
RTI Code Generator

User's Manual

Version 4.2.0

© 2013-2024 Real-Time Innovations, Inc.
All rights reserved.

April 2024.

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase,
“Your Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time
Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of
Real-Time Innovations, Inc. The software described in this document is furnished solely under and sub-
ject to RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance
with your License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate
(MSC), except to the extent otherwise accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party
license terms and conditions, including open source license terms and conditions. Copies of applicable
third-party licenses and notices are located at community.rti.com/documentation. IT IS YOUR
RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES
WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regard-
ing maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is
deprecated in a release, RTI hereby provides customer notice that RTI reserves the right after one year
from the date of such release and, with or without further notice, to immediately terminate maintenance
(including without limitation, providing updates and upgrades) for the item, and no longer support the
item, in a future release.

https://www.rti.com/terms
https://community.rti.com/documentation

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Introduction 1
Chapter 2 Paths Mentioned in Documentation 2
Chapter 3 Command-Line Arguments for rtiddsgen 4
Chapter 4 Generating Example Code

4.1 Input Files (IDL, XML, XSD) 13
4.1.1 IDL Language 13
4.1.2 XML Language 13
4.1.3 XSD Language 14
4.1.4 Specifying Multiple Input Files 14

4.2 C++ Example 15
4.3 Advanced Example 16

4.3.1 is_default_qos (true vs. false) 16
4.3.2 Listeners vs. WaitSets 17

4.4 Using Generated Types Without Connext (Standalone) 17
4.4.1 Using Standalone Types in C 17
4.4.2 Using Standalone Types in C++98 18
4.4.3 Using Standalone Types in C++11 18
4.4.4 Using Standalone Types in Java 19

Chapter 5 Generated Files 20
Chapter 6 Customizing the Generated Code 26
Chapter 7 Optimizing the Code Generation Process

7.1 Optimization Levels 29
7.2 How the Optimizations are Applied 30

7.2.1 Inline expansion of nested types 30
7.2.2 Serialization of consecutive members with a single copy 31
7.2.3 Rules for Inline Expansion 31

iv

v

7.2.4 Guidelines 34
Chapter 8 Boosting Performance

8.1 Using Server Mode 35
8.2 Using JVM Optimization 37

Chapter 1 Introduction
RTI® Code Generator creates the code needed to define and register a user data type with
RTI Connext® DDS. It takes a language-independent specification of the data (in IDL, XML, or
XSD notation) and generates supporting classes and code to distribute instances of the data over
Connext.

Using Code Generator is optional if:

l You are using dynamic types (see Managing Memory for Built-in Types (Section 3.2.7) in
the RTI Connext Core Libraries Users Manual).

l You are using one of the built-in types (see Built-in Data Types (Section 3.2) in the
RTI Connext Core Libraries Users Manual).

To use Code Generator, you will need to provide a description of your data type(s) in an IDL or
XML file. You can define multiple data types in the same type-definition file. For details on
these files, see the "Data Types and DDS Data Samples" chapter in the RTI Connext Core
Libraries User's Manual.

1

../../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

Chapter 2 Paths Mentioned in
Documentation

The documentation refers to:

l <NDDSHOME>

This refers to the installation directory for RTI® Connext®. The default installation paths
are:

l macOS® systems:
/Applications/rti_connext_dds-7.3.0

l Linux systems, non-root user:
/home/<your user name>/rti_connext_dds-7.3.0

l Linux systems, root user:
/opt/rti_connext_dds-7.3.0

l Windows® systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-7.3.0

l Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-7.3.0

You may also see $NDDSHOME or%NDDSHOME%, which refers to an environment
variable set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

2

Chapter 2 Paths Mentioned in Documentation

3

Note for Windows Users:When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:
“C:\Program Files\rti_connext_dds-7.3.0\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

l <path to examples>

By default, examples are copied into your home directory the first time you run RTI Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples
as <path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:
l macOS systems: /Users/<your user name>/rti_workspace/7.3.0/examples
l Linux systems: /home/<your user name>/rti_workspace/7.3.0/examples
l Windows systems: <your Windows documents folder>\rti_workspace\7.3.0\examples

Where 'your Windows documents folder' depends on your version of Windows. For
example, on Windows 10, the folder is C:\Users\<your user name>\Documents.

Note: You can specify a different location for rti_workspace. You can also specify that you do
not want the examples copied to the workspace. For details, see Controlling Location for
RTI Workspace and Copying of Examples in the RTI Connext Installation Guide.

Chapter 3 Command-Line Arguments for
rtiddsgen

On Windows systems: Before running rtiddsgen, run the "vcvars" batch file that is appropriate
for your architecture in the same command prompt that you will use to run rtiddsgen. For
example: vcvarsall.bat x86. The location of the "vcvars" batch file varies depending on your
version of Visual Studio. Consult the Microsoft Visual Studio documentation for the exact loc-
ation and parameters for your installation. Alternatively, run rtiddsgen from the Visual Studio
Command Prompt under the Visual Studio Tools folder. Or, use the command-line argument -
ppDisable. See -ppDisable in Table 3.1 Options for rtiddsgen on the next page.

If you are generating code for Connext, the options are:
rtiddsgen [-help]

[-allocateWithMalloc]
[-allowedDataRepresentation <xcdr1, xcdr2> on the next page]
[-allowedEndian <bigEndian, littleEndian> on the next page]
[-alwaysUseStdVector]
[-autoGenFiles <architecture>]
[-constructor]
[-create <typefiles| examplefiles|makefiles>]
[-convertToIdl | -convertToXML | -convertToXsd]
[-D <name>[=<value>]]
[-d <outdir>]
[-disableXSDValidation]
[-dllExportMacroSuffix <suffix>]
[-enableEscapeChar]
[-example <architecture>]
[-exampleTemplate]
[-generateIncludeFiles]
[-I <directory>]
[[-inputIdl] <IDLInputFile.idl> | [-inputXml] <XMLInputFile.xml>
|[-inputXsd <IDLInputFile.idl>]]
[-language <Ada|C|C++98|C++11|C#|Java|Python>]
[-namespace]
[-obfuscate]
[-optimization <level>]

4

Chapter 3 Command-Line Arguments for rtiddsgen

5

[-package <packagePrefix>]
[-platform <architecture>]
[-ppDisable]
[-ppPath <path to preprocessor>]
[-ppOption <option>]
[-qualifiedEnumerator]
[-replace]
[-sequenceSize <unbounded sequences size>]
[-sharedLib]
[-showTemplates]
[-standard <DDS_PSM_Cxx, IDL4_CPP>]
[-strict]
[-stringSize <unbounded strings size>]
[-typeSequenceSuffix <suffix>]
[-typeSizes]
[-U <name>]
[-unboundedSupport]
[-update <typefiles| examplefiles|makefiles>]
[-use52Keyhash]
[-use526Keyhash]
[-useStdString]
[-V <name< [=<value>]]
[-verbosity [1-3]]
[-version]
[-virtualDestructor]

Table 3.1 Options for rtiddsgen describes the options.

Note: Before using a makefile created by Code Generator to compile an application, make sure the
${NDDSHOME} environment variable is set as described in Set Up Environment Variables (rtisetenv),
in "Hands-On 1" of Introduction to Publish/Subscribe, in the RTI Connext Getting Started Guide.

Option Description

-allocateWithMalloc Use this flag to obtain backward-compatibility when allocating optional members with DDS_Heap_malloc in C++.

-allowedDataRepresentation
<xcdr1, xcdr2>

Only applies if -language C, -language C++98, or -language C++11 is specified.

Generates code for only one data representation. This option may increase performance, because the generated code will
not check the data representation during serialization/deserialization.

-allowedEndian <bigEndian,
littleEndian>

Only applies if -language C, -language C++98, or -language C++11 is specified.

Generates code for a specific endianness. This option may improve performance, because the generated code will not
check the endianness during serialization/deserialization.

-alwaysUseStdVector

Only applies if -language C++11 is specified.

Generates code that maps all sequences to std::vector, even bounded sequences that would otherwise map to rti::-
core::bounded_sequence.

Alternatively, the @use_vector annotation can be applied to each sequence member.

Table 3.1 Options for rtiddsgen

../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf

Chapter 3 Command-Line Arguments for rtiddsgen

Option Description

-autoGenFiles <architecture>

Updates the auto-generated files, i.e, the typefiles and makefile/project files.

To see the valid options for <architecture> per language, run rtiddsgen with the -help option, or use the string "universal" (-
autoGenFiles universal) to generate compatible publisher/subscriber code for all supported platforms. The universal ar-
chitecture will not generate makefiles/project files.

This is a shortcut for:

-update typefiles -update makefiles -platform <architecture>

-constructor

Only applies if -language C++98 is also specified.

Generates the types default constructor, copy constructor, copy assignment operator, and destructor. Using this option will
also disable the generation of the following TypeSupport methods: create_data(_ex), delete_data(_ex), initialize_data(_
ex), finalize_data(_ex), copy_data.

-create <typefiles|
examplefiles|makefiles>

Creates the files indicated (typefiles, examplefiles, or makefiles) if they do not exist. For example:
rtiddsgen -language C++11 -create typefiles test.idl

If the files already exist, the files are not modified and a warning is printed.

There can be multiple -create options.

If you specify both -create and -update for the same file type, only -update will be applied.

If you use -create makefiles, the -platform <arch> option is required. For example:
rtiddsgen -language c -create makefiles -platform x64Darwin17clang9.0 test.idl

You can specify multiple input (e.g., .idl) files or folders. See Chapter 4 Generating Example Code on page 13 for more in-
formation.

-convertToIdl Converts the input type description file into IDL format. This option creates a new file with the same name as the input file
and a .idl extension.

-convertToXML Converts the input type description file into XML format. This option creates a new file with the same name as the input file
and a .xml extension.

-convertToXsd Converts the input type description file into XSD format. This option creates a new file with the same name as the input file
and a .xsd extension.

-D <name>[=<value>]
Defines preprocessor macros.

On Windows systems, enclose the argument in quotation marks:
-D "<name>[=<value>]"

-d <outdir> Generates the output in the specified directory. By default, Code Generator will generate files in the directory where the in-
put type-definition file is found.

-disableXSDValidation
Causes Code Generator not to check that the input XSD file is well-formed.

The use of this option is not recommended in general, as Code Generator may receive invalid inputs.

-dllExportMacroSuffix <suffix> Defines the suffix of the macro that is used to export symbols when building Windows DLLs. The default macro is NDDS_
USER_DLL_EXPORT. When this option is specified, the name of the macro is NDDS_USER_DLL_EXPORT_<Suffix>.

-enableEscapeChar

Enables use of the escape character '_' in IDL identifiers.

Normally, if you use an identifier that is an IDL keyword, you will see an error (for case-sensitive matches) or a warning (for
case-insensitive ones). This option allows you to escape the IDL keywords with an underscore so that they can be used in
the IDL.

Table 3.1 Options for rtiddsgen

6

Chapter 3 Command-Line Arguments for rtiddsgen

7

Option Description

-example <architecture>

Generates type files, example files, and a makefile.

This is a shortcut for:
-create typefiles -create examplefiles -create makefiles -platform <architecture>

To see the valid options for <architecture> per language, run rtiddsgen with the -help option, or use the string "universal" (-
example universal) to generate compatible publisher/subscriber code for all supported platforms. The universal ar-
chitecture will not generate makefiles/project files.

For Python, when generating examples, the only available platform is "universal". For example:
rtiddsgen -language Python -example -platform universal Hello.idl

-exampleTemplate

Generates a custom example application using the specified custom publisher and subscriber templates, instead of the de-
fault example files. Place your custom templates in $NDDSHOME/resource/app/app_sup-
port/rtiddsgen/templates/example/<language>/<exampleTemplateDirectoryName>/. Name them publisher.vm and
subscriber.vm; you can also add a QoS template (qosProfile.vm) file to your example template directory (if you don't, Code
Generator will use the default one, $NDDSHOME/resource/app/app_sup-
port/rtiddsgen/templates/example/qosProfile.vm). You can base your templates on those that Connext provides in
$NDDSHOME/resource/app/app_support/rtiddsgen/templates/example/<language>.

The -exampleTemplate option must be used in combination with one of the following command-line options:

l -create examplefiles

l -update examplefiles

l -example <architecture>

For example:
rtiddsgen -language C++11 -example x64Darwin17clang9.0 -exampleTemplate myCustomTemplate
foo.idl

"myCustomTemplate" is your <exampleTemplateDirectoryName> in $NDDSHOME/resource/app/app_sup-
port/rtiddsgen/templates/example/<language>/<exampleTemplateDirectoryName>/.

To get a full list of the available custom templates in your Connext installation, use the
-showTemplates option.

For C++98, C++11, C#, Python, and Java, you can also use an advanced -exampleTemplate option included with Con-
next. See 4.3 Advanced Example on page 16.

The -exampleTemplate option is not supported in Ada.

Table 3.1 Options for rtiddsgen

Chapter 3 Command-Line Arguments for rtiddsgen

Option Description

-generateIncludeFiles

Generates code for any included file in the inputs. For example:
rtiddsgen -language python Foo.idl -generateIncludeFiles

Imagine you have the following two files:
// File Bar.idl
struct Bar {
...
};

// File Foo.idl
#include "Bar.idl"
struct Foo {
Bar b;
};

This example will produce the following files:

l Foo.py

l Bar.py

-help Prints out the command-line options for rtiddsgen.

-I <directory> Adds to the list of directories to be searched for type-definition files (IDL or XML files). Note: A type-definition file in one
format cannot include a file in another format.

-inputIdl
Indicates that the input file is an IDL file, regardless of the file extension.

This command-line option is required when the input has one or more directories. See 4.1.4.2 Listing Directories on
page 14 for more information.

-inputXml
Indicates that the input file is an XML file, regardless of the file extension.

This command-line option is required when the input has one or more directories. See 4.1.4.2 Listing Directories on
page 14 for more information.

-inputXsd
Indicates that the input file is an XSD file, regardless of the file extension.

This command-line option is required when the input has one or more directories. See 4.1.4.2 Listing Directories on
page 14 for more information.

IDLInputFile.idl A file containing IDL descriptions of your data types. If -inputIdl is not used, the file must have a '.idl' extension.

-language
<Ada|C|C++98|C++11|C#|Java|
Python>

Specifies the language to use for the generated files.

Notes:

l Use -language C++98 or -language C++11 to select the Traditional C++ or Modern C++ API respectively. Note
that C++98 and C++11 are the minimum C++ versions required by each API. Applications can use newer C++
standards.

l For Python, when generating examples, the only available platform is "universal". For example:

rtiddsgen -language Python -example -platform universal Hello.idl

-namespace Specifies the use of C++ namespaces, for traditional C++ only. For modern C++ and C#, it is implied—namespaces are al-
ways used.

-obfuscate Generates an obfuscated IDL file from the input file. Note that even if the input type is XML, this option generates an ob-
fuscated IDL file.

Table 3.1 Options for rtiddsgen

8

Chapter 3 Command-Line Arguments for rtiddsgen

9

Option Description

-optimization <level>

Level of optimization of the code:

l 0: No optimization.

l 1: The compiler generates extra code for typedefs but optimizes its use. If a type that is used is a typedef that can
be resolved to a primitive, enum, or aggregated type (struct, union, or value type), the generated code will invoke
the code of the most basic type to which the typedef can be resolved. This level can be used if the generated
code is not expected to be modified. This is the only optimization level supported for Java and C# languages.

l 2: (Default) This optimization level applies only to C, C++, C++11 and higher, and Ada languages. With this optim-
ization level, rtiddsgen optimizes the serialization/deserialization of structures and valuetypes by using more
aggressive techniques. These techniques include inline expansion of nested types and seri-
alization/deserialization of a set of consecutive members with a single copy function invocation (memcpy) when
the memory layout (C, C++ structure layout) is the same as the wire layout (XCDR). See Chapter 7 Optimizing
the Code Generation Process on page 29 for more information.

2 is the default for C, C++, C++11 and higher, and Ada languages (but you can change it to 0 or 1). 1 is always used for
Java and C# languages, and you cannot change it.

-package <packagePrefix> Specifies the root package into which generated classes will be placed. It applies to Java only. If the type-definition file con-
tains module declarations, those modules will be considered subpackages of the package specified here.

-platform <architecture>

Required if -create makefiles or -update makefiles is used.

To see the valid options for <architecture> per language, run rtiddsgen with the -help option, or use the string "universal" (-
platform universal) to generate compatible publisher/subscriber code for all supported platforms. The universal ar-
chitecture will not generate makefiles/project files.

For Python, when generating examples, the only available platform is "universal". For example:
rtiddsgen -language Python -example -platform universal Hello.idl

-ppDisable

Disables the preprocessor.

Code Generator supports the standard preprocessor directives defined by the IDL specification, such as #if, #endif, #in-
clude, and #define.

To support these directives, Code Generator calls an external C preprocessor before parsing the IDL file. On Windows sys-
tems, the preprocessor is ‘cl.exe.’ On other architectures, the preprocessor is ‘cpp.’ You can change the default pre-
processor with the –ppPath option. If you do not want to run the preprocessor, use the –ppDisable option.

The argument -ppDisable tells the code generator not to attempt to invoke the C preprocessor on the IDL file prior to gen-
erating code. In some cases, the IDL file contains no preprocessor directives, so no preprocessing is necessary. There-
fore, you may want to use the -ppDisable option to tell Code Generator to skip calling the preprocessor. However, if the
preprocessor executable is already on your system path (on Windows systems, it will be on your path if you've run the
Visual Studio "vcvars" batch file that is appropriate for your architecture), you don't need to use -ppDisable.

In summary, -ppDisable is a useful, quick remedy for simple examples (including HelloWorld examples) for which the IDL
is simple and does not need Code Generator to invoke the preprocessor. The longterm recommendation, however, is to
have the preprocessor in your path (or use the -ppOption). Linux architectures often already have the preprocessor in the
path; Windows architectures may require you to run a "vcvars" batch file as described at the beginning of this chapter to put
the preprocessor in your path.

-ppOption <option> Specifies a preprocessor option. This option can be used multiple times to provide the command-line options for the spe-
cified preprocessor. See -ppPath <path to preprocessor>.

Table 3.1 Options for rtiddsgen

Chapter 3 Command-Line Arguments for rtiddsgen

Option Description

-ppPath <path to preprocessor>

Specifies the preprocessor. If you only specify the name of an executable (not a complete path to that executable), the ex-
ecutable must be found in your Path. The default value is cpp for non-Windows architectures and cl.exe for Windows ar-
chitectures.

If you use -ppPath to provide the full path and filename for cl.exe or the cpp preprocessor, you must also use -ppOption
<option> to set the following preprocessor options:

If you use a non-default path for cl.exe, you also need to set:
-ppOption /nologo -ppOption /C -ppOption /E -ppOption /X

If you use a non-default path for cpp, you also need to set:
-ppOption -C

-qualifiedEnumerator Uses the fully qualified name for enumerator values including the enum value.

-replace

Deprecated option. Instead, use -update <typefiles| examplefiles|makefiles> for the proper files (typefiles, examplefiles,
makefiles).

This option is maintained for backwards compatibility. It allows Code Generator to overwrite any existing generated files.

If it is not present and existing files are found, Code Generator will print a warning but will not overwrite them.

-sequenceSize
<unbounded sequences size> Sets the size assigned to unbounded sequences. The default value is 100 elements.

-sharedLib Generates makefiles that compile with the Connext shared libraries (by default, the makefile will link with the static lib-
raries)

-showTemplates
Prints and generates an XML file containing a list of the available example templates in your Connext installation, or-
ganized per language. When you use the -exampleTemplate option, you can specify one of these example templates.
Code Generator will then generate the example you specified instead of the default one.

-standard <DDS_PSM_Cxx,
IDL4_CPP>

Defines the mapping for a specific standard. This flag is only supported in C++11.

Use the option DDS_PSM_Cxx for the default mapping used in versions before 7.2.0.

Use the option IDL4_CPP for the new IDL4 to CPP Language Mapping defined by the OMG in 2023.

The most notable changes in the IDL4-CPP mapping are:

l IDL structs map to C++ structs with public fields, instead of classes with getters and setters

l IDL unions still map to classes with getters and setters with the following additions:
l For members selected by multiple labels, a setter receiving the discriminator value as a second argu-

ment is also generated

l A method called _default() that sets the union to its default discriminator is generated

l string and wstring constants map to std::string_view and std::wstring_view for platforms that support
C++17

-strict

Enforces compliance with the OMG 'Extensible and Dynamic Topic Types for DDS' specification, version 1.3 by turning in-
formational (INFO) messages into errors. (Informational messages are described in -verbosity [1-3].)

Currently in this release, by default, Code Generator will report an informational (INFO) message for keyed derived struc-
tures when running rtiddsgen, but still generate code:

INFO com.rti.ndds.nddsgen.antlr.annotation.AnnotationApplier
struct/valuetype derived from a struct/valuetype should not contain @key fields.
This is not compliant with the XTypes specification. You can make this message
an error by using the -strict flag

If you want Code Generator to enforce the specification, use the -strict option. This option will report an error when there
are keyed derived structures, and not generate code.

See the RTI Code Generator Release Notes or the Migration Guide on the RTI Community Portal (ht-
tps://community.rti.com/documentation) for enforcement details that might occur in future releases.

Table 3.1 Options for rtiddsgen

10

https://www.omg.org/spec/IDL4-CPP/1.0/Beta1/About-IDL4-CPP
https://www.omg.org/index.htm
https://www.omg.org/spec/DDS-XTypes/1.3
../release_notes/RTI_Code_Generator_ReleaseNotes.pdf
https://community.rti.com/documentation
https://community.rti.com/documentation

Chapter 3 Command-Line Arguments for rtiddsgen

11

Option Description

-stringSize
<unbounded strings size> Sets the size assigned to unbounded strings, not counting a terminating NULL character. The default value is 255 bytes.

-typeSequenceSuffix <suffix>
Assigns a suffix to the name of the implicit sequence defined for IDL types. The option is compatible with languages C,
C++, C#, and Java. By default, the suffix is 'Seq'. For example, given the type 'Foo', the name of the sequence would be
'FooSeq'.

-typeSizes

Displays the maximum serialized size, minimum serialized size, and maximum key serialized size of all the complex types
in an IDL.

If Code Generator cannot compute the type sizes, it will display the following:

l If there is a recursive type, Code Generator will display Undefined (Recursive Type).

l If there is a type that is unresolved because you are using @resolve-name false, Code Generator will display
Undefined (Unresolved Member).

l If the type is bigger than the maximum serialized size, Code Generator will display Error (Over Max Seri-
alized Size).

NOTE: Using this option may reduce Code Generator performance. We recommend you disable
the flag if you just want to generate code and you don't want or need type information.

-U <name> Cancels any previous definition of <name>.

-unboundedSupport

Generates code that supports unbounded sequences and strings. When the option is used, the command-line options -se-
quenceSize and -stringSize are ignored.

This option also affects the way unbounded sequences are deserialized. When a sequence is being received into a sample
from the DataReader's cache, the old memory for the sequence will be deallocated and memory of sufficient size to hold
the deserialized data will be allocated. When initially constructed, sequences will not preallocate any elements having a
maximum of zero elements.

For more information on using the -unboundedSupport option, including some required QoS settings, see these sections
in the RTI Connext Core Libraries User's Manual:

l Sequences (Section 3.1.1)

l Strings and Wide Strings (Section 3.1.2)

l Sample and Instance Memory Management chapter in the RTI Connext Core Libraries User's Manaul

-update <typefiles|
examplefiles|makefiles>

Creates the files indicated if they do not exist. For example:
rtiddsgen -language C++11 -update typefiles test.idl

If the files already exist, -update overwrites the files without printing a warning.

There can be multiple -update options.

If you specify both -create and -update for the same file type, only the -update will be applied.

If you use -update makefiles, the -platform <arch> option is required. For example:
rtiddsgen -language c -update makefiles -platform x64Darwin17clang9.0 test.idl

You can specify multiple input (e.g., .idl) files or folders. See Chapter 4 Generating Example Code on page 13 for more in-
formation.

-use52Keyhash This option should be used when compatibility with 5.2.3 and earlier General Access Releases (GARs) is required when us-
ing keyed mutable types (related to RTI Issue IDs CODEGENII-501 and CODEGENII-693).

-use526Keyhash This option should be used when compatibility with 5.2.6 is required when using keyed mutable types (related to RTI Issue
ID CODEGENII-693).

Table 3.1 Options for rtiddsgen

../../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

Chapter 3 Command-Line Arguments for rtiddsgen

Option Description

-useStdString
Use 'std::string' instead of 'char *' when generating code for IDL strings when the language option is C++.

Using this option will automatically enable constructor generation. Therefore you can use this option with or without -con-
structor and achieve the same result.

-V <name< [=<value>] Defines a user variable that can be used in the templates as $userVarList.name or $userVarList.name.equals(value).
The variables defined with this option are case sensitive.

-verbosity [1-3]

Sets the Code Generator verbosity:

1: Exceptions

2: Exceptions and warnings

3: Exceptions, warnings and information (Default)

-version Displays the version of Code Generator being used, such as 2.x.y, as well as the version of the templates being used
(xxxx-xxxx-xxxx).

-virtualDestructor

Only applies if -language C++98 is also specified.

Generates a virtual destructor for the generated types in C++. Using this option will automatically enable the -constructor
option.

Note that using this option will affect filtering performance when using ContentFilteredTopics or QueryConditions.

XMLInputFile.xml A file containing XML descriptions of your data types. If -inputXml is not used, the file must have an .xml extension.

Table 3.1 Options for rtiddsgen

12

Chapter 4 Generating Example Code
Most Connext Getting Started Guides (such as the RTI Connext Getting Started Guide or the
RTI Connext Core Libraries Getting Started Guide Addendum for Embedded Systems) have
you create a simple "Hello World" application to get started. For example, on macOS:
$ rtiddsgen -language c++11 -example x64Darwin17clang9.0 hello_world.idl

Note: Before using a makefile created by Code Generator to compile an application, make
sure the ${NDDSHOME} environment variable is set as described in Set Up Environment
Variables (rtisetenv), in "Hands-On 1" of Introduction to Publish/Subscribe, in the RTI Con-
next Getting Started Guide.

4.1 Input Files (IDL, XML, XSD)

For detailed information about IDL, XML, or XSD support in Connext, including the mapping
between these formats, see the "Data Types and DDS Data Samples" chapter in the RTI Con-
next Core Libraries User's Manual.

4.1.1 IDL Language

In the IDL language, data types are described in a fashion almost identical to structures in "C."
The complete description of the language can be found at the OMG website.

4.1.2 XML Language

Connext provides DTD and XSD files that describe the XML format.

The DTD definition of the XML elements can be found in rti_dds_topic_types.dtd under
<NDDSHOME>/resource/app/app_support/rtiddsgen/schema.

The XSD definition of the XML elements can be found in rti_dds_topic_types.xsd under
<NDDSHOME>/resource/app/app_support/rtiddsgen/schema.

13

../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf
../../getting_started_platforms/embedded_systems_addendum/RTI_ConnextDDS_CoreLibraries_GettingStarted_EmbeddedSystemsAddendum.pdf
../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf
../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf
../../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

4.1.3 XSD Language

14

The XML validation performed by rtiddsgen always uses the DTD definition. If the <!DOCTYPE> tag
is not present in the XML file, rtiddsgen will look for the DTD document under <NDDSHOME>/re-
source/app/app_support/rtiddsgen/schema. Otherwise, it will use the location specified in
<!DOCTYPE>.

4.1.3 XSD Language

For detailed information about XSD support in Connext, see the "Data Types and DDS Data Samples"
chapter in the RTI Connext Core Libraries User's Manual.

4.1.4 Specifying Multiple Input Files

You can specify multiple IDL, XML, or XSD input files, either by listing them explicitly on the com-
mand line, specifying a directory, or including them in other files with an #include directive.

4.1.4.1 Listing Explicit Files

For example, this command will process two input IDL files, hello_world1.idl and hello_world2.idl:
rtiddsgen -language C -create typefiles hello_world1.idl hello_world2.idl

Do not mix files with different extensions. For example, this is NOT supported:
rtiddsgen -language C -create typefiles hello_world1.idl hello_world2.xml

4.1.4.2 Listing Directories

You can also pass one or more directories as input. To use directories as inputs, use one of the fol-
lowing command-line options: -inputIDL, -inputXML, or -inputXSD. (Do not use more than one of
these options in the same command.) Code Generator will scan the folder and generate code for the
files with the extension indicated by the input flag. For example:
rtiddsgen -language C -create typefiles -inputIDL folder folder2

You can specify a mix of folders and input files:
rtiddsgen -language C -create typefiles -inputIDL folder file1.idl

4.1.4.3 Enabling Recursion

The command-line option -r will activate a recursive scan of all the input directories. The -r option is
only valid when one or more folders are used as inputs. For example:
rtiddsgen -language C -create typefiles -inputIDL folder folder2 -r

In the following example, Code Generator will generate code for all the .idl files in "folder" when you
use -r . Without -r, Code Generator will only generate code for idl_root1.idl and idl_root2.idl:
folder
├──folder1

../../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

4.2 C++ Example

│ └──idl_folder1_1.idl
├──folder2
│ └──idl_folder2_1.idl
├──idl_root1.idl
└──idl_root2.idl

4.1.4.4 Including Files

The command-line option -generateIncludeFiles generates code for any included file(s) in the inputs.

Imagine you have these two files:
// File Bar.idl
struct Bar {
...
};

// File Foo.idl
#include "Bar.idl"
struct Foo {
Bar b;
};

If you run this command:
rtiddsgen -language python Foo.idl -generateIncludeFiles

This example will produce the following files:

l Foo.py
l Bar.py

4.2 C++ Example

The following is an example that generates the Connext type myDataType:

IDL notation
struct myDataType {

long value;
};

XML notation
<?xml version="1.0" encoding="UTF-8"?>
<types xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="rti_dds_topic_types.xsd">
<struct name="myDataType">

<member name="value" type="long"/>
</struct>

</types>

XSD notation

15

4.3 Advanced Example

16

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:dds="http://www.omg.org/dds"

xmlns:tns="http://www.omg.org/IDL-Mapped/" targetNamespace="http://www.omg.org/IDL-
Mapped/">

<xsd:import namespace="http://www.omg.org/dds" schemaLocation="rti_dds_topic_types_
common.xsd"/>

<xsd:complexType name= "myDataType">
<xsd:sequence>

<xsd:element name="value" minOccurs="1" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

4.3 Advanced Example

After you get familiar with the simple Hello World example, you can create a more advanced example
by specifying the 'advanced' template option, for traditional C++, modern C++, C#, Python, and Java
languages. The advanced template is already included with Code Generator (see -exampleTemplate and
-showTemplates). For example, on macOS:
rtiddsgen -language c++11 -example x64Darwin17clang9.0 -exampleTemplate advanced hello_
world.idl

There are a couple of main differences between the simple and advanced examples that Code Gen-
erator generates, described below: is_default_qos and Listeners.

Note: The advanced generated example is not supported on Android™ or INTEGRITY® platforms.
4.3.1 is_default_qos (true vs. false)

Connext loads QoS profiles from a file named USER_QOS_PROFILES.xml in your current working
directory. (Connext may also look for this file in other locations; see How to Load XML-Specified QoS
Settings in the RTI Connext Core Libraries User's Manual). The simple example sets is_default_qos-
s=true in the USER_QOS_PROFILES.xml file. It creates the DDS entities without specifying a profile,
so it uses the default from USER_QOS_PROFILES.xml.

The advanced example also loads QoS from the USER_QOS_PROFILES.xml file. However, the
advanced example omits the is_default_qos setting, which means that Connext assumes the default set-
ting of false. Therefore, there is no default QoS provided by the XML. The example explicitly specifies
which QoS profile to use from the XML file when creating DDS entities.

Setting is_default_qos=true is a convenient way to get you started quickly, but in production applic-
ations you should explicitly specify which QoS profile to use, instead of relying on a default. See the
Basic QoS chapter, in the RTI Connext Getting Started Guide.

Note: The RTI Connext Getting Started Guide example is more complex than the advanced
example generated by Code Generator; however, it does not use Listeners like the Code Generator
example does.

../../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf
../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf

4.3.2 Listeners vs. WaitSets

4.3.2 Listeners vs. WaitSets

Both the simple and advanced examples use WaitSets to block a thread until data is available. This is
the safest way to get data, because it does not affect any middleware threads (it is blocking the applic-
ation’s main thread until data is available). In the advanced C# example, TakeAsync() is used instead of
a WaitSet, which allows iterating over an asynchronous stream of data samples as they are received.

In addition, the advanced example installs Listeners on both the DataReader and DataWriter with call-
backs that you can implement to accomplish a desired behavior. These Listener callbacks are triggered
for various events, such as discovering a matched DataWriter or DataReader. Listener callbacks are
called back from a middleware thread, which you should not block. There are benefits to using Listen-
ers for non-data callbacks, because you will not miss events. However, if you block or do slow pro-
cessing in a Listener, it can cause undesired behavior such as data loss. See the Listeners chapter, in the
RTI Connext Core Libraries User's Manual.

4.4 Using Generated Types Without Connext (Standalone)

You can use the generated type-specific source and header files without linking the Connext libraries or
even including the Connext header files. That is, the generated files for your data types can be used stan-
dalone.

The directory <NDDSHOME>resource/app/app_support/rtiddsgen/standalone/include contains the
helper files required to work in standalone mode:

l include: header and templates files for C/C++
l src: source files for C/C++
l class: Java jar file

4.4.1 Using Standalone Types in C

The generated files that can be used standalone are:

l <idl file name>.c : Types source file
l <idl file name>.h : Types header file

You cannot use the type plug-in (<idl file>Plugin.c <idl file>Plugin.h) or the type support (<idl
file>Support.c <idl file>Support.h) code standalone.

To use the rtiddsgen-generated types in a standalone manner:

l Include the directory <NDDSHOME>resource/app/app_support/rtiddsgen/standalone/include in
the list of directories to be searched for header files.

17

../../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf

4.4.2 Using Standalone Types in C++98

18

l Add the source files ndds_standalone_type.c and <idl file name>.c to your project.
l Include the file <idl file name>.h in the source files that will use the generated types in a stan-
dalone way.

l Compile the project using the two following preprocessor definitions:

l NDDS_STANDALONE_TYPE
l The definition for your platform: RTI_VXWORKS, RTI_QNX, RTI_WIN32, RTI_
INTY, RTI_LYNX or RTI_UNIX

4.4.2 Using Standalone Types in C++98

The generated files that can be used standalone are:

l <idl file name>.cxx : Types source file
l <idl file name>.h : Types header file

You cannot use the type plugin (<idl file>Plugin.cxx <idl file>Plugin.h) or the type support (<idl
file>Support.cxx <idl file>Support.h) code standalone.

To use the generated types in a standalone manner:

l Include the directory <NDDSHOME>resource/app/app_support/rtiddsgen/standalone/include in
the list of directories to be searched for header files.

l Add the source files ndds_standalone_type.cxx and <idl file name>.cxx to your project.
l Include the file <idl file name>.h in the source files that will use the generated types in a stan-
dalone way.

l Compile the project using the two following preprocessor definitions:

l NDDS_STANDALONE_TYPE
l The definition for your platform: RTI_VXWORKS, RTI_QNX, RTI_WIN32, RTI_
INTY, RTI_LYNX or RTI_UNIX

4.4.3 Using Standalone Types in C++11

The generated files that can be used standalone are:

l <idl file name>.cxx : Types source file
l <idl file name>.hpp : Types header file

You cannot use the type plugin (<idl file>Plugin.cxx <idl file>Plugin.hpp).

4.4.4 Using Standalone Types in Java

To use the generated types in a standalone manner:

l Include the directories <NDDSHOME>resource/app/app_support/rtiddsgen/standalone/include
and <NDDSHOME>resource/app/app_support/rtiddsgen/standalone/include/cpp11 in the list of
directories to be searched for header files.

l Add the source files ndds_standalone_type.cxx, Exception.cxx and <idl file name>.cxx to your
project.

l Include the file <idl file name>.hpp in the source files that will use the generated types in a stan-
dalone way.

l Compile the project using the two following preprocessor definitions:
l NDDS_STANDALONE_TYPE
l The definition for your platform: RTI_VXWORKS, RTI_QNX, RTI_WIN32, RTI_
INTY, RTI_LYNX or RTI_UNIX

4.4.4 Using Standalone Types in Java

The generated files that can be used standalone are:

l <idl type>.java
l <idl type>Seq.java

You cannot use the type code (<idl file>TypeCode.java), the type support (<idl type>TypeSup-
port.java), the data reader (<idl file>DataReader.java) or the data writer code (<idl file>DataWriter-
.java) standalone.

To use the generated types in a standalone manner:

l Include the file ndds_standalone_type.jar in the classpath of your project.
l Compile the project using the standalone types files (<idl type>.java <idl type>Seq.java).

19

Chapter 5 Generated Files
The following tables show the files that Code Generator creates for an example IDL file called
Hello.idl.

l Table 5.1 C and Traditional C++ Files Created for Example “Hello.idl”
l Table 5.2 Modern C++ Files Created for Example “Hello.idl”
l Table 5.3 C# Files Created for Example “Hello.idl”
l Table 5.4 Python Files Created for Example “Hello.idl”
l Table 5.5 Java Files Created for Example “Hello.idl”
l Table 5.6 Ada Files Created for Example “Hello.idl”

By default, Code Generator will not overwrite these files. You must use the -replace argument
to do that.

Generated Files Description

The following files are required for the user data type. The source files should be compiled and linked with your ap-
plication. The header files are required to use the data type in source.

You should not modify these files unless you intend to customize the generated code supporting your type.

Hello.[c, cxx]
HelloSupport.[c, cxx]
HelloPlugin.[c, cxx]

Generated code for the data types. These files contain the implementation for your data
types.

Hello.h
HelloSupport.h
HelloPlugin.h

Header files that contain declarations used in the implementation of your data types.

Table 5.1 C and Traditional C++ Files Created for Example “Hello.idl”

20

Chapter 5 Generated Files

21

Generated Files Description

The following optional files are generated when you use the -example <architecture> command-line option. You may
modify and use these files as a way to create simple applications that publish or subscribe to the user data type.

application.h (traditional C++ only) Helper code for the Hello_publisher.cxx and Hello_subscriber.cxx applications

Hello_publisher.[c, cxx]

Example code for an application that publishes the user data type. This example shows the
basic steps to create all of the DDS objects needed to send data.

You will need to modify the code to set and change the values being sent in the data struc-
ture. Otherwise, just compile and run.

Hello_subscriber.[c, cxx]
Example code for an application that subscribes to the user data type. This example shows
the basic steps to create all of the DDS objects needed to receive data.

No modification of this file is required. It is ready for you to compile and run.

Hello-<architecture>.sln

Hello_publisher-<architecture>.v[c, cx]proj

Hello_subscriber-<architecture>.v[c, cx]proj

Microsoft Visual Studio solution and project files, generated only for Visual Studio-based ar-
chitectures. (An example <architecture> is x64Win64VS2017.) To compile the generated
source code, open the workspace file and build the two projects.

makefile_Hello_<architecture> Makefile for non-Visual-Studio-based architectures. An example <architecture> is arm-
v8Linux4gcc7.3.0.

USER_QOS_PROFILES.xml The Quality of Service (QoS) configuration of the DDS entities in the generated example is
loaded from this file.

Table 5.1 C and Traditional C++ Files Created for Example “Hello.idl”

Generated Files Description

The following files are required for the user data type. The source files should be compiled and linked with your application.
The header files are required to use the data type in source.

You should not modify these files unless you intend to customize the generated code supporting your type.

Hello.cxx
HelloPlugin.cxx Generated code for the data types. These files contain the implementation for your data types.

Hello.hpp
HelloPlugin.hpp Header files that contain declarations used in the implementation of your data types.

The following optional files are generated when you use the -example <architecture> command-line option. You may modify
and use these files as a way to create simple applications that publish or subscribe to the user data type.

application.hpp Helper code for the Hello_publisher.cxx and Hello_subscriber.cxx applications

Hello_publisher.cxx

Example code for an application that publishes the user data type. This example shows the basic
steps to create all of the DDS objects needed to send data.

You will need to modify the code to set and change the values being sent in the data structure.
Otherwise, just compile and run.

Table 5.2 Modern C++ Files Created for Example “Hello.idl”

Chapter 5 Generated Files

Generated Files Description

Hello_subscriber.cxx
Example code for an application that subscribes to the user data type. This example shows the ba-
sic steps to create all of the DDS objects needed to receive data.

No modification of this file is required. It is ready for you to compile and run.

Hello-<architecture>.sln

Hello_publisher-<architecture>.vcxproj

Hello_subscriber-<architecture>.vcxproj

Microsoft Visual Studio solution and project files, generated only for Visual Studio-based ar-
chitectures. (An example <architecture> is x64Win64VS2017.) To compile the generated source
code, open the workspace file and build the two projects.

makefile_Hello_<architecture> Makefile for non-Visual-Studios-based architectures. An example <architecture> is arm-
v8Linux4gcc7.3.0.

USER_QOS_PROFILES.xml The Quality of Service (QoS) configuration of the DDS entities in the generated example is loaded
from this file.

Table 5.2 Modern C++ Files Created for Example “Hello.idl”

Generated Files Description

The following files are required for the user data type. The source files should be compiled with your .NET project.

You should not modify these files.

Hello.cs
HelloPlugin.cs

Generated code for the data types. These files contain the implementation for
your data types.

The following optional files are generated when you use the -example <platform> command-line option (where <platform> is
the .NET platform identifier, such as net5 or netcoreapp3.1). You may modify and use these files as a way to create simple ap-
plications that publish or subscribe to the user data type.

HelloProgram.cs Code for running the HelloPublisher.cs and HelloSubscriber.cs applications

HelloPublisher.cs

Example code for an application that publishes the user data type. This ex-
ample shows the basic steps to create all of the DDS objects needed to send
data.

You will need to modify the code to set and change the values being sent in
the data structure. Otherwise, just compile and run.

HelloSubscriber.cs

Example code for an application that subscribes to the user data type. This ex-
ample shows the basic steps to create all of the DDS objects needed to re-
ceive data.

No modification of this file is required. It is ready for you to compile and run.

Hello.csproj

NuGet.Config
Used to build and run your application. NuGet.Config tells the .NET compiler
where to find the Rti.ConnextDds NuGet package.

USER_QOS_PROFILES.xml The Quality of Service (QoS) configuration of the DDS entities in the gen-
erated example is loaded from this file.

Table 5.3 C# Files Created for Example “Hello.idl”

22

Chapter 5 Generated Files

23

Generated Files Description

The following files are required for the user data type. You should not modify these files.

Hello.py Generated code for the data types. These files contain the definition of your
data types.

The following optional files are generated when you use the -example <platform> command-line option (for Python the only
valid value of <platform> is universal). You may modify and use these files as a way to create simple applications that publish
or subscribe to the user data type.

Hello_publisher.py

Example code for an application that publishes the user data type. This ex-
ample shows the basic steps to create all of the DDS objects needed to send
data.

You can modify the code to set and change the values being sent in the data
structure.

Hello_subscriber.py

Example code for an application that subscribes to the user data type. This ex-
ample shows the basic steps to create all of the DDS objects needed to re-
ceive data.

No modification of this file is required. It is ready for you to run.

Hello_program.py Code for running the Hello_publisher.py and Hello_subscriber.py ap-
plications. Run "python Hello_program.py <options>".

USER_QOS_PROFILES.xml The Quality of Service (QoS) configuration of the DDS entities in the gen-
erated example is loaded from this file.

Table 5.4 Python Files Created for Example “Hello.idl”

Data Type Generated Files Description

Since the Java language requires individual files to be created for each class, Code Generator will generate a source file for
every IDL construct that translates into a class in Java.

Constants Hello.java Class associated with the constant

Enums Hello.java Class associated with enum type

Structures/Unions

Hello.java

HelloSeq.java

HelloDataReader.java

HelloDataWriter.java

HelloTypeSupport.java

Structure/Union class

Sequence class

DDS DataReader and DataWriter classes

Support (serialize, deserialize, etc.) class

Typedef of sequences or arrays

Hello.java

HelloSeq.java

HelloTypeSupport.java

Wrapper class

Sequence class

Support (serialize, deserialize, etc.) class

Table 5.5 Java Files Created for Example “Hello.idl”

Chapter 5 Generated Files

Data Type Generated Files Description

The following optional files are generated when you use the -example <architecture> command-line option. You may modify
and use these files as a way to create simple applications that publish or subscribe to the user data type.

Last structure/union

HelloPublisher.java

HelloSubscriber.java

Example code for applications that publish or subscribe to the user data type. You
should modify the code in the publisher application to set and change the value of the
published data. Otherwise, both files should be ready to compile and run.

makefile_Hello_<architecture> Makefile for non-Windows-based architectures. An example <architecture> is arm-
v8Linux4gcc7.3.0.

USER_QOS_PROFILES.xml The Quality of Service (QoS) configuration of the DDS entities in the generated ex-
ample is loaded from this file.

Structures/Unions/
Typedefs/Enums HelloTypeCode.java Type code class associated with the IDL type, Hello

Table 5.5 Java Files Created for Example “Hello.idl”

Generated Files Description

Hello[.h,.c]

Generated code for the data types, which contain the implementation for the data types, and
header files that contain declarations used in the implementation of the data types.

HelloSupport[.h,.c]

HelloPlugin[.h,.c]

hello_idl_file[.adb, .ads]

hello_idl_file-hello_datawriter.ads

DataReader and DataWriter classes and serialize/deserialize methods.hello_idl_file-hello_datareader.ads

hello_idl_file-hello_typesupport[.adb,.ads]

hello_idl_file-hello_metptypesupport[.adb,.ads] These files are generated only for types that support Zero Copy transfer over shared
memory (that is, are annotated with @transfer_mode(SHMEM_REF) in the IDL file).

hello_idl_file-hello_publisher[.adb,.ads]
(in the samples/ directory)

Example code for an application that publishes the user data type. You will need to modify
the code to set and change the values being sent in the data structure. Otherwise, just com-
pile and run. The subscriberlistener file implements the on_data_available() callback.

hello_idl_file-hello_subscriber[.adb,.ads]
(in the samples/ directory)

hello_idl_file-hello_subscriberlistener[.adb,.ads]
(in the samples/ directory)

hello.gpr Project files using Ada-like syntax.These files define the build-related characteristics of the
application. These characteristics include the list of sources, the location of those sources,
the location of the generated object files, the name of the main program, and the options for
the various tools involved in the build process. Each of them is for a different set of files
(hello-samples is for the examples, hello_c is for the c files and hello is for rest of the ada
files.)

hello_c.gpr

hello-samples.gpr (in the samples directory)

Table 5.6 Ada Files Created for Example “Hello.idl”

24

Chapter 5 Generated Files

25

Generated Files Description

The following optional file is generated when you use the -example <architecture> command-line option. You may modify and
use this file as a way to create simple applications that publish or subscribe to the user data type.

USER_QOS_PROFILES.xml The Quality of Service (QoS) configuration of the DDS entities in the generated example is
loaded from this file.

Table 5.6 Ada Files Created for Example “Hello.idl”

Chapter 6 Customizing the Generated
Code

Code Generator allows you to customize the generated code for different languages by chan-
ging the provided templates. This version does not allow you to create new output files.

You can load new templates using the following command in an existing template, where
<pathToTemplate> is the absolute path to the folder with the customized template:
#parse(“<pathToTemplate>/template.vm”)

If that template.vm file contains macros, you can use it within the original template. If tem-
plate.vm contains just plain text without macros, that text will be included directly in the ori-
ginal file.

You can also load new templates that contain macros by adding these templates to a folder
named “macros,” as follows:
<NDDSHOME>/resource/app/app_support/rtiddsgen/templates/<lang>/macros/

All the templates must have the extension .vm. The velocity engine will load them. These mac-
ros can then be called from the templates in <NDDSHOME>/resource/app/app_sup-
port/rtiddsgen/templates/<lang>/.

For example, if you have a template that contains macros to generate Python code called
myMacros.vm, you could move this template to the following path:
<NDDSHOME>/resource/app/app_support/rtiddsgen/templates/py/macros/myMacros.vm

You can now use all the macros defined in myMacros.vm from the templates type.vm,
typeMacros.vm, and utils.vm located in <NDDSHOME>/resource/app/app_sup-
port/rtiddsgen/templates/py/.

You can customize the behavior of a template by using the predefined set of variables provided
with Code Generator. For more information, see the tables in RTI_rtiddsgen_template_vari-
ables.xlsx.

26

Chapter 6 Customizing the Generated Code

27

This file contains two different sheets: Language-Templates and Template variables. The Language-
Template sheet shows the correspondence between the Velocity Templates used and the generated files
for each language. If, for example, we want to add a method in C in the Hello.c file, we would need to
modify the template typeBody.vm under the templates/c directory.

The scope of a template can be:

l type: If we generate a file with that template for each type in the IDL file. For example in Java,
where we generate a TypeSupport file for each type in the IDL.

l file: If we generate a file with that template for each IDL file. For example in C, we generate a
single plugin file containing all the types Plugin information.

l lastTopLevelType: If we generate a file with that template for the last top-level type in the IDL
file. This is commonly used for the publisher/subscriber examples.

l module: If we generate a file with that template for each module in the IDL file. This is used in
Ada, where there are files that contain all the types of a module.

l topLevelType: if we generate a file with that template for each type in the idl file. This is used in
ADA where the publisher/subscriber files are only generated for top level types

The table also shows the top_level variables that can be used for that templates. These variables are
explained in the sheet Template variables. For example in Java, the main unit of variables are the con-
structMap which is a hashMap of variables that represent a type. In C, we will have as the main unit
the constructMapList, which is a List of constructMap. In the Template variables sheet, we can see
which variables are contained in each constructMap, the constructKind or type that it is applicable to
and the value that it contains depending on the language we use.

One important variable that contains the constructMap for a type is the memberFieldMapList. This list
represent the members contained within the type. Each member is also represented as a hashMap whose
variables are also described in the Template variables sheet.

Apart from that there are environmental or general variables that are not related with the types that are
defined within a hashMap called envMap.

Let’s see how to use these variables with an example. Suppose we want to generate a method in C that
prints the members for a structure and, if it is an array or sequence, its corresponding size. For this
IDL:

Chapter 6 Customizing the Generated Code

module Mymodule{
struct MyStruct{

int32 longMember;
int32 arrayMember [2][100];
sequence<char,2> sequenceMember;
sequence <int32, 5> arrayOfSequenceMember[28];

};
};

We want to generate this:
void MyModule_MyStruct_specialPrint(){

printf(" longMember \n");
printf(" arrayMember is an array [2, 100] \n ");
printf(" sequenceMember is a sequence <2> \n");
printf(" arrayOfSequenceMember is an array [28] is a sequence <5> ");

}

The code in the template would look like this:
We go through all the list of types
#foreach ($node in $constructMapList)
##We only want the method for structs
#*--*##if ($node.constructKind.equals(“struct”))
void ${node. nativeFQName}_specialPrint(){
##We go through all the members and call to the macros that check if they are array or
sequences
#*----*##foreach($member in $node.memberFieldMapList)
print("$member.name #isAnArray($member) #isASeq($member) \n");
#*----*##end
}
#*--*##end
#end

The isAnArray macro checks if the member is an array (i.e, has the variable dimensionList) and in
that case, prints it:
#macro (isAnArray $member)
#if($member.dimensionList) is an array $member.dimensionList #end
#end

The isASeq macro checks if the member is a sequence (i.e, has the variable seqSize) and in that case,
prints it:
#macro (isASeq $member)
#if($member.seqSize) is a sequence <$member.seqSize> #end
#end

You can add new variables to the templates using the -V <name< [=<value>] command-line option
when starting Code Generator. This variable will be added to the userVarList hashMap. You can refer
to it in the template as $userVarList.name or $userVarList.name.equals(value).

For more information on velocity templates, see https://velocity.apache.org/engine/1.5/user-guide.html.

28

https://velocity.apache.org/engine/2.3/user-guide.html

Chapter 7 Optimizing the Code
Generation Process

The cost of serialization and deserialization operations increases with type complexity and
sample size. It can become a significant contributor to the latency required to send and receive a
sample. Code Generator provides the command-line option -optimization, which can be used
to indicate the level of optimization of the serialize/deserialize operations. This command-line
option allows selecting one of three different levels.

7.1 Optimization Levels

0: No optimization

1: rtiddsgen generates extra code for typedefs but optimizes its use. If a type that is used is a
typedef that can be resolved to a primitive, enum, or aggregated type (struct, union, or value
type), the generated code will invoke the code of the most basic type to which the typedef can
be resolved. This level can be used if the generated code for typedef is not expected to be mod-
ified. This is the only optimization level supported for Java and C# languages.

For example:
typedef int32 Latitude;
typedef int32 Latitude;

struct Position {
Latitude x;
Longitude y;

};

With optimization 0, the serialization of a sample with type Position will require calling the seri-
alize methods for Latitude and Longitude. For example:
LatitudePlugin_serialize(...) {

serialize_long(...)
}

29

7.2 How the Optimizations are Applied

30

LongitudePlugin_serialize(...) {
serialize_long(...)

}

Position_serialize(...) {
LatitudePlugin_serialize(...)
LongitudePlugin_serialize(...)

}

With optimization 1, rtiddsgen resolves Latitude and Longitude to their most primitive types for seri-
alization purposes, resulting in a more efficient serialization. In this case, rtiddsgen will save two func-
tion/method calls.
Position_serialize(...) {

serialize_long(...)
serialize_long(...)

}

2: This optimization level is the default if not specified. (You can also explicitly specify it.) This optim-
ization level applies only to C, C++, C++11, microC, microC++, and Ada languages. With this optim-
ization level, rtiddsgen optimizes the serialization/deserialization of structures and valuetypes by using
more aggressive techniques. These techniques include inline expansion of nested types and seri-
alization/deserialization of a set of consecutive members with a single copy function invocation (mem-
cpy) when the memory layout (C, C++ structure layout) is the same as the wire layout (XCDR).

7.2 How the Optimizations are Applied

In Code Generator, the optimizations (inline expansion of nested types and serialization of consecutive
members with a single copy) are related. Inline expansion of a nested structure is only done when the
C/C++ memory layout with standard packing of the structure matches the XCDR layout. (In this case,
the structure’s members can be serialized with a single memcpy.) If the C/C++ memory layout with
standard packing of the structure matches the XCDR layout, then rtiddsgen tries first to do the inline
expansion, then the serialization of consecutive members with a single copy.

7.2.1 Inline expansion of nested types

Inline expansion is an optimization in which Code Generator replaces a type definition with another
one in which nested types are flattened out. This is done to remove extra function calls during seri-
alization/deserialization. For example:
struct Point {

int32 x;
int32 y;

};

struct Dimension {
int32 height;
int32 width;

};

7.2.2 Serialization of consecutive members with a single copy

struct Rectangle {
Point leftTop;
Dimension size;

};

With optimization level 2, Code Generator replaces the definition of Rectangle with the following equi-
valent definition:
struct Rectangle {

int32 leftTop_x;
int32 leftTop_y;
int32 size_height;
int32 size_width;

};

This optimization is only done for serialization/deserialization. The generated type in C/C++ continues
using Point and Dimension.

7.2.2 Serialization of consecutive members with a single copy

In the previous Rectangle example, Code Generator, using optimization level 2, further optimizes the
serialization and deserialization by serializing a Rectangle sample with a single copy operation (mem-
cpy) instead of four.

Before optimization:
Rectangle_serialize(...) {

memcpy(..., 4) // leftTop_x
memcpy(..., 4) // leftTop_y
memcpy(..., 4) // size_height
memcpy(..., 4) // size_width

}

After optimization:
Rectangle_serialize(...) {

memcpy(..., 16) // leftTop_x
}

This optimization is only applicable when the memory layout of the C/C++ structure is equivalent to
the serialization layout, which uses the XCDR version 1 or version 2 format.

7.2.3 Rules for Inline Expansion

To be inlinable, a structure 'MyStruct' has to meet the following two requirements:

l It has to have a C/C++-friendly XCDR layout.
l No members of 'MyStruct' should be marked with the @min, @max, or @range annotations.

31

7.2.3 Rules for Inline Expansion

32

A struct/valuetype 'MyStruct' has a C/C++-friendly XCDR layout when all of the following conditions
apply:

l MyStruct is marked as @final or @appendable when the data representation is XCDR version 1.
Mutable structures are not inlinable.

l MyStruct does not have a base type.
l MyStruct contains only primitive members, or complex members composed only of primitive
members. A primitive member is a member with any of the following types: int81, uint82, int16,
int32, int64, uint16, uint32, uint64, float, double, octet, and char. The following primitive types
are not supported for inlining purposes: long double, wchar, boolean, enum.

struct Dimension {
int32 height;
int32 width;

}; // Inlinable

struct Dimension {
string label; // Inlinable structures cannot contain strings
int32 height;
int32 width;

}; // Not Inlinable

l With any initial alignment (1, 2, 4, 8) greater than the alignment of the first member of the struct,
there is no padding between the members that are part of MyStruct. To apply this rule, consider
these alignments and sizes for primitive types:

Table 7.1 Alignments and Sizes for Primitive Types

Primitive Type Alignment (bytes) Size (bytes)

int83 1 1

uint84 1 1

int16 2 2

uint16 2 2

[0]
1This type is supported only at the API level. It is still considered an octet for type matching purposes.

[0]
2This type is supported only at the API level. It is still considered an octet for type matching purposes.

[0]
3This type is supported only at the API level. It is still considered an octet for type matching purposes.

[0]
4This type is supported only at the API level. It is still considered an octet for type matching purposes.

7.2.3 Rules for Inline Expansion

Primitive Type Alignment (bytes) Size (bytes)

int32 4 4

uint32 4 4

int64 8 8

uint64 8 8

float 4 4

double 8 8

octet 1 1

char 1 1

struct Dimension {
int32 height;
int16 width;

}; // Inlinable. Independently of the alignment of the starting memory address (4 or
8), there is no padding between height and width

struct Dimension {
int16 height;
int32 width;

}; // Not Inlinable. Starting in a memory address aligned to 4 will require adding a
padding of two bytes between height and width

l With any initial alignment (1, 2, 4, 8) greater than the alignment of the first member of the struct,
there is no padding between the elements of an array of MyStruct.

struct Dimension {
int32 height;
int16 width;

}; // Not inlinable. Let's assume an array of two dimensions Dimension[2]. If the
array starts in a memory address aligned to 4, there would be padding between the
first and the second element of the array

struct Dimension {
int32 height;
int16 width;
int16 padding;

}; // Inlinable

For serialization and deserialization purposes, Code Generator will consider an inlinable structure
(according to the previous rules) as a primitive array where the alignment of the primitive type cor-
responds to the alignment of the first member of the structure. A member with type ‘MyStruct’ will be
serialized with a single copy (memcpy) invocation.

When Code Generator serializes the members of a data structure, it will also try to coalesce the seri-
alization of consecutive primitive members into a single copy operation if possible. Code Generator

33

7.2.4 Guidelines

34

only applies this optimization when the alignment of the next member is equal to or smaller than the
alignment of the current member.
struct Dimension {

int16 height;
int32 width;

}; // Coalescing not possible because the alignment of width 4 is greater than the alignment
of height 2

struct Dimension {
int32 width;
int16 height;

}; // Coalescing is possible because the alignment of width 4 is greater than the alignment
of height 2

7.2.4 Guidelines

As a rule of thumb, to take advantage of optimization level 2 for types containing only primitive types:

l Order the members in descending alignment order (this will help with copy coalescing).
l For XCDR version 2 encapsulation, use @final extensibility if your types will not evolve. For
XCDR version 1 encapsulation, use @final or @appendable if possible (this will help with inline
expansion).

l If you use ContentFilteredTopics, it is recommended that fields that appear in the filter expres-
sion are placed at the beginning of the type.

Chapter 8 Boosting Performance
If you need to invoke Code Generator multiple times with different parameters and/or type
files, there will be a performance penalty derived from loading the Java Virtual Machine (JVM)
and compiling the velocity templates every time you invoke Code Generator. If this is your
scenario, you can run Code Generator in server mode to avoid doing this process multiple
times. Or, if you would like to reduce the JVM startup and execution time, use the JVM optim-
ization provided with Code Generator, for a reduced time in code generation. These two options
(server mode and JVM optimization) cannot be used together.

8.1 Using Server Mode

One way to boost performance is to run Code Generator in server mode. Server mode runs a
native executable that opens a TCP connection to a server instance of the code generator that is
spawned the first time the executable is run, as depicted below:

35

8.1 Using Server Mode

36

To invoke Code Generator in server mode, use the script rtiddsgen_server(.bat), which is in the
scripts directory.

The default port Code Generator server attaches to is 14662. If you want to modify the port Code Gen-
erator server is attached to, use the -n_serverport <port> argument. Note that the Code Generator
server can use up to three ports; make sure you have two free ports after the specified one.

The Code Generator server offers a log-to-file option that you can enable by using the argument -n_log-
filepath <log directory>. In the specified log directory, the Code Generator server will create a file
named CodegenServerLog<portNumber>.txt containing all logging messages from the server side.

Code Generator server comes with builtin timeouts, some of which you can change:

l When Code Generator is used in server mode, JVM is loaded a single time when the server is
started; the velocity templates are also compiled a single time. The server will wait up to 5
seconds for Code Generator to initialize. You can change this value by specifying the number of
milliseconds using the argument -n_connectiontimeout<time in milliseconds>.

l The Code Generator server will automatically stop if it is not used (that is, if it does not receive
any calls) for a certain amount of time. The default value is 20 seconds; you can change this by
editing the rtiddsgen_server script and adjusting the value of the argument -n_servertimeout
<time in milliseconds>.

8.2 Using JVM Optimization

l Code Generator server sends a handshake message to the client after accepting the connection. In
the client, there is a timeout when waiting for the handshake message. If this message is not
received in the client in a short amount of time (10 seconds, an internal value that cannot be
changed), the Code Generator client will time out. This timeout might mean that there was
another application running in the port.

Notes:

l Mixing different versions of Code Generator server is not supported. See Limitations in the RTI
Code Generator Release Notes.

l Code Generator server cannot be parallelized. Each execution of Code Generator server is
attached to a port where it receives requests, and it can only generate code for one request at a
time. Therefore, if you try to send multiple requests simultaneously, Code Generator server will
process them sequentially.

8.2 Using JVM Optimization

Java Virtual Machine (JVM) offers different options that help improve its performance. RTI applies
some of these options when creating the Code Generator JVM, resulting in an improvement in the
Code Generator execution time. Because these options are non-standard, they are disabled by default.
If you are using the JRE shipped with Connext, you can enable these options; otherwise, enabling these
options is at your own risk.

The options applied to Code Generator JVM are as follows:

l -XX:+TieredCompilation
l -XX:TieredStopAtLevel=1
l -XX:CICompilerCount=4
l -Xverify:none
l -XX:+UseParallelGC
l -XX:+OptimizeStringConcat
l -XX:CompileThreshold=5000

For more information on these options, see the JDK documentation:
https://docs.oracle.com/en/java/javase/11/. (Currently, you can find most of the options described in the
Tools Reference, in "Main Tools to Create and Build Applications" > "java").

To enable the performance improvement associated with the Code Generator JVM options, set the
RTIDDSGEN_JVM_OPTIMIZATION environment variable to true. To disable the improvement,
unset the environment variable. (By default, it is not set.)

37

../release_notes/RTI_Code_Generator_ReleaseNotes.pdf
../release_notes/RTI_Code_Generator_ReleaseNotes.pdf
https://docs.oracle.com/en/java/javase/11/

	Chapter 1 Introduction
	Chapter 2 Paths Mentioned in Documentation
	Chapter 3 Command-Line Arguments for rtiddsgen
	Chapter 4 Generating Example Code
	4.1 Input Files (IDL, XML, XSD)
	4.1.1 IDL Language
	4.1.2 XML Language
	4.1.3 XSD Language
	4.1.4 Specifying Multiple Input Files

	4.2 C++ Example
	4.3 Advanced Example
	4.3.1 is_default_qos (true vs. false)
	4.3.2 Listeners vs. WaitSets

	4.4 Using Generated Types Without Connext (Standalone)
	4.4.1 Using Standalone Types in C
	4.4.2 Using Standalone Types in C++98
	4.4.3 Using Standalone Types in C++11
	4.4.4 Using Standalone Types in Java

	Chapter 5 Generated Files
	Chapter 6 Customizing the Generated Code
	Chapter 7 Optimizing the Code Generation Process
	7.1 Optimization Levels
	7.2 How the Optimizations are Applied
	7.2.1 Inline expansion of nested types
	7.2.2 Serialization of consecutive members with a single copy
	7.2.3 Rules for Inline Expansion
	7.2.4 Guidelines

	Chapter 8 Boosting Performance
	8.1 Using Server Mode
	8.2 Using JVM Optimization

