
RTI Connext Core Libraries Release Notes

Version 7.2.0

Contents

1 Introduction 1

2 System Requirements 3
2.1 Introduction . 3
2.2 Supported Platforms . 4
2.3 Requirements when Using Microsoft Visual Studio . 6
2.4 Disk and Memory Usage . 7

3 Compatibility 8
3.1 Wire Protocol Compatibility . 8
3.2 Code and Configuration Compatibility . 9
3.3 Extensible Types Compatibility . 9

4 What’s Fixed in 7.2.0 10
4.1 Discovery . 10

4.1.1 SPDP2 participants may not have completed discovery if IP mobility event occurred
during discovery . 10

4.1.2 Crash if initial_peers sequence contained a NULL string 10
4.1.3 Failure to deserialize participant discovery information incorrectly allowed discovery

to complete . 11
4.1.4 Unbounded memory growth when creating/deleting DomainParticipants 11

4.2 Serialization and Deserialization . 11
4.2.1 Unbounded memory growth when deserializing SPDP discovery sample 11
4.2.2 Wrong error message when deserializing PropertyQos property value and exceeding

property_string_max_length resource limit . 11
4.2.3 Potential unexpected behavior or crash when deserializing SPDP discovery sample . 12

4.3 Debuggability . 12
4.3.1 Instance State Consistency QoS was commented out when printed out as XML from

code . 12
4.3.2 DataWriter instance statistics were not updated in all cases 12

4.4 Transports . 12
4.4.1 Connext started before Windows completed duplicate address detection on network

interfaces . 12
4.4.2 Ungracefully terminated QNX processes using SHMEM transport prevented startup

of new processes due to unclosed POSIX semaphores 13
4.4.3 QNX applications using shared-memory transport may have led to thread priority

inversion issues . 13

i

4.4.4 Stalled communication when using shared-memory transport 14
4.4.5 Overflow in default TransportMulticastMappingQosPolicy procedure 14

4.5 Reliability Protocol and Wire Representation . 14
4.5.1 Samples lost by reliable reader acknowledging samples it did not receive after remote

writer update . 14
4.5.2 Inconsistent RTPS protocol versions broadcasted by Connext 15
4.5.3 Sample loss when using asynchronous publisher due to missing GAP 15

4.6 Content Filters and Query Conditions . 15
4.6.1 Instance handling on a DataReader and filtering operations in ContentFilteredTopics,

QueryCondition, TopicQueries, and Multi-Channel DataWriters may have failed . . 15
4.7 Dynamic Data . 16

4.7.1 Problems with int8/uint8 support . 16
4.7.2 Connext did not print array dimensions for aliases that were arrays 16

4.8 Performance and Scalability . 16
4.8.1 Performance degradation when using FlatData with ContentFilteredTopics 16
4.8.2 Performance issues when using FlatData with payload encryption or compression . . 17
4.8.3 Transport utilization metrics overflowed in applications with high throughput 17

4.9 APIs (C or Traditional C++) . 17
4.9.1 Some DDS_TypeCode operations may have crashed when invalid arguments were

used . 17
4.9.2 Several C API DDS_GUID functions did not account for NULL parameters correctly 18

4.10 APIs (Modern C++ API) . 18
4.10.1 Unexpected rti.connextdds.PreconditionNotMetError when setting optional string

members in QoS policies . 18
4.10.2 Move constructors for some of the built-in topic-types were incorrectly implemented 18
4.10.3 Manually closing some built-in readers could lead to a crash 19
4.10.4 Incorrect implementation of DynamicDataMemberInfo constructor and assignment

may have led to undefined behavior . 19
4.10.5 int8_t, uint64_t, int64_t not supported as primitive types in C++11 (Modern C++)

Dynamic Type API . 19
4.10.6 Policy getter for rti::core::policy::Monitoring previously missing 19

4.11 APIs (Java) . 20
4.11.1 Possible memory leak in DynamicData copy constructor 20
4.11.2 Some ReliabilityQos methods did not consider the instance state consistency QoS . . 20

4.12 APIs (Python) . 20
4.12.1 Access to collection elements in some DynamicData accessors was not zero-based . . 20

4.13 APIs (Multiple Languages) . 20
4.13.1 Looking up a DataReader using the wrong class in Modern C++ or Python did not

raise clear exception . 20
4.13.2 Alias type not obtainable using a QosProvider . 21

4.14 XML Configuration . 21
4.14.1 Incorrect parsing of data_representation attribute in XML type definitions 21
4.14.2 Creating Topic-specific entities from a <qos_profile> using QoS profile inheritance

and/or composition returned incorrect values . 21
4.14.3 configuration_variables tag was not effective . 22
4.14.4 Using languageBinding attribute on union types in XML caused parsing error 22

4.15 Instances . 22

ii

4.15.1 Instances transitioned due to instance state consistency did not respect propagate_dis-
pose_of_unregistered_instances . 22

4.15.2 Instance purging based on source timestamp did not work 22
4.16 Crashes . 23

4.16.1 Race condition when using multiple threads to enable same DomainParticipant . . . 23
4.16.2 Possible crash gathering periodic metrics for a resource that was being added or

deleted at the same time . 23
4.16.3 Potential crash when configuring logging verbosity to NDDS_CONFIG_LOG_VER-

BOSITY_STATUS_LOCAL or higher . 24
4.16.4 Malloc called when handling SIGSEGV . 24
4.16.5 Calling delete_contained_entities APIs could cause a crash in the thread that collects

periodic metrics . 24
4.16.6 Application could crash when disabling and re-enabling Monitoring Library 2.0 due

to internal error . 24
4.16.7 Low-memory conditions could lead to crash on several platforms if allocation of high

resolution clock failed . 25
4.17 Entities . 25

4.17.1 Monitoring Library 2.0 incorrectly collected both enabled and disabled DDS Entities 25
4.17.2 Application may have hung when deleting a monitored DDS entity 25
4.17.3 Monitoring Library 2.0 did not assert disabled DDS Entities when the Entities were

enabled . 26
4.18 Interoperability . 26

4.18.1 Possible incomplete endpoint discovery when communicating with other DDS vendors 26
4.19 Vulnerabilities . 26

4.19.1 Out-of-bounds read while deserializing malformed partition parameters from mali-
cious RTPS message . 26

User Impact without Security . 27
User Impact with Security . 27

4.19.2 Out-of-bounds read while deserializing malformed IPv6 locator from malicious
RTPS message . 27

User Impact without Security . 27
User Impact with Security . 27

4.19.3 Remote modification of DomainParticipant names in unsecure system 28
User Impact without Security . 28
User Impact with Security . 28

4.20 Other . 28
4.20.1 Possible hang in application if something failed while adding a new observable resource 28
4.20.2 Native Android applications were not shipped . 29
4.20.3 Error creating a DataWriter using durable writer history if setting property

dds.data_writer.history.odbc_plugin.builtin.sample_cache_max_size to -1 29
4.20.4 References to missing header file in Connext Professional source bundle 29
4.20.5 Application may have hung when event and event snapshot were published simulta-

neously for same observable resource . 29
4.20.6 Access to an internal field of observable resources was not thread safe 30
4.20.7 Deadlock issue resolved when disabling Monitoring Library 2.0 during command

processing . 30
4.20.8 Running rtisetenv_<arch>.bat caused issues in PATH environment 30

iii

4.20.9 Unable to start Launcher, Admin Console, Code Generator, andMonitor inWindows
when the RTI Workspace contained white spaces 30

5 Previous Releases 31
5.1 What’s Fixed in 7.1.0 . 31

5.1.1 Fixes Related to Discovery . 31
Potential memory leak when creation of any of the built-in discovery plugins failed . . 31
Unbounded memory growth when using domain tags or DomainParticipant partitions . 31
Error deleting remote endpoints with specific GUID prefixes using debug libraries . . 32
Most up-to-date participant configuration may not have been received by other partic-

ipants and may have led to discovery not completing 32
Participant failed to assert remote participant if usability of shared memory transport

changed . 32
Unexpected warning during discovery when multicast disabled 33
Unexpected, invalid locator propagated within builtin topics 33

5.1.2 Fixes Related to Serialization and Deserialization 33
Unexpected union value when receiving a discriminator that does not select any union

member on DataReader’s type . 33
Serialization of samples failed or produced a segmentation fault for types with max

serialized size larger than 2GB . 34
Potential sample corruption when deserializing a malformed RTPS message 35
Unbounded memory growth when deserializing a malformed RTPS message 35

5.1.3 Fixes Related to Debuggability . 35
Hang/crash when invoking a DataReader/DataWriter discovery snapshot within a call-

back function . 35
Memory leak if network capture initialization failed 36
Unexpected log messages at warning verbosity . 36
Unexpected fatal error when number of instances reached the limit 36

5.1.4 Fixes Related to Transports . 37
Possible data loss after a Connext application lost its multicast interfaces or gained its

first multicast interface . 37
DomainParticipant with non-default metatraffic_transport_priority QoS did not com-

plete discovery . 37
dds.transport.minimum_compatibility_version property did not properly adjust locator

format . 37
TCP Transport did not run with Windows debug libraries when socket_monitor-

ing_kind was set to IOCP . 38
5.1.5 Fixes Related to Reliability Protocol and Wire Representation 38

Samples not delivered to Required Subscription DataReaders when DataWriter used
durable writer history and DataReaders disabled positive ACKs 38

DataReadermay not have received samples that were sent as gapped samples to another
DataReader over multicast . 38

DDS fragmentation may have led to more fragments than expected for a sample . . . 38
Unexpected precondition error with debug libraries on a reliable DataWriter while

sending a GAP . 39
5.1.6 Fixes Related to Content Filters and Query Conditions 40

iv

Unexpected “RTIXCdrSampleInterpreter_initializeSampleWInstruction” error log
messages when using QueryConditions, ContentFilteredTopics, Topic-
Queries, or Multi-Channel . 40

5.1.7 Fixes Related to Dynamic Data . 40
DynamicData DataWriters incorrectly serialized optional empty sequences as null . . 40

5.1.8 Fixes Related to APIs . 41
DynamicData method to get member type missing in Modern C++ and C# APIs . . . 41
Fixes Related to Modern C++ API . 41
Fixes Related to C# API . 42
Fixes Related to Java API . 42
Fixes Related to Python API . 43

5.1.9 Fixes Related to XML Configuration . 46
Memory leak after an error parsing XML file with <include> tag 46
Failed to parse XML configuration file containing type member with useVector attribute 46
XML composition overwrote system information properties with defaults instead of

correct values . 47
5.1.10 Fixes Related to Request-Reply and RPC . 48

RPC interface evolution did not work . 48
Exceptions sending result of remote operation may have crashed server application . . 48
RPC: deadlock when Server::close() was called before Server::run() 49
Possible unbounded memory growth when creating many Requesters 49
Memory leak in Java Request-Reply API . 49
Possible data race using Sample and WriteSample classes (Traditional C++ API only) 50

5.1.11 Fixes Related to Shipped Examples . 50
Hello World TCP example always linked TCP Transport library dynamically 50

5.1.12 Fixes Related to Vulnerabilities . 50
Arbitrary read access while parsing malicious RTPS message 50
Out-of-bounds read while parsing malicious RTPS message 51
Out-of-bounds write while parsing malicious RTPS message 51
Buffer overflow in shared memory if memory was tampered 52
Out-of-bounds read while uncompressingmalformed data frommalicious RTPSmessage 52

5.1.13 Fixes Related to Crashes . 53
Rare segmentation fault when deleting DomainParticipant or Publisher containing

DataWriters using durable writer history 53
Segmentation fault when creation of DomainParticipant failed due to lack of resources 53
Potential hang upon SIGSEGV signal from a Connext application 53
Creating DynamicDataTypePlugin with TypeCode from discovery and using content

filtering caused segmentation fault . 54
Application crash when calling DDS_DataReader_take_discovery_snapshot on a

DataReader with a ContentFilteredTopic 54
Crash with NULL listeners and non-none status masks in C applications that mixed

types with and without Zero Copy . 54
Memory was read after it was freed by deleting a Topic with local logging level enabled 55
Possible segmentation fault when disabling loopback interface 55
Segmentation fault could occur if creation of DataReader failed 55
Potential crash when DomainParticipant deleted after creating DataWriter with auto-

matic liveliness kind . 55
Possible crash on TCP transport when large number of file descriptors were open . . . 55

v

Application using Monitoring Libraries may have produced segmentation fault during
DataReader creation . 56

Possible segmentation fault when using Monitoring Library 56
5.1.14 Other Fixes . 56

Error sending batch when batch size exceeded transport MTU 56
Broken communication when DataWriter with transport priority discovered

DataReader with multicast receive address 56
Potential hang upon SIGSEGV signal from a Connext application 57
No more than 100 asynchronous publisher threads could be created 57
Potential memory leak when creation of any of the built-in discovery plugins failed . . 57
Samples could be lost using group order access or collaborative DataWriters 58
Unexpected precondition error while creating a DomainParticipant with debugging

libraries using fast database cleanup period 58
Release 6.1.2 was not FACE compliant . 58
Problems visualizing participants using Generic.MinimalMemoryFootprint profile

with Admin Console . 58
Using dh_param_files leaked memory . 59
Failure to load a string-based private key leaked memory 59
Incorrect “Supported platforms” documentation section for FindRTIConnextDDS.cmake 59
CONNEXTDDS_ARCH environment variable in FindPackage script was not picked

up correctly . 59
In FindPackage script, low_bandwidth_edisc imported target library was missing . . . 60
Segmentation fault when mixing build types in applications linked against libraries in

“Find Package” Cmake script . 60
5.2 What’s Fixed in 7.0.0 . 61

5.2.1 Fixes Related to Callbacks and Waitsets . 61
Unsafe combinations of masks and Listeners may have led to segmentation fault . . . 61
Failure calling DDS_Subscriber::get_datareaders in DDS_SubscriberLis-

tener::on_data_on_readers callback implementation 61
DDS_SubscriberListener::on_data_on_readers on a participant or subscriber not

called when Listener installed after the entity is enabled 62
Unable to assign callback function for on_sample_removed event using Modern C++

API . 62
Using certain callbacks at DomainParticipant or Publisher level may have led to seg-

mentation fault . 62
5.2.2 Fixes Related to Discovery . 62

Unexpected memory growth when DataReader could not be matched with DataWriter
due to unexpected error condition . 62

Possible crash upon discovery of applications with unreachable locators 63
Communication problems with applications using shared memory on INTEGRITY

systems . 63
Types containing Typedefs were sent without the typedefs in discovery when using

DynamicData . 64
Unboundedmemory growth in Spy when discovering multiple endpoints with the same

Topics and types . 64
Unnecessary discovery traffic related to IP mobility events on interfaces irrelevant to

the transport . 64
5.2.3 Fixes Related to Transports . 65

vi

Communication problems with applications using shared memory on INTEGRITY
systems . 65

Race condition could cause unbounded memory growth in TCP Transport Plugin . . . 65
5.2.4 Fixes Related to Filtering and TopicQuery . 66

Unnecessary repair traffic for DataWriters using TopicQueries and asynchronous pub-
lishing . 66

Connext application using filtering feature may have crashed after running out of memory 66
Unnecessary sample filtering on a DataReader for samples already filtered by a

DataWriter . 66
Creation of a ContentFilteredTopic or reception of TopicQuery samples may have

taken long time for complex types . 67
Continuous creation of TopicQueries may have led to unnecessary memory fragmen-

tation in OS memory allocator . 67
rti::topic::find_registered_content_filters led to infinite recursion 67
Incorrect results for Unions when using DynamicData or Content Filters 67
Samples may have been unnecessarily filtered by Connext DataReader when

DataWriter was from different DDS vendor 68
5.2.5 Fixes Related to Group Presentation . 69

Application may not have received samples of coherent set when using GROUP access
scope and TRANSIENT_LOCAL durability 69

Application may stop receiving samples from DataReaders using GROUP_PRESEN-
TATION_QOS . 69

Segmentation fault when using GROUP_PRESENTATION_QOS or HIGHEST_OF-
FERED_PRESENTATION_QOS and setting filter_redundant_samples to
FALSE on DataReader . 69

5.2.6 Fixes Related to XML Configuration . 70
Parsing error loading XML configuration file containing a const whose expression

refers to an enumerator . 70
Discrepancy between range defined by schema and that defined by API 70
Parsing error loading XML configuration file with enum type containing enumerator

whose value was an expression referring to a const 70
Parsing error loading an XML configuration file with enum type containing enumerator

whose value was an expression . 71
Type limits not checked for some attributes of XML types definition 71
Removed some elements in the XSD that were not supported internally but could be

defined in XML . 72
Builtin Discovery Plugins was not treated as a mask by the XSD file 73
Parsing error loading an XML configuration file with an enum type containing an enu-

merator whose value was an expression referring to another enumerator . . 73
5.2.7 Fixes Related to Vulnerabilities . 74

Fixes related to Connext . 74
Fixes related to third-party dependencies . 74

5.2.8 Fixes Related to APIs . 75
Input parameters to Property and DataTag helper functions do not have “const” 75
Standard 64-bit integer types are now supported (Modern C++ API) 75
Assigning DataWriter and DataReaderQos from a TopicQos caused a build error . . . 76
Copy of SampleInfo::coherent_set_info field was not supported 76

vii

In XML-based applications, generated IDL types did not take precedence over XML
DynamicTypes (C# API) . 76

Namespaces ignored when a type was explicitly registered in C# for XML-based ap-
plications . 77

Corruption of LoanedDynamicData object when moved in some situations (Modern
C++ API only) . 77

Calling DynamicData::set_complex_member with an aliased type failed 77
Possible wrong results when adding Time or Duration objects that used very large

numbers . 79
Java API did not support RtpsReliableReaderProtocol_t.receive_window_size 79

5.2.9 Fixes Related to Crashes . 79
Simultaneous deletion of an entity by multiple threads caused a crash when using Java 79
DataReader C++ application crashed if it received tampered sample with unsupported

encapsulation ID . 80
Segmentation fault after calling DomainParticipant::register_durable_subscription

with a group containing a long role_name 80
Segmentation fault when application using MultiChannel ran out of memory 80
Application crashed when capturing traffic for a DomainParticipant created before

enabling network capture . 80
Possible crash when writing a sample . 81
Potential crash during type registration if system ran out of memory 81
Segmentation fault after calling DomainParticipant::delete_durable_subscription with

a group containing a long role_name . 81
Potential crash or memory corruption if user application using thread-specific storage . 81

5.2.10 Other Fixes . 82
Serialization/deserialization of non-primitive sequences and arrays for

XCDR2_DATA_REPRESENTATION did not follow Extensible Types
specification . 82

Possible hang when using best-effort writers and asynchronous publishing 82
Unnecessary sockets created during initialization of library 82
Various issues with RtpsReliableWriterProtocol_t::nack_suppression_duration 83
Possible error message printed during Entity disposal 83
Runtime error when using debug libraries for QNX x86 platform 84
Pushed samples may not have been received by reliable DataReader when DataWriter

published Type that supports Zero Copy transfer over shared memory . . . 84
Unbounded memory growth in Monitoring Library when creating and deleting endpoints 84
Unexpected behavior when two threads crashed at the same time on Windows systems 85
DataReaders setting reader_qos.protocol.expects_inline_qos to TRUE incorrectly

matched with DataWriters . 85
Source IP on Spy was not correct when DataWriters with same Topic were on different

machines . 85
Writer using durable writer history may not have blocked after send window filled up

when disable positive ACKs was enabled 86
Potential truncation of application-level acknowledgment response data 86
Error messages displayed that should not have been, when printing DataReaderQoS

objects . 86
Potential Valgrind invalid read when logging a message or enabling heap monitoring . 86
Malformed IDL printed if multiple labels used for default case of a union 87

viii

6 Known Issues 88
6.1 Known Issues with Discovery (SPDP2) . 88

6.1.1 Features under future consideration for SPDP2 . 88
6.1.2 HMAC-Only mode and Lightweight Security Plugins not supported 89
6.1.3 allow_unauthenticated_participants not supported in all scenarios 89
6.1.4 Participant discovery fails after re-authentication after asymmetric liveliness loss . . 89

6.2 Known Issues with Serialization and Deserialization . 89
6.2.1 Some parameters cannot be received multiple times within same SPDP sample . . . 89

6.3 Known Issues with Usability . 90
6.3.1 Cannot open USER_QOS_PROFILES.xml in rti_workspace/examples from Visual

Studio . 90
6.3.2 DataWriter’s Listener callback on_application_acknowledgment() not triggered by

late-joining DataReaders . 91
6.3.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communication

failure when writing small samples . 91
6.3.4 Memory leak if Foo:initialize() called twice . 91
6.3.5 Wrong error code after timeout on write() from Asynchronous Publisher 92
6.3.6 Type Consistency enforcement disabled for structs with more than 10000 members . 92
6.3.7 Escaping special characters in regular/filter expressions not supported in some cases . 92

6.4 Known Issues with Code Generation . 93
6.4.1 Examples and generated code for Visual Studio 2017 and later may not compile

(Error MSB8036) . 93
6.5 Known Issues with Instance Lifecycle . 93

6.5.1 RECOVER_INSTANCE_STATE_CONSISTENCY setting not fully supported by
RTI Infrastructure Services . 93

6.5.2 Persistence Service DataReaders ignore serialized key propagated with dispose updates 93
6.6 Known Issues with Reliability . 94

6.6.1 DataReaders with different reliability kinds under Subscriber with GROUP_PRE-
SENTATION_QOS may cause communication failure 94

6.7 Known Issues with Content Filters and Query Conditions 94
6.7.1 Writer-side filtering may cause missed deadline . 94
6.7.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated correctly . . 94

6.8 Known Issues with TopicQueries . 94
6.8.1 TopicQueries not supported with DataWriters configured to use batching or Durable

Writer History . 94
6.9 Known Issues with Transports . 95

6.9.1 AppAck messages cannot be greater than underlying transport message size 95
6.9.2 DataReader cannot persist AppAck messages greater than 32767 bytes 95
6.9.3 Discovery with Connext Micro fails when shared memory transport enabled 95
6.9.4 Communication may not be reestablished in some IP mobility scenarios 96
6.9.5 Corrupted samples may be forwarded through Routing Service when using

Zero-Copy transfer over shared memory . 96
Use automatic application acknowledgment . 96
Ensure that the number of available samples accounts for Routing Service processing

time . 97
6.9.6 Network Capture does not support frames larger than 65535 bytes 97

6.10 Known Issues with FlatData . 97

ix

6.10.1 FlatData language bindings do not support automatic initialization of arrays of prim-
itive values to non-zero default values . 97

6.10.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined behavior . . 98
6.11 Known Issues with Coherent Sets . 98

6.11.1 Some coherent sets may be lost or reported as incomplete with batching configurations 98
6.11.2 Copy of SampleInfo::coherent_set_info field is not supported 98
6.11.3 Other known issues with coherent sets . 98

6.12 Known Issues with Dynamic Data . 99
6.12.1 Conversion of data by member-access primitives limited when converting to types

that are not supported on all platforms . 99
6.12.2 Types that contain bit fields not supported . 99

6.13 Known Issues with Logging . 99
6.13.1 Possible crash when closing a logger device while it is used 99

6.14 Known Issues with RTI Monitoring Library . 99
6.14.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Par-

ticipant Sends Monitoring Data . 100
6.14.2 Participant’s CPU and memory statistics are per application 100
6.14.3 ResourceLimit channel_seq_max_length must not be changed 100

6.15 Known Issues with Installers . 100
6.15.1 RTI Connext Micro 3.0.3 installation package currently compatible only with Con-

next 6.0.1 installer . 100
6.16 Other Known Issues . 100

6.16.1 Possible Valgrind still-reachable leaks when loading dynamic libraries 100
6.16.2 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) not supported101
6.16.3 Creating multiple DataReaders for the same Topic under the same Subscriber con-

figured with Group Ordered Access is not supported 101

7 Experimental Features 102

8 Copyrights and Notices 103

x

Chapter 1

Introduction

RTI® Connext® 7.2.0 is a feature release, based on release 7.1.0.

This document includes the following:

• System Requirements

• Compatibility

• What’s Fixed in 7.2.0

• Previous Releases

• Known Issues

• Experimental Features

Many readers will also want to look at additional documentation available online. In particular, RTI recom-
mends the following:

• Use the RTI Customer Portal (https://support.rti.com) to download RTI software and contact RTI
Support. The RTI Customer Portal requires a username and password. You will receive this in the email
confirming your purchase. If you do not have this email, please contact license@rti.com. Resetting
your login password can be done directly at the RTI Customer Portal.

• The RTI Community Forum (https://community.rti.com) provides a wealth of knowledge to help you
use Connext, including:

– Documentation, at https://community.rti.com/documentation

– Best Practices,

– Example code for specific features, as well as more complete use-case examples,

– Solutions to common questions,

– A glossary,

– Downloads of experimental software,

– And more.

• Whitepapers and other articles are available from http://www.rti.com/resources.

1

https://support.rti.com/
https://community.rti.com/
https://community.rti.com/documentation
http://www.rti.com/resources

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

• Performance benchmark results for Connext are published online at http://www.rti.com/products/dds/
benchmarks.html. Updated results for new releases are typically published within two months after
general availability of that release.

2

http://www.rti.com/products/dds/benchmarks.html
http://www.rti.com/products/dds/benchmarks.html

Chapter 2

System Requirements

2.1 Introduction

Connext requires a multi-threaded operating system. This section describes the supported host and target sys-
tems.

In this context, a host is the computer on which you will be developing a Connext application. A target is the
computer on which the completed application will run. A host installation provides the RTI Code Generator
tool (rtiddsgen), examples and documentation, as well as the header files required to build a Connext application
for any architecture. You will also need a target installation, which provides the libraries required to build a
Connext application for that particular target architecture.

Supported platforms, for all products in the Connext suite are listed in these tables:

• Table 2.1 Supported Platforms for Connext Professional. This table is for platforms that are supported in
Connext Professional.

• Table 2.3 Supported Platforms for Connext Secure, Connext Anywhere, and Add-ons. This table is for
platforms that are supported in Connext Secure, Connext Anywhere, and Add-ons.

Early Access releases are intended to showcase the latest Connext features; they support a smaller subset of
platforms in comparison to LTS releases. The upcoming LTS release shall support a larger number of platforms.

Subsequent Early Access and LTS releases may not support all of the platforms supported in this release, or
may support different versions of platforms supported in this release.

See the Core Libraries Platform Notes for more information on each platform.

3

2.2 Supported Platforms

X = Supported

Table 2.1: Supported Platforms for Connext Professional
Platforms Connext Professional

Infrastructure Services
OS OS Version CPU Toolchain RTI Architecture Core

Libraries
LBED
[10]

Persistence Ser-
vice [13]

Routing
Service

Recording
Service

Web Integration
Service

Linux Red Hat Enterprise Linux 8, 9
Ubuntu 18.04 LTS, 20.04 LTS, 22.04 LTS
[12]

x64 gcc 7.3.0 x64Linux4gcc7.3.0 X X X X X X

Red Hat Enterprise Linux 7, 7.3, 7.5, 7.6
CentOS 7.0

x64 gcc 4.8.2 x64Linux3gcc4.8.2 X X X X X X

Ubuntu 18.04 LTS, 22.04 LTS Armv8 (target
only) [2]

gcc 7.3.0 armv8Linux4gcc7.3.0 X X X X X

Ubuntu 18.04 LTS Armv7 (target
only) [2]

gcc 7.5.0 armv7Linux4gcc7.5.0 X X X X

Windows Windows 10 [3], 11,
Windows Server 2016

x64 VS 2017,
2019, 2022

x64Win64VS2017 X X X X X X

Windows 10
Windows Server 2012 R2, 2016

x64 VS 2015 x64Win64VS2015 X X X X X X

macOS macOS 11, 12 x64 clang 12.0,
13.0

x64Darwin20clang12.0 X X X X X

macOS 11, 12 Armv8 (target
only) [11]

clang 12.0,
13.0

arm64Darwin20clang12.0 X X X X X

QNX (target
only)

QNX Neutrino 7.1 Armv8 [2] qcc_gpp 8.3.0 armv8QNX7.1qcc_gpp8.3.0 X X X

VxWorks (tar-
get only)

VxWorks 22.09 [9] x64 llvm 13.0.1.3 x64Vx22.09llvm13.0.1.3
x64Vx22.09llvm13.0.1.3_rtp

X

Table 2.2: (Continued) Supported Platforms for Connext Profes-
sional

Platforms Connext Professional
Tools

OS OS Version CPU Shapes Demo Launcher Monitor Admin Console System Designer
Linux Red Hat Enterprise Linux 7, 7.3, 7.5, 7.6 8, 9

Ubuntu 18.04 LTS, 20.04 LTS, 22.04 LTS
CentOS 7.0
[12]

x64 X X X X X [5]

Ubuntu 18.04 LTS, 22.04 LTS Armv8 (target only) [2]
Ubuntu 18.04 LTS Armv7 (target only) [2]

Windows Windows 10 [3], 11
Windows Server 2012 R2, 2016

x64 X X X X X [7]

macOS macOS 11, 12 x64 X X X X X [6]
macOS 11, 12 Armv8

(target only) [11]
QNX (target only) QNX Neutrino 7.1 Armv8 [2]
VxWorks (target only) VxWorks 22.09 [9] x64

RTIConnextDDS
Core

Libraries
Release

N
otes,Version

7.2.0

Table 2.3: Supported Platforms for Connext Secure, Connext Any-
where, and Add-ons

Platforms Connext Secure Connext Anywhere Add-ons
Security
Plugins for
OpenSSL [1]

Security Plu-
gins for wolf-
SSL [8]

TLS Sup-
port for
OpenSSL
[1]

Cloud
Discovery
Service

Real-Time
Wan
Transport

Security
Plugins
SDK [1]

Limited
Bandwidth
Plug-ins

Observability Framework

OS OS Version CPU Toolchain RTI Architecture Observabil-
ity Collector
Service

Observ-
ability
Library

Linux Red Hat Enterprise Linux 8, 9
Ubuntu 18.04 LTS, 20.04 LTS,
22.04 LTS
[12]

x64 gcc 7.3.0 x64Linux4gcc7.3.0 X X X X X X X X X

Red Hat Enterprise Linux 7, 7.3,
7.5, 7.6
CentOS 7.0

x64 gcc 4.8.2 x64Linux3gcc4.8.2 X X X X X X X X

Ubuntu 18.04 LTS, 22.04 LTS Armv8
(target
only) [2]

gcc 7.3.0 armv8Linux4gcc7.3.0 X X X X X

Ubuntu 18.04 LTS, Armv7
(target
only) [2]

gcc 7.5.0 armv7Linux4gcc7.5.0 X X X X

Windows Windows 10 [3], 11,
Windows Server 2016

x64 VS
2017,
2019,
2022

x64Win64VS2017 X X X X X X X

Windows 10
Windows Server 2012 R2, 2016

x64 VS 2015 x64Win64VS2015 X X X X X X X

macOS macOS 11, 12 x64 clang
12.0,
13.0

x64Dar-
win20clang12.0

X X X X X X

macOS 11, 12 Armv8
(target
only) [11]

clang
12.0,
13.0

arm64Dar-
win20clang12.0

X X X X X

QNX
(target
only)

QNX Neutrino 7.1 Armv8 [2] qcc_gpp
8.3.0

armv8QNX7.1qcc_gpp8.3.0X X X X X

VxWorks
(target
only)

VxWorks 22.09 [9] x64 llvm
13.0.1.3

x64Vx22.09llvm13.0.1.3
x64Vx22.09llvm13.0.1.3_rtp

X [4] X X

[1] Tested with OpenSSL 3.0.9 unless stated otherwise [8] Tested with wolfSSL 5.5.1
[2] These libraries require a hardware FPU in the processor and are compatible with systems with hard-float libc [9] Future releases may support a different version
[3] Per Microsoft, this should be compatible with Windows 10 IoT Enterprise with Windows native application [10] LBED = Limited Bandwidth Endpoint Discovery Plugin
[4] Tested with OpenSSL from VxWorks 22.09 [11] Requires Rosetta® 2 during installation, not required at runtime
[5] Tested on Ubuntu 18.04 LTS only, with Chrome 77, and Firefox 69 [12] This should also work on WindRiver Linux 9
[6] Tested on macOS 10.14 only, with Chrome 77, Firefox 69, and Safari 12 [13] In PERSISTENT mode, tested with filesystem (with SQLite)
[7] Tested on Windows 10 only, with Chrome 77 and Firefox 69

2.2.
Supported

Platform
s

5

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

2.3 Requirements when Using Microsoft Visual Studio

Note: Debug versions of applications and the various Visual C++ DLLs are not redistributable. Therefore, if
you want to run debug versions, you must have the compiler installed.

When Using Visual Studio 2015 — Update 3 Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2015 Update 3 installed on the machine where
you are running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all
Java applications.

You can download theVisual C++Redistributable for Visual Studio 2015Update 3 from thisMicrosoft website:
https://www.microsoft.com/en-us/download/details.aspx?id=53840.

When Using Visual Studio 2017 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2017 installed on the machine where you are
running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all Java
applications.

You can download the Visual C++ Redistributable for Visual Studio 2017 from this Microsoft website:
https://visualstudio.microsoft.com/vs/older-downloads/. Then look in this section: “Redistributables and
Build Tools” for Microsoft Visual C++ Redistributable for Visual Studio 2017”.

When Using Visual Studio 2019 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2019 installed on the machine where you are
running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all Java
applications.

You can download the Visual C++ Redistributable for Visual Studio 2019 from this Microsoft website: https:
//visualstudio.microsoft.com/vs/older-downloads/. Then look in this section: “Other Tools and Frameworks”
for Microsoft Visual C++ Redistributable for Visual Studio 2019”.

When Using Visual Studio 2022 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2022 installed on the machine where you are
running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all Java
applications.

You can download the Visual C++ Redistributable for Visual Studio 2022 from this Microsoft website:
https://www.visualstudio.com/downloads/. Then look in this section: “Other Tools, Frameworks, and Re-
distributables” for Microsoft Visual C++ Redistributable for Visual Studio 2022”.

2.3. Requirements when Using Microsoft Visual Studio 6

https://www.microsoft.com/en-us/download/details.aspx?id=53840
https://visualstudio.microsoft.com/vs/older-downloads/
https://visualstudio.microsoft.com/vs/older-downloads/
https://visualstudio.microsoft.com/vs/older-downloads/
https://www.visualstudio.com/downloads/

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

2.4 Disk and Memory Usage

Disk usage for a typical host-only installation is approximately 802 MB on Linux systems and 821 MB on
Windows systems. Each additional architecture (host or target) requires an additional 498MB on Linux systems
and 609 MB on Windows systems.

We recommend that you have at least 256 MB RAM installed on your host development system. The target
requirements are significantly smaller and they depend on the complexity of your application and hardware
architecture.

2.4. Disk and Memory Usage 7

Chapter 3

Compatibility

Below is basic compatibility information for this release.

Note: For backward-compatibility information between this and previous releases, see the Migration Guide
on the RTI Community Portal (https://community.rti.com/documentation).

3.1 Wire Protocol Compatibility

Connext communicates over the wire using the formal Real-Time Publish-Subscribe (RTPS) protocol. RTPS
has been developed from the ground up with performance, interoperability and extensibility in mind. The
RTPS protocol is an international standard managed by the OMG. The RTPS protocol has built-in extensibility
mechanisms that enable new revisions to introduce new message types, extend the existing messages, or extend
the Quality of Service settings in the product—without breaking interoperability.

RTPS 1.0 was introduced in 2001. The currently supported version is OMG Real-Time Publish-Subscribe
(RTPS) specification, version 2.5, although some features are not supported. Unsupported features currently
are FilteredCountFlag in GAP Submessage, HeartbeatFrag Submessage, and ALIVE_FILTERED instance
state. RTI plans to maintain interoperability between middleware versions based on RTPS 2.1. For more
details, see Table 3.1 RTPS Versions.

Table 3.1 RTPS Versions shows RTPS versions supported for each Connext release. In general, RTPS 2.1 and
higher versions are interoperable, unless noted otherwise. RTPS 2.0 and RTPS 1.2 are incompatible with
current (4.2e and later) versions of Connext.

Although RTPS 2.1 and higher versions are generally interoperable, there may be specific wire protocol interop-
erability issues between Connext releases. These issues are documented in the “Wire Protocol” section for your
release, in the Migration Guide on the RTI Community Portal (https://community.rti.com/documentation).
Wire protocol issues between 5.3.1 and previous releases are documented in the Core Libraries Release Notes
for release 5.3.1.

8

https://community.rti.com/documentation
https://www.omg.org/spec/DDSI-RTPS/2.5/
https://www.omg.org/spec/DDSI-RTPS/2.5/
https://community.rti.com/documentation

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Table 3.1: RTPS Versions
Connext Release RTPS Stan-

dard Ver-
sionPage 9, 1

RTPS Pro-
tocol Ver-
sionPage 9, 2

Connext 7.1.0 and above 2.5 (partial
support)

2.5

Connext 6 and 7.0.0 2.3 (partial
support)

2.3

Connext 5.2 and 5.3 2.2 2.1
Connext 4.5f - 5.1 2.1 2.1
Data Distribution Service 4.2e - 4.5e 2.1 2.1
Data Distribution Service 4.2c 2.0 2.0
Data Distribution Service 4.2b and lower 1.2 1.2

3.2 Code and Configuration Compatibility

The Connext core uses an API that is an extension of the OMGData Distribution Service (DDS) standard API,
version1.4. RTI strives to maintain API compatibility between versions, but will conform to changes in the
OMG DDS standard.

The Connext core primarily consists of a library and a set of header files. In most cases, upgrading simply
requires you to recompile your source using the new header files and link the new libraries. In some cases,
minor modifications to your application code might be required; any such changes are noted in the Migration
Guide on the RTI Community Portal (https://community.rti.com/documentation). The Migration Guide also
indicates whether and how to regenerate code.

3.3 Extensible Types Compatibility

This release of Connext includes partial support for the OMG ‘Extensible and Dynamic Topic Types for DDS’
specification, version 1.3 (DDS-XTypes) from the Object Management Group (OMG). This support allows
systems to define data types in a more flexible way, and to evolve data types over time without giving up
portability, interoperability, or the expressiveness of the DDS type system.

For information related to compatibility issues associated with the Extensible Types support, see theMigration
Guide on the RTI Community Portal (https://community.rti.com/documentation). See also the RTI Connext
Core Libraries Extensible Types Guide for a full list of the supported and unsupported extensible types features.

1 Version number of the RTPS standards document, OMG Real-Time Publish-Subscribe (RTPS) specification, version 2.5
2 RTPS wire protocol version number that Connext announces in messages it puts on the wire

3.2. Code and Configuration Compatibility 9

https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS/1.4
https://community.rti.com/documentation
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3
https://community.rti.com/documentation
https://www.omg.org/spec/DDSI-RTPS/2.5/

Chapter 4

What’s Fixed in 7.2.0

This section describes bugs fixed in Connext 7.2.0.

4.1 Discovery

4.1.1 SPDP2 participants may not have completed discovery if IP mobility event
occurred during discovery

When using Simple Participant Discovery Protocol 2.0, discovery may not have completed between two Do-
mainParticipants if oneDomainParticipant changed locators due to an IPmobility event before its configuration
message was received by the remote participant. You would have had to wait for DomainParticipant liveliness
to expire at the participant_liveliness_lease_duration for discovery to be restarted. Now,
the locator change is correctly propagated to the remote participant and participant discovery will complete.

[RTI Issue ID CORE-13384]

4.1.2 Crash if initial_peers sequence contained a NULL string

Previously, if you configured the initial peers sequence through code, you could potentially add a NULL ele-
ment. Connext did not check for the NULL element; therefore, when the DomainParticipant was created in
this case, Connext crashed. Now a NULL element will be reported, resulting in an ‘inconsistent qos’ failure
when creating the DomainParticipant.

[RTI Issue ID CORE-13802]

10

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.1.3 Failure to deserialize participant discovery information incorrectly allowed
discovery to complete

It was possible for participant discovery to “succeed” even if the deserialization of the participant discovery
information failed. In those cases, this error was printed:

PRESCstReaderCollator_storeSampleData:deserialize sample error in topic
'DISCParticipant' with type 'DISCParticipantParameter'

This incorrect ‘success’ could have led to unexpected behavior or crashes. This problem has been fixed. Now
participant discovery won’t complete if deserialization issues are detected.

[RTI Issue ID CORE-12952]

4.1.4 Unbounded memory growth when creating/deleting DomainParticipants

In Connext 7.1.0, a DomainParticipant was not freeing some of the memory associated with a remote Domain-
Participant that was deleted. This may have led to unbounded memory growth if your applications continuosly
create/deleteDomainParticipants. When this growth occurred, you may have seen the following error message:

ERROR [DELETE DP|LC:DISC]COMMENDAnonWriterService_as-
sertRemoteReader:DELETION FAILURE | skiplist node already removed

This problem has been fixed.

[RTI Issue ID CORE-13964]

4.2 Serialization and Deserialization

4.2.1 Unbounded memory growth when deserializing SPDP discovery sample

Potential unbounded memory growth occurred when some parameters appeared multiple times within a Sim-
ple Participant Discovery Protocol (SPDP) discovery sample. This problem has been fixed. See also Some
parameters cannot be received multiple times within same SPDP sample.

[RTI Issue ID CORE-13594]

4.2.2 Wrong error message when deserializing PropertyQos property value and
exceeding property_string_max_length resource limit

If property_string_max_length was exceeded when deserializing the PropertyQos property value, the resulting
error message was wrong (the value of the maximum size in particular). This problem has been fixed. Now
the error message shows the correct information.

[RTI Issue ID CORE-13678]

4.2. Serialization and Deserialization 11

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.2.3 Potential unexpected behavior or crash when deserializing SPDP discovery
sample

Potential unexpected behavior or a crash could occur when deserializing some inconsistent or malformed pa-
rameters within a Simple Participant Discovery Protocol (SPDP) discovery sample. This problem has been
fixed.

[RTI Issue ID CORE-13811]

4.3 Debuggability

4.3.1 Instance State Consistency QoS was commented out when printed out as
XML from code

When the instance_state_consistency_kind in the RELIABILITY QoS policy was printed as
XML from code (for example, while calling DDS_DataWriterQos_to_string_w_params() in the
C API), it was commented out. It is printed out now without the XML <!-- and --> strings.

[RTI Issue ID CORE-13909]

4.3.2 DataWriter instance statistics were not updated in all cases

The instance statistics within the DDS_DataWriterCacheStatus were not correct if dds.
data_writer.history.source_timestamp_based_autopurge_instances_delay
on that DataWriter was also being used. This issue has been resolved.

[RTI Issue ID CORE-13278]

4.4 Transports

4.4.1 Connext started before Windows completed duplicate address detection on
network interfaces

In some cases, such as the use of Connext in a Windows service, Connext would be started before Windows
completed duplicate address detection on its network interfaces. This would result in the inability to use those
interfaces in Connext.

Connext will now delay the usage of Windows network interfaces until duplicate address detection completes
successfully (i.e., the DadState is IpDadStatePreferred).

[RTI Issue ID CORE-13425]

4.3. Debuggability 12

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.4.2 Ungracefully terminated QNX processes using SHMEM transport prevented
startup of new processes due to unclosed POSIX semaphores

If a QNX application using the shared-memory transport was ungracefully shut down, crashed, or otherwise had
an abnormal termination while holding a POSIX semaphore used by the transport (for example, while sending
data through the shared-memory transport), Connext applications launched after that point on the same domain
may have waited forever for that semaphore to be released.

This problem has been resolved. However, the fix makes communication with applications from a previous
Connext version impossible when using the shared-memory transport. If you try to use shared memory with
old applications, you will see the following error message(s):

incompatible shared memory protocol detected.
Current version 5.0 not compatible with x.y.

OR

incompatible shared memory protocol detected.
Current version x.y not compatible with 5.0.

There is no way to be backwards-compatible. You will have to use other transports such as UDPv4.

[RTI Issue ID CORE-9434]

4.4.3 QNX applications using shared-memory transport may have led to thread pri-
ority inversion issues

Running QNX applications using the Connext shared-memory transport may have led to thread priority inver-
sion issues.

This problem has been resolved. However, the fix makes communication with applications from a previous
Connext version impossible when using the shared-memory transport. If you try to use shared memory with
old applications, you will see the following error message(s):

incompatible shared memory protocol detected.
Current version 5.0 not compatible with x.y.

OR

incompatible shared memory protocol detected.
Current version x.y not compatible with 5.0.

There is no way to be backwards-compatible. You will have to use other transports such as UDPv4.

[RTI Issue ID CORE-13745]

4.4. Transports 13

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.4.4 Stalled communication when using shared-memory transport

On systems with a weak memory architecture, such as Arm®, the shared-memory transport may have been
corrupted due to a data race in the concurrent queue where the messages are written into the shared-memory
segment. This data race may have occurred until received_message_count_max messages were sent
through the transport. The corrupted transport resulted in parsing errors, which filled up the shared-memory
segment. For example, you may have seen messages such as the following:

MIGInterpreter_parse:available space 24 < 28
MIGInterpreter_parse:!RTPS
MIGInterpreter_parse:INVALID from 0X1014D5A,0X7E8C7D92
NDDS_Transport_Shmem_send:failed to add data. shmem queue for port 0x1d3e is␣
→˓full (received_message_count_max=2880, receive_buffer_size=100971520). Try␣
→˓to increase queue resource limits.

This problem has been resolved. Now the data race that led to this situation cannot occur.

[RTI Issue ID CORE-13846]

4.4.5 Overflow in default TransportMulticastMappingQosPolicy procedure

This release fixes an integer overflow in a function that maps a multicast IP address to DataReaders. You may
now see a different IP address being assigned to a DataReader when the TRANSPORT_MULTICAST_MAP-
PING QoS policy is set and the default DDS_TransportMulticastMappingFunction_t is used.

[RTI Issue ID CORE-13653]

4.5 Reliability Protocol and Wire Representation

4.5.1 Samples lost by reliable reader acknowledging samples it did not receive
after remote writer update

A reliable DataReader may have lost samples by incorrectly acknowledging samples it did not receive. This
could occur after a remote DataWriter update, such as if the writer had an IP mobility event or updated its QoS
policy. When the reader processed this event, it began sending a periodic ACK/NACK at the nack_period
to the writer until it received another message from the writer. This ACK/NACK acknowledged samples up to
the last sequence number that it received from the writer, even if samples before that sequence number had not
been received. When the writer received this ACK/NACK, it may have considered those samples to be fully
acknowledged.

The reader could request the lost samples again, but if the reader was usingVOLATILE durability, the remote
writer would GAP for the samples and they would not be resent. If the reader was using TRANSIENT_LO-
CAL durability, the writer would resend the samples if they were still available, but if the writer had updated
the send window beyond the samples being requested, the samples would not be resent and would be lost.

This issue has been resolved. If a reader receives a remote writer update from a writer that is still alive, it will
not begin sending additional ACK/NACKs at the nack_period to the writer. This prevents the reader from
incorrectly acknowledging samples it did not receive. If a reader receives a remote writer update from a writer

4.5. Reliability Protocol and Wire Representation 14

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

that is not alive, it will send additional ACK/NACKs at the nack_period to the writer, but the bitmap will
accurately represent the missing samples rather than acknowledging the last received sample. Samples are no
longer lost because they are not incorrectly acknowledged.

[RTI Issue ID CORE-13611]

4.5.2 Inconsistent RTPS protocol versions broadcasted by Connext

Previously, Connext broadcasted different RTPS protocol versions in different messages. The versions are fixed
and unified in this release.

[RTI Issue ID CORE-13676]

4.5.3 Sample loss when using asynchronous publisher due to missing GAP

Samples may have been lost when using an asynchronous publisher in the following scenario:

1. A reader sent a NACK to the writer requesting missing samples where the first m (where m >= 0)
samples should have been sent to the reader and at least the last n (where n >= 2) samples were not
for the reader (for example, were filtered with a content filter).

2. Some (but not all) of the n samples were no longer present in the writer queue (for example, were
removed due to exceeding the writer_qos.history.depth).

3. The next sample after the NACK bitmap sent by the reader was also not for the reader.

In this scenario, the writer may have failed to send a GAP to the reader to inform the reader about the samples
that were not for the reader. The reader may then have continued to NACK for these samples and failed to
progress, leading to sample loss.

[RTI Issue ID CORE-13844]

4.6 Content Filters and Query Conditions

4.6.1 Instance handling on a DataReader and filtering operations in ContentFil-
teredTopics, QueryCondition, TopicQueries, and Multi-Channel DataWriters
may have failed

Starting in 6.0.0, you may have experienced invalid results in filtering operations when using ContentFil-
teredTopics, QueryCondition, TopicQueries, or Multi-Channel DataWriters. This issue may have resulted in
DataReaders not receiving samples they should have. The following error message occurred: DDS_SqlFil-
ter_evaluateOnSerialized:deserialization error: sample. This issue may also have
caused failures on aDataReader when setting writer_qos.protocol.disable_inline_keyhash
to TRUE on a matching DataWriter. This could have led to incorrect instance handling, where two different
instances were considered the same.

This problem was specific to Topic types containing optional members, and occurred when the DataReaders
and DataWriters on the Topic used XCDRv1 encapsulation. The problem affected all languages.

4.6. Content Filters and Query Conditions 15

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

This problem has been resolved.

[RTI Issue ID CORE-13829]

4.7 Dynamic Data

4.7.1 Problems with int8/uint8 support

Previous releases of Connext had problems supporting int8/uint8. There were issues serializing/deserializing
the type and getting/setting the values with DynamicData.

Support for int8/int8 has been improved. Generated code will now send and receive the data correctly in all
languages. The only pending issue (not yet fixed in this release) is int8/uint8 collection in Python (RTI Issue ID
CODEGENII-1912). This release also adds a method to DynamicData to set and get the data with the correct
type and sign. This release provides a Java method to access unsigned integers.

This fix does not change the Type Kind on the wire. Features and products, such as Admin Console, that rely
on the Type Kind for the data will not be able to detect the type correctly.

[RTI Issue ID CORE-8865]

4.7.2 Connext did not print array dimensions for aliases that were arrays

When printing the type information for a type that is an alias of an array type, the array dimensions are now
output for both the IDL and XML representations.

[RTI Issue ID CORE-13651]

4.8 Performance and Scalability

4.8.1 Performance degradation when using FlatData with ContentFilteredTopics

In previous releases, a DataWriter using FlatData and doing writer-side filtering for DataReaders using Con-
tentFilteredTopics may have done more data copies than necessary, leading to suboptimal performance. This
problem has been fixed.

[RTI Issue ID CORE-13250]

4.7. Dynamic Data 16

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.8.2 Performance issues when using FlatData with payload encryption or com-
pression

You may have seen performance issues when using the FlatData language binding along with compression or
payload encryption. In this case, the number of copies of each sample was not reduced to two, as is expected
when using FlatData. (See “34.1.4 FlatData Language Binding” in the Core Libraries User’s Manual.) This
issue removed the performance improvement that FlatData provides, but only when compression or payload
encryption was enabled. This problem did not occur when using FlatData without compression or payload
encryption. This problem has been fixed.

[RTI Issue ID CORE-11262]

4.8.3 Transport utilization metrics overflowed in applications with high throughput

Transport utilization periodic metrics (like dds_participant_udpv4_us-
age_in_net_bytes_count ordds_participant_udpv6_usage_out_net_bytes_count)
could overflow in high-throughput applications (for example, applications that wrote and/or received large data
with high frequency). If the polling period ofMonitoring Library 2.0 (previously called Observability Library)
was big enough, the variation of the metrics in the period of time did not fit into a 32-bit integer.

If a metric overflowed, an error message like the following was produced:

ERROR RTI_Monitoring_getTransportUtilizationStatistics:TYPE CONVERSION␣
→˓FAILURE | count (4421753352) exceeds max. representable UINT32 for metric␣
→˓with metricGroupIndex 22

The metric was not propagated to Observability Dashboards in this case.

To mitigate this issue, transport utilization count metrics have been promoted to a 64-bit integer. Reducing the
polling period also makes the overflow less likely.

[RTI Issue ID MONITOR-597]

4.9 APIs (C or Traditional C++)

4.9.1 Some DDS_TypeCode operations may have crashed when invalid arguments
were used

Some operations related to DDS_TypeCode did not properly check for NULL arguments, which could have
caused a crash. Checks are now in place to avoid this issue.

[RTI Issue ID CORE-13681]

4.9. APIs (C or Traditional C++) 17

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.9.2 Several C API DDS_GUID functions did not account for NULL parameters cor-
rectly

Multiple DDS_GUID functions from the C API such as DDS_GUID_copy did not account for NULL as their
input parameters. Both the documentation and the implementation for these functions should now reflect the
correct behavior.

[RTI Issue ID CORE-13483]

4.10 APIs (Modern C++ API)

4.10.1 Unexpected rti.connextdds.PreconditionNotMetError when setting optional
string members in QoS policies

Attempting to assign a non-set value to an optional string member in a QoS policy in modern C++ resulted in
the generation of an rti.connextdds.PreconditionNotMetError.

The QoS policy members affected by this issue were:

EntityName::name

EntityName::role_name

Monitoring::application_name

MonitoringPeriodicDistributionSettings::datawriter_qos_profile_name

MonitoringEventDistributionSettings::datawriter_qos_profile_name

MonitoringLoggingDistributionSettings::datawriter_qos_profile_name

MonitoringDedicatedParticipantSettings::participant_qos_profile_name

MonitoringDistributionSettings::publisher_qos_profile_name

This problem has been resolved.

[RTI Issue ID CORE-13801]

4.10.2 Move constructors for some of the built-in topic-types were incorrectly im-
plemented

This issue was fixed in release 6.1.0, but not documented at that time.

The implementation of the move constructor and move assignment for the built-in topic types, such as Publi-
cationBuiltinTopicType, may have caused undefined behavior. This problem has been resolved.

[RTI Issue ID CORE-13791]

4.10. APIs (Modern C++ API) 18

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.10.3 Manually closing some built-in readers could lead to a crash

Calling close() on the built-in DataReaders with topic names service_request_topic_name or
virtual_subscription_topic_name could have led to a crash. (Note that if they were not manually
closed, which is not necessary, the issue did not happen.) This issue has been fixed.

[RTI Issue ID CORE-13757]

4.10.4 Incorrect implementation of DynamicDataMemberInfo constructor and as-
signment may have led to undefined behavior

It was not safe to copy a DynamicDataMemberInfo object. Using its copy constructor or copy-assignment
operator may have led to undefined behavior if the DynamicData object that created it had been destroyed
before. This problem has been resolved by making DynamicDataMemberInfo a true value type. It now
owns the memory instead of relying on the related DynamicData object to be alive.

[RTI Issue ID CORE-13753]

4.10.5 int8_t, uint64_t, int64_t not supported as primitive types in C++11 (Modern
C++) Dynamic Type API

The types int8_t, uint64_t, int64_t were not accepted as a valid type for the templates of
dds::core::xtypes::PrimitiveType. Therefore, the following code did not compile with C++11:

my_struct_type.add_member((dds::core::xtypes::Member(dds::core::xtypes::PrimitiveType
→˓<int8_t>()));
my_struct_type.add_member((dds::core::xtypes::Member(dds::core::xtypes::PrimitiveType
→˓<int64_t>()));
my_struct_type.add_member((dds::core::xtypes::Member(dds::core::xtypes::PrimitiveType
→˓<uin64_t>()));

The issue with int64_t and uint64_t was fixed in release 7.0.0. The error with int8_t is fixed in this release,
7.2.0. Now, the above code will compile and work.

[RTI Issue ID CORE-13689]

4.10.6 Policy getter for rti::core::policy::Monitoring previously missing

The policy getter for the rti::core::policy::Monitoring QoS was previously missing in Modern
C++. The missing getter has now been added.

[RTI Issue ID MONITOR-552]

4.10. APIs (Modern C++ API) 19

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.11 APIs (Java)

4.11.1 Possible memory leak in DynamicData copy constructor

In the JavaAPI only, under certain conditions, copying aDynamicData object using the constructor that receives
another DynamicData object may have leaked native heap memory. This problem has been fixed.

[RTI Issue ID CORE-13609]

4.11.2 Some ReliabilityQos methods did not consider the instance state consis-
tency QoS

The copy_from and equals methods, as well as the implementation of the hash code for objects of that
class, were not complete; they were missing the instance_state_consistency_kind QoS. This
problem has been remedied.

[RTI Issue ID CORE-13785]

4.12 APIs (Python)

4.12.1 Access to collection elements in some DynamicData accessors was not
zero-based

Given a DynamicData instance sample with a sequence or array field (my_seq), when accessed via a nested
field expression, the indexes were 1-based, not 0-based as in the rest of the API accessors. For example, the
following was incorrect because the first element was 1:

value = sample["my_seq[0].x"]

This problem has been resolved. Now, indexes are zero-based and the expression above is valid.

[RTI Issue ID PY-98]

4.13 APIs (Multiple Languages)

4.13.1 Looking up a DataReader using the wrong class in Modern C++ or Python
did not raise clear exception

In Modern C++, when using the find_datareader_by_topic_name or
find_datawriter_by_topic_name functions and the wrong DataReader type, the function
may have returned an invalid entity. Now, it will throw a dds::core::InvalidArgumentError. For
example:

4.11. APIs (Java) 20

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

auto dr =
rti::sub::find_datareader_by_topic_name<DataReader<Foo>>(
dds::sub::builtin_subscriber(participant),
dds::topic::publication_topic_name());

In Python, the following code now throws a dds.InvalidArgumentError:

dr = dds.DataReader.find_by_topic(
participant.builtin_subscriber, dds.PublicationBuiltinTopicData.

→˓topic_name)

since the right DataReader class for the built-in PublicationBuiltinTopicData reader is dds.
PublicationBuiltinTopicData.DataReader, not dds.DataReader.

[RTI Issue ID CORE-13800]

4.13.2 Alias type not obtainable using a QosProvider

Alias types were not obtainable using a QosProvider. This problem affected all language bindings that support
a QosProvider. This problem has been fixed.

[RTI Issue ID CORE-13830]

4.14 XML Configuration

4.14.1 Incorrect parsing of data_representation attribute in XML type definitions

The type attribute data_representation was not parsed correctly. This could result in a type requiring
a different representation (XCDR1, XCDR2, or both) than defined by the XML for the type.

[RTI Issue ID CORE-13769]

4.14.2 Creating Topic-specific entities from a <qos_profile> using QoS profile in-
heritance and/or composition returned incorrect values

Topic-specific entities include DataWriter, DataReader and Topic. Their corresponding tags
<datareader_qos>, <datawriter_qos> and <topic_qos> contain the topic_filter
attribute that allows you to indicate which Topic name the XML values should be used for. The internal
mechanism of the Core Libraries XML parser had a bug where incorrect values could be returned from a
<qos_profile> when the following conditions were true:

1. The <qos_profile> used QoS Profile inheritance and/or composition, where the parent QoS Profiles
contained any of the above Topic-specific entities.

2. The <qos_profile> did not contain the QoS tag for the Topic-specific entity being cre-
ated by pointing to it: for example, in the C API, if you called DDS_DomainPartici-
pant_create_datawriter_with_profile() on a <qos_profile> that did not contain
a <datawriter_qos> tag.

4.14. XML Configuration 21

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

This issue has been resolved.

[RTI Issue ID CORE-13438]

4.14.3 configuration_variables tag was not effective

The <configuration_variables> tag was visible and accepted by the Connext .xsd files, but it had no
effect: the configured values were not used by the Core Libraries to set the value of XML-defined environment
variables. This has been corrected. Now, the <configuration_variables> tag can be used to define
default values for XML-defined environment variables, which will take effect if those environment variables
are not set on the terminal.

[RTI Issue ID CORE-11871]

4.14.4 Using languageBinding attribute on union types in XML caused parsing er-
ror

When a union type that used the languageBinding attribute was created in XML, a parsing error would result.
This issue has been fixed.

[RTI Issue ID CORE-13905]

4.15 Instances

4.15.1 Instances transitioned due to instance state consistency did not respect
propagate_dispose_of_unregistered_instances

By default, Connext does not support transitions between NOT_ALIVE instance states; however, this can
be configured on the DataReader by setting propagate_dispose_of_unregistered_instances and/or propa-
gate_unregister_of_disposed_instances in the DATA_READER_PROTOCOL QoS policy. Instances that
were transitioned due to instance state consistency (i.e., instances that transitioned upon recovering liveliness
with a previously matched DataWriter) were not abiding by this configuration and may have transitioned from
NOT_ALIVE_NO_WRITERS to NOT_ALIVE_DISPOSED even though propagate_dispose_of_unregis-
ter_instances was false. This issue has been resolved.

[RTI Issue ID CORE-13477]

4.15.2 Instance purging based on source timestamp did not work

In 7.1.0, the source timestamp-based purge delay did not purge instances based on their source times-
tamp. Instead, it purged instances based on their sequence number. This problem has been resolved. Now,
the dds.data_writer.history.source_timestamp_based_autopurge_instances_delay property works as in-
tended.

[RTI Issue ID CORE-13911]

4.15. Instances 22

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.16 Crashes

4.16.1 Race condition when using multiple threads to enable same DomainPartic-
ipant

Suppose you created a disabled DomainParticipant. If you used multiple threads to enable this DomainPartic-
ipant, then a race condition may have led to a segmentation fault in release libraries or a precondition error in
debug libraries. The precondition error looked similar to this:

REDAWeakReference_getReferent:!precondition: !((reference) != ((void␣
→˓*)0) && (reference)->_manager != ((void *)0) && (reference)->_
→˓referentEpochAtCreation != (0)) || tableWithStartedCursor==((void *)0)

RTINetioReceiver_removeEntryport:!goto WR NetioReceiver_Entryport

This problem has been fixed. Calling enable() on a DomainParticipant is now thread-safe with respect to
other calls to enable() on the same DomainParticipant.

[RTI Issue ID CORE-13535]

4.16.2 Possible crash gathering periodic metrics for a resource that was being
added or deleted at the same time

Due to concurrency issues in the thread that gathers the periodic metrics of the observable resources, an appli-
cation might have crashed because the thread accessed invalid memory. The crash could occur in any of the
following scenarios:

• When a resource was deleted (for example, you deleted a DataWriter) at the same time that Monitoring
Library 2.0 (formerly called Observability Library) was gathering the periodic metrics of that resource.
The thread may have accessed already freed memory.

• When a resource was added (for example, you created aDataWriter), the thread could start gathering the
periodic metrics of that resource before the resource was completely initialized. The thread may have
accessed uninitialized memory.

Depending on the configured polling_period for periodic metrics and the frequency your application
creates and deletes observable resources, the chances of the conditions explained above happening at the same
time were unlikely.

These concurrency issues are now fixed. Monitoring Library 2.0 will not gather periodic metrics for resources
that are being deleted or added.

[RTI Issue ID MONITOR-533]

4.16. Crashes 23

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.16.3 Potential crash when configuring logging verbosity to NDDS_CON-
FIG_LOG_VERBOSITY_STATUS_LOCAL or higher

Connext Receive threads may have crashed as a result of a race condition during the Receive thread destruction
process.

This problem, which was only possible when the Connext logging verbosity was set to NDDS_CON-
FIG_LOG_VERBOSITY_STATUS_LOCAL or higher (i.e., more verbose than STATUS_LOCAL), is now
resolved: Receive threads no longer crash during their destruction.

[RTI Issue ID CORE-13649]

4.16.4 Malloc called when handling SIGSEGV

Previously, when handling a segmentation violation signal (SIGSEGV), it was possible for malloc to be called
while logging backtrace information. In certain scenarios, this could cause another segmentation violation, and
this cycle of events would continue indefinitely. Now, malloc will not be called when handling segmentation
violation signals.

[RTI Issue ID CORE-13396]

4.16.5 Calling delete_contained_entities APIs could cause a crash in the thread
that collects periodic metrics

If your application used any of thedelete_contained_entitiesAPIs (e.g., DDS_DomainPartic-
ipant_delete_contained_entities) and Monitoring Library 2.0 (previously called Observability
Library) was still enabled, there was a possibility of a crash happening in the thread that collects periodic met-
rics. The crash happened because the children DDS Entities were removed before deleting their observable
resources. Therefore, the periodic metrics thread could try to collect metrics for an observable resource whose
DDS Entity no longer exists.

This issue is now fixed. The periodic metrics collector thread will not try to collect metrics for observable
resources that are being deleted.

[RTI Issue ID MONITOR-549]

4.16.6 Application could crash when disabling and re-enabling Monitoring Library
2.0 due to internal error

If there was an error in an internal function of Monitoring Library 2.0 (formerly known as Observability Li-
brary), depending on the memory state an application using the Library could crash in the following scenario:

1. Monitoring Library 2.0 was enabled.

2. You created some DDS Entities (DomainParticipant, Publisher, DataReader…) in your application.

3. You disabled and re-enabled the Library. Due to an internal error, an exception was printed in the
RTI_Monitoring_collectDdsResources function.

4. You deleted any DDS Entity before disabling the Library.

4.16. Crashes 24

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Because of the error in RTI_Monitoring_collectDdsResources, the observable resources associ-
ated with the DDS Entities were not updated for the second activation of the Library. The DDS Entities kept
the old observable resources object from the previous activation, which were no longer valid.

When deleting the DDS Entities, these old observable resources were used without checking their validity. The
behavior was undefined at that point and, depending on the memory state, the application could crash.

This issue is now fixed. Monitoring Library 2.0 no longer uses observable resources without checking their
validity first.

[RTI Issue ID MONITOR-548]

4.16.7 Low-memory conditions could lead to crash on several platforms if alloca-
tion of high resolution clock failed

If the system was running very low in memory, a failure to allocate the high-resolution clock could then lead
to a crash, since a NULL pointer would have been dereferenced while attempting to handle the failure. This
issue applied to all platforms except Windows, Solaris, and Integrity, where the issue would not have occurred.
This problem has been fixed.

[RTI Issue ID CORE-13899]

4.17 Entities

4.17.1 Monitoring Library 2.0 incorrectly collected both enabled and disabled DDS
Entities

In the previous release, Monitoring Library 2.0 (then called Observability Library) incorrectly collected both
enabled and disabled DDS Entities if the library was enabled after creating the entities. Now, Monitoring
Library 2.0will only assert enabled DDS Entities, ensuring that disabled entities are not unnecessarily collected.
Disabled DDS Entities are asserted when they are enabled.

[RTI Issue ID MONITOR-594]

4.17.2 Application may have hung when deleting a monitored DDS entity

If RTI Monitoring Library 2.0 (previously called Observability Library) was enabled, you deleted a DDS entity
(for example, by calling DDS_Publisher_delete_datawriter or a similar API), and periodic metrics
were being collected for the same DDS entity, the application may have hung. The hang occurred because the
deletion thread and the periodic thread took the same pair of semaphores in inverted order.

This hang is now fixed. Periodic metrics are not collected for an entity that is being deleted.

[RTI Issue ID MONITOR-580]

4.17. Entities 25

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.17.3 Monitoring Library 2.0 did not assert disabled DDSEntities when the Entities
were enabled

IfMonitoring Library 2.0 (previously called Observability Library) was enabled in an application and then DDS
Entities were created disabled (by setting the entity_factory.autoenable_created_entities
QoS setting to false), disabled Entities were not asserted by the library when they were enabled. This meant
that these DDS Entities were never observed by Monitoring Library 2.0.

This issue is fixed. Disabled DDS Entities (and all their contained Entities) are now asserted after enabling.

[RTI Issue ID MONITOR-574]

4.18 Interoperability

4.18.1 Possible incomplete endpoint discovery when communicating with other
DDS vendors

Connext only supports a maximum of four representations in the DATA_REPRESENTATION QoS policy for
readers, and one representation for writers. However, other DDS vendors may support more than this. If a
Connext endpoint was communicating with another vendor’s endpoint with more than the supported represen-
tations, there may have been interoperability issues:

• Without Security: Builtin Topic Publication/Subscription listeners failed to call the associated callbacks
for received discovery samples from other vendors announcing more than one data representation for
writers, or more than four data representations for readers.

• With Security: If enabled, the RTI Security Plugins failed to interoperate with other vendors announcing
more than one data representation for writers, or more than four data representations for readers.

This problem no longer occurs. In the case of a DataReader with more than four representations, Connext now
uses only the first four. In the case of a DataWriter with more than one representation, Connext now uses only
the first.

[RTI Issue ID CORE-13836]

4.19 Vulnerabilities

4.19.1 Out-of-bounds read while deserializing malformed partition parameters
from malicious RTPS message

An out-of-bounds readmay have occurred while deserializingmalformed partition parameters from amalicious
RTPS message. This issue has been fixed.

4.18. Interoperability 26

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Out-of-bounds read while parsing a malicious RTPS message.

• Remotely exploitable.

• Potential impact on confidentiality of Connext application.

• CVSS Base Score: 6.5 MEDIUM

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

User Impact with Security

Same as “User Impact without Security,” above.

[RTI Issue ID CORE-13669]

4.19.2 Out-of-bounds read while deserializing malformed IPv6 locator from mali-
cious RTPS message

An out-of-bounds read may have occurred while deserializing a malformed IPv6 locator from a malicious
RTPS message. This issue has been fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Out-of-bounds read while parsing a malicious RTPS message.

• Remotely exploitable.

• Potential impact on confidentiality of Connext application.

• CVSS Base Score: 6.5 MEDIUM

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

User Impact with Security

Same as “User Impact without Security,” above.

[RTI Issue ID CORE-13764]

4.19. Vulnerabilities 27

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.19.3 Remote modification of DomainParticipant names in unsecure system

In a system without security, a vulnerability in the Connext application could have potentially allowed remote
attackers to modify the DomainParticipant name of any DomainParticipant in the system. This issue has been
fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Any DomainParticipant could have its participant’s name changed by an attacker.

• Remotely exploitable.

• Potential impact on integrity of Connext application.

• CVSS Base Score: 5.3 MEDIUM

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

User Impact with Security

No impact when using the Security Plugins if enabling rtps_protection or if discovery_protec-
tion_kind is different than NONE: in this case, participant discovery samples will be protected against tam-
pering from an external malicious agent after authentication is completed. Moreover, non-legitimate changes in
the participant discovery information before authentication are always prevented by the authentication process,
which ensures that the participant discovery information is authentic.

[RTI Issue ID CORE-13817]

4.20 Other

4.20.1 Possible hang in application if something failed while adding a new observ-
able resource

An application might have hanged if something went wrong while adding a new observable resource (for exam-
ple, you created a DataWriter). Before the hang, you would have seen an exception error in the RTI_Moni-
toringResourceRegistry_assertResource function. However, not all errors in this function led
to the hang. This issue is now fixed.

[RTI Issue ID MONITOR-534]

4.20. Other 28

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.20.2 Native Android applications were not shipped

Native Android applications are now included in Android target bundles, along with the APKs.

[RTI Issue ID INSTALL-789]

4.20.3 Error creating a DataWriter using durable writer history if setting property
dds.data_writer.history.odbc_plugin.builtin.sample_cache_max_size to -1

Creating a DataWriter using durable writer history and setting the property dds.data_writer.
history.odbc_plugin.builtin.sample_cache_max_size to -1 may have failed with the fol-
lowing error:

!allocate sample buffer pool

Even if the DataWriter creation did not fail, the value of dds.data_writer.history.
odbc_plugin.builtin.sample_cache_max_size would be incorrectly applied. The value was
set to dds.data_writer.history.odbc_plugin.builtin.instance_cache_max_size
for keyed topics and 1 for unkeyed topics.

This problem has been resolved.

[RTI Issue ID CORE-13732]

4.20.4 References to missing header file in Connext Professional source bundle

The Connext Professional source bundle included references to a header file in the xmlutils.1.0 module
that is not part of the source bundle. As a result, if you were building Connext from source, you were unable to
complete the build due to themissing header file. RTI has now removed this dependency from thexmlutils.
1.0 module.

[RTI Issue ID CORE-12846]

4.20.5 Application may have hung when event and event snapshot were published
simultaneously for same observable resource

When RTI Observability Collector Service discovers a Connext application, RTI Monitoring Library 2.0 (previ-
ously called Observability Library) automatically sends a special sample named “event snapshot”. This sample
contains the current values of event metrics for each observable resource. If an event (for example, liveliness
change) was triggered for an observable resource at the same time as an event snapshot was being published for
the same resource, the application may have hung. The hang occurred because the thread that published the
event and the thread that published the snapshot took the same pair of semaphores in inverted order.

This hang is fixed. Now, both threads take the semaphores in the same order.

[RTI Issue ID MONITOR-584]

4.20. Other 29

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

4.20.6 Access to an internal field of observable resources was not thread safe

In Monitoring Library 2.0 (previously known as Observability Library), if a remote administration command
was issued for an observable resource (such as changing the Forwarding verbosity level of an application) at
the same time that periodic metrics were collected for the same resource, an internal field of the resource was
accessed by the two threads unsafely. The value of the internal field could remain in an inconsistent state,
which, in the worst case, might have led to a deadlock when deleting the resource.

This issue is fixed. Accesses to the internal field are now thread safe.

[RTI Issue ID MONITOR-575]

4.20.7 Deadlock issue resolved when disabling Monitoring Library 2.0 during com-
mand processing

In the previous release, a deadlock could occur if RTI Monitoring Library 2.0 (previously known as RTI Ob-
servability Library) was disabled while a remote administration command was being processed. The hang was
caused because the thread that processed the command and the thread that disabled the Library took the same
pair of semaphores in inverted order.

This issue has been addressed in this release. Disabling the Library while a remote administration command
is being processed is now thread safe.

[RTI Issue ID MONITOR-609]

4.20.8 Running rtisetenv_<arch>.bat caused issues in PATH environment

In release 7.1.0, running rtisetenv_<arch>.bat may have caused issues in the PATH environment on
Windows. This problem has been fixed.

[RTI Issue ID INSTALL-880]

4.20.9 Unable to start Launcher, Admin Console, Code Generator, and Monitor in
Windows when the RTI Workspace contained white spaces

On Windows systems, Launcher, Admin Console, Code Generator, and Monitor failed to start when the RTI
Workspace contained white spaces. This issue has been fixed.

[RTI Issue ID TELEMETRY-28]

4.20. Other 30

Chapter 5

Previous Releases

5.1 What’s Fixed in 7.1.0

This section describes bugs fixed in Connext 7.1.0. These fixes have been made since 7.0.0 was released.

5.1.1 Fixes Related to Discovery

Potential memory leak when creation of any of the built-in discovery plugins failed

The first time a DomainParticipant is created in an application, some memory is allocated globally for each of
the built-in discovery plugins (SPDP and SEDP) enabled for that DomainParticipant. This global memory is
released when finalizing the DomainParticipantFactory instance.

However, if there was a failure in the creation of any of the builtin discovery plugins during the DomainPartic-
ipant creation, the DomainParticipantFactory was not notified properly that this global memory was allocated.
Therefore, finalizing the DomainParticipantFactory instance did not release the memory, causing a leak.

This problem is fixed. Finalizing the DomainParticipantFactory instance always releases the memory if it was
previously allocated, regardless of whether or not a failure occurred.

[RTI Issue ID CORE-12882]

Unbounded memory growth when using domain tags or DomainParticipant partitions

Whenever a DomainParticipant discovered another DomainParticipant that it did not match with, either due to
a mismatched domain tag or participant partition, some state was kept that was never removed if the Domain-
Participant never received an announcement from that same mismatched participant indicating that it had been
shut down. This led to unbounded memory growth, which could become an issue in systems where Domain-
Participants with various different domain tags or partitions were coming and going.

[RTI Issue ID CORE-12973]

31

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Error deleting remote endpoints with specific GUID prefixes using debug libraries

An error occurred when using debug libraries in the unlikely case that a DomainParticipant had a zero value as
the hostId, appId, or instanceId. This problem has been fixed.

[RTI Issue ID CORE-13261]

Most up-to-date participant configurationmay not have been received by other participants
and may have led to discovery not completing

It was possible that a configuration change in DomainParticipant ‘A’ may not have been received by Domain-
Participant ‘B’ if the change occurred while the two participants were discovering each other. Examples of
configuration changes are a change in the PROPERTY QoS policy or an IP mobility event in which Domain-
Participant ‘A’ changes one of its IP addresses.

Not having the most recent configuration may have led to discovery not happening if the change was due to an
IP mobility event.

The problem only occurred when discovery used multiple transports (e.g, SHMEM and UDPv4). This problem
has been fixed.

[RTI Issue ID CORE-13359]

Participant failed to assert remote participant if usability of shared memory transport
changed

In 7.0.0, a DomainParticipant failed to assert a remote DomainParticipant if the usability of the shared memory
transport changed, resulting in the following log message:

ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}
→˓|RECEIVE FROM 0x00000000,0x00000000,0x00000000:0x000100C2|:0x000001C1
→˓{Domain=0}|ASSERT REMOTE DP|LC:DISC]PRESParticipant_assertConfiguredRemoteParticipant:ASSERT␣
→˓FAILURE | compare immutable remote participant 0x01017851,0x3B428DDD,
→˓0x514330AA config RW
ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}
→˓|RECEIVE FROM 0x00000000,0x00000000,0x00000000:0x000100C2|LC:DISC]DISCParticipantDiscoveryPlugin_
→˓assertRemoteParticipantConfig:!assert remote participant: 0x01017851,
→˓0x3B428DDD,0x514330AA,0x000001C1
ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}
→˓|RECEIVE FROM 0x00000000,0x00000000,0x00000000:0x000100C2|LC:DISC]DISCParticipantDiscoveryPlugin_
→˓assertRemoteParticipantFull:ASSERT FAILURE | remote participant 0x01017851,
→˓0x3B428DDD,0x514330AA config information
ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}
→˓|RECEIVE FROM 0x00000000,0x00000000,0x00000000:0x000100C2|LC:DISC]PRESParticipantAnnouncementChannelReaderListenerSpdp_
→˓onDataAvailable:!assert remote participant

You may have run into this issue if a shared memory segment was deleted during runtime and a DomainPar-
ticipant updated its configuration information. A change in the shared memory usability will no longer cause
this failure.

[RTI Issue ID CORE-13360]

5.1. What’s Fixed in 7.1.0 32

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Unexpected warning during discovery when multicast disabled

Connext logged a warning during the discovery process when multicast was disabled. The message warned
about unreachable multicast locators. The message was unexpected and has been removed.

[RTI Issue ID CORE-13403]

Unexpected, invalid locator propagated within builtin topics

A DataReader could unexpectedly propagate an invalid locator to a DataWriter for certain builtin topics. The
issue did not affect functionality, since the locator was discarded on the DataWriter side. The bug that sent the
invalid locator has been fixed.

[RTI Issue ID CORE-13416]

5.1.2 Fixes Related to Serialization and Deserialization

Unexpected union value when receiving a discriminator that does not select any union
member on DataReader’s type

When the property dds.sample_assignability.accept_unknown_union_discriminatorwas set to 1, previous
Connext releases were not always compliant with the latest OMG ‘Extensible and Dynamic Topic Types for
DDS’ specification, version 1.3 when a DataWriter publishes a union sample with a discriminator value that
selects a union member, and a DataReader subscribes to a union type that does not have a union member for
the discriminator published by the DataWriter.

For example:

/* Publisher */
union MyUnion switch(int32) {

case 0:
int32 m1;

case 1:
int16 m2;

case 2:
double m3;

};

/* Subscriber */
union MyUnion switch(int32) {

case 0:
int32 m1;

case 1:
int16 m2;

};

In this example, if the DataWriter published a sample with a discriminator value set to 2 selecting m3, the
DataReader received a sample where the discriminator is set to 0 and m1 is set to 0, the default value of the
union. According to the OMG ‘Extensible and Dynamic Topic Types for DDS’ specification, version 1.3, the

5.1. What’s Fixed in 7.1.0 33

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

DataReader should preserve the discriminator value received from the DataWriter even if this discriminator
value does not select any member in the DataReader’s union.

This problem only occurred when one of these conditions was true:

• The unions are mutable regardless of the data encapsulation (XCDR1 or XCDR2).

• The unions are appendable, and the encapsulation is XCDR2.

Note if the union discriminator did not select any member on the DataWriter’s type, such as 3 in the above
example, the DataReader received the expected discriminator 3.

This release accepts a new value for the dds.sample_assignability.accept_unknown_union_discriminator
property:

• 0 (existing value and default value): Received samples containing a union discriminator value that selects
a union member on the DataWriter but not on the DataReader are dropped.

• 1 (existing value) : Received samples containing a union discriminator value that selects a union member
on the DataWriter but not on the DataReader are set to the default union value.

• 2 (new value): Received samples containing a union discriminator value that selects a union member on
the DataWriter but not on the DataReader preserve the discriminator value.

Received samples containing a union discriminator value that does not select a union member on the
DataWriter always preserve the discriminator value on the DataReader with dds.sample_assignability.ac-
cept_unknown_union_discriminator set to 1 or 2, unless the union discriminator value is an enumerator
which is not valid on the DataReader’s type. In this case, the union is set to its default value.

To be compliant with the OMG ‘Extensible and Dynamic Topic Types for DDS’ specification, version 1.3, set
the value to 2.

[RTI Issue ID CORE-13058]

Serialization of samples failed or produced a segmentation fault for types with max serial-
ized size larger than 2GB

A DataWriter may have failed to send a sample due to serialization errors when the sample’s type had a max
serialized size with a value larger than 2GB.

For example:

@nested
struct MyNestedStruct2 {

sequence<octet, 1500000000> m1;
};

@nested
struct MyNestedStruct {

sequence<octet, 1000000000> m1;
MyNestedStruct2 m2;

};

struct MyStruct {

5.1. What’s Fixed in 7.1.0 34

https://www.omg.org/spec/DDS-XTypes/1.3

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

MyNestedStruct m1;
};

In this example, the serialize operation failed with an error like this:

[0x0101C50B,0x0D4E0B41,0xBBFA04AC:0x80000003{E=DW,T=Example MyStruct,
→˓C=MyStruct,D=56}|WRITE] PRESWriterHistoryDriver_serializeSample:serialize␣
→˓sample error in topic 'Example MyStruct' with type 'MyStruct' and␣
→˓encapsulationId 1

For 32-bit platforms, the application may have produced a segmentation fault instead of failing to serialize.

This problem has been fixed.

[RTI Issue ID CORE-12687]

Potential sample corruption when deserializing a malformed RTPS message

A sample could be corrupted/incomplete with no error logged in the case of a deserialization failure in the
transport info parameter of the RTPS message. This problem has been fixed.

[RTI Issue ID CORE-13366]

Unbounded memory growth when deserializing a malformed RTPS message

Potential unbounded memory growth occurred while parsing a malicious RTPS message. This problem has
been fixed.

[RTI Issue ID CORE-13397]

5.1.3 Fixes Related to Debuggability

Hang/crash when invoking a DataReader/DataWriter discovery snapshot within a callback
function

A hang or even a crash occurred when trying to get a discovery snapshot from a DataReader or DataWriter
within a callback. RTI strongly recommends avoiding calling discovery snapshot APIs in callback functions in
release 7.0.0. This issue has been fixed in 7.1.0.

[RTI Issue ID CORE-12959]

5.1. What’s Fixed in 7.1.0 35

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Memory leak if network capture initialization failed

Failure to initialize network capture for a DomainParticipant may have caused a memory leak of 746 kB. The
leak only happened (uponDomainParticipant creation) if the initialization failed when creating the status mutex
for a manager:

!create status mutex for the network capture manager

This issue is now fixed. A failure creating the status mutex for a manager does not leak memory anymore.

[RTI Issue ID CORE-13018]

Unexpected log messages at warning verbosity

You may have seen the following unexpected log messages at the warning verbosity level:

!get xxx remoteWriter
!get xxx remoteReader
!goto WR xxx remote reader
!goto WR xxx remote writer

These warnings did not signal any unexpected scenario, and they have been removed.

[RTI Issue ID CORE-13434]

Unexpected fatal error when number of instances reached the limit

In 7.0.0, an unexpected fatal error could be logged when the following occurred:

• A DataWriter is configured to use durable writer history.

• The number of instances reached themax_instances limit set in theDataWriter’s RESOURCE_LIMITS
QoS.

• Connext could not find an instance to delete (such as an unregistered one), to replace with the new
instance. So the new instance could not be added.

This log message is expected, but it is not a fatal error, so its verbosity has been updated to WARNING, as
follows:

WriterHistoryOdbcPlugin_createResources:FIND FAILURE | Instance for␣
→˓replacement
WriterHistoryOdbcPlugin_addInstance:OUT OF RESOURCES | Exceeded the number of␣
→˓instances. Current registered instances (128), maximum number of instances␣
→˓(128)(writer_qos.resource_limits.max_instances)

[RTI Issue ID CORE-13496]

5.1. What’s Fixed in 7.1.0 36

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

5.1.4 Fixes Related to Transports

Possible data loss after a Connext application lost its multicast interfaces or gained its first
multicast interface

The IP mobility feature detects when the interfaces of an application change, then propagates these changes. If
an IP mobility event causes either the loss of the last interface that supported multicast or the gain of the first
interface that supports multicast, the way other applications communicate with the application that experienced
the IP mobility event changes.

Previously, that transition did not happen properly and may have led to data losses. This problem has been
fixed. Now, communication is not affected by these interface changes.

[RTI Issue ID CORE-12609]

DomainParticipant with non-default metatraffic_transport_priority QoS did not complete
discovery

A DomainParticipant that had a non-defaultmetatraffic_transport_priority in the DISCOVERY QoS Policy
was not able to complete endpoint discovery due to a unicast metatraffic channel that was not created correctly.
(The channel is used by the participant to send Data(R) and Data(W).)

This issue was introduced in 6.1.0. This issue has been resolved.

[RTI Issue ID CORE-12739]

dds.transport.minimum_compatibility_version property did not properly adjust locator for-
mat

Connext 5.3.0 introduced a new shared memory locator format. DomainParticipants in Connext 5.3.0 (and
above) use the new locator format by default. To allow interoperability with Connext versions before 5.3.0, you
must indicate to DomainParticipants to use the old locator format.

There are two properties for telling a DomainParticipant to use the old locator format: dds.trans-
port.use_530_shmem_locator_matching (undocumented and deprecated) and dds.transport.mini-
mum_compatibility_version. The latter is a newer property that combines several other properties. Its
purpose is to set the transport to be compatible with the specified version in a simplified manner.

The problem with the newer property, dds.transport.minimum_compatibility_version, was that it did not
adjust the locator format depending on the Connext version. The workaround was to use the dds.trans-
port.use_530_shmem_locator_matching property instead. This issue has been fixed. You can now use
dds.transport.minimum_compatibility_version without issue.

[RTI Issue ID CORE-12789]

5.1. What’s Fixed in 7.1.0 37

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

TCP Transport did not run with Windows debug libraries when socket_monitoring_kind
was set to IOCP

An internal error prevented the TCP transport from running on Windows with debug libraries
when the socket_monitoring_kind was set to the recommended value of NDDS_TRANS-
PORT_TCPV4_SOCKET_MONITORING_KIND_WINDOWS_IOCP. The error has been corrected.

[RTI Issue ID COREPLG-654]

5.1.5 Fixes Related to Reliability Protocol and Wire Representation

Samples not delivered to Required Subscription DataReaders when DataWriter used
durable writer history and DataReaders disabled positive ACKs

A sample may not have been delivered to a Required Subscription DataReader if the DataWriter was us-
ing durable writer history and there were matching DataReaders configured with reader_qos.protocol.dis-
able_positive_acks. This behavior violated the required subscription contract. This problem has been re-
solved.

[RTI Issue ID CORE-12825]

DataReader may not have received samples that were sent as gapped samples to another
DataReader over multicast

A DataReader may not have received samples that were sent as gapped samples to another DataReader over
multicast. A GAP tells a DataReader that it should not expect to receive the samples that are listed in the GAP
message. In some cases, when a DataWriter was responding to a DataReader’s NACK message, the response
contained a GAP which identified samples that should not have been gapped for any other DataReader aside
from the DataReader whose NACK was being responded to. This was a problem if the NACK response
was sent over multicast and was received by other DataReaders, because those DataReaders would incorrectly
assume those gapped samples were irrelevant and would never receive them.

This issue has been resolved.

[RTI Issue ID CORE-13104]

DDS fragmentation may have led to more fragments than expected for a sample

In 7.0.0, you may have noticed that when using middleware-level fragmentation and a flow controller where
bytes_per_token is set to a value smaller than the minimum transportmessage_size_max across all installed
transports, the number of sample fragments generated for a sample may have been bigger than expected. Al-
though this was not a functional issue, it may have led to performance degradation.

This problem has been fixed.

[RTI Issue ID CORE-13190]

5.1. What’s Fixed in 7.1.0 38

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Unexpected precondition error with debug libraries on a reliable DataWriter while sending
a GAP

In the 6.1.2 and 7.0.0 releases, you may have seen the following precondition error while using the Connext
debug libraries.

DL Debug: : Backtrace:
141: DL Debug: : #4 COMMENDSrWriterService_sendGapToRR /rti/jenkins/
→˓workspace/connextdds_ci_fastbuild-debug_develop/commend.1.0/srcC/srw/
→˓SrWriterService.c:4096 (discriminator 9) [0x5B101E]
141: DL Debug: : #5 COMMENDSrWriterService_onSendDataEvent /rti/jenkins/
→˓workspace/connextdds_ci_fastbuild-debug_develop/commend.1.0/srcC/srw/
→˓SrWriterService.c:6570 [0x5BACF6]
141: DL Debug: : #6 RTIEventActiveGeneratorThread_loop /rti/jenkins/
→˓workspace/connextdds_ci_fastbuild-debug_develop/event.1.0/srcC/
→˓activeGenerator/ActiveGenerator.c:307 [0x28E2FC]
141: DL Debug: : #7 RTIOsapiThreadFactory_onSpawned /rti/jenkins/
→˓workspace/connextdds_ci_fastbuild-debug_develop/osapi.1.0/srcC/
→˓threadFactory/ThreadFactory.c:208 [0x1F3A42]
141: DL Debug: : #8 RTIOsapiThreadFactory_onSpawned /rti/jenkins/
→˓workspace/connextdds_ci_fastbuild-debug_develop/osapi.1.0/srcC/
→˓threadFactory/ThreadFactory.c:208 [0x1F3A42]
141: DL Debug: : #9 RTIOsapiThreadChild_onSpawned /rti/jenkins/workspace/
→˓connextdds_ci_fastbuild-debug_develop/osapi.1.0/srcC/thread/Thread.c:1941␣
→˓[0x1EDB64]
141: DL Debug: : #10 start_thread /build/glibc-CVJwZb/glibc-2.27/nptl/
→˓pthread_create.c:463 [0x76DB]
141: DL Debug: : #11 clone /build/glibc-CVJwZb/glibc-2.27/misc/../sysdeps/
→˓unix/sysv/linux/x86_64/clone.S:97 [0x12161F]
141: DL Fatal: : FATAL rCoRTInk####Evt [0x01014F91,0x39810444,
→˓0x4EC68AEA:0x000004C2|RECEIVE FROM remote DR (GUID: 0x01015FBD,0x5892DC7E,
→˓0x9DB082D4:0x000004C7).
141:] Mx00:/rti/jenkins/workspace/connextdds_ci_fastbuild-debug_
→˓develop/commend.1.0/srcC/srw/SrWriterService.c:4099:RTI0x200003b:!
→˓precondition: "((((gapStartSn)->high) > (((&(gapBitmap)->_lead))->
→˓high)) ? 1 : ((((gapStartSn)->high) < (((&(gapBitmap)->_lead))->high))␣
→˓? -1 : ((((gapStartSn)->low) > (((&(gapBitmap)->_lead))->low)) ? 1 :␣
→˓((((gapStartSn)->low) < (((&(gapBitmap)->_lead))->low)) ? -1 : 0)))) >= 0
→˓"
141: DL Error: : ERROR [0x01014F91,0x39810444,0x4EC68AEA:0x000004C2|RECEIVE␣
→˓FROM remote DR (GUID: 0x01015FBD,0x5892DC7E,0x9DB082D4:0x000004C7).
141:] COMMENDSrWriterService_onSendDataEvent:!send GAP

This error was generated by a reliable DataWriter sending a GAP to a reliable DataReader. After the error was
printed, the DataReader may have stopped receiving data from the DataWriter, leading to a non-recoverable
situation. This problem did not occur with release libraries. This problem has been fixed.

[RTI Issue ID CORE-13462]

5.1. What’s Fixed in 7.1.0 39

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

5.1.6 Fixes Related to Content Filters and Query Conditions

Unexpected “RTIXCdrSampleInterpreter_initializeSampleWInstruction” error log
messages when using QueryConditions, ContentFilteredTopics, TopicQueries, or
Multi-Channel

In releases 6.0.x and 6.1.x, a Connext application using QueryConditions, ContentFilteredTopics, Topic-
Queries, or Multi-Channel may have logged an error message like the following when applying filtering to
some samples:

RTIXCdrSampleInterpreter_initializeSampleWInstruction: <Type>:<Field Name>␣
→˓initialize error

A potential workaround was to set the property dds.content_filter.sql.deserialized_sample.min_buffer_size
to -1 in the participant_qos.property QoS Policy. However, this may have led to a higher memory utilization.

This problem has been resolved.

[RTI Issue ID CORE-13328]

5.1.7 Fixes Related to Dynamic Data

DynamicData DataWriters incorrectly serialized optional empty sequences as null

In previous 6.0.0 releases and above, a DynamicData DataWriter incorrectly serialized an optional empty se-
quence as null. When a DataReader received the sample, it deserialized the wrong value.

For example, assume the following type:

struct AuditLogEntry {
long long Nanoseconds;
@optional sequence<long long, 100> Details;

};

If the publishing application set Details to an empty sequence with zero elements, the serialized value was
incorrectly set to null. When a DataReader received the sample, it incorrectly set Details to null instead of the
empty sequence with zero elements.

This problem has been fixed.

[RTI Issue ID CORE-12866]

5.1. What’s Fixed in 7.1.0 40

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

5.1.8 Fixes Related to APIs

DynamicData method to get member type missing in Modern C++ and C# APIs

The method to retrieve a member type from a DynamicData object was not provided in the Modern C++ and
C# APIs. The following methods have now been added:

• C++: DynamicData::member_type(const std::string& name) and member_type(uint32_t id)

• C#: DynamicData.GetMemberType(string name) and GetMemberType(int id)

[RTI Issue ID CORE-13371]

Fixes Related to Modern C++ API

banish and subject_nameAPIs were unresolved inModern C++Windows dynamic libraries

The Modern C++ APIs banish_ignored_participants, discovered_participant_subject_name, and dis-
covered_participants_from_subject_name were unresolved symbols in the nddscpp2 Windows dynamic li-
braries. If you attempted to use them, you would get LNK2019 unresolved external symbol errors. This
problem has been fixed.

[RTI Issue ID CORE-13053]

Unnecessary small memory allocation in some operations, including read/take

Every call to a DataReader read/take operation caused an unnecessary small memory allocation that was im-
mediately released. More generally, initializing a reference type to dds::core::null caused the same allocation.
For example:

DomainParticipant p = dds::core::null;

This unnecessary allocation has been removed. Constructing a reference type to dds::core::null no longer
allocates memory.

[RTI Issue ID CORE-13262]

close() operation of a ContentFilteredTopic created from XML didn’t work

The close() operation of a ContentFilteredTopic created from XML didn’t actually close it. However, when its
DomainParticipant was closed or destroyed, the ContentFilteredTopic was correctly closed. This problem has
been resolved.

[RTI Issue ID CORE-13367]

5.1. What’s Fixed in 7.1.0 41

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Fixes Related to C# API

Windows library dependency missing from .NET API NuGet packages

In release 7.0.0, Windows machines that did not have the Visual Studio redistributable may not have been
able to run DDS .NET applications out of the box. This dependency is now managed internally and no longer
required by the user.

[RTI Issue ID CORE-13120]

Exception when disposing a DomainParticipant or when entities were not properly dis-
posed

In previous releases of the .NET API, an exception may have occurred when disposing a DomainParticipant or
whenever unused entities that had not been properly disposed were garbage-collected.

[RTI Issue ID CORE-13231]

Fixes Related to Java API

Java API leaked some objects in certain DomainParticipantFactory operations

The Java API created and pinned a number of objects as a result of calling most methods in the DomainPar-
ticipantFactory, including the creation of DomainParticipants. While these objects did not consume significant
amounts of memory, certain JVMs could have exhausted the maximum number of allowed global references,
causing applications to fail. This problem has been resolved.

[RTI Issue ID CORE-12838]

get_typecode method of a DomainParticipant in Java API failed when the type contained
a wstring element

In the Java API, calling the get_typecode method on a DomainParticipant for a registered type that contained
a wstring element failed with the following exception:

Exception in thread "main" com.rti.dds.infrastructure.BAD_TYPECODE: Error␣
→˓creating type code

Exception in thread "main" com.rti.dds.infrastructure.BAD_TYPECODE: Error␣
→˓creating type code
at com.rti.dds.typecode.TypeCodeFactory.create_tc_from_native(TypeCodeFactory.
→˓java:984)

5.1. What’s Fixed in 7.1.0 42

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Exception in thread "main" com.rti.dds.infrastructure.BAD_TYPECODE: Error␣
→˓creating type code
at com.rti.dds.typecode.TypeCodeFactory.create_tc_from_native(TypeCodeFactory.
→˓java:984)
at com.rti.dds.domain.DomainParticipantImpl.get_typecode(DomainParticipantImpl.
→˓java:2027)

The exception was caused by a problem in the way the Connext Java API interfaced with its internal C imple-
mentation. This problem has been resolved.

[RTI Issue ID CORE-13302]

Fixes Related to Python API

DynamicData accessor for an enum member in a base type failed (Python API)

Given a DynamicData for a struct type (my_struct) with a base type containing an enum member (my_enum),
the following code failed:

sample = dds.DynamicData(my_struct)

sample = dds.DynamicData(my_struct)
print(sample["my_enum"]) # error: member my_enum doesn't exist

This problem has been resolved.

[RTI Issue ID PY-30]

Possible incorrect default values when receiving extensible data

Given the following situation:

• An application uses a dds.DataReader for an extensible IDL type “T1” containing a non-optional prim-
itive member “a”.

• The reader receives data for a different-but-compatible type “T2” that doesn’t define “a”.

The reader is expected to return a data sample where “a” is set to its default value (normally 0). However,
in some situations the data sample may have contained an unexpected value for “a”. This problem has been
resolved.

[RTI Issue ID PY-77]

5.1. What’s Fixed in 7.1.0 43

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Some APIs where missing, incorrectly named, or have been deleted

Removed types, methods, and fields:

• TopicInstance and all related operations in the DataReader and DataWriter have been removed.

• The static properties dds.WriterDataLifecycle.auto_dispose_unregistered_instances and dds.Wri-
terdataLifecycle.manually_dispose_unregistered_instances have been removed due to being too
similar to the non-static properties.

• The DataReader operations read_next and take_next have been removed.

Renamed types, methods and fields:

• dds.ReaderDataLifecycle.autopurge_unregistered_instances_delay was incorrectly named and has
been renamed to autopurge_nowriter_samples_delay; autopurge_nowriter_instances_delay was
missing and has been added.

• dds.Filter.sql_filter_name has been renamed to dds.Filter.SQL_FILTER_NAME; dds.Fil-
ter.stringmatch_filter_name has been renamed to dds.Filter.STRINGMATCH_FILTER_NAME.
The same constants have been renamed in dds.MultiChannel.

• dds.DataWriterResourceLimitsInstaceReplacementKind was misspelled and has been renamed to
dds.DataWriterResourceLimitsInstanceReplacementKind.

• dds.TransportMulticast.settings has been renamed to dds.TransportMulticast.value; dds.Trans-
portMulticastMapping.settings has been renamed to dds.TransportMulticastMapping.value;
dds.TransportSelection.enabled_transports has been renamed to dds.TransportSelection.value;
dds.TransportUnicast.settings has been renamed to dds.TransportUnicast.value.

Newly added missing types, methods, and fields:

• The DataReader operation acknowledge_sample with ack_response_data was missing and has been
added.

• dds.Presentation.drop_incomplete_coherent_set was missing and has been added.

• dds.DomainParticipant - the following methods have been added: discovered_participant_sub-
ject_name, discovered_participants_from_subject_name, banish_ignored_participants.

• dds.DomainParticipantQos - the followingQoS policies have been added: partition, default_unicast.

• dds.BuiltinTopicReaderResourceLimits was missing max_fragmented_samples_per_re-
mote_writer, which has now been added.

• The constant dds.DataReaderResourceLimits.AUTO_MAX_TOTAL_INSTANCES was missing and
has been added.

• dds.DataWriterProtocol.initial_virtual_sequence_number was missing and has been added.

• dds.DiscoveryConfigBuiltinChannelKindMask was missing and has been added.

5.1. What’s Fixed in 7.1.0 44

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

• dds.DomainParticipantResourceLimits.serialized_type_object_dynamic_allocation_threshold
was missing and has been added.

• The constant dds.PublishMode.PUBLICATION_PRIORITY_UNDEFINED was missing and has been
added.

• dds.SystemResourceLimits.initial_objects_per_thread was missing and has been added.

• dds.DataWriterCacheStatus was missing the following read-only properties, which have been
added: alive_instance_count, alive_instance_count_peak, disposed_instance_count, disposed_in-
stance_count_peak, unregistered_instance_count, unregistered_instance_count_peak.

• dds.CompressionSettings was missing the following constants, which have been added: COM-
PRESSION_LEVEL_DEFAULT, COMPRESSION_LEVEL_BEST_SPEED, COMPRES-
SION_LEVEL_BEST_COMPRESSION.

• dds.Cookie was missing a no-argument constructor, which has been added.

• dds.AcknowledgmentInfo.cookie was missing and has been added.

• The constant dds.FlowControllerProperty.DEFAULT_FLOW_CONTROLLER_NAME was missing
and has been added.

• dds.Property can now be created from a dictionary.

Other

• In Entity types, listener is now a read-only property; use set_listener to change it with a status mask.

• The DataReader read/take operations include several changes. See RTI Connext Core Libraries What’s
New.

• dds.GroupData’s constructor did not initialize the bytes correctly and has been fixed.

• Setting dds.EntityName.name and role_name to None explicitly was not supported and caused a crash.
This has been fixed.

[RTI Issue ID PY-85]

Possible deadlock between creation of a dds.Topic and a listener callback

A possible deadlock could have occurred, leaving the Python interpreter hanging indefinitely when a dds.Topic
was created at the same time as a listener callback was in process. This problem has been resolved.

[RTI Issue ID PY-88]

5.1. What’s Fixed in 7.1.0 45

../../../../../../doc/manuals/connext_dds_professional/whats_new/index.htm
../../../../../../doc/manuals/connext_dds_professional/whats_new/index.htm

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Listeners may not have been called in some situations

Entity listener callbacksmay not have been called in some situations, causing the application tomiss notifications
about Entity status changes. This problem was due to a bug in pybind11 version 2.8.1. The build instructions
have been updated to require pybind11 2.9.0, which solves this problem.

[RTI Issue ID PY-92]

5.1.9 Fixes Related to XML Configuration

Memory leak after an error parsing XML file with <include> tag

If the user’s application failed to parse an XML file containing an <include> tag, this caused a memory leak.
For example:

<types>
<include file=""myFile.xml"">

<struct name=""MyStruct"">
<member name=""m1"" type=""unknownType"" />

</struct>

</types>

This file cannot be parsed because m1 refers to an unknown type. When the application finished, running a
memory profiling tool such as ValgrindTM showed there was a memory leak. This problem has been resolved.

[RTI Issue ID CORE-12831]

Failed to parse XML configuration file containing type member with useVector attribute

Connext libraries failed to parse XML files containing a type member with the attribute useVector, although
this is a legal attribute.

For example:

<types>
<struct name= "MyType">

<member name="m1" sequenceMaxLength="100" useVector="true" type="int32
→˓"/>

</struct>
</types>

Parsing this file failed with the following error:

RTIXMLParser_validateOnStartTag:Parse error at line xxx: Unexpected attribute
→˓'useVector'

This problem has been fixed.

[RTI Issue ID CORE-12949]

5.1. What’s Fixed in 7.1.0 46

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

XML composition overwrote system information properties with defaults instead of correct
values

The XML composition mechanism (described in QoS Profile Inheritance and Composition) had an issue with
the way system properties (described in System Properties) set in an XML Snippet were applied to a <do-
main_participant_qos> in an XML Profile referencing the Snippet. The properties set in the XML Snippet
were not applied to the <domain_participant_qos>, which ended up using the automatic values generated by
Connext.

Here is an example that illustrates the problem:

<qos_library name="SampleQoSLib">
<qos_profile name="ParentProfile">

<domain_participant_qos>
<property>

<value>
<element>

<name>dds.sys_info.hostname</name>
<value>CustomHostName</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>

<qos_profile name="ChildProfile" is_default_qos="true">
<domain_participant_qos>

<base_name>
<element>SampleQosLib::ParentProfile</element>

</base_name>
<property>

<value>
<element>

<name>dds.sys_info.username</name>
<value>CustomUserName</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>
</qos_library>

The <domain_participant_qos> in the ChildProfile ended up with the following values for the system informa-
tion properties:

• dds.sys_info.hostname - The default value rather than the CustomHostName value as set in the <do-
main_participant_qos> in ParentProfile, because of the overwriting problem described above.

• dds.sys_info.username - The set value of CustomUserName, which is the correct value.

This issue has been resolved.

[RTI Issue ID CORE-13090]

5.1. What’s Fixed in 7.1.0 47

../../../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/QoS_Profile_Inheritance.htm
../../../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/System_Properties.htm

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

5.1.10 Fixes Related to Request-Reply and RPC

RPC interface evolution did not work

Remote Procedure Call (RPC) interfaces were designed to be extensible. A service and a client can communi-
cate even when they have a different number of interfaces. For example:

A base service definition in IDL could be as follows:

@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
float get_speed();

};

If you add new operations to the service interface, such as the following:

@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
float get_speed();
float get_position();

};

Or remove operations from the service interface, such as the following:

@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
};

They should remain interoperable.

However, in the previous release, the service and the client wouldn’t communicate in any case.

This problem has been resolved. A client can now invoke an operation in a service with more or fewer opera-
tions. If the operation exists in the service, it will receive a valid response. If the operation doesn’t exist in the
service, the service will respond accordingly and the client will throw the standard exception dds::rpc::Remo-
teUnknownOperationError.

[RTI Issue ID REQREPLY-105]

Exceptions sending result of remote operation may have crashed server application

In an RPC server-side application, the user implements the functional interface. The Server uses a thread pool
to call those functions with the input sent from the client (Request) and obtain the result. The result is then
sent to the client (Reply). The Reply is automatically written using a DDS DataWriter. If the write() operation
failed, the resulting exception would crash the current thread in the thread pool and possibly crash the entire
server-side application (a typical write() exception is a Timeout). Since the Reply is sent by the server from a
separate thread, the user application has no way of catching the exception or sending the Reply again.

5.1. What’s Fixed in 7.1.0 48

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

This problem has been resolved. If an exception occurs, it is caught and logged. The Reply is never sent. User
applications have two ways to react to this event:

• The server application can install a rti::config::Logger::output_handler to monitor errors.

• The client application will see a timeout in the function call. The application can then react accordingly
(e.g., calling the function again later).

[RTI Issue ID REQREPLY-111]

RPC: deadlock when Server::close() was called before Server::run()

In the unlikely scenario that a Server was created and then closed before running (the method Server::close()
was called before Sever::run()), run() would never return unless a timeout was specified. This problem has
been resolved.

[RTI Issue ID REQREPLY-113]

Possible unbounded memory growth when creating many Requesters

This issue was fixed in release 7.0.0, but not documented at that time.

When a Requester is created, a ContentFilteredTopic is internally created on the Requester’s DomainPartic-
ipant. This ContentFilteredTopic is exclusively created for each Requester and was never deleted until the
DomainParticipant was deleted. This may have caused applications that continuously create and delete Re-
questers on the same DomainParticipant to see unbounded memory growth.

This problem has been resolved in all language APIs. The Requester destructor or deletion function now deletes
its ContentFilteredTopic.

[RTI Issue ID REQREPLY-35]

Memory leak in Java Request-Reply API

This issue was fixed in release 7.0.0, but not documented at that time.

The Java Request-Reply API leaked a small amount of native heapmemory every time a Requester was created.
The leak was caused by a few internal WaitSet objects, which did not have a finalizer and were not explicitly
deleted either.

[RTI Issue ID REQREPLY-94]

5.1. What’s Fixed in 7.1.0 49

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Possible data race using Sample and WriteSample classes (Traditional C++ API only)

This issue was fixed in release 7.0.0, but not documented at that time.

The Sample and WriteSample classes are wrapper classes in the Traditional C++ Request-Reply API that used
to initialize the underlying user data lazily: the data was initialized the first time it was accessed with the data()
member function.

This approach made the access to the data unsafe. A data race could occur when two or more threads competed
to access the same sample object for the first time. This problem has been resolved. The lazy approach has
been reversed, and the data is now initialized in the constructor.

[RTI Issue ID REQREPLY-95]

5.1.11 Fixes Related to Shipped Examples

Hello World TCP example always linked TCP Transport library dynamically

The C hello_world_tcp example always linked the RTI TCP Transport library dynamically, even if you wanted
to use static linking. This issue has been fixed. Now, the nddstransporttcp library is linked statically unless
you choose Debug DLL or Release DLL from the configuration pull-down menu of the provided projects on
Windows. Or, when using a makefile, the TCP Transport library is now linked statically, unless you pass the
“SHAREDLIB=1” argument to the make command.

Furthermore, the README file for the example has been updated with further instructions on what additional
libraries need to be added to the makefile or project file when TLS is enabled.

[RTI Issue ID COREPLG-577]

5.1.12 Fixes Related to Vulnerabilities

Arbitrary read access while parsing malicious RTPS message

Arbitrary read access could occur while parsing a malicious RTPS message. This issue has been fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Arbitrary read access while parsing a malicious RTPS message.

• Remotely exploitable.

• Potential impact on confidentiality of Connext application.

• CVSS Base Score: 8.2 HIGH

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:H

5.1. What’s Fixed in 7.1.0 50

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:H

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

User Impact with Security

Same impact as described in “User Impact without Security,” above.

[RTI Issue ID CORE-13160]

Out-of-bounds read while parsing malicious RTPS message

An out-of-bounds read could occur while parsing a malicious RTPS message. This issue has been fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Out-of-bounds read while parsing a malicious RTPS message.

• Remotely exploitable.

• Potential impact on confidentiality of Connext application.

• CVSS Base Score: 6.5 MEDIUM

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

User Impact with Security

Same impact as described in “User Impact without Security,” above.

[RTI Issue IDs CORE-13240 and CORE-13264]

Out-of-bounds write while parsing malicious RTPS message

An out-of-bounds write could occur while parsing a malicious RTPS message. This issue has been fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Out-of-bounds write while parsing a malicious RTPS message.

• Remotely exploitable.

• Potential impact on integrity of Connext application.

• CVSS Base Score: 8.2 HIGH

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H

5.1. What’s Fixed in 7.1.0 51

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

User Impact with Security

Same impact as described in “User Impact without Security,” above.

[RTI Issue ID CORE-13279 and CORE-13150]

Buffer overflow in shared memory if memory was tampered

A buffer overflow occurred when publishing or receiving metadata or data over a tampered shared memory
segment. This issue has been fixed.

User Impact without Security

• Exploitable from the same node the Connext application is running (needs access to shared memory
segment).

• Application crash. Potential impact to the integrity or confidentiality of the Connext application.

• CVSS Base Score: 7.8 HIGH

• CVSS v3.1 Vector: AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

User Impact with Security

Same impact as described in “User Impact without Security,” above.

[RTI Issue ID CORE-13300]

Out-of-bounds read while uncompressing malformed data from malicious RTPS message

An out-of-bounds read occurred while uncompressing malformed data from a malicious RTPS message. This
issue has been fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Out-of-bounds read while uncompressing malformed data from a malicious RTPS message.

• Remotely exploitable.

• Potential impact on confidentiality of Connext application.

• CVSS Base Score: 4.8 MEDIUM

• CVSS v3.1 Vector: AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:L

5.1. What’s Fixed in 7.1.0 52

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:L

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

User Impact with Security

Same impact as described in “User Impact without Security,” above.

[RTI Issue ID CORE-13548]

5.1.13 Fixes Related to Crashes

Rare segmentation fault when deleting DomainParticipant or Publisher containing
DataWriters using durable writer history

A Connext application may have crashed after deleting a DomainParticipant or Publisher containing DataWrit-
ers using durable writer history. This issue has been fixed.

[RTI Issue ID CORE-12297]

Segmentation fault when creation of DomainParticipant failed due to lack of resources

An application may have produced a segmentation fault using the release libraries if the creation of a Domain-
Participant failed because the following resource limit was exceeded: participant_factory_qos.resource_lim-
its.max_objects_per_thread.

With debug libraries, you may have seen a precondition error such as this:

FATAL U000000011d1a15c0_ [CREATE DP|LC:DISC]Mx06:/connextdds/event.1.0/srcC/
→˓activeDatabase/ActiveDatabase.c:275:RTI0x2000027:!precondition

This problem has been fixed.

[RTI Issue ID CORE-12654]

Potential hang upon SIGSEGV signal from a Connext application

For debuggability purposes, Connext applications log a backtrace when a SIGSEGV signal is triggered.

In previous releases, this feature may have triggered a hang during the logging of the backtrace. In this release,
we address this issue by disabling the logging of the backtrace by default in release libraries (but still keeping
it enabled for debug libraries).

This default behavior can bemodified by setting the newDomainParticipant-level property dds.participant.en-
able_backtrace_upon_sigsegv. See “New property to manually enable or disable logging backtrace upon
SIGSEGV signal from a Connext application” in RTI Connext Core Libraries What’s New.

[RTI Issue ID CORE-12794]

5.1. What’s Fixed in 7.1.0 53

../../../../../../doc/manuals/connext_dds_professional/whats_new/index.htm

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Creating DynamicDataTypePlugin with TypeCode from discovery and using content filter-
ing caused segmentation fault

If the TypeCode that was received from endpoint discovery data (PublicationBuiltinTopicData.type_code
or SubscriptionBuiltinTopicData.type_code) was used to create a DynamicDataTypeSupport in an applica-
tion that was also using ContentFilteredTopics and setting ResourceLimitsQosPolicy.type_code_max_seri-
alized_length to a non-zero value, the application issued a segmentation fault.

ResourceLimitsQosPolicy.type_code_max_serialized_length is 0 by default, which avoids the segmenta-
tion fault.

This issue has been fixed.

[RTI Issue ID CORE-12992]

Application crash when calling DDS_DataReader_take_discovery_snapshot on a
DataReader with a ContentFilteredTopic

When taking a discovery snapshot by calling the DDS_DataReader_take_discovery_snapshot function on a
DataReader with a ContentFilteredTopic, the application crashed when trying to obtain non-valid DomainPar-
ticipant information. This issue has been fixed. Now, DomainParticipant information is obtained correctly for
DataReaders with ContentFilteredTopics.

[RTI Issue ID CORE-13011]

Crash with NULL listeners and non-none status masks in C applications that mixed types
with and without Zero Copy

In a C application, a crash occurred when both of these were true:

• Types with and without Zero Copy transfer over shared memory were mixed inside the same Domain-
ParticipantFactory instance.

• ADataReader orDataWriter of the non-Zero Copy types had a NULL listener and aDDS_StatusMask
different than DDS_STATUS_MASK_NONE.

The crash occurred becauseConnext invoked a NULL listener callback for the statuses enabled in the endpoints’
DDS_StatusMask.

When there is a Zero Copy type inside an application, some extra pre-processing related to Zero Copy is done
before creating the endpoints and setting the listeners. In that extra pre-processing, for non-Zero Copy types,
the NULL listener was incorrectly replaced with a non-null listener object with all its callbacks set to NULL.
Then, Connext was not checking if the callbacks were NULL before calling them (the listener consistency
is checked before the incorrect replacement; therefore, at that point, it was assumed the listener object was
consistent).

This issue is fixed. The listener is no longer replaced with an invalid listener object, and Connext will always
check if the callbacks are NULL before calling them.

[RTI Issue ID CORE-13151]

5.1. What’s Fixed in 7.1.0 54

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Memory was read after it was freed by deleting a Topic with local logging level enabled

If the local logging level was enabled while deleting a topic, Connext would use recently freed memory from
the deleted Topic to print a log message. Using the recently freed memory could cause a crash if local logging
was enabled. A log message is now printed immediately before the Topic is deleted, so the possibility of using
freed memory is eliminated.

[RTI Issue ID CORE-13226]

Possible segmentation fault when disabling loopback interface

When a previously enabled loopback interface on a host computer was disabled, a segmentation fault could
occur. The handling of loopback interfaces has been redesigned to remove this possibility.

[RTI Issue ID CORE-13228]

Segmentation fault could occur if creation of DataReader failed

In some cases, a segmentation fault would occur if the creation of a DataReader failed. This problem has been
fixed.

[RTI Issue ID CORE-13387]

Potential crash when DomainParticipant deleted after creating DataWriter with automatic
liveliness kind

There was a small possibility of a crash occurring when the DomainParticipant was deleted immediately after
creating a DataWriter with an AUTOMATIC_LIVELINESS_QOS kind in the LIVELINESS QoS policy.
This problem has been resolved.

[RTI Issue ID CORE-13524]

Possible crash on TCP transport when large number of file descriptors were open

A Connext application that used the TCP transport and was built using _FORTIFY_SOURCE, which is set
by default by some operating systems, could crash if one of the sockets for TCP had a file descriptor higher
than FD_SETSIZE (1024). This issue has been fixed. Now, Connext overwrites the value of FD_SETSIZE,
allowing an application using the TCP transport to open up to 32768 file descriptors, except on Android, where
it is not possible to overwrite this value.

[RTI Issue ID COREPLG-644]

5.1. What’s Fixed in 7.1.0 55

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Application using Monitoring Libraries may have produced segmentation fault during
DataReader creation

In 6.0.x releases and above, an application using Monitoring Library may have produced a segmentation fault
during DataReader creation. The issue was very rare and only occurred if a DataReader received a sample
immediately after being enabled. This issue has been fixed.

[RTI Issue ID MONITOR-429]

Possible segmentation fault when using Monitoring Library

When using monitoring libraries, a rare race condition may have led to a segmentation fault. This issue was
more likely to occur if the Connext application using the monitoring libraries created and deleted entities often.
This problem has been resolved.

Note: This problem was reported as fixed in MONITOR-252, in release 6.0.1; however, that fix did not apply
to Publishers and Subscribers. This fix protects applications when frequently creating and deleting Publisher or
Subscriber entities as well.

[RTI Issue ID MONITOR-516]

5.1.14 Other Fixes

Error sending batch when batch size exceeded transport MTU

ADataWriter configured to use batching may have failed to send a batch to the destination addresses associated
with a transport (e.g, UDPv4) if the batch size exceeded the message_size_max (MTU) of the transport.

This problem has been resolved. Now, the batch is automatically flushed when exceeding the minimum mes-
sage_size_max across all installed transports.

[RTI Issue ID CORE-2639]

Broken communication when DataWriter with transport priority discovered DataReader
with multicast receive address

If aDataWriter that had a non-defaultDataWriterQos.transport_priority value set discovered aDataReader
with a multicast receive address, the DataWriter and any other DataWriters within the same participant were
not able to send any traffic over unicast. This could cause communication failures in a number of different
scenarios, including a broken reliability protocol due to the inability to send heartbeats over unicast or the
inability to communicate with other DataReaders that have not been configured to use a multicast receive
address.

This issue was introduced in 6.1.0. This issue has been resolved.

[RTI Issue ID CORE-12772]

5.1. What’s Fixed in 7.1.0 56

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Potential hang upon SIGSEGV signal from a Connext application

For debuggability purposes, Connext applications have the ability to log a backtrace when a SIGSEGV signal
is triggered.

In previous releases, this feature may have triggered a hang during the logging of the backtrace. In this release,
we address this issue by disabling the logging of the backtrace in release libraries (but still keeping it enabled
for debug libraries).

This default behavior can be modified by setting a new participant-level property, dds.participant.en-
able_backtrace_upon_sigsegv. The accepted values for this new property are: “auto” for the default behavior
(backtrace only enabled in debug libraries), “true” for enabling the logging of the backtrace, and “false” for
disabling it.

Note: This property takes effect upon the creation of the first DomainParticipant within a process. Conse-
quently, if a SIGSEGV signal is received before the creation of the firstDomainParticipant, the default behavior
will be applied (backtrace enabled in debug libraries and disabled in release libraries).

[RTI Issue ID CORE-12794]

No more than 100 asynchronous publisher threads could be created

A change to the thread naming convention inadvertently limited the number of asynchronous publisher threads
to 100. The limit is now 65,536. These limits also apply to receive threads, asynchronous waitset threads, and
persistence service threads.

[RTI Issue ID CORE-12874]

Potential memory leak when creation of any of the built-in discovery plugins failed

The first time a DomainParticipant is created in an application, some memory is allocated globally for each of
the builtin discovery plugins (SPDP and SEDP) enabled for that DomainParticipant. This global memory is
released when finalizing the DomainParticipantFactory instance.

However, if there was a failure in the creation of any of the builtin discovery plugins during the DomainPartic-
ipant creation, the DomainParticipantFactory was not notified properly that this global memory was allocated.
Therefore, finalizing the DomainParticipantFactory instance did not release the memory, causing a leak.

This problem is fixed. Finalizing the DomainParticipantFactory instance always releases the memory if it was
previously allocated, regardless of whether or not a failure occurred.

[RTI Issue ID CORE-12882]

5.1. What’s Fixed in 7.1.0 57

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Samples could be lost using group order access or collaborative DataWriters

There was a possibility of DataReader queue corruption, when using group order access or collaborative
DataWriters, that may have provoked the DataReader to stop receiving samples. The possibility was very
small and may have occurred randomly since it was caused by an uninitialized flag.

[RTI Issue ID CORE-13153]

Unexpected precondition error while creating a DomainParticipant with debugging li-
braries using fast database cleanup period

You may have seen the following precondition error while creating a DomainParticipant with debugging li-
braries if participant_qos.database.cleanup_period was updated to a small value.

FATAL rCo96144####Dtb Mx0D:/rti/jenkins/workspace/connextdds_ci_fastbuild-
→˓debug_develop/pres.1.0/srcC/participant/Participant.c:3102:RTI0x200003b:!
→˓precondition: "me->_service == ((void *)0)"

Release libraries did not have this issue.

This problem has been fixed.

[RTI Issue ID CORE-13204]

Release 6.1.2 was not FACE compliant

The |CONNEXTDDS_ITALIC| 6.1.2 release was not FACE compliant due to usage of the realpath system call.
This problem has been resolved.

[RTI Issue ID CORE-13340]

Problems visualizing participants using Generic.MinimalMemoryFootprint profile with Ad-
min Console

RTI Admin Console could not correctly visualize DomainParticipants using the Generic.MinimalMemory-
Footprint profile. Some of the information, such as process ID and host name, was invalid. This problem has
been fixed.

[RTI Issue ID CORE-13509]

5.1. What’s Fixed in 7.1.0 58

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Using dh_param_files leaked memory

Using the property tls.cipher.dh_param_files leaked memory when deleting the DomainParticipant.
A memory checking tool, such as valgrind, would have reported the leak in the OpenSSL function
PEM_read_bio_DHparams, which is called by the RTI function RTITLS_tmp_dhparam_callback. This
problem only affected applications using OpenSSL 1.0.2 or applications communicating with applications using
OpenSSL 1.0.2. For example, TLS Support 5.3 uses OpenSSL 1.0.2, but version 7.0.0 of TLS Support could
still communicate with version 5.3, so the leak could also happen in version 7.0.0.

This problem has been fixed; memory will no longer be leaked in this scenario. For example, if TLS Support
7.1.0 communicates with an application using OpenSSL 1.0.2, the leak will not occur.

[RTI Issue ID COREPLG-641]

Failure to load a string-based private key leaked memory

If you set the property tls.identity.private_key or tls.identity.rsa_private_key, and you either specified a
wrong or missing value for the property tls.identity.private_key_password or specified a malformed private
key, then memory would be leaked upon DomainParticipant creation failure. A memory checking tool, such
as valgrind, would report the leak in the OpenSSL function BIO_new_mem_buf, which is called by the RTI
function RTITLS_context_init.

This problem has been fixed. Memory will no longer be leaked in this scenario.

[RTI Issue ID COREPLG-643]

Incorrect “Supported platforms” documentation section for FindRTIConnextDDS.cmake

Now the documentation section in the “FindPackage” script (FindRTIConnextDDS.cmake) file listing the
“Supported platforms” matches the Core Libraries Platform Notes.

[RTI Issue ID INSTALL-548]

CONNEXTDDS_ARCH environment variable in FindPackage script was not picked up cor-
rectly

Previously, only the CONNEXTDDS_ARCH CMake variable in the “FindPackage” script
(FindRTIConnextDDS.cmake) could be used to define the Connext official architecture to use. Now,
the environment variable with the same name can be used, too.

[RTI Issue ID INSTALL-691]

5.1. What’s Fixed in 7.1.0 59

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

In FindPackage script, low_bandwidth_edisc imported target library was missing

In the “FindPackage” script (FindRTIConnextDDS.cmake), the low_bandwidth_edisc imported target li-
brary was missing, incorrectly named low_bandwidth_discovery_static. When you tried to link against
low_bandwidth_discovery_static, the script actually linked against the LOW_BANDWIDTH_EDISC li-
braries. And you couldn’t link against low_bandwidth_edisc because there was no imported target with that
name.

In the following example, the second TARGET should have been called low_bandwidth_edisc:

######################## Low bandwidth plugins #########################
Discovery Static
create_connext_imported_target(

TARGET "low_bandwidth_discovery_static"
VAR "LOW_BANDWIDTH_DISCOVERY_STATIC"
DEPENDENCIES

RTIConnextDDS::c_api
)

EDISC
create_connext_imported_target(

TARGET "low_bandwidth_discovery_static"
VAR "LOW_BANDWIDTH_EDISC"
DEPENDENCIES

RTIConnextDDS::c_api
)

This problem has been fixed.

[RTI Issue ID INSTALL-719]

Segmentation fault whenmixing build types in applications linked against libraries in “Find
Package” Cmake script

Mixing Release and Debug build types in applications linked against Connext libraries in the “Find Package”
script (FindRTIConnextDDS.cmake) could lead to undesired behaviors like double-freeing pointers, once
for the Debug symbol and once for the Release symbol, and in the end causing the application to abort.

The new CONNEXT_LIBS_BUILD_TYPE CMake variable has been added to control the Connext libraries
build type (Release/Debug). This variable will allow three values: Auto, Release, and Debug.

By default (the Auto value), FindRTIConnextDDS.cmakewill populate the IMPORTED_LOCATION_DE-
BUG and IMPORTED_LOCATION_RELEASE properties of all the Connext imported target libraries. This
means that the Connext libraries will be provided in the same build type as the global build (specified by the
CMAKE_BUILD_TYPE value).

If you provide Release or Debug values to the CONNEXT_LIBS_BUILD_TYPE variable, the script will force
populating only the IMPORTED_LOCATION property of the Connext imported target libraries. So, regard-
less of the CMAKE_BUILD_TYPE value, the Connext libraries will have the build type given in the CON-
NEXT_LIBS_BUILD_TYPE variable.

[RTI Issue ID INSTALL-793]

5.1. What’s Fixed in 7.1.0 60

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

5.2 What’s Fixed in 7.0.0

This section describes bugs fixed in Connext 7.0.0. These fixes have been made since 6.1.1 was released.

5.2.1 Fixes Related to Callbacks and Waitsets

Unsafe combinations of masks and Listeners may have led to segmentation fault

When entities are created, a Listener may be provided by the user to receive calls when specified events occur.
The events of interest are set using a StatusKindmask. If an event set in the StatusKindmask occurs, but no
callback function has been assigned by the user, a null pointer dereference will occur. Connext checks for many
of these errors and prevents the creation of entities when this error is present. However, some of these cases
were not checked, allowing unsafe combinations of masks and Listeners to be used. This problem has been
resolved. The new, stricter checking may cause entity creation errors when no errors were detected before.

[RTI Issue ID CORE-12610]

Failure calling DDS_Subscriber::get_datareaders in DDS_SubscriberLis-
tener::on_data_on_readers callback implementation

You may have seen the following errors when invoking DDS_Subscriber::get_datareaders() within the im-
plementation of the DDS_SubscriberListener::on_data_on_readers() callback:

ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS] REDACursor_modifyReadWriteArea:!freeze read write area

ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS] PRESPsReaderGroup_getEA:!modify pres psReaderGroup
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS] PRESPsReaderGroup_lock:!take semaphore
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS] PRESPsReaderGroup_beginGetPsReaders:!get PRESPsReaderGroup_lock

ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS}
DDS_Subscriber_begin_get_datareadersI:ERROR: Failed to get PRESPsReaderGroup_
→˓beginGetPsReaders

ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS]
DDS_Subscriber_get_datareaders:ERROR: Failed to get DDS_Subscriber_begin_get_
→˓datareaders

In addition, when using the Traditional C++ API and the legacy .NET API, the application generated a seg-
mentation fault after printing the error. The problem occurred only when:

• You installed a Listener on the Subscriber using the API DDS_Subscriber::set_listener() after the
Subscriber was enabled.

5.2. What’s Fixed in 7.0.0 61

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

• Or, you installed a Listener on the DomainParticipant using the API DDS_Participant::set_listener()
after the DomainParticipant was enabled. This problem has been resolved.

[RTI Issue ID CORE-12316]

DDS_SubscriberListener::on_data_on_readers on a participant or subscriber not called
when Listener installed after the entity is enabled

The callback DDS_SubscriberListener::on_data_on_readers() was not invoked when there was data avail-
able, if these two conditions were met:

• The Listener callback on_data_on_readers() was installed after the Subscriber or DomainParticipant
implementing it was enabled.

• The Listener callback on_data_available() was not installed at any level (DomainParticipant, Publisher,
or DataReader).

This problem has been resolved.

[RTI Issue ID CORE-12338]

Unable to assign callback function for on_sample_removed event using Modern C++ API

You may have been unable to assign a callback function for the on_sample_removed event using the Modern
C++ API. Support for this callback has been added to the Modern C++ API in this release.

[RTI Issue ID CORE-12646]

Using certain callbacks at DomainParticipant or Publisher level may have led to segmen-
tation fault

Handlers were not correctly implemented for the on_instance_replaced(), on_sample_removed(), on_ap-
plication_acknowledgment(), and on_service_request_accepted() callbacks at the DomainParticipant and
Publisher levels. This could have led to segmentation faults when the corresponding events were enabled. This
problem has been resolved.

[RTI Issue ID CORE-12647]

5.2.2 Fixes Related to Discovery

Unexpected memory growth when DataReader could not be matched with DataWriter due
to unexpected error condition

Failing to match a DataReader with a DataWriter because of unexpected error conditions may have led to
unexpectedmemory growth, becauseConnext may not have cleaned up the resources associated with the remote
match completely. This problem has been resolved.

[RTI Issue ID CORE-8257]

5.2. What’s Fixed in 7.0.0 62

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Possible crash upon discovery of applications with unreachable locators

If an application used DDS_STATUS_MASK_ALL for a DomainParticipant or Publisher Listener and an
unreachable locator was discovered, the application enabling the Listener may have crashed. An unreachable
locator occurs most commonly when a Subscribing application uses a transport that the Publishing application
does not use. For example, the Publishing application could use UDPv4 and the Subscribing application could
use both UDPv4 and UDPv6.

More rarely, a crash may have occurred when a pre-5.2.0 Subscribing application used the shared memory
transport and a 5.2.0+ Publishing application was not using the UDPv6 transport. A log message was generated
if both participants were running on the same machine and this condition occurred. This condition was caused
by a change to the way that transports are identified starting in version 5.2.0.

[RTI Issue ID CORE-11818]

Communication problems with applications using shared memory on INTEGRITY systems

If an application on an INTEGRITY platform used the shared-memory transport, the Connext libraries some-
times incorrectly assessed that a shared-memory segment was stale and could be reclaimed, when in fact it was
not stale. This situation caused problems with communication between DomainParticipants, since information
could be sent to a shared-memory segment that did not get dequeued by the intended recipient.

You may have seen error messages like these and the application may have hung while deleting the Domain-
Participant:

<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS␣
→˓WaitForSemaphore() failure, error 0XD: ObjectClosed
<Target Output> ERROR NDDS_Transport_Shmem_receive_rEA:!take semaphore
<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS␣
→˓WaitForSemaphore() failure, error 0X9: ObjectIsUseless

This problem has been resolved.

Incompatibility with 6.1.1 and prior releases:
The fix for this issue involved some changes that make shared-memory segments in applications incompatible
with those in 6.1.1 (and earlier) versions.

[RTI Issue ID CORE-12097]

5.2. What’s Fixed in 7.0.0 63

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Types containing Typedefs were sent without the typedefs in discovery when using Dy-
namicData

When an application was using a DynamicDataReader or DynamicDataWriter and using a type that contained
a typedef, the type that was sent during endpoint discovery for that endpoint did not contain the typedef. While
this did not cause any mismatches or communication failure, it did cause a number of issues that may have been
noticeable depending on what other products you may have also been using.

See 1.1.4 Unbounded memory growth in Spy when discovering multiple endpoints with the same Topics and
types on page 1 for details about the specific issues that you may have encountered. The RTI Admin Console Re-
lease Notes and RTI Routing Service Release Notes also have related information. (See ADMINCONSOLE-997
and ROUTING-971, respectively.)

This issue has been resolved, meaning that the exact type definition that is registered with the participant,
containing typedefs, is sent during discovery. This is a change in behavior from 6.0.0-based applications,
which sent the type definitions without the typedef information.

[RTI Issue ID CORE-12107]

Unbounded memory growth in Spy when discovering multiple endpoints with the same
Topics and types

Each time DDS Spy discovered an endpoint, it unnecessarily made a copy of the TypeCode that was associated
with the endpoint’s Topic, leading to unbounded memory growth. This issue has been fixed.

[RTI Issue ID CORE-12136]

Unnecessary discovery traffic related to IP mobility events on interfaces irrelevant to the
transport

When there is a change on a network interface (an IP mobility event), a Connext application will update and
resend its discovery information to include these changes. The transport can consider a change on an interface
irrelevant (for example, changes on interfaces in the deny_interfaces_list of the transport). In this case, the
new discovery messages are exactly the same as announced before, generating unnecessary discovery traffic
that could affect the performance of the application.

This problem has been fixed. Now Connext only updates and resends its discovery information if there was a
change on an interface relevant to the transport.

[RTI Issue ID CORE-12664]

5.2. What’s Fixed in 7.0.0 64

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

5.2.3 Fixes Related to Transports

Communication problems with applications using shared memory on INTEGRITY systems

If an application on an INTEGRITY platform used the shared-memory transport, the Connext libraries some-
times incorrectly assessed that a shared-memory segment was stale and could be reclaimed, when in fact it was
not stale.

This situation caused problems with communication between DomainParticipants, since information could be
sent to a shared-memory segment that did not get dequeued by the intended recipient.

You may have seen error messages like these and the application may have hung while deleting the Domain-
Participant:

<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS␣
→˓WaitForSemaphore() failure, error 0XD: ObjectClosed
<Target Output> ERROR NDDS_Transport_Shmem_receive_rEA:!take semaphore
<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS␣
→˓WaitForSemaphore() failure, error 0X9: ObjectIsUseless

This problem has been resolved.

Incompatibility with 6.1.1 and prior releases:
The fix for this issue involved some changes that make the shared memory segments incompatible with those
in 6.1.1 (and earlier) versions.

[RTI Issue ID CORE-12097]

Race condition could cause unbounded memory growth in TCP Transport Plugin

Due to a race condition, the TCP Transport Plugin may have leaked memory when creating a new connection
if the creation happened at the same time the DomainParticipant was being destroyed. The cause of the leak
was the TCP Transport Plugin reallocating memory that was already released by the DomainParticipant. The
race condition was unlikely to happen. However, in a system that frequently creates and destroys entities (and,
therefore, TCP connections) and that runs for long enough, it may have lead to unbounded memory growth.
The issue has been resolved.

[RTI Issue ID COREPLG-618]

5.2. What’s Fixed in 7.0.0 65

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

5.2.4 Fixes Related to Filtering and TopicQuery

Unnecessary repair traffic for DataWriters using TopicQueries and asynchronous publish-
ing

Samples that are sent in response to a TopicQuery are directed to the DataReader that created that Topic-
Query. This means that those samples are only sent to the DataReader that made the request and have that
DataReader’s GUID attached to each sample in the sample’s metadata. All other DataReaders receive GAP
protocol messages, indicating to them that a given sequence number or set of sequence numbers is not meant
for them.

Due to a defect, when aDataReader sent a NACKmessage requesting someTopicQuery samples to be repaired,
if the requested sequence numbers included samples that weremeant for a differentDataReader, theDataWriter
did not filter these samples and resend a GAP message. Instead, the DataWriter sent the DataReader samples
that were not meant for it and theDataReader had to filter these samples out itself. As a result, theDataReaders
may have received samples that should have been filtered out on the DataWriter side, leading to an increase in
network traffic.

The problem only affected repair traffic. When a sample was filtered out by the DataWriter because it was
directed to a different DataReader, the DataWriter sent a GAP protocol message to the DataReader. If the
GAP message was lost, the DataReader NACKed for the sample; instead of sending a new GAP message, the
DataWriter sent the sample. This problem has been resolved.

[RTI Issue ID CORE-12589]

Connext application using filtering feature may have crashed after running out of memory

In release 6.1.1.2, a Connext application using filtering features (that is, ContentFilteredTopic, QueryCondi-
tions, or TopicQuery) may have crashed after running out of memory. This problem has been resolved.

[RTI Issue ID CORE-12661]

Unnecessary sample filtering on a DataReader for samples already filtered by a DataWriter

When doing writer-side filtering, a late-joining DataReader using a ContentFilteredTopic may have spent
unnecessary CPU cycles evaluating samples that pass the ContentFilteredTopic’s expression. When using
writer-side filtering, the filter evaluation is done by the DataWriter and it should not be necessary for the
DataReader to do it again on samples that pass the filter expression. This problem, which only occurred for
late-joining DataReaders, has been fixed.

[RTI Issue ID CORE-11084]

5.2. What’s Fixed in 7.0.0 66

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Creation of a ContentFilteredTopic or reception of TopicQuery samples may have taken
long time for complex types

The creation of a ContentFilteredTopic or reception of TopicQuery samples, may have taken a long time for
complex types. This issue has been resolved.

[RTI Issue ID CORE-12179]

Continuous creation of TopicQueries may have led to unnecessary memory fragmentation
in OS memory allocator

In releases 6.0.x and 6.1.x, the continuous creation of TopicQueries may have led to unnecessary memory
fragmentation in the OSmemory allocator of the applications that receive the TopicQuery requests and dispatch
responses. This issue may have resulted in an unexpected increase of the resident set size (RSS) memory of the
application receiving and dispatching the TopicQueries compared to previous Connext releases. This problem
has been fixed.

[RTI Issue ID CORE-12352]

rti::topic::find_registered_content_filters led to infinite recursion

The function rti::topic::find_registered_content_filters() was incorrectly implemented and would lead to
infinite recursion and stack overflow in any application that called it. This problem has been resolved. This
function returns the names of previously registered custom content filters. It is a little-used feature and does
not affect the commonly used SQL content filter.

[RTI Issue ID CORE-12512]

Incorrect results for Unions when using DynamicData or Content Filters

When using a DynamicDataReader, samples containing a union may have had incorrect or invalid data after
deserialization if the DataReader’s type contained members that were not present in the DataWriter’s type and
those members had non-zero default values.

When using content filters, the filter results may have been incorrect if the type contained a union and the filter
expression filtered on fields within the union that were present in the DataReader’s type but were not present
in the DataWriter’s type and those members had non-zero default values.

For example, see this DataWriterType:

struct innerStructPub {
short shortMember;

};
@mutable
union ComplexUnionTypePub switch(long) {

case 0:
long longMember;

case 1:

5.2. What’s Fixed in 7.0.0 67

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

innerStructPub structMember;
};

and this DataReaderType:

struct innerStructPub {
short shortMember;

};
@mutable
union ComplexUnionTypePub switch(long) {

case 0:
long longMember;

case 1:
innerStructPub structMember;

};
struct innerStructSub {

short shortMember;
@default(5) long longMemberWithDefault;

};
@mutable
union ComplexUnionTypeSub switch(long) {

case 0:
long longMember;

case 1:
innerStructSub structMember;

};

In the above types, the member longMemberWithDefault is only present in the DataReader’s type and has a
default value of 5, so any sample that is received from the DataWriter should have this value set to 5 when read
from the DataReader’s queue. Instead, the value was incorrectly 0 when using DynamicData.

In addition, if this member was used as part of a content filter expression, a DataReader always used the value
of 0 instead of 5 when evaluating a sample from a DataWriter using the DataWriterType which could lead to
incorrect filter results. These issues have been fixed.

[RTI Issue ID CORE-12517]

Samples may have been unnecessarily filtered by Connext DataReader when DataWriter
was from different DDS vendor

AConnextDataReader using a ContentFilteredTopic unnecessarily evaluated its filter on samples coming from
a different vendorDataWriter that already marked the samples as passing theDataReader filter. This issue may
have led to an increase in CPU utilization on the DataReader side, but it did not affect functional correctness
or bandwidth utilization.

The problem occurred because Connext was not compliant with the way a filter signature is calculated according
to the Section 9.6.4.1, Content filter info (PID_CONTENT_FILTER_INFO), in the Real-time Publish-Subscribe
Protocol DDS Interoperability Wire Protocol (DDSI-RTPSTM) Specification version 2.5).

This problem has been resolved.

[RTI Issue ID CORE-12531]

5.2. What’s Fixed in 7.0.0 68

https://www.omg.org/spec/DDSI-RTPS/2.5/PDF
https://www.omg.org/spec/DDSI-RTPS/2.5/PDF

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

5.2.5 Fixes Related to Group Presentation

Application may not have received samples of coherent set when using GROUP access
scope and TRANSIENT_LOCAL durability

An application using GROUP access scope and TRANSIENT_LOCAL (or higher) durability may not have
received the samples for some coherent sets, or it may have received the samples with delay.

Assume a coherent set ‘CS1’ published by a set of DataWriters that are part of the same group. This coherent
set was not provided to the application if all the following conditions were true:

1. The DataReaders receiving ‘CS1’ matched with the DataWriters publishing ‘CS1’ after the coherent set
was published.

2. ‘CS1’ did not contain samples for some of the DataWriters in the group, or the samples were removed
after applying the Lifespan QoS Policy. If ‘CS1’ contained at least one sample per DataWriter in the
group, this problem did not occur.

3. The application did not publish a new coherent set after ‘CS1’; or, if it did, the new coherent set did not
contain samples from at least one of the DataWriters that were missing samples from ‘CS1’.

If the third condition was not met, then the delivery of the coherent set would be delayed instead of the coherent
set not being provided.

[RTI Issue ID CORE-12350]

Application may stop receiving samples from DataReaders using GROUP_PRESENTA-
TION_QOS

An application may have stopped receiving samples from DataReaders that were part of a Subscriber using
GROUP_PRESENTATION_QOS under the following scenario:

• The Publisher’s group contained at least one keyed DataWriter and one unkeyed DataWriter.

• The Subscriber’s group contained only keyed DataReaders or unkeyed DataReaders, but not both.

This problem has been resolved.

[RTI Issue ID CORE-12161]

Segmentation fault when using GROUP_PRESENTATION_QOS or HIGHEST_OF-
FERED_PRESENTATION_QOS and setting filter_redundant_samples to FALSE on
DataReader

An application generated a segmentation fault if it created a DataReader with the following valid configuration:

• subscriber_qos.presentation.access_scope = DDS_GROUP_PRESENTATION_QOS or DDS_HIGH-
EST_OFFERED_PRESENTATION_QOS

• datareader_qos.availability.max_data_availability_waiting_time = DDS_DURATION_ZERO

• datareader_qos.availability.max_endpoint_availability_waiting_time = DDS_DURATION_ZERO

5.2. What’s Fixed in 7.0.0 69

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

• datareader_qos.property contained dds.data_reader.state.filter_redundant_sampleswith the value
“false”

This problem has been resolved by allowing the DataReader to be created.

[RTI Issue ID CORE-12771]

5.2.6 Fixes Related to XML Configuration

Parsing error loading XML configuration file containing a const whose expression refers
to an enumerator

Connext failed to load an XML configuration file containing a const whose expression referred to an enumerator.
For example:

<enum name="Enum1">
<enumerator name="Enumerator1" value="1"/>

</enum>
<const name="Const1" type="int32" value="Enumerator1+1"/>

Loading this XML failed with an error similar to this:

DDS_XMLConst_initialize:Parse error at line 10: type 'Enum1' is not typedef

This problem has been fixed.

[RTI Issue ID CORE-5553]

Discrepancy between range defined by schema and that defined by API

There were discrepancies between the ranges defined by the schema files and those defined by the API for
certain elements. This problem has been resolved. Now, validating an XML against the XSD should not fail
when setting a value that is inside the range as defined by the API.

[RTI Issue ID CORE-7099]

Parsing error loading XML configuration file with enum type containing enumerator whose
value was an expression referring to a const

Connext failed to load an XML configuration file with an enum type containing an enumerator whose value was
an expression referring to a const. For example:

<const name="Const1" type="int32" value="10"/>
<enum name="Enum1">

<enumerator name="Enumerator1" value="Const1"/>
</enum>

Loading this XML failed with an error similar to this:

5.2. What’s Fixed in 7.0.0 70

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

[RTI Issue ID CORE-10060]

Parsing error loading an XML configuration file with enum type containing enumerator
whose value was an expression

Connext failed to load an XML configuration file with an enum type containing an enumerator whose value was
an expression. For example:

<enum name="Enum1">
<enumerator name="Enumerator1" value="1 + 1"/>

</enum>

Loading this XML failed with an error similar to this:

DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

[RTI Issue ID CORE-10269]

Type limits not checked for some attributes of XML types definition

When XML was used for defining types (for example, when using DynamicData), type limits were not checked
for some attributes. If the specified value for any of the attributes was too large or too small, a variable overflow
occurred, leading to undefined behavior.

This problem is fixed. Type limits are checked, throwing a meaningful error when they are not met.

The affected attributes were as follows:

• value in union’s caseDiscriminator. Valid values should be between -2147483648 and 2147483647.

• sequenceMaxLength. Valid values should be between 0 and 2147483647. -1 (unbounded) is also
allowed.

• stringMaxLength. Valid values should be between 0 and 2147483647. -1 (unbounded) is also allowed.

• arrayDimensions. Valid values should be between 1 and 4294967295.

[RTI Issue ID CORE-12181]

5.2. What’s Fixed in 7.0.0 71

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Removed some elements in the XSD that were not supported internally but could be de-
fined in XML

The following elements were configurable in XML although internally they are not supported:

Publisher QoS:

• presentation.drop_incomplete_coherent_set

• asynchronous_publisher.thread.cpu_list

• asynchronous_publisher.thread.cpu_rotation

• asynchronous_publisher.asynchronous_batch_thread.cpu_list

• asynchronous_publisher.asynchronous_batch_thread.cpu_rotation

• asynchronous_publisher.topic_query_publication_thread.cpu_list

• asynchronous_publisher.topic_query_publication_thread.cpu_rotation

Participant QoS:

• discovery_config.publication_reader.min_app_ack_response_keep_duration

• discovery_config.subscription_reader.min_app_ack_response_keep_duration

• discovery_config.asynchronous_publisher.thread.cpu_list

• discovery_config.asynchronous_publisher.thread.cpu_rotation

• discovery_config.asynchronous_publisher.disable_asynchronous_batch

• discovery_config.asynchronous_publisher.asynchronous_batch_thread

• discovery_config.asynchronous_publisher.disable_topic_query_publication

• discovery_config.asynchronous_publisher.topic_query_publication_thread

EventQosPolicy:

• thread.cpu_list

• thread.cpu_rotation

DatabaseQosPolicy:

• thread.cpu_list

• thread.cpu_rotation

Those elements have been removed from the XSD and are no longer configurable in XML.

[RTI Issue ID CORE-12366]

5.2. What’s Fixed in 7.0.0 72

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Builtin Discovery Plugins was not treated as a mask by the XSD file

Because of a bug in the XML Schema Definition (XSD), if you specified more than one value for the Discov-
eryConfigQosPolicy::builtin_discovery_plugins mask, your XML editor reported that the expression was
not valid when it should have been.

For example, according to the XSD, this expression was not allowed:

<domain_participant_qos>
<discovery_config>

<builtin_discovery_plugins>SPDP|SEDP</builtin_discovery_plugins>
</discovery_config>

</domain_participant_qos>

This issue has been fixed, and the XSD now accepts expressions containing more than one Builtin Discovery
Plugin. This issue occurred only while editing XML files because of the schema. If you ran an application with
the above configuration, it did not fail.

[RTI Issue ID CORE-12740]

Parsing error loading an XML configuration file with an enum type containing an enumer-
ator whose value was an expression referring to another enumerator

Connext failed to load an XML configuration file with an enum type containing an enumerator whose value was
an expression using another enumerator. For example:

<enum name="Enum1">
<enumerator name="Enumerator1" value="0"/>

</enum>

<enum name="Enum2">
<enumerator name="Enumerator2" value="Enumerator1"/>

</enum>

Loading this XML would have failed with an error similar to this:

DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

[RTI Issue ID CORE-12781]

5.2. What’s Fixed in 7.0.0 73

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

5.2.7 Fixes Related to Vulnerabilities

Fixes related to Connext

This release fixes some potential vulnerabilities, including RTI Issue IDs CORE-12510 and CORE-12752.

Fixes related to third-party dependencies

This release fixes some potential vulnerabilities related to third-party dependencies, described below.

Potential crash or leak of sensitive information in Core Libraries XML parser due to vul-
nerabilities in Expat

The Core Libraries XML parser had a third-party dependency on Expat version 2.4.4, which is known to be
affected by a number of publicly disclosed vulnerabilities.

The impact on Connext applications of using the previous version varied depending on your Connext application
configuration:

• With Connext Secure (enabling RTPS protection):

• – Exploitable through a compromised local file system containing malicious XML/DTD files.

– Could lead to arbitrary code execution.

– CVSS v3.1 Score: 8.4 HIGH

– CVSS v3.1 Vector: AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

• Without Connext Secure:

• – Exploitable through a compromised local file system containing malicious XML/DTD files.

– Remotely exploitable through malicious RTPS messages.

– Could lead to arbitrary code execution.

– CVSS v3.1 Score: 9.8 CRITICAL

– CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

[RTI Issue ID CORE-12872]

5.2. What’s Fixed in 7.0.0 74

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Potential memory corruption when using Zlib compression due to vulnerability in Zlib

The user-data compression feature in the Core Libraries had a third-party dependency on Zlib version 1.2.11,
which is known to be affected by a publicly disclosed vulnerability.

This vulnerability has been fixed by upgrading Zlib to the latest stable version, 1.2.12. See “Third-Party Soft-
ware Upgrades” in RTI Connext Core Libraries What’s New.

The impacts on Connext applications of using the previous version were as follows:

• Exploitable by triggering the compression of a sample containing a malicious payload.

• The application could crash.

• CVSS v3.1 Score: 7.5 HIGH

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

[RTI Issue ID CORE-12877]

5.2.8 Fixes Related to APIs

Input parameters to Property and DataTag helper functions do not have “const”

In the C API, the following functions were incorrectly missing a const before the policy parameter:

• DDS_PropertyQosPolicyHelper_lookup_property()

• DDS_PropertyQosPolicyHelper_lookup_property_with_prefix()

• DDS_PropertyQosPolicyHelper_get_properties()

• DDS_DataTagQosPolicyHelper_lookup_tag()

This problem has been fixed. The policies are now “const” because these functions do not change the policy.

[RTI Issue ID CORE-3166]

Standard 64-bit integer types are now supported (Modern C++ API)

Previous releases of the Modern C++ API had platform-specific definitions for 64-bit integers, defined in
rti::core::int64 and rti::core::uint64. This was required to support certain pre-C++11 platforms.

This release redefines those two types as std::int64_t and std::uint64_t.

[RTI Issue ID CORE-10913]

5.2. What’s Fixed in 7.0.0 75

../../../../doc/manuals/connext_dds_professional/whats_new/index.htm
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H&version=3.1

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Assigning DataWriter and DataReaderQos from a TopicQos caused a build error

DataWriterQos and DataReaderQos could not be constructed from a TopicQos assignment. You may have
seen a compiler error such as:

error: conversion from 'TEntityQos<rti::topic::qos::TopicQosImpl>' to
non-scalar type 'TEntityQos<rti::pub::qos::DataWriterQosImpl>' requested.

This problem has been resolved. Now this type of assignment works correctly. Any fields that are not in the
TopicQos will use the default for the DataWriterQos or DataReaderQos.

[RTI Issue ID CORE-11185]

Copy of SampleInfo::coherent_set_info field was not supported

SampleInfo::coherent_set_info was not available when using take/read operations that did not loan the sam-
ples. The SampleInfo::coherent_set_info field was always set to NULL when you called the take/read opera-
tions that did not loan the samples. To get the coherent_set_info value, you had to use the read/take operations
that loan the data.

In addition, the copy constructor and assignment operator in the Traditional C++ andModern C++APIs did not
copy the SampleInfo::coherent_set_info field. This field was always set to NULL; it was your responsibility
to make the copy and handle memory allocation and deletion for this field.

This problem has been fixed. If you work with the C API, starting with this release you will have to use the
following functions to manipulate SampleInfo structures:

• DDS_SampleInfo_initialize()

• DDS_SampleInfo_copy()

• DDS_SampleInfo_finalize()

[RTI Issue ID CORE-11213]

In XML-based applications, generated IDL types did not take precedence over XML Dy-
namicTypes (C# API)

In the C# API in previous releases, if a type was declared in XML as a dynamic type and also generated
and registered by the application, the XML dynamic type took precedence. This led to the DataReaders or
DataWriters using DynamicData instead of the generated C# user class. This behavior was unintuitive and
inconsistent with the other language APIs. It has been resolved.

[RTI Issue ID CORE-11389]

5.2. What’s Fixed in 7.0.0 76

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Namespaces ignored when a type was explicitly registered in C# for XML-based applica-
tions

When a type was explicitly registered (this is only necessary to support generated IDL types with XML-Based
Application Creation) as follows:

DomainParticipantFactory.RegisterType<A.B.Foo>()

The registered type name was to set to “Foo” instead of the expected “A::B::Foo”. In some situations, this
may have stopped applications written in other languages to communicate with a C# application, if the regular
algorithm of type matching was disabled.

[RTI Issue ID CORE-12074]

Corruption of LoanedDynamicData object when moved in some situations (Modern C++
API only)

Given a DynamicData sample, accessing a nested member within another nested member via loan_value() and
then moving the latter may have corrupted the former. For example, given a sample such that “my_sample.a.b”
is a member of a constructed type (struct or union):

DynamicData my_sample(my_dynamic_type);
LoanedDynamicData loan1 = my_sample.loan_value(""a"");
LoanedDynamicData loan2 = loan1.get().loan_value(""b"");
// The following corrupts loan2
LoanedDynamicData loan1_moved = std::move(loan1);

This may have affected applications that explicitly move-constructed a double-nested LoanedDynamicData or
that otherwise indirectly called the move constructor in this situation (for example, by resizing a std::vector of
LoanedDynamicData elements).

The LoanedDynamicData’s move constructor and move-assignment operators have been fixed.

[RTI Issue ID CORE-12272]

Calling DynamicData::set_complex_member with an aliased type failed

CallingDynamicData::set_complex_member() with an aliased type failed. For example, given the following
types:

struct Foo {
long x;
long y;
};
typedef Foo TypedefFoo;
struct MyType {
Foo my_inner_struct;
TypedefFoo my_typedef_struct;
};

5.2. What’s Fixed in 7.0.0 77

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

The following code should have worked to set the my_typedef_struct member:

struct Foo {
long x;
long y;
};
typedef Foo TypedefFoo;
struct MyType {
Foo my_inner_struct;
TypedefFoo my_typedef_struct;
};
DDS_DynamicData *data = DDS_DynamicData_new(

MyType_get_typecode(),
&DDS_DYNAMIC_DATA_PROPERTY_DEFAULT);
DDS_DynamicData *inner_data = DDS_DynamicData_new(
TypedefFoo_get_typecode(),
&DDS_DYNAMIC_DATA_PROPERTY_DEFAULT);

// This call fails. If the above call used Foo_get_typecode instead then it␣
→˓would work

retcode = DDS_DynamicData_set_complex_member(data, ""my_typedef_struct"", 0,␣
→˓inner_data);
if (retcode != DDS_RETCODE_OK) {

fprintf(stderr, ""_set_complex_member %d\n"", retcode);
return -1;

}

But instead, it failed with these errors:

DDS_DynamicData2_copy: Objects have different types. self type = TypedefFoo,␣
→˓other type = TypedefFoo
DDS_DynamicData2_finalize_ex: finalizing object bound to a member,␣
→˓automatically unbinding now.
DDS_DynamicData2_set_complex_member:ERROR: Failed to copy value
DDS_DynamicData2_unbind_complex_member:ERROR: Bad parameter: self has no␣
→˓bound member
DDS_DynamicData2_set_complex_member:!unbind complex member

This issue has been fixed. Now, using either the aliased type (TypedefFoo in our example) or the original type
(Foo in our example) works to set a complex member using the DynamicData API.

[RTI Issue ID CORE-12273]

5.2. What’s Fixed in 7.0.0 78

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Possiblewrong results when adding Time or Duration objects that used very large numbers

Adding Time or Duration objects could have previously produced wrong results when using very large numbers.
Necessary checks are now in place to ensure that wrong results do not occur.

[RTI Issue ID CORE-12413]

Java API did not support RtpsReliableReaderProtocol_t.receive_window_size

This QoS setting was ignored by the Java API, and readers were always created with the default value (256).
This problem has been resolved.

[RTI Issue ID CORE-12451]

5.2.9 Fixes Related to Crashes

Simultaneous deletion of an entity by multiple threads caused a crash when using Java

When two threads deleted an entity at the same time, in Java, this may have caused a crash with the following
backtrace:

#7 0x00007f7c630dad3b in REDAWeakReference_getReferent (reference=0x78,␣
→˓slNode=0x7f7c4407f988, frOut=0x0, tableWithStartedCursor=0x7f7c6452c000)␣
→˓at WeakReference.c:144

#8 0x00007f7c630d2ff3 in REDACursor_gotoWeakReference (c=0x7f7c4407f950,␣
→˓fr=0x0, wr=0x78) at
Cursor.c:230
#9 0x00007f7c62d5ed46 in PRESPsService_destroyLocalEndpoint␣
→˓(me=0x7f7c64367cc0, failReason=0x7f7cb0136fc0, group=0x7f7c64dbb340,␣
→˓endpoint=0x7f7c644f0e88, worker=0x7f7c44015f70) at PsService.c:2130

#10 0x00007f7c62b6fc26 in PRESParticipant_destroyLocalEndpoint␣
→˓(me=0x7f7c64368a00, failReason=0x7f7cb0136fc0, group=0x7f7c64dbb340,␣
→˓endpoint=0x7f7c644f0e88, worker=0x7f7c44015f70) at Participant.c:5882
#11 0x00007f7c636fcc32 in DDS_DataReader_deleteI (reader=0x7f7c644f1070) at␣
→˓DataReader.c:4250
#12 0x00007f7c6372667e in DDS_Subscriber_delete_datareader␣
→˓(self=0x7f7c64dbb620, reader=0x7f7c644f1070) at Subscriber.c:1159

#13 0x00007f7c63daf24b in Java_com_rti_dds_subscription_SubscriberImpl_
→˓DDS_1Subscriber_1delete_1datareader (env=0x7f7c781061f8, self_
→˓class=0x7f7cb0137148, self=140172244792864, readerL=140172235575408) at␣
→˓SubscriberImpl.c:790

This issue has been resolved. Now one thread will remove the entity and the other thread will throw an exception
with the error code com.rti.dds.infrastructure.RETCODE_ALREADY_DELETED.

[RTI Issue ID CORE-10768]

5.2. What’s Fixed in 7.0.0 79

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

DataReader C++ application crashed if it received tampered sample with unsupported en-
capsulation ID

If a C++ application with aDataReader received a sample with a tampered or malformed encapsulation kind, a
segmentation fault occurred when theDataReader attempted to deserialize the sample, leading to an application
crash. This problem has been fixed.

[RTI Issue ID CORE-12356]

Segmentation fault after calling DomainParticipant::register_durable_subscription with a
group containing a long role_name

An application using the API DomainParticipant::register_durable_subscription() may have experienced
a segmentation fault if the role_name of the input group was NULL or had a length greater than 512 bytes.
This problem has been fixed.

[RTI Issue ID CORE-12460]

Segmentation fault when application using MultiChannel ran out of memory

A Connext application using MultiChannel might have produced a segmentation fault if the system ran out of
memory. This problem has been fixed.

[RTI Issue ID CORE-12493]

Application crashedwhen capturing traffic for a DomainParticipant created before enabling
network capture

To capture network traffic, youmust enable this feature before creating theDomainParticipants that will capture
the traffic. Applications not satisfying this requirement crashed when starting, pausing, or resuming the capture.

This problem has been fixed. Connext will no longer crash in this situation, but will fail and log messages such
as the following:

ERROR NDDS_Utility_start_network_capture_w_params_for_participant:!get␣
→˓network capture manager for DomainParticipant. Network capture must be␣
→˓enabled before creating the DomainParticipant

ERROR NDDS_Utility_start_network_capture_for_participant:!network capture␣
→˓could not be started for the participant

ERROR NDDS_Utility_run_network_capture_operation_for_all_participants:!failed␣
→˓to run network capture operation for participant

ERROR NDDS_Utility_start_network_capture_w_params:!error starting network␣
→˓capture for all participants

ERROR NDDS_Utility_start_network_capture:!start network capture for all␣
→˓participants. There was at least one participant that could not be started

5.2. What’s Fixed in 7.0.0 80

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

[RTI Issue ID CORE-12511]

Possible crash when writing a sample

Due to an internal error, an application could crash when writing a sample using either a best-effort or reliable
DataWriter. Before the crash, an error message in either of the following functions was printed:

* COMMENDBeWriterService_write

* COMMENDSrWriterService_write

This problem has been resolved.

[RTI Issue ID CORE-12561]

Potential crash during type registration if system ran out of memory

A crash may have occurred during type registration if the application ran out of memory. This problem has
been resolved.

[RTI Issue ID CORE-12734]

Segmentation fault after calling DomainParticipant::delete_durable_subscription with a
group containing a long role_name

An application using the API DomainParticipant::register_durable_subscription() may have experienced
a segmentation fault if the role_name of the input group was NULL or had a length greater than 512 bytes.
This problem has been fixed.

[RTI Issue ID CORE-12787]

Potential crash or memory corruption if user application using thread-specific storage

Starting with release 6.1.0, there was an issue that could lead to a potential crash or memory corruption if the
user application was using thread-specific storage.

In particular, when using Activity Context or HeapMonitoring, a race condition could have been triggered upon
creating a thread with the ThreadFactory at the same time the DomainParticipantFactory instance was initial-
ized or finalized. When this race condition was triggered, Connext might have overwritten the user application’s
thread-specific storage, leading to memory corruption or crashes.

This issue is now fixed. If the race condition that led to the issue happens in an application, the following benign
warning will be logged:

Unexpected RTIOsapiContextSupport_g_tssKey value. This could mean that this␣
→˓thread was
created at the same time you are destroying the DDSDomainParticipantFactory.

5.2. What’s Fixed in 7.0.0 81

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

If that is the case, Activity Context and Heap Monitoring won’t be available for that thread.

[RTI Issue ID CORE-12966]

5.2.10 Other Fixes

Serialization/deserialization of non-primitive sequences and arrays for
XCDR2_DATA_REPRESENTATION did not follow Extensible Types specification

The serialization/deserialization of sequences and arrays with non-primitive members for
XCDR2_DATA_REPRESENTATION did not follow the OMG ‘Extensible and Dynamic Topic Types
for DDS’ specification, version 1.3. This led to compatibility issues with other DDS implementations.

This problem has been fixed, although the new behavior is not enabled by default, in order to keep backward
compatibility with previous Connext releases. You can configure a DomainParticipant to align with the specifi-
cation by setting dds.type_plugin.dheader_in_non_primitive_collections to true in theDomainParticipant’s
PROPERTY QoS Policy for all the DomainParticipants created by your Connext applications.

[RTI Issue ID CORE-12464]

Possible hang when using best-effort writers and asynchronous publishing

Due to an internal error, an application hung when using a best-effort writer and asynchronous publishing.
Before the hang, the following error message was printed:

COMMENDBeWriterService_write:!retrieveJob
This problem is now fixed.

[RTI Issue ID CORE-12562]

Unnecessary sockets created during initialization of library

The initialization of the Connext libraries always created a socket to obtain the IP address of the first valid
interface of the machine. This IP address is used to generate identifiers when DDS_DomainParticipan-
tQos::wire_protocol::rtps_auto_id_kind is DDS_RTPS_AUTO_ID_FROM_IP, which is not the default
value. Therefore, the creation of this socket was unnecessary in most cases. This problem has been solved, and
now the socket is only created when it is needed.

[RTI Issue ID CORE-12587]

5.2. What’s Fixed in 7.0.0 82

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Various issues with RtpsReliableWriterProtocol_t::nack_suppression_duration

There were various issues with the RtpsReliableWriterProtocol_t::nack_suppression_duration QoS:

• NACKs were being incorrectly suppressed with asynchronous publishing or non-zero
min/max_nack_response_delay if two NACK messages were received within the nack_sup-
pression_duration window, even if they were NACKing for different sets of sequence numbers.
The nack_suppression_duration is only meant to suppress NACKs with the same leading sequence
number that are received within the nack_suppression_duration window. If two consecutive
NACKs have different leading sequence numbers, this indicates that the reader is making progress
and the second one should not be suppressed, regardless of the nack_suppression_duration. In-
correct suppression of NACKs was not an issue if min/max_nack_response_delay was zero and
PublishModeQosPolicy.kind was SYNCHRONOUS_PUBLISH_MODE_QOS..

• If a NACK was received and suppressed due to the nack_suppression_duration before the previous
NACK was responded to, then the NACK that had not been responded to yet, along with all NACKs
for the duration of the nack_suppression_duration, were incorrectly suppressed. This problem did
not occur if min/max_nack_response_delay was zero and PublishModeQosPolicy.kind was SYN-
CHRONOUS_PUBLISH_MODE_QOS.

• When PublishModeQosPolicy.kind was ASYNCHRONOUS_PUBLISH_MODE_QOS, if there
were no GAP messages sent in response to a NACK, the nack_suppression_duration had no effect
and NACKs were never suppressed. (GAP messages are sent to a DataReader to indicate that a sam-
ple or a set of samples are not meant for that DataReader. This can happen, for example, because the
DataWriter has applied writer-side filtering or no longer has those samples in its queue.)

These issues have been resolved.

[RTI Issue ID CORE-12603]

Possible error message printed during Entity disposal

Upon the disposal of an entity, an error message from a callback associated with an event may have been
printed. An excerpt of what the error may have looked like this:

ERROR [0x01013D3F,0x79453D76,0xA3558BB2:0x00000000|REMOVE␣
→˓REMOTE DR 0x01013D3F,0x79453D76,0xA3558BB2:0x80000007]␣
→˓OnReliableReaderActivityChangedCallback:An exception was thrown: Omg.Dds.
→˓Core.DdsException: DDS operation failed:
at Rti.Dds.NativeInterface.Helpers.ReturnCode.CheckResult(IntPtr result)

...

The disposal of entities has now been modified to ensure this error does not happen.

[RTI Issue ID CORE-12641]

5.2. What’s Fixed in 7.0.0 83

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Runtime error when using debug libraries for QNX x86 platform

When using the i86QNX6.6qcc_cpp4.7.3 debug libraries, your application may have had a runtime error and
hung. This was because the debug libraries included the symbol for a math function (“isinff”) that was discon-
tinued in QNX 6.3.

This problem has been resolved. The debug libraries now include “isinf” instead, which is supported.

A full list of the math functions that were discontinued in QNX 6.3 can be found here: http://www.qnx.com/
developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html.

Note: QNX platforms on x86 are not supported in Connext 7.0.0.

[RTI Issue ID CORE-12695]

Pushed samplesmay not have been received by reliable DataReader when DataWriter pub-
lished Type that supports Zero Copy transfer over shared memory

A reliable DataReader may not have received pushed samples from a DataWriter publishing a Topic on a
type configured with the zero-copy transfer over shared memory @transfer_mode(SHMEM_REF). This
may have led to significant performance degradation because the DataReader has to continuously NACK the
missing samples.

This problem only occurred when the following three conditions were true:

1. The DataWriter ran in a different host, or the DataReader did not have the builtin SHMEM transport
enabled.

2. The DataReader used a ContentFilteredTopic, and the DataWriter did writer-side filtering, or the
DataReader created TopicQueries.

3. The DataWriter was not configured to use an asynchronous publisher. This problem has been resolved.

[RTI Issue ID CORE-12775]

Unbounded memory growth in Monitoring Library when creating and deleting endpoints

Each time a DataWriter or DataReader is created in an application that has RTI Monitoring Library enabled, a
new instance is created in the DataWriters of the library. Since, by default, the maximum number of instances
the DataWriter can handle is unlimited, and the instances of already deleted endpoints were not cleaned up
automatically, unbounded memory growth was possible in the library’s DataWriters when constantly creating
and deleting endpoints in an application that had Monitoring Library enabled.

This problem has been fixed by setting the writer_data_lifecycle::autopurge_disposed_instances_delay
QoS to DDS_DURATION_ZERO by default in the DataWriters for the Monitoring Library. That way,
disposed instances will be instantly cleared.

[RTI Issue ID MONITOR-244]

5.2. What’s Fixed in 7.0.0 84

http://www.qnx.com/developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html
http://www.qnx.com/developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Unexpected behavior when two threads crashed at the same time on Windows systems

When two threads crashed at the same time on Windows systems, Connext may have concurrently called the
function SymInitialize() from DbgHelp from two crashing threads.

SymInitialize() is not thread safe, so the application may have run into unexpected behavior or memory cor-
ruption under this scenario.

This has been resolved, Connext no longer calls SymInitialize() from a crashing thread. Instead, SymInitial-
ize() is now called during DomainParticipantFactory initialization.

[RTI Issue ID CORE-10066]

DataReaders setting reader_qos.protocol.expects_inline_qos to TRUE incorrectly
matched with DataWriters

Connext DataWriters matched DataReaders that set reader_qos.protocol.expects_inline_qos to TRUE. This
behavior was incorrect because Connext DataWriters do not support sending inline QoS, and they were not
honoring the DataReaders’ requests.

This issue has been fixed. The behavior has changed so that DataWriters will not match DataReaders that
request inline QoS (i.e., that set reader_qos.protocol.expects_inline_qos to TRUE).

[RTI Issue ID CORE-10501]

Source IP on Spy was not correct when DataWriters with same Topic were on different
machines

The source IP on Spy may not have been correct when DataWriters with the same Topic were on different
machines. This issue has been fixed. Now the source IP is per Entity, not per Topic, and the output will look
like this:

11:35:13 New reader from 10.200.130.20 : topic=""Example app"" type=""app""
11:35:18 New writer from 10.200.129.195 : topic=""Example app"" type=""app""
11:35:16 New writer from 10.200.130.3 : topic=""Example app"" type=""app""
11:42:58 New data from 10.200.129.195 : topic=""Example app"" type=""app""
11:42:58 New data from 10.200.130.3 : topic=""Example app"" type=""app""
11:43:00 New data from 10.200.129.195 : topic=""Example app"" type=""app""
11:43:00 New data from 10.200.130.3 : topic=""Example app"" type=""app""

[RTI Issue ID CORE-12169]

5.2. What’s Fixed in 7.0.0 85

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Writer using durable writer history may not have blocked after send window filled up when
disable positive ACKs was enabled

In previous releases, a reliable DataWriter configuring a finite send window size may not have blocked when
the send window filled up if all these conditions were met:

• DataWriter was configured to use durable writer history.

• DataWriter was configured to use disable positive ACKs.

• DataWriter was configured with writer_qos.reliability.acknowledgment_kind set to AUTO or EX-
PLICIT, or writer_qos.availability.enable_required_subscriptions was set to TRUE.

Because of this issue, the reliability protocol for the DataWriter may have been less efficient. This problem has
been resolved.

[RTI Issue ID CORE-12225]

Potential truncation of application-level acknowledgment response data

Connext enforced a wrong maximum length for application-level acknowledgment response data. Specif-
ically, Connext incorrectly allowed setting the DATA_READER_RESOURCE_LIMITS QosPolicy’s
max_app_ack_response_length longer than the maximum serializable data, which resulted in the truncation
of data when the length got close to 64kB.

This problem has been resolved: Connext now enforces a maximum length of 32kB for max_app_ack_re-
sponse_length as part of DataReader QoS consistency checks, and it will log an error if you try to set
max_app_ack_response_length longer than 32kB.

[RTI Issue ID CORE-12450]

Error messages displayed that should not have been, when printing DataReaderQoS ob-
jects

When printing DataReaderQoS objects, and the contained DDSOwnershipQosPolicy or DDS_TransportMul-
ticastQosPolicy policies were printed, some error messages were displayed that should not have been. These
error messages could have been safely ignored by an application. These error messages are no longer printed.

[RTI Issue ID CORE-12462]

Potential Valgrind invalid read when logging a message or enabling heap monitoring

When activity context was enabled in logging, or when heap monitoring was enabled, a Valgrind invalid read
similar to the following one may have been reported:

==1344490== Invalid read of size 4
==1344490== at 0x4A3FA0A: RTIOsapiActivityContext_skipResourceGuid␣
→˓(ActivityContext.c:246)
==1344490== by 0x4A417B3: RTIOsapiActivityContext_getString (ActivityContext.
→˓c:820)

5.2. What’s Fixed in 7.0.0 86

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

This issue has been resolved. The Valgrind invalid read error no longer appears.

[RTI Issue ID CORE-12537]

Malformed IDL printed if multiple labels used for default case of a union

The IDL produced by the C API’s DDS_TypeCode_print_IDL() function (or the equivalent in other APIs)
may have been malformed if multiple labels were assigned to the default case of a union. All of the labels were
printed as “default: “, instead of their true value. This problem has been resolved.

[RTI Issue ID CORE-12624]

5.2. What’s Fixed in 7.0.0 87

Chapter 6

Known Issues

Note: For an updated list of critical known issues, see the Critical Issues List on the RTI Customer Portal at
https://support.rti.com.

This section includes:

6.1 Known Issues with Discovery (SPDP2)

The following known issues apply to the Simple Participant Discovery Protocol 2.0, which is an alternative
version of the Simple Participant Discovery Protocol, designed for decreased bandwidth usage and improved
reliability. See Simple Participant Discovery 2.0, in the RTI Connext Core Libraries User’s Manual for more
information.

6.1.1 Features under future consideration for SPDP2

Note: RTI does not guarantee the following features for any release or timeline. If any of these enhancements
is of interest to you, please provide that feedback through your account team.

The following features, which are not currently supported, are being considered for SPDP2 in future releases:

• Use of SPDP2 with custom security plugins (for example, those implemented with the Security Plug-
ins SDK), the Lightweight Security Plugins, or HMAC-Only mode. Only the RTI Security Plugins are
supported in combination with SPDP2.

• SPDP and SPDP2 compatibility mode. The compatibility mode will allow some DomainParticipants to
simultaneously communicate with DomainParticipants that are using SPDP and SPDP2. DomainPartic-
ipants that are using the compatibility mode will be able to communicate with DomainParticipants that
are using SPDP and other DomainParticipants that are using SPDP2. For now, you can use RTI Routing
Service to achieve this communication; see this Knowledge Base article on the RTI Community Forum.

88

https://support.rti.com
../../../../../doc/manuals/connext_dds_professional/users_manual/index.htm#users_manual/Simple_Participant_Discovery_2.htm
https://community.rti.com/kb/enabling-communication-between-spdp-and-spdp2-participants-routing-service

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

• Improved configuration update behavior. Currently, when aDomainParticipant changes its configuration
(partition, locators, etc.), it sends out:

– If SPDP is enabled: a single Data(p) to all peers (matched or potential).

– If SPDP2 is enabled: a single reliable message to matched peers, a single bootstrap message to
unmatched initial peers. RTI will add an option to send multiple Data(p)s/bootstrap messages,
since these messages are sent best-effort and can get lost, delaying configuration change updates in
remote participants until the next periodic message.

[RTI Issue IDs CORE-12929, CORE-13884, and CORE-12930]

6.1.2 HMAC-Only mode and Lightweight Security Plugins not supported

DomainParticipants using SPDP2 cannot use HMAC-Only mode or Lightweight Security Plugins using only
preshared keys. Participant discovery will not complete if these features are used. HMAC and preshared keys
can be used if they are used in conjunction with the full Security Plugins.

[RTI Issue ID CORE-13385]

6.1.3 allow_unauthenticated_participants not supported in all scenarios

DomainParticipants using SPDP2 with allow_unauthenticated_participants set to TRUE will
complete discovery with DomainParticipants that are not using security, but will not complete discovery with
DomainParticipants that are using security but fail authentication.

[RTI Issue ID CORE-13383]

6.1.4 Participant discovery fails after re-authentication after asymmetric liveliness
loss

If an asymmetric loss of liveliness occurs between twoDomainParticipants, theDomainParticipantswill attempt
to perform re-authentication following the process described in Re-Authentication in the Security Plugins User’s
Manual. However, communication between the DomainParticipants will not resume, regardless of the result of
the re-authentication attempt. DomainParticipant communication will only resume if both DomainParticipants
lose liveliness and begin participant discovery again.

[RTI Issue ID CORE-13870]

6.2 Known Issues with Serialization and Deserialization

6.2.1 Some parameters cannot be received multiple times within same SPDP sam-
ple

The OMG Real-Time Publish-Subscribe (RTPS) specification, version 2.5 allows in general that “The Param-
eterList may contain multiple Parameters with the same value for the parameterId.” RTI Connext, however,

6.2. Known Issues with Serialization and Deserialization 89

https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#re-authentication
https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#re-authentication
https://www.omg.org/spec/DDSI-RTPS/2.5/

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

does not support receiving the following parameterId values multiple times within the same Simple Participant
Discovery Protocol (SPDP) discovery sample:

• PID_USER_DATA

• PID_PROPERTY_LIST

• PID_ENTITY_NAME

• PID_ROLE_NAME

• PID_PARTITION

• PID_DOMAIN_TAG

• PID_IDENTITY_TOKEN

• PID_PERMISSIONS_TOKEN

• PID_TRANSPORT_INFO_LIST

[RTI Issue ID CORE-13680]

6.3 Known Issues with Usability

6.3.1 Cannot open USER_QOS_PROFILES.xml in rti_workspace/examples from Vi-
sual Studio

When trying to open the USER_QOS_PROFILES.xml file from the resource folder of one of the provided
examples, you may see the following error:

Could not find file : C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\
→˓connext_dds\c\<example>\win32\USER_QOS_PROFILES.xml

The problem is that the Visual Studio project is looking for the file in a wrong location (win32 folder).

You can open the file manually from here:

C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\connext_dds\c\<example>
→˓\USER_QOS_PROFILES.xml

This issue does not affect the functionality of the example.

[RTI Issue ID CODEGENII-743]

6.3. Known Issues with Usability 90

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

6.3.2 DataWriter’s Listener callback on_application_acknowledgment() not trig-
gered by late-joining DataReaders

The DataWriter’s listener callback on_application_acknowledgment() may not be triggered by late-joining
DataReaders for a sample after the sample has been application-level acknowledged by all live DataReaders
(no late-joiners).

If your application requires acknowledgment of message receipt by late-joiners, use the Request/Reply com-
munication pattern with an Acknowledgment type (see the chapter “Introduction to the Request-Reply Com-
munication Pattern,” in the Core Libraries User’s Manual).

[RTI Issue ID CORE-5181]

6.3.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communi-
cation failure when writing small samples

If you inherit from either the BuiltinQosLibExp::Generic.StrictReliable.HighThroughput or the Built-
inQosLibExp::Generic.AutoTuning built-in QoS profiles, your DataWriters and DataReaders will fail to
communicate if you are writing small samples.

In Connext 5.1.0, if you wrote samples that were smaller than 384 bytes, you would run into this problem. In
version 5.2.0 onward, you might experience this problem when writing samples that are smaller than 120 bytes.

This communication failure is due to an interaction between the batching QoS settings in the Generic.High-
Throughput profile and the DataReader’s max_samples resource limit, set in the BuiltinQosLib-
Exp::Generic.StrictReliable profile. The size of the batches that the DataWriter writes are limited to
30,720 bytes (see max_data_bytes). This means that if you are writing samples that are smaller than
30,720/max_samples bytes, each batch will have more than max_samples samples in it. The DataReader
cannot handle a batch with more than max_samples samples and the batch will be dropped.

There are a number of ways to fix this problem, the most straightforward of which is to overwrite the
DataReader’s max_samples resource limit. In your own QoS profile, use a higher value that accommodates
the number of samples that will be sent in each batch. (Simply divide 30,720 by the size of your samples).

[RTI Issue ID CORE-6411]

6.3.4 Memory leak if Foo:initialize() called twice

Calling Foo:initialize() more than once will cause a memory leak.

[RTI Issue ID CORE-7678]

6.3. Known Issues with Usability 91

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

6.3.5 Wrong error code after timeout on write() from Asynchronous Publisher

When using an asynchronous publisher, if write() times out, it will mistakenly return DDS_RETCODE_ER-
ROR instead of the correct code, DDS_RETCODE_TIMEOUT.

[RTI Issue ID CORE-2016, Bug # 11362]

6.3.6 Type Consistency enforcement disabled for structs with more than 10000
members

TypeObjects cannot be created from structs with more than 10000 members. Applications that publish or
subscribe to such types may see errors like the following:

RTICdrStream_serializeNonPrimitiveSequence:sequence length (10005) exceeds␣
→˓maximum (10000)
RTICdrTypeObjectTypeLibraryElement_getTypeId:serialization error: Type
RTICdrTypeObject_fillType:!get TypeId
RTICdrTypeObject_assertTypeFromTypeCode:!create Structure Type
RTICdrTypeObject_createFromTypeCode:!create TypeObject

When the TypeObject can’t be serialized, the type compatibility check between a reader and a writer falls back
to exact type-name matching.

See the section “Verifying Type Consistency: Type Assignability” in the RTI Connext Core Libraries Extensible
Types Guide for more information.

[RTI Issue ID CORE-8158]

6.3.7 Escaping special characters in regular/filter expressions not supported in
some cases

Escaping special characters is not supported in expressions when using the following features:

• Partitions

• MultiChannel

Every occurrence of a backslash (\) will be considered its own character and not a way to escape the character
that follows. For example: A\? does not match A? because the first expression is considered an expression
with three characters.

[RTI Issue ID CORE-11858]

6.3. Known Issues with Usability 92

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

6.4 Known Issues with Code Generation

6.4.1 Examples and generated code for Visual Studio 2017 and later may not com-
pile (Error MSB8036)

The examples provided with Connext and the code generated for Visual Studio 2017 and later will not compile
out of the box if theWindows SDK version installed is not a specific number like 10.0.15063.0. If that happens,
you will see the compilation error MSB8036. To compile these projects, select an installed version ofWindows
SDK from the Project menu -> Retarget solution.

Another option is to set the enviroment variable RTI_VS_WINDOWS_TARGET_PLATFORM_VERSION
to the SDK version number. For example, set RTI_VS_WINDOWS_TARGET_PLATFORM_VERSION to
10.0.16299.0. (Note: the environment variable will not work if you have already retargeted the project via the
Project menu.)

For further details, see the Windows chapter of the Core Libraries Platform Notes.

[RTI Issue ID CODEGENII-800]

6.5 Known Issues with Instance Lifecycle

6.5.1 RECOVER_INSTANCE_STATE_CONSISTENCY setting not fully supported
by RTI Infrastructure Services

The RECOVER_INSTANCE_STATE_CONSISTENCY option in the instance_state_consistency_kind
field, in the RELIABILITY QoS policy, is not fully supported by the RTI Infrastructure Services products.

RTI Routing Service inputs cannot route instance state transitions from NOT_ALIVE_NO_WRITERS to
ALIVE after regaining liveliness with a DataWriter. However, a Routing Service output DataWriter can be
configured to use the RECOVER_INSTANCE_STATE_CONSISTENCY setting and respond to matching
DataReaders if they request instance state updates after a reconnection.

Persistence Service, Queuing Service, Recording Service, and Replay Service do not support being configured with
the RECOVER_INSTANCE_STATE_CONSISTENCY setting, since they do not support storing or publish-
ing ALIVE instance state transitions with no associated data.

[RTI Issue ID CORE-13337]

6.5.2 Persistence Service DataReaders ignore serialized key propagated with dis-
pose updates

Persistence Service DataReaders ignore the serialized key propagated with dispose updates. Persistence
Service DataWriters cannot propagate the serialized key with dispose, and therefore ignore the serial-
ize_key_with_dispose setting on the DataWriter QoS.

[RTI Issue ID PERSISTENCE-221]

6.4. Known Issues with Code Generation 93

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

6.6 Known Issues with Reliability

6.6.1 DataReaders with different reliability kinds under Subscriber with
GROUP_PRESENTATION_QOS may cause communication failure

Creating a Subscriber withPresentationQosPolicy.access_scopeGROUP_PRESENTATION_QOS and then
creating DataReaders with different ReliabilityQosPolicy.kind values creates the potential for situations in
which those DataReaders will not receive any data.

One such situation is when the DataReaders are discovered as late-joiners. In this case, samples are never de-
livered to the DataReaders. A workaround for this issue is to set the AvailabilityQosPolicy.max_data_avail-
abilty_waiting_time to a finite value for each DataReader.

[RTI Issue ID CORE-7284]

6.7 Known Issues with Content Filters and Query Conditions

6.7.1 Writer-side filtering may cause missed deadline

If you are using a ContentFilteredTopic and you set the Deadline QosPolicy, the deadline may be missed due
to filtering by a DataWriter.

[RTI Issue ID CORE-1634, Bug # 10765]

6.7.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated cor-
rectly

The filter_sample_* statistics in the DDS_DataWriterProtocolStatus are not updated correctly. The values
that you get after calling the following APIs may be smaller than the actual values:

• DDS_DataWriter::get_datawriter_protocol_status

• DDS_DataWriter::get_matched_subscription_datawriter_protocol_status

• DDS_DataWriter::get_matched_subscription_datawriter_protocol_status_by_locator

[RTI Issue ID CORE-5157]

6.8 Known Issues with TopicQueries

6.8.1 TopicQueries not supported with DataWriters configured to use batching or
Durable Writer History

Getting TopicQuery data from a DataWriter configured to use batching or Durable Writer History is not sup-
ported.

[RTI Issue IDs CORE-7405, CORE-7406]

6.6. Known Issues with Reliability 94

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

6.9 Known Issues with Transports

6.9.1 AppAckmessages cannot be greater than underlying transport message size

A DataReader with acknowledgment_kind (in the ReliabilityQosPolicy) set to DDS_APPLICA-
TION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_EXPLICIT_ACKNOWLEDG-
MENT_MODE cannot send AppAck messages greater than the underlying transport message size.

If a DataReader tries to send an AppAck message greater than the transport message size, Connext will print
the following error message:

COMMENDFacade_sendAppAck:!add APP_ACK to MIG
COMMENDSrReaderService_sendAppAck:!send APP_ACK
PRESPsService_onReaderAppAckSendEvent:!send acknowledgment

To recover from the above error, the DataReader must acknowledge samples until the size of the AppAck
message goes below the transport message size threshold.

Why does an AppAckmessage increase its size? An AppAckmessage contains a list of sequence number inter-
vals where each interval represents a set of consecutive sequence numbers that have been already acknowledged.
As long as samples are acknowledged in order, the AppAck message will always have a single interval. How-
ever, when samples are acknowledged out of order, the number of intervals and the size of the AppAck will
increase.

For more information, see the “Application Acknowledgment” section in the Core Libraries User’s Manual.

[RTI Issue ID CORE-5329]

6.9.2 DataReader cannot persist AppAck messages greater than 32767 bytes

A DataReader using durable reader state, whose acknowledgment_kind (in the ReliabilityQosPolicy)
is set to DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_EX-
PLICIT_ACKNOWLEDGMENT_MODE, cannot persist an AppAck message greater than 32767 bytes.

To recover from the previous error, the DataReader must acknowledge samples until the size of the AppAck
message goes below the transport message size threshold.

For more information, see the section “Durable Reader State,” in the Core Libraries User’s Manual.

[RTI Issue ID CORE-5360]

6.9.3 Discovery with Connext Micro fails when shared memory transport enabled

Given a Connext application with the shared memory transport enabled, a Connext Micro 2.4.x application will
fail to discover it. This is due to a bug in Connext Micro that prevents a received participant discovery message
from being correctly processed. This bug will be fixed in a future release of Connext Micro. As a workaround,
you can disable the shared memory transport in the Connext application and use UDPv4 instead.

[RTI Issue ID EDDY-1615]

6.9. Known Issues with Transports 95

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

6.9.4 Communication may not be reestablished in some IP mobility scenarios

If you have two Connext applications in different nodes and they change their IP address at the same time, they
may not reestablish communication. This situation may happen in the following scenario:

• The applications see each other only from one single network.

• The IP address change happens at the same time in the network interface cards (NICs) that are in the
network that is in common for both applications.

• The IP address change on one of the nodes happens before the arrival of the DDS discovery message
propagating the address change from the other side.

[RTI Issue ID CORE-8260]

6.9.5 Corrupted samples may be forwarded through Routing Service when using
Zero-Copy transfer over shared memory

When using Zero Copy transfer over shared memory together with RTI Routing Service, Routing Service avoids
an additional copy of the data by passing a reference to the sample from the input to the output of a route. If the
sample is reused and rewritten by the original applicationDataWriter during the time between when the sample
was received on the route input and copied into the route output buffer, the forwarded sample will contain the
updated, and now invalid, values for the original sample.

This situation can be avoided in a few different ways, with various tradeoffs.

Use automatic application acknowledgment

Using automatic application acknowledgment (acknowledgment_mode = APPLICATION_AUTO_AC-
KNOWLEDGMENT in the Reliability QoS Policy) between the Routing Service input DataReader and its
matching DataWriters will avoid the issue.

When using Zero Copy transfer over shared memory, DataWriters must loan samples using the get_loan API.
Only samples that have been fully acknowledged will be returned by the get_loan API. This means that if
automatic application acknowledgment is turned on, that only samples that the Routing Service has already
copied and written to the route output will be available for reuse by the original DataWriter, because Routing
Service does not return the loan on a sample until after it is forwarded to the route outputs.

The drawback to this approach is that it requires RELIABLE Reliability. In addition, application-level ac-
knowledgments are not supported in Connext Micro, so this approach will not work if Connext Micro is the
source of the Zero Copy samples.

6.9. Known Issues with Transports 96

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Ensure that the number of available samples accounts for Routing Service processing time

Regardless of whether you are using Routing Service, it is important when using Zero Copy transfer over shared
memory to size your resources so that your application can continue to write at the desired rate while the receiv-
ing applications receive and process the samples. If you are using Routing Service and cannot, or do not wish
to, use automatic application acknowledgments, you must take into account the amount of time it will take to
receive and forward a sample when setting writer_loaned_sample_allocation in the DATA_WRITER_RE-
SOURCE_LIMITS QoS Policy and managing the samples in your application.

[RTI Issue ID CORE-10782]

6.9.6 Network Capture does not support frames larger than 65535 bytes

Network capture does not support frames larger than 65535 bytes. This limitation affects the TCP transport
protocol if the message_size_max property is set to a value larger than the default one.

[RTI Issue ID CORE-11083]

6.10 Known Issues with FlatData

6.10.1 FlatData language bindings do not support automatic initialization of arrays
of primitive values to non-zero default values

RTI FlatData™ language bindings do not support the automatic initialization of arrays of primitive values to
non-zero default values, unless the primitive is an enumeration. It is possible to declare an alias to a primitive
member with a default value using the @default annotation, and then to declare an array of that alias. For
example:

@default(10)
typedef int32 myLongAlias;

struct MyType {
myLongAlias myLongArray[25];

};

The default values of each member of the array in this case should be 10, but in FlatData they will all be set to
0.

[RTI Issue ID CORE-9176]

6.10. Known Issues with FlatData 97

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

6.10.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined be-
havior

The function rti::flat::plain_cast is allowed on FlatData samples containing int64_t members, but those mem-
bers are not guaranteed to have an 8-byte alignment (a 4-byte alignment is guaranteed). Memory checkers such
as Valgrind may report errors when accessing such members from the pointer returned by plain_cast.

[RTI Issue ID CORE-10092]

6.11 Known Issues with Coherent Sets

6.11.1 Some coherent sets may be lost or reported as incomplete with batching
configurations

If Connext 6.1.0 receives coherent sets from Connext 6.0.0 or lower using batching, coherent sets that are
fully received and complete may be lost or marked as incomplete. (If the QoS subscriber_qos.presen-
tation.drop_incomplete_coherent_set is set to FALSE, then the samples marked as incomplete won’t be
dropped.)

[RTI Issue ID CORE-9691]

6.11.2 Copy of SampleInfo::coherent_set_info field is not supported

SampleInfo::coherent_set_info is not available when using take/read operations that do not loan the samples.
The SampleInfo::coherent_set_info is always set to NULL when you call the take/read operations that do not
loan the samples. To get the coherent_set_info value, make sure you use the read/take operations that loan
the data.

In addition, the copy constructor and assignment operator in the Traditional C++ and Modern C++ APIs do
not copy the SampleInfo::coherent_set_info field. It is always set to NULL. It is your responsibility to make
the copy and handle memory allocation and deletion for this field.

[RTI Issue ID CORE-11215]

6.11.3 Other known issues with coherent sets

Coherent sets are not propagated through RTI Routing Service [RTI Issue ID ROUTING-657].

Group coherent sets are not persisted by RTI Persistence Service [RTI Issue ID PERSISTENCE-191].

Group coherent sets cannot be stored or replayed with RTI Recording Service [RTI Issue ID RECORD-1083].

6.11. Known Issues with Coherent Sets 98

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

6.12 Known Issues with Dynamic Data

6.12.1 Conversion of data by member-access primitives limited when converting
to types that are not supported on all platforms

The conversion of data by member-access primitives (get_X() operations) is limited when converting to
types that are not supported on all platforms. This limitation applies when converting to a 64-bit int64 type
(get_longlong() and get_ulonglong() operations) and a 128-bit long double type (get_longdouble()). These
methods will always work for data members that are actually of the correct type, but will only support conver-
sion from values that are stored as smaller types on a subset of platforms. Conversion to 64-bit int64s from a
32-bit or smaller integer type is supported on all Windows and Linux architectures, and any additional 64-bit
architectures. Conversion to 128-bit long doubles from a float or double is not supported.

[RTI Issue ID CORE-2986]

6.12.2 Types that contain bit fields not supported

Types that contain bit fields are not supported by DynamicData. Therefore, when rtiddsspy discovers any type
that contains a bit field, rtiddsspy will print this message:

DDS_DynamicDataTypeSupport_initialize:type not supported (bitfield member)

[RTI Issue ID CORE-3949]

6.13 Known Issues with Logging

6.13.1 Possible crash when closing a logger device while it is used

Due to a concurrency issue in the Connext logging infrastructure, there is a small possibility of a crash in an
application when a logger device is closed at the same time it is being used for logging a message.

[RTI Issue ID CORE-10546]

6.14 Known Issues with RTI Monitoring Library

The following known issues occur in RTI Monitoring Library, not in RTI Monitoring Library 2.0.

6.12. Known Issues with Dynamic Data 99

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

6.14.1 Problems with NDDS_Transport_Support_set_builtin_transport_property()
if Participant Sends Monitoring Data

If a Connext application uses the NDDS_Transport_Support_set_builtin_transport_property() API (in-
stead of the PropertyQosPolicy) to set built-in transport properties, it will not work withMonitoring Library if
the user participant is used for sending all the monitoring data (the default settings). As a workaround, you can
configure Monitoring Library to use another participant to publish monitoring data (using the property name
rti.monitor.config.new_participant_domain_id in the PropertyQosPolicy).

[RTI Issue ID MONITOR-222]

6.14.2 Participant’s CPU and memory statistics are per application

The CPU and memory usage statistics published in the DomainParticipant entity statistics topic are per appli-
cation instead of per DomainParticipant.

[RTI Issue ID CORE-7972]

6.14.3 ResourceLimit channel_seq_max_length must not be changed

The default value ofDDS_DomainParticipantResourceLimitsQosPolicy::channel_seq_max_length can’t
be modified if a DomainParticipant is being monitored. If this QoS value is modified from its default value of
32, Monitoring library will fail.

[RTI Issue ID MONITOR-220]

6.15 Known Issues with Installers

6.15.1 RTI Connext Micro 3.0.3 installation package currently compatible only with
Connext 6.0.1 installer

ConnextMicro 3.0.3 must be installed with ConnextProfessional release 6.0.1. It cannot be installed with release
6.1.0. ConnextMicro 3.0.3 can communicate with either release. Customers licensing ConnextMicro will be
notified when a ConnextMicro release that is compatible with the 6.1.0 installer is available.

6.16 Other Known Issues

6.16.1 Possible Valgrind still-reachable leaks when loading dynamic libraries

If you load any dynamic libraries, you may see “still reachable” memory leaks in “dlopen” and “dlclose”. These
leaks are a result of a bug in Valgrind (https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352).

This issue affects the Core Libraries, Security Plugins, and TLS Support.

[RTI Issue IDs CORE-9941, SEC-1026, and COREPLG-510]

6.15. Known Issues with Installers 100

https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

6.16.2 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) not
supported

Unions with a 64-bit integer discriminator type containing discriminator values that cannot fit in a 32-bit value
are not supported when using the following language bindings:

• C

• Traditional C++

• Modern C++

• C#

• Java

• Python

• DynamicData (regardless of the language)

They are also not supported with ContentFilteredTopics, regardless of the language binding.

Using label values greater than 32-bit may lead to receiving samples with invalid content or to filtering samples
incorrectly.

[RTI Issue ID CORE-11437]

6.16.3 Creating multiple DataReaders for the same Topic under the same Sub-
scriber configured with Group Ordered Access is not supported

Creating multiple DataReaders for the same Topic under the same Subscriber configured with Presentation-
QosPolicy access_scope = GROUP and ordered_access = TRUE is not supported. If you try to create a
second reader in this situation, it will fail to be created and this error will be printed:

ERROR [0x0101E967,0x5C3A43B1,0x99D71EB7:0x80000309{Entity=Su,Domain=0}|CREATE␣
→˓DR WITH TOPIC FooTopic|LC:DISC]PRESPsService_createLocalEndpoint:NOT␣
→˓SUPPORTED | Creating more than one reader for the same topic within a␣
→˓single subscriber using GROUP presentation and ordered_access=true.

Instead, in this situation, you will need to use only one DataReader, or you will need to create a new Subscriber
and DataReader in the same DomainParticipant.

[RTI Issue ID CORE-12448]

6.16. Other Known Issues 101

Chapter 7

Experimental Features

This software may contain experimental features. These are used to evaluate potential new features and obtain
customer feedback. They are not guaranteed to be consistent or supported and they should not be used in
production.

In the API Reference HTML documentation, experimental APIs are marked with <<experimental>>.

Experimental features are also clearly noted as such in the User’s Manual or Getting Started Guide for the
component in which they are included.

Disclaimers:

• Experimental features may be only available in a subset of the supported languages and for a subset of
the supported platforms.

• Experimental features may change in the future.

• Experimental features may or may not appear in future product releases.

• Experimental features should not be used in production.

Please submit your comments and suggestions about experimental features to support@rti.com or via the RTI
Customer Portal (https://support.rti.com/).

102

https://support.rti.com/

Chapter 8

Copyrights and Notices

© 2003-2023 Real-Time Innovations, Inc. All rights reserved. Oct 25, 2023

Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Working
as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All other
trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publicationmay be reproduced, stored in a retrieval system, or transmitted in any form (including
electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time Innova-
tions, Inc. The software described in this document is furnished solely under and subject to RTI’s standard
terms and conditions available at https://www.rti.com/terms and in accordance with your License Acknowl-
edgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to the extent otherwise
accepted in writing by a corporate officer of RTI.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved by,
Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

103

https://www.rti.com/terms
http://www.openssl.org/
mailto:eay@cryptsoft.com
mailto:tjh@cryptsoft.com

RTI ConnextDDS Core Libraries Release Notes, Version 7.2.0

Notices

Early Access Software

“Real-Time Innovations, Inc. (“RTI”) licenses this Early Access release software (“Software”) to you subject
to your agreement to all of the following conditions:

(1) you may reproduce and execute the Software only for your internal business purposes, solely with other
RTI software licensed to you by RTI under applicable agreements by and between you and RTI, and
solely in a non-production environment;

(2) you acknowledge that the Software has not gone through all of RTI’s standard commercial testing, and
is not maintained by RTI’s support team;

(3) the Software is provided to you on an “AS IS” basis, and RTI disclaims, to the maximum extent permitted
by applicable law, all express and implied representations, warranties and guarantees, including without
limitation, the implied warranties of merchantability, fitness for a particular purpose, satisfactory quality,
and non-infringement of third party rights;

(4) any such suggestions or ideas you provide regarding the Software (collectively , “Feedback”), may be
used and exploited in any and every way by RTI (including without limitation, by granting sublicenses),
on a non-exclusive, perpetual, irrevocable, transferable, and worldwide basis, without any compensation,
without any obligation to report on such use, and without any other restriction or obligation to you; and

(5) TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENTWILL RTI
BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY
OR PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR FOR LOST PROFITS,
LOST DATA, LOST REPUTATION, OR COST OF COVER, REGARDLESS OF THE FORM OF
ACTION WHETHER IN CONTRACT, TORT (INCLUDING WITHOUT LIMITATION, NEGLI-
GENCE), STRICT PRODUCT LIABILITY OR OTHERWISE, WHETHER ARISING OUT OF OR
RELATING TO THE USE OR INABILITY TO USE THE SOFTWARE, EVEN IF RTI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.”

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations, Inc.
Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding mainte-
nance and support of RTI’s software.

Deprecatedmeans that the item is still supported in the release, but will be removed in a future release. Removed
means that the item is discontinued or no longer supported. By specifying that an item is deprecated in a release,
RTI hereby provides customer notice that RTI reserves the right after one year from the date of such release and,
with or without further notice, to immediately terminate maintenance (including without limitation, providing
updates and upgrades) for the item, and no longer support the item, in a future release.

Technical Support Real-Time Innovations, Inc. 232 E. Java Drive Sunnyvale, CA 94089 Phone: (408)
990-7444 Email: support@rti.com Website: https://support.rti.com/

104

mailto:support@rti.com
https://support.rti.com/

	1 Introduction
	2 System Requirements
	2.1 Introduction
	2.2 Supported Platforms
	2.3 Requirements when Using Microsoft Visual Studio
	2.4 Disk and Memory Usage

	3 Compatibility
	3.1 Wire Protocol Compatibility
	3.2 Code and Configuration Compatibility
	3.3 Extensible Types Compatibility

	4 What’s Fixed in 7.2.0
	4.1 Discovery
	4.1.1 SPDP2 participants may not have completed discovery if IP mobility event occurred during discovery
	4.1.2 Crash if initial_peers sequence contained a NULL string
	4.1.3 Failure to deserialize participant discovery information incorrectly allowed discovery to complete
	4.1.4 Unbounded memory growth when creating/deleting DomainParticipants

	4.2 Serialization and Deserialization
	4.2.1 Unbounded memory growth when deserializing SPDP discovery sample
	4.2.2 Wrong error message when deserializing PropertyQos property value and exceeding property_string_max_length resource limit
	4.2.3 Potential unexpected behavior or crash when deserializing SPDP discovery sample

	4.3 Debuggability
	4.3.1 Instance State Consistency QoS was commented out when printed out as XML from code
	4.3.2 DataWriter instance statistics were not updated in all cases

	4.4 Transports
	4.4.1 Connext started before Windows completed duplicate address detection on network interfaces
	4.4.2 Ungracefully terminated QNX processes using SHMEM transport prevented startup of new processes due to unclosed POSIX semaphores
	4.4.3 QNX applications using shared-memory transport may have led to thread priority inversion issues
	4.4.4 Stalled communication when using shared-memory transport
	4.4.5 Overflow in default TransportMulticastMappingQosPolicy procedure

	4.5 Reliability Protocol and Wire Representation
	4.5.1 Samples lost by reliable reader acknowledging samples it did not receive after remote writer update
	4.5.2 Inconsistent RTPS protocol versions broadcasted by Connext
	4.5.3 Sample loss when using asynchronous publisher due to missing GAP

	4.6 Content Filters and Query Conditions
	4.6.1 Instance handling on a DataReader and filtering operations in ContentFilteredTopics, QueryCondition, TopicQueries, and Multi-Channel DataWriters may have failed

	4.7 Dynamic Data
	4.7.1 Problems with int8/uint8 support
	4.7.2 Connext did not print array dimensions for aliases that were arrays

	4.8 Performance and Scalability
	4.8.1 Performance degradation when using FlatData with ContentFilteredTopics
	4.8.2 Performance issues when using FlatData with payload encryption or compression
	4.8.3 Transport utilization metrics overflowed in applications with high throughput

	4.9 APIs (C or Traditional C++)
	4.9.1 Some DDS_TypeCode operations may have crashed when invalid arguments were used
	4.9.2 Several C API DDS_GUID functions did not account for NULL parameters correctly

	4.10 APIs (Modern C++ API)
	4.10.1 Unexpected rti.connextdds.PreconditionNotMetError when setting optional string members in QoS policies
	4.10.2 Move constructors for some of the built-in topic-types were incorrectly implemented
	4.10.3 Manually closing some built-in readers could lead to a crash
	4.10.4 Incorrect implementation of DynamicDataMemberInfo constructor and assignment may have led to undefined behavior
	4.10.5 int8_t, uint64_t, int64_t not supported as primitive types in C++11 (Modern C++) Dynamic Type API
	4.10.6 Policy getter for rti::core::policy::Monitoring previously missing

	4.11 APIs (Java)
	4.11.1 Possible memory leak in DynamicData copy constructor
	4.11.2 Some ReliabilityQos methods did not consider the instance state consistency QoS

	4.12 APIs (Python)
	4.12.1 Access to collection elements in some DynamicData accessors was not zero-based

	4.13 APIs (Multiple Languages)
	4.13.1 Looking up a DataReader using the wrong class in Modern C++ or Python did not raise clear exception
	4.13.2 Alias type not obtainable using a QosProvider

	4.14 XML Configuration
	4.14.1 Incorrect parsing of data_representation attribute in XML type definitions
	4.14.2 Creating Topic-specific entities from a <qos_profile> using QoS profile inheritance and/or composition returned incorrect values
	4.14.3 configuration_variables tag was not effective
	4.14.4 Using languageBinding attribute on union types in XML caused parsing error

	4.15 Instances
	4.15.1 Instances transitioned due to instance state consistency did not respect propagate_dispose_of_unregistered_instances
	4.15.2 Instance purging based on source timestamp did not work

	4.16 Crashes
	4.16.1 Race condition when using multiple threads to enable same DomainParticipant
	4.16.2 Possible crash gathering periodic metrics for a resource that was being added or deleted at the same time
	4.16.3 Potential crash when configuring logging verbosity to NDDS_CONFIG_LOG_VERBOSITY_STATUS_LOCAL or higher
	4.16.4 Malloc called when handling SIGSEGV
	4.16.5 Calling delete_contained_entities APIs could cause a crash in the thread that collects periodic metrics
	4.16.6 Application could crash when disabling and re-enabling Monitoring Library 2.0 due to internal error
	4.16.7 Low-memory conditions could lead to crash on several platforms if allocation of high resolution clock failed

	4.17 Entities
	4.17.1 Monitoring Library 2.0 incorrectly collected both enabled and disabled DDS Entities
	4.17.2 Application may have hung when deleting a monitored DDS entity
	4.17.3 Monitoring Library 2.0 did not assert disabled DDS Entities when the Entities were enabled

	4.18 Interoperability
	4.18.1 Possible incomplete endpoint discovery when communicating with other DDS vendors

	4.19 Vulnerabilities
	4.19.1 Out-of-bounds read while deserializing malformed partition parameters from malicious RTPS message
	User Impact without Security
	User Impact with Security

	4.19.2 Out-of-bounds read while deserializing malformed IPv6 locator from malicious RTPS message
	User Impact without Security
	User Impact with Security

	4.19.3 Remote modification of DomainParticipant names in unsecure system
	User Impact without Security
	User Impact with Security

	4.20 Other
	4.20.1 Possible hang in application if something failed while adding a new observable resource
	4.20.2 Native Android applications were not shipped
	4.20.3 Error creating a DataWriter using durable writer history if setting property dds.data_writer.history.odbc_plugin.builtin.sample_cache_max_size to -1
	4.20.4 References to missing header file in Connext Professional source bundle
	4.20.5 Application may have hung when event and event snapshot were published simultaneously for same observable resource
	4.20.6 Access to an internal field of observable resources was not thread safe
	4.20.7 Deadlock issue resolved when disabling Monitoring Library 2.0 during command processing
	4.20.8 Running rtisetenv_<arch>.bat caused issues in PATH environment
	4.20.9 Unable to start Launcher, Admin Console, Code Generator, and Monitor in Windows when the RTI Workspace contained white spaces

	5 Previous Releases
	5.1 What’s Fixed in 7.1.0
	5.1.1 Fixes Related to Discovery
	Potential memory leak when creation of any of the built-in discovery plugins failed
	Unbounded memory growth when using domain tags or DomainParticipant partitions
	Error deleting remote endpoints with specific GUID prefixes using debug libraries
	Most up-to-date participant configuration may not have been received by other participants and may have led to discovery not completing
	Participant failed to assert remote participant if usability of shared memory transport changed
	Unexpected warning during discovery when multicast disabled
	Unexpected, invalid locator propagated within builtin topics

	5.1.2 Fixes Related to Serialization and Deserialization
	Unexpected union value when receiving a discriminator that does not select any union member on DataReader’s type
	Serialization of samples failed or produced a segmentation fault for types with max serialized size larger than 2GB
	Potential sample corruption when deserializing a malformed RTPS message
	Unbounded memory growth when deserializing a malformed RTPS message

	5.1.3 Fixes Related to Debuggability
	Hang/crash when invoking a DataReader/DataWriter discovery snapshot within a callback function
	Memory leak if network capture initialization failed
	Unexpected log messages at warning verbosity
	Unexpected fatal error when number of instances reached the limit

	5.1.4 Fixes Related to Transports
	Possible data loss after a Connext application lost its multicast interfaces or gained its first multicast interface
	DomainParticipant with non-default metatraffic_transport_priority QoS did not complete discovery
	dds.transport.minimum_compatibility_version property did not properly adjust locator format
	TCP Transport did not run with Windows debug libraries when socket_monitoring_kind was set to IOCP

	5.1.5 Fixes Related to Reliability Protocol and Wire Representation
	Samples not delivered to Required Subscription DataReaders when DataWriter used durable writer history and DataReaders disabled positive ACKs
	DataReader may not have received samples that were sent as gapped samples to another DataReader over multicast
	DDS fragmentation may have led to more fragments than expected for a sample
	Unexpected precondition error with debug libraries on a reliable DataWriter while sending a GAP

	5.1.6 Fixes Related to Content Filters and Query Conditions
	Unexpected “RTIXCdrSampleInterpreter_initializeSampleWInstruction” error log messages when using QueryConditions, ContentFilteredTopics, TopicQueries, or Multi-Channel

	5.1.7 Fixes Related to Dynamic Data
	DynamicData DataWriters incorrectly serialized optional empty sequences as null

	5.1.8 Fixes Related to APIs
	DynamicData method to get member type missing in Modern C++ and C# APIs
	Fixes Related to Modern C++ API
	banish and subject_name APIs were unresolved in Modern C++ Windows dynamic libraries
	Unnecessary small memory allocation in some operations, including read/take
	close() operation of a ContentFilteredTopic created from XML didn’t work

	Fixes Related to C# API
	Windows library dependency missing from .NET API NuGet packages
	Exception when disposing a DomainParticipant or when entities were not properly disposed

	Fixes Related to Java API
	Java API leaked some objects in certain DomainParticipantFactory operations
	get_typecode method of a DomainParticipant in Java API failed when the type contained a wstring element

	Fixes Related to Python API
	DynamicData accessor for an enum member in a base type failed (Python API)
	Possible incorrect default values when receiving extensible data
	Some APIs where missing, incorrectly named, or have been deleted
	Removed types, methods, and fields:
	Renamed types, methods and fields:
	Newly added missing types, methods, and fields:
	Other

	Possible deadlock between creation of a dds.Topic and a listener callback
	Listeners may not have been called in some situations

	5.1.9 Fixes Related to XML Configuration
	Memory leak after an error parsing XML file with <include> tag
	Failed to parse XML configuration file containing type member with useVector attribute
	XML composition overwrote system information properties with defaults instead of correct values

	5.1.10 Fixes Related to Request-Reply and RPC
	RPC interface evolution did not work
	Exceptions sending result of remote operation may have crashed server application
	RPC: deadlock when Server::close() was called before Server::run()
	Possible unbounded memory growth when creating many Requesters
	Memory leak in Java Request-Reply API
	Possible data race using Sample and WriteSample classes (Traditional C++ API only)

	5.1.11 Fixes Related to Shipped Examples
	Hello World TCP example always linked TCP Transport library dynamically

	5.1.12 Fixes Related to Vulnerabilities
	Arbitrary read access while parsing malicious RTPS message
	User Impact without Security
	User Impact with Security

	Out-of-bounds read while parsing malicious RTPS message
	User Impact without Security
	User Impact with Security

	Out-of-bounds write while parsing malicious RTPS message
	User Impact without Security
	User Impact with Security

	Buffer overflow in shared memory if memory was tampered
	User Impact without Security
	User Impact with Security

	Out-of-bounds read while uncompressing malformed data from malicious RTPS message
	User Impact without Security
	User Impact with Security

	5.1.13 Fixes Related to Crashes
	Rare segmentation fault when deleting DomainParticipant or Publisher containing DataWriters using durable writer history
	Segmentation fault when creation of DomainParticipant failed due to lack of resources
	Potential hang upon SIGSEGV signal from a Connext application
	Creating DynamicDataTypePlugin with TypeCode from discovery and using content filtering caused segmentation fault
	Application crash when calling DDS_DataReader_take_discovery_snapshot on a DataReader with a ContentFilteredTopic
	Crash with NULL listeners and non-none status masks in C applications that mixed types with and without Zero Copy
	Memory was read after it was freed by deleting a Topic with local logging level enabled
	Possible segmentation fault when disabling loopback interface
	Segmentation fault could occur if creation of DataReader failed
	Potential crash when DomainParticipant deleted after creating DataWriter with automatic liveliness kind
	Possible crash on TCP transport when large number of file descriptors were open
	Application using Monitoring Libraries may have produced segmentation fault during DataReader creation
	Possible segmentation fault when using Monitoring Library

	5.1.14 Other Fixes
	Error sending batch when batch size exceeded transport MTU
	Broken communication when DataWriter with transport priority discovered DataReader with multicast receive address
	Potential hang upon SIGSEGV signal from a Connext application
	No more than 100 asynchronous publisher threads could be created
	Potential memory leak when creation of any of the built-in discovery plugins failed
	Samples could be lost using group order access or collaborative DataWriters
	Unexpected precondition error while creating a DomainParticipant with debugging libraries using fast database cleanup period
	Release 6.1.2 was not FACE compliant
	Problems visualizing participants using Generic.MinimalMemoryFootprint profile with Admin Console
	Using dh_param_files leaked memory
	Failure to load a string-based private key leaked memory
	Incorrect “Supported platforms” documentation section for FindRTIConnextDDS.cmake
	CONNEXTDDS_ARCH environment variable in FindPackage script was not picked up correctly
	In FindPackage script, low_bandwidth_edisc imported target library was missing
	Segmentation fault when mixing build types in applications linked against libraries in “Find Package” Cmake script

	5.2 What’s Fixed in 7.0.0
	5.2.1 Fixes Related to Callbacks and Waitsets
	Unsafe combinations of masks and Listeners may have led to segmentation fault
	Failure calling DDS_Subscriber::get_datareaders in DDS_SubscriberListener::on_data_on_readers callback implementation
	DDS_SubscriberListener::on_data_on_readers on a participant or subscriber not called when Listener installed after the entity is enabled
	Unable to assign callback function for on_sample_removed event using Modern C++ API
	Using certain callbacks at DomainParticipant or Publisher level may have led to segmentation fault

	5.2.2 Fixes Related to Discovery
	Unexpected memory growth when DataReader could not be matched with DataWriter due to unexpected error condition
	Possible crash upon discovery of applications with unreachable locators
	Communication problems with applications using shared memory on INTEGRITY systems
	Types containing Typedefs were sent without the typedefs in discovery when using DynamicData
	Unbounded memory growth in Spy when discovering multiple endpoints with the same Topics and types
	Unnecessary discovery traffic related to IP mobility events on interfaces irrelevant to the transport

	5.2.3 Fixes Related to Transports
	Communication problems with applications using shared memory on INTEGRITY systems
	Race condition could cause unbounded memory growth in TCP Transport Plugin

	5.2.4 Fixes Related to Filtering and TopicQuery
	Unnecessary repair traffic for DataWriters using TopicQueries and asynchronous publishing
	Connext application using filtering feature may have crashed after running out of memory
	Unnecessary sample filtering on a DataReader for samples already filtered by a DataWriter
	Creation of a ContentFilteredTopic or reception of TopicQuery samples may have taken long time for complex types
	Continuous creation of TopicQueries may have led to unnecessary memory fragmentation in OS memory allocator
	rti::topic::find_registered_content_filters led to infinite recursion
	Incorrect results for Unions when using DynamicData or Content Filters
	Samples may have been unnecessarily filtered by Connext DataReader when DataWriter was from different DDS vendor

	5.2.5 Fixes Related to Group Presentation
	Application may not have received samples of coherent set when using GROUP access scope and TRANSIENT_LOCAL durability
	Application may stop receiving samples from DataReaders using GROUP_PRESENTATION_QOS
	Segmentation fault when using GROUP_PRESENTATION_QOS or HIGHEST_OFFERED_PRESENTATION_QOS and setting filter_redundant_samples to FALSE on DataReader

	5.2.6 Fixes Related to XML Configuration
	Parsing error loading XML configuration file containing a const whose expression refers to an enumerator
	Discrepancy between range defined by schema and that defined by API
	Parsing error loading XML configuration file with enum type containing enumerator whose value was an expression referring to a const
	Parsing error loading an XML configuration file with enum type containing enumerator whose value was an expression
	Type limits not checked for some attributes of XML types definition
	Removed some elements in the XSD that were not supported internally but could be defined in XML
	Builtin Discovery Plugins was not treated as a mask by the XSD file
	Parsing error loading an XML configuration file with an enum type containing an enumerator whose value was an expression referring to another enumerator

	5.2.7 Fixes Related to Vulnerabilities
	Fixes related to Connext
	Fixes related to third-party dependencies
	Potential crash or leak of sensitive information in Core Libraries XML parser due to vulnerabilities in Expat
	Potential memory corruption when using Zlib compression due to vulnerability in Zlib

	5.2.8 Fixes Related to APIs
	Input parameters to Property and DataTag helper functions do not have “const”
	Standard 64-bit integer types are now supported (Modern C++ API)
	Assigning DataWriter and DataReaderQos from a TopicQos caused a build error
	Copy of SampleInfo::coherent_set_info field was not supported
	In XML-based applications, generated IDL types did not take precedence over XML DynamicTypes (C# API)
	Namespaces ignored when a type was explicitly registered in C# for XML-based applications
	Corruption of LoanedDynamicData object when moved in some situations (Modern C++ API only)
	Calling DynamicData::set_complex_member with an aliased type failed
	Possible wrong results when adding Time or Duration objects that used very large numbers
	Java API did not support RtpsReliableReaderProtocol_t.receive_window_size

	5.2.9 Fixes Related to Crashes
	Simultaneous deletion of an entity by multiple threads caused a crash when using Java
	DataReader C++ application crashed if it received tampered sample with unsupported encapsulation ID
	Segmentation fault after calling DomainParticipant::register_durable_subscription with a group containing a long role_name
	Segmentation fault when application using MultiChannel ran out of memory
	Application crashed when capturing traffic for a DomainParticipant created before enabling network capture
	Possible crash when writing a sample
	Potential crash during type registration if system ran out of memory
	Segmentation fault after calling DomainParticipant::delete_durable_subscription with a group containing a long role_name
	Potential crash or memory corruption if user application using thread-specific storage

	5.2.10 Other Fixes
	Serialization/deserialization of non-primitive sequences and arrays for XCDR2_DATA_REPRESENTATION did not follow Extensible Types specification
	Possible hang when using best-effort writers and asynchronous publishing
	Unnecessary sockets created during initialization of library
	Various issues with RtpsReliableWriterProtocol_t::nack_suppression_duration
	Possible error message printed during Entity disposal
	Runtime error when using debug libraries for QNX x86 platform
	Pushed samples may not have been received by reliable DataReader when DataWriter published Type that supports Zero Copy transfer over shared memory
	Unbounded memory growth in Monitoring Library when creating and deleting endpoints
	Unexpected behavior when two threads crashed at the same time on Windows systems
	DataReaders setting reader_qos.protocol.expects_inline_qos to TRUE incorrectly matched with DataWriters
	Source IP on Spy was not correct when DataWriters with same Topic were on different machines
	Writer using durable writer history may not have blocked after send window filled up when disable positive ACKs was enabled
	Potential truncation of application-level acknowledgment response data
	Error messages displayed that should not have been, when printing DataReaderQoS objects
	Potential Valgrind invalid read when logging a message or enabling heap monitoring
	Malformed IDL printed if multiple labels used for default case of a union

	6 Known Issues
	6.1 Known Issues with Discovery (SPDP2)
	6.1.1 Features under future consideration for SPDP2
	6.1.2 HMAC-Only mode and Lightweight Security Plugins not supported
	6.1.3 allow_unauthenticated_participants not supported in all scenarios
	6.1.4 Participant discovery fails after re-authentication after asymmetric liveliness loss

	6.2 Known Issues with Serialization and Deserialization
	6.2.1 Some parameters cannot be received multiple times within same SPDP sample

	6.3 Known Issues with Usability
	6.3.1 Cannot open USER_QOS_PROFILES.xml in rti_workspace/examples from Visual Studio
	6.3.2 DataWriter’s Listener callback on_application_acknowledgment() not triggered by late-joining DataReaders
	6.3.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communication failure when writing small samples
	6.3.4 Memory leak if Foo:initialize() called twice
	6.3.5 Wrong error code after timeout on write() from Asynchronous Publisher
	6.3.6 Type Consistency enforcement disabled for structs with more than 10000 members
	6.3.7 Escaping special characters in regular/filter expressions not supported in some cases

	6.4 Known Issues with Code Generation
	6.4.1 Examples and generated code for Visual Studio 2017 and later may not compile (Error MSB8036)

	6.5 Known Issues with Instance Lifecycle
	6.5.1 RECOVER_INSTANCE_STATE_CONSISTENCY setting not fully supported by RTI Infrastructure Services
	6.5.2 Persistence Service DataReaders ignore serialized key propagated with dispose updates

	6.6 Known Issues with Reliability
	6.6.1 DataReaders with different reliability kinds under Subscriber with GROUP_PRESENTATION_QOS may cause communication failure

	6.7 Known Issues with Content Filters and Query Conditions
	6.7.1 Writer-side filtering may cause missed deadline
	6.7.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated correctly

	6.8 Known Issues with TopicQueries
	6.8.1 TopicQueries not supported with DataWriters configured to use batching or Durable Writer History

	6.9 Known Issues with Transports
	6.9.1 AppAck messages cannot be greater than underlying transport message size
	6.9.2 DataReader cannot persist AppAck messages greater than 32767 bytes
	6.9.3 Discovery with Connext Micro fails when shared memory transport enabled
	6.9.4 Communication may not be reestablished in some IP mobility scenarios
	6.9.5 Corrupted samples may be forwarded through Routing Service when using Zero-Copy transfer over shared memory
	Use automatic application acknowledgment
	Ensure that the number of available samples accounts for Routing Service processing time

	6.9.6 Network Capture does not support frames larger than 65535 bytes

	6.10 Known Issues with FlatData
	6.10.1 FlatData language bindings do not support automatic initialization of arrays of primitive values to non-zero default values
	6.10.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined behavior

	6.11 Known Issues with Coherent Sets
	6.11.1 Some coherent sets may be lost or reported as incomplete with batching configurations
	6.11.2 Copy of SampleInfo::coherent_set_info field is not supported
	6.11.3 Other known issues with coherent sets

	6.12 Known Issues with Dynamic Data
	6.12.1 Conversion of data by member-access primitives limited when converting to types that are not supported on all platforms
	6.12.2 Types that contain bit fields not supported

	6.13 Known Issues with Logging
	6.13.1 Possible crash when closing a logger device while it is used

	6.14 Known Issues with RTI Monitoring Library
	6.14.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Participant Sends Monitoring Data
	6.14.2 Participant’s CPU and memory statistics are per application
	6.14.3 ResourceLimit channel_seq_max_length must not be changed

	6.15 Known Issues with Installers
	6.15.1 RTI Connext Micro 3.0.3 installation package currently compatible only with Connext 6.0.1 installer

	6.16 Other Known Issues
	6.16.1 Possible Valgrind still-reachable leaks when loading dynamic libraries
	6.16.2 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) not supported
	6.16.3 Creating multiple DataReaders for the same Topic under the same Subscriber configured with Group Ordered Access is not supported

	7 Experimental Features
	8 Copyrights and Notices

