
RTI Connext
Core Libraries

Extensible Types Guide

Version 7.2.0

© 2012-2023 Real-Time Innovations, Inc.
All rights reserved.

October 2023.

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase,
“Your Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time
Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of
Real-Time Innovations, Inc. The software described in this document is furnished solely under and sub-
ject to RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance
with your License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate
(MSC), except to the extent otherwise accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party
license terms and conditions, including open source license terms and conditions. Copies of applicable
third-party licenses and notices are located at community.rti.com/documentation. IT IS YOUR
RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES
WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regard-
ing maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is
deprecated in a release, RTI hereby provides customer notice that RTI reserves the right after one year
from the date of such release and, with or without further notice, to immediately terminate maintenance
(including without limitation, providing updates and upgrades) for the item, and no longer support the
item, in a future release.

https://www.rti.com/terms
https://community.rti.com/documentation

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Extensible Types 1
Chapter 2 Type Safety and System Evolution

2.1 Defining Extensible Types 5
2.1.1 @id Annotation 6
2.1.2 @hashid Annotation 7
2.1.3 @autoid Annotation 8

2.2 Verifying Type Consistency: Type Assignability 8
2.3 Type-Consistency Enforcement 11

2.3.1 Rules For Type-Consistency Enforcement 14
2.3.2 Prevent Type Widening 14
2.3.3 Type Assignability Properties 16

2.4 Verifying Sample Consistency: Sample Assignability 18
2.5 Notification of Inconsistencies: INCONSISTENT_TOPIC Status 20
2.6 Built-in Topics 20

Chapter 3 Type System Enhancements

3.1 Structure Inheritance 21
3.2 Optional Members 22

3.2.1 Defining Optional Members 22
3.2.2 Using Optional Members in an Application 23

3.3 Default Value 31
3.3.1 @default annotation 32
3.3.2 @default_literal annotation 35

3.4 Ranges 35
3.4.1 Restrictions 36

Chapter 4 Data Representation

4.1 Configuring the CDR 37

iv

v

4.1.1 @data_representation annotation 37
4.2 Extended CDR (encoding version 1) 38
4.3 Extended CDR (encoding version 2) 39
4.4 Choosing the Right Data Representation 40

Chapter 5 Type Representation

5.1 TypeObject and TypeCode Type Representation 41
5.1.1 TypeObject Resource Limits 42

5.2 XML and XSD Type Representations 43
Chapter 6 TypeCode API Changes 44
Chapter 7 DynamicData API 45
Chapter 8 ContentFilteredTopics 46
Chapter 9 RTI Spy

9.1 Type Version Discrimination 48
Chapter 10 Compatibility with Previous Releases 49

Chapter 1 Extensible Types
This release of Connext includes partial support for the OMG 'Extensible and Dynamic Topic
Types for DDS' specification, version 1.3 from the Object Management Group. This support
allows systems to define data types in a more flexible way, and to evolve data types over time
without giving up portability, interoperability, or the expressiveness of the DDS type system.

Specifically, these are supported:

l Type definitions are now checked as part of the Connext discovery process to ensure that
DataReaders will not deserialize the data sent to them incorrectly.

l Type definitions need not match exactly between a DataWriter and its matching
DataReaders. For example, a DataWriter may publish a subclass while a DataReader sub-
scribes to a superclass, or a new version of a component may add a field to a preexisting
data type.

l Data-type designers can annotate type definitions to indicate the degree of flexibility
allowed when the middleware enforces type consistency.

l Type members can be declared as optional, allowing applications to set or omit them in
every published sample.

l QoS policies DataRepresentationQosPolicy and TypeConsistencyEnforcementQosPolicy.
l The following standard builtin-annotations that are described in the OMG 'Extensible and
Dynamic Topic Types for DDS' specification, version 1.3 are supported: @value, @id,
@hashid, @autoid, @external, @extensibility, @appendable, @mutable, @final, @key,
@optional, @nested, @default_nested, @topic, @default_literal, @data_representation.
(In Connext, you can use either @data_representation or @allowed_data_representation.)
For a complete list of supported built-in annotations, including RTI-specific annotations,
see Using Builtin Annotations chapter in the RTI Connext Core Libraries User's Manual.

l Standard syntax to apply annotations.

1

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

Chapter 1 Extensible Types

2

l The following fixed-width integer types introduced in Interface Definition Language (IDL) 4.2,
shown here with their old type names:

IDL 4.2 Old Type Name

int16 short

int32 long

int64 long long

uint16 unsigned short

uint32 unsigned long

uint64 unsigned long long

Note: You can continue to use the old type names; however, it is preferable to use the new type
names because they make the value range explicit.

l Custom annotation definition in IDL. Custom annotations can be defined in IDL, although they
are ignored by the middleware (i.e., they will not be part of the typeobject).

l TypeObject v1.
l Extended Common Data Representation (CDR) encoding version 1 and 2.
l The above features are supported in the RTI core middleware in all programming languages
except Ada.

The following Extensible Types features are not supported:

l These types: BitMask, BitSet, Map.
l Fixed-width integer types int8 and uint8 are not fully supported, both are always mapped to oct-
ets on the wire. However, some language bindings offer support for these types; following is the
support by language:

l In Java, both uint8 and int8 map to a byte, which is signed.
l In .NET, uint8 maps to byte, and int8 maps to a sbyte, which is signed.
l In Python, uint8 maps to idl.uint8, and int8 maps to idl.int8, which are subtypes of the
built-in int type.

l In Modern C++, uint8 maps to uint8_t, and int8 maps to int8_t.
l In C and Traditional C++, uint8 maps to DDS_UInt8, and int8 maps to DDS_Int8.

Chapter 1 Extensible Types

l Union inheritance
l Custom annotation definition in IDL. Custom annotations can be defined in IDL, although they
are ignored by the middleware (i.e., they will not be part of the typeobject).

l TypeObject v2.
l Builtin TypeLookup service.
l The following builtin-annotations can be defined in IDL, although they will be ignored by the
middleware (i.e., they will not be part of the typeobject): verbatim, must_understand, bit_bound,
non_serialized, oneway, position, try_construct.

l XML data representation (XML type representation is supported).
l Dynamic language binding compliant with the Extensible Types specification: DynamicType and
DynamicData (see DynamicData API (Chapter 7 on page 45)).

l The type member in PublicationBuiltinTopicData and SubscriptionBuiltinTopicData.
l Association of a topic to multiple types within a single DomainParticipant

To see a demonstration of Extensible Types, run RTI Shapes Demo, which can publish and subscribe to
two different data types: the "Shape" type or the "Shape Extended" type. If you don't have Shapes
Demo installed already, you can download it from https://www.rti.com/free-trial/shapes-demo. If you
are not already familiar with how to start Shapes Demo, please see the Shapes Demo User's Manual.

Besides RTI Shapes Demo, several other RTI components include partial support for Extensible Types.

3

https://www.rti.com/free-trial/shapes-demo

Chapter 2 Type Safety and System
Evolution

In some cases, it is desirable for types to evolve without breaking interoperability with deployed
components already using those types. For example:

l A new set of applications to be integrated into an existing system may want to introduce
additional fields into a structure, or create extended types using inheritance. These new
fields can be safely ignored by already deployed applications, but applications that do
understand the new fields can benefit from their presence.

l A new set of applications to be integrated into an existing system may want to increase
the maximum size of some sequence or string in a Type. Existing applications can receive
data samples from these new applications as long as the actual number of elements (or
length of the strings) in the received data sample does not exceed what the receiving
applications expect. If a received data sample exceeds the limits expected by the receiving
application, then the sample can be safely ignored (filtered out) by the receiver.

To support use cases such as the above, the type system introduces the concept of appendable
(extensible) and mutable types. A type may be final, appendable (extensible), or mutable:

l Final: The type’s range of possible data values is strictly defined. In particular, it is not
possible to add elements to members of a collection or aggregated types while main-
taining type assignability.

l Appendable (Extensible): Two types, where one contains all of the elements/members of
the other plus additional elements/members appended to the end, may remain assignable.

l Mutable: Two types may differ from one another with the addition, removal, and/or trans-
position of elements/members while remaining assignable.

For example, suppose you have:

4

2.1 Defining Extensible Types

5

struct A {
@id(10) int32 a;
@id(20) int32 b;
@id(30) int32 c;

}

and
struct B {

@id(20) int32 b;
@id(10) int32 a;
@id(40) int32 x;

}

In this case, if a DataWriter writes [1, 2, 3], the DataReader will receive [2, 1, 0] (because 0 is the
default value of x, which doesn't exist in A's sample).

The type being written and the type(s) being read may differ—maybe because the writing and reading
applications have different needs, or maybe because the system and its data design have evolved across
versions. Whatever the reason, the databus must detect the differences and mediate them appropriately.
This process has several steps:

1. Define what degree of difference is acceptable for a given type.

2. Express your intention for compatibility at run time.

3. Verify that the data can be safely converted.

At run time, the databus will compare the types it finds with the contracts you specified.

2.1 Defining Extensible Types

A type’s kind of extensibility is applied with the Extensibility annotations seen in Table 2.1 Extens-
ibility Annotations. If you do not specify any particular extensibility, the default is appendable.

2.1.1 @id Annotation

IDL

@final
struct MyFinalType {

int32 x;
};

@appendable
struct MyExtensibleType {

int32 x;
};

@mutable
struct MyMutableType {

int32 x;
};

XML

<struct name="MyFinalType" extensibility="final">
<member name="x" type="int32"/>

</struct>

<struct name="MyExtensibleType" extensibility="appendable">
<member name="x" type="int32"/>

</struct>

<struct name="MyMutableType" extensibility="mutable">
<member name="x" type="int32"/>

</struct>

XSD

<xsd:complexType name="MyFinalType">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
<!-- @struct true -->
<!-- @extensibility final -->

<xsd:complexType name="MyExtensibleType">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
<!-- @struct true -->
<!-- @extensibility appendable -->

<xsd:complexType name="MyMutableType">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
<!-- @struct true -->
<!-- @extensibility mutable -->

Table 2.1 Extensibility Annotations

Members IDs can be set using the optional @id, @hashid, and @autoid annotations.

2.1.1 @id Annotation

The @id annotation allows assigning a 32-bit integer identifier to an element, with the underlying
assumption that an identifier should be unique inside its scope of application.

For example:

6

2.1.2 @hashid Annotation

7

IDL

struct MyType {
@id(10) int32 x;
@id(20) int32 y;

};

XML

<struct name= "MyType">
<member name="x" id="10" type="int32"/>
<member name="y" id="20" type="int32"/>

</struct>

XSD

<xsd:complexType name= "MyType">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @id 10 -->
<xsd:element name="y" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @id 20 -->

</xsd:sequence>
</xsd:complexType>

When not specified, the ID of a member is one plus the ID of the previous one. The first member has
ID 0 by default.
struct MyType {

int32 a;
int32 b;
@id(100) int32 c;
int32 d;

};

The IDs of 'a', 'b', 'c' and 'd' are 0, 1, 100 and 101.

Member IDs must have a value in the interval [0, 268435455]. The wire representation of mutable or
optional members with IDs in the range [0,16128] is more efficient than the wire representation of
member IDs in the range [16129, 268435455]. Consequently, the use of IDs in the range [0,16128] is
recommended (see Data Representation (Chapter 4 on page 37) for additional details).

2.1.2 @hashid Annotation

The @hashid annotation provides the value to hash to generate the member ID. If the annotation is
used without any parameter or with the empty string as a value then the Member ID will be the hash of
the member name.

2.1.3 @autoid Annotation

IDL

struct HashIdStruct {
@hashid("hash_text") int32 data;

int32 data2;
};

XML

<struct name= "HashIdStruct">
<member name="data" hashid="hash_text" type="int32"/>
<member name="data2" type="int32"/>

</struct>

XSD

<xsd:complexType name= "HashIdStruct">
<xsd:sequence>

<xsd:element name="data" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @hashid hash_text-->
<xsd:element name="data2" minOccurs="1" maxOccurs="1" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

2.1.3 @autoid Annotation

The @autoid annotation can be applied to modules, structs, or valuetypes and allows you indicate how
the identifiers are going to be set for its members.

The values allowed are:

l @autoid(sequential): The next identifier should be computed by incrementing the previous one
l @autoid(hash) or @autoid: Indicates that the identifiers should be computed with a hashing
algorithm based on the name of the member.

If no annotation is specified, the values will be sequential. The @autoid notation is not supported in
XSD when applied to modules.

IDL

@autoid
struct AutoIdStruct{

int32 data;
int32 data2;

};

XML

<struct name= "AutoIdStruct" autoid="hash">
<member name="data" type="int32"/>
<member name="data2" type="int32"/>

</struct>

XSD

<xsd:complexType name= "AutoIdStruct">
<xsd:sequence>

<xsd:element name="data" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @hashid -->
<xsd:element name="data2" minOccurs="1" maxOccurs="1" type="xsd:int"/>
<!-- @hashid -->

</xsd:sequence>
</xsd:complexType>
<!-- @struct true -->

<!-- @autoid hash-->

2.2 Verifying Type Consistency: Type Assignability

Connext determines if a DataWriter and a DataReader can communicate by comparing the structure of
their topic types.

8

2.2 Verifying Type Consistency: Type Assignability

9

In Connext releases before 5.0.0, the topic types were represented and propagated on the wire using
TypeCodes. The Extensible Types specification introduces TypeObjects as the wire representation for a
type.

To maintain backward compatibility, Connext can be configured to propagate both TypeCodes and
TypeObjects. However, type comparison is only supported with TypeObjects.

Depending on the value for extensibility annotation used when the type is defined, Connext will use a
different set of rules to determine if matching shall occur.

If the type extensibility is final, the types will be assignable if they don't add or remove any elements.
If they are declared as extensible, one type can have more fields at the end as long as they are not keys.

If the type extensibility is mutable, a type can add, remove or shuffle members in at any position, as
long as:

l The type does not add or remove key members
l Members that have the same name also have the same ID, and members that have the same ID
also have the same name. (It is possible to change this behavior, see 2.3 Type-Consistency
Enforcement on page 11.)

For example, in Table 2.2 Mutable Types Example 1 the middleware can assign MyMutableType1 to
or from MyMutableType2, but not to or from MyMutableType3.

@mutable struct MyMutableType1 {
int32 x;
int32 y;

}

@mutable struct MyMutableType2 {
@id(1) int32 y;
@id(2) int32 z;
@id(0) int32 x;

}

@mutable struct MyMutableType3 {
int32 y;
@key int32 z;
int32 x;

}

Note: If you do not explicitly declare member
IDs, they are assigned automatically starting
with 0.

MyMutableType1 and MyMutableType2 can
be assigned to each other.

MyMutableType3 has two issues:

The member IDs x and y do not match those of MyMut-
ableType1. For example, the member ID of x is 0 in MyMut-
ableType1 but 2 in MyMutableType3.

MyMutableType3 has an extra key member (z).

Table 2.2 Mutable Types Example 1

The type of a member in a mutable type can also change if the new type is assignable. For example, in
Table 2.3 Mutable Types Example 2, MyMutableType4 is assignable to or from MyMutableType5 but
not to or from MyMutableType6.

2.2 Verifying Type Consistency: Type Assignability

@mutable
struct NestedMutableType1 {

@id(10) int32 a;
}

struct NestedExtensibleType1 {
string text;

};

@mutable
struct MyMutableType4 {

NestedMutableType1 m1;
NestedExtensibleType1 m2;

}

@mutable
struct
NestedMutableType2 {

@id(20) int16 b;
@id(10) int32 a;

};

struct
NestedExtensibleType2 {

string text;
string title;

};

@mutable
struct MyMutableType5 {

NestedMutableType2 m1;
NestedExtensibleType2

m2;
}

@mutable
struct NestedMutableType3 {

@id(20) int16 b;
@id(10) int16 a;

};

struct NestedExtensibleType3 {
string title;
string text;

};

@mutable
struct MyMutableType6 {

NestedMutableType3 m1;
NestedExtensibleType3 m2;

}

Table 2.3 Mutable Types Example 2

MyMutableType6 and MyMutableType4 are not assignable because the types of m1 and m2 are not
assignable. NestedExtensibleType3 is just extensible but adds a new member at the beginning. Nes-
tedMutableType3 changes the type of ‘a’ but the new type (int16) is not assignable to the previous one,
int32, because the primitive types are different.

The member types in an Extensible or Final type can also change as long as the member types are both
mutable and assignable. If the new member types are extensible or final, they need to be structurally
identical.

If you use CDR encoding version 2 (XCDR2) (see 4.3 Extended CDR (encoding version 2) on
page 39), appendable types that are nested into another type can add members at the end of their defin-
ition. In the following example, ObservedPosition1 and ObservedPosition2 will not be assignable when
using XCDR, but they will be assignable if the encoded version is XCDR2.

Table 2.4 Type Assignability Example

@appendable
struct Coordinates1 {

float x;
float y;

};

@appendable
struct ObservedPosition1 {

Coordinates1 position;
int64 timestamp;

};

@appendable
struct Coordinates2 {

float x;
float y;
float z; // Extra field

};

@appendable
struct ObservedPosition2 {

Coordinates2 position;
int64 timestamp;

};

In the case of union types, it has to be possible, given any possible discriminator value in the
DataWriter's type (T2), to identify the appropriate member in the DataReader's type (T1) and to trans-
form the T2 member into the T1 member.

10

2.3 Type-Consistency Enforcement

11

A mutable type that declares a member as optional (see 3.2 Optional Members on page 22) is com-
patible with a different mutable type that declares the same member as non-optional (the default). This
rule does not apply to optional members in final and extensible types.

The following rules apply to other types:

l Primitive types are always final: primitive members cannot change their type.
l Sequences and strings are always mutable: their bounds can change as long as the maximum
length in the DataReader type are greater or equal to that of the DataWriter (it is possible to
change this behavior, see 2.3 Type-Consistency Enforcement below). A sequence element type
can change only if it’s mutable and the new type is assignable.

l Arrays are always final: their bounds cannot change and their element type can only change if it
is mutable and the new type assignable.

l Enumerations can be final (they cannot change), extensible (new versions can add constants at
the end), or mutable (new versions can add, rearrange or remove constants in any position).

For more information on the rules that determine the assignability of two types, refer to the OMG
'Extensible and Dynamic Topic Types for DDS' specification, version 1.3.

By default, the TypeObjects are compared to determine if they are assignable in order to match a
DataReader and a DataWriter of the same topic. You can control this behavior in the DataReader’s
TypeConsistencyEnforcementQosPolicy (see 2.3 Type-Consistency Enforcement below).

The DataReader's and DataWriter's TypeObjects need to be available in order to be compared; oth-
erwise their assignability will not be enforced. Depending on the complexity of your types (how many
fields, how many different nested types, etc.), you may need to change the default resource limits that
control the internal storage and propagation of the TypeObject (see 5.1.1 TypeObject Resource Limits
on page 42).

If the logging verbosity is set to NDDS_CONFIG_LOG_VERBOSITY_WARNING or higher, Connext
will print a message when a type is discovered that is not assignable, along with the reason why the
type is not assignable.

2.3 Type-Consistency Enforcement

The DataReader's TypeConsistencyEnforcementQosPolicy defines the rules that determine whether the
type used to publish a given topic is consistent with the type used to subscribe to it.

Note: If the type information is not available for a topic (and force_type_validation is false), these
rules do not apply.

The QosPolicy structure includes the members in the following table.

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

2.3 Type-Consistency Enforcement

Type Field
Name Description

DDS_TypeCon-
sistencyKind kind

Can be any of the following values:

l AUTO_TYPE_COERCION (default)

l ALLOW_TYPE_COERCION

l DISALLOW_TYPE_COERCION

See below for details.

DDS_Boolean
ignore_se-
quence_
bounds

Controls whether sequence bounds are taken into consideration for type assignability.

If false, a DataWriter’s type containing a sequence with a larger maximum length will not be assigned to a
DataReader’s type containing a sequence with a smaller maximum length. Since the types are not assignable, the
DataReader will not match when type information is available.

If true, a sequence in a DataReader's type can have a maximum length smaller than that of a sequence in a
DataWriter's type. The types will be assignable, and the DataReader will match; however, when the length of the se-
quence in a particular DataWriter's sample is larger than the DataReader's maximum length, that sample is dis-
carded. See "Verifying Sample Consistency: Sample Assignability" in the Core Libraries Extensible Types Guide.

Default: true

DDS_Boolean
ignore_
string_
bounds

Controls whether string bounds are taken into consideration for type assignability.

If false, then a DataWriter’s type containing a string with a larger maximum length will not be assigned to a
DataReader’s type containing a string with a smaller maximum length. Since the types are not assignable, the
DataReader will not match when type information is available.

If true, then a string in a DataReader’s type can have a maximum length smaller than that of a string in a
DataWriter’s type. They are assignable, and the DataReader will match; however, when the length of the string in a
particular DataWriter’s sample is larger than the DataReader’s maximum length, that sample is discarded. See "Veri-
fying Sample Consistency: Sample Assignability" in the Core Libraries Extensible Types Guide.

Default: true

DDS_Boolean ignore_mem-
ber_names

Controls whether member names are taken into consideration for type assignability.

If false, types containing members with the same ID and different names are not assignable to each other. Since the
types are not assignable, the DataReader will not match when type information is available.

If true, members of a type can change their name while keeping their member ID. For example, MyType and
MyTypeSpanish are only assignable if ignore_member_names is true:

struct MyType {
@id(10) int32 x;
@id(20) int32 angle;

};
struct MyTypeSpanish {

@id(10) int32 x;
@id(20) int32 angulo;

};

Since the types are assignable, the DataReader will match.

Default: false

DDS_Boolean
prevent_
type_widen-
ing

Controls whether type widening is allowed. A type T2 widens a type T1 when T2 contains required members that are
not present in T1.

If a DataReader of T2 sets prevent_type_widening to true, then the DataReader will not be matched with a
DataWriter of T1 with fewer members because T1 is not assignable to T2.

If a DataReader of T2 sets prevent_type_widening to false, then the DataReader will match with the DataWriter of
T1. The DataReader will assume a value for members in T2 that are not in T1. See "Prevent Type Widening" below.

Default: false

Table 2.5 DDS_TypeConsistencyEnforcementQosPolicy

12

2.3 Type-Consistency Enforcement

13

Type Field
Name Description

DDS_Boolean force_type_
validation

Controls whether type information must be available in order to complete matching between a DataWriter and this
DataReader.

If false, matching may occur as long as the type names match. Note that if the types have the same name, but the
types are not assignable, DataReaders may fail to deserialize incoming data samples. If force_type_validation is
true and no type information is available, then the DataReader will not match.

Default: false

DDS_Boolean
ignore_
enum_lit-
eral_names

Controls whether enumeration constant names are taken into consideration for type assignability. If the option is set
to true, then enumeration constants may change their names, but not their values, and still maintain type as-
signability. If the option is set to false, then in order for enumerations to be assignable, any constant that has the
same value in both enumerations must also have the same name. For example, enum Color {RED = 0} and enum
Color {ROJO = 0} are assignable if and only if ignore_enum_literal_names is true.

Default: false

Table 2.5 DDS_TypeConsistencyEnforcementQosPolicy

This QoSPolicy defines a type consistency kind, which allows applications to choose to either allow or
disallow data type matching:

l AUTO_TYPE_COERCION (default): For a regular DataReader, this default value is translated
to ALLOW_TYPE_COERCION. For a Zero Copy DataReader, this default value is translated to
DISALLOW_TYPE_COERCION. (See the "Zero Copy Transfer Over Shared Memory" section
in the RTI Connext Core Libraries User's Manual for information on why a Zero Copy
DataReader requires the DISALLOW_TYPE_COERCION option.)

l DISALLOW_TYPE_COERCION: The DataWriter and DataReader must support the same data
type in order for them to communicate. (This is the degree of enforcement required by the OMG
DDS Specification prior to the OMG ‘Extensible and Dynamic Topic Types for DDS’ Spe-
cification.)

l ALLOW_TYPE_COERCION: The DataWriter and DataReader need not support the same data
type in order for them to communicate as long as the DataReader’s type is assignable from the
DataWriter’s type. The concept of assignability is explained in 2.2 Verifying Type Consistency:
Type Assignability on page 8.

This policy applies only to DataReaders; it does not have request-offer semantics. The value of the
policy cannot be changed after the DataReader has been enabled.

The default enforcement kind is AUTO_TYPE_COERCION. This default kind translates to ALLOW_
TYPE_COERCION, except in the following cases:

l When a Zero Copy DataReader is used, the kind is translated to DISALLOW_TYPE_
COERCION.

http://www.omg.org/spec/DDS-XTypes/
http://www.omg.org/spec/DDS-XTypes/

2.3.1 Rules For Type-Consistency Enforcement

l When the middleware is introspecting the built-in topic data declaration of a remote DataReader
in order to determine whether it can match with a local DataWriter, if it observes that no
TypeConsistencyEnforcementQosPolicy value is provided (as would be the case when com-
municating with a Service implementation not in conformance with this specification), it assumes
a kind of DISALLOW_TYPE_COERCION.

2.3.1 Rules For Type-Consistency Enforcement

The type-consistency enforcement rules consist of two steps applied on the DataWriter and
DataReader side:

l Step 1. If both the DataWriter and DataReader specify a TypeObject, it is considered first. If the
DataReader allows type coercion, then its type must be assignable from the DataWriter’s type,
taking into account the values of prevent_type_widening, ignore_sequence_bounds, ignore_
string_bounds, ignore_member_names, and ignore_enum_literal_names. If the DataReader
does not allow type coercion, then its type must be equivalent to the type of the DataWriter.

l Step 2. If either the DataWriter or the DataReader does not provide a TypeObject definition,
then the registered type names are examined. The DataReader’s and DataWriter’s registered type
names must match exactly, as was true in Connext releases prior to 5.0. This step will fail if
force_type_validation is true, regardless of the type names.

If either Step 1 or Step 2 fails, the Topics associated with the DataReader and DataWriter are con-
sidered to be inconsistent (see 2.5 Notification of Inconsistencies: INCONSISTENT_TOPIC Status on
page 20).

2.3.2 Prevent Type Widening

The prevent_type_widening field determines whether type widening is allowed. In Figure 2.1: pre-
vent_type_widening = false on the next page, VehicleData_v2 has three members and VehicleData_v1
two members. With type widening allowed, the narrower car (VehicleData_v1, with two members) can
write to the wider car (VehicleData_v2), but notice that the DataReader assumes a value that might be
misleading (in this case, a default speed of zero).

14

2.3.2 Prevent Type Widening

15

Figure 2.1: prevent_type_widening = false

If widening is not allowed (Figure 2.2: prevent_type_widening = true below), VehicleData_v1 and
VehicleData_v2 do not communicate with each other.
Figure 2.2: prevent_type_widening = true

2.3.3 Type Assignability Properties

2.3.3 Type Assignability Properties

The properties in Table 2.6 Type Assignability Properties relax some of the rules in the standard type-
assignability algorithm. These properties can be set in the QoS of the DataReader, DataWriter, and
DomainParticipant (in this case all DataReaders and DataWriters created by that DomainParticipant
inherit the property). By default they are disabled.

16

2.3.3 Type Assignability Properties

17

Property Name Description

dds.sample_assignability.accept_unknown_
union_discriminator

This property can take the following values:

l 0 (default value): Received samples containing a union discriminator value that selects a union mem-
ber on the DataWriter but not on the DataReader are dropped.

l 1: Received samples containing a union discriminator value that selects a union member on the
DataWriter but not on the DataReader are set to the default union value on the DataReader.
Note: The default union value is a union with the discriminator set to select the default member, if one
is defined, or otherwise to the lowest value associated with any member. In addition, the value of that
member is set to the default value for its corresponding type.

l 2: Received samples containing a union discriminator value that selects a union member on the
DataWriter but not on the DataReader preserve the discriminator value and do not select any union
member on the DataReader.

Received samples containing a union discriminator value that do not select a union member on the DataWriter
always preserve the discriminator value on the DataReader with accept_unknown_union_discriminator set to
1 or 2, unless the union discriminator value is an enumerator which is not valid on the DataReader’s type. In
this case, the union is set to its default value.

Assume the following two types:

Publisher Type:
@mutable
union MyUnion switch(int32) {

case 0:
int32 m1;
case 1:

int16 m2;
case 2:

double m3;
};

Subscriber Type:
@mutable
union MyUnion switch(int32) {

case 0:
int32 m1;
case 1:

int16 m2;
};

When this property, accept_unknown_union_discriminator, is set to 0, if the DataWriter sends a union with
the discriminator set to 2, the DataReader will fail deserializing the sample and will drop it.

When this property is set to 1, the DataReader application will the set the sample to its default value, which has
the discriminator set to 0 and member m1 set to the default value for an int32, which is 0.

When this property is set to 2, the DataReader application will deserialize a sample where the discriminator is
set to 2 and where there is no member of the union (m1 or m2) selected.

You can set this property as part of the Property QoS for either the DomainParticipant or the DataReader. If it is
set in both the DomainParticipant and DataReader, the value in the DataReader's QoS will be applied.

This functionality is supported both in generated code as well as when using the DynamicData API. However, if
you use the value 2, there is no API in DynamicData to obtain the discriminator value if it does not select a
union member.

Table 2.6 Type Assignability Properties

2.4 Verifying Sample Consistency: Sample Assignability

Property Name Description

dds.sample_assignability.accept_unknown_
enum_value

When set to 1, samples containing an unknown enumerator can be successfully deserialized to the default enu-
meration value. For example, given the following two types:

Publisher Type:
enum MyEnum {

ONE = 1,
TWO = 2,
THREE = 3

};
struct MyType {

MyEnum m1;
};

Subscriber Type:
enum MyEnum {

ONE = 1,
TWO = 2

};
struct MyType {

MyEnum m1;
};

By default, if the DataWriter sends m1 = THREE, the DataReader cannot deserialize the sample. However if
this property is set to 1 then the Subscribing application will receive a sample with m1 = ONE. The default enu-
meration value is defined as the first declared member of the enumeration.

You can set this property as part of the Property QoS for either the DomainParticipant or the DataReader. If it is
set in both the DomainParticipant and DataReader, the value in the DataReader's QoS will be applied.

This functionality is supported both in generated code as well as when using the DynamicData API.

dds.type_consistency.ignore_member_
names

This property has been replaced with ignore_member_names and ignore_enum_literal_names in the
TypeConsistencyEnforcementQosPolicy (see 2.3 Type-Consistency Enforcement on page 11), but is still sup-
ported for compatibility with previous releases. If this property is set, its value supersedes the values in the
QosPolicy.

dds.type_consistency.ignore_sequence_
bounds

This property has been replaced with ignore_sequence_bounds and ignore_string_bounds in the TypeCon-
sistencyEnforcementQosPolicy (see 2.3 Type-Consistency Enforcement on page 11), but is still supported for
compatibility with previous releases. If this property is set, its value supersedes the values in the QosPolicy.

Table 2.6 Type Assignability Properties

2.4 Verifying Sample Consistency: Sample Assignability

As described in section 2.2 Verifying Type Consistency: Type Assignability on page 8, Connext determ-
ines if a DataWriter and a DataReader can communicate by comparing the structure of their topic
types. When the type published by a DataWriter is assignable to the type subscribed by a DataReader,
the two entities can communicate.

Even if two types are considered assignable, however, some samples may not be assignable. In these
cases, the DataReader loses the sample. For example, consider a DataWriter publishing Position_v1,
and a DataReader subscribing to Position_v2:
@mutable
struct Position_v1 {

@range(min=100, max=200) int32 x;
@range(min=100, max=200) int32 y;

};

18

2.4 Verifying Sample Consistency: Sample Assignability

19

@mutable
struct Position_v2 {

@range(min=100, max=150) int32 x;
@range(min=100, max=150) int32 y;

};

Position_v2 is considered assignable from Position_v1 as both types are structurally the same; however,
not all the samples published by the DataWriter will be received by the DataReader. For instance, the
DataReader will lose the sample {x=170,y=100} and will not provide it to the application because x is
outside the valid range [100,150].

When a DataReader loses a sample, Connext logs a warning and updates the SAMPLE_LOST Status
with the reason DDS_LOST_BY_DESERIALIZATION_FAILURE.

Another example in which a DataReader may lose samples coming from a DataWriter is when the
DataWriter sends a sequence or string with more elements than the DataReader can accept. For
example, consider the following types, a DataWriter publishing Poligon_v1 and a DataReader sub-
scribing to Poligon_v2:
@mutable
struct Poligon_v1 {

string<10> name;
sequence<Point, 4> vertex;

};

@mutable
struct Poligon_v2 {

string<5> name;
sequence<Point, 2> vertex;

};

Out of the box, the type Poligon_v1 is assignable to Poligon_v2, even though the maximum sequence
length in Poligon_v2 is smaller than the maximum length in Poligon_v1, because ignore_sequence_
bounds and ignore_string_bounds are set to TRUE by default on the DataReader TypeCon-
sistencyEnforcementQosPolicy (see 2.3 Type-Consistency Enforcement on page 11).

With ignore_sequence_bounds and ignore_string_bounds set to TRUE, the two types are assignable;
however, the DataReader will lose samples published with an actual sequence or string length greater
than the maximum lengths in Poligon_v2. The samples will be lost with the reason DDS_LOST_BY_
DESERIALIZATION_FAILURE.

If ignore_sequence_bounds and ignore_string_bounds are set to FALSE, the two types will not be
assignable.

Note that DataReaders for FlatData types do not deserialize the data and therefore do not drop unas-
signable samples. (See the “Sending Large Data” chapter in the RTI Connext Core Libraries User's
Manual.)

2.5 Notification of Inconsistencies: INCONSISTENT_TOPIC Status

For more information on the rules that determine the assignability of a sample, refer to the column
“Object construction” in the assignability tables of the ‘Extensible and Dynamic Topic Types for DDS’
(DDS-Xtypes) specification.

2.5 Notification of Inconsistencies: INCONSISTENT_TOPIC Status

Every time a DataReader and DataWriter do not match because the type-consistency enforcement
check fails, the INCONSISTENT_TOPIC status is increased.

Notice that the condition under which the middleware triggers an INCONSISTENT_TOPIC status
update has changed (starting in release 5.0.0) with respect to previous Connext releases where the
change of status occurred when a remote Topic inconsistent with the locally created Topic was dis-
covered.

2.6 Built-in Topics

The type consistency value used by a DataReader can be accessed using the type_consistency field in
the DDS_SubscriptionBuiltinTopicData (see Table 2.7 New Field in Subscription Builtin Topic Data).

Type New
Field Description

DDS_TypeCon-
sistencyEnforcementQosPolicy

type_con-
sistency

Indicates the type_consistency requirements of the remote DataReader (see 2.3 Type-Con-
sistency Enforcement on page 11).

Table 2.7 New Field in Subscription Builtin Topic Data

You can retrieve this information by subscribing to the built-in topics and using the DataReader’s get_
matched_publication_data() operations.

20

http://www.omg.org/spec/DDS-XTypes/

Chapter 3 Type System Enhancements
3.1 Structure Inheritance

A structure can define a base type as seen in Table 3.1 Base Type Definition in a Structure.
Note that when the types are extensible, MyBaseType is assignable from MyDerivedType, and
MyDerivedType is assignable from MyBaseType.

IDL

struct MyBaseType {
int32 x;

};

struct MyDerivedType : MyBaseType {
int32 y;

};

XML

<struct name="MyBaseType">
<member name="x" type="int32"/>

</struct>

<struct name=" MyDerivedType" baseType="MyBaseType">
<member name="y" type="int32"/>

</struct>

XSD

<xsd:complexType name="MyBaseType">
<xsd:sequence>

<xsd:element name="x" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
<!-- @struct true -->
<xsd:complexType name="MyDerivedType">
<xsd:complexContent>

<xsd:extension base="tns:MyBaseType">
<xsd:sequence>

<xsd:element name="y" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!-- @struct true -->

Table 3.1 Base Type Definition in a Structure

In Connext 5.0 and higher, value types are equivalent to structures. You can still use the
valuetype keyword, but using struct is recommended.

21

3.2 Optional Members

22

For example:
struct MyType {

int32 x;
};
valuetype MyType {

public int32 x;
};

The above two types are considered equivalent. Calling the method equal() in their TypeCodes will
return true. Calling the method print_IDL() in the valuetype’s TypeCode will print the value type as a
struct.

3.2 Optional Members

In a structure type, an optional member is a member that an application can decide to send or not as
part of every published sample.

A subscribing application can determine if the publishing application sent an optional member or not.
Note that this is different from getting a default value for a non-optional member that did not exist in
the published type (see example in Type Safety and System Evolution (Chapter 2 on page 4)), optional
members can be explicitly unset.

Using optional members in your types can be useful if you want to reduce bandwidth usage—Connext
will not send unset optional members on the wire. They are especially useful for designing large sparse
types where only a small subset of the data is updated on every write.

This section explains how to define optional members in your types in IDL, XML and XSD and how to
use them in applications written in C, C++, Java and in applications that use the DynamicData API. It
also describes how optional members affect SQL content filters.

3.2.1 Defining Optional Members

The@optional annotation allows you to declare a struct member as optional (see Table 3.2 Declaring
Optional Members). If you do not apply this annotation, members are considered non-optional.

In XSD, to declare a member optional, set the minOccurs attribute to “0” instead of “1”.

Key members cannot be optional.

IDL

struct MyType {
@optional int32 optional_member;
int32 non_optional_member;

};

XML

<struct name="MyType">
<member name="optional_member" optional="true" type="int32"/>
<member name="non_optional_member" type="int32"/>

</struct>

Table 3.2 Declaring Optional Members

3.2.2 Using Optional Members in an Application

XSD

<xsd:complexType name="MyType">
<xsd:sequence>

<xsd:element name="optional_member" minOccurs="0"
maxOccurs="1" type="xsd:int"/>

<xsd:element name="non_optional_member" minOccurs="1"
maxOccurs="1" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>
<!-- @struct true -->

Table 3.2 Declaring Optional Members

3.2.2 Using Optional Members in an Application

This section describes how to use optional members in code generated for C/C++ and Java and with
DynamicData API and SQL filters.

3.2.2.1 Using Optional Members in C and the Traditional C++ API

An optional member of type T in a DDS type maps to a pointer-to-T member in a C and C++ struct.
Both optional and non-optional strings map to char *.

For example, consider the following IDL type:
struct Foo {

string text;
};

struct MyType {
@optional int32 optional_member1;
@optional Foo optional_member2;
int32 non_optional_member;

};

This type maps to this C or C++ structure:
typedef struct Foo {

DDS_Char *text;
} Foo ;

typedef struct MyType {
DDS_Long *optional_member1;
Foo *optional_member2;
DDS_Long non_optional_member;

} MyType;

An optional member is set when it points to a valid value and is unset when it is NULL. By default,
when you create a data sample all optional members are NULL. The TypeSupport API includes the fol-
lowing operations that allow changing that behavior:

23

3.2.2 Using Optional Members in an Application

24

C

MyType *MyTypeTypeSupport_create_data_w_params(
const struct DDS_TypeAllocationParams_t *alloc_params)

DDS_ReturnCode_t MyTypeTypeSupport_delete_data_w_params(
struct Foo *a_data,
const struct DDS_TypeDeallocationParams_t *dealloc_params);

C++

MyType *MyTypeTypeSupport::create_data(
const DDS_TypeAllocationParams_t& alloc_params);

DDS_ReturnCode_t FooTypeSupport::delete_data(
MyType *a_data,
const DDS_TypeDeallocationParams_t& dealloc_params);

Set alloc_params.allocate_optional_members to true if you want to have all optional members alloc-
ated and initialized to default values.

To allocate or release specific optional string members, use the following functions both in C and tra-
ditional C++ without the command-line option -useStdString:

l DDS_String_alloc()
l DDS_String_free()

For traditional C++ code generated using the command line option -useStdString use:

l new ()
l delete

To allocate or release other specific optional members, use the following functions:

In C :

l DDS_Heap_malloc()
l DDS_Heap_calloc()
l DDS_Heap_free()

In traditonal C++:

l new ()
l delete

You can also make an optional member point to an existing variable as long as you set it to NULL
before deleting the sample.

The following C code shows several examples of how to set and unset optional members when writing
samples (note: error checking has been omitted for simplicity):
/* Create and send a sample where all optional members are set */
struct DDS_TypeAllocationParams_t allocParams = DDS_TYPE_ALLOCATION_PARAMS_DEFAULT;

3.2.2 Using Optional Members in an Application

allocParams.allocate_optional_members = DDS_BOOLEAN_TRUE;
MyType *sample = MyTypeTypeSupport_create_data_w_params(&allocParams);
*sample->optional_member1 = 1;
strcpy(sample->optional_member2->text, "hello");
sample->non_optional_member = 2;
MyTypeDataWriter_write(

MyType_writer,
instance,
&DDS_HANDLE_NIL);

/* This time, don't send optional_member1 */
DDS_Heap_free(sample->optional_member1);
sample->optional_member1 = NULL;
MyTypeDataWriter_write(MyType_writer, sample, &DDS_HANDLE_NIL);

/* Delete the sample */
retcode = MyTypeTypeSupport_delete_data_ex(sample, DDS_BOOLEAN_TRUE);

/* Create and send a sample where all optional members are unset */
sample = MyTypeTypeSupport_create_data_ex(DDS_BOOLEAN_FALSE);
sample->non_optional_member = 3;
MyTypeDataWriter_write(MyType_writer, sample, &DDS_HANDLE_NIL);

/* Now send optional_member1 */
sample->optional_member1 = (DDS_Long *)DDS_Heap_malloc(sizeof(DDS_Long));
*sample->optional_member1 = 1;
sample->non_optional_member = 3;
MyTypeDataWriter_write(MyType_writer, sample, &DDS_HANDLE_NIL);

/* Delete the sample */
retcode = MyTypeTypeSupport_delete_data_ex(sample, DDS_BOOLEAN_TRUE);

And this example shows how to read samples that contain optional members in C:
/* Create a sample (no need to allocate optional members here) */
struct DDS_SampleInfo info;
MyType *sample = MyTypeTypeSupport_create_data();

/* Read or take as usual */
MyTypeDataReader_take_next_sample(MyType_reader, sample, &info);
if (info.valid_data)
{

printf("optional_member 1");
if (sample->optional_member1 != NULL)
{

printf(" = %d", *sample->optional_member1);
}
else
{

printf("is not set \n");
}
printf("non_optional_member = %d", sample->non_optional_member);

}
MyTypeTypeSupport_delete_data(sample);

25

3.2.2 Using Optional Members in an Application

26

The following C++ code shows several examples of how to set and unset optional members when writ-
ing samples (note: error checking has been omitted for simplicity):
// Create and send a sample where all optional members are set
MyType *sample = MyTypeTypeSupport::create_data(

DDS_TypeAllocationParams_t().set_allocate_optional_members(
DDS_BOOLEAN_TRUE));

*sample->optional_member1 = 1;
strcpy(sample->optional_member2->text, "hello");
sample->non_optional_member = 2;
writer->write(*sample, DDS_HANDLE_NIL);

// This time, don't send optional_member1
delete sample->optional_member1;
sample->optional_member1 = NULL;
writer->write(*sample, DDS_HANDLE_NIL);

// Delete the sample
MyTypeTypeSupport::delete_data(sample);
// Create and send a sample where all optional members are unset
sample = MyTypeTypeSupport::create_data();
sample->non_optional_member = 3;
writer->write(*sample, DDS_HANDLE_NIL);

// Now send optional_member1:
sample->optional_member1 = new DDS_Long();
*sample->optional_member1 = 4;
writer->write(*sample, DDS_HANDLE_NIL);

// Delete the sample
MyTypeTypeSupport::delete_data(sample);

And this example shows how to read samples that contain optional members in traditional C++:
// Create a sample (no need to allocate optional members here)
DDS_SampleInfo info;
sample = MyTypeTypeSupport::create_data();

// Read or take as usual
reader->take_next_sample(*sample, info);
if (info.valid_data)
{

std::cout << "optional_member1 ";
if (sample->optional_member1 != NULL)
{

std::cout << "= " << *sample->optional_member1 << "\n";
}
else
{

std::cout << "is not set\n";
}
std::cout << “non_optional_member = “

<< sample->non_optional_member << “\n”;

3.2.2 Using Optional Members in an Application

}
// Delete the sample
MyTypeTypeSupport::delete_data(sample);

3.2.2.2 Using Optional Members in the Modern C++ API

An optional member of type T in a DDS type maps to the value-type dds::core::optional<T> in the
modern C++ API.

For example, consider the following IDL type:
struct MyType {

@optional int32 optional_member1;
@optional Foo optional_member2;
int32 non_optional_member;

};

This type maps to this C++ class:
class NDDSUSERDllExport MyType {
public:

// ...
dds::core::optional<int32_t>& optional_member1();
const dds::core::optional<int32_t>& optional_member1() const;
void optional_member1(const dds::core::optional<int32_t>& value);
dds::core::optional<Foo>& optional_member2();
const dds::core::optional<Foo>& optional_member2() const;
void optional_member2(const dds::core::optional<Foo>& value);
int32_t non_optional_member() const;
void non_optional_member(int32_t value);
// ...

};

By default optional members are unset (dds::core::optional<T>::has_value() is false). To set an
optional member, simply assign a value; to reset it use reset() or assign a default-constructed option-
al<T>:
MyType sample; // all optional members created unset
sample.optional_member1() = 5; // now sample.optional_member1().has_value() == true
sample.optional_member1(5); // alternative way of setting the optional member
sample.optional_member2() = Foo(/* ... */);
sample.optional_member1().reset(); // now sample.optional_member1().has_value == false
sample.optional_member1() = dds::core::optional<int32_t>(); // alternative way of resetting
the optional member

To get the value by reference, use value():
int x = sample.optional_member1().value(); // if !has_value(), throws
dds::core::PreconditionNotMetError.
sample.optional_member2().get().foo_member(10);

Note that dds::core::optional manages the creation, assignment and destruction of the contained value,
so unlike the traditional C++ API you don't need to reserve and release a pointer.

27

3.2.2 Using Optional Members in an Application

28

3.2.2.3 Using Optional Members in Java

Optional members have the same mapping to Java class members as non-optional members, except that
null is a valid value for an optional member. Primitive types map to their corresponding Java wrapper
classes (to allow nullifying).

Generated Java classes also include a clear() method that resets all optional members to null.

For example, consider the following IDL type:
struct MyType {

@optional int32 optional_member1;
@optional Foo optional_member2;
int32 non_optional_member;

};

This type maps to this Java class:
class MyType {

public Integer optional_member1 = null;
public Foo optional_member2 = null;
public int non_optional_member = 0;
// ...
public void clear() { /* … */ }
// ...

}

An optional member is set when it points to an object and is unset when it is null.

The following code shows several examples on how to set and unset optional members when writing
samples:
// Create and send a sample with all the optional members set
MyType data = new MyType(); // All optional members are null
data.optional_member1 = 1; // Implicitly converted to Integer
data.optional_member2 = new Foo(); // Create Foo object
data.optional_member2.text = "hello";
data.non_optional_member = 2;
writer.write(data, InstanceHandle_t.HANDLE_NIL);

// This time, don't send optional_member1
data.optional_member1 = null;
writer.write(data, InstanceHandle_t.HANDLE_NIL);

// Send a sample where all the optional members are unset
data.clear(); // Set all optional members to null
data.non_optional_member = 3;
writer.write(data, InstanceHandle_t.HANDLE_NIL);

// Now send optional_optional_member1
data.optional_member1 = 4;
writer.write(data, InstanceHandle_t.HANDLE_NIL);

And this example shows how to read samples that contain optional members:

3.2.2 Using Optional Members in an Application

// Create a sample
MyType data = new MyType();
SampleInfo info = new SampleInfo();

// Read or take as usual
reader.take_next_sample(data, info);
if (info.valid_data) {

System.out.print("optional_member1 ");
if (data.optional_member1 != null) {

System.out.println("= " + data.optional_member1);
} else {

System.out.println("is unset");
}
System.out.println("non_optional_member = " + data.non_optional_member);

}

3.2.2.4 Using Optional Members in C#

Optional members in C# map to nullable types. For all types except primitive types, the mapping is the
same, except that null is a valid value, and the property is annotated with the Omg.Types.Optional
attribute.

Given the following IDL:
struct MyType {

@optional int32 optional_member1;
@optional Foo optional_member2;
int32 non_optional_member;

};

The C# class MyType contains the following properties:
[Optional]
public int? optional_member1 { get; set; }

[Optional]
public Foo optional_member2 { get; set; }

public int non_optional_member { get; set; }

3.2.2.5 Using Optional Member with DynamicData

This version of Connext supports a pre-standard version of DynamicData (see DynamicData API
(Chapter 7 on page 45)). However it does support optional members.

Any optional member can be set with the regular setter methods in the DynamicData API, such as
DDS_DynamicData::set_long(). An optional member is considered unset until a value is explicitly
assigned using a ‘set’ operation.

To unset a member, use DDS_DynamicData::clear_optional_member().

29

3.2.2 Using Optional Members in an Application

30

The C and C++ ‘get’ operations, such as DDS_DynamicData::get_long(), return DDS_RETCODE_
NO_DATA when an optional member is unset; in Java, the ‘get’ methods throw a RETCODE_NO_
DATA exception.

The following C++ example shows how to set and unset optional members before writing a sample.
The example uses the same type (MyType) as in previous sections. This example assumes you already
know how to use the DynamicData API, in particular how to create a DynamicDataTypeSupport and a
DynamicData topic. More information and examples are available in the API Reference HTML doc-
umentation (selectModules, RTI Connext DDS API Reference, Topic Module, Dynamic Data).
// Note: error checking omitted for simplicity
DDS_DynamicData * data = type_support.create_data();

// Set all optional members and write a sample
data->set_long("optional_member1",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, 1);

// Bind optional_member2 and set the text field
DDS_DynamicData optionalMember2(NULL, DDS_DYNAMIC_DATA_PROPERTY_DEFAULT);
data->bind_complex_member(optionalMember2, "optional_member2",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
optionalMember2.set_string("text",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, "hello");
data->unbind_complex_member(optionalMember2);
data->set_long("non_optional_member",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED, 2);
writer->write(*data, DDS_HANDLE_NIL);

// This time, don't send optional_member1
data->clear_optional_member("optional_member1",

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
writer->write(*data, DDS_HANDLE_NIL);

// Delete the sample
type_support.delete_data(data);

In this example we read samples that contain optional members:
DDS_SampleInfo info;
DDS_DynamicData * data = type_support->create_data();
reader->take_next_sample(*data, info);
if (info.valid_data) {

DDS_Long value;
DDS_ReturnCode_t retcode = data->get_long(value,

"optional_member1",
DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);

if (retcode == DDS_RETCODE_OK) {
std::cout << "optional_member1 = " << value << "\n";

} else if (retcode == DDS_RETCODE_NO_DATA){
std::cout << "optional_member1 is not set\n";

} else {
std::cout << "Error getting optional_member1\n";

}
retcode = data->get_long(value, "non_optional_member",

3.3 Default Value

DDS_DYNAMIC_DATA_MEMBER_ID_UNSPECIFIED);
if (retcode == DDS_RETCODE_OK) {

std::cout << "non_optional_member = " << value << "\n";
} else {

std::cout << "Error getting non_optional_member\n";
}

}
// Delete the sample
type_support->delete_data(data);

3.2.2.6 Using Optional Members in SQL Filter Expressions

SQL filter expressions used in ContentFilteredTopics and QueryConditions (see ContentFilteredTopics
(Chapter 8 on page 46) in this document and "ReadConditions and QueryConditions" and "Con-
tentFilteredTopics" in the RTI Connext Core Libraries User's Manual) can refer to optional members.
The syntax is the same as for any other member.

For example, given the type MyType:
struct Foo {

string text;
};
struct MyType {

@optional int32 optional_member1;
@optional Foo optional_member2;
int32 non_optional_member;

};

These are valid expressions:
"optional_member1 = 1 AND optional_member2.text = 'hello' AND non_optional_member = 2"
"optional_member1 = null AND optional_member2.text <> null"

Any comparison involving an optional member (=, <>, <, or >) evaluates to false if the member is
unset.

For example, both “optional_member1 <> 1” and “optional_member1 = 1” will evaluate to false if
optional_member1 is unset; however “optional_member1 = 1 OR non_optional_member = 1” will
be true if non_optional_member is equal to 1 (even if optional_member1 is unset). The expression
“optional_member2.text = ‘hello’” will also be false if optional_member2 is unset.

To check if an optional member is set or unset, you can compare with the null keyword. The following
expressions are supported:
"optional_member1 = null" *, *"optional_member1 <> null".

3.3 Default Value

If the value for an optional member is not provided on the wire, the member is initialized to NULL. For
non-optional members, the member is considered to have the default value defined in Table 3.3 Default
Values for Non-Optional Members from XTypes Specification.

31

3.3.1 @default annotation

32

Table 3.3 Default Values for Non-Optional Members from XTypes Specification, taken from the
"Extensible and Dynamic Topic Types for DDS" (DDS-XTypes) specification, describes the default val-
ues for non-optional members.

Table 3.3 Default Values for Non-Optional Members from XTypes Specification

Type Kind Default Value

BYTE 0x00

BOOLEAN FALSE

INT_16_TYPE, UINT_16_TYPE, INT_32_TYPE, UINT_32_
TYPE, INT_64_TYPE, UINT_64_TYPE, FLOAT_32_TYPE,
FLOAT_64_TYPE, FLOAT_128_TYPE

0

CHAR_8_TYPE, CHAR_16_TYPE ‘\0’

STRING_TYPE “”

ARRAY_TYPE An array of the same dimensions and same element type whose elements take the default
value for their corresponding type.

ALIAS_TYPE The default type of the alias’s base type.

SEQUENCE_TYPE A zero-length sequence of the same element type.

MAP_TYPE An empty map of the same element type.

ENUM_TYPE The first value in the enumeration.

UNION_TYPE
A union with the discriminator set to select the default element, if one is defined, or oth-
erwise to the lowest value associated with any member. The value of that member set to
the default value for its corresponding type.

STRUCTURE_TYPE A structure without any of the optional members and with other members set to their de-
fault values based on their corresponding types.

3.3.1 @default annotation

This annotation allows you to specify a default value for a primitive, enum, or string member. It over-
writes the default value in Table 3.3 Default Values for Non-Optional Members from XTypes Spe-
cification). For example:
struct Position {

int32 x;
@default(70) int32 y;
@default(80) int32 z;

};

In the above example, when a new Position data object is created (TypeSupport::create_data, for
example), the members y and z will get the values 50 and 70 respectively, while the member x will get
the default 0.

http://www.omg.org/spec/DDS-XTypes/

3.3.1 @default annotation

The members will also get the same default values when they are not received on the wire. For
example, assume a DataWriter publishing PubPosition and a DataReader subscribing to Position:
struct PubPosition {

int32 x;
};

Position is assignable from PubPosition according to the assignability rules described in Chapter 2
Type Safety and System Evolution on page 4. When the DataReader receives a new sample from the
DataWriter, the members y and z (not present on the wire) will get the values 70 and 80.

The default annotation can be applied to members with the following types: boolean, octet, int16,
uint16, int32, uint32, int64, uint64, float, double, char, wchar, string, wstring, and enums. The annota-
tion is not currently supported for long double members.

The default annotation can also be applied to aliases of the previous types. For example:
typedef int32 XCoordinate;
@default(70)
typedef int32 YCoordinate;
@default(80)
typedef int32 ZCoordinate;

struct Position {
XCoordinate x;
YCoordinate y;
ZCoordinate int32 z;

};

The advantage of assigning a default to Alias types is that you do not have to duplicate the annotation
value in every structure using coordinates.

The value in the @default annotation can refer to constants declared in the IDL file and can contain
expressions using the constants. For example:
const int32 Y_DEFAULT = 70;
const int32 Z_DEFAULT = 79;
struct Position {

int32 x;
@default(Y_DEFAULT) int32 y;
@default(Z_DEFAULT + 1) int32 z;

};

3.3.1.1 Restrictions

l The default annotation cannot be applied to optional and external members even if their types are
types in which the annotation is supported. For example:

struct Position {
int32 x;
@default(70) int32 y;

33

3.3.1 @default annotation

34

@default(80) @optional int32 z; // Not supported. Code generation error
};

l The default annotation is not currently supported on arrays and sequences even if their types are
types in which the annotation is supported. For example:

struct Positions {
int32 x[1024];
@default(50)
int32 y[1024]; // Not supported. Code generation error
@default(80)
int32 z[1024]; // Not supported. Code generation error

};

A workaround for this limitation is to encapsulate the primitive members into a structure. For
example:
struct Position {

int32 x;
@default(70) int32 y;
@default(80) int32 z;

};

struct Positions {
Position position[1024];

};

l The default annotation value for a uint64 type cannot refer to a constant. For example:

const uint64 MY_UINT64 = 9223372036854775808;
struct Example {

@default(MY_UINT64)
uint64 x;

};

A workaround for this limitation is to not use the constant but the literal value instead. For
example:
struct Example {

@default(9223372036854775808)
uint64 x;

};

l Expressions are not supported when converting to XSD for the following types:
l int64 (long long)
l uint64 (unsigned long long)
l float
l double
l long double

3.3.2 @default_literal annotation

l The TypeCode API (DynamicType API in Modern C++) does not provide a public API to obtain
the value of the default annotation.

3.3.2 @default_literal annotation

By default, the default value of an enumeration corresponds to the first value of the enumeration. In the
following example, the default value is GREEN:
enum Color {

GREEN,
RED,
BLUE

};

The annotation @default_literal can be used to select a different enumerator as the default value. In the
following example, the default value is RED:
enum Color {

GREEN,
@default_literal RED,
BLUE

};

The default value for an enumeration can be overwritten for a structure/union member referring to this
enumeration using the @default annotation. For example:
enum Color {

GREEN,
@default_literal RED,
BLUE

};

struct Shape {
@default(BLUE)
Color shape_color;

}

3.3.2.1 Restrictions

The TypeCode API (DynamicType API in Modern C++) does not provide a public API to obtain the
value of the default_literal annotation.

3.4 Ranges

The annotations @range, @min, and @max can be used to restrict the possible values for a primitive
member. For example:
struct Position {

@range(min = 0, max = 200) int32 x;
@min(50) @default(70) int32 y;
@max(200) @default(80) int32 z;

35

3.4.1 Restrictions

36

};

The annotations are enforced at serialization/deserialization time, not when the value of an object is set.
For example, assume the following Position: {x= -3, y= 60, z = 150}. If you try to publish a Position
sample with this value, the DataWriter::write operation will fail with a DDS_RETCODE_ERROR. If
a DataReader receives this sample, the sample will be lost with the reason DDS_LOST_BY_
DESERIALIZATION_FAILURE and it will not be provided to the application. In both cases, you will
see a log message indicating that x was outside its valid range.

The range annotations can be applied to the following types: octet, int16, uint16, int32, uint32, int64,
uint64, float, double. These annotations are not supported in long double.

If you specify a @default value for a member that is outside the valid range, the code generation will
fail. For example:
struct Position {

@default(300) @range(min = 0, max = 200) int32 x; // Failure. Default outside valid
range

@min(50) @default(70) int32 y;
@max(200) @default(80) int32 z;

};

3.4.1 Restrictions

l For performance reasons, the range annotations are not currently applied to samples of types
marked with @language_binding(FLAT_DATA). The annotations can be used for the type mem-
bers, but they are only informational.

l The TypeCode API (DynamicType API in Modern C++) does not provide a public API to obtain
the value of the @range, @min, and @max annotations.

Chapter 4 Data Representation
The data representation specifies the ways in which a data sample of a given type are com-
municated over the network.

The OMG 'Extensible and Dynamic Topic Types for DDS' specification, version 1.3 defines
three different data representations:

l Extended Common Data Representation (CDR) encoding version 1 (XCDR)
l Extended CDR encoding version 2 (XCDR2)
l XML data representation

Connext 6.0.0 and above implements both XCDR and XCDR2. Connext 5.3.1 and below imple-
ments only XCDR. XML data representation is not supported.

4.1 Configuring the CDR

You may use the DataRepresentationQosPolicy in the DataWriterQos to configure which ver-
sion of Extended CDR, version 1 or version 2, the DataWriter will use to serialize its data. The
same QosPolicy exists in the DataReaderQos to configure which version(s) the DataReader will
accept from DataWriters. DataWriters can offer only one data representation, while DataRead-
ers can request multiple data representations.

For more information, see "DATA_REPRESENTATION QosPolicy" in the RTI Connext Core
Libraries User's Manual.

4.1.1 @data_representation annotation

The data representations that you are allowed to configure in the DataRepresentationQosPolicy
for a type ‘T’ are limited to the allowed data representations for the type.

The @data_representation (or @allowed_data_representation) annotation (you can use either)
lets you restrict the data representations that may be used to encode a data object of a specific

37

https://www.omg.org/spec/DDS-XTypes/1.3

4.2 Extended CDR (encoding version 1)

38

type. (You can select from this restricted set when setting the DataRepresentationQosPolicy.) The IDL
definition of the @data_representation annotation is as follows:
// Positions are defined to match the values of the DataRepresentationId_t
// XCDR_DATA_REPRESENTATION, XML_DATA_REPRESENTATION, and
// XCDR2_DATA_REPRESENTATION
@bit_bound(32)
bitmask DataRepresentationMask {

@position(0) XCDR,
@position(1) XML,
@posiiton(2) XCDR2

}

@annotation data_representation {
DataRepresentationMask value;

};

For example:
@data_representation(XCDR2)
struct Position
{

int32 x;
int32 y;

};

DataWriters and DataReaders using the previous type can publish and subscribe to only an XCDR2
representation, regardless of the value set in the DataRepresentationQosPolicy. (If a DataWriter or
DataReader in this case sets its DataRepresentationQosPolicy to XCDR, Connext will automatically
change it to XCDR2 and print a log message indicating this change.)

If the @data_representation annotation is not present, Connext interprets the data representation as if
the DataRepresentationMask value was set to XCDR|XCDR2 for PLAIN language binding and XCDR2
for FLAT_DATA language binding. For information about the RTI FlatData™ language binding, see
the "Sending Large Data" chapter in the RTI Connext Core Libraries User's Manual.

4.2 Extended CDR (encoding version 1)

The "traditional" OMG CDR (PLAIN_CDR) is used for final and extensible types. It is also used for
primitive, string, and sequence types.

Mutable types and optional members use parameterized CDR (PL_CDR), in which each member is pre-
ceded by a member header that consists of the member ID and member serialized length.

The member header can be 4 bytes (2 bytes for the member ID and 2 bytes for the serialized length) or
12 bytes (where 8 bytes are used for the member ID and 4 bytes are used for the length).

Member IDs greater than 16,128 require a 12-byte header. Therefore, to reduce network bandwidth, the
recommendation is to use member IDs less than or equal to 16,128.

4.3 Extended CDR (encoding version 2)

Also, members with a serialized size greater than 65,535 bytes require a 12-byte header.

Notice that for members with a member ID less than 16,129 and a serialized size less than 65,536
bytes, it is up to the implementation to decide whether or not to use a 12-byte header. For this version
of Connext, the header selection rules are as follows:

l If the member ID is greater than 16,128, use a 12-byte header.
l Otherwise, if the member is a primitive type (int16, uint16, int32, uint32, int64, uint64, float,
double, long double, boolean, octet, char), use a 4-byte header.

l Otherwise, if the member is an enumeration, use a 4-byte header.
l Otherwise, if the maximum serialized size of the type is less than 65,536 bytes, use a 4-byte
header.

l Otherwise, use a 12-byte header.

4.3 Extended CDR (encoding version 2)

From the ‘Extensible and Dynamic Topic Types for DDS’ specification:

The specification defines three encoding formats used with encoding version 2: PLAIN_CDR2,
DELIMITED_CDR, and PL_CDR2.

l PLAIN_CDR2 shall be used for all primitive, string, and enumerated types. It is also used for
any type with an extensibility kind of FINAL. The encoding is similar to PLAIN_CDR except
that INT64, UINT64, FLOAT64, and FLOAT128 are serialized into the CDR buffer at offsets
that are aligned to 4 [bytes] instead of 8

l DELIMITED_CDR shall be used for types with an extensibility kind of APPENDABLE. It
serializes a UINT32 delimiter header (DHEADER) before serializing the object using
PLAIN_CDR2. The delimiter encodes the endianness and the length of the serialized object
that follows.

l PL_CDR2 shall be used for aggregated types with an extensibility kind of MUTABLE. Sim-
ilar to DELIMITED_CDR, it also serializes a DHEADER before serializing the object. In
addition, it serializes a member header (EMHEADER) ahead of each serialized member. The
member header encodes the member ID, the must-understand flag, and the length of the seri-
alized member that follows.

In Extended CDR encoding version 2, wchar sizes changed from 4 bytes (Char32) to 2 bytes (Char16).

For more information about encoding version 2, please see the OMG 'Extensible and Dynamic Topic
Types for DDS' specification, version 1.3.

39

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

4.4 Choosing the Right Data Representation

40

Important: The out-of-the-box serialization/deserialization of sequences and arrays with non-
primitive members for Extended CDR (encoding version 2) does not follow the OMG
'Extensible and Dynamic Topic Types for DDS' specification, version 1.3. This may lead to
compatibility issues with other DDS implementations.

You can make the serialization/deserialization compatible with the specification by setting the
property dds.type_plugin.dheader_in_non_primitive_collections to true in the
DomainParticipant's PROPERTY QoS Policy for all the DomainParticipants created by the
Connext applications (including Infrastructure Services and Tools).

4.4 Choosing the Right Data Representation

Extended CDR encoding 2 (XCDR2) is more efficient on the wire than Extended CDR encoding 1
(XCDR). For new applications, Extended CDR encoding 2 is the recommended data representation;
however, if you need to keep compatibility and interoperability with old Connext applications (5.3.1
and below), you may have to continue using Extended CDR encoding 1.

DataReaders can be configured to receive data using both XCDR2 and XCDR. This way, a
DataReader can still interoperate and receive data from old Connext DataWriters using XCDR, while
receiving data from new DataWriters using XCDR2.

The opposite is not true. DataWriters can publish only one data representation. Therefore, if there is a
requirement to receive data for a topic 'T' with old Connext DataReaders, you will have to continue to
publish data for topic 'T' with XCDR representation on the new DataWriters or use a bridge such as
Routing Service to translate between XCDR and XCDR2.

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

Chapter 5 Type Representation
The type representation specifies the ways in which a type can be externalized so that it can be
stored in a file or sent over the network.

The OMG 'Extensible and Dynamic Topic Types for DDS' specification, version 1.3 describes
four different type representations: IDL, TypeObject, XML, and XSD.

5.1 TypeObject and TypeCode Type Representation

Earlier versions of Connext (4.5f and lower) used TypeCodes as the wire representation to com-
municate types over the network and the TypeCode API to introspect and manipulate the types
at run time.

The Extensible Types specification uses TypeObjects as the wire representation and the Dynam-
icType API to introspect and manipulate the types. Types are propagated by serializing the asso-
ciated TypeObject representation.

This release does not enable TypeCode propagation by default, but to maintain backward com-
patibility with previous releases it can be enabled; see the section, "TypeCode information is not
sent by default" in the Migration Guide on the RTI Community Portal (https://-
community.rti.com/documentation). Support for the TypeCodes feature may be discontinued in
future releases.

Connext 5.x and higher supports TypeObjects v1 as the wire representation. (TypeObjects v2,
which were introduced in Extensible and Dynamic Topic Types for DDS 1.2, are not sup-
ported.)

In this release, only Modern C++ supports the DynamicType API to introspect the types at
runtime. Other language bindings must use the TypeCode API.

You can introspect the discovered type independently of the wire format by using the type_
code member in the PublicationBuiltinTopicData and SubscriptionBuiltinTopicData structures
for all language bindings but Modern C++. In Modern C++, the type information can be
accessed using the type() or get_type_no_copy() accessors.

41

https://www.omg.org/spec/DDS-XTypes/1.3
https://community.rti.com/documentation
https://community.rti.com/documentation

5.1.1 TypeObject Resource Limits

42

One important limitation of using TypeCodes as the wire representation is that their serialized
size is limited to 65 KB. This is a problem for services and tools that depend on the discovered
types, such as RTI Routing Service . With the introduction of TypeObjects, this limitation is
removed since the size of the serialized representation is not bounded.

To summarize:

Connext 5.x and Higher Connext 4.5f and Earlier

Wire Representation
TypeObjects

or TypeCodes (for backwards compatibility)
TypeCodes

For Introspection at Run Time
TypeCode API

(DynamicType API for Modern C++)
TypeCode API

Maximum Size of Serialized Representation
When using TypeObjects: Unbounded

When using TypeCodes: 65 KB
65 KB

5.1.1 TypeObject Resource Limits

Table 5.1 TypeObject Fields in DomainParticipantResourceLimitsQosPolicy lists fields in the
DomainParticipantResourceLimitsQosPolicy that control resource utilization when the TypeObjects in
a DomainParticipant are stored and propagated.

Note that memory usage is optimized; only one instance of a TypeObject will be stored, even if mul-
tiple local or remote DataReaders or DataWriters use it.

Type Field Description

DDS_
Long

type_object_
max_serialized_
length

The maximum length, in bytes, that the buffer to serialize a TypeObject can consume.

This parameter limits the size of the TypeObject that a DomainParticipant is able to propagate. Since TypeObjects contain all
of the information of a data structure, including the strings that define the names of the members of a structure, complex data
structures can result in TypeObjects larger than the default maximum of 8192 bytes. This field allows you to specify a larger
value.

Cannot be UNLIMITED.

Default: 8192

DDS_
Long

type_object_
max_deseri-
alized_length

The maximum number of bytes that a deserialized TypeObject can consume. This parameter limits the size of the TypeObject
that a DomainParticipant is able to store.

Default: UNLIMITED

DDS_
Long

deserialized_
type_object_dy-
namic_al-
location_
threshold

A threshold, in bytes, for dynamic memory allocation for the deserialized TypeObject. Above it, the memory for a TypeObject is
allocated dynamically. Below it, the memory is obtained from a pool of fixed-size buffers. The size of the buffers is equal to this
threshold.

Default: 4096

Table 5.1 TypeObject Fields in DomainParticipantResourceLimitsQosPolicy

The TypeObject is needed for type-assignability enforcement.

5.2 XML and XSD Type Representations

Since TypeObjects contain all of the information of a data structure, including the strings that define
the names of the members of a structure, complex data structures can result in large TypeObjects that
frequently require enabling asynchronous publication for discovery data.

To reduce bandwidth usage during discovery for large TypeObjects, Connext allows compressing the
TypeObject information. Compression is enabled by default, and it can be configured using the QoS
value DDS_DiscoveryConfigQosPolicy::endpoint_type_object_lb_serialization_threshold. For addi-
tional information, see the section “DISCOVERY_CONFIG QosPolicy” in the RTI Connext Core
Libraries User's Manual.

By default, Connext 5.3.1 and lower propagated both the pre-standard TypeCode and the TypeObject.
Connext 6.0.0 and higher only propagates TypeObjects by default. You can change this behavior:

To propagate TypeObject
only (default): Set type_code_max_serialized_length = 0

To propagate TypeCode
only: Set type_object_max_serialized_length = 0

To propagate none: Set type_code_max_serialized_length = 0 and type_object_max_serialized_length = 0

To propagate both: Use the default value of type_object_max_serialized_length, and change type_code_max_serialized_length from 0 to the de-
sired length. Modify these values if the type size requires.

5.2 XML and XSD Type Representations

The XML and XSD type-representation formats available in Connext formed the basis for the DDS-
XTypes specification of these features.

The XML format is compatible with the format described in the XTypes specification.

The XSD format, however, has not been completely updated to the new standard format. For example,
in Connext, built-in annotations are applied using comments, whereas in the XTypes specification they
are applied using <xsd:annotation>.

For additional information on how to apply built-in annotations using XSD Type Representation in Con-
next see the section "Creating User Data Types with XML Schemas (XSD)" in the RTI Connext Core
Libraries User's Manual.

For additional information on how to apply built-in annotations using XSD Type Representation in the
XTypes specification, see the section “XSD Type Representation” in the OMG 'Extensible and
Dynamic Topic Types for DDS' specification, version 1.3.

43

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

Chapter 6 TypeCode API Changes
As described in Type Representation (Chapter 5 on page 41), in Connext 5.x and higher, only
Modern C++ supports the DynamicType API described in the Extensible Types specification.
For other language bindings, user applications can continue to use the TypeCode API to intro-
spect the types at runtime.

The TypeCode API includes two operations to retrieve the extensibility kind of a type and the
ID of a member:

l DDS_TypeCode_extensibility_kind()
l DDS_TypeCode_member_id()

The value of the following annotations currently cannot be accessed using the TypeCode API:
@default, @default_literal, @range, @min, @max.

For information on these operations, see the API Reference HTML documentation (open
ReadMe.html1 and select the API for your language, then selectModules, DDS API Refer-
ence, Topic Module, Type Code Support, DDS_TypeCode).

1After installing Connext, you will find ReadMe.html in the ndds.<version> directory.

44

Chapter 7 DynamicData API
Connext 5.x and higher does not currently support the DynamicData API described in the
Extensible Types specification. User applications should continue using the traditional Dynam-
icData API.

The traditional DynamicData API has been extended to support optional members (see 3.2.2.5
Using Optional Member with DynamicData on page 29).

The traditional API does not currently support setting/getting the value of a DynamicData
sample using member IDs as defined in the Extensible types specification. The member values
of the following types should be accessed using the member name:

l Unions
l Struct
l Valuetypes

Although it is possible to use the member_id field in the get/set operations provided by the
DynamicData API, the meaning of the ID in the API is not compliant with the member ID
described in the Extensible Types specification.

For example, in the Extensible Types specification, the members of a union are identified by
both the case values associated with them and their member IDs. When using the DynamicData
API to set/get the value of a union member, the member_id parameter in the APIs corresponds
to the case value of the member instead of the member ID.

45

Chapter 8 ContentFilteredTopics
Writer-side filtering using the built-in filters (SQL and STRINGMATCH) is supported as long
as the filter expression contains members that are present in both the DataReader’s type and the
DataWriter’s type. For example, consider the following types:

DataWriter:
struct MyBaseType {

int32 x;
};

DataReader:
struct MyDerivedType : MyBaseType {

public int32 y;
};

If the DataReader creates a ContentFilteredTopic with the expression “x>5”, the DataWriter
will perform writer-side filtering since it knows how to find x in the outgoing samples.

If the DataReader creates a ContentFilteredTopic with the expression “x>5 and y>5” the
DataWriter will not do writer side filtering since it does not know anything about “y”. Also,
when the DataWriter tries to compile the filter expression from the DataReader, it will report
an error such as the following:
DDS_TypeCode_dereference_member_name:member starting with [y >] not found
PRESParticipant_createContentFilteredTopicPolicy:content filter compile error 1

To learn how to use optional members in filter expressions, see 3.2.2.6 Using Optional Mem-
bers in SQL Filter Expressions on page 31.

46

Chapter 9 RTI Spy
RTI Spy, rtiddsspy, includes limited support for Extensible Types:

l rtiddspy will automatically create a DataReader for each version of a type discovered for
a topic. In Connext 5.x and higher, it is not possible to associate more than one type to a
topic within a single DomainParticipant, therefore each version of a type will require its
own DomainParticipant.

l The TypeConsistencyEnforcementQosPolicy’s kind in each of the DataReaders created
by rtiddsspy is set to DISALLOW_TYPE_COERCION. This way, a DataReader will
only receive samples from DataWriters with the same type, without doing any con-
version.

l The -printSample option will print each of the samples using the type version of the ori-
ginal publisher.

For example:
struct A {

int32 x;
};
struct B {

int32 x;
int32 y;

};

Let’s assume that we have two DataWriters of Topic “T” publishing type “A” and type “B” and
sending TypeObject information. After we start Spy, we will see output like this:
RTI Connext DDS Spy built with DDS version:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
rtiddsspy is listening for data, press CTRL+C to stop it.

19:25:56 New writer from 10.0.2.15 : topic="Example A" type="A"
name="spydemoDataWriter"
19:25:56 New writer from 10.0.2.15 : topic="Example B" type="B"
name="spydemoDataWriter"

47



9.1 Type Version Discrimination

48

19:26:00 New data from 10.0.2.15 : topic="Example A" type="A"
x: 1

19:26:00 New data from 10.0.2.15 : topic="Example B" type="B"
x: 2
y: 3

19:26:04 New data from 10.0.2.15 : topic="Example A" type="A"
x: 2

19:26:04 New data from 10.0.2.15 : topic="Example B" type="B"
x: 4
y: 5

9.1 Type Version Discrimination

Rtiddsspy uses the rules described in 2.3.1 Rules For Type-Consistency Enforcement on page 14 to
decide whether or not to create a new DataReader when it discovers a DataWriter for a topic “T”.

For DataWriters created with previous Connext releases (4.5f and lower), rtiddsspy will select the first
DataReader with a registered type name equal to the discovered registered type name, since
DataWriters created with previous releases do not send TypeObject information.



Chapter 10 Compatibility with Previous
Releases

For important information about compatibility issues when communicating with applications
using an older (5.x) version of Connext, please see the following documentation:

l If you are upgrading to 7.2.0 from a release older than 5.3.1, please first see this chapter
in the Connext Core Libraries Getting Started Guide Addendum for Extensible Types for
5.3.1. Then see the Migration Guide on the RTI Community Portal (https://-
community.rti.com/documentation) for migration issues related to upgrading from 5.3.1 to
7.2.0.

l If you are upgrading to 7.2.0 from 5.3.1, please see the Migration Guide on the RTI Com-
munity Portal (https://community.rti.com/documentation).

49

https://community.rti.com/documentation
https://community.rti.com/documentation
https://community.rti.com/documentation

	Chapter 1 Extensible Types
	Chapter 2 Type Safety and System Evolution
	2.1 Defining Extensible Types
	2.1.1 @id Annotation
	2.1.2 @hashid Annotation
	2.1.3 @autoid Annotation

	2.2 Verifying Type Consistency: Type Assignability
	2.3 Type-Consistency Enforcement
	2.3.1 Rules For Type-Consistency Enforcement
	2.3.2 Prevent Type Widening
	2.3.3 Type Assignability Properties

	2.4 Verifying Sample Consistency: Sample Assignability
	2.5 Notification of Inconsistencies: INCONSISTENT_TOPIC Status
	2.6 Built-in Topics

	Chapter 3 Type System Enhancements
	3.1 Structure Inheritance
	3.2 Optional Members
	3.2.1 Defining Optional Members
	3.2.2 Using Optional Members in an Application

	3.3 Default Value
	3.3.1 @default annotation
	3.3.2 @default_literal annotation

	3.4 Ranges
	3.4.1 Restrictions


	Chapter 4 Data Representation
	4.1 Configuring the CDR
	4.1.1 @data_representation annotation

	4.2 Extended CDR (encoding version 1)
	4.3 Extended CDR (encoding version 2)
	4.4 Choosing the Right Data Representation

	Chapter 5 Type Representation
	5.1 TypeObject and TypeCode Type Representation
	5.1.1 TypeObject Resource Limits

	5.2 XML and XSD Type Representations

	Chapter 6 TypeCode API Changes
	Chapter 7 DynamicData API
	Chapter 8 ContentFilteredTopics
	Chapter 9 RTI Spy
	9.1 Type Version Discrimination

	Chapter 10 Compatibility with Previous Releases

