
RTI Queuing Service
Getting Started Guide

Version 7.3.0

© 2015-2022 Real-Time Innovations, Inc.
All rights reserved.

April 2024.

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase,
“Your Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time
Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of
Real-Time Innovations, Inc. The software described in this document is furnished solely under and sub-
ject to RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance
with your License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate
(MSC), except to the extent otherwise accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party
license terms and conditions, including open source license terms and conditions. Copies of applicable
third-party licenses and notices are located at community.rti.com/documentation. IT IS YOUR
RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES
WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regard-
ing maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is
deprecated in a release, RTI hereby provides customer notice that RTI reserves the right after one year
from the date of such release and, with or without further notice, to immediately terminate maintenance
(including without limitation, providing updates and upgrades) for the item, and no longer support the
item, in a future release.

https://www.rti.com/terms
https://community.rti.com/documentation

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Welcome to RTI Queuing Service

1.1 Paths Mentioned in Documentation 1
Chapter 2 Installing Queuing Service

2.1 Installing on a Linux or macOS System 3
2.2 Installing on a Windows System 4

Chapter 3 Using the Examples 5
Chapter 4 Running Queuing Service

4.1 Starting from Launcher 7
4.2 Starting Manually from the Command Line 7
4.3 Using Queuing Service as a Windows Service 10

iv

Chapter 1 Welcome to RTI Queuing
Service

RTI® Queuing Service is a broker that provides a queuing communication model in which a
sample is stored in a queue until it is consumed by one QueueConsumer. If there are no
QueueConsumers available when the sample is sent, the sample is kept in the queue until a
QueueConsumer is available to process it. If a QueueConsumer receives a sample and does not
acknowledge it before a specified amount of time or acknowledges it negatively, the sample will
be redelivered to a different QueueConsumer.

Queuing Service provides an “at-most-once” and “at-least once” delivery semantic.

By default, Queuing Service keeps the samples in memory. To provide fault tolerance, Queuing
Service can be configured to keep the samples on disk.

For high availability, Queuing Service provides mechanisms to replicate its state so that samples
can survive the loss of any particular service and/or computer.

1.1 Paths Mentioned in Documentation

The documentation refers to:

l <NDDSHOME>

This refers to the installation directory for RTI® Connext®. The default installation paths
are:

l macOS® systems:
/Applications/rti_connext_dds-7.3.0

l Linux systems, non-root user:
/home/<your user name>/rti_connext_dds-7.3.0

l Linux systems, root user:
/opt/rti_connext_dds-7.3.0

1

1.1 Paths Mentioned in Documentation

2

l Windows® systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-7.3.0

l Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-7.3.0

You may also see $NDDSHOME or%NDDSHOME%, which refers to an environment vari-
able set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users:When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:
“C:\Program Files\rti_connext_dds-7.3.0\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

l <path to examples>

By default, examples are copied into your home directory the first time you run RTI Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples
as <path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:
l macOS systems: /Users/<your user name>/rti_workspace/7.3.0/examples
l Linux systems: /home/<your user name>/rti_workspace/7.3.0/examples
l Windows systems: <your Windows documents folder>\rti_workspace\7.3.0\examples

Where 'your Windows documents folder' depends on your version of Windows. For
example, on Windows 10, the folder is C:\Users\<your user name>\Documents.

Note: You can specify a different location for rti_workspace. You can also specify that you do
not want the examples copied to the workspace. For details, see Controlling Location for
RTI Workspace and Copying of Examples in the RTI Connext Installation Guide.

Chapter 2 Installing Queuing Service
This chapter describes:

l 2.1 Installing on a Linux or macOS System below
l 2.2 Installing on a Windows System on the next page

2.1 Installing on a Linux or macOS System

Install Queuing Service on top of Connext. There are two ways to install it, from RTI Launcher
or from the command line.

From RTI Launcher:

1. Start RTI Launcher from the command line:

cd <NDDSHOME>/bin
./rtilauncher

<NDDSHOME> is described in 1.1 Paths Mentioned in Documentation on page 1.
2. From the Configuration tab, select Install RTI Packages.

3. In the resulting dialog, use the + sign to add the .rtipkg file that you want to install.

4. Click Install.

From the command line:
cd <NDDSHOME>/bin
./rtipkginstall <path to .rtipkg file>

If you want to install Queuing Service without user interaction (unattended mode), use the -u
flag when installing from the command line:
cd <NDDSHOME>/bin
./rtipkginstall -u <path to .rtipkg file>

3

2.2 Installing on a Windows System

4

Queuing Service will be installed in the <NDDSHOME> directory (see 1.1 Paths Mentioned in Docu-
mentation on page 1).

2.2 Installing on a Windows System

Install Queuing Service on top of Connext. There are two ways to install it, from RTI Launcher or from
the command line.

From RTI Launcher:

1. Start RTI Launcher from the Start menu or the command line:

cd <NDDSHOME>\bin
rtilauncher

<NDDSHOME> is described in 1.1 Paths Mentioned in Documentation on page 1.
2. From the Configuration tab, select Install RTI Packages.

3. In the resulting dialog, use the + sign to add the .rtipkg file that you want to install.

4. Click Install.

From the command line:
cd <NDDSHOME>\bin
rtipkginstall <path to .rtipkg file>

If you want to install Queuing Service without user interaction (unattended mode), use the -u flag when
installing from the command line:
cd <NDDSHOME>/bin
./rtipkginstall -u <path to .rtipkg file>

Queuing Service will be installed in the <NDDSHOME> directory (see 1.1 Paths Mentioned in Docu-
mentation on page 1).

Chapter 3 Using the Examples
Queuing Service includes two examples to show its most relevant functionality:

l hello_world: A Hello World application, in which is shown how to send/receive samples
from/to Queuing Service. The example also shows how to use other relevant features such
as persistence and replication.

l remote_config: A Remote Configuration example, in which is shown how to remotely
create/delete resources, query their status, get a message, or flushing SharedRead-
erQueues. This example uses the Request/Reply API.

The examples are in <path to examples>/queuing_service/<language>, where <path to
examples> is described in 1.1 Paths Mentioned in Documentation on page 1 and <language> is
c++ for C++ or cs for .NET. There are some differences between the versions:

l The .NET hello_world example uses the Queuing Service wrapper API, while the C++
example uses DataWriters and DataReaders directly to interact with Queuing Service,
since the wrapper API is not available for C++.

l The .NET hello_world example uses two SharedReaderQueues: a request and a reply
SharedReaderQueue. The C++ example only uses a request SharedReaderQueue.

l The .NET hello_world example is also a performance test, measuring requests and replies
per second, The C++ version sends one message per second.

By default, the .NET hello_world example’s SharedReaderQueues use different types than the
C++ example.

Because of these differences, you will need to make some modifications in the examples in
order for a hello_world C++ Producer to interoperate with a hello_world .NET Replier, and
vice-versa.

5

Chapter 3 Using the Examples

6

To run the examples, please follow the instructions in the README.txt file included in the example’s
directory.

Chapter 4 Running Queuing Service
Queuing Service runs as a separate application. The script to run the executable is in
<NDDSHOME>/bin. There are three ways to start Queuing Service:

l 4.1 Starting from Launcher below
l 4.2 Starting Manually from the Command Line below
l 4.3 Using Queuing Service as a Windows Service on page 10

If you are starting Queuing Service as a Windows Service, also read 4.3 Using Queuing Service
as a Windows Service on page 10.

4.1 Starting from Launcher

1. Start RTI Launcher from the Start menu (on Windows systems) or on the command line,
type:

<NDDSHOME>/bin/rtilauncher

2. From the Services tab, select Queuing Service.

4.2 Starting Manually from the Command Line

To start Queuing Service, enter:
cd <NDDSHOME>
bin/rtiqueuingservice [options]

Example:
cd <NDDSHOME>
bin/rtiqueuingservice -cfgFile example.xml -cfgName QueuingService_1

7

4.2 Starting Manually from the Command Line

8

To run this service executable on a target system (not your host development platform), you
must first select the target architecture. To do so, either:
Set the environment variable CONNEXTDDS_ARCH to the name of the target architecture.
(Do this for each command shell you will be using.)
Or set the variable connextdds_architecture in the file rticommon_config.[sh/bat]a to the
name of the target architecture. If the CONNEXTDDS_ARCH environment variable is set, the
architecture in this file will be ignored.

Table 4.1 RTI Queuing Service Command-Line Options describes the command-line options.

Option Description

-appName <name>

Assigns a name to the execution of Queuing Service.

Remote commands will refer to the queuing service using this name.

In addition, the name of DomainParticipants created by Queuing Service will be based on this name.

Default: The name given with -cfgName, if present, otherwise it is RTI_Queuing_Service.

-cfgFile <name>

Specifies a configuration file to be loaded.

This parameter is required.

See Section 3.1 How to Load the XML Configuration from a File in the Queuing Service User's Manual.

-cfgName <name>
Specifies a configuration name. Queuing Service will look for a matching <queuing_service> tag in the con-
figuration file.

This parameter is required unless -cfgRemote is used.

-cfgRemote

Specifies that the initial configuration of the service must be obtained remotely from other running instances.

Using this option also requires the use of -remoteAdministrationDomainId to enable remote administration,
because the initial configuration will be received in the remote administration domain ID.

If you use this option and -cfgName, the service will wait until a configuration with that name is received.
Otherwise, the service will use the first configuration that it receives.

If the service does not receive the initial configuration after a configurable timeout (see -cfgRemoteTimeout),
it will load the configuration from the input configuration file(s).

-cfgRemoteTimeout <n>
Specifies the maximum amount of time, in seconds, that Queuing Service will wait for an initial configuration
when using -cfgRemote.

Default: 20 seconds

-daemon Runs Queuing Service as a daemon/Windows service. When this flag is present, Queuing Service will start in
the background. Note that some systems may require special privileges to do this.

-domainIdBase <ID>

Sets the base domain ID.

This value is added to the domain IDs in the configuration file. For example, if you set –domainIdBase to 50
and use domainIDs 0 and 1 in the configuration file, then Queuing Service will use domains 50 and 51.

Default: 0

Table 4.1 RTI Queuing Service Command-Line Options

aThis file is resource/scripts/rticommon_config.sh on Linux or macOS systems, resource/scripts/rticommon_config.bat on Windows
systems.

4.2 Starting Manually from the Command Line

Option Description

-heapSnapshotPeriod

Enables heap monitoring.

Queuing Service will generate a heap snapshot every <sec>.

Default: heap monitoring is disabled.

-heapSnapshotDir
When heap monitoring is enabled, this parameter configures the directory where the snapshots will be
stored. The snapshot filename format is RTI_<configurationName><processId><index>.log.

Default: current working directory

-help Displays help information.

-remoteAdministrationDomainId <ID>

Enables remote administration and sets the domain ID for remote communication.

When remote administration is enabled, Queuing Service will create a DomainParticipant, Publisher, Sub-
scriber, DataWriter, and DataReader in the designated domain.

See Chapter 5, Administering Queuing Service from a Remote Location, in the Queuing Service User’s
Manual.

This option overrides the value of the tag <domain_id> within a <administration> tag.

This parameter is required when using -cfgRemote.

Default: Remote administration is not enabled unless it is enabled from the XML file.

-persistentFilePrefix

Specifies a name prefix to use with all files created by Queuing Service.

This option overrides the value of the tag <file_prefix> within <persistence_settings>/<filesystem>.

Default: Value in <persistence_settings>/<filesystem>/<file_prefix>.

-persistentStoragePath

Configures the directory for persistent storage.

This option overrides the value of the tag <directory> within <persistence_settings>/<filesystem>.

Default: Value in <persistence_settings>/<filesystem>/<directory>.

-var <name>=<value>

Sets the value of the variable <name>. This variable can be referenced within the XML configuration files us-
ing the $(<name>) notation. See Section 3.4, Using Variables in XML, in the Queuing Service User’s Manual
for more information on configuration variables.

You may have more than one -var flag on the command line.

On Windows platforms, you will need to put quotation marks around the variable name and value, like this:

-var "MY_VAR=myvalue"

-verbosity <n>

Controls what type of messages are logged:

0 - Silent

1 - Exceptions (Connext and Queuing Service) (default)

2 - Warnings (Queuing Service)

3 - Information (Queuing Service)

4 - Warnings (Connext and Queuing Service)

5 - Tracing (Queuing Service)

6 - Tracing (Connext and Queuing Service)

Each verbosity level, n, includes all the verbosity levels smaller than n.

-version Prints the Queuing Service version number.

Table 4.1 RTI Queuing Service Command-Line Options

9

4.3 Using Queuing Service as a Windows Service

10

4.3 Using Queuing Service as a Windows Service

Windows Services automatically run in the background when the system reboots. If you want to run
Queuing Service as a Windows Service, use a Windows service wrapper such as nssm or winsw. For
instance, you can download nssm from https://nssm.cc/download. Follow the product's documentation
to set up Queuing Service as a Windows service. For example, for nssm, see https://nssm.cc/usage.

Here are some things to consider when running Queuing Service as a Windows Service:

l Some versions of Windows do not allow Windows Services to communicate with other ser-
vices/applications using shared memory. For this reason, if you plan to run Queuing Service as a
Windows Service, you should disable the shared-memory transport in all the DomainParticipants
created by Queuing Service and in the applications communicating with Queuing Service. For
more information on setting builtin transports, see Builtin Transport Plugins, in the RTI Connext
Core Libraries User's Manual.

l In some scenarios, you may need to add a multicast address (e.g., builtin.udpv4://239.255.0.1) to
your discovery peers. For details on setting the discovery peers, see information about setting dis-
covery peers in the "Troubleshooting" section of Introduction to Publish/Subscribe, in the RTI
Connext Getting Started Guide.

https://nssm.cc/download
https://nssm.cc/usage
../../../connext_dds_professional/getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf
../../../connext_dds_professional/getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf

	Chapter 1 Welcome to RTI Queuing Service
	1.1 Paths Mentioned in Documentation

	Chapter 2 Installing Queuing Service
	2.1 Installing on a Linux or macOS System
	2.2 Installing on a Windows System

	Chapter 3 Using the Examples
	Chapter 4 Running Queuing Service
	4.1 Starting from Launcher
	4.2 Starting Manually from the Command Line
	4.3 Using Queuing Service as a Windows Service

