
RTI Limited Bandwidth
Plugins

User's Manual

Version 7.2.0

© 2012-2023 Real-Time Innovations, Inc.
All rights reserved.

October 2023.

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase,
“Your Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time
Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of
Real-Time Innovations, Inc. The software described in this document is furnished solely under and sub-
ject to RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance
with your License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate
(MSC), except to the extent otherwise accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party
license terms and conditions, including open source license terms and conditions. Copies of applicable
third-party licenses and notices are located at community.rti.com/documentation. IT IS YOUR
RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES
WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regard-
ing maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is
deprecated in a release, RTI hereby provides customer notice that RTI reserves the right after one year
from the date of such release and, with or without further notice, to immediately terminate maintenance
(including without limitation, providing updates and upgrades) for the item, and no longer support the
item, in a future release.

https://www.rti.com/terms
https://community.rti.com/documentation

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Introduction

1.1 Provided Examples 1
1.2 What is a Transport Plugin? 2
1.3 What is Discovery? 2
1.4 Configuring Transports with the Property QoS Policy in XML 3

Chapter 2 Paths Mentioned in Documentation 4
Chapter 3 Limited Bandwidth Participant Discovery Plugin

3.1 Creating the LBPD Plugin Configuration File 6
3.2 Configuring the LBPD Plugin in Connext 9
3.3 Optimizing the Plugin 11

3.3.1 Initial Announcements 12
3.3.2 Liveliness 12

Chapter 4 Limited Bandwidth RTPS Transport Plugin

4.1 Understanding the RTPS Message Header 14
4.1.1 Submessage Structure 16

4.2 Configuring the LBRTPS Transport 17
4.2.1 Configuring the LBRTPS Transport Plugin’s ‘Subtransport’ Property 22
4.2.2 Configuring the LBRTPS Transport Plugin’s ‘reduce_guidPrefix’ Property 25

Chapter 5 Compression Real-Time Publish Subscribe Transport Plugin

5.1 Transport-Related Limitations 28
5.2 Differences Between ZRTPS and Built-in Compression 28
5.3 Configuring the ZRTPS Transport 29

5.3.1 Configuring the ZRTPS Transport Plugin’s ‘Subtransport’ Property 34
5.3.2 Configuring the External Compression Library 35

iv

Chapter 1 Introduction
The RTI ® Limited Bandwidth Plugins package includes:

l Limited Bandwidth Participant Discovery Plugin

Reduces discovery time and network traffic by obtaining some of the information about
the participants from an XML file instead of from the normal discovery process, which
requires all information to be sent dynamically over the network. All the participants must
be known ahead of time and described in an XML file.

l Limited Bandwidth RTPS Transport Plugin

Reduces the size of the message headers in the Real-Time Publish Subscribe (RTPS) pack-
ages sent over the network by the RTI Connext® software. The message headers are
reduced by eliminating some fields and making other fields smaller.

l Compression Real-Time Publish Subscribe Transport Plugin

Compresses the RTPS packages sent over the network by Connext. You can configure
how the packages are compressed, and even provide your own compression algorithm.

You can combine the abilities of these plugins or use them independently. When using more
than one of the plugins, their properties must appear in the XML file in the order in which they
should be executed.

1.1 Provided Examples

Examples are provided in these directories:

l <path to examples>/connext_dds/c/limited_bandwidth_plugins:

l lbpdiscovery

1

1.2 What is a Transport Plugin?

2

l lbrtps
l zrtps

l <path to examples>/connext_dds/c++11/limited_bandwidth_plugins:

l dil-stacking

1.2 What is a Transport Plugin?

Connext sends data over a variety of transport networks. Connext has pluggable transport architecture.
The core of Connext is transport agnostic, it does not make any assumptions about the actual transports
used to send and receive messages.

Connext comes with standard UDPv4/IP and UDPv6/IP pluggable transports, as well as a shared
memory transport; these transports are enabled by default. Connext also give you the ability to define
new transport plugins and run utilizing them.

1.3 What is Discovery?

Discovery is the behind-the-scenes way in which Connext objects (DomainParticipants, DataWriters,
and DataReaders) find out about each other. Each DomainParticipant maintains a database of inform-
ation about all the active DataReaders and DataWriters in the same domain. This database is what
makes it possible for DataWriters and DataReaders to communicate. To create and refresh the data-
base, each application follows a common discovery process.

The default discovery mechanism in Connext is the one described in the DDS specification and is
known as Simple Discovery Protocol, which includes two phases: Simple Participant Discovery and
Simple Endpoint Discovery. The goal of these two phases is to build, for each DomainParticipant, a
complete picture of all the entities that belong to the remote participants in its peers list, which is a list
of nodes with which a participant may communicate.

During the Simple Participant Discovery phase, DomainParticipants learn about each other. The
DomainParticipant’s details are communicated to all other DomainParticipants in the same domain by
sending participant declaration messages, also known as participant DATA submessages or participant
announcements.

During the Simple Endpoint Discovery phase, Connext matches DataWriters and DataReaders. Inform-
ation about each application’s DataReaders and DataWriters is exchanged by sending pub-
lication/subscription declarations in DATA submessages (participant announcements), which we will
refer to as publication DATAs and subscription DATAs. The Simple Endpoint Discovery phase uses
reliable communication.

1.4 Configuring Transports with the Property QoS Policy in XML

Note: RTI provides two options for endpoint discovery: Simple Endpoint Discovery and
Limited Bandwidth Endpoint Discovery. See the Discovery Overview in the RTI Connext Core
Libraries User's Manual for more information on these endpoint discovery options.

1.4 Configuring Transports with the Property QoS Policy in XML

Connext provides a mechanism to dynamically load an external transport from an XML QoS profile,
like the file generated by rtiddsgen (USER_QOS_PROFILES.xml). The Property QoS policy is used
to achieve this purpose.

The Property QoS policy stores name/value (string) pairs that can be used to configure certain para-
meters of Connext that are not exposed through formal QoS policies. Connext uses this mechanism to
configure external transports.

Syntax for Setting the Property QoS Policy in an XML QoS profile:
<qos_library name="Property_Library">

<qos_profile name="Property_Profile">
<domain_participant_qos>

...
<property>

<value>
<element>

<name>Property1</name>
<value>example</value>

</element>
<element>

<name>Property2</name>
<value>example</value>

</element>
...

</value>
</property>
...

</domain_participant_qos>
</qos_profile>

</qos_library>

For more general information, see Configuring QoS with XML, in the RTI Connext Core Libraries
User's Manual.

For specific information on setting properties for each of the Limited Bandwidth Plugins, see their
respective chapters in this document.

3

../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

Chapter 2 Paths Mentioned in
Documentation

The documentation refers to:

l <NDDSHOME>

This refers to the installation directory for RTI® Connext®. The default installation paths
are:

l macOS® systems:
/Applications/rti_connext_dds-7.2.0

l Linux systems, non-root user:
/home/<your user name>/rti_connext_dds-7.2.0

l Linux systems, root user:
/opt/rti_connext_dds-7.2.0

l Windows® systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-7.2.0

l Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-7.2.0

You may also see $NDDSHOME or%NDDSHOME%, which refers to an environment
variable set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

4

Chapter 2 Paths Mentioned in Documentation

5

Note for Windows Users:When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:
“C:\Program Files\rti_connext_dds-7.2.0\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

l <path to examples>

By default, examples are copied into your home directory the first time you run RTI Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples
as <path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:
l macOS systems: /Users/<your user name>/rti_workspace/7.2.0/examples
l Linux systems: /home/<your user name>/rti_workspace/7.2.0/examples
l Windows systems: <your Windows documents folder>\rti_workspace\7.2.0\examples

Where 'your Windows documents folder' depends on your version of Windows. For
example, on Windows 10, the folder is C:\Users\<your user name>\Documents.

Note: You can specify a different location for rti_workspace. You can also specify that you do
not want the examples copied to the workspace. For details, see Controlling Location for
RTI Workspace and Copying of Examples in the RTI Connext Installation Guide.

Chapter 3 Limited Bandwidth Participant
Discovery Plugin

Limited Bandwidth Participant Discovery (LBPD) is achieved with a file-based plugin. Part of
the information about the participants is obtained from an XML file instead of being sent dynam-
ically over the network. This method can reduce discovery time and reduce traffic on the net-
work. However, for LBPD to work, all the participants must be known ahead of time and
described in an XML file.

The LBPD plugin reduces, but does not eliminate, the network traffic required to exchange par-
ticipant information. It does this by allowing you to define some of the remote participant data,
such as the product version and the RTPS protocol version, in an XML file.

The correlation between the remote participant information defined in the XML file and the
information received on the network is done using the RTPS participant identifier (key) first and
the participant name second if the identifier is not defined in the XML file (see Table 3.1 Con-
figuration Options for LBPD Plugin for additional details).

This chapter describes how to configure the RTI Limited Bandwidth Participant Discovery Plu-
gin and set up your Connext application to use the plugin.

You will need two XML files, one for the discovery plugin (see 3.1 Creating the LBPD Plugin
Configuration File below) and one for Connext (3.2 Configuring the LBPD Plugin in Connext
on page 9).

You must link with the dynamic version of the Connext libraries. See the RTI Connext
Core Libraries Platform Notes for details.

3.1 Creating the LBPD Plugin Configuration File

To use LBPD, you need an XML file that describes all the remote participants. These remote
participants must be configured exactly the same as their original QoS properties.

6

../../../connext_dds_professional/platform_notes/RTI_ConnextDDS_CoreLibraries_PlatformNotes.pdf
../../../connext_dds_professional/platform_notes/RTI_ConnextDDS_CoreLibraries_PlatformNotes.pdf

3.1 Creating the LBPD Plugin Configuration File

7

You will specify the name of this file when you configure the plugin in the QoS Profiles XML file
(USER_QOS_PROFILES.xml) described in 3.2 Configuring the LBPD Plugin in Connext on page 9;
see dds.discovery.participant.<string>.config_file

The main structure of this file is:
<LBPDiscoveryPluginProfile>

<participant name="Participant1">
...
</participant>
<participant name=”Participant2">
...
</participant>

</LBPDiscoveryPluginProfile>

Let’s look at an example of this file (you can find it in <path to examples>/connext_dds/c/limited_
bandwidth_plugins/lbpdiscovery/LBPDiscoveryPluginExamplePublisher.xml).
<LBPDiscoveryPluginProfile>

<participant name="Publisher">
<key>

<rtps_host_id>RTPS_AUTO_ID</rtps_host_id>
<rtps_app_id>RTPS_AUTO_ID</rtps_app_id>
<rtps_instance_id>RTPS_AUTO_ID</rtps_instance_id>

</key>
<rtps_protocol_version>

<major>2</major>
<minor>1</minor>

</rtps_protocol_version>
<rtps_vendor_id>

<vendorId>1,1</vendorId>
</rtps_vendor_id>
<product_version>

<major>7</major>
<minor>x</minor>
<release>y</release>
<revision>z</revision>

</product_version>
<dds_builtin_endpoints>60</dds_builtin_endpoints>

</participant>
</LBPDiscoveryPluginProfile>

(In <product_version>, x, y and z represent the number of the current release.)

The supported participant configuration options are described in the following tables. They are all
optional.

Some descriptions also point out related Connext documentation. For example, “See documentation on
the Entity QoS policy” means you should see that section in the RTI Connext Core Libraries User's
Manual or the Connext API Reference HTML documentation.

../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

3.1 Creating the LBPD Plugin Configuration File

Option Name Option Value and Description

key

The RTPS identifier of the participant. See documentation on the WireProtocol QoS policy. If a key is not set or the values are
set to RTPS_AUTO_ID, the correlation between the participant information defined in the XML file and the information received
from the network will be done using the participant's entity name.

Example:
<key>

<rtps_host_id>123</rtps_host_id>
<rtps_app_id>255</rtps_app_id>
<rtps_instance_id>348</rtps_instance_id>

</key>

liveliness_lease_
duration

The liveliness lease duration for the participant.

Schema:
<liveliness_lease_duration>

<sec>[number | DURATION_ZERO_SEC |
DURATION_INFINITE_SEC]

</sec>
<nanosec>[number | DURATION_ZERO_NSEC |

DURATION_INFINITE_NSEC]
</nanosec>

</liveliness_lease_duration>

Example:
<liveliness_lease_duration>

<sec>100</sec>
<nanosec>DURATION_ZERO_NSEC</nanosec>

</liveliness_lease_duration>

rtps_protocol_
version

The version number of the RTPS protocol being used. See documentation on the ParticipantBuiltinTopicData structure.

Example:
<rtps_protocol_version>

<major>2</major>
<minor>1</minor>

</rtps_protocol_version>

rtps_vendor_id
The identifier of the RTPS vendor. See documentation on ParticipantBuiltinTopicData. RTI’s identifier is 1,1.

Example:
<rtps_vendor_id><vendorId>1,1</vendorId><rtps_vendor_id>

participant_name

The name of the remote participant, as set in EntityName QoS policy.

Example:
<participant name=”Participant1”/>

The participant name is used to correlate the information defined in the XML file with the information received on the network in
the absence of the key property. If both the key property and the participant name are not defined, the discovery plugin will re-
port the following error:

LBPDiscoveryPluginTypeReaderListenerOnDataAvailable:
Cannot find the participant in the database

product_version

The version number for the plugin.

Example (where x, y, and z represent numbers of the current release):
<product_version>

<major>6</major>
<minor>x</minor>
<release>y</release>
<revision>z</revision>

</product_version>

dds_builtin_endpoints

Bitmap of builtin endpoints supported by the participant. Each bit indicates a builtin endpoint that may be available on the par-
ticipant for use in discovery.

Example:
<dds_builtin_endpoints>60</dds_builtin_endpoints>

Table 3.1 Configuration Options for LBPD Plugin

8

3.2 Configuring the LBPD Plugin in Connext

9

3.2 Configuring the LBPD Plugin in Connext

This section describes how to configure the properties for the LBPD plugin in the XML QoS Profile
file used by Connext (such as USER_QOS_PROFILES.XML), or in the PropertyQosPolicy for your
Connext application’s DomainParticipant. (See the "PROPERTY QosPolicy (DDS Extension)" in the
RTI Connext Core Libraries User's Manual.)

Let’s look at an example XML file, which you can find in <path to examples>/connext_dds/c/lim-
ited_bandwidth_plugins/lbpdiscovery/USER_QOS_PROFILES.xml:
<domain_participant_qos>

...
<property>

<value>
<!-- Specify the library -->
<element>

<name>dds.discovery.participant.lbpdiscovery.library</name>
<value>rtilbpdisc</value>

</element>
<!-- Specify the creation function -->
<element>

<name>
dds.discovery.participant.lbpdiscovery.create_function

</name>
<value>DDS_LBPDiscoveryPlugin_create</value>

</element>
<!-- Specify the discovery configuration file.

Change this property to use your own file. -->
<element>

<name>dds.discovery.participant.lbpdiscovery.config_file</name>
<value>LBPDiscoveryPluginExampleSubscriber.xml</value>

</element>
<!-- Load LBP Participant Discovery plugin -->
<element>

<name>dds.discovery.participant.load_plugins</name>
<value>dds.discovery.participant.lbpdiscovery</value>

</element>
<!-- Specify the verbosity -->
<element>

<name>dds.discovery.participant.lbpdiscovery.verbosity</name>
<value>0</value>

</element>
</value>

</property>
...

</domain_participant_qos>

Table 3.2 LBPD Configuration Properties for Connext describes the name/value pairs that you can use
to configure the LBPD plugin.

../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

3.2 Configuring the LBPD Plugin in Connext

Property Name Property Value and Description

dds.discovery.participant.
load_plugins

Required.

String indicating the prefix name of the plugin that will be loaded by Connext.

Set the value to dds.discovery.participant.<string>, where <string> can be any string you want, as long as you use the same
string consistently for all the properties in this table. Our example uses lbpdiscovery:
<element>

<name>dds.discovery.participant.load_plugins</name>
<value>dds.discovery.participant.lbpdiscovery</value>

</element>

dds.discovery.participant.
<string>.library

Required.

The name of the dynamic library that contains the LBPD plugin implementation. This library must be in the path during run time
for use by Connext.

Set the value to rtilbpdisc.

Example:
<element>

<name>
dds.discovery.participant.lbpdiscovery.library

</name>
<value>rtilbpdisc</value>

</element>

dds.discovery.participant.
<string>.create_function

Required.

The name of the function that will be called by Connext to create an instance of the LBPD plugin.

Set the value to DDS_LBPDiscoveryPlugin_create.

Example:
<element>

<name>
dds.discovery.participant.lbpdiscovery.create_function

</name>
<value>DDS_LBPDiscoveryPlugin_create</value>

</element>

dds.discovery.participant.
<string>.config_file

Required.

The name of the discovery configuration file, described in 3.1 Creating the LBPD Plugin Configuration File on page 6.

Set the value to the name of your own file.

Example:
<element>

<name>
dds.discovery.participant.lbpdiscovery.config_file

</name>
<value>LBPDiscoveryPluginExampleSubscriber.xml</value>

</element>

Table 3.2 LBPD Configuration Properties for Connext

10

3.3 Optimizing the Plugin

11

Property Name Property Value and Description

dds.discovery.participant.
<string>.verbosity

Optional.

The verbosity for the plugin, for debugging purposes.

l -1: Silent

l 0: Exceptions only (default)

l 1: Warnings

l 2 and up: Debug

Example:
<element>

<name>
dds.discovery.participant.lbpdiscovery.verbosity

</name>
<value>0</value>

</element>

Note: the LBPD logging verbosity is per application. The last DomainParticipant using LBPD and explicitly setting this prop-
erty will apply that setting to all the DomainParticipants using LBPD within the application. If not explicitly set, the verbosity will
be left unchanged. Therefore, if no DomainParticipant has configured the LBPD verbosity, it will be left to the default value.

dds.discovery.participant.<
string>.property_validation_
action

Optional.

By default, property names given in the PropertyQoSPolicy are validated to avoid using incorrect or unknown names (for ex-
ample, due to a typo). This property configures the validation of the property names associated with the plugin:

l VALIDATION_ACTION_EXCEPTION: validate the properties. Upon failure, log errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate the properties. Upon failure, log warnings and do not fail.

If this property is not set, the plugin property validation behavior will be the same as that of the DomainParticipant, which by de-
fault is VALIDATION_ACTION_EXCEPTION. See the "Property Validation" section in the RTI Connext Core Libraries User's
Manual.

Table 3.2 LBPD Configuration Properties for Connext

In addition to setting the properties described above, the builtin_discovery_plugins mask (set in the
DiscoveryConfigQosPolicy) should be set to SEDP. The default value of this mask is SDP (Simple Dis-
covery Protocol). The SDP consists of two parts, Simple Participant Discovery Protocol (SPDP) and
Simple Endpoint Discovery Protocol (SEDP). Using the LBPD plugin replaces the need for the SPDP,
so the builtin_discovery_plugins should be set to SEDP. This tells Connext to only use the SEDP for
endpoint discovery, since participant discovery will use the LBPD plugin. If you are using both the
LBPD plugin and LBED, this mask should be set to MASK_NONE (for more information on LBED,
see "Limited Bandwidth Endpoint Discovery" in the RTI Connext Core Libraries User's Manual).

3.3 Optimizing the Plugin

You can reduce network bandwidth by changing some Connext properties in the file USER_QOS_
PROFILE xml. For an example of this user profile, see the file utils/xml/USER_QOS_
PROFILES.xml.

These optimizations apply to the LBPD plugins:

../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

3.3.1 Initial Announcements

l 3.3.1 Initial Announcements below
l 3.3.2 Liveliness below

3.3.1 Initial Announcements

When a participant is enabled, by default it sends five announcements. You can reduce the number of
initial announcements and the period between them with these properties:

l initial_participant_announcements
l min_initial_participant_announcement_period
l max_initial_participant_announcement_period

Example:
<domain_participant_qos>

<discovery_config>
<initial_participant_announcements>

1
</initial_participant_announcements>
<min_initial_participant_announcement_period>

<sec>1</sec>
<nanosec>0</nanosec>

</min_initial_participant_announcement_period>
<max_initial_participant_announcement_period>

<sec>1</sec>
<nanosec>0</nanosec>

</max_initial_participant_announcement_period>
</discovery_config>

</domain_participant_qos>

3.3.2 Liveliness

The participant liveliness period can be increased with the property participant_liveliness_assert_
period. If this property is increased, the property participant_liveliness_lease_duration must also be
increased.

Example:
<domain_participant_qos>

<discovery_config>
<participant_liveliness_lease_duration>

<sec>1000</sec>
<nanosec>DURATION_ZERO_NSEC</nanosec>

</participant_liveliness_lease_duration>
<participant_liveliness_assert_period>

<sec>300</sec>
<nanosec>DURATION_ZERO_NSEC</nanosec>

</participant_liveliness_assert_period>
</discovery_config>

12

3.3.2 Liveliness

13

</domain_participant_qos>

Chapter 4 Limited Bandwidth RTPS
Transport Plugin

The Real-Time Publish Subscribe (RTPS) communication protocol is used by the Data Dis-
tribution Service (DDS) interoperability protocol. Connext uses RTPS packages to send data
over the network. The Limited Bandwidth RTPS (LBRTPS) transport plugin reduces the size of
the message headers in the RTPS packages sent over the network. The message headers are
reduced by eliminating some fields and making other fields smaller.

This chapter provides a brief overview of how RTPS messages are structured and describes how
to configure the LBRTPS transport plugin. More information about RTPS can be found in the
OMG Real-Time Publish-Subscribe (RTPS) specification, version 2.5. See also the "Wire Pro-
tocol Compatibility" section in the RTI Connext Core Libraries Release Notes for further cla-
rification.

You must link with the dynamic version of the Connext libraries. See the RTI Connext
Core Libraries Platform Notes for details.

4.1 Understanding the RTPS Message Header

The overall structure of an RTPS Message consists of a fixed-size RTPS Header followed by a
variable number of RTPS Submessage parts. Each Submessage consists of a SubmessageHeader
and a variable number of SubmessageElements. The RTPS header must appear at the beginning
of every message.

The Header contains these fields:

l protocol: Identifies the message as an RTPS message.

Representation: 4 bytes
0.........8........16........24........32
+-+

14

https://www.omg.org/spec/DDSI-RTPS/2.5/
../../../connext_dds_professional/release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf
../../../connext_dds_professional/platform_notes/RTI_ConnextDDS_CoreLibraries_PlatformNotes.pdf
../../../connext_dds_professional/platform_notes/RTI_ConnextDDS_CoreLibraries_PlatformNotes.pdf

4.1 Understanding the RTPS Message Header

15

| 'R' | 'T' | 'P' | 'S' |
+---------+---------+---------+---------+

l version: Identifies the version of the RTPS protocol. .

Representation: 2 bytes. This release uses version {2, 1}.
l vendorId: Indicates the vendor that provides the implementation of the RTPS protocol.

Representation: 2 bytes. The RTI vendor identifier is {1, 1}.
l guidPrefix: Defines a default prefix to use for all GUIDs that appear in the message.

Representation: 12 bytes: 4 bytes for the host identifier, 4 bytes for the application identifier and
4 bytes for the instance identifier.

Figure 4.1: RTPS Message Structure

4.1.1 Submessage Structure

Figure 4.2: RTPS Message Header Structure

The LBRTPS transport reduces the RTPS message headers by eliminating the protocol, version, and
vendorId fields in the RTPS Header structure.

4.1.1 Submessage Structure

Each RTPS message consists of a variable number of RTPS submessages. All RTPS submessages have
the same structure; they start with a SubmessageHeader, followed by a concatenation of Submes-
sageElement parts. The SubmessageHeader identifies the kind of submessage and the optional elements
within that submessage.

The SubmessageHeader contains these fields:

l submessageId: A 1-byte field that identifies the kind of submessage.
l flags: A 1-byte field that identifies the endianness used to encapsulate the submessage, the pres-
ence of optional elements within the submessage, and possibly modifies the interpretation of the
submessage.

l submessageLength: A 2-byte field that indicates the length of the submessage. Given that an
RTPS message consists of a concatenation of submessages, the submessage length can be used to
skip to the next submessage.

16

4.2 Configuring the LBRTPS Transport

17

DATA and DATA_FRAG submessages contain a field called extraflags. It provides space (2 bytes) for
an additional 16 bits of flags beyond the 8 bits provided in the SubmessageHeader.

ACKNACK, HEARTBEAT, GAP, ACKNACK_FRAG, HEARTBEAT_FRAG, DATA, and DATA_
FRAG submessages contain a reader entity identifier and a writer entity identifier (readerId field and
writerId field). The representation is 4 bytes. These submessages also contain an 8-byte field for a
sequence number.

4.2 Configuring the LBRTPS Transport

The LBRTPS transport must be created using the Connext Transport API; for more information, please
see Transport Plugins, in the RTI Connext Core Libraries User's Manual.

Before we describe the name/value pairs that can be used in the Property QoS policy (see the
"PROPERTY QosPolicy (DDS Extension)" in the RTI Connext Core Libraries User's Manual) to con-
figure the LBRTPS transport, let’s review an example. The first step is to disable the builtin transports
by configuring the TransportBuiltin QoS policy with the maskMASK_NONE. Then the name/value
pairs in the Property QoS policy are set up to load and configure the LBRTPS transport plugin.
<qos_library name=”Property_Library”>

<qos_profile name=”Property_Profile”>
<domain_participant_qos>
...
<transport_builtin>
<mask>MASK_NONE</mask>
</transport_builtin>
<property>
<value>

<element>
<name>dds.transport.load_plugins</name>
<value>dds.transport.lbrtps</value>
</element>
<element>

<name>dds.transport.lbrtps.library</name>
<value>rtilbrtps</value>
</element>
<element>
<name>dds.transport.lbrtps.create_function</name>

<value>LBRTPS_Transport_create_plugin</value>
</element>
<element>

<name>dds.transport.lbrtps.subtransport</name>
<value>UDPv4</value>
</element>
<element>
<name>dds.transport.lbrtps.aliases</name>
<value>lbrtps.udpv4</value>
</element>
<element>

<name>

../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

4.2 Configuring the LBRTPS Transport

dds.transport.lbrtps.UDPv4.multicast_enabled
</name>

<value>1</value>
</element>
<element>
<name>

dds.transport.lbrtps.rtps_header.eliminate_protocol
</name>
<value>true</value>
</element>
<element>
<name>

dds.transport.lbrtps.rtps_header.eliminate_version
</name>
<value>true</value>
</element>
<element>

<name>
dds.transport.lbrtps.rtps_header.eliminate_vendorId

</name>
<value>true</value>
</element>
...

</value>
</property>
...

</domain_participant_qos>
</qos_profile>

</qos_library>

When using the above example, Connext will load the LBRTPS transport plugin from the library rtil-
brtps.dll on Windows systems or rtilbrtps.so on Linux systems, and call the function LBRTPS_
Transport_create_plugin(), which will create the LBRTPS transport. The LBRTPS transport is
designed to work over the Connext UDPv4 transport. The LBRTPS transport is registered in Connext
with the participant that uses this QoS profile.

Connext does not assign initial peers to the LBRTPS transport plugin. You can set the initial
peers with NDDS_DISCOVERY_PEERS, as described in the Discovery Overview chapter in
the RTI Connext Core Libraries User's Manual. The LBRTPS transport plugin example uses the
NDDS_DISCOVERY_PEERS file to set the multicast address lbrtps://239.255.0.1.

Table 4.1 Configuration Properties for LBRTPS Plugin describes the name/value pairs that you can use
to configure the LBRTPS transport.

18

../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

4.2 Configuring the LBRTPS Transport

19

Property Name Property Value and Description

dds.transport.
load_plugins

Required.

Comma-separated strings indicating the prefix names of all plugins that will be loaded by Connext.

Must be set to dds.transport.lbrtps.

Example:
<element>

<name>dds.transport.load_plugins</name>
<value>dds.transport.lbrtps</value>

</element>

dds.transport.lbrtps.
subtransport

Required.

Name of the plugin to be loaded by the LBRTPS transport. The LBRTPS transport will work over this loaded plugin. The
value can be UDPv4, zrtps, or a user-specified string; see 4.2.1 Configuring the LBRTPS Transport Plugin’s ‘Subtransport’
Property on page 22.

dds.transport.lbrtps.
library

Required.

The name of the dynamic library that contains the LBRTPS transport plugin implementation. This library must be in the path
during run time for use by Connext.

Example:
<element>

<name>dds.transport.lbrtps.library</name>
<value>rtilbrtps</value>

</element>

dds.transport.lbrtps.
create_function

Required.

The name of the function that will be called by Connext to create an instance of the LBRTPS transport. The function must
have the prototype of NDDS_Transport_create_plugin.

Must be set to LBRTPS_Transport_create_plugin.

Example:
<element>

<name>dds.transport.lbrtps.create_function</name>
<value>LBRTPS_Transport_create_plugin</value>

</element>

dds.transport.lbrtps.
aliases

Required.

Aliases used to register the LBRTPS transport plugin with the DomainParticipant. The transport must have been created by
the dds.transport.lbrtps.create_function. Aliases should be specified as comma-separated strings, with each comma delim-
iting an alias.

An example alias for the LBRTPS transport, working over a Connext UDPv4 transport: lbrtps.udpv4.

Example:
<element>

<name>dds.transport.lbrtps.aliases</name>
<value>lbrtps.udpv4</value>

</element>

The following properties are optional and appear in alphabetical order.

dds.transport.lbrtps.
rtps_header.
eliminate_protocol

Whether or not to eliminate the 4-byte protocol field in the RTPS header.

Must be a boolean value: true or false.

Example:
<element>

<name>
dds.transport.lbrtps.rtps_header.eliminate_protocol
</name>
<value>true</value>

</element>

Table 4.1 Configuration Properties for LBRTPS Plugin

4.2 Configuring the LBRTPS Transport

Property Name Property Value and Description

dds.transport.lbrtps.
rtps_header.
eliminate_vendorId

Whether or not to eliminate the 2-byte vendorId field in the RTPS header.

Must be a boolean value: true or false.

Example:
<element>

<name>
dds.transport.lbrtps.rtps_header.eliminate_vendorId
</name>
<value>true</value>

</element>

dds.transport.lbrtps.
rtps_header.
eliminate_version

Whether or not to eliminate the 2-byte version field in the RTPS header.

Must be a boolean value: true or false.

Example:
<element>

<name>
dds.transport.lbrtps.rtps_header.eliminate_version
</name>
<value>true</value>

</element>

dds.transport.lbrtps.
rtps_header.
reduce_guidPrefix

The reduce_guidPrefix field is comprised of 12 bytes that represent 3 different fields of 4 bytes each: hostId, appId and in-
stanceId.

See 4.2.2 Configuring the LBRTPS Transport Plugin’s ‘reduce_guidPrefix’ Property on page 25.

dds.transport.lbrtps.
submessage_header.
combine_
submessageId_
with_flags

The first two fields in the SubmessageHeader do not use all the bits. The first field, submessageId, only uses 5 bits. The
second field, flags, only uses 3 bits. By setting this property to true, these two fields can be packed into a single byte.

Must be set to a boolean value: true or false.

Example:
<element>

<name>
dds.transport.lbrtps.submessage_header.combine_submessageId_with_flags

</name>
<value>true</value>

</element>

Table 4.1 Configuration Properties for LBRTPS Plugin

20

4.2 Configuring the LBRTPS Transport

21

Property Name Property Value and Description

dds.transport.lbrtps.
submessages.
reduce_entitiesId

Many submessage kinds include two fields: readerId and writerId.

In the RTPS protocol specification, these fields are mapped to structure:
struct {

octet[3] entityKey;
octet entityKind;

} EntityId_t;

As you can see, 4 bytes are allocated for each entity: 3 for the entityKey and 1 for the entityKind. However, you may be able
to reduce the size of these fields if you know ahead of time how many DataReaders and DataWriters you will have.

If you will have no more than 2048 DataReaders and 2048 DataWriters, you can reduce the size of each of these fields from
four to two bytes. And if you will have no more than 8 DataReaders and 8 DataWriters, you can reduce each field to only one
byte. The math involved is explained below.

Five bits are always needed for the entityKind. If you have no more than 2048 DataReaders and 2048 DataWriters, their
entityKeys can be 0-2047, which will fit in 11 bits. Thus you only need 2 bytes in this case: 5 bits for entityKind + 11 bits for
entityKey = 16 bits = 2 bytes.

Suppose you have no more than 8 DataReaders and 8 DataWriters. In this case, you still need 5 bits for the entityKind, but
only 3 bits to hold entityKeys 0-7. So you would only need 8 bits: 5 bits for entityKind + 3 bits for entityKey = 8 bits = 1 byte.

This property’s value is expressed as 2 comma-separated integers between 8 and 32, to specify the number of bits to use
for the readerId and writerId.

For example, to reduce both readerId and writerId to 12 bits each:
<element>

<name>dds.transport.lbrtps.submessages.reduce_entitiesId</name>
<value>12,12</value>

</element>

dds.transport.lbrtps.
submessages.
reduce_
sequenceNumber

Some submessage kinds keep track of the number of submessages received by using an 8-byte sequence number field.
You can reduce the number of bytes used for the sequence number by using this property.

The value must be an integer between 16 and 64 that specifies the desired size of the sequence number, in bits.

Example:
<element>

<name>
dds.transport.lbrtps.submessages.reduce_sequenceNumber

</name>
<value>32</value>

</element>

Table 4.1 Configuration Properties for LBRTPS Plugin

4.2.1 Configuring the LBRTPS Transport Plugin’s ‘Subtransport’ Property

Property Name Property Value and Description

dds.transport.lbrtps.
verbosity

The verbosity for the plugin, for debugging purposes.

l -1: Silent

l 0: Exceptions only (default)

l 1: Warnings

l 2 and up: Debug

Example:
<element>

<name>dds.transport.lbrtps.verbosity>/name>
<value>0</value>

</element>

Note: the LBRTPS logging verbosity is per application. The last DomainParticipant using LBRTPS and explicitly setting
this property will apply that setting to all the DomainParticipants using LBRTPS within the application. If not explicitly set,
the verbosity will be left unchanged. Therefore, if no DomainParticipant has configured the LBRTPS verbosity, it will be left
to the default value.

dds.transport.lbrtps.property_
validation_action

Optional.

By default, property names given in the PropertyQoSPolicy are validated to avoid using incorrect or unknown names (for ex-
ample, due to a typo). This property configures the validation of the property names associated with the plugin:

l VALIDATION_ACTION_EXCEPTION: validate the properties. Upon failure, log errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate the properties. Upon failure, log warnings and do not fail.

If this property is not set, the plugin property validation behavior will be the same as that of the DomainParticipant, which by
default is VALIDATION_ACTION_EXCEPTION. See the "Property Validation" section in the RTI Connext Core Libraries
User's Manual.

Table 4.1 Configuration Properties for LBRTPS Plugin

4.2.1 Configuring the LBRTPS Transport Plugin’s ‘Subtransport’ Property

The required property, dds.transport.lbrtps.subtransport, specifies the plugin to be loaded by the
LBRTPS transport. The value can be UDPv4, zrtps, or a user-specified value, as described in the fol-
lowing sections. Once you set the value for a subtransport, the names of all the properties for that sub-
transport should be in the form dds.transport.lbrtps.<subtransport>.<property>.

4.2.1.1 Using UDPv4 as a Subtransport

To load the Connext UDPv4 built-in transport, use the value UDPv4. If you want the UDPv4 transport to
be created with multicast support, also set dds.transport.lbrtps.UDPv4.multicast_enabled to 1, as
seen in the example below.

To use the UDPv4 transport and enable multicast:
<element>

<name>dds.transport.lbrtps.subtransport</name>
<value>UDPv4</value>

</element>
<element>

22

../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

4.2.1 Configuring the LBRTPS Transport Plugin’s ‘Subtransport’ Property

23

<name>dds.transport.lbrtps.UDPv4.multicast_enabled</name>
<value>1</value>

</element>

4.2.1.2 Using ZRTPS as a Subtransport

In Chapter 5 Compression Real-Time Publish Subscribe Transport Plugin on page 27, you will learn
about the Compression Real-Time Publish Subscribe Transport Plugin (ZRTPS). You can use the
LBRTPS and ZRTPS transport plugins together, as long as you meet the following three requirements.
By using this combination of transport plugins, the LBRTPS transport plugin will reduce the RTPS
headers, then the ZRTPS transport plugin will compress the RTPS package.

The LBRTPS transport plugin properties must appear in the XML QoS profile before those for the
ZRTPS transport plugin. (See the example below.)

As mentioned in Chapter 1 Introduction on page 1, the plugins are executed in the order in which they
appear in the XML file. So having the LBRTPS properties appear in the file before the ZRTPS prop-
erties is important because once the message is compressed by the ZRTPS transport plugin, the header
is no longer recognizable by the LBRTPS transport plugin as an RTPS header.

The ZRTPS transport plugin must be configured as a subtransport of the LBRTPS transport plugin
using the value zrtps, as seen here:
<element>

<name>dds.transport.lbrtps.subtransport</name>
<value>zrtps</value>

</element>

You will also need to set two additional properties:

l dds.transport.lbrtps.zrtps.library
l dds.transport.lbrtps.zrtps.create_function

<element>
<name>dds.transport.lbrtps.zrtps.library</name>
<value>rtizrtps</value>

</element>
<element>

<name>dds.transport.lbrtps.zrtps.create_function</name>
<value>ZRTPS_Transport_create_plugin</value>

</element>

The LBRTPS and ZRTPS transport plugins cannot both use UDPv4 as a subtransport because of port
conflict issues.

The following example configures the LBRTPS transport plugin with ZRTPS as a subtransport.
<!-- LBRTPS -->
<element>

<name>dds.transport.load_plugins</name>
<value>dds.transport.lbrtps</value>

4.2.1 Configuring the LBRTPS Transport Plugin’s ‘Subtransport’ Property

</element>
<element>

<name>dds.transport.lbrtps.library</name>
<value>rtilbrtps</value>

</element>
<element>

<name>dds.transport.lbrtps.create_function</name>
<value>LBRTPS_Transport_create_plugin</value>

</element>
<element>

<name>dds.transport.lbrtps.aliases</name>
<value>lbrtps.zrtps</value>

</element>
<element>

<name>dds.transport.lbrtps.subtransport</name>
<value>zrtps</value>

</element>
<element>

<name>dds.transport.lbrtps.verbosity</name>
<value>2</value>

</element>
<!-- ZRTPS-->
<element>

<name>dds.transport.lbrtps.zrtps.library</name>
<value>rtizrtps</value>

</element>
<element>

<name>dds.transport.lbrtps.zrtps.create_function</name>
<value>ZRTPS_Transport_create_plugin</value>

</element>
<element>

<name>dds.transport.lbrtps.zrtps.subtransport</name>
<value>UDPv4</value>

</element>
<element>

<name>dds.transport.lbrtps.zrtps.UDPv4.multicast_enabled</name>
<value>1</value>

</element>
<element>

<name>dds.transport.lbrtps.zrtps.compression_library</name>
<value>AUTOMATIC_COMPRESSION</value>

</element>
<element>

<name>dds.transport.lbrtps.zrtps.compression_level</name>
<value>9</value>

</element>
<element>

<name>dds.transport.lbrtps.zrtps.verbosity</name>
<value>0</value>

</element>

24

4.2.2 Configuring the LBRTPS Transport Plugin’s ‘reduce_guidPrefix’ Property

25

4.2.1.3 Using a User-Specified Subtransport

To load a user-provided transport plugin, provide a value for dds.transport.lbrtps.subtransport, and
then use that same value like a prefix to define these two additional properties:

l dds.transport.lbrtps.prefix.library
l dds.transport.lbrtps.prefix.create_function

For example, to specify the value, testplugin:
<element>

<name>dds.transport.lbrtps.subtransport</name>
<value>testplugin</value>

</element>
<element>

<name>dds.transport.lbrtps.testplugin.library</name>
<value>testplugin</value>

</element>
<element>

<name>dds.transport.lbrtps.testplugin.create_function</name>
<value>TestPlugin_Transport_create_function</value>

</element>

4.2.2 Configuring the LBRTPS Transport Plugin’s ‘reduce_guidPrefix’ Property

The dds.transport.lbrtps.rtps_header.reduce_guidPrefix property is comprised of 12 bytes that rep-
resent three different 4-byte fields:

l hostId: A machine/OS-specific host identifier, unique in the domain. If you know the number of
machines in the network ahead of time, the size of the hostId field can be reduced. For example,
if only two machines are connected in the network, then this field can be reduced to two bits (the
identifiers would be ‘1’ and ‘2’, in binary ‘01’ and ‘11’). The range of host IDs that can be used
in the WireProtocolQosPolicy is therefore limited by this value.

l appId: A participant-specific identifier, unique within the scope of the hostId. If you know the
number of participants in the domain ahead of time, the size of the appId field can be reduced.
For example, if only four participants are in the domain, then this field can be reduced to three
bits. The range of appId’s that can be used in the WireProtocolQosPolicy is therefore limited by
this value.

l instanceId: An instance-specific identifier of the DomainParticipant that, together with the
appId, is unique within the scope of the hostId. This identifier is increased each time the par-
ticipant is recreated in the application. Since most applications create only one DomainPar-
ticipant, this field can usually be eliminated—in which case a value of 1 is assumed.

The reduce_guidPrefix value is expressed as three comma-separated integers between 0 and 32. The
values specify the number of bits to use for each identifier (hostId, appId and instanceId).

4.2.2 Configuring the LBRTPS Transport Plugin’s ‘reduce_guidPrefix’ Property

In the example below, the hostId will use 5 bits (because in our example network there will be 32
machines), the appId field will use 6 bits (because there will be 64 participants in the domain), and the
instanceId field will be eliminated. So 11 bits will be used. Then the LBRTPS transport will reduce the
guidPrefix field 11 bits into 2 bytes.
<element>

<name>
dds.transport.lbrtps.rtps_header.reduce_guidPrefix
</name>
<value>5,6,0</value>

</element>

Important Notes:

1. An integral number of bytes is sent by the plugin for the GUID prefix. So the plugin will round
up to the next byte when the total number of bits for the IDs add up to less than an integral num-
ber of bytes. For example, a reduce_guidPrefix value of 3,2,0 requires 5 bits, so 1 byte will be
sent; a value of 4,4,2 requires 10 bits so 2 bytes will be sent; etc.

2. Setting any of the reduce_guidPrefix fields to 0 will behave as expected on the sending side (no
bits are used to send that ID) but on the receiving side, the plugin will use/assume an ID value of
1 for any IDs that were not sent. Thus, when setting 0 bits for an ID field in the reduce_guidPre-
fix, you must use the WireProtocolQosPolicy to set the corresponding ID to a value of 1 in the
local participant.

3. When using this property to reduce the number of bits used to encode an ID, the actual ID (host,
app, instance) should be a value that can be represented by the reduced bits. If a full ID is used,
aliasing of two full ID values to the same reduced ID value may occur since a bit mask is used to
convert a full ID to the reduced ID. This could lead to two different participants having the same
reduced GUID prefix. For example, using '2,0,0' for the reduce_guidPrefix property (2 bits to
encode the host_id and no bits for the app ID or instance ID) and setting the rtps_host_id in the
WireProtocolQosPolicy to 3 (0011 in binary) for one participant and 7 (0111 binary) for another
participant will cause the reduced rtps_host_id’s of both participants to be the same value of 3
(0011 binary). In this situation, discovery will not complete.

4. A reduce_guidPrefix value of ‘0,0,0’ is not valid. As noted in point 2 above, a reduce_guidPre-
fix of '0,0,0' will be interpreted as a GUID prefix of host ID = 1, app ID = 1 and instance ID = 1.
Unfortunately, this would lead to all participants having the same GUID prefix, since a GUID pre-
fix of host ID = 0, app ID = 0 and instance ID = 0 is not allowed. As a side effect, the GUID pre-
fix cannot be reduced to 0 bytes (1-byte minimum used to send the GUID prefix).

5. When setting the WireProtocolQosPolicy of a participant, a value of 0 for an ID is equivalent to
setting the value to DDS_RTPS_AUTO_ID. So when using 0 for an ID, DDS will automatically
set the value of the ID to some value other than 0.

26

Chapter 5 Compression Real-Time
Publish Subscribe Transport
Plugin

Real-Time Publish Subscribe (RTPS) is the communication protocol used by the Data Dis-
tribution Service (DDS) interoperability protocol. Connext uses RTPS packages to send data
over the network.

The Compression Real-Time Publish Subscribe (ZRTPS) transport plugin reduces the size of
the RTPS packages sent over the network by Connext.

You can configure the ZRTPS transport plugin to use one of the following algorithms to com-
press all RTPS packages:

l Zlib: This compression library is an abstraction of the DEFLATE compression algorithm
used in the gzip file compression program. This is free software, distributed under the
ZLIB license.

l Windows users: zlib1.dll is included in the <NDDSHOME>\lib\<architecture>
directory (where NDDSHOME is described in Chapter 2 Paths Mentioned in Docu-
mentation on page 4 and <architecture> is one of the supported architecture strings
listed in the RTI Connext Core Libraries Release Notes).

l Linux users: libzlib1.so is likely already installed on your system. If you need to
get a Zlib library, please see http://zlib.net for information on how to obtain this lib-
rary for your platform.

l Bzip2: This compression library contains the bzip2 compression algorithm. This
algorithm is a lossless data compression algorithm. bzip2 compresses most files more
effectively than the older LZW and Deflate compression algorithms, but is considerably
slower (~12 times vs. Deflate on typical data). This is free software, distributed under the
BSD license.

27

http://zlib.net/

5.1 Transport-Related Limitations

28

l External compression library: You can add your own compression library and configure the
ZRTPS transport plugin to use it.

The transport also supports an automatic mode, which will select from the available algorithms the one
that results in the smallest compressed package. While this automatic mode assures the best size reduc-
tion, it is slower and uses more memory.

The ZRTPS transport plugin can apply different compression algorithms, depending on each RTPS
package’s size (small, medium, and large—these sizes are also user-configurable).

The ZRTPS transport works over another transport. It cannot send data over a network by itself. It can
work over the Connext UDPv4 transport, or a custom transport created using the Connext Transports
API. You can configure Connext to use the ZRTPS transport via the QoS profiles XML; see 5.3 Con-
figuring the ZRTPS Transport on the next page.

You must link with the dynamic version of the Connext core libraries. See the RTI Connext
Core Libraries Platform Notes for details.

5.1 Transport-Related Limitations

The following are known transport-interaction limitations when using the ZRTPS transport plugin:

l Using LBRTPS and ZRTPS: See 4.2.1.2 Using ZRTPS as a Subtransport on page 23.
l Neither Shared Memory (SHMEM) nor UDPv6 may be used as subtransports.
l The UDPv4 transport may not be used simultaneously as a transport and a ZRTPS subtransport.

5.2 Differences Between ZRTPS and Built-in Compression

Connext has a built-in data compression feature that you can enable for DataWriters and DataReaders
(for more information, see Data Compression in the RTI Connext Core Libraries User's Manual).
ZRTPS compresses RTPS packets, whereas Connext built-in compression compresses only the user
data payload. They can be used at the same time. The compression methods differ in the following
ways:

l ZRTPS is an external plugin and needs to be loaded. Built-in compression is part of the Core
Libraries.

l ZRTPS is not announced during discovery. With built-in compression, DataWriters and
DataReaders announce their compression QoS settings to other endpoints, to ensure that the
algorithms they use are compatible.

l ZRTPS compresses all RTPS Data packages, even if they correspond to repaired samples (i.e.,
samples that are lost and need to be resent). Built-in compression keeps the samples compressed
in the DataWriter queue, so repaired samples are not compressed again.

../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

5.3 Configuring the ZRTPS Transport

l ZRTPS only supports the UDPv4 transport or a user-defined transport. Built-in compression can
be used with any transport.

l ZRTPS supports ZLIB, BZIP2 and user-defined compression plugins. Built-in compression sup-
ports LZ4, ZLIB, and BZIP2.

5.3 Configuring the ZRTPS Transport

This section describes how to configure the properties for the ZRTPS Transport plugin in the XML
QoS Profile file used by Connext (such as USER_QOS_PROFILES.XML), or in the Prop-
ertyQosPolicy for your application’s DomainParticipant. (See the "PROPERTY QosPolicy (DDS
Extension)" in the RTI Connext Core Libraries User's Manual.)

Before we describe the name/value pairs that can be used in the Property QoS policy to configure the
ZRTPS transport, let’s review an example. The first step is to disable the built-in transports by con-
figuring the TransportBuiltin QoS policy with the maskMASK_NONE. Then the name/value pairs in
the Property QoS policy are set up to load and configure the ZRTPS transport plugin.
<qos_library name=”Property_Library”>

<qos_profile name=”Property_Profile”>
<domain_participant_qos>

...
<transport_builtin>

<mask>MASK_NONE</mask>
</transport_builtin>
<property>

<value>
<element>

<name>dds.transport.load_plugins</name>
<value>dds.transport.zrtps</value>

</element>
<element>

<name>dds.transport.zrtps.library</name>
<value>rtizrtps</value>

</element>
<element>

<name>dds.transport.zrtps.create_function</name>
<value>ZRTPS_Transport_create_plugin</value>
</element>

<element>
<name>dds.transport.zrtps.subtransport</name>
<value>UDPv4</value>

</element>
<element>
<name>dds.transport.zrtps.aliases</name>

<value>zrtps.udpv4</value>
</element>

<element>
<name>dds.transport.zrtps.UDPv4.multicast_enabled</name>

<value>1</value>
</element>

29

../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

5.3 Configuring the ZRTPS Transport

30

<element>
<name>dds.transport.zrtps.compression_library</name>
<value>AUTOMATIC_COMPRESSION</value>

</element>
<element>

<name>dds.transport.zrtps.compression_level</name>
<value>9</value>

</element>
...
</value>

</property>
...

</domain_participant_qos>
</qos_profile>

</qos_library>

When using the above QoS profile, Connext will load the ZRTPS transport plugin from the library,
rtizrtps.dll on Windows systems or rtizrtps.so on Linux systems, and call the function ZRTPS_Trans-
port_create_plugin() to create the ZRTPS transport.

The ZRTPS transport is designed to work over the Connext UDPv4 transport. The automatic mode
described previously is set in the ZRTPS transport and the compression level for all compression
algorithms is set to 9. The ZRTPS transport will be registered in Connext with the participant that uses
this QoS profile.

Connext does not assign initial peers to the ZRTPS transport plugin. You can set the initial
peers with NDDS_DISCOVERY_PEERS, as described in the chapter on Discovery in the
RTI Connext Core Libraries User's Manual. The ZRTPS transport plugin example uses the
NDDS_DISCOVERY_PEERS file to set the multicast address, zrtps.udpv4://239.255.0.1.

Property Name Property Value and Description

dds.transport.load_plugins

Required.

Comma-separated strings indicating the prefix names of all plugins to be loaded by Connext.

Set the value to dds.transport.zrtps.

Example:
<element>

<name>dds.transport.load_plugins</name>
<value>dds.transport.zrtps</value>

</element>

dds.transport.zrtps.library

Required.

The name of the dynamic library that contains the ZRTPS transport plugin implementation. This library must be in the
path during run time for use by Connext.

The value must be rtizrtps.

Example:
<element>

<name>dds.transport.zrtps.library</name>
<value>rtizrtps</value>

</element>

Table 5.1 Configuration Properties for ZRTPS Plugin

5.3 Configuring the ZRTPS Transport

Property Name Property Value and Description

dds.transport.zrtps.create_function

Required.

The name of the function that will be called by Connext to create an instance of the ZRPTS transport. The function must
have the prototype NDDS_Transport_create_plugin.

Must be set to ZRTPS_Transport_create_plugin.

Example:
<element>

<name>dds.transport.zrtps.create_plugin</name>
<value>ZRTPS_Transport_create_plugin</value>

</element>

dds.transport.zrtps.subtransport

Required.

Name of the plugin to be loaded by the ZRTPS transport. The ZRTPS transport will work over this loaded plugin. The
value can be UDPv4 or a user-specified string; see 5.3.1 Configuring the ZRTPS Transport Plugin’s ‘Subtransport’ Prop-
erty on page 34.

Example:
<element>

<name>dds.transport.zrtps.subtransport</name>
<value>UDPv4</value>

</element>

dds.transport.zrtps.aliases

Required.

Aliases used to register the ZRTPS transport plugin with the DomainParticipant. The transport must have been created
by the dds.transport.zrtps.create_function. Aliases should be specified as a comma-separated string, with each comma
delimiting an alias.

Example:
<element>

<name>dds.transport.zrtps.aliases</name>
<value>zrtps.udpv4</value>

</element>

The following properties are optional.

dds.transport.zrtps.compression_
level

Defines the compression level that the compression algorithm will use for all RTPS packages. In automatic mode (see
dds.transport.zrtps.compression_library), all compression algorithms will use this level.

The value must be an integer between 1 and 9 (inclusive). A lower value will result in less time spent doing the com-
pression; a higher value may result in a higher compression percentage (smaller compressed output).

Example:
<element>

<name>dds.transport.zrtps.compression_level</name>
<value>9</value>

</element>

Table 5.1 Configuration Properties for ZRTPS Plugin

31

5.3 Configuring the ZRTPS Transport

32

Property Name Property Value and Description

dds.transport.zrtps.
compression_level.small_packets

dds.transport.zrtps.
compression_level.medium_pack-
ets

dds.transport.zrtps.
compression_level.large_packets

Defines the compression level that the compression algorithm will use for small/medium/large RTPS packages. In auto-
matic mode (see dds.transport.zrtps.compression_library), all compression algorithms will use this level.

The value must be an integer between 1 and 9 (inclusive). A lower value means more speed compression; a higher
value means more size reduction.

Example:
<element>

<name>
dds.transport.zrtps.compression_level.small_packets

</name>
<value>9</value>

</element>
<element>

<name>
dds.transport.zrtps.compression_level.medium_packets

</name>
<value>9</value>

</element>
<element>

<name>
dds.transport.zrtps.compression_level.large_packets

</name>
<value>9</value>

</element>

dds.transport.zrtps.compression_
library

Specifies the compression algorithm to be used by the ZRTPS transport for all RTPS packages. These compression
algorithms are in external libraries. The ZRTPS transport only uses the libraries whose algorithms will be used. The
required libraries must be in the path during run time so the ZRTPS transport can find them.

There are several compression algorithms that can be used to compress RTPS packages:

l ZLIB_COMPRESSION: Use the Zlib algorithm from the library zlib1.

l BZIP2_COMPRESSION: Use the Bzip2 algorithm from the library bzip2.

l EXTERNAL_COMPRESSION: Use an external compression library defined in the property dds.trans-
port.zrtps.external_library. See 5.3.2 Configuring the External Compression Library on page 35.

l AUTOMATIC_COMPRESSION: Compress RTPS packages with all previous compression algorithms and
send the smallest package.

Example:
<element>

<name>
dds.transport.zrtps.compression_library

</name>
<value>AUTOMATIC_COMPRESSION</value>

</element>

Table 5.1 Configuration Properties for ZRTPS Plugin

5.3 Configuring the ZRTPS Transport

Property Name Property Value and Description

dds.transport.zrtps.
compression_library.small_packets

dds.transport.zrtps.
compression_library.medium_pack-
ets

dds.transport.zrtps.
compression_library.large_packets

Specifies the compression algorithm to be used for small/medium/large RTPS packages. These compression
algorithms are in external libraries. The ZRTPS transport only uses the libraries whose algorithms will be used.
Required libraries must be in the path during run time so the ZRTPS transport can find them.

See dds.transport.zrtps.compression_library.

Example:
<element>

<name>
dds.transport.zrtps.compression_library.small_packets

</name>
<value>ZLIB_COMPRESSION</value>

</element>
<element>

<name>
dds.transport.zrtps.compression_library.medium_packets

</name>
<value>ZLIB_COMPRESSION</value>

</element>
<element>

<name>
dds.transport.zrtps.compression_library.large_packets

</name>
<value>ZLIB_COMPRESSION</value>

</element>

dds.transport.zrtps.external_library

Sets the name of a user’s external library that is to be located and used by the ZRTPS transport plugin. See 5.3.2 Con-
figuring the External Compression Library on page 35.

Example:
<element>

<name>dds.transport.zrtps.external_library</name>
<value>external_library.dll</value>

</element>

dds.transport.zrtps.low_mark,

dds.transport.zrtps.high_mark

Specifies the size for small, medium, and large RTPS packages. RTPS packages whose size is <= low_mark are con-
sidered small packages. Package sizes > low_mark and <= high_mark are considered medium packages. Package
sizes > high_mark are considered large packages.

The value for each property is an integer representing a number of bytes.

Example:
<element>

<name>dds.transport.zrtps.low_mark</name>
<value>128</value>

</element>
<element>

<name>dds.transport.zrtps.high_mark</name>
<value>512</value>

</element>

Table 5.1 Configuration Properties for ZRTPS Plugin

33

5.3.1 Configuring the ZRTPS Transport Plugin’s ‘Subtransport’ Property

34

Property Name Property Value and Description

dds.transport.zrtps.verbosity

The verbosity for the plugin, for debugging purposes.

l -1: Silent

l 0: Exceptions only (default)

l 1: Warnings

l 2 and up: Debug

Example:
<element>

<name>dds.transport.zrtps.verbosity>/name>
<value>0</value>

</element>

Note: the ZRTPS logging verbosity is per application. The last DomainParticipant using ZRTPS and explicitly setting
this property will apply that setting to all the DomainParticipants using ZRTPS within the application. If not explicitly set,
the verbosity will be left unchanged. Therefore, if no DomainParticipant has configured the ZRTPS verbosity, it will be
left to the default value.

dds.transport.zrtps.property_val-
idation_action

Optional.

By default, property names given in the PropertyQoSPolicy are validated to avoid using incorrect or unknown names
(for example, due to a typo). This property configures the validation of the property names associated with the plugin:

l VALIDATION_ACTION_EXCEPTION: validate the properties. Upon failure, log errors and fail.

l VALIDATION_ACTION_SKIP: skip validation.

l VALIDATION_ACTION_WARNING: validate the properties. Upon failure, log warnings and do not fail.

If this property is not set, the plugin property validation behavior will be the same as that of the DomainParticipant, which
by default is VALIDATION_ACTION_EXCEPTION. See the "Property Validation" section in the RTI Connext Core
Libraries User's Manual.

Table 5.1 Configuration Properties for ZRTPS Plugin

5.3.1 Configuring the ZRTPS Transport Plugin’s ‘Subtransport’ Property

The required property, dds.transport.zrtps.subtransport, specifies the plugin to be loaded by the
ZRTPS transport. Supported subtransports are UDPv4 or a user-specified transport, as described in the
following sections. Connext builtin transports other than UDPv4 are not currently supported as sub-
transports.

The LBRTPS Transport Plugin cannot be used as a subtransport to ZRTPS. If you want to use
both plugins, see 4.2.1.2 Using ZRTPS as a Subtransport on page 23.

5.3.1.1 Using UDPv4 as a Subtransport

To load the Connext UDPv4 built-in transport, use the value UDPv4. If you want the UDPv4 transport
to be created with multicast support, also set dds.transport.zrtps.UDPv4.multicast_enabled to 1.

For example:
<element>

<name>dds.transport.zrtps.subtransport</name>

../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

5.3.2 Configuring the External Compression Library

<value>UDPv4</value>
</element>
<element>

<name>dds.transport.zrtps.UDPv4.multicast_enabled</name>
<value>1</value>

</element>

5.3.1.2 Using a User-Specified Subtransport

To load a user-provided transport plugin, provide a value for dds.transport.zrtps.subtransport, then
use that same value as a prefix to define these two additional properties:

l dds.transport.zrtps.<prefix>.library
l dds.transport.zrtps.<prefix>.create_function

For example, to specify the value, testplugin:
<element>

<name>dds.transport.zrtps.subtransport</name>
<value>testplugin</value>

</element>
<element>

<name>dds.transport.zrtps.testplugin.library</name>
<value>testplugin</value>

</element>
<element>

<name>dds.transport.zrtps.testplugin.create_function</name>
<value>TestPlugin_Transport_create_plugin</value>

</element>

5.3.2 Configuring the External Compression Library

The ZRTPS transport plugin loads the external compression library defined in the QoS profile (see
dds.transport.zrtps.compression_library). The transport will try to detect the following three functions,
which must be implemented in the external library:

l 5.3.2.1 ZRTPS_Transport_external_calculate_length below
l 5.3.2.2 ZRTPS_Transport_external_compress on the next page
l 5.3.2.3 ZRTPS_Transport_external_uncompress on the next page

5.3.2.1 ZRTPS_Transport_external_calculate_length

This function is called before compressing the data.
int ZRTPS_Transport_external_calculate_length(int data_length);

Parameters:

35

5.3.2 Configuring the External Compression Library

36

l data_length is the size of the data that will be compressed.

Returns:

l Maximum size of the buffer that the external library needs when the compression function is
called.

5.3.2.2 ZRTPS_Transport_external_compress

This function is called when data has to be compressed.
int ZRTPS_Transport_external_compress(char *dst,

int *dst_length,
const char *src,
int src_length,
int compression_level);

Parameters:

l dst and src are pointers to the destination and source buffers, respectively.
l dst_length is the length of the destination buffer. This length is the one returned by ZRTPS_
Transport_external_calculate_length. After the compression, dst_length (which is an input/out-
put variable) must store the actual length of the compressed data.

l compression_level is a value between 1 and 9 (inclusive). Some compression libraries use this
and others do not.

Returns:

l 0 if successful, -1 if unsuccessful.

5.3.2.3 ZRTPS_Transport_external_uncompress

This function is called to uncompress data.
int ZRTPS_Transport_external_uncompress(char *dst,

int *dst_length,
const char *src,

int src_length);

Parameters:

l dst and src are pointers to the destination and source buffers, respectively.
l dst_length is the length of the output buffer. After the uncompression, this variable stores the
length of the uncompressed data.

l src_length is the size of the compressed data in the source buffer.

5.3.2 Configuring the External Compression Library

Returns:

l 0 if successful, -1 if unsuccessful. If successful, dst_length must be set to the actual size of the
uncompressed data.

37

	Chapter 1 Introduction
	1.1 Provided Examples
	1.2 What is a Transport Plugin?
	1.3 What is Discovery?
	1.4 Configuring Transports with the Property QoS Policy in XML

	Chapter 2 Paths Mentioned in Documentation
	Chapter 3 Limited Bandwidth Participant Discovery Plugin
	3.1 Creating the LBPD Plugin Configuration File
	3.2 Configuring the LBPD Plugin in Connext
	3.3 Optimizing the Plugin
	3.3.1 Initial Announcements
	3.3.2 Liveliness

	Chapter 4 Limited Bandwidth RTPS Transport Plugin
	4.1 Understanding the RTPS Message Header
	4.1.1 Submessage Structure

	4.2 Configuring the LBRTPS Transport
	4.2.1 Configuring the LBRTPS Transport Plugin’s ‘Subtransport’ Property
	4.2.2 Configuring the LBRTPS Transport Plugin’s ‘reduce_guidPrefix’ Property

	Chapter 5 Compression Real-Time Publish Subscribe Transport Plugin
	5.1 Transport-Related Limitations
	5.2 Differences Between ZRTPS and Built-in Compression
	5.3 Configuring the ZRTPS Transport
	5.3.1 Configuring the ZRTPS Transport Plugin’s ‘Subtransport’ Property
	5.3.2 Configuring the External Compression Library

