

Setup

Just like Connext Professional, you will need an IDL file to feed into rfiddsgen to create an example publisher
and subscriber application. You can use the same IDL as used in Sefup, CDSHelloWorld.idl:

struct CDSHelloWorld {
long count;
bi

Generate the publisher and subscriber applications by running the following command (you can also use C++):

SRTIMEHOME/rtiddsgen/scripts/rtiddsgen -micro —-language C —example \
CDSHelloWorld.idl

Modify the CDSHelloWorld_publisher.c file to increase the count variable with each written sam-
ple. For instance, you could add the following line to the main writing loop:

sample->count = i;

The next step is to compile the applications.

Note: rtiddsgen creates a README.txt file which contains instructions on how to compile for most standard
platforms.

For example:

1.10. Tutorials 86

RTI Cloud Discovery Service User's Manual, Version 7.2.0

SRTIMEHOME/resource/scripts/rtime-make —--config Release —-build —-name \
x64Linux3gcc5.4.0 ——target Linux —-source-dir . \
-G "Unix Makefiles" —--delete

This will generate two executables, CDSHelloWorld_ publisher and CDSHelloWorld_sub-
scriber, under the objs/ folder. Run the examples to make sure everything is as expected. From the
top-level directory of the project, run the following commands in two different terminals.

Terminal 1:

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_publisher
Written sample 1

Matched a subscriber

Written sample 2

Written sample 3

Written sample 4

Written sample 5

Terminal 2:

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_subscriber
Running for 24 hours, press Ctrl-C to exit
Matched a publisher

Valid sample received

Valid sample received

Valid sample received

Valid sample received

You should see that the subscriber application receives the samples generated by the publisher application. This
happens because the Connext Micro application you created adds the loopback address as a default peer and
runs on domain ID 0.

Understanding the Connext Micro Peer Descriptor

Connext Micro follows a different naming convention than Connext Professional when it comes to its peer
descriptor string. The peer descriptor format is:

[participant_index@] [interface://]address

You can read more about the peer descriptor string in the Connext Micro documentation. But the important
point to note here is that Connext Micro doesn’t allow you to directly specify a port number in the peer descriptor.
So you need to be aware of which port number is selected based on the combination of participant index and
domain ID. As you will see in more detail below, it is essential for the purpose of avoiding port conflicts.

For the use case of Cloud Discovery Service working with Connext Micro, we have two configuration options:

1.10. Tutorials 87

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1. Configure by Port - You can compute the port number that the combination of peer descriptor and domain
ID will refer to, based on the RTPS well-known ports specification. This idea is useful when one of the
Connext Micro publishers or subscribers is running on the same machine as Cloud Discovery Service.

2. Configure by Domain ID - You can configure Cloud Discovery Service to run on a particular domain ID
and by default it will assume the participant index 0. This idea is useful when Cloud Discovery Service is
running on a separate machine than the publisher or the subscriber application.

Configure by Port

Setup

This example assumes that Cloud Discovery Service runs on the same machine as either the publisher or sub-
scriber application or both. If you want to test a Cloud Discovery Service instance running on a different
machine, you can still use this example by just changing the IP address part in the peer descriptor or you can
check out the simpler method of Configure by Domain ID.

Changing the default initial peer

We are going to change the initial peer for the publisher and the subscriber applications so they won’t be able
to discover each other. To demonstrate this example on the same machine, we will have the publisher and
subscriber applications contact a specific participant index that doesn’t correspond to either of them. This will
allow Cloud Discovery Service to come into the picture. To do that, run the publisher and subscriber applications
as follows, using the ~-peer and —~domain command-line arguments.

CDSHelloWorld_publisher:

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_publisher -peer [5]Q@_udp://127.0.0.1 \
—domain O

CDSHelloWorld_subscriber:

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_subscriber -peer [5]Q@_udp://127.0.0.1 \
—domain O

At this point you should notice that the publisher and subscriber applications cannot discover each other.

Cloud Discovery Service in Action

To make the applications communicate, we need a special configuration for Cloud Discovery Service. We
need a configuration where Cloud Discovery Service listens on the ports referred to by the combination of peer
descriptor and domain ID for the publisher and the subscriber applications.

The configuration from file rti_cds_example_micro.xml required for this example is shown below:

1.10. Tutorials 88

RTI Cloud Discovery Service User's Manual, Version 7.2.0

<cloud_discovery service name="ExampleMicroByPort">
<annotation>
<documentation>
<!'[CDATA[
Example that configures CDS for Micro based on port numbers
computed from the domain ID and participant index
17>
</documentation>
</annotation>
<transport>
<element>
<alias>udpvid</alias>
<receive_port kind="PORT">7420</receive_port>
</element>
</transport>
</cloud_discovery_service>

Here 7420 is the port number corresponding to participant index 5 on domain 0 when the RTPS well-known
port mapping is kept to its default setting. You can read more about the defaults in the API documentation.
This allows Cloud Discovery Service to discover both the publisher and subscriber applications and relay their
announcements to each other.

Note: Assuming there are no other Connext Micro or Connext Professional applications running on the system,
if we start the publisher first, it will take the participant index 0 and the subscriber will take the participant index
1 on domain 0. If you have more applications running on your system on the same domain, you will have to
increase the participant index in the peer descriptor to be a higher number (than 5 which was used) to avoid
port conflicts with other running DDS applications. At the same time you will have to change the port number
Cloud Discovery Service binds to, based on the corresponding combination of participant index and domain ID.

From the terminal, you can run the following command to use the above configuration:

SNDDSHOME /bin/rticlouddiscoveryservice —-cfgFile <working_dir>/rti_cds_example_
omicro.xml \
—cfgName ExampleMicroByPort

Once Cloud Discovery Service starts, you should see the publisher and subscriber applications sending data to
each other. You can stop Cloud Discovery Service and still see the applications continue to communicate.

Configure by Domain ID

Setup

This method assumes that Cloud Discovery Service runs on a separate machine. This is because if Cloud
Discovery Service runs on the same machine as your publisher or subscriber application, you may end up with
port conflicts depending on which application (the publisher, subscriber or Cloud Discovery Service) is started
first. Cloud Discovery Service when working in this configuration tries to bind to the port corresponding to

1.10. Tutorials 89

../../../../doc/api/connext_dds/api_c/structDDS__RtpsWellKnownPorts__t.html

RTI Cloud Discovery Service User's Manual, Version 7.2.0

participant index 0. To see Cloud Discovery Service in action on the same machine as your Connext Micro
publisher, subscriber or both, please refer to the Configure by Port section.

Changing the default initial peer

We are going to change the initial peer for the publisher and the subscriber application such that they won’t be
able to discover each other. To do that we will be running the publisher and subscriber applications as follows
using the ~peer and —~domain command-line arguments.

In the example commands below, note that 10.10.10. 10 is a hypothetical address for the machine running
Cloud Discovery Service. You may want to replace that with the IP address of your machine that is running
Cloud Discovery Service.

CDSHelloWorld_publisher:

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_publisher -peer _udp://10.10.10.10 \
—domain O

CDSHelloWorld_subscriber:

./objs/x64Linux3gcc5.4.0/CDSHelloWorld_subscriber -peer _udp://10.10.10.10 \
—domain O

Note: Connext Micro generated applications have an option to specify the UDP interface name to use for
communication. The generated application will rely on a well-known name like enl or et h0 depending on
the platform. However, if your interface has a different name, use the command-line option —udp_int £ to
specify it.

At this point you should notice that the publisher and subscriber applications cannot discover each other.

Cloud Discovery Service in Action

To make the applications communicate, we need a special configuration for Cloud Discovery Service. We need
a configuration where Cloud Discovery Service listens on a port computed from the RTPS well-known port
mapping for a given domain ID. Note that the participant index cannot be configured and defaults to 0.

The configuration from file rti_cds_example_micro.xml required for this example is shown below:

<cloud_discovery_service name="ExampleMicroByDomainID">
<annotation>

<documentation>
<!'[CDATA[
Example that configures CDS for Micro based on domain ID.

—since Micro

doesn't allow a peer descriptor to have a port number
17>

</documentation>

(continues on next page)

1.10. Tutorials 90

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

</annotation>
<transport>
<element>
<alias>udpvi</alias>
<receive_port kind="DOMAIN_ID_DERIVED">0</receive_port>
</element>
</transport>
</cloud_discovery_service>

From the terminal, run the following command:

SNDDSHOME /bin/rticlouddiscoveryservice —-cfgFile <working_dir>/rti_cds_example_
—micro.xml \
—cfgName ExampleMicroByDomainID

Once Cloud Discovery Service starts you should see the publisher and subscriber applications sending data to
each other. As before, you can stop Cloud Discovery Service and still see the applications continue to commu-
nicate.

1.11 Software Development Kit

You can extend the out-of-the-box behavior of Cloud Discovery Service through its Software Development Kit
(SDK). The SDK provides a set of public interfaces that allow you to control Cloud Discovery Service execution.

The SDK is divided in the following modules:

* RTI Cloud Discovery Service Library API: This module offers a set of APIs that allow you to create
Cloud Discovery Service instances in your application. This allows you to run Cloud Discovery Service as
a library, as described in Section 1.5.2.

Table 1.38 shows which modules are available for each API, along with links to the API documentation.

Table 1.38: API Documentation for the SDK

Language API Available Modules
RTTI Cloud Discovery Service C API

 Library

RTI Cloud Discovery Service C++ API)
* Library

1.11. Software Development Kit 91

https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/api/cloud_discovery_service/api_c/index.html
https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/api/cloud_discovery_service/api_cpp/index.html

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.12 Common Infrastructure

1.12.1 Configuring RTI Services

RTI Services are configured using XML and offer multiple ways to load the configurations. The loading al-
ternatives are in general standard across all RTI Services. This section covers how you can provide XML
configurations to RTI Services, as well as specific behaviors on how the XML is parsed, validated, and inter-
preted.

How to Load and Select an XML Configuration

To run an RTI Service with a specific configuration you need to provide two pieces:

* XML content with one or more configurations This is the actual XML code that contains the
service-specific configurations. We refer to this as the input XML document. There are two different
input sources: File system or in-memory strings.

» Configuration name The name of the actual service configuration to be run. Each RTI Service defines
a top-level element that shall contain a name attribute that uniquely identifies it.

Loading from Files

RTI Services can receive a list of file paths separated by semicolons (;):

filepath_1;filepath_2; ... filepath_ N

File paths can be relative or absolute and files are loaded in order from left to right. How you provide the file
path list depends on whether you run the service from the shipped executable or embed it into your application
using the Library API'.

Shipped Executable

Use the —~cfgFile option.

Warning: On some operating systems, ; is interpreted as a command separator, so you will need to
escape the path list with double quotes ".

For example on Linux systems:

RTI Routing Service

SNDDSHOME /bin/rtiroutingservice -cfgFile "file.xml; /home/file2.xml"

RTI Recording Service

! Library API may not be available for certain RTI Services.

1.12. Common Infrastructure 92

RTI Cloud Discovery Service User's Manual, Version 7.2.0

$NDDSHOME /bin/rtirecordingservice —-cfgFile "file.xml; /home/file2.xml"
g g

RTI Cloud Discovery Service

S$NDDSHOME /bin/rticlouddiscoveryservice —cfgFile "file.xml; /home/file2.xml"

where [NDDSHOME] indicates the path to your Connext installation.
Library API
Set the ServiceProperty: :cfg_file member.

For example in C++:

ServiceProperty property;
property.cfg_file("file.xml; /home/file2.xml");

Service service (property);

Loading from In-Memory Strings

If you are embedding RTI Services into your application using the Library API, the input XML document
can be also be provided through a string array object. You can do so by setting the ServiceProp-
erty::cfg_strings member.

For example in C++:

std: :vector<std::string> xml_strings;

xml_strings.resize (2);

/* This sample demonstrates using Routing Service */
xml_strings[0] = "<dds><routing_service name=\"MyService\">";
xml_strings[1] = "</routing_service></dds>";
property.cfg_strings (xml_strings) ;

Service service (property);

Selecting which Configuration to Run

As stated earlier, the input XML document may contain one or more service configurations. You will need to
select which specific configuration to run by providing its configuration name.

How you provide the configuration name depends on whether you run the service from the shipped executable
or by embedding it into your application using the Library APIL.

For example, consider the following input XML document in a file named MyService.xml that contains
two configurations.

RTI Routing Service

1.12. Common Infrastructure 93

RTI Cloud Discovery Service User's Manual, Version 7.2.0

<dds>
<routing_service name="Servicel"> ... </routing_service>

<routing_ service name="Service2"> ... </routing_service>
</dds>

RTI Recording Service

<dds>
<recording_service name="Servicel"> ... </recording_service>

<recording_service name="Service2"> ... </recording_service>
</dds>

RTI Cloud Discovery Service

<dds>
<cloud_discovery_service name="Servicel"> ... </cloud_discovery_service>
<cloud_discovery_service name="Service2"> ... </cloud_discovery_service>
</dds>

You can run the configuration for Servicel as follows:
Shipped Executable

Use the —cfgName option.

For example, on Linux systems:

RTI Routing Service

SNDDSHOME/bin/rtiroutingservice -cfgFile MyService.xml -cfgName Servicel

RTI Recording Service

SNDDSHOME /bin/rtirecordingservice -cfgFile MyService.xml —-cfgName Servicel

RTI Cloud Discovery Service

$NDDSHOME /bin/rticlouddiscoveryservice —-cfgFile MyService.xml —-cfgName.
—Servicel

Library API
Set the ServiceProperty: : cfg_name member.

For example in C++:

ServiceProperty property;
property.cfg_file("MyService.xml");
property.cfg_name ("Servicel");

Service service (property);

1.12. Common Infrastructure

94

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Default Files

In addition to manually providing input XML files, RTI Services also attempt to automatically load a set of files
from predefined locations:

Table 1.39: RTI Services Default Files

File Allowed Content

[working directory] /USER_[SERVICE] .xml
* Service-specific elements
* QoS profiles
* Types

[NDDSHOME] /resource/xml/RTI_[SERVICE].

xml * Service-specific elements
* QoS profiles
* Types

[working directory]/USER_QOS_PRORFILES.

xml * QoS profiles
* Types

where [SERVICE] refers to the concrete product name in uppercase. For example:
* ROUTING_SERVICE for RTI Routing Service
* RECORDING_SERVICE for RTI Recording Service
* CLOUD_DISCOVERY_SERVICE for RTI Cloud Discovery Service

These files are loaded only if present.

You can disable the loading of default files by using the proper option:

Shipped Executable

Use the —~skipDefaultFiles option.

Library API

Setthe ServiceProperty: :skip_default_files member to true.

1.12. Common Infrastructure 95

RTI Cloud Discovery Service User's Manual, Version 7.2.0

XML Syntax and Validation

The XML representation of DDS-related resources must follow these syntax rules:

* It shall be a well-formed XML document according to the criteria defined in clause 2.1 of the Extensible
Markup Language standard.

o It shall use UTF-8 character encoding for XML elements and values.
* It shall use <dds> as the root tag of every document.

To validate the loaded configuration, each RTI Service relies on an XSD document that describes the format of
the XML content. The validation of the input XML document occurs after all the files and strings have been
parsed. If the validation fails, the RTI Service will fail to load the XML and log an error. For example here is
an error in the case of RTI Cloud Discovery Service:

NDDSHOME /bin/rticlouddiscoveryservice
[/cloud_discovery_services/default |CREATE] line 26: Element 'invalid_example_
—tag': This element is not expected.
[/cloud_discovery_services/default |CREATE] CDSService_loadConfiguration:!
—validate configuration

[/cloud_discovery_services/default |CREATE] CDSService_initialize:!load.
—configuration

[/cloud_discovery_services/default |CREATE] CDSService_new:!init servic

0]

main:!create service

You can disable the XSD validation process by using the proper option:

Shipped Executable

Use the ~ignoreXsdvalidation option.

Library API

Set the ServiceProperty: :enforce_xsd_validation member to false.

We recommend including a reference to this document in the XML file that contains the service’s configuration;
this provides helpful features in code editors such as Visual Studio®, Eclipse®, and NetBeans®, including
validation and auto-completion while you are editing the XML file.

The XSD for the RTI Service configuration elements is in [NDDSHOME] /resource/schema/
rti_[service_name] .xsd, where [service_name] refers to product name in lower snake case.
For example:

* routing_service for RTI Routing Service
* recording_service for RTI Recording Service
* cloud_discovery_service for RTI Cloud Discovery Service

To include a reference to the XSD document in your XML file, use the attribute xsi:noNames—
paceSchemalLocation in the <dds> tag. For example:

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

(continues on next page)

1.12. Common Infrastructure 96

https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

xsi:noNamespaceSchemalocation="[NDDSHOME] /resource/schema/rti_routing_
—service.xsd">

<l— .0 ==
</dds>

Warning: The product XSD file provided under [NDDSHOME] /resource/schema is to assist you
in the process of creating an XML configuration document. RTI Services have the XSD builtin in memory,
so making modifications to the reference XSD will not have an impact on the validation process.

Listing Available Configurations

The shipped executables of some RTI Services provide an option to list all the available configurations in the
specified input XML document. You can run the service with the —11i st Config option to list the available
configurations and exit. For example, on Linux systems:

RTI Routing Service

rtiroutingservice —-listConfig
Available configurations:
— default: ([NDDSHOME] /resource/xml/RTI_ROUTING_SERVICE.xml)

Routes all topics from domain 0 to domain 1

defaultBothWays: ([NDDSHOME] /resource/xml/RTI_ROUTING_SERVICE.xml)

Routes all topics from domain 0 to domain 1 and the other way around
— defaultReliable: ([NDDSHOME] /resource/xml/RTI_ROUTING_SERVICE.xml)

Routes all topics from domain 0 to domain 1 using reliable communication

RTI Cloud Discovery Service

rticlouddiscoveryservice —-listConfig

Available configurations:

- rti.cds.builtin.config.default: (builtin string)
Empty configuration. Assumes default values.

- rti.cds.builtin.config.default_wan: (builtin string)
Enables Real-Time WAN Transport.
XML variables:
— RTI_CDS_PORT: CDS public and host port number
— RTI_CDS_PUBLIC_ADDR: CDS WAN public address

Each listed configuration indicates the input source (file path or string) and the content of the
<documentation> tag if present. This operation lists all the configurations detected from the specified
input XML document from all the locations and files.

1.12. Common Infrastructure 97

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Configuration Variables

The builtin XML parser of the RTI Service offers a special mechanism to reuse and customize content at run

time through the concept of Configuration variables.

A configuration variable is an RTI-specific construct that you can use in the input XML documents to set

placeholders for content that will be expanded at parsing time. A variable is specified as follows:

$ (VAR_NAME)

where VAR_NAME is the name that identifies the variable. You can use configuration variables in your XML

content as an attribute value and element text.

<element attribute="$ (VAR_ATTR) ">my expanded $(VAR_TEXT)</element>

The possible ways a variable can be expanded are listed below in precedence order:

1. Process environment.

export

VAR_NAME=my_value

2. Using a specific option when running the service.

Shipped Executable

Use the -DVAR_NAME=VALUE option

$<rtiservicename>

—-DVAR_NAME=my_value

where <rtiservicename> is one of rtiroutingservice, rtirecordingservice or

rticlouddiscoveryservice.

Library API

Set the ServiceProperty: :user_environment member

ServiceProperty property;
property.user_environment () ["VAR_NAME"]

"var_value";

3. <configuration_variables> section, which represents an unbounded list of variable
name-variable value pairs.

<configuration_variables>

<value>
<element>

<name>VAR_NAME</name>
<value>var_value</value>

</element>

</value>

</configuration_variables>

1.12. Common Infrastructure

98

RTI Cloud Discovery Service User's Manual, Version 7.2.0

All three of these mechanisms can be used in combination or separately. For the above example, you could
expand one variable using the process environment and another variable using the command-line option. The
following command:

export VAR_ATTR=expanded_attr
<rtiservicename> ... -DVAR_TEXT=expanded_text

where <rtiservicename> is one of rtiroutingservice, rtirecordingservice or rti-
clouddiscoveryservice, will result in the following actual parsed XML with the expanded variables:

<element attribute="expanded_attr">my expanded expanded_text</element>

If the RTI Service cannot expand a variable, it will load the XML document and log an error indicating which
variable could not be expanded. Here is an example for RTI Routing Service:

[/routing_services/default |CREATE] RTIXMLUTILSVariableExpansor_

—expandString:variable with name=ADMIN_DOMAIN_ID not defined
[/routing_services/default |CREATE] RTIXMLUTILSVariableExpansor_visit:!parse.
—at line=19 for tag=domain_id: expand environment variable in element text
[/routing_services/default |CREATE] ROUTERXmlVariableExpansor_visit:!parse at.

—line=19 for tag=domain_id

How to Load Default QoS Profiles

Generally, loading a default QoS profile follows the same mechanism as Connext applications. The details on
how to specify default QoS profiles in XML is explained in the section Overwriting Default QoS in the RTI
Connext Core Libraries User’s Manual.

In short, you will need to mark a profile as the default using the 1 s_default_qgos attribute. For RTI Ser-
vices, you will need to do this as part of the default file USER_QOS_PROFILES . xml (see Default Files). This
requirement is necessary since the default QoS profiles are parsed by the underlying DomainParticipantFactory
and not the service itself.

Warning: Marking as default a QoS profile defined in a different file than USER_QOS_PROFILES . xml
will have no effect.

How to Set Logging Properties

You can configure different aspects of the logging infrastructure that is part of RTI Services and Connext. This
section describes different ways to set these logging properties.

1.12. Common Infrastructure 99

../../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Overwriting_Default_QoS_Values.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Command-Line Options

The shipped executable for an RTI Service typically offers some out-of-the-box options to configure logging.
Typically, you will find these options:

* —verbosity sets the verbosity level for the messages generated by the service and Connext.

* —logFormat configures the format of the log messages, such as whether they contain timestamps,
thread IDs, etc.

* —logFile redirects the logging to a specified text file.

You can refer to the Usage section of each individual product user’s manual for further details.

Library API

To configure the service-level verbosity, use the Logger singleton class part of the Library API. For example,
the following sets WARNING level for the service logs in RTT Routing Service. For other services change the
preceding rti: : routing prefix to match the RTI Service you are working with.

rti::routing: :Logger: :instance () .service_verbosity (
rti::config::Verbosity: :WARNING) ;

To configure the Connext-level verbosity (for logs generated by the DDS libraries), you can use the Connext
configuration logger API. For example, the following sets WARNING level for the Connext logs:

rti::config::Logger::instance () .verbosity (
rti::config::Verbosity: :WARNING) ;

For the remaining overall logging properties, such as the log format, output file, and so on, you can also use the
Connext configuration logger API. For example, to redirect the logging to an output file:

rti::config::Logger: :instance () .output_file (my_service_logs.txt);

XML Configuration

As an alternative to the previous two methods, you can configure some logging properties through the Log-—
gingQosPolicy which can be specified in XML. For more information, see the LOGGING QosPolicy
(DDS Extension) in the RTI Connext Core Libraries User’s Manual.

The Logging QoS is configured within the <participant_factory_gos> thatis part of a QoS profile.
Since multiple profiles can be present in the loaded XML document, to tell Connext which one to use, you will
need to mark the profile as the default using the is_default_qgos attribute, or for the DomainParticipant-
Factory, the is_default_participant_factory_profile attribute.

See How to Load Default QoS Profiles for details on how to load default QoS profiles with RTI Services.
For example, you can set different properties for the logger by placing the XML code seen below in the
USER_QOS_PROFILES. xml default file:

1.12. Common Infrastructure 100

../../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/LOGGING_QosPolicy__DDS_Extension_.htm
../../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/LOGGING_QosPolicy__DDS_Extension_.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

<dds>
<gos_library name="DefaultLibrary">
<gos_profile name="DefaultProfile" is_default_participant_factory_
—profile ="true">
<participant_factory_ gos>
<logging>
<!-— this element affects Connext logs only ——>
<verbosity>ALL</verbosity>
<!-- for all Connext and Service logs ——>
<category>ENTITIES</category>
<print_format>MAXIMAL</print_format>
<output_file>LoggerOutputl.txt</output_£file>
</logging>
</participant_factory_gos>
</qgos_profile>
</qgos_library>
</dds>

See also:

Configuring Connext Logging Describes the types of logging messages and how to use the logger to enable
them.

Identifying Threads used by Connext DDS Describes the logging messages that provide thread-context in-
formation.

How to Run as an Operating System Daemon

Certain Operating Systems offer the capability to run processes in the background and non-interactively. On
Linux or macOS systems, this is referred to as daemon processes. On Windows systems, this is referred to as
a service.

How to run a process as a daemon depends on the OS and in some cases there are multiple options. This section
describes the most common way to run an RTI Service as a daemon of the main OS.

Linux and macOS Systems

The simplest and more portable way requires you to use the Library API to create your own executable that
instantiates the RTI Service and sets the running process as a daemon using the daemon () API. For example,
for RTI Routing Service:

#include <stdlib.h>
#include "rti/routing/Service.hpp"

int main(int argc, char **argv)
{

using namespace rti::routing;

if (daemon(0,0)) {

(continues on next page)

1.12. Common Infrastructure 101

../../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Controlling_Messages_from_.htm
../../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/IdentifyingThreads.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

Logger: :instance () .error ("Failed to create daemon process\n");
return -1;

// parse arguments and configure ServiceProperty
ServiceProperty property;
property.cfg_file(argv[l]);

Service service (property);

service.start ();

The above code generates an executable that runs the process as a daemon with zero-value arguments, indicating
that the working directory is / and the standard output is redirected to /dev/null. You can find more
information about the daemon () in the user man pages.

Note that if you link the application dynamically, you will need to guarantee that the dependency libraries are
available as part of the library path. An alternative is to link the applications statically.

Windows Systems

To run a process as a Windows Service we recommend using the third party tool Non-Sucking Service Manager
(NSSM). This tool allows you to run an existing executable as a service, while adjusting environment variables
and command-line arguments.

Hence you can use NSSM to run the shipped executable of an RTI Service. For example, for Routing Service
you can run:

nssm install myRouterService <rtiroutingservice> "-cfgName default"

The above command will install a service named myRouterService on your Windows system that runs
Routing Service with the default configuration. Then you can manage the service with the nssm GUI utility
itself or the Windows Services Control Manager (select Control Panel -> Administrative Services -> Services).

The example above causes the service to use the executable directory as the working directory and relies on the
default configuration file in [NDDSHOME] /resource/xml. You can specify a different working directory
as well as different command-line arguments as follows:

AppDirectory <my_working_ dir>
e AppParameters "-cfgFile my_router.xml —-cfgName.

Alternatively, you can use the Library API to embed the RTI Service into your own executable and imple-
ment the Windows Library APIs to run the executable as a Windows Service. (see How to: Create Windows
Services).

Here are some things to consider when running an RTI Service as a Windows Service:

* All AppParameters arguments must be enclosed in quotation marks.

1.12. Common Infrastructure 102

https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://nssm.cc/description
https://nssm.cc/description
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/how-to-create-windows-services
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/how-to-create-windows-services

RTI Cloud Discovery Service User's Manual, Version 7.2.0

* If you specify —cfgF1ile in the Start Parameters field, you must use the full path to the file.

» Some versions of Windows do not allow Windows Services to communicate with other services/appli-
cations using shared memory. In such case, you will need to disable the shared memory transport in all
DomainParticipants created by the RTI Service.

* In some scenarios, you may need to add a multicast address to your discovery peers or simply use R7T
Cloud Discovery Service.

How to use a License File with RTI Services

If your RTI Connext distribution requires a license file, you will receive one from RTI via email. To install
the license file, follow the instructions in Installing RTI Connext DDS, in the RTI Connext DDS Installa-
tion Guide. Alternatively, you can provide the RTI Service with the path to your license file using either the
—licenseFile command-line argument or the 1icense_file_name field in the Service Property of
the Library APIL.

Note: Some RTI Services do not require a license file.

Check the command line arguments list for the RTI Service to see if a ~1icenseFile argument exists. If
it doesn’t, you can use the RTI Service without a license file.

Each time your RTI Service starts, it looks for the license file in the following locations, in order, until it finds
a valid license:

1. The file specified in the environment variable RTI_LICENSE_FILE, which you may set to point to
the full path of the license file, including the filename. For example, on Linux:

export RTI_LICENSE_FILE=/home/username/my_rti_license.dat

2. Thefile rti_license.dat in the current working directory.

3. Thefile rti_license.dat in the directory specified by the environment variable NDDSHOME.

Key Terms
XML document The input XML contained within the <dd s> root, which contains one or more configurations
for an RTI Service.

Configuration name Unique identification of a service top-level configuration element. Provided with the
name attribute.

Configuration variable An RTI-specific construct to be used in XML to define content that can be expanded
at run time.

Shipped executable An RTI-provided command-line executable that runs an RTI Service.

Library API Public API that allows you to embed an RTI Service into your custom application.

1.12. Common Infrastructure 103

../../../../../doc/manuals/connext_dds_professional/installation_guide/index.htm#installation_guide/Installing.htm
../../../../../doc/manuals/connext_dds_professional/installation_guide/index.htm#installation_guide/Installing.htm

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.12.2 Application Resource Model

RTI Services are described through a hierarchical application resource model. In this model, an application is
composed of a set of Resources, each representing a particular component within the application. Resources
have a parent-child relationship. Figure 1.25 shows a general view of this concept.

Application
Resource
ClassA
Resource
Objects ClassY

e B
[

Resource Resource |

ClassB ClassC Objects
Objects Objects

Figure 1.25: Application modeled as a set of related Resources

Each application specifies its resource model by indicating the available resources and their relationship. A Re-
source is determined by its class and a concrete object instance. It can belong to one of the following categories:

» Simple—Represents a single object.
* Collection—Represents a set of objects of the same class.

A Resource may be composed of one or more Resources. In this relationship, the parent Resource is composed
of one ore more child Resources.

Example: Simple Resource Model of a Connext Application

Figure 1.26 depicts a UML class diagram to provide a generic resource model for Connext applications.

In this diagram, the composition relationship is used to denote the parents and children in the hierarchy. The
direct relationship denotes a dependency between resources that is not parent-child.

1.12. Common Infrastructure 104

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Publisher
0..
0.*
DataWriter
Application o - DomainParticipant Topic
0.*
DataReader
Subscriber
0.+ 0.*

Figure 1.26: Connext DDS application resource model

Resource ldentifiers

A resource identifier is a string of characters that uniquely address a concrete resource object within an applica-
tion. It is expressed as a hierarchical sequence of identifiers separated by /, including all the parent resources
and the target resource itself:

/resource_idy [resource_idy.../resource_idy

where each individual identifier references a concrete resource object by its name. The object name is either:
a) Fixed and specified by the resource model of the parent Resource class.

b) Given by the user of the application. This is the case where the parent resource is a collection in which
the user can insert objects, providing a name for each of them.

The individual identifier can refer to one of the two kinds of resources, simple and collection resources. For
example:

/collection_id; /resource_id;/resource_id,

If the identifier refers to a collection resource, the following child identifier must refer to a simple resource.
Both simple and collection resources can be parents (or children). In the previous example, resource_id; is a
simple resource child of collection_idy; it is also the parent of resource_idy.

The hierarchy of identifiers is known as the full resource identifier path, where each resource on the left repre-
sents a parent resource. The full resource identifier path is composed of collection and simple resources. Each
child resource identifier is known as the relative resource to the parent.

The resource identifier format follows these conventions:

* The first character is /, which represents the root resource and parent of all the available resources across
the applications.

1.12. Common Infrastructure 105

RTI Cloud Discovery Service User's Manual, Version 7.2.0

* A collection identifier is defined in lower snake_case, and it is always specified by the resource class.

* A simple resource identifier is defined in came1Case (lower and upper) and may be specified by both
the resource class or the user.

Escaped Identifiers

An identifier can be escaped by enclosing it within double quotes ("). For example:

[”escaped_identifier” ‘

An escaped identifier is interpreted as a whole and indivisible unit. Escaping a resource identifier is useful; it
is also required when the identifier contains the resource separator / or the custom method separator :.

For example, the following full resource path:

/resource_1/"escaped/resource_2"

is composed of two relative resources, resource_id;and escaped/resource;. The use of the double quotes to
escape the identifier indicates that the enclosing string shall be interpreted as a single identifier, and therefore
Routing Service ignores the resource separator. If the identifier was not escaped, then Routing Service would
interpret the resource path as two separate relative resources.

Any time an RTI Service sees a resource separator character (/) or the custom method separator : in an
entity name (such as in the attribute name), it automatically escapes the name when it constructs the resource
identifier. For example:

<service name="A/B">

<service name="A:B">

becomes

/routing_service/"A/B"

/routing_service/"A:B"

in the resource identifier.

Example: Resource Identifiers of a Generic Connext Application

Consider the Connext application resource model in Example: Simple Resource Model of a Connext Application.
The following resource identifier addresses a concrete DomainParticipant named “MyParticipant” in a given
application:

/domain_participants/MyParticipant

In this case, “domain_participants™ is the identifier of a collection resource that represents a set of DomainPar-
ticipants in the application and its value is fixed and specified by the application. In contrast, “MyParticipant”

1.12. Common Infrastructure 106

RTI Cloud Discovery Service User's Manual, Version 7.2.0

is the identifier of a simple resource that represents a particular DomainParticipant and its value is given by the
user of the application at DomainParticipant creation time.

The following resource identifier addresses the implicit Publisher of a concrete DomainParticipant in a given
application:

/domain_participants/MyParticipant/implicit_publisher

where “implicit_publisher” is the identifier of a simple resource that represents the always-present implicit
Publisher and its value is fixed and specified by the DomainParticipant resource class.

Example: Resource ldentifiers Generated from XML Entity Model

Consider the following XML configuration that models a generic RTI Service:

<service name="MyService">

<entity_classl name="MyEntityl"> ... </entity_classl>
<entity_classl name="Domain/MyEntity2"> ... </entity_classl>
</service>

The resulting generated resource identifiers will look as follows:

/service/MyService/entity_classl/MyEntityl
/service/MyService/entity_classl/"Domain/MyEntity2"

1.12.3 Remote Administration Platform

This section describes details of the RTT Remote Administration Platform, which represents the foundation of
the remote access capabilities available in RTI Routing Service, RTI Recording Service, RTI Queuing Service, RTI
Cloud Discovery Service and RTI Observability Collector. The RTI Remote Administration Platform provides a
common infrastructure that unifies and consolidates the remote interface to all RTI Services.

Note: Remote administration of RTI Services requires an understanding of the application resource model.
We recommend that you read Application Resource Model (Application Resource Model) before continuing with
this section.

The RTI Remote Administration Platform addresses two areas:

* Resource Interface: How to perform operations on a set of resource objects that are available as part
of the public interface of the remote service.

¢« Communication: How the remote service receives and sends information.

The combination of these two areas provides the general view of the RTI Remote Administration Platform,
as shown in Figure 1.27. The RTI Remote Administration Platform is defined as a request/reply architecture.
In this architecture, the service is modeled as a set of resources upon which the requester client can perform
operations. Resources represent objects that have both state and behavior.

1.12. Common Infrastructure 107

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(s)

Request
[] Resource 1
Resource 2
Client
L
[Resource N
Reply

N /

Figure 1.27: General View of the RTI Remote Administration Platform Architecture

Clients issue requests indicating the desired operation and receive replies from the service with the result of the
requests. If multiple clients issue multiple requests to one or more services, the client will receive only replies
to its own requests.

Remote Interface

Services offer their available functionality through their set of resources. The RTT Remote Administration Plat-
form defines a Representational State Transfer (REST)-like interface to address service resources and perform
operations on them. A resource operation is determined by a REST request and the associated result by a REST

reply.

1.12. Common Infrastructure 108

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.40: REST Interface

Element Description
REST Request

[method] + [resource_identifier] + [body]

* method: Specifies the action to be performed on a service resource.
There is only a small subset of methods, known as standard methods
(see Standard Methods).

e resource_identifier: Addresses a concrete service resource.
Each concrete service has its own set of resources (see Resource Identi-
fiers).

* body: Optional request data that contains necessary information to
complete the operation.

REST Repl
Py [return code] + [body]

* return code: Integer indicating the result of the operation.
* body: Optional reply data that contains information associated with the
processing of the request.

Standard Methods

The RTI Remote Administration Platform defines the methods listed in Table 1.41.

Table 1.41: Standard Methods

Method URI Request Body Reply Body
CREATE Parent collection | Resource representation N/A
resource identifier
GET Resource identifier | N/A Resource representation
UPDATE Resource identifier | Resource representation N/A
DELETE Resource identifier | Undefined N/A

Custom Methods

There are certain cases in which an operation on a service resource cannot be mapped intuitively to a standard
method and resource identifier. Custom methods address this limitation.

A custom method can be specified as part of the resource identifier, after the resource path, separated by a :.

UPDATE + [resource_identifier] : [custom_verb] ‘

It is up to each service implementation to define which custom methods are available and on what resources
they apply. Custom methods follow these conventions:

* They are invoked through the UPDATE standard method.

1.12. Common Infrastructure 109

RTI Cloud Discovery Service User's Manual, Version 7.2.0

* They are named using lower snake_case.

» They may use the request body and reply body if necessary.

Example: Database Rollover

This example shows the REST request to perform a file rollover operation on a file-based database:

UPDATE /databases/MyDatabase:rollover

Communication

The information exchange between client and server is based on the DDS request-reply pattern, as shown in
Figure 1.28. The client maps to a Requester, whereas the server maps to a Replier.

Client Service

DW
Topic
Requester
Reply _
Topic

Replier

-IIIiHIII

Figure 1.28: Communication in RTI Remote Administration Platform is Based on DDS Request-Reply

—— e e e s e
- /

The communication is performed over a single request-reply channel, composed of two topics:
* Command Request Topic: Topic through which the client sends the requests to the server.
* Command Reply Topic: Topic through which the server sends the replies to the received requests.

The definition of these topics is shown in Table 1.42:

Table 1.42: Remote Administration Topics

Topic Name Top-level Type Name

CommandRequestTopic rti/service/admin/command_re- rti::service::ad-
quest min: :CommandRequest

CommandReplyTopic rti/service/admin/command_re- rti::service::ad-
ply min: :CommandReply

1.12. Common Infrastructure 110

RTI Cloud Discovery Service User's Manual, Version 7.2.0

The definition for each Topic type is described below.

Listing 1.6: CommandRequest Type

@appendable
struct CommandRequest {

ti

@key int32 instance_id;

@optional string<BOUNDED_STRING_LENGTH_MAX> application_name;
CommandActionKind action;

Resourceldentifier resource_identifier;

StringBody string_body;

OctetBody octet_body;

Table 1.43: CommandRequest

Field Name

Description

instance_id

Associates a request with a given instance in the CommandRequestTopic.

This can be used if your requester application model wants to leverage outstanding
requests. In general, this member is always set to zero, so all requests belong to the
same CommandRequestTopic instance.

applica-
tion_name

Optional member that indicates the target service instance where the request is sent.
If NULL, the request will be sent to all services.

action

Indicates the resource operation.

re—
source_iden-—
tifier

Addresses a service resource.

string_body

Contains content represented as a string.

octet_body

Contains content represented as binary.

Listing 1.7: CommandReply Type

@appendable
struct CommandReply {

bi

CommandReplyRetcode retcode;
int32 native_retcode;
StringBody string_body;
OctetBody octet_body;

Table 1.44: CommandReply

Field Name Description
retcode Indicates the result of the operation.
native_retcode Provides extra information about the result of the operation.

string_body

Return value of the operation, represented as a string.

octet_body

Return value of the operation, represented as binary.

1.12. Common Infrastructure 111

RTI Cloud Discovery Service User's Manual, Version 7.2.0

The type definitions for both the CommandRequestTopic and CommandReplyTopic are in the file
[NDDSHOME] /resource/idl/ServiceAdmin. idl.

The definition of the request and reply topics is independent of any specific service implementation. In fact,
the topic names are fixed, unique, and shared across all services that rely on the RT1 Remote Administration
Platform. Clients can target specific services through two mechanisms:

» Specifying a concrete service instance by providing its application name. The application name is a
service attribute and can be set at service creation time.

» Specifying the configuration name loaded by the target services. The target service configuration shall
be present in the service resource part of the resource_identifier.

Reply Sequence

Usually a request is expected to generate a single reply. Sometimes, however, a request may trigger the gener-
ation of multiple replies, all associated with the same request.

The RTI Remote Administration Platform communication architecture allows services to respond to certain
requests with a reply sequence. All the samples in a reply sequence use the the metadata SampleFlagBits
to indicate whether it belongs to a reply sequence and whether there are more replies pending.

The SampleFlagBits may contain different flags that indicate the status of the reply procedure. For a given
reply sequence, the associated sample flags for each reply may contain:

* SEQUENTIAL_REPLY: If present, this indicates that the sample is the first reply of a reply sequence
and there are more on the way.

* FINAL_REPLY: If present, this indicates that the sample is the last one belonging to a reply sequence.
This flag is valid only if the SEQUENTIAL_REPLY is also set.

For more on SampleFlagBits, see documentation on the DDS_Samplelnfo structure in the Connext DDS API
Reference HTML documentation.

Example: Controlling services remotely from a Connext Application

The Connext GitHub examples repository includes an example that shows how to build and run a requester
application that can send commands to a running RTI Routing Service instance.

Common Operations

The set of services that use the RTI Remote Administration Platform to implement remote administration also
share a base remote interface that consolidates and unifies the semantics and behavior of certain common
operations.

Services containing resources that implement the common operations conform to the base remote interface,
making sure that signatures, semantics, behavior, and conditions are respected.

The following sections describe each of these common operations.

1.12. Common Infrastructure 112

https://github.com/rticommunity/rticonnextdds-examples/tree/master/examples/routing_service

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Create Resource

CREATE [resource_identifier]
Creates a resource object from its configuration in XML representation.

This operation creates a resource object and its contained entities. The created object becomes a child
of the parent specified in the resource_identifier.

After successful creation, the resource object is fully addressable for additional remote access, and the
associated object configuration is inserted into the currently loaded full XML configuration.

Request body
* string_body: XML representation of the resource object providedas file:// orstr://.

e Example str:// request body:

str://"<my_resource name="NewResourceObject">

</my_resource>"

* Example file:// request body:

file:///home/rti/config/service_my_resource.xml

Reply body
* Empty.

Return codes

The operation may return a reply with error if:
» The specified resource identifier does not exist.
 The specified configuration is schematically invalid.

» There was an error creating the resource object.

Get Resource

GET [resource_identifier]
Returns an equivalent XML string that represents the current state of the resource object configuration,
including any updates performed during its lifecycle.

Request body
* Empty.
Reply body
* string_body: XML representation of the resource object.

» Example reply body:

1.12. Common Infrastructure 113

RTI Cloud Discovery Service User's Manual, Version 7.2.0

<my_resource name="MyObject">

</my_resource>

Return codes
The operation may return a reply with error if:

* The specified resource identifier does not exist.

Update Resource

UPDATE [resource_identifier]
Updates the specified resource object from its configuration in XML representation.

This operation modifies the properties of the resource object, including the associated configuration.
Only the mutable properties of the resource class can be updated while the object is enabled. To update
immutable properties, the resource object must be disabled first.

Note: Properties of a child resource cannot be updated as part of a parent resource. Instead, child
resources must be addressed and updated independently.

Implementations may validate the received configuration against a scheme (DTD or XSD) that defines
the valid set of accepted parameters (for example, only mutable elements).

The update content should only include only the properties to be updated or changed. You are not
required to provide the full representation of the object being updated.

For example, consider the XML full representation of an object as follows:

<my_resource>
<nested_resource_A>initial_A</nested_resource_A>
<nested_resource_B>initial_B</nested_resource_B>
<nested_resource_C>initial_C</nested_resource_C>

</my_resource>

The update should only contain the content for the properties you want to modify. For example, the
following will only update nested_resource_B to a new value, leaving the other nested resources
unchanged:

<my_resource>
<nested_resource_B>updated_B</nested_resource_B>

</my_resource>

Request body
* string_body: XML representation of the resource object providedas file:// orstr://.

* Example str:// request body:

1.12. Common Infrastructure 114

RTI Cloud Discovery Service User's Manual, Version 7.2.0

str://"<my_resource name="MyResourceObject">

</my_resource>"

* Example file:// request body:

file:///home/rti/config/service_update_my_resource.xml

Reply body
* Empty.
Return codes
The operation may return a reply with error if’
» The specified resource identifier does not exist.
* The specified configuration is schematically invalid.
* The specified configuration contains changes in immutable properties.

* There was an error updating the resource object.

Set Resource State

UPDATE [resource_identifier]/state
Sends a state change request to the specified resource object.

This operation attempts to change the state of the specified resource object and propagates the request
to the resource object’s contained entities.

The target state must be one of the resource class’s valid accepted states.
Request body
* octet_body: CDR representation of an entity state.
Reply body
* Empty.
Return codes
The operation may return a reply with error if:
* The specified resource identifier does not exist.
* The target request is invalid.

* The resource object reported an error while performing the state transition.

1.12. Common Infrastructure 115

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Get Resource State

GET [resource_identifier]/state
Gets the current state of the specified resource object.

This operation attempts to fetch the state of the specified resource object.
The target’s state is returned as a part of the reply.
Request body

* Empty
Reply body

* octet_body: CDR representation of an entity’s current state.
Return codes
The operation may return a reply with error if:

* The specified resource identifier does not exist.

* The target request is invalid.

* The resource object reported an error while fetching its current state.

Delete Resource

DELETE [resource_identifier]
Deletes the specified resource object.

This operation deletes a resource object and its contained entities. The deleted object is removed from
its parent resource object.

The associated object configuration is removed from the currently loaded full XML configuration.
After a successful deletion, the resource object is no longer addressable for additional remote access.
Request body

* Empty.
Reply body

* Empty.
Return codes
The operation may return a reply with error if:

* The specified resource identifier does not exist.

* There was an error deleting the resource object.

1.12. Common Infrastructure 116

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.12.4 Monitoring Distribution Platform

Monitoring refers to the distribution of health status information metrics from instrumented RTI Services.
This section describes the architecture of the monitoring capability supported in RTI Routing Service and RTI
Recording Service. You will learn what type of information these application can provide and how to access it.

RTI Services provide monitoring information through a Distribution Topic, which is a DDS Topic responsible
for distributing information with certain characteristics about the service resources. An RTI Service provides
monitoring information through the following three distribution topics:

* ConfigDistributionTopic: Distributes metrics related to the description and configuration of a Resource.
This information may be immutable or change rarely.

* EventDistributionTopic: Distributes metrics related to Resource status notifications of asynchronous na-
ture. This information is provided asynchronously when Resources change after the occurrence of an
event.

* PeriodicDistributionTopic: Distribute metrics related to periodic, sampling-based updates of a Resource.
Information is provided periodically at a configurable publication period.

These three Topics are shared across all services for the distribution of the monitoring information. Table 1.45
provides a summary of these topics.

Table 1.45: Monitoring Distribution Topics

Topic Name Top-level Type Name

ConfigDistributionTopic rti/service/monitoring/config rtiz:service::monitoring::Con-
fig

EventDistributionTopic rti/service/monitoring/event rtiz:service::monitor-
ing::Event

PeriodicDistributionTopic rti/service/monitoring/periodic rti::service::monitoring::Peri-
odic

Figure 1.29 shows the mapping of the monitoring information into the distribution Topics. A distribution Topic
is keyed on service resources categorized as keyed Resources. These are resources whose related monitoring
information is provided as an instance on the distribution 7opic.

Distribution Topic Definition

All distribution Topics have a common type structure that is composed of two parts: a base type that identifies
a resource object and a resource-specific type that contains actual status monitoring information.

The definition of a distribution Zopic is shown in Figure 1.30.

1.12. Common Infrastructure 117

RTI Cloud Discovery Service User's Manual, Version 7.2.0

RTI Connext Service Application

Keyed Keyed Keyed Keyed
Resource Resource Resource Resource
1 2 3 N
, £l - T - - = - - - - -=-=-""-=-"""=-"=""=7"=7""=/""=""/"=""=""=""=""="=""=/""=""==-""="=-""7= - .

I 1
: Config Event Periodic :
| KR 1D1 KR ID1 KR ID1 :
' KR ID2 KR ID2 KR ID2 !
: KR 1D3 KR ID3 :
1 |
1 |
' Monitoring Domain !

Figure 1.29: Monitoring Distribution Topics of RTI Services

Keyed
Resources

GUID object_guid; //@key

GUID parent_guid;) Resourcel
I S /)
union switch(ResourceKind) ¢ Resource?
D i
parent —
i value case RESOURCE_T:
X - VR1 Resource1Type resourcel;
R2 R1 VR2
case RESOURCE_Z:

Resource2Type resource2;

}value;

Figure 1.30: Monitoring Distribution Topic Definition

1.12.

Common Infrastructure 118

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Keyed Resource Base Type Fields

This is the base type of all distribution 7opics and consists of two fields:

* object_guid: Key field. It represents a 16-byte sequence that uniquely identifies a Keyed Resource
across all the available services in the monitoring domain. Hence, the associated instance handle key
hash will be the same for all distribution Topics, allowing easy correlation of a resource. It will also
facilitate, as we will discuss later, easy instance data manipulation in a DataReader.

* parent_guid: It contains the object GUID of the parent resource. This field will be set to all zeros
if the object is a top-level resource thus with no parent.

This base type, KeyedResource, is defined in [NDDSHOME] /resource/idl/ServiceCommon.
idl.

Resource-Specific Type Fields

This is the type that conveys monitoring information for a concrete resource object. Since a distribution Topic
is responsible for providing information about different resource classes, the resource-specific type consists of
a single field that is a Union of all the possible representations for the keyed resources that provide that on
the topic.

As expected, there must be consistency between the two parts of the distribution topic type. That is, a sample
for a concrete resource object must contain the resource-specific union discriminator corresponding to the
resource object’s class.

Example: Monitoring of Generic Application

Assume a generic application that provides monitoring information about the modes of transports Car, Boat
and P1lane. Each mode is mapped to a keyed resource, each with a custom type that contains metrics specific
to each class.

The monitoring distribution Topic top-level type, TransportModeDistribution, would be defined as
follows, using IDL v4 notation:

#include "ServiceCommon.idl"

@nested
struct CarType {
float speed;
String color;
String plate_number;

}i

@nested

struct BoatType {
float knots;
float latitude;
float longitude;

(continues on next page)

1.12. Common Infrastructure 119

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

bi

@nested

struct PlaneType {
float ground_speed;
int32 air_track;

}i

enum TransportModeKind {
CAR_TRANSPORT_MODE,
BOAT_TRANSPORT_MODE,
PLANE_TRANSPORT_MODE

}i

@nested

union TransportModeUnion switch
case CAR_TRANSPORT_MODE:
CarType car;

case BOAT_TRANSPORT_MODE:
BoatType boat;

case PLANE_TRANSPORT_MODE:

PlaneType plane;

struct TransportModeDistribution
TransportModeUnion value;

bi

(TransportModeKind)

KeyedResource {

Assume now that in the monitoring domain there are three resource objects, one for each resource class: a Car
object ‘CarA’, a Boat object ‘Boatl’, and a P1ane object ‘PlaneX’. They all have unique resource GUIDs and
each object represents an instance in the distribution 7opic. The table shows the example of potential sample

values:

Table 1.46: Samples in TransportModeDistribution Zopic

CarA Boat1 PlaneX
object_guid 0x0C 0xAB 0xf2
parent_guid 0x00 0x00 0x00
value discrimi- | CAR_TRANS- BOAT_TRANS- PLANE_TRANS-
nator PORT_MODE PORT_MODE PORT_MODE

1.12. Common Infrastructure

120

RTI Cloud Discovery Service User's Manual, Version 7.2.0

DDS Entities
RTI Services allow you to distribute monitoring information in any domain. For that, they create the following
DDS entities:

* A DomainParticipant on the monitoring domain.

* A single Publisher for all Data Writers.

* A DataWriter for each distribution Topic.

A service will create these entities with default QoS or otherwise the corresponding service user’s manual
will specify the actual values. Services allow you to customize the QoS of the DDS entities, typically in the
service monitoring configuration under the <monitoring> tag. You will need to refer to each service’s user’s
manual.

Monitoring Metrics Publication

How services publish monitoring samples depends on the distribution Topic.

Configuration Distribution Topic

There are two events that cause the publication of samples in this topic:

* Assoon as a Resource object is created. This event generates the first sample in the Topic for the resource
object just created. Since these first samples are published as resources are created, it is guaranteed to
be in hierarchical order; that is, the sample for a parent Resource is published before its children. When
Resources are created depends on the service. Typically, Resources are created on service startup. Other
cases include manual creation (e.g., through remote administration) or external event-driven creation
(e.g., discovery of matching streams, in the case of AutoRoute in Routing Service).

* On Resource object update. This event occurs when the properties of the object change due to a set or
update operation (e.g., through remote administration).

Event Distribution Topic

Services publish samples in this Topic in reaction to an internal event, such as a Resource state change. Which
events and their associated information and when they occur is highly dependent on concrete service imple-
mentations.

1.12. Common Infrastructure 121

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Periodic Distribution Topic

Samples in this Topic are published periodically, according to a fixed configurable period. The metrics provided
in this Topic are generated in two different ways:

* As a snapshot of the current value, taken at the publication time (e.g., current number of matching
DataReaders). This represents a simple case and the metric is typically represented with an adequate
primitive member.

* As a statistic variable generated from a set of discreet measurements, obtained periodically. This rep-
resents a continous flow of metrics, represented with the StatisticVariable type (see Stafistic
Variable).

There are two activities involved in the generation of the statistic variables: Calculation and Publication. All
the configuration elements for these activities are available under the <monitoring> tag.

Calculation

The instrumented service periodically performs measurements on the metric. This activity is also known as
sampling (don’t confuse with data samples). The frequency of the measurements can be configured with the
tag <statistics_sampling_period>. As a general recommendation, the sampling period should be
a few times smaller than the publication period. A small sampling period provides more accurate statistics
generation at the expense of increasing memory and CPU consumption.

Publication

The service periodically publishes a data sample containing a snapshot of the statistics gen-
erated during the calculation phase. The publication period can be configured with the tag
<status_publication_period>.The value of a statistic variable corresponds to the time win-
dow of a publication period.

Monitoring Metrics Reference

This section describes the types used as common metrics across services. All the type definitions listed here
are in [NDDSHOME] /resource/idl/ServiceCommon.idl.

Statistic Variable

Listing 1.8: Statistics

@appendable @nested
struct StatisticMetrics {
uint64 period_ms;
int64 count;
float mean;

(continues on next page)

1.12. Common Infrastructure 122

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

ti

float minimum;
float maximum;
float std_dev;

@appendable @nested
struct StatisticVariable {

i

StatisticMetrics publication_period_metrics;

Table 1.47: StatisticMetrics

Field Name Description

period_ms Period in milliseconds at which the metrics are published.

count Sum of all the measurement values obtained during the publication period.

mean Arithmetic mean of all the measurement values during publication period. For aggre-
gated metrics, this value is the mean of all the aggregated metrics means.

min Minimum of all the measurement values during publication period. For aggregated
metrics, this value is the minimum of all the aggregated metrics minimums.

max Maximum of all the measurement values during publication period. For aggregated
metrics, this value is the maximum of all the aggregated metrics minimums.

std_dev Standard deviation of all the measurement values during publication period. For ag-

gregated metrics, this value is the standard deviation of all the aggregated metrics
minimums.

Host Metrics

Listing 1.9: Host Types

@appendable @nested
struct HostPeriodic {

ti

@optional StatisticVariable cpu_usage_percentage;
@optional StatisticVariable free_memory_kb;
@optional StatisticVariable free_swap_memory_kb;
int32 uptime_sec;

@appendable @nested
struct HostConfig {

BoundedString name;

uint32 id;

int64 total_memory_kb;
int64 total_swap_memory_kb;
BoundedString target;

(continues on next page)

1.12. Common Infrastructure

123

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

bi

Table 1.48: HostConfig

Field Name Description
name Name of the host where the service is running.
id ID of the host where the service is running.

total_memory_kb

Total memory in KiloBytes of the host where the service is running. Availability of
this value is platform dependent.

total_swap_mem-
ory_kb

Total swap memory in KiloBytes of the host where the service is running. Availability
of this value is platform dependent.

Table 1.49: HostPeriodic

Field Name

Description

cpu_usage_per-
centage

Statistic variable that provides the global percentage of CPU usage on the host where
the service is running. Availability of this value is platform dependent.

free_memory_kb

Statistic variable that provides the amount of free memory in KiloBytes of the host
where the service is running. Availability of this value is platform dependent.

free_wap_mem-
ory_kb

Statistic variable that provides the amount of free swap memory in KiloBytes of the
host where the service is running. Availability of this value is platform dependent.

uptime_sec

Time in seconds elapsed since the host on which the running service started. Avail-
ability of this value is platform dependent.

Process Metrics

1.12. Common Infrastructure

124

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Listing 1.10: Process Types

Qappendable @nested

struct ProcessConfig {
uint64 id;

bi

@mutable @nested

struct ProcessPeriodic {
@optional StatisticVariable cpu_usage_percentage;
@optional StatisticVariable physical_memory_kb;
@optional StatisticVariable total_memory_kb;
int32 uptime_sec;

bi

Table 1.50: ProcessConfig

Field Name Description
id Identifies the process where the service is running. The meaning of this value is plat-
form dependent.
Table 1.51: ProcessPeriodic
Field Name Description
cpu_usage_per- Statistic variable that provides the percentage of CPU usage of the process where the
centage service is running. The field count of the variable contains the total CPU time in

ms that the process spent during the publication period. Availability of this value is
platform dependent.

physical_mem-
ory_kb

Statistic variable that provides the physical memory utilization in KiloBytes of the
process where the service is running. Availability of this value is platform dependent.

total_memory_

kb | Statistic variable that provides the virtual memory utilization in KiloBytes of the pro-
cess where the service is running. Availability of this value is platform dependent.

uptime_sec

Time in seconds elapsed since the running service process started. Availability of this
value is platform dependent.

Base Entity Resource Metrics

Listing 1.11: Base Entity Types

@mutable @nested

struct EntityConfig {
Resourceld resource_id;
XmlString configuration;

i

@mutable @nested

struct EntityEvent{
EntityStateKind state;

(continues on next page)

1.12. Common Infrastructure 125

RTI Cloud Discovery Service User's Manual, Version 7.2.0

(continued from previous page)

bi

Table 1.52: EntityConfig

Field Name Description

resource_id String representation of the resource identifier associated with the entity resource.

configuration String representation of the XML configuration of the entity resource. The XML
contains only children elements that are not entity resources.

Table 1.53: EntityEvent

Field Name Description
state State of the resource entity expressed as an enumeration of type EntityS-—
tateKind.

Network Performance Metrics

1.12. Common Infrastructure 126

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Listing 1.12: Network Performance Type

Qappendable @nested

struct NetworkPerformance {
@optional StatisticVariable samples_per_sec;
@optional StatisticVariable bytes_per_sec;
@optional StatisticVariable latency_millisec;

i

Table 1.54: NetworkPerformance

Field Name Description

samples_per_sec Statistic variable that provides information about the number of samples processed
(received or sent) per second.

bytes_per_sec Statistic variable that provides information about the number of bytes processed (re-
ceived or sent) per second.

latency_millisec Statistic variable that provides information about the latency in milliseconds for the
data processed. The latency in a refers to the total time elapsed during the associated
processing of the data, which depends on the type of application.

Thread Metrics

Listing 1.13: Thread Metrics Type

@mutable @nested
struct ThreadPeriodic {

uint64 id;

@optional StatisticVariable cpu_usage_percentage;
bi

@mutable @nested
struct ThreadPoolPeriodic {
@optional sequence<Service::Monitoring::ThreadPeriodic>.
—threads;
bi

Table 1.55: ThreadPeriodic

Field Name Description

id OS-assigned thread identifier

cpu_usage_per- Statistic variable that provides the percentage of CPU usage of the thread belonging to

centage the process where the service is running. The field count of the variable contains the
total CPU time in ms that the thread spent during the publication period. Availability
of this value is platform dependent.

1.12. Common Infrastructure 127

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.12.5 Plugin Management

Some RTI Services allow for custom behavior through the use of pluggable components or plugins . The type
of plugins is described in Software Development Kit. A plugin is represented as a top-level service-owned
object whose main role is a factory of other pluggable components, which are responsible for providing the
user-defined behavior.

Figure 1.31 shows that for each class of pluggable components there is a top-level object with the suffix P1u-
gin. This is the object that the Service obtains at the moment of loading the plugin. Multiple P 1ugin objects
can be registered from the same class, each uniquely identified by its registered name.

Shared Library / ClassA Y i ClassB)
create_[class]_plugin() Lo . s Vo
ClassAPlugin : i ClassAPlugin
MegA 5 - i
<<create>> q_____r_g__{_____‘ _______r_g__i ______ :
! ClassAPlugin o+ o8 ClassBPlugin
"rgA," - "rg8," |
<<regl’ster>> _________________ T
7777777777777777777777777777 ClassAPlugin ClassBPlugin
nrgA " H "I’gBN“

Service::
register_[class]_plugin()

Figure 1.31: Plugin object management

Figure 1.31 also shows that there are two mechanisms through which a Service obtains a plugin object: a shared
library or the Library API. Both mechanisms are complementary and are described with more detail in the
next sections.

Shared Library

A plugin object is instantiated through a create function, which is included and addressable as part of a shared
library. This function is also known as the entry point and each RTI Service defines the signature for each
plugin class. This method requires specifying the path to the shared library and the name of the entry point (see
Configuration). The Service loads the library the first time an instance of the plugin is needed (lazy initialization)
and looks up the specified entry point symbol in the loaded library. The Service will always delete the plugin
on Service stop.

1.12. Common Infrastructure 128

RTI Cloud Discovery Service User's Manual, Version 7.2.0

This is the only method suitable when an RTI Service is deployed through an already linked executable, such
as the shipped command-line executable (Command-Line Executable).

The plugin lifecycle is as follows:

1. After start, the Service creates a plugin object for each registered plugin in the configuration. The plugin
object is instantiated through the shared library entry point, specified in the configuration.

2. The Service calls operations on the plugin objects as needed and keeps them alive while the Service

remains started.

3. During stop, the Service deletes each plugin object by calling the class abstract deleter.

Configuration

An RTI Service configures the pluggable components within the <plugin_library> tag. RTI Services
that support plugins will define a set of tags within in the form:

* <[class]_plugin> for C/C++ plugins

* <java_[class]_plugin> for Java plugins

where [class] refers to the name of the plugin class. For example, in Routing Service an available tag is

<adapter_plugin>.

The definition of these tags is the same regardless of the plugin class and is described in the tables below.

Table 1.56 and Table 1.57 describe the configuration of each different plugin language.

Table 1.56: Configuration tags for C/C++ plugins.

plugin. This tag may specify the exact path (absolute or rela-
tive) of the file (for example, lib/libmyplugin.so) or a general
name (no file extension).
If no extension is provided, the path will be completed based on
the running platform. For example, assuming a value for this tag
of dir/myplugin:

* Linux/macOS systems (or similar): dir/libmyplugin.so

* Windows systems: dir/myplugin.dll
If the library specified in this tag cannot be loaded (because the
environment library path is not pointing to the path where the
library is located), Routing Service will look for the library in
the following locations, in this order:

* [plugin_search_path]: Provided as part of the service

parameters (see Usage)
* [executable_dir]: Directory where the executable lives

Tags within <[class]_plu- | Description Multi-
gin> plicity
<dll> Shared library containing the implementation of the adapter | 1

continues on next page

1.12. Common Infrastructure

129

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Table 1.56 - continued from previous page

Tags within <[class]_plu-
gin>

Description

Multi-
plicity

<create_function>

Entry point. This tag must contain the name of the function
used to create the plugin instance. The function symbol must
be present in the shared library specified in <d11>

<property>

A sequence of name-value string pairs that allow you to config-
ure the plugin instance.
Example:

<property>
<value>
<element>
<name>myplugin.user_name</
—name>
<value>myusername</value>
</element>
</value>
</property>

0..1

Table 1.57: Configuration tags for Java plugins

Tags within
<java_|[class]_plugin>

Description

Multi-
plicity

<class_name>

Name of the class that implements the plugin.

For example: com.myplugins.CustomPlugin

The classpath required to run the Java plugin must be part of
the RTI Service JVM configuration. See the <3jvm> tag within
the specific service configuration for additional information on
JVM creation and configuration.

1

<property>

A sequence of name-value string pairs that allow you to config-
ure the plugin instance.
Example:

<property>
<value>
<element>
<name>myplugin.user_name</
—name>
<value>myusername</value>
</element>
</value>
</property>

0..1

1.12. Common Infrastructure

130

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Library API

The wuser provides the plugin object via the Library API, through one of the available at-
tach_[class]_plugin () operations. Upon successful return of the operation, the Service takes owner-
ship of the plugin object and will delete it on Service stop.

The plugin lifecycle is as follows:

1. The user instantiates plugin objects and provides them to the Service through the at-
tach_[class]_plugin () operation. This is allowed only before the Service starts.

2. After start, the Service becomes the owner of the registered plugin objects, calls operations on the plugin
objects as needed, and keeps them alive while the Service remains started.

3. On stop, the Service deletes each registered plugin object by calling the class abstract deleter.

1.13 Troubleshooting

This section covers a few issues you may run into while deploying your system with Cloud Discovery Service.

Note: All the issues addressed in this section assume that your applications would communicate directly with
each other without Cloud Discovery Service.

1.13.1 My Applications don’t Communicate

There can be many reasons why your applications may not communicate with Cloud Discovery Service. Nev-
ertheless, below are some of the common issues you may run into.

Make Sure Your Application can Accept Unknown Peers

For DomainParticipants to discover each other through Cloud Discovery Service, they require the ability to
accept unknown peers. This is a Discovery QoS setting whose default value is true. Make sure your Do-
mainParticipants are created with this value. For instance, you can add the following XML setting to the
<domain_participant_gos> element used by your application:

<discovery>
<accept_unknown_peers>true</accept_unknown_peers>
</discovery>

1.13. Troubleshooting 131

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Check that Your Initial Peers List Points to Cloud Discovery Service

Your applications are required to provide discovery information to Cloud Discovery Service. For that, they
must know where Cloud Discovery Service is running. You provide this information through the initial peers
list using an RTPS peer descriptor.

You can specify the initial peers list through the Discovery QoS (programmatically, XML, or the environment).
For instance, assuming a Cloud Discovery Service instance is running on UDP, port 7400 and host CDS_HOST:

Listing 1.14: XML

<discovery>
<initial_peers>
<element>rtps@udpv4d://CDS_HOST:7400</element>
</initial_peers>
</discovery>

Listing 1.15: Environment Variables

export NDDS_DISCOVERY_PEERS=rtps@udpv4://CDS_HOST:7400

See Where Your Cloud Discovery Service Instance is Listening

To verify that Cloud Discovery Service is actually listening where you specified, you can run with —verbosity
LOCAL and look for the following message:

[.../receiver |ENABLE] listening for announcements on:
{
"locator": [
"udpv4d://172.17.0.2:10000"
]

The message above indicates that Cloud Discovery Service is listening on the interface 172.17.0. 2 over the
UDPwv4 transport on port 10000.

Additionally, make sure the Cloud Discovery Service location is reachable from where your applications run.

Identifying NAT traversal address resolutions

If you're running in a WAN environment along with R7T Real-Time WAN Transport, you can find out about
how Cloud Discovery Service is resolve addresses and for which DomainParticipants. See Debugging Cloud
Discovery Service with the UDP WAN Transport for details on how to obtain locator resolution information.

In general, you will need to verify that:

* Cloud Discovery Service receives announcements from the remote participants and is able to detect their
public addresses.

1.13. Troubleshooting 132

RTI Cloud Discovery Service User's Manual, Version 7.2.0

» Remote participants sit behind Cone NATS.

* Firewalls/NAT configurations accept incoming traffic from the expected range of public addresses.

1.13.2 Cloud Discovery Service Log Errors

This section shows a few of the errors that Cloud Discovery Service may show on startup.

Invalid Port

If an invalid port is specified, you may see this error log output:

NDDS_Transport_UDPv4_Socket_bindWithIp:0S bind() failure, error 0: Success
NDDS_Transport_UDPv4_Socket_bindWithIp:invalid port 70000
NDDS_Transport_UDPv4_SocketFactory_create_receive_socket:invalid port 70000
NDDS_Transport_UDP_create_recvresource_rrEA:!create socket
COMMENDLocalReaderRW_init:!create unicast entryPort

The messages above indicate an error binding a UDP socket to port 70000, which is out of the valid port range
for this transport.

Port Already in Use

If a port that is already in use is specified, you may see this error log output:

NDDS_Transport_UDPv4_Socket_bindWithIp:0X1CE8 in use
NDDS_Transport_UDPv4_SocketFactory_create_receive_socket:invalid port 7400
NDDS_Transport_UDP_create_recvresource_rrEA:!create socket
COMMENDLocalReaderRW_init:!create unicast entryPort

The messages above indicate an error binding a UDP socket to port 7400, which is being used by other process.

1.14 Release Notes

1.14.1 Supported Platforms

See the column for Cloud Discovery Service in the Table of Supported Platforms for Connext Applications, in
the RTI Connext Core Libraries Release Notes.

1.14. Release Notes 133

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.14.2 Compatibility

For backward compatibility information between the current and previous releases of Cloud Discovery Service,
please see the Migration Guide on the RTI Community portal.

Connext compatibility

Cloud Discovery Service can be used to provide discovery for applications built with RTT Connext, except as
noted below.

* Starting in RTI Connext DDS 5.1.0, the default message_size_max for the UDPv4, UDPv6, TCP,
and shared-memory transports changed to provide better out-of-the-box performance. Cloud Discovery
Service also uses the new value for message_size_max. Consequently, Cloud Discovery Service is
not out-of-the-box compatible with applications running older versions of Connext. Please see the RTI
Connext Core Libraries Release Notes for instructions on how to resolve this compatibility issue with older
Connext applications.

1.14.3 What’s New in 7.2.0
Third-party software changes

The following third-party software used by Cloud Discovery Service have been upgraded:

Table 1.58: Third-Party Software Changes

Third-Party Software Previous Version Current Version
libxml2 294 2.11.4
libxslt 1.1.35 1.1.38

For information on third-party software used by Connext products, see the “3rdPartySoftware”
documents in your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/
release_notes_3rdparty.

Simple Participant Discovery Protocol 2.0 Integration

Cloud Discovery Service now supports the new Simple Participant Discovery Protocol 2.0. The Simple Participant
Discovery Protocol 2.0 is an alternative to the original Simple Participant Discovery Protocol. Simple Participant
Discovery Protocol 2.0 is designed to decrease bandwidth usage and improve the reliability of the participant
discovery and update process.

For information on how to configure Cloud Discovery Service to use Simple Participant Discovery Protocol 2.0,
see the section on Protocol Mode.

1.14. Release Notes 134

https://community.rti.com/Documentation/

RTI Cloud Discovery Service User's Manual, Version 7.2.0

RTI Lightweight Security Plugins Integration

Cloud Discovery Service now supports the new RTI Lightweight Security Plugins library for pre-shared key
security. The RTI Lightweight Security Plugins is a separate library that defines an alternate set of Security
Plugins. These plugins allow RTPS messages to be protected with a per-participant key derived from some
publicly available data and a pre-shared key seed.

For information on how to configure and use the RTT Lightweight Security Plugins in Cloud Discovery Service,
see the section on Security.

See the Migration Guide on the RTI Community Portal for migration issues related to this integration.

1.14.4 What’s Fixed in 7.2.0

Fixes Related to Discovery

DomainParticipant discovery may have failed when using Real-Time WAN Transport

Cloud Discovery Service had an internal state race condition when using Real-Time WAN Transport. As a result,
the discovery of some DomainParticipants failed if the race condition was hit. This issue only manifested when
using Real-Time WAN Transport. The issue has been resolved.

[RTT Issue ID CDS-214]

Potential crash if dispose received when participant announcement forwarded

In previous releases, Cloud Discovery Service could crash if a dispose participant announcement was received
while the same participant’s stored announcement was being forwarded. This issue was due to an internal
concurrency management problem. The problem has been resolved.

[RTT Issue ID CDS-228]
Fixes Related to Usability

Crash on startup

Cloud Discovery Service sometimes crashed on startup due to an internal timing issue. This issue did not affect
running instances of Cloud Discovery Service. The problem has been resolved.

[RTI Issue ID CDS-201]

1.14. Release Notes 135

https://community.rti.com/documentation

RTI Cloud Discovery Service User's Manual, Version 7.2.0

1.14.5 Previous Releases
What’s New in 7.1.0

Cloud Discovery Service now shipped as host and target

Cloud Discovery Service is now shipped in two parts, as a host and a target package. This change brings Cloud
Discovery Service in line with how other Connext packages are structured, as a host (base platform) and a target
(specific architecture). The change also ensures that you have target-specific binaries for libraries/executables,
which are useful when using the service- as-a-library functionality provided by the Library API for Cloud
Discovery Service. When installing Cloud Discovery Service, first install the host followed by the target.

Note: This change does not apply to the version of Cloud Discovery Service shipped with the Connext LM
package. The Connext LM package is shipped as a target-specific installation, which already ensures you have
access to the correct binary library/executable for your platform.

What'’s Fixed in 7.1.0

Cloud Discovery Service internal state issues caused increase in network traffic in certain
situations

Cloud Discovery Service uses internal buffer pools to store the incoming participant announcements. Due to
an issue with the state management, there were certain instances where an incoming announcement could have
been reclassified as an update, even when there was no change in its contents. This caused the resend mechanism
(if configured) to trigger additional resends, resulting in increased network traffic. The issue has been resolved.

[RTI Issue ID CDS-199]

<output_capacity_allocation> XML tag not parsed from configuration

Cloud Discovery Service didn’t parse the XML tag <output_capacity_allocation> when specified
by the user in XML. As a result, users were unable to control the capacity allocation for the flow controller via
XML. This issue has been resolved.

[RTI Issue ID CDS-198]

1.14. Release Notes 136

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Discovery did not complete when using Real-Time WAN and multiple locators

When using a DomainParticipant with multiple RTI Real-Time WAN Transport locators, sometimes Cloud
Discovery Service mixed up the locators and they were not resolved correctly. This caused the discovery process
to never complete. This problem has been resolved.

[RTI Issue ID CDS-172]

What’s New in 7.0.0

Improved steady state bandwidth utilization and discovery time in systems with many Do-
mainParticipants communicating over lossy networks

In lossy networks, DomainParticipant discovery could take longer if DomainParticipant announcements for-
warded from Cloud Discovery Service were dropped. In previous releases, the <refresh_period> config-
uration tag could be used to resend DomainParticipant announcements periodically. The tradeoft of using that
parameter was that it could lead to unnecessary network traffic on systems that had completed DomainPartici-
pant discovery (because the <refresh_period> mechanism continued resending indefinitely).

In this release, the <refresh_period> is replaced with a more efficient way to resend DomainParticipant
announcements. This new mechanism resends the DomainParticipant announcements from Cloud Discovery
Service a finite number of times, spaced randomly in an interval between a minimum and maximum value:

<forwarder>
<event>
<new_or_update_participant_announcements>
</new_or_update_participant_announcements>

<min_new_or_update_participant_announcements_period>
</min_new_or_update_participant_announcements_period>

<max_new_or_update_participant_announcements_period>
</max_new_or_update_participant_announcements_period>
</event>
</forwarder>

For additional information about these new parameters, see Forwarder.

Domain Participant Partitions support

Cloud Discovery Service supports systems that utilize Domain Participant Partitions. Partitioning at the Domain-
Farticipant level can be particularly useful in large, WAN, distributed systems (with thousands of participants)
in which not all participants need to know about each other at any given time.

Domain Participant Partitions functionality reduces network, CPU, and memory utilization, because Domain-
Farticipants without matching partitions will not exchange information about themselves and their Data Writers
and DataReaders.

1.14. Release Notes 137

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Domain Participant Partitions support in Cloud Discovery Service ensures that Cloud Discovery Service doesn’t
forward a DomainParticipant announcement to DomainParticipants whose partition values don’t match.

For details, see Domain Participant Partitions.

Removals
domain_id_info_seq field in DatabasePeriodic type used in monitoring removed

The Qoptional sequence<DomainIdInfo> domain_id_info_seq field in the DatabasePeri-
odic type used for Monitoring and defined in CdsMonitoring.idl has been removed. This change was
done as a part of refactoring the internal state of Cloud Discovery Service. Refer to the Migration Guide on the
RTI Community portal to see how this change could affect your upgrade to 7.0.0.

<refresh_period> tag removed

The <refresh_period> tag from previous releases has been replaced by new tags. (See Improved steady
state bandwidth utilization and discovery time in systems with many DomainParticipants communicating over
lossy networks.) The <refresh_period> is still present in the XSD, and Cloud Discovery Service logs a
warning if that tag is parsed; however, the value of <refresh_period> no longer influences the operation
of Cloud Discovery Service.

Third-Party Software Upgrades

The following third-party software used by Cloud Discovery Service has been upgraded:

Table 1.59: Third-Party Software Changes

Third-Party Software Previous Version Current Version
libxml2 2.9.12 2.9.14
libxslt 1.1.34 1.1.35

For information on third-party software used by Connext products, see the “3rdPartySoftware”
documents in your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/
release_notes_3rdparty.

What'’s Fixed in 7.0.0

Problems with Discovery after disposal of a Remote Participant

Cloud Discovery Service may have assigned incorrect properties from one remote participant to another remote
participant. This caused discovery problems. These incorrect properties typically belonged to another remote
participant that was recently disposed. This problem has been resolved.

[RTI Issue ID CDS-155]

1.14. Release Notes 138

https://community.rti.com/Documentation/

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Cloud Discovery Service did not allow using other transports when Real-Time WAN Trans-
port was enabled

Cloud Discovery Service had an issue that prevented the use of multiple transports at the same time, when the
Real-Time WAN Transport (udpv4_wan transport alias) was enabled. This issue has been resolved.

[RTI Issue ID CDS-158]

Cloud Discovery Service did not allow use of UDPv6 transport alias

Cloud Discovery Service did not enable the UDPv6 transport (udpv6 transport alias), even when it was set in
the <transport> tag. This problem has been resolved.

[RTI Issue ID CDS-161]

Cloud Discovery Service crashed when empty participant GUID provided to Remote Ad-
ministration API

If the /cloud_discovery_services/[service_name]/database/locators Remote Ad-
ministration endpoint was provided an empty Remote Participant GUID in its st ring_body, Cloud Dis-
covery Service crashed due to a parsing error. This problem has been resolved.

[RTT Issue ID CDS-176]

1.14.6 Known Issues

Note: For an updated list of critical known issues, see the Critical Issues List on the RTI Customer Portal at
https://support.rti.com/.

Cloud Discovery Service does not terminate when its internal DomainParticipant does not
initialize properly

Cloud Discovery Service creates an internal DomainParticipant that reserves the participant_id 0, on domain ID
0. This DomainParticipant is required by Cloud Discovery Service to relay the participant discovery announce-
ments. If the participant_id 0 for domain ID O is already being used by another Connext application, Cloud
Discovery Service throws errors but doesn’t terminate.

Although such a Cloud Discovery Service instance is running, it won’t be able to relay any participant discovery
announcements. A simple workaround is to ensure that Cloud Discovery Service is always the first Connext
application started on a given machine.

[RTI Issue ID CDS-143]

1.14. Release Notes 139

https://support.rti.com/

RTI Cloud Discovery Service User's Manual, Version 7.2.0

Fourth digit of product version not logged by Cloud Discovery Service at startup

Cloud Discovery Service does not log the fourth digit (revision) of the product version at startup.

[RTI Issue ID CDS-195]

1.15 Copyrights and Notices

© 2017-2023 Real-Time Innovations, Inc. All rights reserved. October 2023

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase, “Your
Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations,
Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form (including
electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time Innova-
tions, Inc. The software described in this document is furnished solely under and subject to RTI’s standard
terms and conditions available at https://www.rti.com/terms and in accordance with your License Acknowl-
edgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to the extent otherwise
accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party license
terms and conditions, including open source license terms and conditions. Copies of applicable third-party
licenses and notices are located at community.rti.com/documentation. IT IS YOUR RESPONSIBILITY TO
ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES WITH THE CORRESPOND-
ING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations, Inc.
Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding mainte-
nance and support of RTT’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release. Removed
means that the item is discontinued or no longer supported. By specifying that an item is deprecated in a release,
RTT hereby provides customer notice that RTI reserves the right after one year from the date of such release and,

1.15. Copyrights and Notices 140

https://www.rti.com/terms
https://community.rti.com/documentation

RTI Cloud Discovery Service User's Manual, Version 7.2.0

with or without further notice, to immediately terminate maintenance (including without limitation, providing
updates and upgrades) for the item, and no longer support the item, in a future release.

Technical Support Real-Time Innovations, Inc. 232 E. Java Drive Sunnyvale, CA 94089 Phone: (408)
990-7444 Email: support@rti.com Website: https://support.rti.com/

1.15. Copyrights and Notices 141

mailto:support@rti.com
https://support.rti.com/

Index

A

Address Resolution, 31
Application or Remote DP, 32

C

Configuration name, 103
Configuration variable, 103

E

eAddr:ePort, 31

G

GUID string representation,32

iAddr:iPort, 31
IP Transport Address (or Address), 31

L

Library APT, 103

N

NAT forwarding mapping, 32
NAT Traversal, 31

P

Private IP Transport Address (or Private Address),
31
Public IP Transport Address (or Public Address), 31

R

Reachable locator: Locator associated with
a DDS endpoint (DataWriter,31

RTPS Locator (or Locator), 31

RTPS UUID WAN Locator (or UUID Locator), 31

RTPS UUID+PUBLIC WAN Locator (or UUID+PUBLIC
Locator), 31

RTPS WAN Locator (or WAN Locator), 31

S

Service Reflexive Address, 31
Shipped executable, 103

U

UDP Hole-Punching, 32

X

XML document, 103

142

	1 Table of Contents
	1.1 Introduction
	1.1.1 The Basics
	1.1.2 Available Documentation
	1.1.3 Paths Mentioned in Documentation

	1.2 Installation
	1.2.1 Installing an Evaluation or LM Version
	1.2.2 Installing a Regular Version
	Installing from RTI Launcher
	Installing from the command line
	Other dependencies

	1.3 Core Concepts
	1.3.1 Domain Lists
	Domain Tags
	Specifying the Domain Tag in XML

	Domain Participant Partitions
	Specifying Domain Participant Partitions in XML
	Changing Domain Participant Partitions in code

	1.3.2 Transport
	RTPS Peer Descriptor
	Example: RTPS Peer Descriptors
	Example: Transport Setup and Resulting RTPS Descriptor

	About Ports

	1.3.3 Forwarder
	Flow Controller
	Operation Mode

	1.3.4 Database

	1.4 NAT Traversal
	1.4.1 Introduction
	1.4.2 Running Cloud Discovery Service with RTI Real-Time WAN Transport
	Cloud Discovery Service configuration
	Application DomainParticipant configuration
	Communication between DomainParticipants

	1.4.3 Communication scenarios using Cloud Discovery Service
	1.4.4 Debugging Cloud Discovery Service with the UDP WAN Transport
	Logging
	Administration
	Identifying the NAT type

	1.4.5 Key Terms

	1.5 Usage
	1.5.1 Command-Line Executable
	Starting Cloud Discovery Service
	Stopping Cloud Discovery Service
	Command-Line Options

	1.5.2 Cloud Discovery Service as a Library
	1.5.3 Operating System Daemon

	1.6 Configuration
	1.6.1 Configuring Cloud Discovery Service
	1.6.2 XML Tags for Configuring RTI Cloud Discovery Service
	Cloud Discovery Service
	Example: Specify a Configuration in XML

	Administration
	Monitoring
	Domain List
	Example: Deny a Few Specific Domains
	Example: Allow a Subset of Domains

	Transport
	Preregistered UDP Transports
	Preregistered TCP Transport
	Example: Reusing UDP Transport Instance for Multiple Receive Resources
	Example: A Receive Resource for Each UDP and TCP Transport

	Security
	Protocol Mode
	Forwarder
	Flow Controller
	Example: Flow Controller

	Database
	Resource Limits
	Enabling Distributed Logger

	1.6.3 Builtin Configuration
	1.6.4 Overriding XML Settings

	1.7 Remote Administration
	1.7.1 Enabling Remote Administration
	1.7.2 Available Service Resources
	Example

	1.7.3 Remote API Overview
	1.7.4 Cloud Discovery Service
	1.7.5 Database

	1.8 Monitoring
	1.8.1 Overview
	Enabling Service Monitoring
	Monitoring Types

	1.8.2 Monitoring Metrics Reference
	Service
	Forwarder
	Sender
	Receiver
	Database

	1.9 Security
	1.9.1 Configuration
	1.9.2 Pre-Shared Key Mutability

	1.10 Tutorials
	1.10.1 Example: Using a Builtin UDP Transport
	Setup
	Disable Multicast and Shared Memory, and unset default Initial Peers
	Cloud Discovery Service in Action

	1.10.2 Example: Using a Custom Listening Port
	1.10.3 Example: Using RTI TCP Transport
	Setup
	Cloud Discovery Service in Action
	Configuration for TCP transport in WAN Mode using a public address
	USER_QOS_PROFILES.xml
	Cloud Discovery Service
	NDDS_DISCOVERY_PEERS

	1.10.4 Example: Using RTI TCP Transport with RTI TLS Support
	Setup
	Cloud Discovery Service in Action

	1.10.5 Example: Using RTI Real-Time WAN Transport
	Setup
	Cloud Discovery Service in Action

	1.10.6 Example: Discovering Connext Micro applications with Cloud Discovery Service
	Installing Connext Micro
	Setup
	Understanding the Connext Micro Peer Descriptor
	Configure by Port
	Setup
	Changing the default initial peer
	Cloud Discovery Service in Action

	Configure by Domain ID
	Setup
	Changing the default initial peer
	Cloud Discovery Service in Action

	1.11 Software Development Kit
	1.12 Common Infrastructure
	1.12.1 Configuring RTI Services
	How to Load and Select an XML Configuration
	Loading from Files
	Loading from In-Memory Strings
	Selecting which Configuration to Run
	Default Files
	XML Syntax and Validation
	Listing Available Configurations
	Configuration Variables

	How to Load Default QoS Profiles
	How to Set Logging Properties
	Command-Line Options
	Library API
	XML Configuration

	How to Run as an Operating System Daemon
	Linux and macOS Systems
	Windows Systems

	How to use a License File with RTI Services
	Key Terms

	1.12.2 Application Resource Model
	Example: Simple Resource Model of a Connext Application
	Resource Identifiers
	Escaped Identifiers
	Example: Resource Identifiers of a Generic Connext Application
	Example: Resource Identifiers Generated from XML Entity Model

	1.12.3 Remote Administration Platform
	Remote Interface
	Standard Methods
	Custom Methods
	Example: Database Rollover

	Communication
	Reply Sequence
	Example: Controlling services remotely from a Connext Application

	Common Operations
	Create Resource
	Get Resource
	Update Resource
	Set Resource State
	Get Resource State
	Delete Resource

	1.12.4 Monitoring Distribution Platform
	Distribution Topic Definition
	Example: Monitoring of Generic Application

	DDS Entities
	Monitoring Metrics Publication
	Configuration Distribution Topic
	Event Distribution Topic
	Periodic Distribution Topic
	Calculation
	Publication

	Monitoring Metrics Reference
	Statistic Variable
	Host Metrics
	Process Metrics
	Base Entity Resource Metrics
	Network Performance Metrics
	Thread Metrics

	1.12.5 Plugin Management
	Shared Library
	Configuration

	Library API

	1.13 Troubleshooting
	1.13.1 My Applications don’t Communicate
	Make Sure Your Application can Accept Unknown Peers
	Check that Your Initial Peers List Points to Cloud Discovery Service
	See Where Your Cloud Discovery Service Instance is Listening
	Identifying NAT traversal address resolutions

	1.13.2 Cloud Discovery Service Log Errors
	Invalid Port
	Port Already in Use

	1.14 Release Notes
	1.14.1 Supported Platforms
	1.14.2 Compatibility
	Connext compatibility

	1.14.3 What’s New in 7.2.0
	Third-party software changes
	Simple Participant Discovery Protocol 2.0 Integration
	RTI Lightweight Security Plugins Integration

	1.14.4 What’s Fixed in 7.2.0
	Fixes Related to Discovery
	DomainParticipant discovery may have failed when using Real-Time WAN Transport
	Potential crash if dispose received when participant announcement forwarded

	Fixes Related to Usability
	Crash on startup

	1.14.5 Previous Releases
	What’s New in 7.1.0
	Cloud Discovery Service now shipped as host and target

	What’s Fixed in 7.1.0
	Cloud Discovery Service internal state issues caused increase in network traffic in certain situations
	<output_capacity_allocation> XML tag not parsed from configuration
	Discovery did not complete when using Real-Time WAN and multiple locators

	What’s New in 7.0.0
	Improved steady state bandwidth utilization and discovery time in systems with many DomainParticipants communicating over lossy networks
	Domain Participant Partitions support
	Removals
	domain_id_info_seq field in DatabasePeriodic type used in monitoring removed
	<refresh_period> tag removed

	Third-Party Software Upgrades

	What’s Fixed in 7.0.0
	Problems with Discovery after disposal of a Remote Participant
	Cloud Discovery Service did not allow using other transports when Real-Time WAN Transport was enabled
	Cloud Discovery Service did not allow use of UDPv6 transport alias
	Cloud Discovery Service crashed when empty participant GUID provided to Remote Administration API

	1.14.6 Known Issues
	Cloud Discovery Service does not terminate when its internal DomainParticipant does not initialize properly
	Fourth digit of product version not logged by Cloud Discovery Service at startup

	1.15 Copyrights and Notices

	Index

