
RTI Connext Observability Framework

User's Manual

Version 7.3.0

Contents

1 Copyrights and Notices 1

2 What is Connext Observability Framework? 3
2.1 Telemetry Data . 3
2.2 Distribution of Telemetry Data . 4
2.3 Flexible Storage . 4
2.4 Visualization of Telemetry Data . 4
2.5 Control and Selection of Telemetry Data . 5
2.6 Security . 5

3 Components 6
3.1 Monitoring Library 2.0 . 6
3.2 Observability Collector Service . 7

3.2.1 Storage Components . 8
3.3 Observability Dashboards . 9

4 Observability Framework Deployments 10
4.1 Current Release . 10

4.1.1 Docker Compose (Prepackaged) . 10
Collection, Storage, and Visualization Components 10

4.1.2 Docker (Separate Deployment) . 14
4.2 Future releases . 17

4.2.1 Collector Service . 17
Executable . 17
Collector Service Deployments . 17

5 Security 19
5.1 Secure Communication between Connext Applications and Collector Service 20

5.1.1 Secure Communication between Connext Applications and Collector Service
(Pre-Packaged Deployment) . 22

5.1.2 Secure Communication between Connext Applications and Collector Service (Sep-
arate Deployment) . 22

5.2 Secure Communication with Collector Service HTTP Servers 23
5.2.1 Secure Collector Service HTTP Servers (Pre-Packaged Deployment) 23
5.2.2 Secure Collector Service HTTP Servers (Separate Deployment) 24

5.3 Secure Communication with Third-Party Component HTTP Servers 24
5.3.1 Secure Third-Party Component HTTP Servers (Pre-Packaged Deployment) 25
5.3.2 Secure Third-Party Component HTTP Servers (Separate Deployment) 25

i

5.4 Generating the Observability Framework Security Artifacts 26
5.4.1 Generating DDS Security Artifacts . 26
5.4.2 Generating HTTPS Security Artifacts . 26

Preliminary Steps . 27
Generating a New Root CA . 28
Generating Server Certificates . 29
BASIC-Auth Password File . 30

6 Installing and Running Observability Framework 32
6.1 Installing the Host Package . 33

6.1.1 Prerequisites . 33
6.1.2 Install from RTI Launcher . 33
6.1.3 Install from the Command Line . 33

6.2 Configuring, Running, and Removing Observability Framework Components Using Docker
Compose . 34
6.2.1 Configuring the Docker Workspace for Observability Framework 34

Configure the JSON File . 35
Run the Observability script to create the Observability workspace 38

6.2.2 Initialize and Run Docker Containers . 40
6.2.3 Verify Docker Containers are Running . 41
6.2.4 Configure Grafana . 42

Initial Login . 42
Configuration Options . 42

6.2.5 Stop Docker Containers . 45
6.2.6 Start Existing Docker Containers . 46
6.2.7 Stop and Remove Docker Containers . 46
6.2.8 Removing the Docker Workspace for Observability Framework 48

7 Getting Started Guide 49
7.1 About the Observability Example . 49

7.1.1 Applications . 49
7.1.2 Data Model . 52
7.1.3 DDS Entity Mapping . 52
7.1.4 Command-Line Parameters . 52

Publishing Application . 53
Subscribing Application . 53

7.2 Before Running the Example . 54
7.2.1 Set Up Environment Variables . 54
7.2.2 Compile the Example . 55

Non-Windows Systems . 55
Windows Systems . 55

7.2.3 Install Observability Framework . 55
Configure Observability Framework for the Appropriate Operation Mode 56

7.2.4 Start the Collection, Storage, and Visualization Docker Containers 63
7.3 Running the Example . 64

7.3.1 Start the Applications . 64
7.3.2 Changing the Time Range in Dashboards . 68
7.3.3 Simulate Sensor Failure . 69

ii

7.3.4 Simulate Slow Sensor Data Consumption . 72
7.3.5 Simulate Time Synchronization Failures . 73
7.3.6 Change the Application Logging Verbosity . 76
7.3.7 Change the Metric Configuration . 81

Resources used in this example . 82
Changing metrics collected for a single DataWriter 83
Changing metrics collected for all DataWriters of an application 87

7.3.8 Close the Applications . 94

8 Telemetry Data 95
8.1 Introduction . 95
8.2 Resources . 95

8.2.1 Resource Pattern Definitions . 97
8.3 Metrics . 99

8.3.1 Metric Pattern Definitions . 100
8.3.2 Application Metrics . 100
8.3.3 Participant Metrics . 101
8.3.4 Topic Metrics . 105
8.3.5 DataWriter Metrics . 105
8.3.6 DataReader Metrics . 108
8.3.7 Derived Metrics Generated by Prometheus Recording Rules 110

DDS Entity Proxy Metrics . 111
Raw Error Metrics . 111
Aggregated Error Metrics . 118
Enable a Raw Error Metric . 120
Custom Error Metrics . 135

8.4 Logs . 135
8.4.1 Syslog Levels and Facilities . 137
8.4.2 Activity Context . 138
8.4.3 Log Labels . 138
8.4.4 Collection and Forwarding Verbosity . 139

Changing Verbosity Levels Locally . 139
Changing Verbosity Levels Remotely . 140

9 Monitoring Library 2.0 141
9.1 Enabling Monitoring Library 2.0 . 142
9.2 Setting the Initial Metrics and Log Configuration . 144
9.3 Setting the Application Name . 146
9.4 Changing the Default Observability Domain ID . 147
9.5 Configuring QoS for Monitoring Library 2.0 Entities . 147
9.6 Setting Collector Service Initial Peers . 149

10 Collector Service REST API Reference 151
10.1 Definitions . 151
10.2 Root endpoint (base URL) . 152
10.3 API Overview . 153
10.4 API Reference . 153

iii

11 Observability Dashboards 166
11.1 System Status Dashboards . 166

11.1.1 System Status Dashboard Common Elements . 167
11.1.2 Alert Home Dashboard . 167
11.1.3 Alert Category Dashboards . 169

11.2 Entity List Dashboards . 170
11.3 Entity Status List Dashboards . 171
11.4 Entity Status Dashboards . 171
11.5 Log Dashboards . 174

11.5.1 Log Dashboard . 174
11.5.2 Entity Log Dashboards . 175

11.6 Control Dashboards . 175
11.6.1 Log Control Dashboard . 176
11.6.2 Metric Control Dashboards . 176

Single Entity Metric Control Dashboards . 176
Multiple Entity Metric Control Dashboards . 178

12 Troubleshooting Observability Framework 180
12.1 Docker Container[s] Failed to Start . 180

12.1.1 Check for Port Conflicts . 181
12.1.2 Check that You Have the Correct File Permissions 181

12.2 No Data in Dashboards . 182
12.2.1 Check that Collector Service has Discovered Your Applications 182
12.2.2 Check that Prometheus can Access Collector Service 184
12.2.3 Check that Grafana can Access Prometheus . 186
12.2.4 Check that Grafana can Access Loki . 186

13 Glossary 195

14 Release Notes 196
14.1 Supported Platforms . 196
14.2 Compatibility . 196
14.3 Supported Docker Compose Environments . 197
14.4 What’s New in 7.3.0 LTS . 197

14.4.1 Enhanced control of entities distributed across various Collector Service instances . . 197
14.4.2 NewRESTAPI in Collector Service to control telemetry data collection and distribution198
14.4.3 Support for more flexible Observability Framework deployments 198
14.4.4 Control which metrics are collected . 199
14.4.5 New Syslog facilities provide expanded log management 199
14.4.6 New logging category and plugin class labels enable more precise third-party backend

queries . 199
14.4.7 Updated dashboards support enhanced logging and dynamic metric control 200
14.4.8 Name change for some observability metrics . 200
14.4.9 Third-party software upgrades . 201

Observability Collector Service . 201
Docker containers for Observability Collector Service 201

14.5 What’s Fixed in 7.3.0 LTS . 201
14.5.1 Crashes . 202

iv

[Critical] Observability Collector Service could crash when an application was discovered202
14.5.2 Vulnerabilities . 202

[Critical] Potential out of memory error when using Curl 8.1.2 202
[Critical] Potential deletion of HSTS data when using Curl 8.1.2 203

14.6 Previous Releases . 203
14.6.1 What’s New in 7.2.0 . 203

Observability Collector Service compatible with Monitoring Library 2.0 203
Support for most observability backends with OpenTelemetry integration 204
Support for Observability Collector Service security 204
Name change from “RTI Observability Library” to “RTI Monitoring Library 2.0” . . . 204
Name change for some Observability metrics . 204
Secured communications betweenMonitoring Library 2.0 and Observability Collector

Service . 205
Ability to set initial forwarding verbosity in MONITORING QoS policy 205
Ability to set collector initial peers in MONITORING QoS policy 205
Third-Party software changes . 206

14.6.2 What’s Fixed in 7.2.0 . 207
Collector Service might have crashed on startup . 207
Controllability issues on applications with same name 207
Unhandled exceptions may have caused segmentation fault 207
Race condition when processing remote commands led to failures and memory leaks

when shutting down Collector Service . 208
Collector Service could discard samples when monitoring large DDS applications . . . 208

14.6.3 What’s New in 7.1.0 . 209
Third-Party Software . 209

HTTP Routing Table 210

v

Chapter 1

Copyrights and Notices

© 2023-2024 Real-Time Innovations, Inc. All rights reserved. Apr 04, 2024

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase, “Your
Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations,
Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publicationmay be reproduced, stored in a retrieval system, or transmitted in any form (including
electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time Innova-
tions, Inc. The software described in this document is furnished solely under and subject to RTI’s standard
terms and conditions available at https://www.rti.com/terms and in accordance with your License Acknowl-
edgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to the extent otherwise
accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party license
terms and conditions, including open source license terms and conditions. Copies of applicable third-party
licenses and notices are located at community.rti.com/documentation. IT IS YOUR RESPONSIBILITY TO
ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES WITH THE CORRESPOND-
ING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

1

https://www.rti.com/terms
https://community.rti.com/documentation

RTI Connext Observability Framework User's Manual, Version 7.3.0

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations, Inc.
Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding mainte-
nance and support of RTI’s software.

Deprecatedmeans that the item is still supported in the release, but will be removed in a future release. Removed
means that the item is discontinued or no longer supported. By specifying that an item is deprecated in a release,
RTI hereby provides customer notice that RTI reserves the right after one year from the date of such release and,
with or without further notice, to immediately terminate maintenance (including without limitation, providing
updates and upgrades) for the item, and no longer support the item, in a future release.

Technical Support Real-Time Innovations, Inc. 232 E. Java Drive Sunnyvale, CA 94089 Phone: (408)
990-7444 Email: support@rti.com Website: https://support.rti.com/

2

mailto:support@rti.com
https://support.rti.com/

Chapter 2

What is Connext Observability Framework?

RTI®Connext® Observability Framework is a holistic solution that uses telemetry data to provide deep visibility
into the current and past states of yourConnext applications. This visibilitymakes it easier to proactively identify
and resolve potential system issues, providing a higher level of confidence in the reliable operation of the system.

Observability Framework use cases include:

• Debugging. Find the cause of an undesired behavior, or determine if the feature meets performance
needs during development.

• CI/CD monitoring. Assess the performance impact of code or configuration changes.

• Monitoring deployed applications. Confirm that your systems are running as expected and proactively
fix potential performance issues.

Important: Observability Framework is an experimental product that includes example configuration files
for use with several third-party components (Prometheus®, Grafana Loki™, and Grafana®, NGINX®, and
OpenTelemetry™ Collector). This release is an evaluation distribution; use it to explore the new observability
features that support Connext applications. For support, you may contact support@rti.com.

Do not deploy any Observability Framework components in production. A production-ready version is
expected to be available in a future Connext 7.3.x maintenance release.

2.1 Telemetry Data

Telemetry data can be generated at three different levels:

• Application. Telemetry data generated when you instrument your own applications.

• Middleware. Telemetry data generated by Connext DDS entities and infrastructure services.

• System. DevOps telemetry such as CPU, memory, and disk I/O usage.

In this release, Observability Framework supports middleware telemetry (metrics and logs) and application logs.
Future releases could support application metrics and system telemetry.

3

mailto:support@rti.com

RTI Connext Observability Framework User's Manual, Version 7.3.0

Regardless of the level, telemetry data can be categorized as:

• Metrics. Collections of application statistics that are analyzed to understand application behavior. There
are two types of metrics:

– Counters count the number of events of a specific type; for example, the number of ACKmessages
sent.

– Gauges describe the state of some part of an application as a numeric value within a specified time
frame; for example, the number of samples in a queue.

• Logs. Events captured as text or structured data.

• Security Events. Events related to securing a distributed system.

– Notification of Security Events in Observability Framework are communicated as Logs with a
Syslog Facility of SECURITY_EVENT. See Logs for more information.

• Traces. A representation of a series of causally-related events that encode the end-to-end flow of a piece
of information in a software system. The traces in a distributed system are called distributed traces.

In this release, Observability Framework supports metrics, logs, and security events. Future releases could
support traces. See Telemetry Data for more information.

2.2 Distribution of Telemetry Data

Observability Framework enables you to scalably generate and forward telemetry data from individual Connext
applications to third-party telemetry backends like Prometheus and Grafana Loki. For more information on
the distribution of telemetry data see Monitoring Library 2.0 and Observability Collector Service.

2.3 Flexible Storage

Observability Framework provides native integration with Prometheus as the time-series database to store Con-
next metrics and Grafana Loki as the log aggregation system to store Connext logs. Integration with other
backends is possible through the use of OpenTelemetry and the OpenTelemetry Collector.

2.4 Visualization of Telemetry Data

In this release, Observability Framework provides a way to visualize the telemetry data collected from Connext
applications using a set of Grafana dashboards. You can customize these dashboards or use them as an example
to enhance and build dashboards in your preferred platform.

The Observability Dashboards only work with the Prometheus and Grafana Loki backends. Future releases
could support other backends. For more information, see Observability Dashboards.

2.2. Distribution of Telemetry Data 4

https://opentelemetry.io/
https://opentelemetry.io/docs/collector/

RTI Connext Observability Framework User's Manual, Version 7.3.0

2.5 Control and Selection of Telemetry Data

Your distributed system components can produce a large amount of data, but not all of this data is required
for problem detection. Observability Framework enables you to control the amount of telemetry data that is
generated, forwarded, and stored. You can manage these settings at run-time and via an initial configuration.

See Setting the Initial Metrics and Log Configuration for information on the initial configuration of telemetry
collection. See Collector Service REST API Reference for information on remote commands provided by the
Observability Collector Service to support changing the configuration of telemetry collection at run-time. See
Change the Application Logging Verbosity and Change the Metric Configuration for examples of how Observ-
ability Framework provides the ability to change the configuration of telemetry collection at run-time.

2.6 Security

Observability Framework provides a way to secure the telemetry data generated by the Connext applications
and stored in the telemetry backends. Data in transit is secured by using the Securıty Plugıns (RTI Security
Plugins) and BASIC-Auth over HTTPS. Data at rest is secured by the third-party telemetry backends. For more
information see Security.

2.5. Control and Selection of Telemetry Data 5

Chapter 3

Components

Connext Observability Framework consists of three RTI components:

• RTI Monitoring Library 2.0 enables you to instrument a Connext application to forward telemetry data.
The library also accepts remote commands to change the set of forwarded telemetry data at runtime.

• RTI Observability Collector Service scalably collects telemetry data from multiple Connext applications
and stores this data in a third-party observability backend. This component can also be configured to
forward telemetry data to an OpenTelemetry Collector to allow integration with other third-party ob-
servability backends.

• RTI Observability Dashboards enable you to visualize and alert based on the Connext application metrics,
as well as display Connext log messages.

Observability Framework requires third-party components for storing and visualizing telemetry data. This
release provides native integration with Prometheus for metrics storage, Grafana Loki for logs storage, and
Grafana for visualization. Integration with other third-party components is also possible when using Open-
Telemetry and the OpenTelemetry Collector.

Observability Dashboards are provided as a set of Grafana dashboards to be deployed on a Grafana server.
These dashboards only work with the Prometheus and Grafana Loki backends. Future releases could support
other backends.

Figure 3.1 shows a simple representation of how Observability Framework components work together.

3.1 Monitoring Library 2.0

Monitoring Library 2.0 includes the following key features:

• Collection and forwarding of Connext metrics and logs (including security event logs).

• Configuration using a new MONITORING QosPolicy (DDS Extension). The QoS policy can be set
programmatically or via XML.

• Runtime changes to the collection and forwarding of telemetry data using remote commands from Ob-
servability Collector Service.

6

https://opentelemetry.io/
https://opentelemetry.io/
https://opentelemetry.io/docs/collector/

RTI Connext Observability Framework User's Manual, Version 7.3.0

Figure 3.1: Observability Framework Components

• Ability to enable and disable use ofMonitoring Library 2.0 at runtime by changing the Monitoring QoS
policy.

• Lower overhead as compared to using the RTI Monitoring Library.

For more information, see Monitoring Library 2.0.

3.2 Observability Collector Service

Observability Collector Service scalably collects telemetry data forwarded byMonitoring Library 2.0 in aConnext
application. Collector Service is distributed as a Docker™ image. For additional information on this image see
Dockerhub. The Observability Collector Service is designed to work in two modes:

• Storage: Collector Service sends the telemetry data for storage to third-party observability backends.
This release provides native integration with Prometheus for metrics and Grafana Loki for logs. Inte-
gration with other third-party components is also possible using OpenTelemetry and the OpenTelemetry
Collector.

• Forwarder: Collector Service forwards the telemetry data from Connext applications to another collector
instance. This mode is not supported in the current release.

Observability Collector Service includes the following key features:

• Collecting and filtering telemetry data forwarded by Connext applications (usingMonitoring Library 2.0)
or other collectors. This release does not provide filtering capabilities.

• Sending telemetry data for storage to Prometheus for metrics and Grafana Loki for logs.

• Ability to send telemetry data to anOpenTelemetry Collector using theOpenTelemetry protocol (OTLP).
This feature enables integration with third-party observability backends other than Prometheus and

3.2. Observability Collector Service 7

https://hub.docker.com/r/rticom/collector-service

RTI Connext Observability Framework User's Manual, Version 7.3.0

Grafana Loki.

• Remote command forwarding from Observability Dashboards to the Connext applications and other
resources to which the commands are directed. Remote commandsmay be used to control the forwarding
of log messages and metrics. For detailed information on the commands supported see Collector Service
REST API Reference.

3.2.1 Storage Components

Observability Collector Service includes native integration with Prometheus and Grafana Loki to store metrics
and logs, respectively.

Figure 3.2: Native Integration

This release also allows integrating with other third-party storage components using OpenTelemetry and the
OpenTelemetry Collector.

3.2. Observability Collector Service 8

RTI Connext Observability Framework User's Manual, Version 7.3.0

Figure 3.3: OpenTelemetry Integration

3.3 Observability Dashboards

A set of hierarchical Grafana dashboards displays alerts when a problem occurs and provides visualizations to
help perform root cause analysis. The dashboards get the telemetry data from a Prometheus server and the logs
from a Grafana Loki server.

See Observability Dashboards for more information on the Observability Dashboards.

3.3. Observability Dashboards 9

Chapter 4

Observability Framework Deployments

This section describes how to deploy the components of the Observability Framework in the current release.
Additionally, it discusses how RTI intends to introduce new deployment methods for the Observability Frame-
work in future releases.

Monitoring Library 2.0 is component is included with Connext Professional as a shared and static library called
rtimonitoring2. For details on how to use the library, refer to Monitoring Library 2.0. For further information
on the other components, please see the following sections.

4.1 Current Release

4.1.1 Docker Compose (Prepackaged)

Collection, Storage, and Visualization Components

The Observability Framework package enables you to deploy and run Observability Collector Service and
third-party components Prometheus, Grafana Loki, Grafana, OpenTelemetry Collector (optional), and NG-
INX (optional) using Docker Compose™ in a single Linux® host. For details, see Supported Docker Compose
Environments.

RTI’s prepackaged Docker Compose installation option facilitates initial product evaluation because it does not
require you to deploy all these components individually.

Observability Framework can be deployed with or without using the OpenTelemetry Collector. Both deploy-
ment options can be configured to be secure or non-secure and to work on a LAN or WAN.

Figure 4.1 RTI Observability Framework without OpenTelemetry Collector shows the secure Observability
Framework deployment without OpenTelemetry Collector. The deployment uses Prometheus and Grafana
Loki to store metrics and logs, respectively.

Figure 4.2RTI Observability Framework with OpenTelemetry Collector shows a secureObservability Framework
deployment using OpenTelemetry Collector. The deployment uses OpenTelemetry Collector to store metrics
and logs in Prometheus and Grafana Loki, respectively.

10

RTI Connext Observability Framework User's Manual, Version 7.3.0

Figure 4.1: RTI Observability Framework without OpenTelemetry Collector

4.1. Current Release 11

RTI Connext Observability Framework User's Manual, Version 7.3.0

Figure 4.2: RTI Observability Framework with OpenTelemetry Collector

4.1. Current Release 12

RTI Connext Observability Framework User's Manual, Version 7.3.0

For additional information on how to use Docker Compose to run Observability Framework, see Configuring,
Running, and Removing Observability Framework Components Using Docker Compose.

Collector Service

This release supports running Observability Collector Service in storage mode only. Data can be stored into
Prometheus and Grafana Loki natively or into other third-party observability backends using OpenTelemetry
and the OpenTelemetry Collector. The prepackaged deployment uses a single layer deployment to run only one
Collector Service instance for the Connext system, as illustrated in Figure 4.3 Single Collector Deployment.

Figure 4.3: Single Collector Deployment

4.1. Current Release 13

RTI Connext Observability Framework User's Manual, Version 7.3.0

4.1.2 Docker (Separate Deployment)

As an alternative to the prepackaged Docker Compose deployment provided by RTI, you can also run Observ-
ability Framework and the third-party components (e.g, Prometheus) standalone.

The third-party components Prometheus, Grafana Loki, Grafana, OpenTelemetry Collector (optional), and
NGINX (optional) are also distributed as Docker images by their respective vendors. You can use these images
standalone instead of RTI’s prepackaged Docker Compose.

Observability Collector Service is distributed as a Docker image hosted in Dockerhub. This is the same publicly
available image used by the prepackaged Docker Compose installation, and it requires a valid RTI license to
run.

This release supports running Observability Collector Service in storage mode only. Data can be stored into
Prometheus and Grafana Loki natively or into other third-party observability backends using OpenTelemetry
and the OpenTelemetry Collector. Because forwarding mode is not supported, you can only use a single layer
of Collector Services per Connext system. This configuration is illustrated in Figure 4.4 Single Layer Collector
Deployment and Figure 4.5 Single Layer Collector Deployment using OpenTelemetry Collector.

The deployments represented in Figure 4.4 Single Layer Collector Deployment and Figure 4.5 Single Layer
Collector Deployment using OpenTelemetry Collector require running multiple instances of Collector Service
where each Connext application configures Monitoring Library 2.0 to connect to one of the Collector Service
instances.

You are responsible for running the Collector Service instances and the third-party components for storage. For
example, if you want to store telemetry data into Prometheus and Grafana Loki, you must run Prometheus and
Grafana Loki instances and configure the Docker container for Collector Service to connect to these storage
backends.

The Docker image included with Collector Service contains a built-in configuration that enables it to run in
storage mode with the following operation modes:

Table 4.1: Docker Container Operation Modes
Configuration Name Network Data Storage Secu-

rity
NonSecureLAN LAN Prometheus and Grafana Loki No
NonSecureWAN WAN Prometheus and Grafana Loki No
SecureLAN LAN Prometheus and Grafana Loki Yes
SecureWAN WAN Prometheus and Grafana Loki Yes
NonSecureOTelLAN LAN Multiple through OpenTelemetry Collector No
NonSecureOTelWAN WAN Multiple through OpenTelemetry Collector No
SecureOTelLAN LAN Multiple through OpenTelemetry Collector Yes
SecureOTelWAN WAN Multiple through OpenTelemetry Collector Yes

For additional information on how to use the Docker image included with Collector Service, refer to Docker’s
Collector Service article.

4.1. Current Release 14

https://hub.docker.com/r/prom/prometheus
https://hub.docker.com/r/grafana/loki
https://hub.docker.com/r/grafana/grafana-enterprise
https://hub.docker.com/r/otel/opentelemetry-collector-contrib
https://hub.docker.com/_/nginx
https://hub.docker.com/r/rticom/collector-service
https://hub.docker.com/r/rticom/collector-service
https://hub.docker.com/r/rticom/collector-service

RTI Connext Observability Framework User's Manual, Version 7.3.0

Figure 4.4: Single Layer Collector Deployment

4.1. Current Release 15

RTI Connext Observability Framework User's Manual, Version 7.3.0

Figure 4.5: Single Layer Collector Deployment using OpenTelemetry Collector

4.1. Current Release 16

RTI Connext Observability Framework User's Manual, Version 7.3.0

4.2 Future releases

4.2.1 Collector Service

Executable

In future releases, Collector Service will be provided as a standalone executable without using Docker to deploy.

Collector Service Deployments

As you roll out telemetry data collection and distribution across all your Connext applications, Observability
Framework must be deployed in a way that supports the additional load. A single layer Collector Service de-
ployment, as shown in Figure 4.4 Single Layer Collector Deployment and Figure 4.5 Single Layer Collector
Deployment using OpenTelemetry Collector, may not scale sufficiently.

A better deployment option would be the layered deployment depicted in Figure 4.6 Layered Collector De-
ployment and Figure 4.7 Layered Collector Deployment Using OpenTelemetry Collector. In this option, you
have multiple layers of Collector Service gathering, filtering, and forwarding the telemetry data produced by the
Connext applications. Each intermediate layer reduces the number of egress points required to send data and
provides an opportunity to filter telemetry data. The last layer works as a storage layer and is responsible for
storing the telemetry data into a third-party observability backend.

Figure 4.6: Layered Collector Deployment

4.2. Future releases 17

RTI Connext Observability Framework User's Manual, Version 7.3.0

Figure 4.7: Layered Collector Deployment Using OpenTelemetry Collector

4.2. Future releases 18

Chapter 5

Security

Observability Framework can secure the telemetry data generated by Connext applications and stored in the
telemetry backends. Data in transit can be secured using the RTI® Security Plugins and BASIC-Auth over
HTTPS. Data at rest is secured by the third-party telemetry backends.

Figure 5.1 shows the Observability Framework security architecture when Collector Service is configured to
store the telemetry data in Prometheus and Grafana Loki.

Figure 5.1: Security Architecture of RTI Observability Framework when using Prometheus and Grafana Loki

19

RTI Connext Observability Framework User's Manual, Version 7.3.0

To facilitate testing and evaluation, you can install Observability Framework using Docker Compose (Prepack-
aged) to automatically run and deploy all the components shown in Figure 5.1 within a single host.

Figure 5.2 shows the Observability Framework security architecture when Collector Service is configured to
forward the telemetry data to an OpenTelemetry Collector which itself is configured to store the telemetry
into different backends for logs and metrics. Note that the Observability Framework only provides Grafana
dashboards configured to use Grafana Loki and Prometheus backends.

Figure 5.2: Security Architecture of RTI Observability Framework when using OpenTelemetry Collector

To facilitate testing and evaluation of securing telemetry data when using an OpenTelemetry Collector, you can
run Observability Framework using Docker Compose (Prepackaged) with an OpenTelemetry Collector instance
that stores the telemetry data in local Prometheus and Grafana Loki backends as shown in Figure 5.3.

5.1 Secure Communication between Connext Applications and Col-
lector Service

The exchange of telemetry data between a Connext application and Collector Service is secured by using the
Securıty Plugıns. For additional information on how to configure the Securıty Plugıns, see the Support for
RTI Observability Framework section in the RTI Security Plugins User’s Manual.

To configure secure communications between Connext applications and Collector Service, follow the steps for
your selected deployment.

5.1. Secure Communication between Connext Applications and Collector Service 20

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p4_integrations/observability_framework.html
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p4_integrations/observability_framework.html

RTI Connext Observability Framework User's Manual, Version 7.3.0

Figure 5.3: Security Architecture of the RTI Observability Framework when using OpenTelemetry Collector,
Prometheus and Grafana Loki

5.1. Secure Communication between Connext Applications and Collector Service 21

RTI Connext Observability Framework User's Manual, Version 7.3.0

5.1.1 Secure Communication between Connext Applications and Collector Service
(Pre-Packaged Deployment)

If you install Observability Framework using the Docker Compose (Prepackaged) option, the security artifacts
required to configure the Securıty Plugıns inCollector Servicemust be provided during the installation process.
Use the highlighted parameters in your JSON configuration file:

{
"securityConfig": {

"basicAuthUsername": "yourusername",
"basicAuthPassword": "yourpassword",
"httpsSecurity": {

"caCertificate": "path/to/ca_cert.pem",
"serverCertificate": "path/to/server_cert.pem",
"serverKey": "path/to/server_key.pem"

},
"ddsSecurity": {

"identityCaCertificate": "path/to/identityCaCert.pem",
"permissionsCaCertificate": "path/to/permissionsCaCert.pem",
"identityCertificate": "path/to/identityCert.pem",
"identityKey": "path/to/identityKey.pem",
"signedPermissionsFile": "path/to/signedPermissions.p7s",
"signedGovernanceFile": "path/to/signedGovernance.p7s"

}
}

}

5.1.2 Secure Communication between Connext Applications and Collector Service
(Separate Deployment)

If you run Collector Service using the Docker (Separate Deployment) option, you must provide the the security
artifacts required to configure the Securıty Plugıns in Collector Service. In addition, you need to set the
CFG_NAME environment variable to one of the provided Docker image’s built-in secure configurations (see
Docker (Separate Deployment)). The security artifacts and environment variable can be provided by using the
following options to the docker run command:

-v path/to/identityCaCert.pem:/rti/security/dds/identity_ca.pem
-v path/to/permissionsCaCert.pem:/rti/security/dds/permissions_ca.pem
-v path/to/identityCert.pem:/rti/security/dds/identity_certificate.pem
-v path/to/identityKey.pem:/rti/security/dds/private_key.pem
-v path/to/signedPermissions.p7s:/rti/security/dds/permissions.p7s
-v path/to/signedGovernance.p7s:/rti/security/dds/governance.p7s
-e CFG_NAME="<secure-configuration>"

For additional details, see the Collector Service docker image documentation.

For details on how to generate the security artifacts see Generating the Observability Framework Security Arti-
facts.

5.1. Secure Communication between Connext Applications and Collector Service 22

https://hub.docker.com/r/rticom/collector-service

RTI Connext Observability Framework User's Manual, Version 7.3.0

5.2 Secure Communication with Collector Service HTTP Servers

Collector Service can start two HTTP servers: one to receive remote commands and another one to expose the
Prometheus metrics. The communication with these HTTP servers is secured using BASIC-Auth over HTTPS.

• Collector Service provides a REST API for receiving remote commands to control the collection and
distribution of telemetry data from Connext Applications.

• Collector Service can be configured to provide a Prometheus HTTP metrics endpoint to expose telemetry
data to a Prometheus backend. Prometheus collects metrics from targets by scraping HTTP metrics
endpoints on these targets.

Important: The configuration of the HTTP clients initiated by third-party components is out of the scope of
this documentation. Please refer to the documentation of the third-party components for additional details.

However, if you install Observability Framework using Docker Compose (Prepackaged), the third-party com-
ponents will be configured to use the security artifacts provided in the installation JSON configuration file.
You can take a look into the configuration files of the third-party components located in the directory
<rti_workspace_dir>/user_config/observability to see how the security artifacts are used.

To configure the security of the HTTP servers started by Collector Service, follow the steps for your selected
deployment.

5.2.1 Secure Collector Service HTTP Servers (Pre-Packaged Deployment)

If you install Observability Framework using Docker Compose (Prepackaged), use the highlighted parameters
in the installation JSON configuration file:

{
"securityConfig": {

"basicAuthUsername": "yourusername",
"basicAuthPassword": "yourpassword",
"httpsSecurity": {

"caCertificate": "path/to/ca_cert.pem",
"serverCertificate": "path/to/server_cert.pem",
"serverKey": "path/to/server_key.pem"

},
"ddsSecurity": {

"identityCaCertificate": "path/to/identityCaCert.pem",
"permissionsCaCertificate": "path/to/permissionsCaCert.pem",
"identityCertificate": "path/to/identityCert.pem",
"identityKey": "path/to/identityKey.pem",
"signedPermissionsFile": "path/to/signedPermissions.p7s",
"signedGovernanceFile": "path/to/signedGovernance.p7s"

}
}

}

5.2. Secure Communication with Collector Service HTTP Servers 23

RTI Connext Observability Framework User's Manual, Version 7.3.0

5.2.2 Secure Collector Service HTTP Servers (Separate Deployment)

If you run Collector Service using Docker (Separate Deployment), you must provide the security artifacts to
configure the HTTP servers running in Collector Service. In addition, you need to set the CFG_NAME envi-
ronment variable to one of the provided Docker image’s built-in secure configurations (see Docker (Separate
Deployment)). The security artifacts and environment variable can be provided by using the following options
to the docker run command:

-v /path/to/serverPrometheusEndpoint.pem:/rti/security/https/
→˓serverPrometheusEndpoint.pem
-v /path/to/serverControl.pem:/rti/security/https/serverControl.pem
-v /path/to/htdigest:/rti/security/https/htdigest
-e CFG_NAME="<secure-configuration>"

• The serverPrometheusEndpoint.pem file must contain both a valid server certificate (server-
PrometheusEndpoint_cert.pem) and the corresponding private key (serverPrometheusEndpoint_key.pem).

• The serverControl.pem file must contain both a valid server certificate (serverControl_cert.pem) and the
corresponding private key (serverControl_key.pem).

• The htdigest is a password file that contains the username and password for BASIC-Auth created using
Apache htdigest.

For additional details, see the Collector Service docker image documentation.

For details on how to generate the server.pem files and the htdigest file, see Generating the Observability Frame-
work Security Artifacts.

5.3 Secure Communication with Third-Party Component HTTP
Servers

Observability Framework can start three HTTP clients: one to send logs to Grafana Loki, one to send logs
to OpenTelemetry Collector, and one to send metrics to OpenTelemetry Collector. The communication with
these HTTP clients is secured using BASIC-Auth over HTTPS.

Important: The configuration of the third-party components’ HTTP servers is out of the scope of this docu-
mentation. Please refer to the documentation of the third-party components for additional details.

However, if you install Observability Framework using Docker Compose (Prepackaged), the third-party com-
ponents will be configured to use the security artifacts provided in the installation JSON configuration file.
You can take a look into the configuration files of the third-party components located in the directory
<rti_workspace_dir>/user_config/observability to see how the security artifacts are used.

To configure the security of the HTTP clients started by Collector Service, follow the steps for your selected
deployment.

5.3. Secure Communication with Third-Party Component HTTP Servers 24

https://hub.docker.com/r/rticom/collector-service

RTI Connext Observability Framework User's Manual, Version 7.3.0

5.3.1 Secure Third-Party Component HTTP Servers (Pre-Packaged Deployment)

If you install Observability Framework using Docker Compose (Prepackaged), use the highlighted parameters
in the installation JSON configuration file:

{
"securityConfig": {

"basicAuthUsername": "yourusername",
"basicAuthPassword": "yourpassword",
"httpsSecurity": {

"caCertificate": "path/to/ca_cert.pem",
"serverCertificate": "path/to/server_cert.pem",
"serverKey": "path/to/server_key.pem"

},
"ddsSecurity": {

"identityCaCertificate": "path/to/identityCaCert.pem",
"permissionsCaCertificate": "path/to/permissionsCaCert.pem",
"identityCertificate": "path/to/identityCert.pem",
"identityKey": "path/to/identityKey.pem",
"signedPermissionsFile": "path/to/signedPermissions.p7s",
"signedGovernanceFile": "path/to/signedGovernance.p7s"

}
}

}

5.3.2 Secure Third-Party Component HTTP Servers (Separate Deployment)

If you run Collector Service using Docker (Separate Deployment), you must provide the security artifacts to
configure the HTTP clients running in Collector Service. In addition, you need to set the CFG_NAME envi-
ronment variable to one of the provided Docker image’s built-in secure configurations (see Docker (Separate
Deployment)). The security artifacts and environment variable can be provided by using the following options
to the docker run command:

-v /path/to/rootCA.crt:/rti/security/https/rootCALoki.crt
-v /path/to/rootCA.crt:/rti/security/https/rootCAOtel.crt
-e OBSERVABILITY_BASIC_AUTH_USERNAME=yourusername
-e OBSERVABILITY_BASIC_AUTH_PASSWORD=yourpassword
-e CFG_NAME="<secure-configuration>"

• The rootCALoki.crt file must contain the root certificate of the CA that signed the server.pem certificate
used to communicate with the Grafana Loki server.

• The rootCAOtel.crt file must contain the root certificate of the CA that signed the server.pem certificate
used to communicate with the OpenTelemetry Collector.

For additional details, see the Collector Service docker image documentation.

5.3. Secure Communication with Third-Party Component HTTP Servers 25

https://hub.docker.com/r/rticom/collector-service

RTI Connext Observability Framework User's Manual, Version 7.3.0

5.4 Generating the Observability Framework Security Artifacts

This section describes how to generate the security artifacts required to secure Observability Framework. For
an overview of the security architecture of the Observability Framework, see Security.

There are two sets of security artifacts:

• DDS security artifacts secure the exchange of telemetry data between aConnext usingMonitoring Library
2.0 and Collector Service.

• HTTPS security artifacts secure the exchange of telemetry data between Collector Service and the
third-party observability backends as well as to send remote commands to Collector Service.

5.4.1 Generating DDS Security Artifacts

The DDS security artifacts are used to secure the exchange of telemetry data between Connext applications and
Collector Service.

See Support for RTI Observability Framework section in the RTI Security Plugins User’s Manual for details
about how to secure the communication between a Connext application and Collector Service.

For details on how to create/update DDS security artifacts, see Generating and Revoking Your Own Certificates
Using OpenSSL in the RTI Security Plugins Getting Started Guide.

5.4.2 Generating HTTPS Security Artifacts

The security artifacts needed to secure the communication between Collector Service and the third-party ob-
servability backends are:

• A root CA certificate file

• A server certificate file

• A server key

We will start by generating a self-signed Root CA, which will issue the Server Certificate used to secure the var-
ious HTTP servers in Observability Framework. This will require us to set up a minimal security infrastructure
first.

We will show an example for ECDSA as the public-key algorithm to generate the certificates. Note that you can
use any public-key algorithm listed in Supported Cryptographic Algorithms in the RTI Security Plugins User’s
Manual.

Note: We will use the OpenSSL CLI to perform the security operations in the generation of the security ar-
tifacts. Make sure to include in the path your OpenSSL binary directory1. The installation process is described
in the RTI Security Plugins Installation Guide.

1 Read the official documentation for more information on the OpenSSL configuration files.

5.4. Generating the Observability Framework Security Artifacts 26

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p4_integrations/observability_framework.html
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/getting_started_guide/cpp98/hands_on_4.html
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/getting_started_guide/cpp98/hands_on_4.html
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p1_welcome/overview.html#section-supported-cryptographic-algorithms
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/installation_guide/RTI_Security_Plugins_InstallationGuide.pdf
https://www.openssl.org/docs/manmaster/man5/config.html

RTI Connext Observability Framework User's Manual, Version 7.3.0

Preliminary Steps

Setting up a security infrastructure requires some preliminary configuration. We will cover a minimal setup
here.

1. The rti_workspace directory containing examples and user configuration files is automatically
copied into the users’ home or My Documents folder when the first RTI application is launched
(e.g., RTI Launcher, rtiddsgen, rtipkginstall, or rtiobservability). In your rti_workspace
directory you should have OpenSSL configuration files named <rti_workspace_dir>/
examples/dds_security/cert/ecdsa01/ca/ecdsa01RootCa.cnf and
<rti_workspace_dir>/examples/dds_security/cert/ecdsa01/https/
ecdsa01Https01.cnf. Make copies of these files and call themobservabilityRootCa.cnf
and observabilityServer.cnf respectively. To better organize your project, save these copies
in a new directory called cert/observability:

Linux

$ cd <rti_workspace_dir>/examples/dds_security
$ cp cert/ecdsa01/ca/ecdsa01RootCa.cnf cert/observability/ca/
→˓observabilityRootCa.cnf
$ cp cert/ecdsa01/https/ecdsa01Https01.cnf cert/observability/https/
→˓observabilityServer.cnf

2. Modify observabiltyRootCa.cnf to redefine the name variable. Note that this configuration
file uses this variable to derive some filenames, such as those used in the next section:

...
Variables defining this CA
name = observabilityRootCa # Name
desc = # Description
...

Initialize the OpenSSL CA Database

When using a CA to perform an operation, OpenSSL relies on special database files to keep track of the issued
certificates, serial numbers, revoked certificates, etc. We need to create these database files to be able to use
the openssl x509 -req command:

Linux

$ mkdir cert/observability/ca/database
$ touch cert/observability/ca/database/observabilityRootCaIndex
$ echo 01 > cert/observability/ca/database/observabilityRootCaSerial

5.4. Generating the Observability Framework Security Artifacts 27

RTI Connext Observability Framework User's Manual, Version 7.3.0

Limit the Access of the CA’s Private Key

It is also a good practice to store the CA’s private key in a separate directory with more restrictive access rights,
so only you can sign certificates.

Linux

$ mkdir cert/observability/ca/private
$ chmod 700 cert/observability/ca/private

Generating a New Root CA

1. Modify cert/observability/ca/observabilityRootCa.cnf and specify the fields in
the req_distinguished_name section. This information will be incorporated into your certifi-
cate:

...
[req_distinguished_name]

countryName = US
stateOrProvinceName = CA
localityName = Santa Clara
0.organizationName = Observing Organization
commonName = Observability Root CA
emailAddress = rootCa@observability.com
...

2. Use the OpenSSL CLI to generate a self-signed certificate using the Root CA’s configuration. Run the
following command from the cert/observability directory:

ECDSA secp256r1

$ openssl req -nodes -x509 -days 1825 -text -sha256 -newkey ec -pkeyopt␣
→˓ec_paramgen_curve:prime256v1 -keyout ca/private/observabilityRootCaKey.
→˓pem -out ca/observabilityRootCaCert.pem -config ca/observabilityRootCa.
→˓cnf

This will produce a new private key, observabilityRootCaKey.pem in
the cert/observability/ca/private directory, and a new certificate,
observabilityRootCaCert.pem, in the cert/observability/ca directory. This
certificate will be valid for 1825 days (5 years) starting today.

5.4. Generating the Observability Framework Security Artifacts 28

RTI Connext Observability Framework User's Manual, Version 7.3.0

Generating Server Certificates

Server Certificates are verified against the Root CA when authenticating servers over HTTPS. Therefore, in
the simplest scenario, it is the Root CA that is responsible for issuing Server Certificates.

We will create a certificate signing request (CSR) for the server localhost. Then we will use the new Root CA
to issue the certificate requested by the CSR.

1. Add the information you want to include in localhost’s certificate in the file cert/observability/
https/observabilityServer.cnf that was previously created. You may want to use the fol-
lowing contents as a reference:

Listing 5.1: Sample contents of observabilityServer.cnf

prompt=no
distinguished_name = req_distinguished_name

[req_distinguished_name]
countryName=US
stateOrProvinceName=CA
organizationName=Observing Organization
emailAddress=server@observability.com
commonName=localhost

[https_cert]
subjectAltName = @alt_names

[alt_names]
DNS.1 = localhost
IP.1 = 127.0.0.1

You are free to modify any field except countryName, stateOrProvinceName, and organi-
zationName. These fields must match the ones of the Root CA; otherwise it will refuse to issue the
requested certificate (note that a commonName is also required). These requirements are specified in
observabilityRootCa.cnf, in the policy_match section.

2. Generate the new server’s key and CSR. Run the following command from the cert/
observability directory:

ECDSA secp256r1

$ openssl req -nodes -new -newkey ec -pkeyopt ec_paramgen_
→˓curve:prime256v1 -config https/observabilityServer.cnf -keyout https/
→˓observabilityServerKey.pem -out https/observabilityServer.csr

This will produce an RSA private key, observabilityServerKey.pem, and a CSR based on
that key, observabilityServer.csr. Since CSRs have all the information and cryptographic
material that a CA needs to issue a certificate, the server’s private key must never be known to anyone
but the creator.

3. Use the new Root CA’s certificate and private key to issue a new Server Certificate. Run the following
command from the cert/observability directory:

ECDSA secp256r1

5.4. Generating the Observability Framework Security Artifacts 29

RTI Connext Observability Framework User's Manual, Version 7.3.0

$ openssl x509 -req -days 730 -text -CAserial ca/database/
→˓observabilityRootCaSerial -extfile https/observabilityServer.cnf -
→˓extensions https_cert -CA ca/observabilityRootCaCert.pem -CAkey ca/
→˓private/observabilityRootCaKey.pem -in https/observabilityServer.csr -
→˓out https/observabilityServerCert.pem

The Root CA will issue the server’s public certificate, observabilityServerCert.pem, which
will be valid for 730 days (2 years) starting today.

4. Collector Service requires a server certificate file for HTTPS operation that contains both the server
certificate and key. The following is an example of how to create this file using the server certificate and
key generated in the previous step. Run the following command from the <rti_workspace_dir>/
examples/dds_security/cert/observability directory:

Linux

$ cp https/observabilityServerCert.pem observabilityServer.pem
$ cat https/observabilityServerKey.pem >> observabilityServer.pem

BASIC-Auth Password File

The communication between Collector Service and the third-party observability backends is secured using
BASIC-Auth over HTTPS.

The HTTP servers started by Collector Service require a password file that contains the username and password
for BASIC-Auth. This section describes how to create this file.

Note: The creation of the equivalent password file for the third-party observability backends is out of the
scope of this documentation. Please refer to the documentation of the third-party observability backends for
additional details on how to create this file.

Collector Service requires an htdigest formatted password file for basic authentication. The following example
uses the Apache htdigest command to create this file. For more information on this command see Apache
- htdigest - manage user files for digest authentication

Here is an example of how to use the htdigest command:

Linux

$ htdigest -c htdigest localhost user
Adding password for user in realm localhost.
New password: <type "userpassword">
Re-type new password: <type "userpassword">

The example uses the following arguments for the htdigest command.

5.4. Generating the Observability Framework Security Artifacts 30

https://httpd.apache.org/docs/2.4/programs/htdigest.html
https://httpd.apache.org/docs/2.4/programs/htdigest.html

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 5.1: htdigest Arguments
Pa-
rame-
ter

Description Value

-c Create the passwdfile. If passwdfile already exists, it is deleted first. -c
pass-
word-
file

Name of the file to contain the username, realm, and password. If -c is given, this file
is created if it does not already exist, or deleted and recreated if it does exist.

htdigest

realm The realm name to which the user name belongs. See http://tools.ietf.org/html/
rfc2617#section-3.2.1 for more details.

host-
name
(“local-
host”)

user-
name

The user name to create or update in passwdfile. If username does not exist is this
file, an entry is added. If it does exist, the password is changed.

user

pass-
word

The password to create or update in passwdfile. If username does not exist is this file,
an entry is added. If it does exist, the password is changed.

user-
pass-
word

This will create an htdigest file with the following content:

user:localhost:bbbb113a9f365f1b3787b6a944ccbc59

5.4. Generating the Observability Framework Security Artifacts 31

http://tools.ietf.org/html/rfc2617#section-3.2.1
http://tools.ietf.org/html/rfc2617#section-3.2.1

Chapter 6

Installing and Running Observability
Framework

RTI Connext Observability Framework is not installed as part of RTI Connext Professional with the exception
of Monitoring Library 2.0 which is included in the RTI Connext Professional target package. Monitoring Li-
brary 2.0 is supported in all Connext platforms. Observability Framework must be downloaded and installed
separately. For information on how to obtain the Observability Framework package, check the RTI Customer
portal, contact support@rti.com, or contact your account team.

There is one Observability Framework package, as outlined in Table 6.1.

Table 6.1: Observability Framework Packages
Package Name Package Contents Use Case Supported Plat-

form
rti_observability-7.3.0-host-x64Linux.rtipkgThe host package contains

the files required to run
the Observability Frame-
work collection, storage,
and visualization compo-
nents using Docker and
Docker Compose. This
package also includes
Observability Framework
documentation.

Install this package if you
need to run the collection,
storage, and visualization
components.

These components
are only supported
in Linux.
The host package
can be installed on
a Virtual Machine
(VM); for more in-
formation, see Sup-
ported Docker Com-
pose Environments.

In the rest of this chapter, <installdir> refers to the installation directory for Connext.

Important: Observability Framework is an experimental product that includes example configuration files
for use with several third-party components (Prometheus, Grafana Loki, and Grafana). This release is an
evaluation distribution; use it to explore the new observability features that support Connext applications.

Do not deploy any Observability Framework components in production.

32

https://support.rti.com
https://support.rti.com
mailto:support@rti.com

RTI Connext Observability Framework User's Manual, Version 7.3.0

6.1 Installing the Host Package

There are twoways to install the documentation and files supporting the Docker containers used byObservability
Framework: using RTI Launcher or the rtipkginstall command-line utility.

6.1.1 Prerequisites

The following applications must be installed before installing the experimental Observability Framework prod-
uct.

• Connext 7.3.0. For installation instructions, see the RTI Connext Installation Guide.

• Docker Engine v20.10.x or higher. For installation instructions, see Docker’s Engine installation
overview.

• Docker Compose Plugin v2.x or higher. For installation instructions, see Docker’s installation instruc-
tions.

Note: The Observability Framework host package has been tested on the platforms noted in Supported Docker
Compose Environments.

6.1.2 Install from RTI Launcher

To install the Observability Framework host package from RTI Launcher:

1. Start Launcher from the Start menu, or from the command line using: <installdir>/bin/
rtilauncher.

2. From the Configuration tab, click Install RTI Packages.

3. Use the plus (+) sign to add the rti_observability-<version>-host-x64Linux.
rtipkg file.

4. Click Install.

6.1.3 Install from the Command Line

To install the Observability Framework host package from the command line, run:

$ <installdir>/bin/rtipkginstall /<path-to-observability-framework-file>/rti_
→˓observability-<version>-host-x64Linux.rtipkg

6.1. Installing the Host Package 33

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

RTI Connext Observability Framework User's Manual, Version 7.3.0

6.2 Configuring, Running, and Removing Observability Framework
Components Using Docker Compose

The telemetry data forwarded byMonitoring Library 2.0 is processed, stored, and visualized using the following
components:

• RTI Observability Collector Service

• Prometheus

• Grafana Loki

• Grafana

• OpenTelemetry Collector [Optional]: Observability Framework can be configured to launch an instance
of OpenTelemetry Collector that will store the telemetry data in Prometheus and Loki instead of this
being done by the RTI Observability Collector Service. In this configuration mode, Observability Collector
Service sends the data to OpenTelemetry Collector.

• NGINX [Optional]: when using security the Observability Framework runs and instance of NGINX to
secure communications with Grafana Loki and the OpenTelemetry Collector.

The files required to run these components are installed by the Observability Framework host package. In this
release, the collection, storage, and visualization components only run in a single Linux host using Docker and
Docker Compose. Future releases will offer the ability to install the components independently without using
Docker.

Observability Framework can be deployed with or without using the OpenTelemetry Collector. Both deploy-
ment options can be configured to be secure or non-secure and to work on a LAN or WAN. For additional
information on the deployment options, see Docker Compose (Prepackaged).

Warning: Observability Framework uses third-party software that is subject to each product’s license terms
and conditions. IT IS YOUR RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY
SOFTWARE COMPLIES WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND
CONDITIONS.

6.2.1 Configuring the Docker Workspace for Observability Framework

Before creating and running the Docker containers for Observability Framework, the associated configu-
ration files that comprise the Docker workspace must be created and copied to the rti_workspace/
<version>/user_config/observability directory. This is done using the <installdir>/
bin/rtiobservability script.

There are several optional, user-defined variables you can use to configure Observability Framework. These
variables are specified in a JSON file.

Note: To reconfigure an existing Docker workspace you must first remove the existing workspace as described
in section Removing the Docker Workspace for Observability Framework.

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

34

https://hub.docker.com/r/rticom/collector-service
https://hub.docker.com/r/prom/prometheus
https://hub.docker.com/r/grafana/loki
https://hub.docker.com/r/grafana/grafana-enterprise
https://hub.docker.com/r/otel/opentelemetry-collector-contrib
https://hub.docker.com/_/nginx

RTI Connext Observability Framework User's Manual, Version 7.3.0

Configure the JSON File

Before creating your workspace, you will need to provide your configuration using a JSON file. This file can
contain all the specific ports, names, and certificates to be used by the different services.

The following default JSON file is included in the installation folder at <rti_installation>/
resource/app/app_support/observability/default.json. You can copy this file to an-
other location, then modify it as needed to create the Observability Framework configuration for your environ-
ment. Alternately, you can create your own JSON file.

{
"hostname": "localhost",
"observabilityDomain": 2

}

Table 6.2 JSON Configuration file describes all of the JSON configuration fields and default values.

Note: All of the JSON configuration fields are optional except hostname. If configuration for securi-
tyConfig is required, then all its fields must be provided.

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

35

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 6.2: JSON Configuration file
Field Name Description Type De-

fault
Value

hostname Hostname to be used to configure all of the
services. This field is required.

String N/A

observabilityDomain DDS Domain to be used to exchange Ob-
servability data.

int 2

lgpStackConfig
lgpStackConfig.grafanaPort The Grafana server port. This is the port

that the Grafana service listens to.
int 3000

lgpStackConfig.prometheusPort The Prometheus server port. This is the
port that the Prometheus service listens to.

int 9090

lgpStackConfig.lokiPort The Loki server port. This is the port that
the Loki service listens to.

int 3100

collectorConfig
collectorConfig.prometheusExporterPort The Observability Collector Service

Prometheus endpoint port for exporting
telemetry data to Prometheus. This is the
port that the Prometheus endpoint service
listens to and uses to provide telemetry
data via scrapes from the Prometheus
server.

int 19090

collectorConfig.controlPort The Observability Collector Service server
port for control commands. This is the port
that the service listens to.

int 19098

collectorConfig.controlPublicHostname The Observability Collector Service public
server hostname for control commands.

String host-
name

collectorConfig.controlPublicPort The Observability Collector Service public
server port for control commands. This is
the port exposed to the public network.

int col-
lec-
tor-
Con-
fig.con-
trol-
Port

collectorConfig.rtwPublicAddress The WAN public address used by
Real-Time WAN Transport.

String host-
name

collectorConfig.rtwPort The WAN port used by Real-Time WAN
Transport. This is both the private port
where Real-Time WAN Transport receives
data, and the public port exposed to the
public network.

int 30000

otelConfig
otelConfig.otelHttpReceiverPort The OpenTelemetry Collector server port.

This is the port the OpenTelemetry Collec-
tor listens to for telemetry data.

int N/A

securityConfig
securityConfig.basicAuthUsername Username used for HTTP Basic authenti-

cation.
String N/A

securityConfig.basicAuthPassword Password used for HTTP Basic authentica-
tion.

String N/A

securityConfig.httpsSecurity
securityConfig.httpsSecurity.caCertificate Certificate authority (CA) used to verify

the SSL certificates signed by this CA.
String N/A

securityConfig.httpsSecurity.serverCertifi-
cate

Server Certificate used with HTTPs. String N/A

securityConfig.httpsSecurity.serverKey Server Key for the Server Certificate. String N/A
securityConfig.ddsSecurity
securityConfig.ddsSecurity.identityCaCer-
tificate

File to be passed as dds.sec.auth.
identity_ca

String N/A

securityConfig.ddsSecurity.permission-
sCaCertificate

File to be passed as dds.sec.access.
permissions_ca

String N/A

securityConfig.ddsSecurity.identityCertifi-
cate

File to be passed as dds.sec.auth.
identity_certificate

String N/A

securityConfig.ddsSecurity.identityKey File to be passed as dds.sec.auth.
private_key

String N/A

securityConfig.ddsSecurity.signedPermis-
sionsFile

File to be passed as dds.sec.access.
permissions

String N/A

securityConfig.ddsSecurity.signedGover-
nanceFile

File to be passed as dds.sec.access.
governance

String N/A

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

36

RTI Connext Observability Framework User's Manual, Version 7.3.0

Complete examples of both secure and non-secure configurations of theObservability Frameworkmay be found
in the section Configure Observability Framework for the Appropriate Operation Mode of the Getting started
Guide.

An example of a fully-defined JSON file, with security and OpenTelemetry configured, follows. You can follow
this example to create your own custom configuration.

{
"hostname": "localhost",
"observabilityDomain": 2,
"lgpStackConfig": {

"grafanaPort": 3000,
"prometheusPort": 9090,
"lokiPort": 3100

},
"collectorConfig": {

"prometheusExporterPort": 19090,
"controlPort": 19098

},
"otelConfig": {

"otelHttpReceiverPort": 4318
},
"securityConfig": {

"basicAuthUsername": "yourusername",
"basicAuthPassword": "yourpassword",
"httpsSecurity": {

"caCertificate": "path/to/ca_cert.pem",
"serverCertificate": "path/to/server_cert.pem",
"serverKey": "path/to/server_key.pem"

}
"ddsSecurity": {

"identityCaCertificate": "path/to/identityCaCert.pem",
"permissionsCaCertificate": "path/to/permissionsCaCert.pem",
"identityCertificate": "path/to/identityCert.pem",
"identityKey": "path/to/identityKey.pem",
"signedPermissionsFile": "path/to/signedPermissions.p7s",
"signedGovernanceFile": "path/to/signedGovernance.p7s"

}
}

}

Note: The tilde (~) Linux shortcut for a user home directory is not supported in the JSON configuration file.

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

37

RTI Connext Observability Framework User's Manual, Version 7.3.0

Run the Observability script to create the Observability workspace

To configure the Docker workspace for Observability Framework, run the <installdir>/bin/
rtiobservability script with the -c <json_file> option.

Warning: The <installdir>/bin/rtiobservability script requires Python3. If any
Python package dependencies are missing, the script detects them and provides the command to install
them. The required packages are detailed in the <installdir>/resource/app/app_support/
observability/requirements.txt file. The following image shows the types of errors returned
when running the script with a missing dependency.

$ rtiobservability -c NonSecureLAN.json

**
*
* The Observability Docker Containers created by this script may include␣
→˓images
* from third-parties, including:
*
* Prometheus
* (https://hub.docker.com/r/prom/prometheus)
* Grafana Loki
* (https://hub.docker.com/r/grafana/loki)
* Grafana
* (https://hub.docker.com/r/grafana/grafana-enterprise)
* NGINX
* (https://hub.docker.com/_/nginx)
* OpenTelemetry Collector
* (https://hub.docker.com/r/otel/opentelemetry-collector-contrib)
*
* Such third-party software is subject to third-party license terms and
* conditions. IT IS YOUR RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-
→˓PARTY
* SOFTWARE COMPLIES WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND
* CONDITIONS.
*
**

Do you wish to continue setting up the Connext Observability Framework[Y/
→˓n]? Y

Generating configuration for the Connext Observability Framework

2023-08-03 01:36:46,017 - root - ERROR - Some requirements are missing: No␣
→˓module named 'jinja2'.
2023-08-03 01:36:46,017 - root - ERROR - Please install them with the␣
→˓following command:

pip3 install -r /home/test/rti_connext_dds-7.2.0/resource/app/app_
→˓support/observability/requirements.txt

1. Run <installdir>/bin/rtiobservability -c <json_file> to configure the Docker

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

38

RTI Connext Observability Framework User's Manual, Version 7.3.0

workspace.

$ rtiobservability -c NonSecureLAN.json

␣
→˓**
*
* The Observability Docker Containers created by this script may␣

→˓include images
* from third-parties, including:
*
* Prometheus
* (https://hub.docker.com/r/prom/prometheus)
* Grafana Loki
* (https://hub.docker.com/r/grafana/loki)
* Grafana
* (https://hub.docker.com/r/grafana/grafana-enterprise)
* NGINX
* (https://hub.docker.com/_/nginx)
* OpenTelemetry Collector
* (https://hub.docker.com/r/otel/opentelemetry-collector-contrib)
*
* Such third-party software is subject to third-party license terms and
* conditions. IT IS YOUR RESPONSIBILITY TO ENSURE THAT YOUR USE OF␣

→˓THIRD-PARTY
* SOFTWARE COMPLIES WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS␣

→˓AND
* CONDITIONS.
*

␣
→˓**

Do you wish to continue setting up the Connext Observability Framework[Y/
→˓n]?

2. Select Y/y (or simply enter) to acknowledge the license statement.

Do you wish to continue setting up the Connext Observability Framework[Y/
→˓n]? y

Generating configuration for the Connext Observability Framework

2023-07-19 19:28:10,277 - exporter - INFO - Config: {
"hostname": "localhost",
"observabilityDomain": 2,
"otelConfig": null,
"lgpStackConfig": {

"grafanaPort": 3000,
"prometheusPort": 9090,
"lokiPort": 3100

},
"collectorConfig": {

"prometheusExporterPort": 19090,

(continues on next page)

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

39

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
"controlPort": 19098,
"rtwPort": null

},
"securityConfig": null

}

If you attempt to configure an existing Docker workspace for Observability Framework, you will see the fol-
lowing warning.

$ rtiobservability -c NonSecureOTelLAN.json

␣
→˓**
*
* The Connext Observability Framework already exist in:
* /home/rtrentini/rti_workspace/7.2.0/user_config/

→˓observability
*
* Remove or rename the directory manually if you want to start␣

→˓over ...
*

␣
→˓**

6.2.2 Initialize and Run Docker Containers

Important: An RTI license is always required to run Observability Collector Service in a Docker container.
The following table indicates the RTI licenses required based on your answers to the questions in the first two
columns.

Table 6.3: License Requirements Table
Do you need to secure teleme-
try data exchanged between
applications and Observability
Collector Service using Secu-
rıty Plugıns?

Do you need to send telemetry
data to Observability Collector
Service over the WAN using
Real-Time WAN Transport?

Required License

NO NO Connext Professional
YES NO Connext Professional and Secu-

rıty Plugıns
YES YES Connext Professional & Securıty

Plugıns & Cloud Discovery Ser-
vice& Real-TimeWAN Transport

NO YES Connext Professional & Cloud
Discovery Service & Real-Time
WAN Transport

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

40

RTI Connext Observability Framework User's Manual, Version 7.3.0

For instructions on how to install a license file, see Installing the License File in the RTI Connext Installation
Guide.

After the Docker workspace is configured and created, run <installdir>/bin/rtiobservability
-i to initialize and run the Docker containers for Observability Framework. The -i option calls docker
compose up -d to create the required storage volumes and containers, then starts the containers.

$ rtiobservability -i

... using Docker version 24.0.4, build 3713ee1.

... using Docker Compose version v2.19.1.

Initializing and running the Connext Observability Framework

[+] Running 6/6
XXX Volume "observability_grafana_data" Created ␣
→˓ 0.0s

XXX Volume "observability_prometheus_data" Created ␣
→˓ 0.0s

XXX Container collector_service_observability Started ␣
→˓ 0.2s

XXX Container prometheus_observability Started ␣
→˓ 0.2s

XXX Container grafana_observability Started ␣
→˓ 0.2s

XXX Container loki_observability Started ␣
→˓ 0.2s

Three things happen upon running <installdir>/bin/rtiobservability with the -i option.

1. The Docker images for Grafana Loki, Prometheus, Grafana, and Observability Collector Service are
pulled from Docker Hub to your local Docker image store. Note that this will only happen if there are
no local images found.

2. The Docker data volumes are created for the Prometheus and Grafana data storage.

3. Docker containers for Observability Framework are started for the four components (Loki, Prometheus,
Grafana, and Observability Collector Service).

At this point, the Docker containers used by Observability Framework are started and all components should
be running.

6.2.3 Verify Docker Containers are Running

To verify that all Docker containers used by Observability Framework are running, run the command docker
ps -a. Examine the STATUS column and verify that all containers report a status of Up, as shown below.

CONTAINER ID IMAGE COMMAND ␣
→˓ CREATED STATUS NAMES
6651d7ed9810 prom/prometheus:v2.37.5 "/bin/prometheus --c…"␣
→˓ 5 minutes ago Up 5 minutes prometheus_observability

(continues on next page)

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

41

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
25050d16b1b5 grafana/grafana-enterprise:9.2.1-ubuntu "/run.sh" ␣
→˓ 5 minutes ago Up 5 minutes grafana_observability
08611ea9b255 rticom/collector-service:<version> "/rti_connext_dds-7.…"␣
→˓ 5 minutes ago Up 5 minutes collector_service_observability
55568de5120f grafana/loki:2.7.0 "/usr/bin/loki --con…"␣
→˓ 5 minutes ago Up 5 minutes loki_observability

When a container does not start, the STATUS column displays Restarting to indicate the
prometheus-observability container failed to start and repeatedly tried to restart.

CONTAINER ID IMAGE COMMAND ␣
→˓ CREATED STATUS NAMES
08f75e0fadb2 prom/prometheus:v2.37.5 "/bin/prometheus --c…"␣
→˓ 5 minutes ago Restarting (1) 27 seconds ago prometheus_observability
9a3964b561ec grafana/loki:2.7.0 "/usr/bin/loki --con…"␣
→˓ 5 minutes ago Up 5 minutes loki_observability
b6a6ffa201f3 rticom/collector-service:<version> "/rti_connext_dds-7.…"␣
→˓ 5 minutes ago Up 5 minutes collector_service_
→˓observability
26658f76cfdc grafana/grafana-enterprise:9.2.1-ubuntu "/run.sh" ␣
→˓ 5 minutes ago Up 5 minutes grafana_observability

If a container fails to start, refer to section Docker Container[s] Failed to Start for troubleshooting suggestions.

6.2.4 Configure Grafana

Initial Login

To access Observability Dashboards, open a new browser window and go to http://<hostname>:<grafana-
Port> to access Grafana (3000 is the default grafanaPort). Log in using the credentials admin : admin, then
change the password when prompted.

If you are using a secure configuration, the url to access Grafana will be https://<hostname>:<grafanaPort>
and the Grafana credentials will be the values configured in the basicAuthUsername and basicAuthPassword
fields in the JSON configuration.

Once you are logged in you will see the RTI Alert Home dashboard.

Configuration Options

You can configure the Grafana dashboard to meet your specific needs. For more information, refer to the
Grafana article Use dashboards.

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

42

https://grafana.com/docs/grafana/latest/dashboards/use-dashboards/

RTI Connext Observability Framework User's Manual, Version 7.3.0

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

43

RTI Connext Observability Framework User's Manual, Version 7.3.0

Create Accounts (Optional)

You can create additional users as needed. Refer to the Grafana article Manage Grafana Users for information
about user roles and permissions.

Change the Default Time Range (Optional)

The default visualization time range can be modified. The default relative time range is one hour. You may
want to update the range as follows:

1. Go to the Alert Home dashboard,

2. From the toolbar, select the time picker.

3. Select the desired time range from the dropdown list. The dashboard refreshes to display the selected
time range.

4. From the toolbar, select Save dashboard.

5. In the Save dashboard dialog, select Save current time range as dashboard default and then click
Save.

6. To confirm the new time range, navigate to another dashboard and then click the Home icon at the top
left to go back to the Alert Home dashboard.

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

44

https://grafana.com/docs/grafana/latest/manage-users/

RTI Connext Observability Framework User's Manual, Version 7.3.0

6.2.5 Stop Docker Containers

Once Observability Framework Docker containers are running, you can stop them by running
<installdir>/bin/rtiobservability -t. The -t option terminates the running Docker con-
tainers for Observability Framework by calling docker compose stop.

$ rtiobservability -t

... using Docker version 24.0.4, build 3713ee1.

... using Docker Compose version v2.19.1.

Terminating the running Connext Observability Framework

[+] Stopping 4/4
XXX Container collector_service_observability Stopped ␣
→˓ 10.1s

XXX Container prometheus_observability Stopped ␣
→˓ 0.1s

XXX Container grafana_observability Stopped ␣
→˓ 0.2s

XXX Container loki_observability Stopped ␣
→˓ 2.1s

This command stops the existing Docker containers for Observability Framework, but leaves associated storage
volumes and configuration for a future run.

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

45

RTI Connext Observability Framework User's Manual, Version 7.3.0

6.2.6 Start Existing Docker Containers

To restart existing Docker containers used by Observability Framework, run <installdir>/bin/
rtiobservability -s. The -s option starts existing Docker containers for Observability Framework
by calling docker compose start.

$ rtiobservability -s

... using Docker version 24.0.4, build 3713ee1.

... using Docker Compose version v2.19.1.

Starting the existing Connext Observability Framework

[+] Running 4/4
XXX Container prometheus_observability Started ␣
→˓ 0.1s

XXX Container collector_service_observability Started ␣
→˓ 0.1s

XXX Container grafana_observability Started ␣
→˓ 0.1s

XXX Container loki_observability Started ␣
→˓ 0.2s

This command starts any existing Docker containers created by Observability Framework.

6.2.7 Stop and Remove Docker Containers

To clean up, or stop and remove, all Docker containers and storage volumes used by Observability Frame-
work, run <installdir>/bin/rtiobservability -d. The -d option stops and removes Docker
containers for Observability Framework by calling docker compose down, and subsequently removes
storage volumes.

Warning: Running <installdir>/bin/rtiobservability -d removes all Docker contain-
ers and storage volumes used by Observability Framework. This command removes all changes to your
current Observability Framework Docker environment including:

• metric data in Prometheus

• log data in Loki

• all Grafana user and dashboard configurations

$ rtiobservability -d

... using Docker version 24.0.4, build 3713ee1.

... using Docker Compose version v2.19.1.

␣
→˓**

(continues on next page)

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

46

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
*
* You have requested to clean up and remove the existing Connext␣

→˓Observability
* Framework. If you continue you will lose all changes to your current
* environment including:
* - metric data in Prometheus
* - log data in Loki
* - all Grafana user and dashboard configuration
*
␣
→˓**

Do you wish to continue cleaning and removing the existing Connext␣
→˓Observability Framework[y/N]?

When prompted to confirm that you want to remove all Docker containers and storage volumes forObservability
Framework:

• Select N/n (or simply enter) to cancel the cleanup.

Do you wish to continue cleaning and removing the existing Connext␣
→˓Observability Framework[y/N]? n

Cleaning up and removing the existing Connext Observability Framework␣
→˓canceled.

• Select Y/y to proceed with the cleanup and remove all Docker containers and storage volumes used by
Observability Framework.

Do you wish to continue cleaning and removing the existing Connext␣
→˓Observability Framework[y/N]? y

Cleaning up and removing the existing Connext Observability Framework

[+] Running 4/5
XXX Container prometheus_observability Removed ␣
→˓ 0.1s

XXX Container grafana_observability Removed ␣
→˓ 0.1s

XXX Container loki_observability Removed ␣
→˓ 1.5s

XXX Container collector_service_observability Removed ␣
→˓ 10.1s
observability_grafana_data
observability_prometheus_data

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

47

RTI Connext Observability Framework User's Manual, Version 7.3.0

6.2.8 Removing the Docker Workspace for Observability Framework

There may be a time that you need to remove your existing Docker Workspace for Observability Framework.
This could be because you want to change the existing configuration in some way. Things that you would want
to change could include hostname, port configurations, and enabling or disabling security. The rtiobserv-
ability script will not overwrite an existing workspace. This prevents inadvertently corrupting or deleting
an existing configuration. The following steps should be followed to remove an existing workspace to allow
re-configuration.

1. You must first stop and remove any existing containers created with the current workspace configuration
as detailed in section Stop and Remove Docker Containers.

2. Once the docker containers have been stopped and removed you must manually delete the
rti_workspace/<version>/user_config/observability directory.

Linux

$ rm -rf <path_to_workspace>/<version>/user_config/observability

6.2. Configuring, Running, and Removing Observability Framework Components Using
Docker Compose

48

Chapter 7

Getting Started Guide

7.1 About the Observability Example

Observability Framework includes a C++ example that you can use to evaluate the capabilities of this
experimental product. The example is installed in your rti_workspace directory, in the /examples/
observability/c++ folder.

Attention: The provided C++ example is not supported on VxWorks® and Android™ platforms.

This section details how the example is configured and how to run it. When you are ready to test the example,
refer to the sections Before Running the Example and Running the Example for instructions.

Important: Observability Framework is an experimental product that includes example configuration files
for use with several third-party components (Prometheus, Grafana Loki, and Grafana). This release is an
evaluation distribution; use it to explore the new observability features that support Connext applications.

Do not deploy any Observability Framework components in production.

7.1.1 Applications

The example consists of two applications:

• One application publishes simulated data generated by temperature sensors.

• One application subscribes to the sensor data generated by the temperature sensors.

You can run multiple publishing and subscribing applications in the same host, or in multiple hosts, within a
LAN. Each publishing application can handle multiple sensors, and each subscribing application subscribes to
all sensors.

49

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.1. About the Observability Example 50

RTI Connext Observability Framework User's Manual, Version 7.3.0

To learn more about the publish/subscribe model, refer to Publish/Subscribe in the RTI Connext Getting Started
Guide.

The example applications use Monitoring Library 2.0 to forward telemetry data (logs and metrics) to Observ-
ability Collector Service. The collector stores this data in Prometheus (metrics) and Grafana Loki (logs) for
analysis and visualization using Grafana.

7.1. About the Observability Example 51

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.1.2 Data Model

The DDS data model for the Temperature topic used in this example is as follows:

// Temperature data type
struct Temperature {
// ID of the sensor sending the temperature
@key uint32 sensor_id;
// Degrees in Celsius
int32 degrees;
};

Each sensor represents a different instance in the Temperature topic. For general information about data types
and topics, refer to Introduction to DataWriters, DataReaders, and Topics and Data Types in the RTI Connext
Getting Started Guide.

7.1.3 DDS Entity Mapping

The Publisher application creates one DomainParticipant and n-DataWriters, where n is the number of sensors
published by the application. This number is configurable using the command --sensor-count. Each
DataWriter publishes one instance. Refer to Keys and Instances in the RTI Connext Getting Started Guide for
more information on instances.

The Subscriber application creates one DomainParticipant and a single DataReader to subscribe to all sensor
data.

7.1.4 Command-Line Parameters

The following command-line switches are available when starting the Publisher and Subscriber applications
included in the example. Use this information as a reference when you run the example.

7.1. About the Observability Example 52

RTI Connext Observability Framework User's Manual, Version 7.3.0

Publishing Application

Table 7.1: Publishing Application
Parameter Data Type Description De-

fault
-n, –application-name <str> Application name Sen-

sor-
Pub-
lisher_<init_sen-
sor_id>

-d, –domain <int> Application domain ID 0
-i, –init-sensor-id <int> Initial sensor ID 0
-s, –sensor-count <int> Sensor count. Each sensor writes one instance

published by a separate DataWriter
1

-o, –observability-domain <int> Domain for sending telemetry data 2
-c, –collector-peer <str> Collector service peer local-

host
-v, –verbosity <int> Howmuch debugging output to show, range 0-3 1
-p, –protected N/A Enable security dis-

abled

The publishing applications should not publish information for the same sensor IDs. To avoid this issue, you
will use the -i command-line parameter to specify the sensor ID to be used as the initial ID when Running the
Example.

Subscribing Application

Table 7.2: Subscribing Application
Parameter Data Type Description De-

fault
-n, –application-name <str> Application name Sen-

sor-
Sub-
scriber

-d, –domain <int> Application domain ID 0
-o, –observability-domain <int> Domain for sending telemetry data 2
-c, –collector-peer <str> Collector service peer local-

host
-v, –verbosity <int> How much debugging output to show, Range

0-3
1

-p, –protected N/A Enable security dis-
abled

7.1. About the Observability Example 53

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.2 Before Running the Example

7.2.1 Set Up Environment Variables

Set up the environment variables for running and compiling the example:

1. Open a command prompt window.

2. Run this script:

Linux

$ source <installdir>/resource/scripts/rtisetenv_<architecture>.bash

If you’re using the Z shell, run this:

$ source <installdir>/resource/scripts/rtisetenv_<architecture>.zsh

macOS

$ source <installdir>/resource/scripts/rtisetenv_<architecture>.bash

If you’re using the Z shell, run this:

$ source <installdir>/resource/scripts/rtisetenv_<architecture>.zsh

If you’re using the tcsh shell, run this:

$ source <installdir>/resource/scripts/rtisetenv_<architecture>.tcsh

Windows

> <installdir>/resource/scripts/rtisetenv_<architecture>.bat

<installdir> refers to the installation directory for Connext.

The rtisetenv script adds the location of the SDK libraries (<installdir>/lib/<architecture>) to
your library path, sets the <NDDSHOME> environment variable to point to <installdir>, and puts the RTI
Code Generator tool in your path. You may need Code Generator if the makefile for your architecture is not
available under the make directory in the example.

Your architecture (such as x64Linux3gcc7.3.0) is the combination of processor, OS, and compiler ver-
sion that you will use to build your application. For example:

$ source $NDDSHOME/resource/scripts/rtisetenv_x64Linux4gcc7.3.0.bash

7.2. Before Running the Example 54

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.2.2 Compile the Example

Monitoring Library 2.0 can be used in three different ways:

• Dynamically loaded: This method requires that the rtimonitoring2 shared library is in the library search
path.

• Dynamic linking: The application is linked with the rtimonitoring2 shared library.

• Static linking: The application is linked with the rtimonitoring2 static library.

You will compile the example using Connext shared libraries so thatMonitoring Library 2.0 can be dynamically
loaded. The example is installed in your rti_workspace directory, in the /examples/observability/
c++ folder.

Non-Windows Systems

To build this example on a non-Windows system, type the following in a command shell from the example
directory:

$ make -f make/makefile_Temperature_<architecture> DEBUG=0

If there is no makefile for your architecture in the make directory, you can generate it using the following
rtiddsgen command:

$ rtiddsgen -language C++98 -create makefiles -platform <architecture> -
→˓sharedLib -sourceDir src -d ./make ./src/Temperature.idl

Windows Systems

To build this example on Windows, open the appropriate solution file for your version of Microsoft Visual
Studio in the win32 directory. To use dynamic linking, select Release DLL from the dropdown menu.

7.2.3 Install Observability Framework

Before running the example, make sure that you have installed bothMonitoring Library 2.0 and the collection,
storage and visualization components. Refer to the Installing and Running Observability Framework section for
instructions.

If you want to run the example with security enabled, you must install Observability Framework using a secure
configuration. If you did not create a secure configuration, delete the existing configuration as described in
section Removing the Docker Workspace for Observability Framework, then update your JSON configuration
file as needed. The following sections include example configuration files you can edit for your environment.

The collection, storage, and visualization components can be installed using one of two methods:

• Install the components in a Linux host on the same LAN where the applications run, or

• Install the components on a remote Linux host (for example, an AWS instance) reachable over the WAN
using Real-Time WAN Transport.

7.2. Before Running the Example 55

RTI Connext Observability Framework User's Manual, Version 7.3.0

Both methods support secure and non-secure configurations.

To facilitate testing secure configurations where all components run on the same node (docker images, test
applications, and browser), artifacts are provided in your rti_workspace directory, in the /examples/
dds-security/ folder. The artifacts provided to secure the https connections use the hostname “localhost”.

The following sections provide example JSON configurations for each of the eight operation modes supported
by Observability Framework. These examples use the hostname “localhost”, default port values, and the paths
to the default security artifacts where appropriate. You can copy these examples to a local file and use them as
is, or customize them with your own hostname, ports, and security artifacts. For details on how to configure
Observability Framework, see section Configure the JSON File.

Configure Observability Framework for the Appropriate Operation Mode

Important: The provided example configurations work only if you run ALL components (docker images, test
applications, and browser) on the same host machine. If you intend to run any components (test applications
or browser) on a remote machine, you must update the hostname field in the JSON configuration file to the
hostname of the machine running Observability Framework.

Additionally, if you run in secure mode, you will need to generate the https security artifacts and the DDS secu-
rity artifacts as shown in Generating the Observability Framework Security Artifacts. Once you have generated
your artifacts, you will need to update the securityConfig section in the JSON configuration file with the
paths to these artifacts.

There are eight distinct operation modes you can use to configure Observability Framework. These modes,
described below, are based on the desired security level, network environment (LAN or WAN), and use of the
OpenTelemetry Collector.

1. Select the operation mode for the test you want to run, then edit your JSON configuration file with the
selected content. For example, if you want to test on a LAN without security, copy the example JSON
from section Non-Secure LAN Configuration to the config.json file.

2. If desired, modify the hostname, ports, or security artifact paths in theconfig.json file. For example,
to use port 9091 for Prometheus, change the “prometheusPort” field in the config.json file from
9090 to 9091.

3. Run the rtiobservability script to apply your Observability Framework configuration.

Linux

$ rtiobservability -c config.json

If you have already configured Observability Framework in a different operation mode than the one you want
to test, you must first remove the existing workspace as described in section Removing the Docker Workspace
for Observability Framework.

7.2. Before Running the Example 56

RTI Connext Observability Framework User's Manual, Version 7.3.0

Example LAN configurations

Table 7.3 lists the four LAN configurations supported by Observability Framework.

Table 7.3: Docker Container LAN Operation Modes
Configuration Name Network Data Storage Secu-

rity
NonSecureLAN LAN Prometheus and Grafana Loki No
SecureLAN LAN Prometheus and Grafana Loki Yes
NonSecureOTelLAN LAN Multiple through OpenTelemetry Collector No
SecureOTelLAN LAN Multiple through OpenTelemetry Collector Yes

Non-Secure LAN Configuration

This example configures Observability Framework with hostname “localhost”, default ports, and security dis-
abled. Observability Collector Service will use a LAN configuration.

{
"hostname": "localhost",
"observabilityDomain": 2,
"lgpStackConfig": {

"grafanaPort": 3000,
"prometheusPort": 9090,
"lokiPort": 3100

},
"collectorConfig": {

"prometheusExporterPort": 19090,
"controlPort": 19098

}
}

Secure LAN Configuration

This example configures Observability Framework with hostname “localhost”, default ports, and security en-
abled. Observability Collector Service will use a LAN configuration.

{
"hostname": "localhost",
"observabilityDomain": 2,
"lgpStackConfig": {

"grafanaPort": 3000,
"prometheusPort": 9090,
"lokiPort": 3100

},
"collectorConfig": {

"prometheusExporterPort": 19090,

(continues on next page)

7.2. Before Running the Example 57

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
"controlPort": 19098

},
"securityConfig": {

"basicAuthUsername": "user",
"basicAuthPassword": "userpassword",
"httpsSecurity": {
"caCertificate": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/ca/ecdsa01RootCaCert.pem",
"serverCertificate": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/https/ecdsa01Https01Cert.pem",
"serverKey": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/https/ecdsa01Https01Key.pem"
},
"ddsSecurity": {

"identityCaCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/ca/ecdsa01RootCaCert.pem",

"permissionsCaCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/ca/ecdsa01RootCaCert.pem",

"identityCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/identities/ecdsa01Peer01Cert.pem",

"identityKey": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/identities/ecdsa01Peer01Key.pem",

"signedPermissionsFile": "<rti_workspace_dir>/examples/dds_
→˓security/xml/signed/signed_ObservabilityCollectorServicePermissions.p7s",

"signedGovernanceFile": "<rti_workspace_dir>/examples/dds_
→˓security/xml/signed/signed_ObservabilityGovernance.p7s"

}
}

}

Non-Secure OTel LAN Configuration

This example configures Observability Framework with hostname “localhost”, default ports, and security dis-
abled. Observability Collector Service will use a LAN configuration and the OpenTelemetry exporter. The
OpenTelemetry Collector routes telemetry data from the Observability Collector Service OpenTelemetry ex-
porter to Prometheus and Loki.

{
"hostname": "localhost",
"observabilityDomain": 2,
"lgpStackConfig": {

"grafanaPort": 3000,
"prometheusPort": 9090,
"lokiPort": 3100

},
"collectorConfig": {

"prometheusExporterPort": 19090,
"controlPort": 19098

},

(continues on next page)

7.2. Before Running the Example 58

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
"otelConfig": {

"otelHttpReceiverPort": 4318
}

}

Secure OTel LAN Configuration

This example configures Observability Framework with hostname “localhost”, default ports, and security en-
abled. Observability Collector Service will use a LAN configuration and the OpenTelemetry exporter. The
OpenTelemetry Collector routes telemetry data from the Observability Collector Service OpenTelemetry ex-
porter to Prometheus and Loki.

{
"hostname": "localhost",
"observabilityDomain": 2,
"lgpStackConfig": {

"grafanaPort": 3000,
"prometheusPort": 9090,
"lokiPort": 3100

},
"collectorConfig": {

"prometheusExporterPort": 19090,
"controlPort": 19098

},
"otelConfig": {

"otelHttpReceiverPort": 4318
},
"securityConfig": {

"basicAuthUsername": "user",
"basicAuthPassword": "userpassword",
"httpsSecurity": {
"caCertificate": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/ca/ecdsa01RootCaCert.pem",
"serverCertificate": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/https/ecdsa01Https01Cert.pem",
"serverKey": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/https/ecdsa01Https01Key.pem"
},
"ddsSecurity": {

"identityCaCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/ca/ecdsa01RootCaCert.pem",

"permissionsCaCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/ca/ecdsa01RootCaCert.pem",

"identityCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/identities/ecdsa01Peer01Cert.pem",

"identityKey": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/identities/ecdsa01Peer01Key.pem",

"signedPermissionsFile": "<rti_workspace_dir>/examples/dds_
→˓security/xml/signed/signed_ObservabilityCollectorServicePermissions.p7s",

(continues on next page)

7.2. Before Running the Example 59

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
"signedGovernanceFile": "<rti_workspace_dir>/examples/dds_

→˓security/xml/signed/signed_ObservabilityGovernance.p7s"
}

}
}

Example WAN configurations

Table 7.4 lists the four WAN configurations supported by Observability Framework.

Table 7.4: Docker Container WAN Operation Modes
Configuration Name Network Data Storage Secu-

rity
NonSecureWAN WAN Prometheus and Grafana Loki No
SecureWAN WAN Prometheus and Grafana Loki Yes
NonSecureOTelWAN WAN Multiple through OpenTelemetry Collector No
SecureOTelWAN WAN Multiple through OpenTelemetry Collector Yes

Non-Secure WAN Configuration

This example configures Observability Framework with hostname “localhost”, default ports, and security dis-
abled. Observability Collector Service will use a WAN configuration with port 30000.

{
"hostname": "localhost",
"observabilityDomain": 2,
"lgpStackConfig": {

"grafanaPort": 3000,
"prometheusPort": 9090,
"lokiPort": 3100

},
"collectorConfig": {

"prometheusExporterPort": 19090,
"controlPort": 19098,
"rtwPort": 30000

}
}

7.2. Before Running the Example 60

RTI Connext Observability Framework User's Manual, Version 7.3.0

Secure WAN Configuration

This example configures Observability Framework with hostname “localhost”, default ports, and security en-
abled Observability Collector Service will use a WAN configuration with port 30000.

{
"hostname": "localhost",
"observabilityDomain": 2,
"lgpStackConfig": {

"grafanaPort": 3000,
"prometheusPort": 9090,
"lokiPort": 3100

},
"collectorConfig": {

"prometheusExporterPort": 19090,
"controlPort": 19098,
"rtwPort": 30000

},
"securityConfig": {

"basicAuthUsername": "user",
"basicAuthPassword": "userpassword",
"httpsSecurity": {
"caCertificate": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/ca/ecdsa01RootCaCert.pem",
"serverCertificate": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/https/ecdsa01Https01Cert.pem",
"serverKey": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/https/ecdsa01Https01Key.pem"
},
"ddsSecurity": {

"identityCaCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/ca/ecdsa01RootCaCert.pem",

"permissionsCaCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/ca/ecdsa01RootCaCert.pem",

"identityCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/identities/ecdsa01Peer01Cert.pem",

"identityKey": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/identities/ecdsa01Peer01Key.pem",

"signedPermissionsFile": "<rti_workspace_dir>/examples/dds_
→˓security/xml/signed/signed_ObservabilityCollectorServicePermissions.p7s",

"signedGovernanceFile": "<rti_workspace_dir>/examples/dds_
→˓security/xml/signed/signed_ObservabilityGovernance.p7s"

}
}

}

7.2. Before Running the Example 61

RTI Connext Observability Framework User's Manual, Version 7.3.0

Non-Secure OTel WAN Configuration

This example configures Observability Framework with hostname “localhost”, default ports, and security dis-
abled. Observability Collector Service will use a WAN configuration with port 30000 and the OpenTelemetry
exporter. The OpenTelemetry Collector routes telemetry data from Observability Collector Service Service*
OpenTelemetry exporter to Prometheus and Loki.

{
"hostname": "localhost",
"observabilityDomain": 2,
"lgpStackConfig": {

"grafanaPort": 3000,
"prometheusPort": 9090,
"lokiPort": 3100

},
"collectorConfig": {

"prometheusExporterPort": 19090,
"controlPort": 19098,
"rtwPort": 30000

},
"otelConfig": {

"otelHttpReceiverPort": 4318
}

}

Secure OTel WAN Configuration

This example configures Observability Framework with hostname “localhost”, default ports, and security en-
abled. Observability Collector Service will use a WAN configuration with port 30000 and the OpenTelemetry
exporter. The OpenTelemetry Collector routes telemetry data from the Observability Collector Service Open-
Telemetry exporter to Prometheus and Loki.

{
"hostname": "localhost",
"observabilityDomain": 2,
"lgpStackConfig": {

"grafanaPort": 3000,
"prometheusPort": 9090,
"lokiPort": 3100

},
"collectorConfig": {

"prometheusExporterPort": 19090,
"controlPort": 19098,
"rtwPort": 30000

},
"otelConfig": {

"otelHttpReceiverPort": 4318
},
"securityConfig": {

"basicAuthUsername": "user",
(continues on next page)

7.2. Before Running the Example 62

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
"basicAuthPassword": "userpassword",
"httpsSecurity": {
"caCertificate": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/ca/ecdsa01RootCaCert.pem",
"serverCertificate": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/https/ecdsa01Https01Cert.pem",
"serverKey": "<rti_workspace_dir>/examples/dds_security/cert/

→˓ecdsa01/https/ecdsa01Https01Key.pem"
},
"ddsSecurity": {

"identityCaCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/ca/ecdsa01RootCaCert.pem",

"permissionsCaCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/ca/ecdsa01RootCaCert.pem",

"identityCertificate": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/identities/ecdsa01Peer01Cert.pem",

"identityKey": "<rti_workspace_dir>/examples/dds_
→˓security/cert/ecdsa01/identities/ecdsa01Peer01Key.pem",

"signedPermissionsFile": "<rti_workspace_dir>/examples/dds_
→˓security/xml/signed/signed_ObservabilityCollectorServicePermissions.p7s",

"signedGovernanceFile": "<rti_workspace_dir>/examples/dds_
→˓security/xml/signed/signed_ObservabilityGovernance.p7s"

}
}

}

7.2.4 Start the Collection, Storage, and Visualization Docker Containers

The Docker containers used for data collection, storage, and visualization can either be run in a Linux host on
the same LAN where the applications run or they can be installed on a remote Linux host (for example, an
AWS instance) reachable over the WAN using Real-Time WAN Transport.

There may be different licensing requirements depending on the configuration (LAN/WAN, Se-
cure/Non-Secure) you have chosen to run. For details on the license requirements and instructions on how
to run the containers, see section Initialize and Run Docker Containers.

7.2. Before Running the Example 63

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.3 Running the Example

Table 7.5 lists optional command-line parameters you can use when running the Observability Framework
example. Choose the options appropriate for your test environment.

Table 7.5: Optional Command-Line Parameters
Parameter Description Default Value
--observability-do-
main

Use this command-line option if you want to over-
write the default domain ID used by Monitoring Li-
brary 2.0 to send telemetry data toObservability Col-
lector Service.

2

--collector-peer If you run Observability Collector Service in a
different host from the applications, use this
command-line option to provide the address of the
service. For example, 192.168.1.1 (for LAN), or
udpv4_wan://10.56.78.89:16000 (for WAN).

localhost

In addition, if you run the applications in different hosts and multicast is not available, use the NDDS_DIS-
COVERY_PEERS environment to configure the peers where the applications run.

For simplicity, the following instructions assume that you are running the applications and theDocker containers
used by Observability Framework on the same host using the default observability domain.

7.3.1 Start the Applications

This example assumes x64Linux4gcc7.3.0 as the architecture. The following steps include instructions
for non-secure and secure tests.

1. In a new browser window, go to http[s]://localhost:3000 and log in using your Grafana dashboard
credentials. Note the use of https if you are running a secure configuration.

The default Grafana dashboard credentials are admin:admin for non-secure configurations, and
user:userpassword for secure configurations (as configured in the JSON file).

At this point, no DDS applications are running.

2. From the example directory, open two terminals and start two instances of the application that publishes
temperature sensor data. The command and resulting output for each instance are shown below.

The -i parameter specifies the sensor ID that will be used. The -n parameter assigns a name to the
application; this name will be used when sending commands in the Change the Application Logging Ver-
bosity and Change the Metric Configuration sections of this example. The -p parameter enables security
when using a secure configuration. See Command-Line Parameters for a description of all available
options.

The first instance creates two sensors.

Non-Secure LAN

7.3. Running the Example 64

RTI Connext Observability Framework User's Manual, Version 7.3.0

$./objs/x64Linux4gcc7.3.0/Temperature_publisher -n SensorPublisher_1 -d␣
→˓57 -i 0 -s 2 -v 2
**
******** Temperature Sensor Publisher App ****************
**
Running with parameters:

Application Resource Name: /applications/SensorPublisher_1
Domain ID: 57
Init Sensor ID: 0
Sensor Count: 2
Observability Domain: 2
Collector Peer: udpv4://localhost
Verbosity: 2
Security: false

Running with QOS:
Temperature_Profile_With_Monitoring2_Over_LAN

Command>

Secure LAN

$./objs/x64Linux4gcc7.3.0/Temperature_publisher -n SensorPublisher_1 -d␣
→˓57 -i 0 -s 2 -p -v 2
**
******** Temperature Sensor Publisher App ****************
**
Running with parameters:

Application Resource Name: /applications/SensorPublisher_1
Domain ID: 57
Init Sensor ID: 0
Sensor Count: 2
Observability Domain: 2
Collector Peer: udpv4://localhost
Verbosity: 2

(continues on next page)

7.3. Running the Example 65

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
Security: true

Running with QOS:
Secure_Temperature_Profile_With_Monitoring2_Over_LAN

Command>

The second instance creates one sensor.

Note that the sensor ids used by different instances of the temperature publisher app should not overlap.
The first instance used the switches -i 0 and -s 2, creating two sensors with ids 0 and 1. The second
instance used -i 2 and -s 1, creating one sensor with id 2.

Non-Secure LAN

$./objs/x64Linux4gcc7.3.0/Temperature_publisher -n SensorPublisher_2 -d␣
→˓57 -i 2 -s 1 -v 2
**
******** Temperature Sensor Publisher App ****************
**
Running with parameters:

Application Resource Name: /applications/SensorPublisher_2
Domain ID: 57
Init Sensor ID: 2
Sensor Count: 1
Observability Domain: 2
Collector Peer: udpv4://localhost
Verbosity: 2
Security: false

Running with QOS:
Temperature_Profile_With_Monitoring2_Over_LAN

Command>

Secure LAN

$./objs/x64Linux4gcc7.3.0/Temperature_publisher -n SensorPublisher_2 -d␣
→˓57 -i 2 -s 1 -p -v 2
**
******** Temperature Sensor Publisher App ****************
**
Running with parameters:

Application Resource Name: /applications/SensorPublisher_1
Domain ID: 57
Init Sensor ID: 2
Sensor Count: 1
Observability Domain: 2
Collector Peer: udpv4://localhost
Verbosity: 2
Security: true

Running with QOS:
Secure_Temperature_Profile_With_Monitoring2_Over_LAN

Command>

3. From the example directory, open a new terminal and start one instance of the application that subscribes

7.3. Running the Example 66

RTI Connext Observability Framework User's Manual, Version 7.3.0

to temperature sensor data.

Non-Secure LAN

$./objs/x64Linux4gcc7.3.0/Temperature_subscriber -n SensorSubscriber -d␣
→˓57 -v 2
**
******** Temperature Sensor Subscriber App ****************
**
Running with parameters:

Application Resource Name: /applications/SensorSubscriber
Domain ID: 57
Observability Domain: 2
Collector Peer: udpv4://localhost
Verbosity: 2
Security: false

Running with QOS:
Temperature_Profile_With_Monitoring2_Over_LAN

Command>

Secure LAN

$./objs/x64Linux4gcc7.3.0/Temperature_subscriber -n SensorSubscriber -d␣
→˓57 -p -v 2
**
******** Temperature Sensor Subscriber App ****************
**
Running with parameters:

Application Resource Name: /applications/SensorSubscriber
Domain ID: 57
Observability Domain: 2
Collector Peer: udpv4://localhost
Verbosity: 2
Security: true

Running with QOS:
Secure_Temperature_Profile_With_Monitoring2_Over_LAN

Command>

Note: The two Publisher applications and the Subscriber application are started with verbosity set to WARN-
ING (-v 2). You may see any of the following warnings on the console output. These warnings are expected.

WARNING [0x01017774,0xFF40EEF6,0xEC566CA8:0x000001C1{Domain=2}
→˓|ENABLE|LC:Discovery]NDDS_Transport_UDPv4_Socket_bind_with_ip:0X1EE6 in use
WARNING [0x01017774,0xFF40EEF6,0xEC566CA8:0x000001C1{Domain=2}
→˓|ENABLE|LC:Discovery]NDDS_Transport_UDPv4_SocketFactory_create_receive_
→˓socket:invalid port 7910
WARNING [0x01017774,0xFF40EEF6,0xEC566CA8:0x000001C1{Domain=2}
→˓|ENABLE|LC:Discovery]NDDS_Transport_UDP_create_recvresource_rrEA:!create␣
→˓socket
WARNING [0x010175D0,0x7A41F985,0xF3813392:0x000001C1{Name=Temperature␣
→˓DomainParticipant,Domain=57}|ENABLE|LC:Discovery]NDDS_Transport_UDPv4_
→˓Socket_bind_with_ip:0X549C in use

(continues on next page)

7.3. Running the Example 67

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
WARNING [0x010175D0,0x7A41F985,0xF3813392:0x000001C1{Name=Temperature␣
→˓DomainParticipant,Domain=57}|ENABLE|LC:Discovery]NDDS_Transport_UDPv4_
→˓SocketFactory_create_receive_socket:invalid port 21660
WARNING [0x010175D0,0x7A41F985,0xF3813392:0x000001C1{Name=Temperature␣
→˓DomainParticipant,Domain=57}|ENABLE|LC:Discovery]NDDS_Transport_UDP_create_
→˓recvresource_rrEA:!create socket
WARNING [0x010175D0,0x7A41F985,0xF3813392:0x000001C1{Name=Temperature␣
→˓DomainParticipant,Domain=57}|ENABLE|LC:Discovery]DDS_
→˓DomainParticipantDiscovery_add_peer:no peer locators for: peer␣
→˓descriptor(s) = "builtin.shmem://", transports = "", enabled_transports = ""

Your Grafana dashboard should now display information about the new Hosts, Applications, and DDS enti-
ties (Participants, DataWriters, and DataReaders). There should be 1 Host, 3 Applications, 3 Participants, 3
DataWriters, 1 DataReader, and 1 Topic.

The Grafana main dashboard pictured above indicates that the system is healthy. You may see warnings in the
log section related to the reservation of communication ports. These warnings are expected. You can select
the Warnings panel to visualize them.

Next, you will introduce different failures that will affect the system’s health.

7.3.2 Changing the Time Range in Dashboards

While running the examples, you can change the time range in the dashboards to reduce or expand the amount
of history data displayed. Use the time picker dropdown at the top right to change the time range in any
dashboard.

7.3. Running the Example 68

RTI Connext Observability Framework User's Manual, Version 7.3.0

The time picker includes a predefined list of time ranges to choose from. If you want to use a custom time
range, enter the desired range in the From field. Use the format “now-< custom time >,” where < custom time
> is a unit of time; Grafana supports m-minute, h-hour, and d-day time units. For example, to show a custom
range of one minute, enter “now-1m” in the From field, then select Apply Time Range.

Note: The time range may be changed on any dashboard, but all changes are temporary and will reset to
1 hour when you return to the Alert Home dashboard. Changes to the time range made in the Alert Home
dashboard are unique in that the selected time range will be propagated to other dashboards as you navigate
through the hierarchy.

7.3.3 Simulate Sensor Failure

TheDataWriters in each application are expected to send sensor data every second, and theDataReader expects
to receive sensor data from each sensor every second. This QoS contract is enforced with the Deadline QoS
Policy set in USER_QOS_PROFILES.xml. Refer to Deadline QoS Policy in the RTI Connext Getting Started
Guide for basic information, or DEADLINE QoSPolicy in the RTI Connext Core User’s Manual for detailed
information.

<deadline>
<period>

<sec>1</sec>

(continues on next page)

7.3. Running the Example 69

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
<nanosec>0</nanosec>

</period>
</deadline>

To simulate a failure in the sensor with ID 0, enter the following command in the first Temperature_publisher
instance:

Command> stop 0

The Grafana dashboard updates to indicate the sensor failure. The dashboard does not update immediately;
you may have to wait a few seconds to see the change reflecting the sensor failure as a Delay error. That error
is expected because the deadline policy was violated when you stopped the sensor with ID 0.

The Grafana dashboards are hierarchical. Now that you know something is happening related to latency (or
delays), you can get additional details to determine the root cause. Select the Delays panel to drill down to the
next level and get more information about the error.

The second level of the Grafana dashboard indicates that there were deadline errors, which can be generated
by both the DataReaders and DataWriters of the sensor Topic. Still, we do not know which sensor the problem
originated from. To determine that, we have to go one level deeper; select theMissed Writer Deadline panel
to see which DataWriter caused the problem.

The third level of the Grafana dashboard provides a list of entities generating the deadline metric. In this case

7.3. Running the Example 70

RTI Connext Observability Framework User's Manual, Version 7.3.0

we see three entities, or DataWriters, each associated with a different sensor. We see that an entity is failing,
but what sensor does that entity represent?

Looking at the DataWriter Name column, we can see that the failing sensor has the name “Sensor with ID=0”.
The example application set this name using the EntityName QoS Policy when creating the DataWriter. If you
want additional information, such as the machine where the sensor DataWriter is located, select the Sensor
with ID-0 link in the DataWriter Name column.

The fourth and last level of the Grafana dashboard provides detailed information about an individual entity,
including location-related information such as Host Name and Process Id.

In addition, this last level provides information about individual metrics for the entity. Scroll down to see the
details of the missed deadline metric.

Next, restore the health of the failing sensor to review how the dashboard changes. Restart the first Tempera-
ture_publisher instance using the command start 0.

Command> start 0

Go back to the Alert Home dashboard to confirm that the sensor becomes healthy. After a few seconds, the
Delays panel should indicate the sensor is healthy. Note that the status part of the Delay panel still displays an
“Error” state (red) if, at anytime in the displayed time range, there was a “Delay” metric in the system that was
considered to be “unhealthy” (a metric whose value exceeded configured limits).

7.3. Running the Example 71

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.3.4 Simulate Slow Sensor Data Consumption

A subscribing application can be configured to consume sensor data at a lower rate than the publication rate.
In a real scenario, this could occur if the subscribing application becomes CPU bound.

This scenario simulates a problem with the subscribing application; a bug in the application logic makes it slow
in processing sensor data. To test this failure, enter the slow_down command in the Temperature_subscriber
instance:

Command> slow_down

After some seconds, the Grafana dashboard displays two new system errors related to saturation and unexpected
data losses. Because the DataReader is not able to keep up with the sensor data, the dashboard indicates that
there are potential data losses. At the same time, being unable to keep up with the sensor data could be a
saturation sign. For example, the subscribing application may be consuming 100% of the CPU due to an
application bug.

As you did when testing the sensor failure, select the displayed errors to navigate the dashboard hierarchy and
determine the root cause of the problem. To go to the second level, select theData Loss panel to see the reason
for the losses. Because you slowed the subscriber application, the DataReader is not able to read fast enough.
The Dropped Samples due to History Depth metric reveals the type of failure. Select the red errors to drill
down and review further details about the problem.

After reviewing the errors, restore the health of the failing DataReader. In the Temperature_subscriber appli-
cation, enter the speed_up command.

Command> speed_up

In Grafana, go back to the home dashboard and wait until the system becomes healthy again. After a few
seconds, the Saturation and Data Loss panels should indicate a healthy system. Also, adjust the time window

7.3. Running the Example 72

RTI Connext Observability Framework User's Manual, Version 7.3.0

to one minute and wait until all the system status panels are green again.

7.3.5 Simulate Time Synchronization Failures

In the example, the subscribing applications have been configured to expect all system clocks are synchronized
to within 1 second. The source timestamp associated with a sensor sample by the Publisher should not be
farther in the future from the reception timestamp than a configurable tolerance. This behavior is configured
using the DestinationOrder QoS Policy set in USER_QOS_PROFILES.xml.

<destination_order>
<kind>BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS</kind>
<source_timestamp_tolerance>

<sec>1</sec>
<nanosec>0</nanosec>

</source_timestamp_tolerance>
</destination_order>

7.3. Running the Example 73

RTI Connext Observability Framework User's Manual, Version 7.3.0

This final simulation demonstrates how to use logging information to troubleshoot problems. In this scenario,
you’ll create a clock synchronization issue in the first instance of Temperature_publisher. The clock will move
forward in the future by a few seconds, causing theDataReader to drop some sensor samples from the publishing
application.

To simulate this scenario, enter clock_forward 0 in the first Temperature_publisher instance. This will cause
the publishing application to artificially set the clock used for the source timestamp of the DataWriter named
“Sensor with ID=0” by 2 seconds.

Command> clock_forward 0

After some seconds, three panels in the system status section will turn red: Data Loss, System Errors, and
Delays. Each is affected by the same underlying problem. You can select the red errors to drill down through
the dashboard hierarchy and determine the root cause of the problem.

First, select the Data Loss panel to see the reason for the error. The DataReader dropped samples coming
from one or more of the DataWriters due to time synchronization issues.

This error indicates that the DataReader in the subscribing application dropped some samples, but can’t yet
identify the problem sensor orDataWriter. To determine that, select theDropped Samples due to Time Sync
panel.

At this level, you can locate the DataReader reporting the error, but not the DataWriter causing it. Select the
TemperatureSensor link in the DataReader Name column to go one more level down.

On the endpoint dashboard, there is one log warning associated with the DataReader reporting time synchro-
nization issues. Select the red Log Warning to view the warning message logged by the DataReader.

This warning message provides information about the GUID of the DataWriter that published the sensor data
that was dropped due to time synchronization issues. But how do we locate the DataWriter from its GUID?

Note the highlighted RECEIVE FROM GUID in the log message. This represents the corresponding
DataWriter that created the warning. (You can copy this GUID at this point).

Select the DataWriters panel to view a list of the running DataWriters.

7.3. Running the Example 74

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.3. Running the Example 75

RTI Connext Observability Framework User's Manual, Version 7.3.0

Now that we have a list of DataWriters, we can compare their GUIDs with the GUID in the log message to find
the problem DataWriter. In this case the list does not have a lot of entries, so you can search manually.

However, when the number of entries is large, you can click on the funnel icon next to theGUID label to filter
the list to the one writer with time synchronization issues by typing in the GUID or pasting the value copied
from the log message.

Finally, select the problem DataWriter to learn its identity.

The problemDataWriter corresponds to sensor 0. You have successfully done root cause analysis by correlating
metrics and logging.

7.3.6 Change the Application Logging Verbosity

Monitoring Library 2.0 has two verbosity settings.

• Collection verbosity controls the level of log messages an application generates.

• Forwarding verbosity controls the level of log messages an application forwards to the Observability
Collector Service (making the messages visible in the dashboard).

For additional information on logging, refer to Logs.

By default, Monitoring Library 2.0 only forwards error and warning log messages, even if the applications
generate more verbose logging. Forwarding messages at a higher verbosity for all applications may saturate the
network and the different Observability Framework components, such as Observability Collector Service and the
logging aggregation backend (Grafana Loki in this example).

However, in some cases you may want to change the logging Collection verbosity and/or the Forwarding ver-
bosity for specific applications to obtain additional information when doing root cause analysis.

In this section, you will increase both the Collection and Forwarding verbosity levels for the first publishing
application using a remote command. To do that, you will use the application resource name generated by using
the -n command-line option. The three applications have the following names:

7.3. Running the Example 76

RTI Connext Observability Framework User's Manual, Version 7.3.0

• /applications/SensorPublisher_1

• /applications/SensorPublisher_2

• /applications/SensorSubscriber

To change the Collection verbosity:

1. From the Alert Home dashboard, select the Applications panel to open the Application List dashboard.

2. From the Application List dashboard, select the SensorPublisher_1 link to open the Alert Application
Status dashboard.

3. From the Alert Application Status dashboard, select the Configure Log Verbosity button to open the
Log Control dashboard.

4. From the Log Control dashboard’s Log Collection Verbosity panel, select DEBUG for theMIDDLE-
WARE facility.

Note that the verbosity setting color changes to indicate the update. Also, the Set Collection Verbosity
button becomes available.

5. Select the Set Collection Verbosity button. When prompted to confirm the update, select Confirm to
set the Collection verbosity level to DEBUG at the application.

7.3. Running the Example 77

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.3. Running the Example 78

RTI Connext Observability Framework User's Manual, Version 7.3.0

The selected application’s Collection verbosity is now DEBUG. If you examine the terminal window for Sen-
sorPublisher_1, you will see messages like those in the following image.

DEBUG MIGInterpreter_parse:ACK from 0X1013131,0X4856CAC6
COMMENDSrWriterService_onSubmessage:[1689963305,136481175] writer oid␣
→˓0x80002102 receives ACKNACK from reader 0x1013131.4856cac6.bd3f33f5.
→˓80000007 for lead [(0000000000,00013981)] bitcount(0), epoch(41048),␣
→˓isPureNack(0)
DEBUG COMMENDActiveFacadeReceiver_loop:rCoTemnt##02Rcv returning message loan
DEBUG NDDS_Transport_UDP_receive_rEA:rCoTemnt##02Rcv blocking on 0X549D
DEBUG NDDS_Transport_UDP_receive_rEA:rCoTemnt##02Rcv received 64 bytes from␣
→˓0X100007F|40284
DEBUG RTINetioReceiver_receiveFast:rCoTemnt##02Rcv received 64 bytes
DEBUG COMMENDActiveFacadeReceiver_loop:rCoTemnt##02Rcv parsing message
DEBUG MIGInterpreter_parse:INFO_DST from 0X1013131,0X4856CAC6
DEBUG MIGInterpreter_parse:ACK from 0X1013131,0X4856CAC6
DEBUG COMMENDActiveFacadeReceiver_loop:rCoTemnt##02Rcv returning message loan
DEBUG NDDS_Transport_UDP_receive_rEA:rCoTemnt##02Rcv blocking on 0X549D
DEBUG NDDS_Transport_UDP_receive_rEA:rCoTemnt##02Rcv received 64 bytes from␣
→˓0X100007F|40284
DEBUG RTINetioReceiver_receiveFast:rCoTemnt##02Rcv received 64 bytes
DEBUG COMMENDActiveFacadeReceiver_loop:rCoTemnt##02Rcv parsing message
DEBUG MIGInterpreter_parse:INFO_DST from 0X1013131,0X4856CAC6
DEBUG MIGInterpreter_parse:ACK from 0X1013131,0X4856CAC6
DEBUG RTIEventActiveGeneratorThread_loop:rCoTemnt####Evt gathering events
DEBUG RTIEventActiveGeneratorThread_loop:rCoTemnt####Evt firing events
DEBUG COMMENDActiveFacadeReceiver_loop:rCoTemnt##02Rcv returning message loan
DEBUG NDDS_Transport_UDP_receive_rEA:rCoTemnt##02Rcv blocking on 0X549D
DEBUG RTIEventActiveGeneratorThread_loop:rCoTemnt####Evt rescheduling events
DEBUG RTIEventActiveGeneratorThread_loop:rCoTemnt####Evt sleeping {00000000,
→˓1B5E7420}
DEBUG NDDS_Transport_UDP_receive_rEA:rCoObsnt##00Rcv received 292 bytes from␣
→˓0X100007F|46993
DEBUG RTINetioReceiver_receiveFast:rCoObsnt##00Rcv received 292 bytes
DEBUG COMMENDActiveFacadeReceiver_loop:rCoObsnt##00Rcv parsing message
DEBUG MIGInterpreter_parse:SECURE_RTPS_PREFIX from 0XDFCD91E1,0X6868BAE7
DEBUG MIGInterpreter_parse:INFO_TS from 0XDFCD91E1,0X6868BAE7
DEBUG MIGInterpreter_parse:DATA from 0XDFCD91E1,0X6868BAE7

At this point, the SensorPublisher_1 application is generating log messages at the DEBUG level as shown in the
terminal window, but the debug messages are not being forwarded to Observability Collector Service because
the Forwarding verbosity is still at WARNING.

To set the Forwarding verbosity to DEBUG, repeat steps 4 and 5 above in the Log Fowarding Verbosity
panel.

After setting both the Collection and Forwarding verbosity to DEBUG, you should see an indication that DE-
BUG messages are being received for the SensorPublisher_1 application by examining the Total System Logs
panel on the Alert Home dashboard.

To get back to the Alert Home dashboard, click Home at the top left.

Note: If you are using the dashboards as an admin user, you will be prompted to save your changes. Select

7.3. Running the Example 79

RTI Connext Observability Framework User's Manual, Version 7.3.0

the Discard button; the changes to the dashboard do not need to be saved, since they are set in the application.
The save prompt does not appear when logged into the dashboard as a user without admin permissions.

If the Warnings, Errors, and Security panels are not displayed in the Alert Home dashboard, select the
Logs dashboard row. Note that there are no additional log messages indicated in the Warnings, Errors, or
Security panels since those panels only show the number of Warning-level, Error-level, and Security-related
log messages, respectively.

To verify that DEBUG messages are being collected, select the value in the Total System Logs panel to open
the Logs dashboard. You will see that the total number of log messages received is increasing dramatically.

You can manipulate the Log Control settings to verify application and dashboard behavior as shown in Table
7.6.

7.3. Running the Example 80

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 7.6: Collection and Forwarding Log Verbosity DEBUG Be-
havior

Collection Verbosity Forwarding Verbosity Application DEBUG
Log Output

Grafana Connext DE-
BUG Logs

WARNING WARNING NO NO
DEBUG WARNING YES NO
WARNING DEBUG NO NO
DEBUG DEBUG YES YES

7.3.7 Change the Metric Configuration

Metrics are the collections of counters and gauges you can use to analyze application behavior. Observability
Framework gives you complete control of which metrics to collect, both before and during runtime. Data for
your selectedmetrics is forwarded toObservability Collector Service andmade available to third-party backends.

In this example, all application metrics have already been enabled, and Prometheus is used on the backend to
store collected metrics.

Note: By default, Observability Framework does not collect metrics for any DDS entities. For details on how
to enable the initial metrics to be collected, see Setting the Initial Metrics and Log Configuration.

The Observability Dashboards enable you to change the initial metric configuration for specific applications,
DDS entities, or DDS entity instances during runtime, without restarting or reconfiguring your applications.
You can dynamically change the metric configuration for a specific DDS resource (a single application, Partic-
ipant, DataReader, DataWriter, or Topic), or all of the resources of a given type contained by another resource
(for example, all DataWriters of an application, or all DataReaders of a Participant)

This section of the Observability Framework example will walk you through two scenarios:

7.3. Running the Example 81

RTI Connext Observability Framework User's Manual, Version 7.3.0

• Changing metrics collected for a single DataWriter resource

• Changing metrics collected for all DataWriters of an application

Resources used in this example

In the Start the Applications section, you created and named three applications using the -n command-line
option. Table 7.7 lists the DDS entity names for these applications and the other resources used in this example.

The DDS entity names are specified using the DDS_EntityNameQosPolicy name field for each entity via XML
or programmatically. The entity names are used to build the resource name, which is the unique identifier
used in the remote commands to specify each resource.

For more information, see Resource Pattern Definitions.

Table 7.7: Resources in this Example
Entity Name Entity Type Where Configured
SensorPublisher_1 Application On start
SensorPublisher_2 Application On start
SensorSubscriber Application On start
Temperature DomainParticipant DomainParticipant XML
TemperatureDataReader DataReader XML
Sensor with ID=0 DataWriter Code
Sensor with ID=1 DataWriter Code
Sensor with ID=2 DataWriter Code

For more information about observable resource names, see Resources. The Observability Framework Dash-
boards build the resource names and commands based on your configuration.

The following code snippet details how to set the DataWriter entity name programmatically.

// create and initialize DataWriterQoS
DDS_DataWriterQos writerQos;
retcode = publisher->get_default_datawriter_qos(writerQos);
if (retcode != DDS_RETCODE_OK) {

return shutdown_participant(
participant,
"get_default_datawriter_qos error",
EXIT_FAILURE);

}

// create and initialize sensorName
char sensorName[64];
sprintf(sensorName, "Sensor with ID=%d", sensor_id);

// set the publication_name.name in DataWriterQoS
writerQos.publication_name.name = sensorName;

// create DataWriter entity with updated DataWriterQoS
untyped_writer = publisher->create_datawriter(

(continues on next page)

7.3. Running the Example 82

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
topic,
writerQos,
NULL /* listener */,
DDS_STATUS_MASK_NONE);

Note: In this example, you will access configuration dashboards several times. If you are using the dashboards
as an admin user, you will be prompted to save your changes each time you navigate away from a configuration
dashboard. When prompted to save, click the Discard button; changes to the dashboard do not need to be
saved because they are set in the application. This prompt does not appear when logged into the dashboard as
a user without admin permissions.

Changing metrics collected for a single DataWriter

Use the Observability Framework Dashboards to disable the Pushed Sample Bytesmetric on one DataWriter
in the SensorPublisher_1 application.

1. From the Alert Home dashboard, select theDataWriters panel to open the DataWriters List dashboard.

2. Select the SensorPublisher_1/Temperature DomainParticipant/Sensor with ID=0 DataWriter to
open the Alert DataWriter Status dashboard. You may need to hover over the DataWriter Name field
to see the full DataWriter resource name.

3. Select Configure DataWriter Metrics to open the DataWriter Metrics dashboard.

7.3. Running the Example 83

RTI Connext Observability Framework User's Manual, Version 7.3.0

4. In the DataWriter Metrics dashboard, note the following:

a. The fully qualified resource name is displayed at the top.

b. The Collector Service Control URL and status display below the resource name. If the Collector
Service cannot be reached, the status will be NOT AVAILABLE and changes will not be allowed.

c. Enable is selected for all of the metrics, indicating that they are all currently active.

5. In the Bandwidth/User Data Writer Traffic section, select Disable for Pushed Sample Bytes. Note
the text color changes to indicate the pending update.

6. At the bottom of the page, select Configure Metrics.

7. When prompted to confirm the change, review the updates and then select Confirm.

8. Verify that Pushed Sample Bytes is now disabled.

9. To confirm the Pushed Sample Bytes metric is no longer being collected:

a. At the top left, select Home to return to the Alert Home dashboard.

7.3. Running the Example 84

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.3. Running the Example 85

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.3. Running the Example 86

RTI Connext Observability Framework User's Manual, Version 7.3.0

b. Select the DataWriters panel to open the DataWriters List dashboard.

c. Select the SensorPublisher_1/Temperature DomainParticipant/Sensor with ID=0 link to
open the Alert DataWriter Status dashboard.

d. Scroll down to the Pushed Sample Bytes graph to confirm the metric is not being collected.

10. At the top left, select Home to go back to the Alert Home dashboard.

Changing metrics collected for all DataWriters of an application

Disable the Pushed Samples metric on all DataWriters in the SensorPublisher_1 application.

1. From the Alert Home dashboard, select the Applications panel to open the Application List dashboard.

2. Select SensorPublisher_1 to open the Alert Application Status dashboard.

3. Select Configure DataWriter Metrics to open the DataWriter Metrics Multi dashboard.

4. In the DataWriter Metrics Multi dashboard, note the following:

a. The Collector Service Control URL and status is displayed. If the Collector Service cannot be
reached, the status will be NOT AVAILABLE and changes will not be allowed.

b. The Current State panel indicates the current configuration of a metric across all DataWriters in
the SensorPublisher_1 application.

• Enabled. The metric is enabled for all DataWriters in the SensorPublisher_1 application

7.3. Running the Example 87

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.3. Running the Example 88

RTI Connext Observability Framework User's Manual, Version 7.3.0

• Partial. The metric is enabled for at least one, but not all of the DataWriters in the Sen-
sorPublisher_1 application

• Disabled. The metric is disabled for all DataWriters in the SensorPublisher_1 application.

c. The DataWriters on Application “SensorPublisher_1” panel lists the DataWriters in the Sen-
sorPublisher_1 application. Use the links to access the metric control page for the selected entity.

d. The Configure Metrics for all DataWriters of Application “SensorPublisher_1” enables you
to change the metrics configuration for all DataWriters of the SensorPublisher_1 application.
Changes made in this panel are used to build a command to modify the current configuration. By
default, all metrics are initialized toDon’t Change, indicating the configuration for that metric will
not be changed and will remain in the state noted in theCurrent State panel. SelectingEnablewill
enable the metric for all DataWriters of the SensorPublisher_1 application regardless of the cur-
rent state. SelectingDisable will disable the metric for all DataWriters of the SensorPublisher_1
application regardless of the current state.

5. Verify that the Current State of the Pushed Sample Bytes metric is Partial. This status indicates the
metric is still enabled on the DataWriter SensorPublisher_1/Temperature DomainParticipant/Sen-
sor with ID=1 (the default setting), but disabled on SensorPublisher_1/Temperature DomainPar-
ticipant/Sensor with ID=0 (as you configured earlier above).

6. Select Disable for Pushed Samples. If you do not see the Disable command, widen your browser
window.

7. At the bottom of the page, select Configure Metrics.

8. When prompted to confirm the change, verify the updates and then select Confirm.

9. Scroll up to verify the Pushed Samples metric is disabled. It may take a few seconds for the dashboard
to refresh.

7.3. Running the Example 89

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.3. Running the Example 90

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.3. Running the Example 91

RTI Connext Observability Framework User's Manual, Version 7.3.0

10. In theDataWriters on Application “SensorPublisher_1” panel, select SensorPublisher_1/Temper-
ature DomainParticipant/Sensor with ID=0 to open theDataWriterMetrics dashboard for the Sen-
sor with ID=0 DataWriter.

11. Verify that both the Pushed Samples and Pushed Sample Bytes metrics are disabled.

Pushed Samples was disabled for all DataWriters resources on the SensorPublisher_1 application in
this section of the example. Pushed Sample Bytes was disabled in the Changing metrics collected for a
single DataWriter section.

12. Select your browser’s Back button to go back to the DataWriter Metrics Multi dashboard for the Sen-
sorPublisher_1 application.

7.3. Running the Example 92

RTI Connext Observability Framework User's Manual, Version 7.3.0

13. In theDataWriters on Application “SensorPublisher_1” panel, select SensorPublisher_1/Temper-
ature DomainParticipant/Sensor with ID=1 to open theDataWriterMetrics dashboard for the Sen-
sor with ID=1 DataWriter.

14. Verify that only the Pushed Samples metric is disabled.

To re-enable the Pushed Sample Bytes and Pushed Samplesmetrics, repeat the above steps selecting enable
instead of disable.

7.3. Running the Example 93

RTI Connext Observability Framework User's Manual, Version 7.3.0

7.3.8 Close the Applications

When done working with the example, enter quit in each running application to shut it down.

7.3. Running the Example 94

Chapter 8

Telemetry Data

8.1 Introduction

Connext Observability Framework enables you to instrument your Connext applications to generate and forward
telemetry data. This data is then collected, aggregated, and stored in third-party observability backends such
as Prometheus (metrics) or Grafana Loki (logs).

You can then visualize these real-time data points using RTI’s Grafana Observability Dashboards, or your own
custom Grafana dashboards, to get a holistic view of your distributed system.

8.2 Resources

Monitoring Library 2.0 collects telemetry data associated with observable resources. In this release, the ob-
servable resources are:

• Application (one-to-one mapping to an OS process)

• DomainParticipant

• Topic

• Publisher

• Subscriber

• DataWriter

• DataReader

Each observable resource is identified by a GUID and a resource name. The GUID is automatically assigned
by Monitoring Library 2.0, and it is globally unique across all the resources in the system (past and present).
The resource GUID can be accessed using the guid label associated with each metric. The fully qualified
resource name for each observable resource is represented by a Uniform Resource Identifier (URI). The URI
strings follow REST best practices for naming. Table 8.1 details of each available resource. See Metrics for
detailed information about the metrics available for each observable resource in this release.

95

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.1: Observable Resource Names
Re-
source

UniformResource Identifier
(URI)

Dashboard Resource
Name

How to Configure

Appli-
cation

/applications/
<AppName>

<AppName> To set <App-
Name>, configure the
participant_factory_qos.
monitoring.
application_name
QoS policy field for an
application. For more infor-
mation, see MONITORING
QosPolicy (DDS Extension)

Do-
main-
Partici-
pant

/applications/
<AppName>/
domain_participants/
<ParticipantName>

<AppName>/
<ParticipantName>

To set <Participant-
Name>, configure the
participant_qos.
participant_name.
name QoS policy field for a
DomainParticipant. For more
information, see ENTITY
NAME QosPolicy (DDS
Extension)

Topic /applications/
<AppName>/
domain_participants/
<ParticipantName>/
topics/<TopicName>

<TopicName> <TopicName> is the name of
the DDS Topic. This resource
cannot be configured in the
Monitoring QoS.

Pub-
lisher

/applications/
<AppName>/
domain_participants/
<ParticipantName>/
publishers/
<PublisherName>

Dashboards do not show infor-
mation about Publishers

To set <Publisher-
Name>, configure the
publisher_qos.
publisher_name.name
QoS policy field for a Pub-
lisher. For more information,
see ENTITY NAME QosPol-
icy (DDS Extension)

Sub-
scriber

/applications/
<AppName>/
domain_participants/
<ParticipantName>/
subscribers/
<SubscriberName>

Dashboards do not show infor-
mation about Subscribers

To set <Subscriber-
Name>, configure the
publisher_qos.
subscriber_name.
name QoS policy field for a
Subscriber. For more infor-
mation, see ENTITY NAME
QosPolicy (DDS Extension)

DataWriter/applications/
<AppName>/
domain_participants/
<ParticipantName>/
publishers/
<PublisherName>/
data_writers/
<DataWriterName>

<AppName>/
<ParticipantName>/
<DataWriterName>

To set <DataWriter-
Name>, configure
the writer_qos.
publication_name.
name QoS policy field for a
DataWriter. For more infor-
mation, see ENTITY NAME
QosPolicy (DDS Extension)

DataReader/applications/
<AppName>/
domain_participants/
<ParticipantName>/
publishers/
<PublisherName>/
data_readers/
<DataReaderName>

<AppName>/
<ParticipantName>/
<DataReaderName>

To set <DataRead-
erName>, configure
the reader_qos.
subscription_name.
name QoS policy field for
a DataReader. For more
information, see ENTITY
NAME QosPolicy (DDS
Extension)

8.2. Resources 96

RTI Connext Observability Framework User's Manual, Version 7.3.0

The Dashboard Resource Name column describes how resource names appear in RTI Connext Observability
Dashboards. To generate shorter names, Observability Dashboards does not show the resource class name (e.g,
domain_participants).

Important: Observability Framework does not enforce unique resource names. You are responsible for assign-
ing unique names. When two observable resources have the same name, the commands targeting the resource
name are applied to both resources. For example, if two applications have the same name and you change the
logging verbosity from Observability Dashboards, the change will apply to both applications. Otherwise, not
having unique names should not affect functionality because each resource has a unique GUID.

8.2.1 Resource Pattern Definitions

There are two ways to configure telemetry data collection and forwarding. These are the initial configuration
of theMonitoring Library 2.0 (seeMonitoring Library 2.0) and use of the REST API to dynamically configure
the collection of telemetry data (see Collector Service REST API Reference) for distribution. In both cases, the
Uniform Resource Identifiers (URIs) shown in Table 8.1 are used to identify the observable resources being
configured by the XML or REST API. Resource selectors are used in the XML file configuration and in REST
API commands to provide a pattern string to match one or more URIs.

A resource selector is an expression made up of components, with each component separated by a forward
slash (/). A component is a pattern string that follows the POSIX® fnmatch syntax, or a resource GUID. In
addition, you can use XPath-style matching (//) to change the path level by 0 or more components until finding
a component matching the pattern following (//).

When specifying resource selectors, POSIX fnmatch pattern matching can be used. The available POSIX®
fnmatch special characters are described in Table 8.2.

Table 8.2: POSIX® fnmatch Wild Card Matching
Character Meaning
/ A / in the pattern string matches a / in the URI. It separates a sequence of mandatory

substrings.
* A * in the pattern string matches 0 or more non-special characters in the URI.
? A ? in the pattern string matches any single non-special characters in the URI.
[charlist] Matches any one of the characters in charlist.
[s-e] Matches any character from [s]tart to [e]nd, inclusive.
\ Escape character for special characters.

Note: To use special characters in a resource selector string, you must escape them using a back slash (\). For
example, the resource selector “myWriter[2]” will match a DataWriter with name “myWriter2” because of the
POSIX® fnmatch processing. If the intent is to use the ‘[’ and ‘]’ characters in the resource selector to actually
match a name, the ‘[’ and ‘]’ characters must be escaped as shown here “myWriter\[2\]”. This resource selector
would match a DataWriter with the name “myWriter[2]”. Some example resource selectors using POSIX®
fnmatch are shown below.

8.2. Resources 97

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.3: POSIX® fnmatch Resource Selector Examples
Resource Selector Description
/applications/SensorPublisher_1 refers to an application named “SensorPublisher_1”
/applications/SensorPublisher_? refers to applications named “SensorPublisher_”

with a single additional character (i.e. “Sen-
sorPublisher_1”, “SensorPublisher_2”, “SensorPub-
lisher_a”)

/app*/SensorPublisher_* refers to applications named “SensorPublisher_”
with any number of additional characters, in-
cluding none (i.e. “SensorPublisher_”, “Sensor-
Publisher_1”, “SensorPublisher_10”, “SensorPub-
lisher_xyz”)

/applications/SensorPublisher_1/domain_partici-
pants/*/publishers/*/data_writers/Sensor with ID =
[12]

refers to data_writers of application “SensorPub-
lisher_1” named “Sensor with ID = 1” or “Sensor
with ID = 2”

/applications/SensorPublisher_1/domain_partici-
pants/*/publishers/*/data_writers/Sensor with ID =
[1-3]

refers to data_writers of application “SensorPub-
lisher_1” named “Sensor with ID = 1”, “Sensor with
ID = 2”, or “Sensor with ID = 3”

In addition to POSIX® fnmatch pattern matching, resource selectors also support the XPath (//). The (//)
is essentially a relative path indicator that looks for the first occurrence of the text following the (//) in the
resource selector. Think of the (//) as a global (*) to match any pattern before the specified text. Use of the
XPath (//) can significantly shorten resource selectors. Some example resource selectors using XPath (//) and
POSIX® fnmatch are shown below.

Table 8.4: XPath ‘//’ and POSIX® fnmatch Resource Selector Ex-
amples

Resource Selector Description
/applications/SensorPublisher_1//data_writers/Sen-
sor with ID = [12]

refers to data_writers of application “SensorPub-
lisher_1” named “Sensor with ID = 1” or “Sensor
with ID = 2”

//data_writers/Sensor with ID = [1-3] refers to any data_writers named “Sensor with ID =
1”, “Sensor with ID = 2”, or “Sensor with ID = 3”

//TemperatureDataReader refers to any DDS entities with the name “Tempera-
tureDataReader”

As mentioned earlier, each DDS entity is assigned a unique identifier or GUID. When creating resource se-
lectors, an entity GUID and entity name are interchangeable. When using a GUID in a resource selector, the
format is GUID(<guid>). Some example resource selectors are shown below.

8.2. Resources 98

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.5: GUID Resource Selector Examples
Resource Selector Description
/applications/GUID(aaaaaaaa.bbbbbbbb.ccccc-
ccc.dddddddd)//data_writers/Sensor with ID =
[12]

refers to data_writers of application with
GUID=aaaaaaaa.bbbbbbbb.cccccccc.dddddddd
named “Sensor with ID = 1” or “Sensor with ID =
2”

//data_writers/GUID(bbbbbbbb.aaaaaaaa.ccccc-
ccc.dddddddd)

refers to the data_writer with
GUID=bbbbbbbb.aaaaaaaa.cccccccc.dddddddd

//GUID(dddddddd.cccccccc.bbbbbbbb.aaaaaaaa) refers to the DDS resource with
GUID=dddddddd.cccccccc.bbbbbbbb.aaaaaaaa
regardless of the class

Note that the POSIX® fnmatch syntax may not be applied to the GUID(<guid>) format.

8.3 Metrics

This section details the metrics you can collect from Connext observable resources. Each metric has a unique
name and specifies a general feature of a Connext observable resource. For example, a DataWriter is an ob-
servable resource; the metric dds_data_writer_protocol_sent_heartbeats_total specifies
the total number of heartbeats sent by a DataWriter. There are two metric types:

• Counters. A counter is a cumulative metric that represents a single monotonically increasing counter
whose value can only increase or be reset to zero on restart.

• Gauges. A gauge is a metric that represents a single numerical value that can arbitrarily go up and down.

Observability Framework uses a Prometheus time-series database to store collected metrics. A time series is an
instantiation of a metric and represents a stream of timestamped values (measurements) belonging to the same
resource as the metric. For example, we could have a time series for the metric dds_data_writer_pro-
tocol_sent_heartbeats_total corresponding to a DataWriter DW1 identified by a resource GUID
GUID1.

Labels (in Prometheus) or attributes (in Open Telemetry) identify each metric instantiation or time series. A
label is a key/value pair that is associated with a metric. Any given combination of labels for the same metric
name identifies a specific instantiation of that metric. For example, the metric dds_data_writer_pro-
tocol_sent_heartbeats_total for the DataWriter DW1 will have the label {guid= GUID1}. All
metrics have at least one label called guid that uniquely identifies a resource in a Connext system.

In Observability Framework there is a special kind of metric called a presence metric. Presence metrics are
used to indicate the existence of a resource in a Connext system. For example, the dds_domain_partic-
ipant_presence indicates the presence of a DomainParticipant in a Connext system. There will be a time
series for each DomainParticipant ever created in the system. The labels associated with a presence metric
describe the resource, and they are dependent on the type of resource. For example, a DomainParticipant
resource has labels such as `domain_id` and `name`.

For metrics that are not presence metrics, the only label is the guid label identifying the resource to which
the metrics apply. You can use the guid label to query the description labels of a resource by looking at the
presence metric for the resource class.

8.3. Metrics 99

RTI Connext Observability Framework User's Manual, Version 7.3.0

Observability Framework provides the ability to create an initial configuration for the collection and forwarding
of metrics on each observable resource, as well as the ability to dynamically change this configuration at run
time. The initial configuration for the collection of metrics is set in the Monitoring Library 2.0, as explained
in Monitoring Library 2.0. Dynamic metric collection configuration changes are done using the REST API as
detailed in Collector Service REST API Reference. For an example of how to dynamically change the metric
collection configuration using the Observability Dashboards see Change the Metric Configuration.

8.3.1 Metric Pattern Definitions

Observability Framework enables you to select the set of metrics collected and forwarded for a resource both
before and during run time. To select metrics, you use metric selector strings. When specifying metric selector
strings, POSIX® fnmatch pattern matching should be used as described in Table 8.2. The most common
use case is an asterisk (*) to match 0 or more non-special characters. Some example metric selectors using
POSIX® fnmatch are shown below.

Table 8.6: POSIX® fnmatch Metric Selector Examples
Metric Selector Description
dds_application_process_memory_usage_resi-
dent_memory_bytes

refers to the metric “dds_application_process_mem-
ory_usage_resident_memory_bytes”

dds_application_process_* refers to all metrics that begin with “dds_applica-
tion_process_”

dds_*_bytes refers to metrics that start with “dds_” and end with
“_bytes”

8.3.2 Application Metrics

The following tables describe the metrics and labels generated for Connext applications. Only the dds_ap-
plication_presence metric has all of the application labels listed in the table below. All other applica-
tion metrics have the guid label only.

Table 8.7: Application Labels
Label or Attribute Name Description
controllability_url The URL and port for the control server on the Collector Service that for-

wards data for the application. This URL is used when sending remote
commands to the Collector Service to configure the telemetry data for the
application. The remote commands use the Collector Service REST API.
See Collector Service REST API Reference for details on the Collector Ser-
vice REST API.

guid Application resource GUID
hostname Name of the host computer for the application
process_id Process ID for the application
name Fully qualified resource name (/applications/<AppName>)

8.3. Metrics 100

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.8: Application Metrics
Metric Name Description Type
dds_application_presence Indicates the presence of the application

and provides all label values for an appli-
cation instance

Gauge

dds_application_pro-
cess_memory_usage_resi-
dent_memory_bytes

The application resident memory utiliza-
tion

Gauge

dds_application_pro-
cess_memory_usage_vir-
tual_memory_bytes

The application virtual memory utilization Gauge

dds_application_log-
ging_collection_middle-
ware_level

The middleware collection syslog logging
level. See Logs for valid values.

Gauge

dds_application_log-
ging_forwarding_middle-
ware_level

The middleware forwarding syslog logging
level. See Logs for valid values.

Gauge

8.3.3 Participant Metrics

The following tables describe the metrics and labels generated for Connext DomainParticipants. Only the
dds_domain_participant_presence metric has all of the DomainParticipant labels listed in the
table below. All other DomainParticipant metrics have the guid label only.

The DomainParticipant resource contains statistic variable metrics such as dds_domain_par-
ticipant_udpv4_usage_in_net_pkts_count, dds_domain_participant_udpv4_us-
age_in_net_pkts_mean, dds_domain_participant_udpv4_usage_in_net_pkts_min,
and dds_domain_participant_udpv4_usage_in_net_pkts_max.

These variables are interpreted as follows:

• The metrics with suffix _count represent the total number of packets or bytes over the last Prometheus
scraping period.

• The metrics with suffix _min represent the minimum mean over the last Prometheus scrap-
ing period. For example, dds_domain_participant_udpv4_usage_in_net_pkts_min
contains the minimum packets/sec over the last scraping period. The min mean is cal-
culated by choosing the minimum of individual mean values reported by Monitoring Li-
brary 2.0 every participant_factory_qos.monitoring.distribution_settings.
periodic_settings.polling_period.

• The metrics with suffix _max represent the maximum mean over the last Prometheus scrap-
ing period. For example, dds_domain_participant_udpv4_usage_in_net_pkts_max
contains the maximum packets/sec over the last scraping period. The max mean is cal-
culated by choosing the maximum of individual mean values reported by Monitoring Li-
brary 2.0 every participant_factory_qos.monitoring.distribution_settings.
periodic_settings.polling_period.

8.3. Metrics 101

RTI Connext Observability Framework User's Manual, Version 7.3.0

• The metrics with suffix _mean represent the mean over the last Prometheus scraping period. For exam-
ple, dds_domain_participant_udpv4_usage_in_net_pkts_mean contains the pack-
ets/sec over the last scraping period. If the scraping period is 30 seconds, the metric contains the
packets/sec generated within the last 30 seconds. The dds_domain_participant_udpv4_us-
age_in_net_pkts_mean is calculated by averaging all individual mean metrics sent byMonitoring
Library 2.0 to Observability Collector Service over the last scraping period.

Table 8.9: Participant Labels
Label or Attribute Name Description
guid DomainParticipant resource GUID
owner_guid Resource GUID of the owner entity (application)
dds_guid DomainParticipant DDS GUID
hostname Name of the host computer for the DomainParticipant
process_id Process ID for the DomainParticipant
domain_id DDS domain ID for the DomainParticipant
platform Connext architecture as described in the RTI Architecture Abbreviation

column in the Platform Notes.
product_version Connext product version
name Fully qualified resource name (/applications/<AppName> /domain_partic-

ipants/<ParticipantName>)

Table 8.10: Participant Metrics
Metric Name Description Type
dds_domain_partici-
pant_presence

Indicates the presence of the DomainPar-
ticipant and provides all label values for a
DomainParticipant instance

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_in_net_pkts_count

The UDPv4 transport in packets count over
the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_in_net_pkts_mean

The UDPv4 transport in packets mean
(packets/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_in_net_pkts_min

The UDPv4 transport in packets min mean
(packets/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_in_net_pkts_max

The UDPv4 transport in packets max mean
(packets/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_in_net_bytes_count

The UDPv4 transport in bytes count over
the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_in_net_bytes_mean

The UDPv4 transport in bytes mean
(bytes/sec) over the last scraping period

Gauge

continues on next page

8.3. Metrics 102

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.10 – continued from previous page
Metric Name Description Type
dds_domain_partic-
ipant_udpv4_us-
age_in_net_bytes_min

The UDPv4 transport in bytes min mean
(bytes/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_in_net_bytes_max

The UDPv4 transport in bytes max mean
(bytes/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_out_net_pkts_count

The UDPv4 transport out packets count
over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_out_net_pkts_mean

The UDPv4 transport out packets mean
(packets/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_out_net_pkts_min

The UDPv4 transport out packets min
mean (packets/sec) over the last scraping
period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_out_net_pkts_max

The UDPv4 transport out packets max
mean (packets/sec) over the last scraping
period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_out_net_bytes_count

The UDPv4 transport out bytes count over
the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_out_net_bytes_mean

The UDPv4 transport out bytes mean
(bytes/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_out_net_bytes_min

The UDPv4 transport out bytes min mean
(bytes/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv4_us-
age_out_net_bytes_max

The UDPv4 transport out bytes max mean
(bytes/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_in_net_pkts_count

The UDPv6 transport in packets count over
the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_in_net_pkts_mean

The UDPv6 transport in packets mean
(packets/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_in_net_pkts_min

The UDPv6 transport in packets min mean
(packets/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_in_net_pkts_max

The UDPv6 transport in packets max mean
(packets/sec) over the last scraping period

Gauge

continues on next page

8.3. Metrics 103

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.10 – continued from previous page
Metric Name Description Type
dds_domain_partic-
ipant_udpv6_us-
age_in_net_bytes_count

The UDPv6 transport in bytes count over
the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_in_net_bytes_mean

The UDPv6 transport in bytes mean
(bytes/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_in_net_bytes_min

The UDPv6 transport in bytes min mean
(bytes/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_in_net_bytes_max

The UDPv6 transport in bytes max mean
(bytes/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_out_net_pkts_count

The UDPv6 transport out packets count
over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_out_net_pkts_mean

The UDPv6 transport out packets mean
(packets/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_out_net_pkts_min

The UDPv6 transport out packets min
mean (packets/sec) over the last scraping
period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_out_net_pkts_max

The UDPv6 transport out packets max
mean (packets/sec) over the last scraping
period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_out_net_bytes_count

The UDPv6 transport out bytes count over
the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_out_net_bytes_mean

The UDPv6 transport out bytes mean
(bytes/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_out_net_bytes_min

The UDPv6 transport out bytes min mean
(bytes/sec) over the last scraping period

Gauge

dds_domain_partic-
ipant_udpv6_us-
age_out_net_bytes_max

The UDPv6 transport out bytes max mean
(bytes/sec) over the last scraping period

Gauge

8.3. Metrics 104

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3.4 Topic Metrics

The following tables describe the metrics and labels generated for Connext Topics. Only the
dds_topic_presence metric has all of the Topic labels listed in the table below. All other Topic metrics
have the guid label only.

Table 8.11: Topic Labels
Label or Attribute Name Description
guid Topic resource GUID
owner_guid Resource GUID of the owner entity (DomainParticipant)
dds_guid Topic DDS GUID
hostname Name of the host computer for the DomainParticipant this Topic is regis-

tered with
domain_id DDS domain ID for the DomainParticipant this Topic is registered with
topic_name The Topic name
regis-
tered_type_name

The registered type name for this Topic

name Fully qualified resource name (/applications/<AppName>/domain_partic-
ipants /<ParticipantName>/topics/<TopicName>)

Table 8.12: Topic Metrics
Metric Name Description Type
dds_topic_presence Indicates the presence of the Topic and pro-

vides all label values for a Topic instance
Gauge

dds_topic_inconsistent_to-
tal

See total_count field in the INCONSIS-
TENT_TOPIC Status

Counter

8.3.5 DataWriter Metrics

The following tables describe the metrics and labels generated for Connext DataWriters. Only the
dds_data_writer_presencemetric has all of the DataWriter labels listed in the table below. All other
DataWriter metrics have the guid label only.

8.3. Metrics 105

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.13: DataWriter Labels
Label or Attribute Name Description
guid DataWriter resource GUID
owner_guid Resource GUID of the owner entity (publisher)
dds_guid DataWriter DDS GUID
hostname Name of the host computer for the DomainParticipant this DataWriter is

registered with
domain_id DDS domain ID for the DomainParticipant this DataWriter is registered

with
topic_name The Topic name for this DataWriter
regis-
tered_type_name

The registered type name for this DataWriter

name Fully qualified resource name (/applications/<AppName>/domain_par-
ticipants /<ParticipantName>/publishers/<PublisherName>/data_writ-
ers/<DataWriterName>)

participant_guid Resource GUID of the DomainParticipant this DataWriter is registered
with

8.3. Metrics 106

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.14: DataWriter Metrics
Metric Name Description Type
dds_data_writer_presence Indicates the presence of the DataWriter

and provides all label values for a
DataWriter instance

Gauge

dds_data_writer_liveli-
ness_lost_total

See total_count field in the LIVELI-
NESS_LOST Status

Counter

dds_data_writer_dead-
line_missed_total

See total_count field in the OF-
FERED_DEADLINE_MISSED Status

Counter

dds_data_writer_incompati-
ble_qos_total

See total_count field in the OFFERED_IN-
COMPATIBLE_QOS Status

Counter

dds_data_writer_reli-
able_cache_full_total

See full_reliable_writer_cache
field in the RELI-
ABLE_WRITER_CACHE_CHANGED
Status

Counter

dds_data_writer_reli-
able_cache_high_water-
mark_total

See high_watermark_reli-
able_writer_cache field in the RELI-
ABLE_WRITER_CACHE_CHANGED
Status

Counter

dds_data_writer_reli-
able_cache_unack_samples

See unacknowledged_sam-
ple_count field in the RELI-
ABLE_WRITER_CACHE_CHANGED
Status

Gauge

dds_data_writer_reli-
able_cache_unack_sam-
ples_peak

See unacknowledged_sam-
ple_count_peak field in the RELI-
ABLE_WRITER_CACHE_CHANGED
Status

Gauge

dds_data_writer_reli-
able_cache_replaced_un-
ack_samples_total

See replaced_unacknowledged_sam-
ple_count field in the RELI-
ABLE_WRITER_CACHE_CHANGED
Status

Counter

dds_data_writer_reli-
able_reader_activity_in-
active_count

See inactive_count field in the
RELIABLE_READER_ACTIV-
ITY_CHANGED Status

Gauge

dds_data_writer_cache_sam-
ples_peak

See sample_count_peak field in the
DATA_WRITER_CACHE_STATUS

Gauge

dds_data_writer_cache_sam-
ples

See sample_count field in the
DATA_WRITER_CACHE_STATUS

Gauge

dds_data_writer_cache_alive_in-
stances

See alive_instance_count field in the
DATA_WRITER_CACHE_STATUS

Gauge

dds_data_writer_cache_alive_in-
stances_peak

See alive_instance_count_peak field in the
DATA_WRITER_CACHE_STATUS

Gauge

dds_data_writer_proto-
col_pushed_samples_total

See pushed_sample_count field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Counter

dds_data_writer_proto-
col_pushed_sample_bytes_to-
tal

See pushed_sample_bytes field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Counter

dds_data_writer_proto-
col_sent_heartbeats_total

See sent_heartbeat_count field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Counter

dds_data_writer_proto-
col_pulled_samples_total

See pulled_sample_count field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Counter

dds_data_writer_proto-
col_pulled_sample_bytes_to-
tal

See pulled_sample_bytes field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Counter

dds_data_writer_proto-
col_received_nacks_total

See received_nack_count field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Counter

dds_data_writer_proto-
col_received_nack_bytes_to-
tal

See received_nack_bytes field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Counter

dds_data_writer_proto-
col_send_window_size

See send_window_size field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Gauge

dds_data_writer_proto-
col_pushed_fragments_total

See pushed_fragment_count field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Counter

dds_data_writer_pro-
tocol_pushed_frag-
ment_bytes_total

See pushed_fragment_bytes field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Counter

dds_data_writer_proto-
col_pulled_fragments_total

See pulled_fragment_count field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Counter

dds_data_writer_pro-
tocol_pulled_frag-
ment_bytes_total

See pulled_fragment_bytes field in the
DATA_WRITER_PROTOCOL_STA-
TUS

Counter

dds_data_writer_proto-
col_received_nack_frag-
ments_total

See received_nack_fragment_count
field in the DATA_WRITER_PROTO-
COL_STATUS

Counter

dds_data_writer_proto-
col_received_nack_frag-
ment_bytes_total

See received_nack_fragment_bytes
field in the DATA_WRITER_PROTO-
COL_STATUS

Counter

8.3. Metrics 107

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3.6 DataReader Metrics

The following tables describe the metrics and labels generated for Connext DataReaders. Only the
ddsd_datareader_presence metric has all of the DataReader labels listed in the table below. All
other DataReader metrics have the guid label only.

Table 8.15: DataReader Labels
Label or Attribute Name Description
guid DataReader resource GUID
owner_guid Resource GUID of the owner entity (subscriber)
dds_guid DataReader DDS GUID
hostname Name of the host computer for the DomainParticipant this DataReader is

registered with
domain_id DDS domain ID for the DomainParticipant this DataReader is registered

with
topic_name The Topic name for this DataReader
regis-
tered_type_name

The registered type name for this DataReader

name Fully qualified resource name (/applications/<AppName>/domain_par-
ticipants/<ParticipantName> /subscribers/<SubscriberName>/data_read-
ers/<DataReaderName>)

participant_guid Resource GUID of the DomainParticipant this DataReader is registered
with

Table 8.16: DataReader Metrics
Metric Name Description Type
dds_data_reader_presence Indicates the presence of the DataReader

and provides all label values for a
DataReader instance

Gauge

dds_data_reader_sample_re-
jected_total

See total_count field in the SAMPLE_RE-
JECTED Status

Counter

dds_data_reader_liveli-
ness_not_alive_count

See not_alive_count field in the LIVELI-
NESS_CHANGED Status

Gauge

dds_data_reader_dead-
line_missed_total

See total_count field in the RE-
QUESTED_DEADLINE_MISSED
Status

Counter

dds_data_reader_incompati-
ble_qos_total

See total_count field in the RE-
QUESTED_INCOMPATIBLE_QOS
Status

Counter

dds_data_reader_sam-
ple_lost_total

See total_count field in the SAM-
PLE_LOST Status

Counter

dds_data_reader_cache_sam-
ples_peak

See sample_count_peak field in the
DATA_READER_CACHE_STATUS

Gauge

continues on next page

8.3. Metrics 108

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.16 – continued from previous page
Metric Name Description Type
dds_data_reader_cache_sam-
ples

See sample_count field in the
DATA_READER_CACHE_STATUS

Gauge

dds_data_reader_cache_old_source_ts_dropped_sam-
ples_total

See old_source_times-
tamp_dropped_sample_count field in
the DATA_READER_CACHE_STATUS

Counter

dds_data_reader_cache_tol-
erance_source_ts_dropped_sam-
ples_total

See tolerance_source_times-
tamp_dropped_sample_count field in
the DATA_READER_CACHE_STATUS

Counter

dds_data_reader_cache_con-
tent_filter_dropped_sam-
ples_total

See content_filter_dropped_sam-
ple_count field in the
DATA_READER_CACHE_STATUS

Counter

dds_data_reader_cache_re-
placed_dropped_samples_to-
tal

See replaced_dropped_sample_count field
in the DATA_READER_CACHE_STA-
TUS

Counter

dds_data_reader_cache_sam-
ples_dropped_by_in-
stance_replaced_total

See total_samples_dropped_by_in-
stance_replacement field in the
DATA_READER_CACHE_STATUS

Counter

dds_data_reader_cache_alive_in-
stances

See alive_instance_count field in the
DATA_READER_CACHE_STATUS

Gauge

dds_data_reader_cache_alive_in-
stances_peak

See alive_instance_count_peak field in the
DATA_READER_CACHE_STATUS

Gauge

dds_data_reader_cache_no_writ-
ers_instances

See no_writers_instance_count field in the
DATA_READER_CACHE_STATUS

Gauge

dds_data_reader_cache_no_writ-
ers_instances_peak

See no_writers_instance_count_peak field
in the DATA_READER_CACHE_STA-
TUS

Gauge

dds_data_reader_cache_dis-
posed_instances

See disposed_instance_count field in the
DATA_READER_CACHE_STATUS

Gauge

dds_data_reader_cache_dis-
posed_instances_peak

See disposed_instance_count_peak field in
the DATA_READER_CACHE_STATUS

Gauge

dds_data_reader_cache_com-
pressed_samples_total

See compressed_sample_count field in the
DATA_READER_CACHE_STATUS

Counter

dds_data_reader_proto-
col_received_samples_total

See received_sample_count field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

dds_data_reader_pro-
tocol_received_sam-
ple_bytes_total

See received_sample_bytes field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

dds_data_reader_proto-
col_duplicate_samples_total

See duplicate_sample_count field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

dds_data_reader_pro-
tocol_duplicate_sam-
ple_bytes_total

See duplicate_sample_bytes field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

continues on next page

8.3. Metrics 109

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.16 – continued from previous page
Metric Name Description Type
dds_data_reader_proto-
col_received_heartbeats_to-
tal

See received_heartbeat_count field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

dds_data_reader_proto-
col_sent_nacks_total

See sent_nack_count field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

dds_data_reader_proto-
col_sent_nack_bytes_total

See sent_nack_bytes field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

dds_data_reader_proto-
col_rejected_samples_total

See rejected_sample_count field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

dds_data_reader_proto-
col_out_of_range_re-
jected_samples_total

See out_of_range_rejected_sample_count
field in the DATA_READER_PROTO-
COL_STATUS

Counter

dds_data_reader_proto-
col_received_fragments_to-
tal

See received_fragment_count field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

dds_data_reader_proto-
col_dropped_fragments_total

See dropped_fragment_count field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

dds_data_reader_proto-
col_reassembled_samples_to-
tal

See reassembled_sample_count field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

dds_data_reader_proto-
col_sent_nack_fragments_to-
tal

See sent_nack_fragment_count field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

dds_data_reader_pro-
tocol_sent_nack_frag-
ment_bytes_total

See sent_nack_fragment_bytes field in the
DATA_READER_PROTOCOL_STA-
TUS

Counter

8.3.7 Derived Metrics Generated by Prometheus Recording Rules

Prometheus provides a capability called Recording Rules. The following text is an excerpt from the Prometheus
documentation.

Recording rules allow you to precompute frequently needed or computationally
expensive expressions and save their result as a new set of time series.
Querying the precomputed result will then often be much faster than executing
the original expression every time it is needed. This is especially useful for
dashboards, which need to query the same expression repeatedly every time they
refresh.

A Prometheus recording rule generates a new metric time series with new values calculated at the frequency
at which the rule is run. The recording rules in Observability Framework are run every 10 seconds, meaning

8.3. Metrics 110

RTI Connext Observability Framework User's Manual, Version 7.3.0

there is an evaluation and update to the associated derived metric every 10 seconds. Observability Framework
uses Prometheus recording rules to generate three types of derived metrics.

• DDS entity proxy metrics

• raw error metrics

• aggregated error metrics.

Each of these derived metric types is discussed in detail below.

The Grafana dashboards provided with Observability Framework make use of the error metrics generated
by Prometheus recording rules. The aggregated error metrics are used on the Alert Home dashboard, while
the raw error metrics are used on other dashboards.

DDS Entity Proxy Metrics

The DDS entity proxy metrics are used in the recording rules for the raw error metrics and are always 0.
The proxy metrics are used to make sure the rules evaluate to known good values in cases where the underlying
metrics are not available.

Table 8.17: DDS Entity Proxy Metrics
Metric Name Description
dds_application_empty_metric A proxy for applications metrics that always provides

a value of zero.
dds_domain_participant_empty_met-
ric

A proxy for applications metrics that always provides
a value of zero.

dds_topic_empty_metric A proxy for applications metrics that always provides
a value of zero.

dds_data_writer_empty_metric A proxy for applications metrics that always provides
a value of zero.

dds_data_reader_empty_metric A proxy for applications metrics that always provides
a value of zero.

Raw Error Metrics

Raw error metrics are derived for select metrics by doing a boolean comparison to a predefined limit. The
raw error metrics are created by converting the monotonically increasing value of a counter metric into a
rate, comparing that rate to a limit, and returning a boolean value. The returned boolean value is 1 if the limit
is exceeded, otherwise 0. In the Grafana dashboards, a value of 0 indicates a healthy condition for the error
metric, while a value of 1 indicates a fail condition.

Recording rules have been created to generate a derived raw errormetric for all of the metrics listed in Table
8.18 and Table 8.19.

8.3. Metrics 111

RTI Connext Observability Framework User's Manual, Version 7.3.0

Enabled Raw Error Metrics

A set of recording rules have been created that are useful for detecting failures in all systems. These rules detect
conditions that are not expected to occur in a system that is operating correctly. The rules for these “enabled”
metrics test if the underlying metric has exceeded a limit of 0. Note the >bool 0 comparison operator in
each of the recording rules. A value greater than 0 in any of these metrics will result in an alert indication in
the dashboards. This set of metrics is “enabled” because any increase in the underlying metric indicates an
unexpected condition in DDS. Table 8.18 lists derived Raw error metrics that are “enabled”.

8.3. Metrics 112

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.18: Raw Error Metrics (enabled)
Metric Name Recording Rule
dds_data_reader_cache_con-
tent_filter_dropped_samples_er-
rors

rate(dds_data_reader_cache_content_fil-
ter_dropped_samples_total[1m]) >bool 0 or
dds_data_reader_empty_metric

dds_data_reader_cache_re-
placed_dropped_samples_errors

rate(dds_data_reader_cache_re-
placed_dropped_samples_total[1m]) >bool 0
or dds_data_reader_empty_metric

dds_data_reader_cache_sam-
ples_dropped_by_instance_re-
placed_errors

rate(dds_data_reader_cache_sam-
ples_dropped_by_instance_replaced_total[1m])
>bool 0 or dds_data_reader_empty_metric

dds_data_reader_protocol_re-
jected_samples_errors

rate(dds_data_reader_protocol_re-
jected_samples_total[1m]) >bool 0 or
dds_data_reader_empty_metric

dds_data_reader_proto-
col_out_of_range_rejected_sam-
ples_errors

rate(dds_data_reader_protocol_out_of_range_re-
jected_samples_total[1m]) >bool 0 or
dds_data_reader_empty_metric

dds_data_reader_proto-
col_dropped_fragments_errors

rate(dds_data_reader_protocol_dropped_frag-
ments_total[1m]) >bool 0 or
dds_data_reader_empty_metric

dds_topic_inconsistent_errors rate(dds_topic_inconsistent_total[1m]) >bool 0 or
dds_topic_empty_metric

dds_data_writer_incompati-
ble_qos_errors

rate(dds_data_writer_incompatible_qos_total[1m])
>bool 0 or dds_data_writer_empty_metric

dds_data_reader_incompati-
ble_qos_errors

rate(dds_data_reader_incompatible_qos_total[1m])
>bool 0 or dds_data_reader_empty_metric

dds_data_writer_liveli-
ness_lost_errors

rate(dds_data_writer_liveliness_lost_total[1m])
>bool 0 or dds_data_writer_empty_metric

dds_data_writer_reli-
able_reader_activity_inac-
tive_count_errors

rate(dds_data_writer_reliable_reader_ac-
tivity_inactive_count[1m]) >bool 0 or
dds_data_writer_empty_metric

dds_data_reader_liveli-
ness_not_alive_count_errors

rate(dds_data_reader_liveli-
ness_not_alive_count[1m]) >bool 0 or
dds_data_reader_empty_metric

dds_data_reader_cache_toler-
ance_source_ts_dropped_sam-
ples_errors

rate(dds_data_reader_cache_toler-
ance_source_ts_dropped_samples_total[1m])
>bool 0 or dds_data_reader_empty_metric

dds_data_writer_dead-
line_missed_errors

rate(dds_data_writer_deadline_missed_total[1m])
>bool 0 or dds_data_writer_empty_metric

dds_data_reader_dead-
line_missed_errors

rate(dds_data_reader_deadline_missed_total[1m])
>bool 0 or dds_data_reader_empty_metric

dds_data_writer_reli-
able_cache_replaced_unack_sam-
ples_errors

rate(dds_data_writer_reliable_cache_re-
placed_unack_samples_total[1m]) >bool 0 or
dds_data_writer_empty_metric

dds_data_reader_sample_lost_er-
rors

rate(dds_data_reader_sample_lost_total[1m])
>bool 0 or dds_data_reader_empty_metric

8.3. Metrics 113

RTI Connext Observability Framework User's Manual, Version 7.3.0

Disabled Raw Error Metrics

Additional recording rules have been created that by default are not useful for detecting failures since the
meaningful rules depend on comparisons to values that will be dependent on actual system requirements. The
rules for the “disabled” metrics test to see if the underlying metric is less than a limit of 0, ensuring that the
derived raw errormetric never indicates a failure, hence disabled. Note the <bool 0 comparison operator
in each of the recording rules. This set of metrics is “disabled” because a meaningful limit that would indicate
a fail condition cannot be determined without additional knowledge of the system.

Users may modify a “disabled” rule to compare against a value that is meaningful to their system. For example,
if users want to be notified when the number of repaired samples over the last minute exceeds 10, then they
would modify the rule

rate(dds_data_writer_protocol_pulled_samples_total[1m]) <bool 0 or dds_data_
→˓writer_empty_metric

To

rate(dds_data_writer_protocol_pulled_samples_total[1m]) >bool 10 or dds_data_
→˓writer_empty_metric

For complete instructions on how to enable these metrics and display them in the dashboards, see Enable a Raw
Error Metric.

The “disabled” rules have been created as a convenience for the user. However, only a few of these rules may
be useful for any specific system. Table 8.19 lists derived raw error metrics that are “disabled”.

Table 8.19: Raw Error Metrics (disabled)
Metric Name Recording Rule
dds_data_writer_proto-
col_sent_heartbeats_errors

rate(dds_data_writer_protocol_sent_heartbeats_to-
tal[1m] <bool 0 or dds_data_writer_empty_metric

dds_data_writer_protocol_re-
ceived_nacks_errors

rate(dds_data_writer_protocol_received_nacks_to-
tal[1m]) <bool 0 or dds_data_writer_empty_metric

dds_data_writer_protocol_re-
ceived_nack_bytes_errors

rate(dds_data_writer_protocol_re-
ceived_nack_bytes_total[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_writer_protocol_re-
ceived_nack_fragments_errors

rate(dds_data_writer_protocol_re-
ceived_nack_fragments_total[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_writer_protocol_re-
ceived_nack_fragment_bytes_errors

rate(dds_data_writer_protocol_re-
ceived_nack_fragment_bytes_total[1m]) <bool
0 or dds_data_writer_empty_metric

dds_data_reader_protocol_re-
ceived_heartbeats_errors

rate(dds_data_reader_protocol_re-
ceived_heartbeats_total[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_proto-
col_sent_nacks_errors

rate(dds_data_reader_protocol_sent_nacks_to-
tal[1m]) <bool 0 or dds_data_reader_empty_metric

continues on next page

8.3. Metrics 114

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.19 – continued from previous page
Metric Name Recording Rule
dds_data_reader_proto-
col_sent_nack_bytes_errors

rate(dds_data_reader_proto-
col_sent_nack_bytes_total[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_proto-
col_sent_nack_fragments_errors

rate(dds_data_reader_protocol_sent_nack_frag-
ments_total[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_proto-
col_sent_nack_fragment_bytes_er-
rors

rate(dds_data_reader_protocol_sent_nack_frag-
ment_bytes_total[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_writer_proto-
col_pulled_samples_errors

rate(dds_data_writer_protocol_pulled_samples_to-
tal[1m]) <bool 0 or dds_data_writer_empty_metric

dds_data_writer_proto-
col_pulled_sample_bytes_errors

rate(dds_data_writer_protocol_pulled_sam-
ple_bytes_total[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_writer_proto-
col_pulled_fragments_errors

rate(dds_data_writer_protocol_pulled_frag-
ments_total[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_writer_proto-
col_pulled_fragment_bytes_errors

rate(dds_data_writer_protocol_pulled_frag-
ment_bytes_total[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_writer_proto-
col_pushed_samples_errors

rate(dds_data_writer_protocol_pushed_sam-
ples_total[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_writer_proto-
col_pushed_sample_bytes_errors

rate(dds_data_writer_protocol_pushed_sam-
ple_bytes_total[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_writer_proto-
col_pushed_fragments_errors

rate(dds_data_writer_protocol_pushed_frag-
ments_total[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_writer_proto-
col_pushed_fragment_bytes_errors

rate(dds_data_writer_protocol_pushed_frag-
ment_bytes_total[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_reader_cache_com-
pressed_samples_errors

rate(dds_data_reader_cache_com-
pressed_samples_total[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_protocol_dupli-
cate_samples_errors

rate(dds_data_reader_protocol_dupli-
cate_samples_total[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_protocol_dupli-
cate_sample_bytes_errors

rate(dds_data_reader_protocol_dupli-
cate_sample_bytes_total[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_protocol_re-
ceived_samples_errors

rate(dds_data_reader_protocol_re-
ceived_samples_total[1m]) <bool 0 or
dds_data_reader_empty_metric

continues on next page

8.3. Metrics 115

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.19 – continued from previous page
Metric Name Recording Rule
dds_data_reader_protocol_re-
ceived_sample_bytes_errors

rate(dds_data_reader_protocol_re-
ceived_sample_bytes_total[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_protocol_re-
ceived_fragments_errors

rate(dds_data_reader_protocol_re-
ceived_fragments_total[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_protocol_reassem-
bled_samples_errors

rate(dds_data_reader_protocol_reassem-
bled_samples_total[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_application_process_mem-
ory_usage_resident_mem-
ory_bytes_errors

rate(dds_application_process_memory_usage_resi-
dent_memory_bytes[1m]) <bool 0 or dds_applica-
tion_empty_metric

dds_application_process_mem-
ory_usage_virtual_mem-
ory_bytes_errors

rate(dds_application_process_memory_usage_vir-
tual_memory_bytes[1m]) <bool 0 or dds_applica-
tion_empty_metric

dds_domain_participant_udpv4_us-
age_in_net_pkts_errors

rate(dds_domain_participant_udpv4_us-
age_in_net_pkts_mean[1m]) <bool 0 or dds_do-
main_participant_empty_metric

dds_domain_participant_udpv4_us-
age_in_net_bytes_errors

rate(dds_domain_participant_udpv4_us-
age_in_net_bytes_mean[1m]) <bool 0 or dds_do-
main_participant_empty_metric

dds_domain_participant_udpv4_us-
age_out_net_pkts_errors

rate(dds_domain_participant_udpv4_us-
age_out_net_pkts_mean[1m]) <bool 0 or dds_do-
main_participant_empty_metric

dds_domain_participant_udpv4_us-
age_out_net_bytes_errors

rate(dds_domain_participant_udpv4_us-
age_out_net_bytes_mean[1m]) <bool 0 or dds_do-
main_participant_empty_metric

dds_domain_participant_udpv6_us-
age_in_net_pkts_errors

rate(dds_domain_participant_udpv6_us-
age_in_net_pkts_mean[1m]) <bool 0 or dds_do-
main_participant_empty_metric

dds_domain_participant_udpv6_us-
age_in_net_bytes_errors

rate(dds_domain_participant_udpv6_us-
age_in_net_bytes_mean[1m]) <bool 0 or dds_do-
main_participant_empty_metric

dds_domain_participant_udpv6_us-
age_out_net_pkts_errors

rate(dds_domain_participant_udpv6_us-
age_out_net_pkts_mean[1m]) <bool 0 or dds_do-
main_participant_empty_metric

dds_domain_participant_udpv6_us-
age_out_net_bytes_errors

rate(dds_domain_participant_udpv6_us-
age_out_net_bytes_mean[1m]) <bool 0 or dds_do-
main_participant_empty_metric

dds_data_writer_reli-
able_cache_full_errors

rate(dds_data_writer_reliable_cache_full_to-
tal[1m]) <bool 0 or dds_data_writer_empty_metric

dds_data_writer_reli-
able_cache_high_watermark_errors

rate(dds_data_writer_reliable_cache_high_wa-
termark_total[1m]) <bool 0 or
dds_data_writer_empty_metric

continues on next page

8.3. Metrics 116

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.19 – continued from previous page
Metric Name Recording Rule
dds_data_writer_reli-
able_cache_unack_samples_errors

rate(dds_data_writer_reliable_cache_unack_sam-
ples[1m]) <bool 0 or dds_data_writer_empty_met-
ric

dds_data_writer_reli-
able_cache_unack_samples_peak_er-
rors

rate(dds_data_writer_reliable_cache_un-
ack_samples_peak[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_writer_proto-
col_send_window_size_errors

rate(dds_data_writer_protocol_send_win-
dow_size[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_writer_cache_samples_er-
rors

rate(dds_data_writer_cache_samples[1m]) <bool 0
or dds_data_writer_empty_metric

dds_data_writer_cache_sam-
ples_peak_errors

rate(dds_data_writer_cache_samples_peak[1m])
<bool 0 or dds_data_writer_empty_metric

dds_data_writer_cache_alive_in-
stances_errors

rate(dds_data_writer_cache_alive_instances[1m])
<bool 0 or dds_data_writer_empty_metric

dds_data_writer_cache_alive_in-
stances_peak_errors

rate(dds_data_writer_cache_alive_in-
stances_peak[1m]) <bool 0 or
dds_data_writer_empty_metric

dds_data_reader_sample_re-
jected_errors

rate(dds_data_reader_sample_rejected_total[1m])
<bool 0 or dds_data_reader_empty_metric

dds_data_reader_cache_samples_er-
rors

rate(dds_data_reader_cache_samples[1m]) <bool 0
or dds_data_reader_empty_metric

dds_data_reader_cache_sam-
ples_peak_errors

rate(dds_data_reader_cache_samples_peak[1m])
<bool 0 or dds_data_reader_empty_metric

dds_data_reader_cache_alive_in-
stances_errors

rate(dds_data_reader_cache_alive_instances[1m])
<bool 0 or dds_data_reader_empty_metric

dds_data_reader_cache_alive_in-
stances_peak_errors

rate(dds_data_reader_cache_alive_in-
stances_peak[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_cache_no_writ-
ers_instances_errors

rate(dds_data_reader_cache_no_writ-
ers_instances[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_cache_no_writ-
ers_instances_peak_errors

rate(dds_data_reader_cache_no_writ-
ers_instances_peak[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_cache_dis-
posed_instances_errors

rate(dds_data_reader_cache_dis-
posed_instances[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_cache_dis-
posed_instances_peak_errors

rate(dds_data_reader_cache_dis-
posed_instances_peak[1m]) <bool 0 or
dds_data_reader_empty_metric

dds_data_reader_cache_old_source_ts_dropped_sam-
ples_errors

rate(dds_data_reader_cache_old_source_ts_dropped_sam-
ples_total[1m]) <bool 0 or
dds_data_reader_empty_metric

8.3. Metrics 117

RTI Connext Observability Framework User's Manual, Version 7.3.0

Aggregated Error Metrics

The aggregated error metrics create a status roll-up for a group of metrics in a particular category. These
aggregated errormetrics are used in theAlert Home dashboard to provide a high-level view of alerts grouped
by category. The categories are Bandwidth, Saturation, Data Loss, System Errors, and Delays. The
aggregated errormetrics are created by adding together all of the raw errormetrics assigned to a category
and clamping the values at 1, the value that indicates a failed condition. Table 8.20 shows all of the aggregated
error metrics and the rule used to generate them. Note the use of the raw error metrics in the rules.

8.3. Metrics 118

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.20: Aggregate Error Metrics
Metric Name Recording Rule
dds_excessive_bandwidth_errors clamp_max ((sum (dds_custom_excessive_band-

width_errors) + sum (dds_data_writer_pro-
tocol_sent_heartbeats_errors) + sum
(dds_data_writer_protocol_received_nacks_er-
rors) + sum (dds_data_writer_proto-
col_received_nack_bytes_errors) + sum
(dds_data_writer_protocol_received_nack_frag-
ments_errors) + sum (dds_data_writer_pro-
tocol_received_nack_fragment_bytes_er-
rors) + sum (dds_data_reader_proto-
col_received_heartbeats_errors) + sum
(dds_data_reader_protocol_sent_nacks_er-
rors) + sum (dds_data_reader_pro-
tocol_sent_nack_bytes_errors) + sum
(dds_data_reader_protocol_sent_nack_frag-
ments_errors) + sum (dds_data_reader_pro-
tocol_sent_nack_fragment_bytes_errors) +
sum (dds_data_writer_protocol_pulled_sam-
ples_errors) + sum (dds_data_writer_pro-
tocol_pulled_sample_bytes_errors) + sum
(dds_data_writer_protocol_pulled_frag-
ments_errors) + sum (dds_data_writer_pro-
tocol_pulled_fragment_bytes_errors) + sum
(dds_data_writer_protocol_pushed_sam-
ples_errors) + sum (dds_data_writer_pro-
tocol_pushed_sample_bytes_errors) + sum
(dds_data_writer_protocol_pushed_frag-
ments_errors) + sum (dds_data_writer_pro-
tocol_pushed_fragment_bytes_errors) +
sum (dds_data_reader_cache_content_fil-
ter_dropped_samples_errors) + sum
(dds_data_reader_cache_compressed_samples_er-
rors) + sum (dds_data_reader_protocol_dupli-
cate_samples_errors) + sum (dds_data_reader_pro-
tocol_duplicate_sample_bytes_errors) + sum
(dds_data_reader_protocol_received_sam-
ples_errors) + sum (dds_data_reader_pro-
tocol_received_sample_bytes_errors) + sum
(dds_data_reader_protocol_received_frag-
ments_errors) + sum (dds_data_reader_proto-
col_reassembled_samples_errors)), 1)

dds_saturation_errors clamp_max ((sum (dds_custom_saturation_er-
rors) + sum (dds_application_process_mem-
ory_usage_resident_memory_bytes_errors)
+ sum (dds_application_process_mem-
ory_usage_virtual_memory_bytes_errors)
+ sum (dds_domain_participant_udpv4_us-
age_in_net_pkts_errors) + sum (dds_domain_par-
ticipant_udpv4_usage_in_net_bytes_errors)
+ sum (dds_domain_participant_udpv4_us-
age_out_net_pkts_errors) + sum (dds_domain_par-
ticipant_udpv4_usage_out_net_bytes_errors)
+ sum (dds_domain_participant_udpv6_us-
age_in_net_pkts_errors) + sum (dds_domain_par-
ticipant_udpv6_usage_in_net_bytes_errors)
+ sum (dds_domain_participant_udpv6_us-
age_out_net_pkts_errors) + sum (dds_domain_par-
ticipant_udpv6_usage_out_net_bytes_errors) +
sum (dds_data_writer_reliable_cache_full_errors)
+ sum (dds_data_writer_reliable_cache_high_wa-
termark_errors) + sum (dds_data_writer_re-
liable_cache_unack_samples_errors) + sum
(dds_data_writer_reliable_cache_unack_sam-
ples_peak_errors) + sum (dds_data_writer_pro-
tocol_send_window_size_errors) + sum
(dds_data_writer_cache_samples_errors) + sum
(dds_data_writer_cache_samples_peak_errors) +
sum (dds_data_writer_cache_alive_instances_er-
rors) + sum (dds_data_writer_cache_alive_in-
stances_peak_errors) + sum
(dds_data_reader_sample_rejected_errors) +
sum (dds_data_reader_cache_samples_errors) +
sum (dds_data_reader_cache_samples_peak_er-
rors) + sum (dds_data_reader_cache_re-
placed_dropped_samples_errors) +
sum (dds_data_reader_cache_sam-
ples_dropped_by_instance_replaced_errors) +
sum (dds_data_reader_cache_alive_instances_er-
rors) + sum (dds_data_reader_cache_alive_in-
stances_peak_errors) + sum
(dds_data_reader_cache_no_writers_instances_er-
rors) + sum (dds_data_reader_cache_no_writ-
ers_instances_peak_errors) + sum
(dds_data_reader_cache_disposed_instances_er-
rors) + sum (dds_data_reader_cache_dis-
posed_instances_peak_errors) + sum
(dds_data_reader_protocol_rejected_sam-
ples_errors) + sum (dds_data_reader_proto-
col_out_of_range_rejected_samples_errors) + sum
(dds_data_reader_protocol_dropped_fragments_er-
rors)), 1)

dds_errors clamp_max ((sum (dds_custom_errors) +
sum (dds_topic_inconsistent_errors) + sum
(dds_data_writer_incompatible_qos_errors) +
sum (dds_data_reader_incompatible_qos_errors)
+ sum (dds_data_writer_liveliness_lost_errors) +
sum (dds_data_writer_reliable_reader_activity_in-
active_count_errors) + sum (dds_data_reader_live-
liness_not_alive_count_errors) + sum
(dds_data_reader_cache_old_source_ts_dropped_sam-
ples_errors) + sum (dds_data_reader_cache_tol-
erance_source_ts_dropped_samples_errors)),
1)

dds_delays_errors clamp_max ((sum (dds_custom_delays_errors) +
sum (dds_data_writer_deadline_missed_errors) +
sum (dds_data_reader_deadline_missed_errors)),
1)

dds_data_loss_errors clamp_max ((sum (dds_custom_data_loss_errors)
+ sum (dds_data_writer_reliable_cache_re-
placed_unack_samples_errors) + sum
(dds_data_reader_sample_lost_errors) + sum
(dds_data_reader_cache_replaced_dropped_sam-
ples_errors) + sum (dds_data_reader_cache_sam-
ples_dropped_by_instance_replaced_er-
rors) + sum (dds_data_reader_cache_toler-
ance_source_ts_dropped_samples_errors)), 1)

8.3. Metrics 119

RTI Connext Observability Framework User's Manual, Version 7.3.0

Enable a Raw Error Metric

Note: The Grafana user must have Admin privileges to make any changes to the Grafana dashboards.

Use the following steps to enable any of the “disabled” metrics in your system:

1. Update the raw error rule to enable the calculation and provide a limit. See Update the Recording
Rule for the Derived Metric below.

2. Update the Alert “Category” dashboard to update the background color of the OK/ERROR and State
panels for the enabled metric. See Update the Alert “Category” Dashboard below.

3. Update the “Entity” status dashboard to update the query and background color in the State panel. See
Update the “Entity” Status Dashboard below.

The example that follows uses the dds_data_reader_cache_alive_instances_errors metric
to update/enable a rule to detect any DataReader that has more than 3 ALIVE instances in its cache.

Update the Recording Rule for the Derived Metric

Locate the recording rule for the dds_data_reader_cache_alive_instances_errors metric
in the monitoring_recording_rules.yml file located in the rti_workspace/<version>/
observability/prometheus directory.

User Config Required
- record: dds_data_reader_cache_alive_instances_errors

expr: >
rate(dds_data_reader_cache_alive_instances[1m]) <bool 0 or dds_data_

→˓reader_empty_metric

The dds_data_reader_cache_alive_instancesmetric is a gauge metric, meaning we want to use
the absolute value for our limit check rather than the rate. In the following example recording rule, we want to
update the limit test so that the error will be active whenever the value is greater than 3.

User Config Required
- record: dds_data_reader_cache_alive_instances_errors

expr: >
dds_data_reader_cache_alive_instances >bool 3 or dds_data_reader_empty_

→˓metric

Important: After updating the monitoring_recording_rules.yml file, you must restart all Docker
containers for Observability Framework by running rtiobservability -t followed by rtiobserv-
ability -s. The Prometheus server will read the updated file after restarting the containers.

8.3. Metrics 120

RTI Connext Observability Framework User's Manual, Version 7.3.0

Update the Alert “Category” Dashboard

Note: The Grafana images in this section were generated with Grafana version 9.2.1. If you are using a
different version of Grafana, the interface may be slightly different.

Locate the Alert “Category” dashboard for the metric rule you are enabling. The metric in our example,
dds_data_reader_cache_alive_instances_errors, is in the Saturation group (see Table
8.20), so the Alert Saturation dashboard is used in the following steps.

1. Go to Dashboards > Browse to open the list of dashboards.

2. Select the Alert Saturation dashboard from the list.

3. Once on the Alert Saturation dashboard, scroll down to the Alive Instances row under the Reader
Cache section.

4. Select Alive Instances > Edit from the status indicator panel menu.

5. In the right panel, scroll down until you find the Value mappings section.

6. Click the gray color circle next to the OK mapping to select a new color for the panel “OK” indication.

7. Select the large green circle in the panel. The updated OK value should change from gray to green.

8. Select Apply at the top right to apply the change and return to the Alert Saturation dashboard.

9. Select Alive Instances > Edit from the status indicator panel menu.

10. In the right panel, scroll down to the Thresholds section.

11. Click the gray circle next to Base to select a new base color for the Thresholds panel.

12. Select the large green circle in the panel. The updated Threshold base value should change to green.

8.3. Metrics 121

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3. Metrics 122

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3. Metrics 123

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3. Metrics 124

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3. Metrics 125

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3. Metrics 126

RTI Connext Observability Framework User's Manual, Version 7.3.0

13. Select Apply at the top right to apply the changes and return to the Alert Saturation dashboard.

14. Select the Save Dashboard icon at the top right.

15. When prompted to confirm, select Save.

The Alive Instances row under the Reader Cache section should now be green, indicating it is enabled.

8.3. Metrics 127

RTI Connext Observability Framework User's Manual, Version 7.3.0

Update the “Entity” Status Dashboard

Locate the “Entity” status dashboard for the metric rule you are enabling. For the metric in our example,
dds_data_reader_cache_alive_instances_errors, we need to update theAlert DataReader
Status dashboard.

1. Go to Dashboards > Browse to open the list of dashboards.

2. Select the Alert DataReader Status dashboard from the list.

3. Once on the Alert DataReader Status dashboard, scroll down to the Alive Instances row under the
Saturation/Reader Cache section.

4. Select Alive Instances > Edit from the status indicator panel menu.

The query for the panel is shown below.

5. Edit the query to match the rule that was created for the dds_data_reader_cache_alive_in-
stances_errorsmetric. In theMetrics browser field, remove the irate calculation and set the limit

8.3. Metrics 128

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3. Metrics 129

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3. Metrics 130

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3. Metrics 131

RTI Connext Observability Framework User's Manual, Version 7.3.0

check to >bool 3, as shown below.

6. In the right panel, scroll down to the Thresholds section.

7. Click the gray circle next to Base to select a new base color for the Thresholds panel.

8. Select the large green circle in the panel. The updated Threshold base value should change from gray
to green.

9. SelectApply at the top right to apply the change and return to theAlert DataReader Status dashboard.

10. Select the Save Dashboard icon at the top right.

11. When prompted to confirm, select Save.

You have now enabled a rule for dds_data_reader_cache_alive_instances that detects any
DataReader that has more than 3 sample instances in its queue with an instance state of ALIVE. The indi-
cation of this condition will display on all relevant dashboards.

You can test this rule by running the applications as described in section Start the Applications. Start any
combination of publishing applications with the -s, --sensor-count command-line arguments totaling

8.3. Metrics 132

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3. Metrics 133

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.3. Metrics 134

RTI Connext Observability Framework User's Manual, Version 7.3.0

more than 3. Anytime this condition occurs, you will see this error indicated.

Custom Error Metrics

Table 8.21 shows metrics that are not fully implemented.

Table 8.21: Custom Error Metrics
Metric Name Description
dds_custom_excessive_band-
width_errors

Not fully implemented. Not to be modified or used.

dds_custom_saturation_errors Not fully implemented. Not to be modified or used.
dds_custom_errors Not fully implemented. Not to be modified or used.
dds_custom_delays_errors Not fully implemented. Not to be modified or used.
dds_custom_data_loss_errors Not fully implemented. Not to be modified or used.

8.4 Logs

Observability Framework stores the log messages generated by Connext applications in third-party backends
(for example, Grafana Loki).

When a Connext application starts, it may generate log messages before Monitoring Library 2.0 is loaded and
enabled. Any such log messages are not stored by Observability Framework.

Each log message is divided into six parts to facilitate analysis, as illustrated in Table 8.22.

8.4. Logs 135

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.22: Log message components
Com-
po-
nent

Description Example Al-
ways
present

Times-
tamp

The time the
log message was
generated.

[2023-02-02 21:32:38.049836] Yes

Sys-
log
Fa-
cil-
ity

The facility
(MIDDLE-
WARE, SECU-
RITY_EVENT,
SERVICE, or
USER) and
the sequence
number of the
log message for
the facility.

MIDDLEWARE(sn: 123) Yes

Sys-
log
Level

The sever-
ity (EMER-
GENCY,
ALERT, CRIT-
ICAL, ERROR,
WARNING,
NOTICE,
INFORMA-
TIONAL, or
DEBUG).

WARNING Yes

Ac-
tiv-
ity
Con-
text

The DDS con-
text in which the
log was gener-
ated. See Activ-
ity Context.

[010105A0.81551B17.4AA10C9B.80000007{Entity=DR,
MessageKind=DATA}|RECEIVE FROM 0101C41F.
40A68B3A.C9442BC5.8000A502]

No

Mes-
sage

The message
contents.

PRESCstReaderCollator_isNewerSample:[Topic:
'Temperature', Type: 'Temperature']
Dropped sample from DataWriter (0101C41F.
40A68B3A.C9442BC5.8000A502). The source
timestamp (2023-02-02 21:32:40.049765)
is greater than the received timestamp
(2023-02-02 21:32:38.049820) by more than the
source_timestamp_tolerance. The system clocks
for the DataWriter and DataReader may not be
synchronized.

Yes

8.4. Logs 136

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.4.1 Syslog Levels and Facilities

All the log messages generated by the Connext applications are members of a Syslog facility. Syslog facilities
are numerical codes that represent the source of the log message, allowing the system or network administrator
to categorize and filter log messages based on their origin. These facilities help organize log data, making it
easier to manage and analyze.

This release supports the following Syslog facilities:

• MIDDLEWARE (23): Messages generated by the Connext middleware.

• SECURITY_EVENT (10): Security-related messages generated by the Securıty Plugıns Logging Plu-
gin.

• SERVICE (22): Messages generated by infrastructure services, such as Routing Service.

• USER (1): Messages generated by the Connext logger APIs that log user messages.

The Syslog facility is always present in the log message, and it is followed by a sequence number that uniquely
identifies the log message within the facility. The sequence number is useful for tracking the order of log
messages within the same facility and for identifying missing log messages.

The available Syslog levels are: EMERGENCY, CRITICAL, ALERT, ERROR, WARNING, NOTICE, IN-
FORMATIONAL, or DEBUG.

For SECURITY_EVENT and USER facilities, you can get messages with any Syslog level. However, for the
other facilities (MIDDLEWARE and SERVICE), the Syslog level of the message is determined by translating
the Connext builtin logging level associated with the message to the Syslog level.

The mapping between Connext ’s builtin logging levels (NDDS_Config_LogLevel) and Syslog Levels
(NDDS_Config_SysLogLevel) is as follows:

Table 8.23: Log Level Mapping
NDDS_Config_LogLevel Syslog Level Minimum Syslog Verbosity that lets

the message pass through
NDDS_CONFIG_LOG_LEVEL_FA-
TAL_ERROR

EMERGENCY
(1)

ERROR

NDDS_CONFIG_LOG_LEVEL_ER-
ROR

ERROR (15) ERROR

NDDS_CON-
FIG_LOG_LEVEL_WARNING

WARNING (31) WARNING

NDDS_CONFIG_LOG_LEVEL_STA-
TUS_LOCAL

INFORMA-
TIONAL (127)

INFORMATIONAL

NDDS_CONFIG_LOG_LEVEL_STA-
TUS_REMOTE

INFORMA-
TIONAL (127)

INFORMATIONAL

NDDS_CONFIG_LOG_LEVEL_DE-
BUG

DEBUG (255) DEBUG

For additional information on Syslog levels and facilities, see Configuring Connext Logging in the RTI Connext
Core Libraries User’s Manual.

8.4. Logs 137

RTI Connext Observability Framework User's Manual, Version 7.3.0

8.4.2 Activity Context

The Activity Context provides context for the log message associated with it. The information provided by the
Activity Context includes a sequence of activities and resources to which the activities apply. Comparing the
Activity Context to traces and spans in OpenTelemetry, you can think of the Activity Context as a trace and
the individual activities within the Activity Context as spans within the trace. For additional information on the
Activity Context, see Format of Logged Messages in the RTI Connext Core Libraries User’s Manual.

The Activity Context is available by default in all log messages generated by a Connext application. How-
ever, you can disable this information by using the APIs in the C language binding: see NDDS_Config_Log-
ger_set_print_format and NDDS_Config_Logger_set_print_format_by_log_level. The same APIs are avail-
able in other language bindings.

8.4.3 Log Labels

As with metrics, logs also have an associated set of labels. In Grafana Loki, labels are key/value pairs that act
as metadata to describe a log stream. The combination of every label key and value defines a log stream. If
just one label value changes, this creates a new stream. Refer to the official Grafana Loki documentation for
further details about labels.

Table 8.24 describes the log labels generated by Connext applications.

Table 8.24: Log Labels
Loki Label Name Description
job The source of the log message.

This label is useful when multiple system resources share the same Loki instance. For
Connext applications, the job label is always connext_logger.

re-
source_guid

AGUID that identifies the specificConnext application that generated the logmessage.

category The logging category of the message.
• For the MIDDLEWARE and SERVICE facilities, the category logically clas-
sifies messages with the same meaning across facilities. Valid values are Dis-
covery, Security, or a combination of both separated by a comma (for
example, Discovery,Security).

• For the SECURITY_EVENT facility, the category identifies the security plugin
class that generated the message. Valid values are Auth, Access, Crypto,
or Logging.

• The USER facility does not support categories.
If the logging category is not available for a log message of any facility, its value is
N/A. For example, this could happen for MIDDLEWARE log messages that are not
related to discovery or security.

plugin_class Only for messages with SECURITY_EVENT facility.
The standard plugin class name that originated the message, as defined in the OMG
‘DDS Security’ specification, version 1.2.
Here, the category label is just a more friendly name for these standard plugin
class names. Table 8.25 shows the relationship between the plugin class name and the
category.

8.4. Logs 138

https://grafana.com/docs/loki/latest/get-started/labels/
https://www.omg.org/spec/DDS-SECURITY/
https://www.omg.org/spec/DDS-SECURITY/

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 8.25: Relationship between plugin_class and category
Standard plugin class names Associated category
DDS:Auth:PKI-DH DDS:Auth:PSK
RTI:Auth

Auth

DDS:Access:Permissions DDS:Ac-
cess:PSK RTI:Access

Access

DDS:Crypto:AES-GCM-GMAC
DDS:Crypto:PSK RTI:Crypto

Crypto

DDS:Logging:DDS_LogTopic RTI:Log-
ging

Logging

RTI:Common N/A

Following are a few examples of how you could use log labels in Grafana Loki:

• Use the resource_guid label to query all the log messages generated by a specific Connext applica-
tion.

• Use the category label to query all the log messages related to discovery.

• Use the plugin_class label to query all the log messages related to authentication logged by the
Securıty Plugıns (RTI:Auth plugin class).

8.4.4 Collection and Forwarding Verbosity

Monitoring Library 2.0 has two verbosity settings:

• Collection verbosity controls the level of log messages an application generates.

• Forwarding verbosity controls the level of log messages an application forwards to the Observability
Collector Service (making the messages visible in the dashboard).

By default, Monitoring Library 2.0 only forwards error and warning log messages, even if the applications
generate more verbose logging. Forwarding messages at a higher verbosity for all applications may saturate the
network and the different Observability Framework components, such as Observability Collector Service and the
logging aggregation backend (for example, Grafana Loki).

Both the collection and forwarding verbosity can be set locally by changing the configuration of a Connext
application or remotely by sending a command.

Changing Verbosity Levels Locally

The collection level can be changed locally using the NDDS_Config_Logger_set_verbosity_by_category and
NDDS_Config_Logger_set_verbosity APIs for C or equivalent in other languages. You can also use the log-
ging XML tag under participant_factory_qos. The collection level can be changed at any time.

The forwarding level can be changed per facility using the participant_factory_qos.
monitoring.telemetry_data.logs.<facility>_forwarding_level field in the
MONITORING QosPolicy (DDS Extension). This QoS policy can be configured programmatically or

8.4. Logs 139

RTI Connext Observability Framework User's Manual, Version 7.3.0

via XML. When set programmatically using QoS, the forwarding level must be changed before theMonitoring
Library 2.0 is enabled.

Changing Verbosity Levels Remotely

The collection and forwarding levels can both be changed remotely. There are two methods available to send
remote commands:

• Using Observability Dashboards, as described in Change the Application Logging Verbosity

• Using the Collector Service REST API as described in the Collector Service REST API Reference.

The Observability Dashboards only allow setting the following Syslog levels: ERROR, WARNING, INFOR-
MATIONAL, and DEBUG. The Collector Service REST API allows you to set all the Syslog levels.

8.4. Logs 140

Chapter 9

Monitoring Library 2.0

RTI Monitoring Library 2.0 is one component of Connext Observability Framework. It allows collecting and
distributing telemetry data (metrics and logs) associated with the resources created by a DDS application. These
observable resources are DomainParticipants, Publishers, Subscribers, DataWriters, DataReaders, Topics, and
applications (refer to Resources). The library also accepts remote commands to change the set of collected and
forwarded telemetry data at runtime.

The data collected by Monitoring Library 2.0 is distributed to an Observability Collector Service instance. Ob-
servability Collector Service forwards the data to other Observability Collector Service instances, or stores it to
a third-party observability backend such as Prometheus or Grafana Loki.

Monitoring Library 2.0 is a separate library (rtimonitoring2); applications can use it in three different modes:

• Dynamically loaded: This is the default mode, which does not require linking with your application.
The only requirement is that the rtimonitoring2 shared library must be in the library search path. The
library is loaded when the monitoring library is enabled. See Enabling Monitoring Library 2.0.

• Dynamic Linking: The application is linked with the rtimonitoring2 shared library. When the applica-
tion runs, the rtimonitoring2 shared library must be in the library search path.

• Static Linking: The application is linked with the rtimonitoring2 static library.

The last two modes (dynamic and static linking) are only supported in C and C++ and require calling the API
RTI_Monitoring_initialize in your application before any other Connext APIs. This API is defined
in the header file ndds/monitoring/monitoring_monitoringClass.h.

Regardless of the mode, to start monitoring your application, enable monitoring as described in Enabling Mon-
itoring Library 2.0.

Monitoring Library 2.0 creates a dedicated Participant and uses three different built-in Topics to forward teleme-
try data to Observability Collector Service:

• Periodic: A best-effort Topic for distributing periodic metric data (for example,
dds_data_writer_protocol_pushed_samples_total). The data is sent periodically,
with a configurable period.

• Event: A reliable Topic for distributing event metric data (for example, dds_data_writer_live-
liness_lost_total). The data is sent when it changes.

141

RTI Connext Observability Framework User's Manual, Version 7.3.0

• Logging: A reliable Topic for distributing log data. The data is sent when a log event occurs.

The library creates one DomainParticipant and three DataWriters, one for each Topic type (periodic, event,
and logging). Each DataWriter is created within its own Publisher.

When Monitoring Library 2.0 is enabled for an application (participant_factory_qos.
monitoring.enable is TRUE), every DDS Entity created by the application will be “registered”
with the library as an observable resource. Monitoring Library 2.0 is able to monitor all DDS Entities across
multiple DomainParticipants. You can select the telemetry data that you want collected and forwarded for an
observable resource via an initial configuration, and/or change that data at runtime using remote commands. To
set the initial configuration for the collection of metrics inMonitoring Library 2.0, see Setting the Initial Metrics
and Log Configuration. To change metric collection configuration dynamically at runtime, use the REST API
as described in Collector Service REST API Reference. For an example of how to dynamically change the
metric collection configuration using the Observability Dashboards, see Change the Metric Configuration.

Monitoring Library 2.0 receives remote commands on the built-in ServiceRequest Topic. The Monitoring Li-
brary 2.0 DomainParticipant creates a DataReader for this Topic.

Note: You are not expected to use the built-in Topics directly in your applications. The builtin Topics are
internal channels between Monitoring Library 2.0 and Observability Collector Service.

To send remote commands, use the REST API (see Collector Service REST API Reference). This API sends
configuration commands to Observability Collector Service, which forwards the commands to the appropriate
Monitoring Library 2.0 instance.

To access the telemetry data, connect to the third-party backends where the data is stored by Observability Col-
lector Service. You can visualize the telemetry data through the reference Grafana dashboards (seeObservability
Dashboards).

9.1 Enabling Monitoring Library 2.0

To enable usage of Monitoring Library 2.0 and to configure its behavior, you have to use the MONITORING
QosPolicy (DDS Extension) on the DomainParticipantFactory and set participant_factory_qos.
monitoring.enable to true. This QoS policy can be configured programmatically or via XML. Next,
there is an example that shows how to enable Monitoring Library 2.0 in your XML configuration file:

<qos_library name="MyQosLibrary">
<qos_profile name="MyApplicationProfile" is_default_participant_factory_

→˓profile="true">
<participant_factory_qos>

<!-- Enable monitoring -->
<monitoring>

<enable>true</enable>
</monitoring>

</participant_factory_qos>
</qos_profile>

</qos_library>

9.1. Enabling Monitoring Library 2.0 142

RTI Connext Observability Framework User's Manual, Version 7.3.0

In a typical application, after enabling Monitoring Library 2.0, you can also configure which metrics to collect
from which resources; the DDS domain ID to use for observability; a name for the application being moni-
tored; and the locator (address), as an initial_peer, of the Observability Collector Service instance to which the
telemetry data will be forwarded. The following XML example shows how to configure these parameters:

<qos_library name="MyQosLibrary">
<qos_profile name="MyApplicationProfile" is_default_participant_factory_

→˓profile="true">
<participant_factory_qos>

<monitoring>
<!-- Enable monitoring -->
<enable>true</enable>
<!-- Enable all metrics -->
<telemetry_data>

<metrics>
<element>

<resource_selection>//*</resource_selection>
<enabled_metrics_selection>

<element>*</element>
</enabled_metrics_selection>

</element>
</metrics>

</telemetry_data>
<!-- Change the application name -->
<application_name>MyApplication</application_name>
<distribution_settings>

<dedicated_participant>
<!-- Change the Observability Domain ID -->
<domain_id>7</domain_id>
<!-- Change the initial peers of the

Observability DomainParticipant -->
<collector_initial_peers>

<element>192.168.1.2</element>
</collector_initial_peers>

</dedicated_participant>
</distribution_settings>

</monitoring>
</participant_factory_qos>

</qos_profile>
</qos_library>

Alternatively, you can use the snippet BuiltinQosSnippetLib::Feature.Monitoring2.
Enable in your XML configuration file. This snippet enables Monitoring Library 2.0 and all metrics for
collection and forwarding:

<qos_library name="MyQosLibrary">
<qos_profile name="MyApplicationProfile" is_default_participant_factory_

→˓profile="true">
<base_name>

<element>BuiltinQosSnippetLib::Feature.Monitoring2.Enable</
→˓element>

</base_name>

(continues on next page)

9.1. Enabling Monitoring Library 2.0 143

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
<participant_factory_qos>

<monitoring>
<application_name>MyApplication</application_name>
<distribution_settings>

<dedicated_participant>
<!-- Change the Observability Domain ID -->
<domain_id>7</domain_id>
<!-- Change the initial peers of the

Observability DomainParticipant -->
<collector_initial_peers>

<element>192.168.1.2</element>
</collector_initial_peers>

</dedicated_participant>
</distribution_settings>

</monitoring>
</participant_factory_qos>

</qos_profile>
</qos_library>

The MONITORING QosPolicy (DDS Extension) is changeable at runtime. This means that you can enable or
disable Monitoring Library 2.0 at runtime.

The following sections describe in detail the most common configuration options for Monitoring Library 2.0.
For a complete list of configuration options, refer to the MONITORING QosPolicy (DDS Extension).

9.2 Setting the Initial Metrics and Log Configuration

By default all metric collection is disabled, and all log forwarding is set to level WARNING. To configure
the initial behavior of telemetry data in Monitoring Library 2.0, you have to use the MONITORING QosPol-
icy (DDS Extension) on the DomainParticipantFactory and configure the participant_factory_qos.
monitoring.telemetry_data structure. This QoS policy can be configured programmatically or via
XML. For details on how to set the resource_selection fields, see Resource Pattern Definitions. For
details on how to set the enabled_metrics_selection and disabled_metrics_selection
fields, see Metric Pattern Definitions. The following example shows how to configure the initial metric and log
collection and forwarding for Monitoring Library 2.0 in your XML configuration file:

<qos_library name="MyQosLibrary">
<qos_profile name="MyApplicationProfile" is_default_participant_factory_

→˓profile="true">
<participant_factory_qos>

<monitoring>
<enable>true</enable>
<telemetry_data>

<metrics>
<element>

<!-- enable all application metrics -->
<resource_selection>/applications/*</resource_

→˓selection>

(continues on next page)

9.2. Setting the Initial Metrics and Log Configuration 144

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
<enabled_metrics_selection>

<element>*</element>
</enabled_metrics_selection>

</element>
<element>

<!-- enable all domain_participant metrics -->
<resource_selection>//domain_participants/*</

→˓resource_selection>
<enabled_metrics_selection>

<element>*</element>
</enabled_metrics_selection>

</element>
<element>

<!-- enable all topic metrics -->
<resource_selection>//topics/*</resource_

→˓selection>
<enabled_metrics_selection>

<element>*</element>
</enabled_metrics_selection>

</element>
<element>

<!-- enable all data_writer metrics except those␣
→˓that end in "_bytes" -->

<resource_selection>//data_writers/*</resource_
→˓selection>

<enabled_metrics_selection>
<element>*</element>

</enabled_metrics_selection>
<disabled_metrics_selection>

<element>dds_data_writer_*_bytes</element>
</disabled_metrics_selection>

</element>
<element>

<!-- enable all data_reader metrics except those␣
→˓related to "protocol" -->

<resource_selection>//data_readers/*</resource_
→˓selection>

<enabled_metrics_selection>
<element>*</element>

</enabled_metrics_selection>
<disabled_metrics_selection>

<element>dds_data_reader_protocol_*</element>
</disabled_metrics_selection>

</element>
</metrics>
<logs>

<!-- set initial MIDDLEWARE forwarding level to ERROR␣
→˓-->

<middleware_forwarding_level>ERROR</middleware_
→˓forwarding_level>

<!-- set initial SECURITY_EVENT forwarding level to␣
→˓ERROR -->

(continues on next page)

9.2. Setting the Initial Metrics and Log Configuration 145

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
<security_event_forwarding_level>ERROR</security_

→˓event_forwarding_level>
<!-- set initial SERVICE forwarding level to ERROR -->
<service_forwarding_level>ERROR</service_forwarding_

→˓level>
<!-- set initial USER forwarding level to ERROR -->
<user_forwarding_level>ERROR</user_forwarding_level>

</logs>
</telemetry_data>

</monitoring>
</participant_factory_qos>

</qos_profile>
</qos_library>

9.3 Setting the Application Name

To modify the application name used by Monitoring Library 2.0, use the participant_factory_qos.
monitoring.application_name field. For example:

<qos_library name="MyQosLibrary">
<qos_profile name="MyApplicationProfile" is_default_participant_factory_

→˓profile="true">
<participant_factory_qos>

<monitoring>
<enable>true</enable>
<application_name>MyApplication</application_name>

</monitoring>
</participant_factory_qos>

</qos_profile>
</qos_library>

Assigning an application name is important because it helps identify the resource that represents your Connext
application. The resource identifier representing the application will be:

/applications/<application_name>

This is the resource identifier that will be used to send commands to this application from the Observability
Dashboards.

The application_name should be unique across the Connext system; however, Monitoring Library 2.0 does not
currently enforce uniqueness.

When application_name is not set, Monitoring Library 2.0 will automatically assign a resource identifier with
this format:

/applications/<host_name:process_id:uuid>

9.3. Setting the Application Name 146

RTI Connext Observability Framework User's Manual, Version 7.3.0

9.4 Changing the Default Observability Domain ID

To modify the domain used by Monitoring Library 2.0’s DomainParticipant to connect to Observability Col-
lector Service, use the participant_factory_qos.monitoring.distribution_settings.
dedicated_participant.domain_id field. The default value is 2.

<qos_library name="MyQosLibrary">
<qos_profile name="MyApplicationProfile" is_default_participant_factory_

→˓profile="true">
<participant_factory_qos>

<monitoring>
<enable>true</enable>
<distribution_settings>

<dedicated_participant>
<domain_id>7</domain_id>

</dedicated_participant>
</distribution_settings>

</monitoring>
</participant_factory_qos>

</qos_profile>
</qos_library>

9.5 Configuring QoS for Monitoring Library 2.0 Entities

By default, the DDS entities created by Monitoring Library 2.0 use the built-in profile
BuiltinQosLib::Generic.Monitoring2 (as documented in <install dir>/resource/
resource/xml/BuiltinProfiles.documentationONLY.xml) to configure their QoS. You
can provide a different profile name (MyObservabilityProfile in the example below) for each entity
by changing the Monitoring QoS Policy. It is recommended that if you provide a different profile name,
you create this profile to inherit from the BuiltinQosLib::Generic.Monitoring2 profile. For
example:

<qos_library name="MyQosLibrary">
<qos_profile name="MyObservabilityProfile" base_name=

→˓"BuiltinQosLib::Generic.Monitoring2">
<domain_participant_qos>

<participant_name>
<!-- Change the name of the Observability

DomainParticipant
-->
<name>Monitoring Participant</name>

</participant_name>
</domain_participant_qos>

<datawriter_qos topic_filter="DCPSEventStatusMonitoring">
<publication_name>

<!-- Change the name of the Observability
Event DataWriter

-->
(continues on next page)

9.4. Changing the Default Observability Domain ID 147

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
<name>Monitoring Event DataWriter</name>

</publication_name>
</datawriter>

<datawriter_qos topic_filter="DCPSPeriodicStatusMonitoring">
<publication_name>

<!-- Change the name of the Observability
Periodic DataWriter

-->
<name>Monitoring Periodic DataWriter</name>

</publication_name>
</datawriter>

<datawriter_qos topic_filter="DCPSLoggingStatusMonitoring">
<publication_name>

<!-- Change the name of the Observability
Logging DataWriter

-->
<name>Monitoring Logging DataWriter</name>

</publication_name>
</datawriter>

</qos_profile>

<qos_profile name="MyApplicationProfile" is_default_participant_factory_
→˓profile="true">

<participant_factory_qos>
<monitoring>

<enable>true</enable>
<distribution_settings>

<dedicated_participant>
<!-- Change the configuration of the

Observability DomainParticipant -->
<participant_qos_profile_name>

MyQosLibrary::MyObservabilityProfile
</participant_qos_profile_name>

</dedicated_participant>
<!-- Change the configuration of the

Observability Publishers -->
<publisher_qos_profile_name>

MyQosLibrary::MyObservabilityProfile
</publisher_qos_profile_name>
<event_settings>

<!-- Change the configuration of the
Observability Event DataWriter -->

<datawriter_qos_profile_name>
MyQosLibrary::MyObservabilityProfile

</datawriter_qos_profile_name>
</event_settings>
<periodic_settings>

<!-- Change the configuration of the
Observability Periodic DataWriter -->

<datawriter_qos_profile_name>
(continues on next page)

9.5. Configuring QoS for Monitoring Library 2.0 Entities 148

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
MyQosLibrary::MyObservabilityProfile

</datawriter_qos_profile_name>
</periodic_settings>
<logging_settings>

<!-- Change the configuration of the
Observability Logging DataWriter -->

<datawriter_qos_profile_name>
MyQosLibrary::MyObservabilityProfile

</datawriter_qos_profile_name>
</logging_settings>

</distribution_settings>
</monitoring>

</participant_factory_qos>
</qos_profile>

</qos_library>

Note: The BuiltinQosLib::Generic.Monitoring2 profile disables the use of multicast discovery
by setting the <multicast_receive_addresses/> element for theMonitoring Library 2.0’s Domain-
Participant. Using multicast may lead to multiple Observability Collector Service instances receiving the same
data. Your applications (that is, each instance of Monitoring Library 2.0), should configure the address (ini-
tial_peer) of the Observability Collector Service that they connect to explicitly as described in Setting Collector
Service Initial Peers.

9.6 Setting Collector Service Initial Peers

To connectMonitoring Library 2.0 to Observability Collector Service, configure the library with the locator/ad-
dress of the Observability Collector Service via the Monitoring Library 2.0’s DomainParticipant initial peers
list. Set this list (usually just a single locator) using the participant_factory_qos.monitoring.
distribution_settings.dedicated_participant.collector_initial_peers field
in the Monitoring Library 2.0 XML QoS configuration. The locator/address of the collector service uses the
same format as the DISCOVERY QosPolicy (DDS Extension) initial_peers field.

<qos_library name="MyQosLibrary">
<qos_profile name="MyApplicationProfile" is_default_participant_factory_

→˓profile="true">
<participant_factory_qos>

<monitoring>
<enable>true</enable>
<distribution_settings>

<dedicated_participant>
<collector_initial_peers>

<element>192.168.1.2</element>
</collector_initial_peers>

</dedicated_participant>
</distribution_settings>

</monitoring>

(continues on next page)

9.6. Setting Collector Service Initial Peers 149

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
</participant_factory_qos>

</qos_profile>
</qos_library>

If collector_initial_peers is not specified, or if it is explicitly set to an empty
list, Monitoring Library 2.0 will use the value set in the domain_participant_qos.
discovery.initial_peers of the QoS profile specified by participant_factory_qos.
monitoring.distribution_settings.dedicated_participant.
participant_qos_profile_name as the initial peers for the Monitoring Library 2.0’s Domain-
Participant.

If both values are present, the value in collector_initial_peers in the Monitoring QosPolicy will be
used instead of the value of initial_peers in the Discovery QosPolicy for the Monitoring Library 2.0’s
DomainParticipant.

9.6. Setting Collector Service Initial Peers 150

Chapter 10

Collector Service REST API Reference

Observability Collector Service scalably distributes telemetry data forwarded by Monitoring Library 2.0 in a
Connext application and sends it to configurable backends. A key feature of Observability Collector Service is
remote command forwarding to the Connext applications. These commands enable you to control the amount
of telemetry data forwarded by Monitoring Library 2.0 from a Connext application.

This REST API reference describes the remote commands provided by Observability Collector Service. These
commands enable you to:

• get the current logging collection and forwarding verbosity levels for applications

• dynamically change the logging collection and forwarding verbosity levels for applications

• get the current metric collection configuration for observable resources

• dynamically configure the set of metrics collected and forwarded for observable resources

10.1 Definitions

The REST API commands in the following sections share the following common fields:

application

• The application field is a Uniform Resource Identifier (URI) that identifies an application in responses
to commands that get logging verbosity levels. For details on this Uniform Resource Identifier (URI) see
the Application row in Table 8.1.

application_selector

• The application_selector field is a resource selector that identifies one ormore applications in commands
that set logging verbosity levels. For details on specifying a resource selector for application_selector
see Resource Pattern Definitions.

resource_selector

• The resource_selector field is a resource selector that identifies one or more observable resources in a
command. For details on specifying a resource_selector see Resource Pattern Definitions.

151

RTI Connext Observability Framework User's Manual, Version 7.3.0

logging_settings

• The logging_settings field is a list of objects that specify the logging level for different facilities within
an application. Each object in the list has two properties:

– verbosity levels can be SILENT, DEBUG, INFORMATIONAL, NOTICE, WARNING, ERROR,
CRITICAL, ALERT, EMERGENCY.

– facility can be MIDDLEWARE, SERVICE, SECURITY_EVENT or USER.

Note that all verbosity levels may not be supported in the Observability Dashboards. See Logs for details
on logging in Observability Framework.

metrics

• The metrics field is a list of metric names in responses to commands that get metric subscription state.
For details on metric names, see Metrics.

subscribe_metrics_selector

• The subscribe_metrics_selector is a list of metric names to subscribe to. For details on how to specify
metric selectors in a subscribe_metrics_selector list, see Metric Pattern Definitions.

unsubscribe_metrics_selector

• The unsubscribe_metrics_selector field is a list of metric names to unsubscribe to. For details on how
to specify metric selectors in a unsubscribe_metrics_selector list, see Metric Pattern Definitions.

10.2 Root endpoint (base URL)

The root endpoint for the Observability Collector Service REST API is the URL of the Observability Col-
lector Service. It is the base URL for all the commands in this reference. For example: https://
collector_service:19080.

The hostname and port number of the Observability Collector Service service can be configured as follows:

• For pre-packaged installations (see Docker Compose (Prepackaged)), the Host and Port information of
the Collector Service can be configured using the following parameters in the configuration JSON file (see
Configure the JSON File):

– collectorConfig.controlPublicHostname

– collectorConfig.controlPublicPort

• For standalone deployments of Collector Service (see Docker (Separate Deployment)), the Host and Port
information can be configured using two environment variables in the Collector Service Docker image
(see the Docker Collector Service Repository):

– OBSERVABILITY_CONTROL_PUBLIC_HOSTNAME

– OBSERVABILITY_CONTROL_PUBLIC_PORT

In addition, the root endpoint for the Observability Collector Service REST API is also part of the label con-
trollability_url, which is associated with each application’s presence metric (see Application Metrics).

10.2. Root endpoint (base URL) 152

https://hub.docker.com/r/rticom/collector-service

RTI Connext Observability Framework User's Manual, Version 7.3.0

This is useful when you have multiple Observability Collector Service instances storing data into a metrics
backend (for example, Prometheus), and you want to dynamically discover the Observability Collector Service
instance that is managing a particular application to send remote commands to it.

10.3 API Overview

Resource Operation Description
logging GET /rti/collector_service/rest1/log-

ging:get_collection_level
Get the collection logging level.

GET /rti/collector_service/rest1/log-
ging:get_forwarding_level

Get the forwarding logging level.

POST /rti/collector_service/rest1/log-
ging:set_collection_level

Set the collection logging level.

POST /rti/collector_service/rest1/log-
ging:set_forwarding_level

Set the forwarding logging level.

metrics GET /rti/collector_service/rest1/met-
rics:get_subscription_state

Get the metrics subscription state.

POST /rti/collector_service/rest1/met-
rics:set_subscription_state

Set the metrics subscription state.

POST /rti/collector_service/rest1/metrics:up-
date_subscription_state

Update the metrics subscription
state.

10.4 API Reference

GET /rti/collector_service/rest1/logging:get_collection_level

This method gets the collection verbosity level of a given application_selector.

Request Headers

• Authorization – The authorization header is used to authenticate the user. The value
of the header is the user’s credentials encoded in base64. The format is “Basic
<base64 encoded username:password>”.

Query Parameters

• application_selector –

– Description: The application_selector to get the collection verbosity level.

– Type: string

– Required: true

– Example: //app_*

10.3. API Overview 153

https://www.rfc-editor.org/rfc/rfc7235#section-4.2

RTI Connext Observability Framework User's Manual, Version 7.3.0

GET http://.../rti/collector_service/rest1/
→˓logging:get_collection_level?application_selector=/
→˓/app_* HTTP/1.1

Response Headers

• Content-Length – Transfer-length of the message-body.

• Content-Type – Valid values: application/dds-web+json.

Status Codes

• 200 OK –

– Description: If successful, this method returns the collection verbosity level for
the applications that matched the application_selector.

–Example Response Body:

∗ application/dds-web+json

1 [
2 {
3 "application": "/applications/app_1",
4 "logging_settings": [
5 {
6 "verbosity": "WARNING",
7 "facility": "MIDDLEWARE"
8 },
9 {
10 "verbosity": "ERROR",
11 "facility": "SERVICE"
12 }
13]
14 },
15 {
16 "application": "/applications/app_2",
17 "logging_settings": [
18 {
19 "verbosity": "WARNING",
20 "facility": "MIDDLEWARE"
21 },
22 {
23 "verbosity": "ERROR",
24 "facility": "SERVICE"
25 }
26]
27 }
28]

• 400 Bad Request –

– Description: In case of an invalid input, this method returns a response body
with the error code and a message.

10.4. API Reference 154

https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

RTI Connext Observability Framework User's Manual, Version 7.3.0

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 404 Not Found –

– Description: The application is not found or does not match any application.

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 500 Internal Server Error –

– Description: Generic server error.

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

GET /rti/collector_service/rest1/logging:get_forwarding_level

This method gets the forwarding verbosity level of a given application_selector.

Request Headers

• Authorization – The authorization header is used to authenticate the user. The value
of the header is the user’s credentials encoded in base64. The format is “Basic
<base64 encoded username:password>”.

Query Parameters

• application_selector –

– Description: The application_selector to get the forwarding verbosity level.

– Type: string

– Required: true

– Example: app_1

10.4. API Reference 155

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.rfc-editor.org/rfc/rfc7235#section-4.2

RTI Connext Observability Framework User's Manual, Version 7.3.0

GET http://.../rti/collector_service/rest1/
→˓logging:get_forwarding_level?application_
→˓selector=app_1 HTTP/1.1

Response Headers

• Content-Length – Transfer-length of the message-body.

• Content-Type – Valid values: application/dds-web+json.

Status Codes

• 200 OK –

– Description: If successful, this method returns the forwarding verbosity level for
the applications that matched the application_selector.

–Example Response Body:

∗ application/dds-web+json

1 [
2 {
3 "application": "/applications/app_1",
4 "logging_settings": [
5 {
6 "verbosity": "WARNING",
7 "facility": "MIDDLEWARE"
8 },
9 {
10 "verbosity": "ERROR",
11 "facility": "SERVICE"
12 }
13]
14 }
15]

• 400 Bad Request –

– Description: In case of an invalid input, this method returns a response body
with the error code and a message.

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 404 Not Found –

– Description: The application_selector is not found or does not match any appli-
cation.

10.4. API Reference 156

https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

RTI Connext Observability Framework User's Manual, Version 7.3.0

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 500 Internal Server Error –

– Description: Generic server error.

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

POST /rti/collector_service/rest1/logging:set_collection_level

This method sets the collection logging level of a given application_selector.

Request Headers

• Content-Length – Transfer-length of the message-body.

• Content-Type – Valid values: application/json, application/
dds-web+json.

• Authorization – The authorization header is used to authenticate the user. The value
of the header is the user’s credentials encoded in base64. The format is “Basic
<base64 encoded username:password>”.

Example Request Body

• application/dds-web+json

1 [
2 {
3 "application_selector": "//app_1",
4 "logging_settings": [
5 {
6 "verbosity": "WARNING",
7 "facility": "MIDDLEWARE"
8 },
9 {
10 "verbosity": "ERROR",
11 "facility": "SERVICE"
12 }
13]
14 },
15 {

(continues on next page)

10.4. API Reference 157

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
16 "application_selector": "//GUID(AAAAAAAA.

→˓BBBBBBBB.CCCCCCCC.DDDDDDDD)",
17 "logging_settings": [
18 {
19 "verbosity": "WARNING",
20 "facility": "MIDDLEWARE"
21 },
22 {
23 "verbosity": "ERROR",
24 "facility": "SERVICE"
25 }
26]
27 }
28]

Response Headers

• Content-Length – Transfer-length of the message-body.

• Content-Type – Valid values: application/dds-web+json.

Status Codes

• 204 No Content –

– Description: If successful, this method returns an empty response indicating the
collection verbosity level has been set.

• 400 Bad Request –

– Description: In case of an invalid input, this method returns a response body
with the error code and a message.

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 404 Not Found –

– Description: The application_selector is not found or does not match any appli-
cation.

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

10.4. API Reference 158

https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

RTI Connext Observability Framework User's Manual, Version 7.3.0

• 500 Internal Server Error –

– Description: Generic server error.

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

POST /rti/collector_service/rest1/logging:set_forwarding_level

This method sets the Forwarding logging level of a given application_selector.

Request Headers

• Content-Length – Transfer-length of the message-body.

• Content-Type – Valid values: application/json, application/
dds-web+json.

• Authorization – The authorization header is used to authenticate the user. The value
of the header is the user’s credentials encoded in base64. The format is “Basic
<base64 encoded username:password>”.

Example Request Body

• application/dds-web+json

1 [
2 {
3 "application_selector": "//app_1",
4 "logging_settings": [
5 {
6 "verbosity": "WARNING",
7 "facility": "MIDDLEWARE"
8 },
9 {
10 "verbosity": "ERROR",
11 "facility": "SERVICE"
12 }
13]
14 }
15]

Response Headers

• Content-Length – Transfer-length of the message-body.

• Content-Type – Valid values: application/dds-web+json.

Status Codes

• 204 No Content –

10.4. API Reference 159

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

RTI Connext Observability Framework User's Manual, Version 7.3.0

– Description: If successful, this method returns an empty response indicating the
collection verbosity level has been set.

• 400 Bad Request –

– Description: In case of an invalid input, this method returns a response body
with the error code and a message.

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 404 Not Found –

– Description: The application_selector is not found or does not match any appli-
cation.

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 500 Internal Server Error –

– Description: Generic server error.

– Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

GET /rti/collector_service/rest1/metrics:get_subscription_state

This method gets the metrics subscription state of a given resource_selector.

Request Headers

• Authorization – The authorization header is used to authenticate the user. The value
of the header is the user’s credentials encoded in base64. The format is “Basic
<base64 encoded username:password>”.

Query Parameters

• resource_selector –

10.4. API Reference 160

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.rfc-editor.org/rfc/rfc7235#section-4.2

RTI Connext Observability Framework User's Manual, Version 7.3.0

– Description: The resource_selector to get the metrics subscription state.

– Type: string

– Required: true

– Example: //resource_1

GET http://.../rti/collector_service/rest1/
→˓metrics:get_subscription_state?resource_selector=//
→˓resource_1 HTTP/1.1

Response Headers

• Content-Length – Transfer-length of the message-body.

• Content-Type – Valid values: application/dds-web+json.

Status Codes

• 200 OK –

– Description: If successful, this method returns the metrics subscription state for
the resources that matched the resource_selector. The list of metrics returned for
each resource is enabled for collection.

–Example Response Body:

∗ application/dds-web+json

1 [
2 {
3 "resource": "//resource_1",
4 "metrics": [
5 "dds_data_writer_protocol_received_

→˓nack_bytes_total",
6 "dds_data_writer_protocol_pulled_

→˓samples_total",
7 "dds_data_writer_protocol_sent_

→˓heartbeats_total"
8]
9 }
10]

• 400 Bad Request –

– Description: In case of an invalid input, this method returns a response body
with the error code and a message.

–Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

10.4. API Reference 161

https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

RTI Connext Observability Framework User's Manual, Version 7.3.0

• 404 Not Found –

– Description: The resource_selector is not found or does not match any resource.

–Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 500 Internal Server Error –

– Description: Generic server error.

–Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

POST /rti/collector_service/rest1/metrics:set_subscription_state

This method sets the metrics subscription state of a given resource_selector. The metric names provided
in “subscribe_metric_selectors” are enabled for collection and distribution for the selected resource. All
other metrics on the selected resource are disabled.

If no metrics match the provided selectors, no error is returned.

Request Headers

• Content-Length – Transfer-length of the message-body.

• Content-Type – Valid values: application/json, application/
dds-web+json.

• Authorization – The authorization header is used to authenticate the user. The value
of the header is the user’s credentials encoded in base64. The format is “Basic
<base64 encoded username:password>”.

Example Request Body

• application/dds-web+json

1 [
2 {
3 "resource_selector": "//GUID(AAAAAAAA.BBBBBBBB.

→˓CCCCCCCC.EEEEEEEE)",
4 "subscribe_metrics_selectors": [
5 "dds_data_writer_protocol_received_nack_

→˓bytes_total",
6 "dds_data_writer_protocol_pulled_samples_

(continues on next page)

10.4. API Reference 162

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
→˓total",

7 "dds_data_writer_protocol_sent_heartbeats_
→˓total"

8]
9 }
10]

Response Headers

• Content-Length – Transfer-length of the message-body.

• Content-Type – Valid values: application/dds-web+json.

Status Codes

• 204 No Content –

– Description: If successful, this method returns an empty response indicating the
metrics subscription state has been set.

• 400 Bad Request –

– Description: In case of an invalid input, this method returns a response body
with the error code and a message.

–Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 404 Not Found –

– Description: The resource_selector is not found or does not match any resource.

–Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 500 Internal Server Error –

– Description: Generic server error.

–Example Response Body:

∗ application/dds-web+json

10.4. API Reference 163

https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

RTI Connext Observability Framework User's Manual, Version 7.3.0

1 {
2 "code": "...",
3 "message": "..."
4 }

POST /rti/collector_service/rest1/metrics:update_subscription_state

This method updates the metrics subscription state of a given resource_selector. The metric names
provided in “subscribe_metric_selectors” are enabled for collection and distribution for the selected re-
source. The metric names provided in “unsubscribe_metric_selectors” are disabled for collection and
distribution for the selected resource. The “subscribe_metric_selectors” list is applied before the “un-
subscribe_metric_selectors” list. It a metric is in both lists it will be disabled.

If no metrics match the provided selectors, no error is returned.

Request Headers

• Content-Length – Transfer-length of the message-body.

• Content-Type – Valid values: application/json, application/
dds-web+json.

• Authorization – The authorization header is used to authenticate the user. The value
of the header is the user’s credentials encoded in base64. The format is “Basic
<base64 encoded username:password>”.

Example Request Body

• application/dds-web+json

1 [
2 {
3 "resource_selector": "//GUID(01234567.89ABCDEF.

→˓01234567.89ABCDEF)",
4 "subscribe_metrics_selectors": [
5 "dds_data_writer_protocol_received_nack_

→˓bytes_total",
6 "dds_data_writer_protocol_sent_heartbeats_

→˓total"
7],
8 "unsubscribe_metrics_selectors": [
9 "dds_data_writer_protocol_pulled_samples_

→˓total"
10]
11 }
12]

Response Headers

• Content-Length – Transfer-length of the message-body.

• Content-Type – Valid values: application/dds-web+json.

Status Codes

• 204 No Content –

10.4. API Reference 164

https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

RTI Connext Observability Framework User's Manual, Version 7.3.0

– Description: If successful, this method returns an empty response indicating the
metrics subscription state has been set.

• 400 Bad Request –

– Description: In case of an invalid input, this method returns a response body
with the error code and a message.

–Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 404 Not Found –

– Description: The resource_selector is not found or does not match any resource.

–Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

• 500 Internal Server Error –

– Description: Generic server error.

–Example Response Body:

∗ application/dds-web+json

1 {
2 "code": "...",
3 "message": "..."
4 }

10.4. API Reference 165

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Chapter 11

Observability Dashboards

Observability Dashboards enable you to visualize the telemetry data collected from Connext applications. Using
a set of customized Grafana dashboards, this Observability Framework component provides a visual reference
for the logs and metrics configured for collection in Monitoring Library 2.0.

This section describes the custom Grafana dashboards provided in Observability Dashboards. All of these
dashboards are based on the current time period selected, the last hour by default.

11.1 System Status Dashboards

System Status dashboards group alerts by category to provide an overview of your system’s health. These
dashboards share common display elements and show related status information.

Table 11.1: System Status Dashboards
Dashboard Name Description
Alert Home Displays the overall system health. This dashboard displays the high-level

status of the aggregated error metrics that make up the alert categories
Bandwidth, Saturation,Data Loss, System Errors, andDelays, as well
as the state of system logs.

Alert Bandwidth Displays the state of the raw error metrics related to Bandwidth.
Alert Saturation Displays the state of the raw error metrics related to Saturation.
Alert Data Loss Displays the state of the raw error metrics related to Data Loss.
Alert System Errors Displays the state of the raw error metrics related to detected DDS System

Errors.
Alert Delays Displays the state of the raw errormetrics related toDelays in data delivery.

166

RTI Connext Observability Framework User's Manual, Version 7.3.0

11.1.1 System Status Dashboard Common Elements

All System Status dashboards have two common display elements:

• Status bar. At the top of each System Status dashboard, a set of panels displays the number of DDS
system logs received and the number of hosts, Connext applications, DomainParticipants, DataReaders,
DataWriters, and Topics reported to currently exist in the system. The number in each panel indicates the
number of entities known to exist at the end of the current selected time period. Each panel is a button
that allows you to easily navigate to a dashboard that lists all the related entities found in the system. For
example, to see a list of all existing DataWriters, click the DataWriters panel.

• Time series chart. Under the status bar, a line chart displays the history of each active DDS entity,
or observable resource. Each resource is represented by a line in the chart showing the history of the
creation and destruction of each observable resource. You can select/deselect resources in the legend to
view a subset of the resources on the chart.

11.1.2 Alert Home Dashboard

The Alert Home dashboard is the home dashboard for visualizing system status. This dashboard shows the
current status of each alert category and the system logs. For more information on the alert categories, see
Aggregated Error Metrics.

Select the Home command at the top left to return to the Alert Home dashboard from any other dashboard.

In addition to the common display elements noted in System Status Dashboard Common Elements, the Alert
Home dashboard includes:

• A row for each alert category that displays the current and historical state for the selected time period.
Each System Status row is made up of two panels:

– A status panel on the left indicates the state (OK or Error) of the alert category. The
panels represent a roll up of all errors that occurred over the selected time period. If
a failure condition occurred during the time period, a red Error displays in the status
panel. If no failures occurred, the panel is green and displays OK. For more detail
about a category, select the appropriate status panel to open a dashboard for the selected
category.

– A state timeline panel that shows the historical state of the alert category. The state time-
line spans the time period selected and indicates any failure conditions on the timeline

11.1. System Status Dashboards 167

RTI Connext Observability Framework User's Manual, Version 7.3.0

in red; otherwise the timeline is green. The timeline is aligned with the time series line
chart near the top of the dashboard. This alignment makes it easier to detect a corre-
lation between the creation and destruction of observable resources and possible error
conditions.

• A row for each log message type that displays the current and historical state for the selected time period.
Each System Status row is made up of two panels:

– A status panel on the left indicates the current number of logs of the for each log type.
The panels represent a roll up of the number of logs that occurred over the selected
time period. If logs occurred during the time period, the number of logs displays in red;
otherwise, the panel is green. For more details about a log type, select the appropriate
status panel to open a dashboard for the selected log type.

– A state timeline panel that shows the historical state of the log type. The state timeline
spans the time period selected and indicates any log occurrences on the timeline in red;

11.1. System Status Dashboards 168

RTI Connext Observability Framework User's Manual, Version 7.3.0

otherwise the timeline is green. The timeline is aligned with the time series chart for
observable resources near the top of the dashboard. This alignment makes it easier to
detect a correlation between the creation and destruction of observable resources and
possible logs.

11.1.3 Alert Category Dashboards

Alert Category dashboards provide detailed status information and all associated raw error metrics for a single
alert category. These dashboards show the current state of each of the raw error metrics associated with an
alert category. For more information, see Aggregated Error Metrics and Raw Error Metrics.

To access, select the associated alert category status panel on the Alert Home dashboard. For example, to open
the Alert Bandwidth dashboard, click the Bandwidth status panel.

In addition to the common display elements noted in System Status Dashboard Common Elements, the Alert
Category dashboards include a row for each of the raw error metrics that make up the selected alert category.
The rows are logically grouped by the associated Connext entities (application,DomainParticipant,DataReader,
DataWriter, and Topic). Each row is made up of two panels:

• A status panel on the left indicates the state (OK or Error) of the raw error metric. The panels represent
a roll up of all errors that occurred over the selected time period. If a failure condition occurred, a red
Error displays in the status panel. If no failures occurred, the panel is green and displaysOK. For more
details about a raw error metric, select the appropriate status panel to open an Entity List dashboard that
lists all resources containing the raw error metric.

• A state timeline panel that shows the historical state of the raw error metric. The state timeline spans the
time period selected and indicates any failure conditions on the timeline in red; otherwise, the timeline
is green. The timeline is aligned with the time series line chart near the top of the dashboard. This
alignment makes it easier to detect a correlation between the creation and destruction of observable
resources and possible error conditions.

11.1. System Status Dashboards 169

RTI Connext Observability Framework User's Manual, Version 7.3.0

11.2 Entity List Dashboards

Entity List dashboards provide a list of the current observable resources that match the selected entity type.

Table 11.2: Entity List Dashboards
Dashboard Name Description
Host List Displays the list of unique Hosts (by name) found in the system
Application List Displays the list of Connext applications found in the system
Participant List Displays the list of DomainParticipants found in the system
DataReader List Displays the list of DataReaders found in the system
DataWriter List Displays the list of DataWriters found in the system
Topic List Displays the list of Topics found in the system

To access an Entity List dashboard, select the desired entity count panel on the status bar at the top of any
System Status or Log dashboard.

All Entity List dashboards have the following common display elements:

• A single table panel that lists all observable resources of the selected type. The table columns display
associated metadata for each resource.

• A link for each resource that opens the Entity Status dashboard for the selected resource.

11.2. Entity List Dashboards 170

RTI Connext Observability Framework User's Manual, Version 7.3.0

11.3 Entity Status List Dashboards

Entity Status List dashboards list the observable resources that contain the selected raw error metric, and the
status of that metric for each resource.

Table 11.3: Entity Status List Dashboards
Dashboard Name Description
Alert Application Status List Displays the list of Connext applications found in the system, plus the status

of the associated raw error metric for the panel that sent you here.
Alert Participant Status List Displays the list of DomainParticipants found in the system, plus the status

of the associated raw error metric for the panel that sent you here.
Alert DataReader Status List Displays the list of DataReaders found in the system, plus the status of the

associated raw error metric for the panel that sent you here.
Alert DataWriter Status List Displays the list of DataWriters found in the system, plus the status of the

associated raw error metric for the panel that sent you here.
Alert Topic Status List Displays the list of Topics found in the system, plus the status of the asso-

ciated raw error metric for the panel that sent you here.

To access an Entity Status List dashboard, select a raw error metric status panel on any of the Alert Category
dashboards. For example, select the Pulled Samples status panel on the Alert Bandwidth dashboard to open
the Alert DataWriter Status List dashboard.

All Entity Status List dashboards have the following common display elements:

• A single table panel that lists all observable resources that contain the selected raw error metric. The
table columns display associated metadata for each resource. The Status column indicates the current
status (OK or Error) of each raw error metric.

• A link for each resource that opens the Entity Status dashboard for the selected resource.

11.4 Entity Status Dashboards

Entity Status dashboards provide telemetry metadata and historical charts for a single observable resource.

11.3. Entity Status List Dashboards 171

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 11.4: Entity Status Dashboards
Dashboard Name Description
Alert Application Status Displays the metadata for a Connext application instance and historical

charts of selected raw metrics for this observable resource.
Alert Participant Status Displays the metadata for a DomainParticipant instance and historical

charts of selected raw metrics for this observable resource.
Alert DataReader Status Displays the metadata for a DataReader instance and historical charts of

selected raw metrics for this observable resource.
Alert DataWriter Status Displays the metadata for a DataWriter instance and historical charts of

selected raw metrics for this observable resource.
Alert Topic Status Displays the metadata for a Topic instance and historical charts of selected

raw metrics for this observable resource.

To access an Entity Status dashboard, select any of the following:

• A resource link in an Entity Status dashboard. For example, select a DataReader Name link on the Alert
DataReader Status List dashboard.

• A resource link in an Entity List dashboard. For example, select a DataWriter Name link on the
DataWriter List dashboard.

• A resource link in the resource name of an Entity List dashboard. For example, select the DomainPar-
ticipant on an Alert DataWriter Status dashboard.

• A log message link in the Log Dashboard (will access the associated Alert Application Status dashboard).

All Entity Status dashboards have the following common display elements:

• A panel indicating the resource name.

• A group of panels displaying metadata associated with the resource.

• Panels providing the number of logs associated with the resource. These panels are buttons that allow
you to navigate to the Entity Log dashboard for the current resource.

• One or more metric configuration panels that allow you to navigate to the relevant Metric Control dash-
boards.

• [Alert Application Status only] Panels that display the current log collection and forwarding verbosity for
each log category. See Logs for more information on logs.

• [Alert Application Status only] A panel that allows you to navigate to the Log Control dashboard.

11.4. Entity Status Dashboards 172

RTI Connext Observability Framework User's Manual, Version 7.3.0

11.4. Entity Status Dashboards 173

RTI Connext Observability Framework User's Manual, Version 7.3.0

11.5 Log Dashboards

Log dashboards list the logs generated by the system.

Table 11.5: Log Dashboards
Dashboard Name Description
Log Dashboard Displays all logs in the system and provides filtering by log level, facility,

category, application, and ad hoc text.
Application Entity Log Dash-
board

Displays logs for a Connext application instance and provides filtering by
log level, facility, category, and ad hoc text.

Participant Entity Log Dash-
board

Displays logs for aDomainParticipant instance and provides filtering by log
level, facility, category, and ad hoc text.

DataReader Entity Log Dash-
board

Displays logs for a DataReader instance and provides filtering by log level,
facility, category, and ad hoc text.

DataWriter Entity Log Dash-
board

Displays logs for a DataWriter instance and provides filtering by log level,
facility, category, and ad hoc text.

All Log dashboards have the following common display elements:

• A set of dropdown menus that enable you to select one or more filter criteria. The available filters include
Log Level, Log Facility, Category, Application, and Text Search.

• A set of entity count panels that provide the current number ofConnext applications,DomainParticipants,
DataReaders, andDataWriters. Each panel displays the number of active entities at the end of the selected
time period. Click any entity count panel to open an Entity List dashboard.

11.5.1 Log Dashboard

The Log Dashboard displays all of the log messages generated by the system.

To access the Log dashboard, select any of the log status panels (Total System Logs, Warnings, Errors, or
Security) on the Alert Home dashboard. Log dashboard data is filtered based on how you accessed it. For
example, select theWarnings status panel on the Alert Home dashboard to open the Log dashboard with the
WARNING log level filter in place.

The Log Dashboard has the following display elements:

11.5. Log Dashboards 174

RTI Connext Observability Framework User's Manual, Version 7.3.0

• A panel that displays the list of logs in the system that pass the current filter criteria.

• For each log line, several columns of associated data including Time, Facility, Category, Log Level, Plug
In Class (for Security logs), and the Message. The message column is a link that navigates to the Alert
Application Status dashboard for the Connext application that generated the message.

11.5.2 Entity Log Dashboards

Entity Log dashboards display all log messages generated by the system for a specific resource. To access an
Entity Log Dashboard select any of the log panels on an Entity Status dashboard.

All Entity Log dashboards have the following common display elements:

• A group of panels displaying metadata associated with the resource.

• A panel that lists all logs in the system that pass the current filter criteria. Each log line has several
columns of associated data including Time, Facility, Category, Log Level, Plug In Class (for Security
logs), and the Message.

11.6 Control Dashboards

Control dashboards enable you to dynamically configure the amount of telemetry data collected and forwarded.

11.6. Control Dashboards 175

RTI Connext Observability Framework User's Manual, Version 7.3.0

11.6.1 Log Control Dashboard

The Log Control dashboard enables you to dynamically configure the log collection and forwarding verbosity
for a single Connext application instance. Configuring the verbosity levels of an application affects the number
of logs generated and/or forwarded by that application.

To access the Log Control dashboard, select theConfigure Log Verbosity panel on anyAlert Application Status
dashboard.

The Log Control dashboard has the following display elements:

• A status bar indicating the URL of the Observability Collector Service Control Server and the status
(AVAILABLE/NOT AVAILABLE).

– AVAILABLE. The dashboard is connected to the Observability Collector Service Control Server
and can send metric configuration commands.

– NOTAVAILABLE. The dashboard is NOT connected to the Observability Collector Service Con-
trol Server.

• A panel that allows you to change the log collection verbosity for each category. The collection verbosity
affects the logs that the application generates and passes to the Monitoring Library 2.0.

• A panel that allows you to change the log forwarding verbosity for each category. The forwarding ver-
bosity controls what logs are forwarded by the Monitoring Library 2.0 to the Observability Collector
Service (and subsequently stored in a backend and viewable in a dashboard).

11.6.2 Metric Control Dashboards

Metric Control dashboards enable you to configure the collection and forwarding of metric data.

Single Entity Metric Control Dashboards

Single Metric Control dashboards enable you to configure the collection and forwarding of metric data for a
single observable resource. See Change the Metric Configuration for a usage example.

11.6. Control Dashboards 176

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 11.6: Single Entity Metric Control Dashboards
Dashboard Name Description
Application Metrics Enables you to dynamically change the metric collection and forwarding

configuration for a single Connext application instance.
Participant Metrics Enables you to dynamically change the metric collection and forwarding

configuration for a single DomainParticipant instance.
DataReader Metrics Enables you to dynamically change the metric collection and forwarding

configuration for a single DataReader instance.
DataWriter Metrics Enables you to dynamically change the metric collection and forwarding

configuration for a single DataWriter instance.
Topic Metrics Enables you to dynamically change the metric collection and forwarding

configuration for a single Topic instance.

To access a Single Entity Metric Control dashboard, select theConfigure [Entity] Metrics panel on any Entity
Status dashboard that matches the current entity type. For example, select Configure Participant Metrics on
an Alert Participant Status dashboard.

All Single Entity Metric Control dashboards have the following common display elements:

• A status bar indicating the URL of the Observability Collector Service Control Server and the status
(AVAILABLE/NOT AVAILABLE).

– AVAILABLE. The dashboard is connected to the Observability Collector Service Control Server
and can send metric configuration commands.

– NOTAVAILABLE. The dashboard is NOT connected to the Observability Collector Service Con-
trol Server.

• A panel that shows the collection state (Enable/Disable) for each resource metric. Clicking Enable or
Disable sends that command to the Observability Collector Service to enable or disable the collection
state.

11.6. Control Dashboards 177

RTI Connext Observability Framework User's Manual, Version 7.3.0

Multiple Entity Metric Control Dashboards

Multiple Metric Control dashboards enable you to configure the collection and forwarding of metric data for
all observable resources contained by another resource (for example, all DataReaders of a DomainParticipant).
See Change the Metric Configuration for a usage example.

Table 11.7: Multiple Entity Metric Control Dashboards
Dashboard Name Description
Participant Metrics Multi Enables you to dynamically change the metric collection and forwarding

configuration for allDomainParticipant instances of a Connext application.
DataReader Metrics Multi Enables you to dynamically change the metric collection and forwarding

configuration for all DataReader instances of the current resource. A re-
source can be a Connext application or DomainParticipant.

DataWriter Metrics Multi Enables you to dynamically change the metric collection and forwarding
configuration for all DataWriter instances of the current resource. A re-
source can be a Connext application or DomainParticipant.

Topic Metrics Multi Enables you to dynamically change the metric collection and forwarding
configuration for all Topic instances of the current resource. A resource
can be a Connext application or DomainParticipant.

To access a Multiple Entity Metric Control dashboard, select the appropriate Configure [Entity] Metrics
panel on any Entity Status dashboard that is a hierarchical parent of entities. For example, select Configure
DataWriter Metrics on either an Alert Application Status dashboard or an Alert Participant Status dashboard.

All Multiple Entity Metric Control dashboards have the following display elements:

• A status bar indicating the URL of the Observability Collector Service Control Server and the status
(AVAILABLE/NOT AVAILABLE).

– AVAILABLE. The dashboard is connected to the Observability Collector Service Control Server
and can send metric configuration commands.

– NOTAVAILABLE. The dashboard is NOT connected to the Observability Collector Service Con-
trol Server.

• A panel that allows you to explicitly Enable or Disable the collection and forwarding of the selected
metric. This selection affects all observable resources of the current resource regardless of the current
collection state.

• A panel that shows the collection state (Enabled/Disabled/Partial) for each metric of the resource type.

– Enabled. The metric is enabled for all resources in the container resource.

– Disabled. The metric is disabled for all resources in the container resource.

– Partial. Some contained resources have the metric enabled and some have it disabled.

• A panel that lists all observable resources that will be affected by configuration changes. Each entry in
the list links to the Single Entity Metric Control dashboard for the selected resource.

11.6. Control Dashboards 178

RTI Connext Observability Framework User's Manual, Version 7.3.0

11.6. Control Dashboards 179

Chapter 12

Troubleshooting Observability Framework

This section provides solutions for issues you may run into while evaluating Observability Framework.

12.1 Docker Container[s] Failed to Start

The Docker containers used by Observability Framework can fail to start for a variety of reasons. Two common
reasons for this are port conflicts or illegal file permissions. To verify the state of these Docker containers, run
the Docker command docker ps -a.

An example that shows all Docker containers used by Observability Framework have successfully started is
shown below.

CONTAINER ID IMAGE COMMAND ␣
→˓ CREATED STATUS NAMES
6651d7ed9810 prom/prometheus:v2.37.5 "/bin/prometheus --c…"␣
→˓ 5 minutes ago Up 5 minutes prometheus_observability
25050d16b1b5 grafana/grafana-enterprise:9.2.1-ubuntu "/run.sh" ␣
→˓ 5 minutes ago Up 5 minutes grafana_observability
08611ea9b255 rticom/collector-service:<version> "/rti_connext_dds-7.…"␣
→˓ 5 minutes ago Up 5 minutes collector_service_observability
55568de5120f grafana/loki:2.7.0 "/usr/bin/loki --con…"␣
→˓ 5 minutes ago Up 5 minutes loki_observability

An example that shows a container that has failed to start is shown below. The failure is indicated by the
Restarting note in the STATUS column. In this example, the prometheus-observability con-
tainer failed to start and repeatedly tried to restart.

CONTAINER ID IMAGE COMMAND ␣
→˓ CREATED STATUS NAMES
08f75e0fadb2 prom/prometheus:v2.37.5 "/bin/prometheus --c…"␣
→˓ 5 minutes ago Restarting (1) 27 seconds ago prometheus_observability
9a3964b561ec grafana/loki:2.7.0 "/usr/bin/loki --con…"␣
→˓ 5 minutes ago Up 5 minutes loki_observability
b6a6ffa201f3 rticom/collector-service:<version> "/rti_connext_dds-7.…"␣
→˓ 5 minutes ago Up 5 minutes collector_service_

(continues on next page)

180

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
→˓observability
26658f76cfdc grafana/grafana-enterprise:9.2.1-ubuntu "/run.sh" ␣
→˓ 5 minutes ago Up 5 minutes grafana_observability

To determine why a container failed, examine its log file. To generate the log, run the Docker command
docker logs <container-name>where <container_name> is specified in the NAMES column,
as shown above.

12.1.1 Check for Port Conflicts

Run docker logs <container-name> to generate the logs for the failed container, then look for a
port conflict error. An example of a Prometheus port conflict is shown below.

ts=2023-03-14T13:12:29.275Z caller=web.go:553 level=info component=web msg=
→˓"Start listening for connections" address=0.0.0.0:9090
ts=2023-03-14T13:12:29.275Z caller=main.go:786 level=error msg="Unable to␣
→˓start web listener" err="listen tcp 0.0.0.0:9090: bind: address already in␣
→˓use"

If you discover port conflicts, perform the following steps to resolve the issue.

1. Remove the existing Observability Workspace. See Removing the Docker Workspace for Observability
Framework for details on how to remove the workspace.

2. Update the JSON configuration files to configure ports. See Configuring the Docker Workspace for Ob-
servability Framework for details on how to update the port configuration for the failed container.

3. Run <installdir>/bin/rtiobservability -c <JSON config> to recreate the
Obervability Workspace with the new port configuration.

4. Run <installdir>/bin/rtiobservability -i to create and run the Docker containers
with the new port configuration.

12.1.2 Check that You Have the Correct File Permissions

Run docker logs <container-name> to generate the logs for the failed container, then look for a file
permissions error. An example of a file permissions problem is shown below.

ts=2023-03-14T22:21:47.666Z caller=main.go:450 level=error msg="Error loading␣
→˓config (--config.file=/etc/prometheus/prometheus.yml)" file=/etc/prometheus/
→˓prometheus.yml err="open /etc/prometheus/prometheus.yml: permission denied"

Docker containers for Observability Framework require the other permission to be “read/access” for direc-
tories, “read” for files. To resolve a file permission problem, ensure Linux permissions of at least:

• 755 (rwxr-xr-x) for directories

• 444 (r–r–r–) for files

12.1. Docker Container[s] Failed to Start 181

RTI Connext Observability Framework User's Manual, Version 7.3.0

12.2 No Data in Dashboards

Before proceeding, make sure all Docker containers for Observability Framework are running properly (see
Docker Container[s] Failed to Start) and that you have started your applications with Monitoring Library 2.0
enabled (see Monitoring Library 2.0).

12.2.1 Check that Collector Service has Discovered Your Applications

1. Run one or more applications configured with Monitoring Library 2.0.

2. Open a browser to <servername>:<port>/metrics, where servername is the server where
Observability Collector Service is installed and port is the port number for the Observability Collector
Service Prometheus Client port (19090 is the default).

3. Verify that you have data for the dds_domain_participant_presence metric for your appli-
cation(s) as highlighted below.

HELP exposer_transferred_bytes_total Transferred bytes to metrics services
TYPE exposer_transferred_bytes_total counter
exposer_transferred_bytes_total 65289
HELP exposer_scrapes_total Number of times metrics were scraped
TYPE exposer_scrapes_total counter
exposer_scrapes_total 60
HELP exposer_request_latencies Latencies of serving scrape requests, in␣
→˓microseconds
TYPE exposer_request_latencies summary
exposer_request_latencies_count 60
exposer_request_latencies_sum 25681
exposer_request_latencies{quantile="0.5"} 316
exposer_request_latencies{quantile="0.9"} 522
exposer_request_latencies{quantile="0.99"} 728
TYPE dds_domain_participant_presence gauge
dds_domain_participant_presence{guid="AC462E9B.9BB5237C.DBB61B21.80B55CD8",
→˓owner_guid="F8824B73.10EBC319.4ACD1E47.9ECB3033",dds_guid="010130C4.
→˓C84EFC6D.973810C6.000001C1",domain_id="57",platform="x64Linux4gcc7.3.0",
→˓product_version="<version>",name="/applications/SensorSubscriber/domain_
→˓participants/Temperature DomainParticipant",hostname="presanella",process_
→˓id="458392"} 1 1678836129957
dds_domain_participant_presence{guid="291C3B07.34755D99.608E7BF3.1F6546D9",
→˓owner_guid="566D1E8D.5D7CBFD4.DD65CC20.C33D56E9",dds_guid="0101416F.
→˓425D03B2.8AC75FC8.000001C1",domain_id="57",platform="x64Linux4gcc7.3.0",
→˓product_version="<version>",name="/applications/SensorPublisher_2/domain_
→˓participants/Temperature DomainParticipant",hostname="presanella",process_
→˓id="458369"} 1 1678836129957
dds_domain_participant_presence{guid="1D5929EC.4FB3CAE4.300F0DB0.C553A54F",
→˓owner_guid="D2FD6E87.D8C03AAA.EABFB1F8.E941495B",dds_guid="0101FBDA.
→˓551F142B.619EE527.000001C1",domain_id="57",platform="x64Linux4gcc7.3.0",
→˓product_version="<version>",name="/applications/SensorPublisher_1/domain_
→˓participants/Temperature DomainParticipant",hostname="presanella",process_
→˓id="458346"} 1 1678836129957

12.2. No Data in Dashboards 182

RTI Connext Observability Framework User's Manual, Version 7.3.0

If there is no metric data available, you will see data as shown below with metric documentation only, but no
metric data.

HELP exposer_transferred_bytes_total Transferred bytes to metrics services
TYPE exposer_transferred_bytes_total counter
exposer_transferred_bytes_total 4017
HELP exposer_scrapes_total Number of times metrics were scraped
TYPE exposer_scrapes_total counter
exposer_scrapes_total 4
HELP exposer_request_latencies Latencies of serving scrape requests, in␣
→˓microseconds
TYPE exposer_request_latencies summary
exposer_request_latencies_count 4
exposer_request_latencies_sum 2510
exposer_request_latencies{quantile="0.5"} 564
exposer_request_latencies{quantile="0.9"} 621
exposer_request_latencies{quantile="0.99"} 621
TYPE dds_domain_participant_presence gauge
TYPE dds_domain_participant_udpv4_usage_in_net_pkts_period_ms gauge
TYPE dds_domain_participant_udpv4_usage_in_net_pkts_count gauge
TYPE dds_domain_participant_udpv4_usage_in_net_pkts_mean gauge
TYPE dds_domain_participant_udpv4_usage_in_net_pkts_min gauge
TYPE dds_domain_participant_udpv4_usage_in_net_pkts_max gauge
TYPE dds_domain_participant_udpv4_usage_in_net_bytes_period_ms gauge
TYPE dds_domain_participant_udpv4_usage_in_net_bytes_count gauge
TYPE dds_domain_participant_udpv4_usage_in_net_bytes_mean gauge
TYPE dds_domain_participant_udpv4_usage_in_net_bytes_min gauge
TYPE dds_domain_participant_udpv4_usage_in_net_bytes_max gauge
TYPE dds_domain_participant_udpv4_usage_out_net_pkts_period_ms gauge
TYPE dds_domain_participant_udpv4_usage_out_net_pkts_count gauge
TYPE dds_domain_participant_udpv4_usage_out_net_pkts_mean gauge
TYPE dds_domain_participant_udpv4_usage_out_net_pkts_min gauge
TYPE dds_domain_participant_udpv4_usage_out_net_pkts_max gauge
TYPE dds_domain_participant_udpv4_usage_out_net_bytes_period_ms gauge
TYPE dds_domain_participant_udpv4_usage_out_net_bytes_count gauge
TYPE dds_domain_participant_udpv4_usage_out_net_bytes_mean gauge
TYPE dds_domain_participant_udpv4_usage_out_net_bytes_min gauge
TYPE dds_domain_participant_udpv4_usage_out_net_bytes_max gauge
TYPE dds_domain_participant_udpv6_usage_in_net_pkts_period_ms gauge
TYPE dds_domain_participant_udpv6_usage_in_net_pkts_count gauge
TYPE dds_domain_participant_udpv6_usage_in_net_pkts_mean gauge
TYPE dds_domain_participant_udpv6_usage_in_net_pkts_min gauge
TYPE dds_domain_participant_udpv6_usage_in_net_pkts_max gauge
TYPE dds_domain_participant_udpv6_usage_in_net_bytes_period_ms gauge
TYPE dds_domain_participant_udpv6_usage_in_net_bytes_count gauge
TYPE dds_domain_participant_udpv6_usage_in_net_bytes_mean gauge
TYPE dds_domain_participant_udpv6_usage_in_net_bytes_min gauge
TYPE dds_domain_participant_udpv6_usage_in_net_bytes_max gauge
TYPE dds_domain_participant_udpv6_usage_out_net_pkts_period_ms gauge
TYPE dds_domain_participant_udpv6_usage_out_net_pkts_count gauge
TYPE dds_domain_participant_udpv6_usage_out_net_pkts_mean gauge
TYPE dds_domain_participant_udpv6_usage_out_net_pkts_min gauge
TYPE dds_domain_participant_udpv6_usage_out_net_pkts_max gauge

(continues on next page)

12.2. No Data in Dashboards 183

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
TYPE dds_domain_participant_udpv6_usage_out_net_bytes_period_ms gauge
TYPE dds_domain_participant_udpv6_usage_out_net_bytes_count gauge
TYPE dds_domain_participant_udpv6_usage_out_net_bytes_mean gauge
TYPE dds_domain_participant_udpv6_usage_out_net_bytes_min gauge
TYPE dds_domain_participant_udpv6_usage_out_net_bytes_max gauge

If you see metric documentation lines only, verify that your applications are configured to use the same Ob-
servability domain as Observability Collector Service (2 is the default).

If your applications are run on a machine other than the one hosting Observability Collector Service, ensure that
collector_initial_peers for the Monitoring Library 2.0 configuration in each application is config-
ured with the IP address where Observability Collector Service is running.

For more information on configuring Monitoring Library 2.0 for your application, see Monitoring Library 2.0.

12.2.2 Check that Prometheus can Access Collector Service

Open a browser to <servername>:<port> where servername is the server where Prometheus is in-
stalled and port is the port number for the Prometheus Server (9090 is the default).

Select the Status > Targets menu to view configured targets as shown below.

A Prometheus Server with all healthy targets is shown below.

A Prometheus Server with an unhealthy Collector Service is shown below. Note the DOWN indication for the
state of the dds target.

If Collector Service is shown as DOWN, check the following:

• Collector Service is running.

• The Endpoint URL for Collector Service is correct (including port).

12.2. No Data in Dashboards 184

RTI Connext Observability Framework User's Manual, Version 7.3.0

12.2. No Data in Dashboards 185

RTI Connext Observability Framework User's Manual, Version 7.3.0

• Examine the Error to see if there is another cause being reported.

12.2.3 Check that Grafana can Access Prometheus

Note: These steps can only be performed as a Grafana Admin user. The Grafana images in this section were
generated with Grafana version 10.1.4. If you are using a different version of Grafana, the details might be
slightly different.

In Observability Dashboards, click the hamburger menu and select Connections > Data source.

Select the “Prometheus” data source.

Scroll down and click Test to ensure that Grafana has connectivity with the Prometheus server.

If the test passes, the following message is displayed.

If the test fails, the following message is displayed.

If the Prometheus Data Source connectivity test fails, check the following:

• The Prometheus Server is running.

• The HTTP URL matches your Prometheus server URL (including port).

• Examine the error response to debug the connection.

12.2.4 Check that Grafana can Access Loki

Note: These steps can only be performed as a Grafana Admin user. The Grafana images in this section were
generated with Grafana version 10.1.4. If you are using a different version of Grafana, the details might be
slightly different.

In Observability Dashboards, click the hamburger menu and select Connections > Data source.

Select the Loki data source.

Scroll down and click Test to ensure that Grafana has connectivity with the Loki server.

If the test passes, the following message is displayed.

If the test fails, the following message is displayed.

If the Loki Data Source connectivity test fails, check the following:

• The Loki Server is running.

• The HTTP URL matches your Loki server URL (including port).

• Examine the error response to debug the connection.

12.2. No Data in Dashboards 186

RTI Connext Observability Framework User's Manual, Version 7.3.0

12.2. No Data in Dashboards 187

RTI Connext Observability Framework User's Manual, Version 7.3.0

12.2. No Data in Dashboards 188

RTI Connext Observability Framework User's Manual, Version 7.3.0

12.2. No Data in Dashboards 189

RTI Connext Observability Framework User's Manual, Version 7.3.0

12.2. No Data in Dashboards 190

RTI Connext Observability Framework User's Manual, Version 7.3.0

12.2. No Data in Dashboards 191

RTI Connext Observability Framework User's Manual, Version 7.3.0

12.2. No Data in Dashboards 192

RTI Connext Observability Framework User's Manual, Version 7.3.0

12.2. No Data in Dashboards 193

RTI Connext Observability Framework User's Manual, Version 7.3.0

12.2. No Data in Dashboards 194

Chapter 13

Glossary

Table 13.1: Observability Glossary
Term Definition
Observability The ability to determine a system’s current state based on the telemetry data it gener-

ates, such as logs and metrics, so that you can figure out what’s going on and quickly
determine the root cause of problems you may not have been able to anticipate.

Application
Telemetry

The automated process used to remotely collect measurements and other types of data
that describe application status. The data is sent from applications to observability
backends for analysis to improve system performance.

Telemetry Data The data generated and forwarded by the Application Telemetry process, including all
logs, metrics, events, and traces that are created by the applications.

OpenTelemetry An open-source CNCF (Cloud Native Computing Foundation) project that provides a
collection of tools, vendor-neutral APIs, and SDKs for capturing metrics, distributed
traces, and logs from applications. Formed from the merger of the OpenCensus and
OpenTracing projects, OpenTelemetry resolves the problem of integration with dif-
ferent observability backend technologies.

195

Chapter 14

Release Notes

Connext Observability Framework uses telemetry data to help identify and resolve potential issues in Connext
applications. This product is not installed as part of a Connext package; it must be downloaded and installed
separately, as described in Installing and Running Observability Framework.

Important: Observability Framework is an experimental product that includes example configuration files
for use with several third-party components (Prometheus, Grafana Loki, and Grafana). This release is an
evaluation distribution; use it to explore the new observability features that support Connext applications.

Do not deploy any Observability Framework components in production.

14.1 Supported Platforms

See Supported Platforms, in the RTI Connext Core Libraries Release Notes.

14.2 Compatibility

Connext Observability Framework is an optional product released with RTI Connext 7.2.0.

The current Observability Framework release is not compatible with Connext 7.1.0. This release works only
with Connext 7.2.0 AND 7.3.0.

196

RTI Connext Observability Framework User's Manual, Version 7.3.0

14.3 Supported Docker Compose Environments

The Observability Framework package enables you to deploy and run Observability Collector Service and
third-party components NGINX, OpenTelemetry Collector, Prometheus, Grafana Loki, and Grafana, using
Docker Compose in a single Linux host. The host can run on a Virtual Machine (VM); in this release, we have
tested the following combinations:

Table 14.1: Tested VM/OS Combinations
Host Architecture/OS VM Architecture/OS VM
x86 Windows x86 Ubuntu VirtualBox
x86 Mac x86 Ubuntu Parallels
x86 Ubuntu None None

Important: The Docker Compose distribution uses “host” networking that only works on Linux hosts; it is
not supported on Docker Desktop for Mac, Docker Desktop for Windows, or Docker EE for Windows Server.

Windows virtualization technologies such asWSL,WSL2, and Hyper-V also do not support “host” networking.
Running Observability Framework using Docker Compose in these environments will not work.

14.4 What’s New in 7.3.0 LTS

Observability Framework is an experimental product included with Connext 7.3.0 LTS, a long-term support
release that is built upon and combines all of the features in releases 7.1.0 and 7.2.0 (see Previous Releases).
See the Connext Releases page on the RTI website for more information on RTI’s software release model.

Note: For what’s new in Monitoring Library 2.0, see the Connext Core Libraries Release Notes.

14.4.1 Enhanced control of entities distributed across various Collector Service
instances

Observability Collector Service now adds a new label, controllability_url, to the presence
metrics of the applications that it monitors; for example, controllability_url: 'https://
localhost:19098'. This label contains the Host and Port that should be used to send commands to
the applications and their resources using the Collector Service REST API (see the Collector Service REST API
Reference). The label takes into account whether HTTPS is enabled in the Collector Service configuration.

The new label is useful when using multiple Collector Service instances to monitor the different applications. It
allows you to send commands to the applications and their resources using the REST API without knowing the
Collector Service instance that is monitoring the application.

For pre-packaged installations, the Host and Port information of the Collector Service can be configured using
the following parameters in the configuration JSON file:

14.3. Supported Docker Compose Environments 197

https://www.rti.com/products/connext-releases

RTI Connext Observability Framework User's Manual, Version 7.3.0

• collectorConfig.controlPublicHostname

• collectorConfig.controlPublicPort

For more information, see Configure the JSON File.

For standalone deployments, the Host and Port information can be configured using two new environment
variables in the Collector Service Docker image:

• OBSERVABILITY_CONTROL_PUBLIC_HOSTNAME

• OBSERVABILITY_CONTROL_PUBLIC_PORT

For more information, see RTI’s Docker Collector Service Repository.

14.4.2 New REST API in Collector Service to control telemetry data collection and
distribution

This release introduces a REST API in Collector Service that allows controlling the telemetry data collection
and distribution at run-time. The REST API includes commands to:

• get the current logging collection and forwarding verbosity levels for applications

• dynamically change the logging collection and forwarding verbosity levels for applications

• get the current metric collection configuration for observable resources

• dynamically configure the set of metrics collected and forwarded for observable resources

For more details on how to use these endpoints, see Collector Service REST API Reference.

14.4.3 Support for more flexible Observability Framework deployments

The Collector Service Docker image exposes additional environment variables and configuration parameters
that allow more flexible deployments of the Observability Framework components.

When running the Observability Framework components standalone, you can now specify the following envi-
ronment variables:

• Loki hostname to send data to a Loki server on a remote host

• OTel hostname to send data to an OTel collector on a remote host

• RWT hostname to specify the Collector Service public address when using Real-Time WAN Transport

• Collector Service control public hostname and port to specify the public ac-
cess to the Collector Service control server when it is deployed behind a NAT or load balancer

Additionally, you can provide the security artifacts independently for all HTTP servers and clients created
by Collector Service. For details on the Collector Service standalone deployment, see the Docker (Separate
Deployment) section.

When running the prepackaged Docker Compose installation included in the Observability Framework host
package, you can now specify the RWT hostname and Collector Service control public

14.4. What’s New in 7.3.0 LTS 198

https://hub.docker.com/r/rticom/collector-service

RTI Connext Observability Framework User's Manual, Version 7.3.0

hostname and port environment variables. The prepackaged installation deploys the Loki and OTel col-
lectors on the same node, so there is no need to specify these as remote hosts. For details on the prepackaged
installation, see the Docker Compose (Prepackaged) section.

14.4.4 Control which metrics are collected

Previously, every observable resource (DomainParticipant, Publisher, DataReader, etc.) was, by default, sub-
scribed to all available metrics for that resource when it was registered.

Starting in release 7.3.0, all metric collection is disabled by default. You can control which metrics are collected
using one or both of the following methods:

• Configure the initial set of metrics a resource is subscribed to using theMonitoring QosPolicy. For details
and an example, see Setting the Initial Metrics and Log Configuration.

• Dynamically configure metric collection via Observability Dashboards during run time. For details and
an example, see Change the Metric Configuration.

14.4.5 New Syslog facilities provide expanded log management

Previously, Observability Framework only managed log messages produced by the Connext Core and API li-
braries, in accordance with the Syslog Protocol facility 23 (middleware). The framework retrieved and
set the collection and forwarding verbosities for this facility.

In this release, these capabilities have been implemented for three additional facilities: 10 (secu-
rity_event), 22 (service), and 1 (user).

• The security_event facility applies to messages generated by RTI Connext Security Plugins that are
defined as security events by the DDS Secure standard.

• The service facility applies to messages generated by Connext Infrastructure Services: Routing Ser-
vice, Recording Service, Cloud Discovery Service, andWeb Integration Service.

• The user facility applies to messages generated by the User logging API. For details, see Logs.

14.4.6 New logging category and plugin class labels enable more precise
third-party backend queries

Starting in release 7.3.0, every logmessage pushed byObservability Framework to a logging third-party backend
(for example, Grafana Loki) contains a new label representing the logging category the message belongs to. If
the logging category is not available for a message , its value will be N/A.

Each message belonging to the security_event facility also includes a label indicating the standard
plugin class name that originated the message, as defined in the OMG ‘DDS Security’ specification. For
example, DDS:Auth:PKI-DH, DDS:Access:Permissions, DDS:Crypto:AES-GCM-GMAC, or
DDS:Logging:DDS_LogTopic. The logging category is just a friendly name for these standard plugin
class names.

The logging categories and plugin classes (when available) are also displayed in the provided Grafana Dash-
boards.

14.4. What’s New in 7.3.0 LTS 199

https://www.omg.org/spec/DDS-SECURITY/

RTI Connext Observability Framework User's Manual, Version 7.3.0

For details about the new labels, see Log Labels.

14.4.7 Updated dashboards support enhanced logging and dynamicmetric control

Observability Dashboards have been updated to provide a cleaner interface and support new Observability
Framework features. These updates include:

• Dynamic metric control

• Enhanced logging capabilities

– Visualization of new new log metadata

∗ facilities (USER, SERVICE, SECURITY_EVENT)

∗ categories

∗ plugin classes

– Ability to dynamically control log generation and forwarding for all Syslog facilities

• GUI improvements

– Entity history chart

– Larger metric charts

– Updated queries

– Alerting for enabled metrics

For more information, see Observability Dashboards.

14.4.8 Name change for some observability metrics

This release changes the following metric name prefixes associated with Connext entities. For details about all
available metrics, see Metrics.

Old Metric Name Prefix New Metric Name Prefix
dds_participant_* dds_domain_particpant_*

dds_datareader_* dds_data_reader_*

dds_datawriter_* dds_data_writer_*

14.4. What’s New in 7.3.0 LTS 200

RTI Connext Observability Framework User's Manual, Version 7.3.0

14.4.9 Third-party software upgrades

Observability Collector Service

The following third-party software used by Observability Collector Service has been upgraded:

Table 14.2: Third-Party Software Upgrades (Collector Service)
Third-Party Software Previous Version Current Version
OpenTelemetry C++ 1.9.1 1.13.0
OpenSSL 3.0.9 3.0.12

Docker containers for Observability Collector Service

The following third-party software used by the Docker containers created byObservability Framework has been
upgraded:

Table 14.3: Third-Party Software Upgrades (Docker Containers)
Third-Party Software Previous Version Current Version
Prometheus 2.37.8 2.45.1
Grafana 9.5.3 10.1.4
Grafana Loki 2.8.2 2.8.5
OpenTelemetry Collector Contrib 0.80.0 0.91.0

For information on third-party software used by Connext products, see the “3rdPartySoftware” documents in
your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_3rdparty.

Warning: All third-party software is subject to third-party license terms and conditions. IT IS YOUR
RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES
WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

14.5 What’s Fixed in 7.3.0 LTS

This section describes bugs fixed in Observability Framework 7.3.0 LTS. These are fixes applied since 7.2.0.
For information on what was fixed in releases 7.0.0, 7.1.0, and 7.2.0, which are also part of 7.3.0 LTS, see
Previous Releases.

Note: For what’s fixed in Monitoring Library 2.0, see the Connext Core Libraries Release Notes.

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

14.5. What’s Fixed in 7.3.0 LTS 201

RTI Connext Observability Framework User's Manual, Version 7.3.0

14.5.1 Crashes

[Critical] Observability Collector Service could crash when an application was discovered

When Observability Collector Service discovers an application, Monitoring Library 2.0 sends a special sample
with information about the discovered application, such as the logging configuration, process ID, and host name.

Normally, this information is sent in a single sample, but it could potentially be split into more than one sample.
If, due to timing, the process ID or the host name was sent in a separate sample from the logging configuration,
Observability Collector Service accessed a null pointer which led to a crash due to an invalid condition check.

[RTI Issue ID OCA-307]

14.5.2 Vulnerabilities

[Critical] Potential out of memory error when using Curl 8.1.2

Observability Collector Service had a third-party dependency on Curl 8.1.2, which is known to be affected by
a number of publicly disclosed vulnerabilities. These vulnerabilities have been fixed by upgrading Curl to the
latest stable version, 8.5.0.

User impact without security

This vulnerability impacts Connext 7.2.0 applications using Observability Collector Service, as follows:

• Exploitable by streaming an endless series of headers to the application using Curl.

• The application could run out of memory.

• CVSS Base Score: 7.5 HIGH

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

User impact with security

Same as “User Impact without Security,” above.

[RTI Issue ID OCA-303]

14.5. What’s Fixed in 7.3.0 LTS 202

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

RTI Connext Observability Framework User's Manual, Version 7.3.0

[Critical] Potential deletion of HSTS data when using Curl 8.1.2

Observability Collector Service had a third-party dependency on Curl 8.1.2, which is known to be affected by
a number of publicly disclosed vulnerabilities. These vulnerabilities have been fixed by upgrading Curl to the
latest stable version, 8.5.0.

User impact without security

This vulnerability impacts Connext 7.2.0 applications using the Observability Collector Service, as follows:

• When saving HSTS data to an excessively long file name, Curl could end up removing all contents.

• Making subsequent requests using that file unaware of the HSTS status they should otherwise use.

• CVSS Base Score: 5.3 MEDIUM

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

User impact with security

Same as “User Impact without Security,” above.

[RTI Issue ID OCA-324]

14.6 Previous Releases

14.6.1 What’s New in 7.2.0

Observability Collector Service compatible with Monitoring Library 2.0

All the DomainParticipants from Collector Service are correctly detected using Monitoring Library 2.0 and
Observability Framework.

To activate Monitoring Library 2.0 in Collector Service, run the service from a folder with a file named
USER_QOS_PROFILES.xml and the following content:

<?xml version="1.0"?>
<dds>

<qos_library name="MonitoringEnabledLibrary">
<qos_profile name="MonitoringEnabledProfile" is_default_participant_

→˓factory_profile="true">
<participant_factory_qos>

<monitoring>
<enable>true</enable>

</monitoring>
</participant_factory_qos>

</qos_profile>

(continues on next page)

14.6. Previous Releases 203

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

RTI Connext Observability Framework User's Manual, Version 7.3.0

(continued from previous page)
</qos_library>

</dds>

For more information about using XML QoS profiles, see How to Load XML-Specified QoS Settings, in the
RTI Connext Core Libraries User’s Manual

Support for most observability backends with OpenTelemetry integration

Previously, Observability Framework only allowed storing metrics in a Prometheus time-series database and
logs in a Grafana Loki log aggregator. This release adds support for sending telemetry data (metrics and logs)
to an OpenTelemetry Collector, providing a way to store the telemetry data in other third-party observability
backends.

Support for Observability Collector Service security

Starting with RTI Connext 7.2.0, Collector Service can be secured using the Securıty Plugıns to communicate
with Monitoring Library 2.0. (see Secured communications between Monitoring Library 2.0 and Observability
Collector Service). Collector Service can also use BASIC-Auth over HTTPS to secure the telemetry data sent
to the observability backends and the remote commands received from Observability Dashboards.

For additional details, see Support for RTI Observability Framework in the RTI Security Plugins User’s Manual.

Name change from “RTI Observability Library” to “RTI Monitoring Library 2.0”

For details, see RTI Connext Core Libraries What’s New in 7.2.0.

Name change for some Observability metrics

This release changes the name of some metrics associated with Connext entities.

This change applies to the following eight metrics. See theMetrics section of this user manual for details about
all available metrics.

14.6. Previous Releases 204

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p4_integrations/observability_framework.html#support-for-rti-observability-heading

RTI Connext Observability Framework User's Manual, Version 7.3.0

Table 14.4: Metric Name Changes
Old Metric Name New Metric Name
dds_application_process_utiliza-
tion_memory_usage_resident_mem-
ory_bytes

dds_application_process_mem-
ory_usage_resident_memory_bytes

dds_application_process_utiliza-
tion_memory_usage_virtual_mem-
ory_bytes

dds_application_process_mem-
ory_usage_virtual_memory_bytes

dds_datawriter_reliable_cache_un-
acknowledged_samples

dds_datawriter_reliable_cache_un-
ack_samples

dds_datawriter_reliable_cache_un-
acknowledged_samples_peak

dds_datawriter_reliable_cache_un-
ack_samples_peak

dds_datawriter_reliable_cache_re-
placed_unacknowledged_samples_to-
tal

dds_datawriter_reliable_cache_re-
placed_unack_samples_total

dds_datareader_cache_old_source_times-
tamp_dropped_samples_total

dds_datareader_cache_old_source_ts_dropped_sam-
ples_total

dds_datareader_cache_tol-
erance_source_times-
tamp_dropped_samples_total

dds_datareader_cache_toler-
ance_source_ts_dropped_sam-
ples_total

dds_datareader_cache_sam-
ples_dropped_by_instance_replace-
ment_total

dds_datareader_cache_sam-
ples_dropped_by_instance_re-
placed_total

Secured communications between Monitoring Library 2.0 and Observability Collector Ser-
vice

For details, see RTI Security Plugins What’s New in 7.2.0.

Ability to set initial forwarding verbosity in MONITORING QoS policy

For details, see RTI Connext Core Libraries What’s New in 7.2.0.

Ability to set collector initial peers in MONITORING QoS policy

For details, see RTI Connext Core Libraries What’s New in 7.2.0.

14.6. Previous Releases 205

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/release_notes/RTI_Security_Plugins_ReleaseNotes.pdf#whats_new/720/whats_new_720.html

RTI Connext Observability Framework User's Manual, Version 7.3.0

Third-Party software changes

Observability Framework

The following third-party software is now used by the scripts that configure Observability Framework:

Table 14.5: Observability Framework Third-Party Software
Changes

Third-Party Software Version
bcrypt 4.0.1
Jinja2 3.0.0

Observability Collector Service

The following third-party software used by Observability Collector Service has been upgraded:

Table 14.6: Collector Service Third-Party Software Upgrades
Third-Party Software Previous Version Current Version
CivetWeb 1.15 1.16
OpenTelemetry C++ 1.4.1 1.9.1

Docker containers for Observability Collector Service

The following third-party software is now used by the Docker containers created by Observability Framework:

Table 14.7: Third-Party Software Changes (Docker Containers)
Third-Party Software Version
NGINX 1.24.0
OpenTelemetry Collector 0.80.0

The following third-party software used by the Docker containers created by Observability Framework have
been upgraded:

Table 14.8: Third-Party Software Upgrades (Docker Containers)
Third-Party Software Previous Version Current Version
Prometheus 2.37.5 2.37.8
Grafana 9.2.1 9.5.3
Grafana Loki 2.7.0 2.8.2

For information on third-party software used by Connext products, see the “3rdPartySoftware” documents in
your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_3rdparty.

14.6. Previous Releases 206

RTI Connext Observability Framework User's Manual, Version 7.3.0

Warning: All third-party software is subject to third-party license terms and conditions. IT IS YOUR
RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES
WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

14.6.2 What’s Fixed in 7.2.0

To review any fixes applied to Monitoring Library 2.0, see What’s Fixed in 7.2.0, in the RTI Connext Core
Libraries Release Notes.

Collector Service might have crashed on startup

Collector Service could have crashed on startup if something failed in the initialization of one of its components.
This happened because the clean-up method called after the failure accessed invalid memory. Before the crash,
error messages appeared in the RTI_MonitoringForwarder_initialize function.

For example, the initialization would fail if either the event_datareader_qos, log-
ging_datareader_qos, or periodic_datareader_qos of the input_connection were
configured with inconsistent QoS.

This issue is resolved.

[RTI Issue ID OCA-226]

Controllability issues on applications with same name

When multiple monitored applications shared the same application name, the exit of one of these applications
could disrupt control of the remaining ones. This issue also occurred when a monitored application was closed
ungracefully and then restarted. This issue has been fixed; now, the GUID of the application is also considered
when an application is accessed using its name.

[RTI Issue ID OCA-224]

Unhandled exceptions may have caused segmentation fault

Observability Collector Service was not handling exceptions in the destructor; if an exception occurred, this
issue may have led to a segmentation fault at the time of destruction. This issue has been fixed.

[RTI Issue ID OCA-289]

14.6. Previous Releases 207

RTI Connext Observability Framework User's Manual, Version 7.3.0

Race conditionwhen processing remote commands led to failures andmemory leakswhen
shutting down Collector Service

In Observability Collector Service, due to an internal race condition, the cleanup done after a remote administra-
tion command (for example, changing the forwarding or collection verbosity of an application) was processed
could fail with the following error message:

ERROR DDS_AsyncWaitSetTask_detachCondition:!detach condition

This left one of the internal components of Observability Collector Service in an inconsistent state, which caused
failures and memory leaks when the service was shut down:

ERROR DDS_AsyncWaitSet_submit_task:!wait for request completion
ERROR DDS_AsyncWaitSet_detach_condition_with_completion_token:!submit␣
→˓internal task
ERROR DDS_AsyncWaitSet_detach_condition:!DDS_AsyncWaitSet_detach_condition_
→˓with_completion_token
ERROR DDS_AsyncWaitSet_finalize:!detach condition
ERROR DDS_AsyncWaitSet_delete:!DDS_AsyncWaitSet_finalize

This race condition is fixed. The cleanup of already processed commands no longer causes unexpected failures.

[RTI Issue ID MONITOR-610]

Collector Service could discard samples when monitoring large DDS applications

In the previous release,Observability Collector Service could report the following errormessages when collecting
telemetry data from applications with a large number of DDS entities (for example, 2000 DataWriters):

ERROR [0x01016A0B,0x38EDDDA5,0x6C2A146D:0x00000184{Entity=DR,MessageKind=DATA}
→˓|RECEIVE FROM 0x0101DC38,0xA4FD24A4,0x06193ECA:0x00000183] DDS_DataReader_
→˓add_sample_to_remote_writer_queue_untypedI:add sample to remote writer queue
ERROR [0x01016A0B,0x38EDDDA5,0x6C2A146D:0x00000184{Entity=DR,MessageKind=DATA}
→˓|RECEIVE FROM 0x0101DC38,0xA4FD24A4,0x06193ECA:0x00000183] RTI_
→˓MonitoringForwarderEntities_addSampleToCacheReader:ADD FAILURE | Sample to␣
→˓the cache reader of DCPSPeriodicStatusMonitoring

This problem was due to the queues of the internal Collector’s DataReaders becoming full because of the
default QoS configuration and the large amount of data received, causing new samples to be discarded and,
consequently, not pushed to the Observability Framework backends.

This issue has been resolved. The queues for the internal DataReaders are now configured to have no limit,
ensuring successful telemetry data collection regardless of the number of DDS entities.

Note: The example error messages above refer to the Periodic Topic, but the same messages were reported
for other Observability Framework Topics (Events and Logging).

[RTI Issue ID MONITOR-619]

14.6. Previous Releases 208

RTI Connext Observability Framework User's Manual, Version 7.3.0

14.6.3 What’s New in 7.1.0

Connext Observability Collector Service uses telemetry data to help identify and resolve potential issues in Con-
next applications. This product is not installed as part of aConnext package; it must be downloaded and installed
separately, as described in Installing and Running Observability Framework.

Important: Observability Framework is an experimental product that includes example configuration files
for use with several third-party components (Prometheus, Grafana Loki, and Grafana). This release is an
evaluation distribution; use it to explore the new observability features that support Connext applications.

Do not deploy any Observability Framework components in production.

Third-Party Software

The following third-party software is used in Observability Collector Service.

Table 14.9: Third-Party Software (Observability Collector Service)
Third-Party Software Version
CivetWeb 1.15
Prometheus-cpp 1.0.1
nlohmann-json 3.11.2

In addition, the Docker containers created by Observability Framework include the following third-party soft-
ware.

Table 14.10: Third-Party Software (Docker Containers)
Third-Party Software Version
Prometheus 2.37.5
Grafana 9.2.1
Grafana Loki 2.7.0

Warning: All third-party software is subject to third-party license terms and conditions. IT IS YOUR
RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES
WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

Important: Observability Framework is an experimental product that includes example configuration files
for use with several third-party components (Prometheus, Grafana Loki, and Grafana). This release is an
evaluation distribution; use it to explore the new observability features that support Connext applications.

Do not deploy any Observability Framework components in production. A production-ready version is
expected to be available in a future Connext 7.3.x maintenance release.

14.6. Previous Releases 209

HTTP Routing Table

/rti
GET /rti/collector_ser-

vice/rest1/logging:get_col-
lection_level, 153

GET /rti/collector_ser-
vice/rest1/logging:get_for-
warding_level, 155

GET /rti/collector_ser-
vice/rest1/metrics:get_sub-
scription_state, 160

POST /rti/collector_ser-
vice/rest1/logging:set_col-
lection_level, 157

POST /rti/collector_ser-
vice/rest1/logging:set_for-
warding_level, 159

POST /rti/collector_ser-
vice/rest1/metrics:set_sub-
scription_state, 162

POST /rti/collector_ser-
vice/rest1/metrics:up-
date_subscription_state, 164

210

	1 Copyrights and Notices
	2 What is Connext Observability Framework?
	2.1 Telemetry Data
	2.2 Distribution of Telemetry Data
	2.3 Flexible Storage
	2.4 Visualization of Telemetry Data
	2.5 Control and Selection of Telemetry Data
	2.6 Security

	3 Components
	3.1 Monitoring Library 2.0
	3.2 Observability Collector Service
	3.2.1 Storage Components

	3.3 Observability Dashboards

	4 Observability Framework Deployments
	4.1 Current Release
	4.1.1 Docker Compose (Prepackaged)
	Collection, Storage, and Visualization Components
	Collector Service

	4.1.2 Docker (Separate Deployment)

	4.2 Future releases
	4.2.1 Collector Service
	Executable
	Collector Service Deployments

	5 Security
	5.1 Secure Communication between Connext Applications and Collector Service
	5.1.1 Secure Communication between Connext Applications and Collector Service (Pre-Packaged Deployment)
	5.1.2 Secure Communication between Connext Applications and Collector Service (Separate Deployment)

	5.2 Secure Communication with Collector Service HTTP Servers
	5.2.1 Secure Collector Service HTTP Servers (Pre-Packaged Deployment)
	5.2.2 Secure Collector Service HTTP Servers (Separate Deployment)

	5.3 Secure Communication with Third-Party Component HTTP Servers
	5.3.1 Secure Third-Party Component HTTP Servers (Pre-Packaged Deployment)
	5.3.2 Secure Third-Party Component HTTP Servers (Separate Deployment)

	5.4 Generating the Observability Framework Security Artifacts
	5.4.1 Generating DDS Security Artifacts
	5.4.2 Generating HTTPS Security Artifacts
	Preliminary Steps
	Initialize the OpenSSL CA Database
	Limit the Access of the CA’s Private Key

	Generating a New Root CA
	Generating Server Certificates
	BASIC-Auth Password File

	6 Installing and Running Observability Framework
	6.1 Installing the Host Package
	6.1.1 Prerequisites
	6.1.2 Install from RTI Launcher
	6.1.3 Install from the Command Line

	6.2 Configuring, Running, and Removing Observability Framework Components Using Docker Compose
	6.2.1 Configuring the Docker Workspace for Observability Framework
	Configure the JSON File
	Run the Observability script to create the Observability workspace

	6.2.2 Initialize and Run Docker Containers
	6.2.3 Verify Docker Containers are Running
	6.2.4 Configure Grafana
	Initial Login
	Configuration Options
	Create Accounts (Optional)
	Change the Default Time Range (Optional)

	6.2.5 Stop Docker Containers
	6.2.6 Start Existing Docker Containers
	6.2.7 Stop and Remove Docker Containers
	6.2.8 Removing the Docker Workspace for Observability Framework

	7 Getting Started Guide
	7.1 About the Observability Example
	7.1.1 Applications
	7.1.2 Data Model
	7.1.3 DDS Entity Mapping
	7.1.4 Command-Line Parameters
	Publishing Application
	Subscribing Application

	7.2 Before Running the Example
	7.2.1 Set Up Environment Variables
	7.2.2 Compile the Example
	Non-Windows Systems
	Windows Systems

	7.2.3 Install Observability Framework
	Configure Observability Framework for the Appropriate Operation Mode
	Example LAN configurations
	Non-Secure LAN Configuration
	Secure LAN Configuration
	Non-Secure OTel LAN Configuration
	Secure OTel LAN Configuration

	Example WAN configurations
	Non-Secure WAN Configuration
	Secure WAN Configuration
	Non-Secure OTel WAN Configuration
	Secure OTel WAN Configuration

	7.2.4 Start the Collection, Storage, and Visualization Docker Containers

	7.3 Running the Example
	7.3.1 Start the Applications
	7.3.2 Changing the Time Range in Dashboards
	7.3.3 Simulate Sensor Failure
	7.3.4 Simulate Slow Sensor Data Consumption
	7.3.5 Simulate Time Synchronization Failures
	7.3.6 Change the Application Logging Verbosity
	7.3.7 Change the Metric Configuration
	Resources used in this example
	Changing metrics collected for a single DataWriter
	Changing metrics collected for all DataWriters of an application

	7.3.8 Close the Applications

	8 Telemetry Data
	8.1 Introduction
	8.2 Resources
	8.2.1 Resource Pattern Definitions

	8.3 Metrics
	8.3.1 Metric Pattern Definitions
	8.3.2 Application Metrics
	8.3.3 Participant Metrics
	8.3.4 Topic Metrics
	8.3.5 DataWriter Metrics
	8.3.6 DataReader Metrics
	8.3.7 Derived Metrics Generated by Prometheus Recording Rules
	DDS Entity Proxy Metrics
	Raw Error Metrics
	Enabled Raw Error Metrics
	Disabled Raw Error Metrics

	Aggregated Error Metrics
	Enable a Raw Error Metric
	Update the Recording Rule for the Derived Metric
	Update the Alert “Category” Dashboard
	Update the “Entity” Status Dashboard

	Custom Error Metrics

	8.4 Logs
	8.4.1 Syslog Levels and Facilities
	8.4.2 Activity Context
	8.4.3 Log Labels
	8.4.4 Collection and Forwarding Verbosity
	Changing Verbosity Levels Locally
	Changing Verbosity Levels Remotely

	9 Monitoring Library 2.0
	9.1 Enabling Monitoring Library 2.0
	9.2 Setting the Initial Metrics and Log Configuration
	9.3 Setting the Application Name
	9.4 Changing the Default Observability Domain ID
	9.5 Configuring QoS for Monitoring Library 2.0 Entities
	9.6 Setting Collector Service Initial Peers

	10 Collector Service REST API Reference
	10.1 Definitions
	10.2 Root endpoint (base URL)
	10.3 API Overview
	10.4 API Reference

	11 Observability Dashboards
	11.1 System Status Dashboards
	11.1.1 System Status Dashboard Common Elements
	11.1.2 Alert Home Dashboard
	11.1.3 Alert Category Dashboards

	11.2 Entity List Dashboards
	11.3 Entity Status List Dashboards
	11.4 Entity Status Dashboards
	11.5 Log Dashboards
	11.5.1 Log Dashboard
	11.5.2 Entity Log Dashboards

	11.6 Control Dashboards
	11.6.1 Log Control Dashboard
	11.6.2 Metric Control Dashboards
	Single Entity Metric Control Dashboards
	Multiple Entity Metric Control Dashboards

	12 Troubleshooting Observability Framework
	12.1 Docker Container[s] Failed to Start
	12.1.1 Check for Port Conflicts
	12.1.2 Check that You Have the Correct File Permissions

	12.2 No Data in Dashboards
	12.2.1 Check that Collector Service has Discovered Your Applications
	12.2.2 Check that Prometheus can Access Collector Service
	12.2.3 Check that Grafana can Access Prometheus
	12.2.4 Check that Grafana can Access Loki

	13 Glossary
	14 Release Notes
	14.1 Supported Platforms
	14.2 Compatibility
	14.3 Supported Docker Compose Environments
	14.4 What’s New in 7.3.0 LTS
	14.4.1 Enhanced control of entities distributed across various Collector Service instances
	14.4.2 New REST API in Collector Service to control telemetry data collection and distribution
	14.4.3 Support for more flexible Observability Framework deployments
	14.4.4 Control which metrics are collected
	14.4.5 New Syslog facilities provide expanded log management
	14.4.6 New logging category and plugin class labels enable more precise third-party backend queries
	14.4.7 Updated dashboards support enhanced logging and dynamic metric control
	14.4.8 Name change for some observability metrics
	14.4.9 Third-party software upgrades
	Observability Collector Service
	Docker containers for Observability Collector Service

	14.5 What’s Fixed in 7.3.0 LTS
	14.5.1 Crashes
	[Critical] Observability Collector Service could crash when an application was discovered

	14.5.2 Vulnerabilities
	[Critical] Potential out of memory error when using Curl 8.1.2
	User impact without security
	User impact with security

	[Critical] Potential deletion of HSTS data when using Curl 8.1.2
	User impact without security
	User impact with security

	14.6 Previous Releases
	14.6.1 What’s New in 7.2.0
	Observability Collector Service compatible with Monitoring Library 2.0
	Support for most observability backends with OpenTelemetry integration
	Support for Observability Collector Service security
	Name change from “RTI Observability Library” to “RTI Monitoring Library 2.0”
	Name change for some Observability metrics
	Secured communications between Monitoring Library 2.0 and Observability Collector Service
	Ability to set initial forwarding verbosity in MONITORING QoS policy
	Ability to set collector initial peers in MONITORING QoS policy
	Third-Party software changes
	Observability Framework
	Observability Collector Service
	Docker containers for Observability Collector Service

	14.6.2 What’s Fixed in 7.2.0
	Collector Service might have crashed on startup
	Controllability issues on applications with same name
	Unhandled exceptions may have caused segmentation fault
	Race condition when processing remote commands led to failures and memory leaks when shutting down Collector Service
	Collector Service could discard samples when monitoring large DDS applications

	14.6.3 What’s New in 7.1.0
	Third-Party Software

	HTTP Routing Table

