
RTI Connext Getting Started

C#

Version 7.3.0

Contents

1 Before You Get Started 1

1.1 What is Connext? . 1

1.2 Downloading Connext . 2

1.3 Installing Connext . 2

1.3.1 Installing a Host . 3

1.3.2 Installing additional packages with a GUI . 3

1.3.3 Installing additional packages from a Command Line 4

1.3.4 Paths Mentioned in Documentation . 4

1.4 Setting Up a License . 5

1.4.1 Setting up a License for the C# API . 5

1.4.2 Setting up a License for the tools and other features 6

1.5 Checking What is Installed . 7

1.6 Where Do I Get More Help? . 7

2 Publish/Subscribe 8

2.1 Introduction to DataWriters, DataReaders, and Topics . 9

2.2 Hands-On 1: Your First DataWriter and DataReader . 10

2.2.1 Clone Repository . 10

2.2.2 Set Up Environment Variables . 11

2.2.3 Run Code Generator . 11

Overview of Generated and Example Code . 13

2.2.4 Open/Modify Publishing Application . 13

2.2.5 Open/Modify Subscribing Application . 15

Details of Receiving Data . 15

2.2.6 Compile Your Changes . 17

2.2.7 Run the Applications . 17

2.2.8 Taking It Further . 18

Start up Multiple Publishing or Subscribing Applications 18

Publish/Subscribe across Multiple Machines . 20

Create Multiple DataWriters, DataReaders, and Topics in a Single Application . . . 20

2.3 Troubleshooting . 21

2.3.1 Why aren’t my applications communicating? . 21

2.3.2 How do I set my discovery peers? . 21

2.3.3 Why does the DataReader miss the first samples? 22

2.3.4 Why do I get a “No source for License information” error? 22

2.4 Hands-On 2: Viewing Your Data . 23

2.4.1 Open Admin Console . 23

i

2.4.2 Choose Automatically Join . 24

2.4.3 Switch to Data Visualization Perspective . 24

2.4.4 Open Topic Data Tab . 25

2.4.5 Subscribe to “HelloWorld Topic” . 25

2.4.6 Use Topic Data Tab . 26

2.4.7 Use Admin Console across Machines . 26

2.5 Next Steps . 27

3 Data Types 28

3.1 Common IDL Types . 30

3.2 Introduction to Data Flows . 30

3.3 Hands-On 1: Streaming Data . 31

3.3.1 Run Code Generator . 31

3.3.2 Modify for Streaming Data . 32

3.3.3 Run the Applications . 34

3.4 Publishers, Subscribers, and DomainParticipants . 35

3.5 Hands-On 2: Add a Second DataWriter . 37

3.5.1 Add the New DataWriter . 37

3.5.2 Visualize the Data in rtiddsspy . 38

3.6 Next Steps . 41

4 Keys and Instances 42

4.1 Why and How Do We Use Instances? . 44

4.1.1 Writing an Instance . 44

4.1.2 Reading an Instance . 46

4.1.3 Instance Lifecycle . 47

4.2 Example: Chocolate Factory . 48

4.2.1 Chocolate Factory: System Overview . 48

4.2.2 Chocolate Factory: Data Overview . 49

4.3 Hands-On 1: Build the Applications and View in Admin Console 50

4.3.1 Build the Applications . 52

4.3.2 Run Multiple Copies of the Tempering Application 54

4.3.3 View the Data in Admin Console . 55

4.4 Hands-On 2: Run Both Applications . 57

4.4.1 Run Monitoring and Tempering Applications . 57

4.4.2 Review the Tempering Application Code . 59

4.5 Hands-On 3: Dispose the ChocolateLotState . 60

4.5.1 Add Code to Tempering Application to Dispose ChocolateLotState 61

4.5.2 Detect the Dispose in the Monitoring Application 61

4.5.3 Run the Applications . 63

4.6 Hands-On 4: Debugging the System and Completing the Application 64

4.6.1 Debug in Admin Console . 64

4.6.2 Add the ChocolateTemperature DataReader . 66

4.6.3 Run the Applications . 68

4.7 Next Steps . 69

5 Basic QoS 70

5.1 Request-Offered QoS Policies . 71

ii

5.2 Some Basic QoS Policies . 73

5.2.1 Reliability and History QoS Policies . 73

“Best Effort” Reliability . 73

“Reliable” Reliability + “Keep All” History . 74

“Reliable” Reliability + “Keep Last” History . 74

Summary . 76

5.2.2 Resource Limits QoS Policy . 77

5.2.3 Durability QoS Policy . 78

5.2.4 Deadline QoS Policy . 82

5.2.5 QoS Patterns Review . 83

5.3 QoS Profiles . 84

5.4 Hands-On 1: Update One QoS Profile in the Monitoring/Control Application 84

5.5 Hands-On 2: Incompatible QoS in Admin Console . 89

5.6 Hands-On 3: Incompatible QoS Notification . 92

5.7 Hands-On 4: Using Correct QoS Profile . 93

5.8 Next Steps . 95

6 ContentFilteredTopics 96

6.1 The Complete Chocolate Factory . 97

6.2 Hands-On 1: Update the ChocolateLotState DataReader with a ContentFilteredTopic 99

6.3 Hands-On 2: Review the Temperature DataReader’s ContentFilteredTopic 101

6.4 Hands-On 3: Review the Larger System in Admin Console 104

7 Discovery 106

7.1 Domains . 107

7.2 Initial Peers . 108

7.3 Hands-On 1: Troubleshooting Discovery . 109

7.4 Hands-On 2: Start Applications in Different Domains . 111

7.5 Next Steps . 112

8 Next Steps 113

8.1 Documentation . 113

8.2 Examples . 114

8.3 Updates . 114

9 Copyrights and Notices 115

iii

Chapter 1

Before You Get Started

1.1 What is Connext?

RTI® Connext® is a connectivity framework for building distributed applications with requirements for high

performance and scalability. It includes these components:

• An SDK that provides you with APIs to help you send and receive data using the communication

patterns described in this documentation (see Next Steps). These APIs allow you to connect your own

applications to other applications on the databus.

• Tools that help you visualize your data and debug your distributed system.

• Infrastructure Services that can perform dedicated functions in your system, such as recording, bridg-

ing, and persisting data.

1

RTI Connext Getting Started, Version 7.3.0

1.2 Downloading Connext

If you haven’t already purchased a Connext bundle, you can follow this Getting Started guide with an eval-

uation bundle. To obtain an evaluation bundle, click the Free Trial button at https://www.rti.com/. Fill out

the brief form, and you will receive an evaluation package shortly.

1.3 Installing Connext

Note: These instructions apply to Connext 6.1.1 and newer.

To develop C# applications, you will need the following Connext bundles:

• A host bundle that contains files such as documentation, the code generator, other tools, and infrastruc-

ture services executables. The host bundle is provided in a .run or .exe file that will run an installer.

Host bundles are named:

Linux

rti_connext_dds-<version>-<package_type>-host-<host-platform>.run

macOS

rti_connext_dds-<version>-<package_type>-host-<host-platform>.dmg

Windows

rti_connext_dds-<version>-<package_type>-host-<host-platform>.exe

The <package_type> is usually pro.

The <host_platform> depends on your development platform, such as x64Win64 for a 64-bit

Windows® platform.

• The NuGet packages required to develop Connext C# applications. There are two ways to obtain

these NuGet packages:

– Install rti_dotnet_support-<version>.rtipkg to add the NuGet packages to your

installation directory (see Installing additional packages with a GUI or Installing additional

packages from a Command Line).

or

– Let .NET automatically download the NuGet packages from nuget.org when you build your C#

applications. The nuget.org libraries require a license file when you run your application (see

Setting up a License for the C# API).

Note that the nuget.org packages allow writing C# applications without a host installation, but this

guide uses the code generator and some tools that are included in the host package.

• If you plan to develop C, C++, or Java applications or use add-on libraries you will also need a target

bundle. See the C++ version of this Getting Started Guide for more information.

1.2. Downloading Connext 2

https://www.rti.com/
https://www.nuget.org/packages/Rti.ConnextDds.Extra/

RTI Connext Getting Started, Version 7.3.0

1.3.1 Installing a Host

The host bundle is an application; thus, it can be started from a GUI or command line. To install the host

bundle, do either of the following:

• Double-click the installer.

• Run the installation script from a command prompt. See Installing RTI Connext, in the RTI Connext

Installation Guide.

1.3.2 Installing additional packages with a GUI

After you install the host bundle, you’ll have a tool called RTI Launcher. (See Starting Launcher, in the RTI

Launcher User’s Manual.)

To install additional packages from the Launcher tool, open the Configuration tab, and select “Install RTI

Packages.” This will open a dialog that allows you to select one or more .rtipkg files that you would like to

install.

1.3. Installing Connext 3

RTI Connext Getting Started, Version 7.3.0

1.3.3 Installing additional packages from a Command Line

To install additional packages from the command line, type:

Linux

$ <installdir>/bin/rtipkginstall <path to rtipkg>

macOS

$ <installdir>/bin/rtipkginstall <path to rtipkg>

Windows

> <installdir>\bin\rtipkginstall <path to rtipkg>

1.3.4 Paths Mentioned in Documentation

This documentation refers to the following directories, depending on your operating system:

Linux

$NDDSHOME This refers to the installation directory for Connext.

The default installation paths are:

• Non-root user:

/home/<your user name>/rti_connext_dds-<version>

• Root user:

/opt/rti_connext_dds-<version>

1.3. Installing Connext 4

RTI Connext Getting Started, Version 7.3.0

$NDDSHOME is an environment variable set to the installation path.

macOS

$NDDSHOME This refers to the installation directory for Connext.

The default installation path is:

/Applications/rti_connext_dds-<version>

$NDDSHOME is an environment variable set to the installation path.

Windows

%NDDSHOME% This refers to the installation directory for Connext.

The default installation paths are:

• User without Administrator privileges:

<your home directory>\rti_connext_dds-<version>

• User with Administrator privileges:

"C:\Program Files\rti_connext_dds-<version>"

%NDDSHOME% is an environment variable set to the installation path.

Note: When using a command prompt to enter a command that includes the path C:\Program Files
(or any directory name that has a space), enclose the path in quotation marks. For example: “C:\
Program Files\rti_connext_dds-version\bin\rtilauncher.bat”. Or if you have de-
fined the NDDSHOME environment variable: "%NDDSHOME%\bin\rtilauncher.bat".

Sometimes this documentation uses <NDDSHOME> to refer to the installation path. Whenever you see

<NDDSHOME> used in a path, replace it with $NDDSHOME for Linux or macOS systems, with%NDDSHOME%
for Windows systems, or with your installation path.

1.4 Setting Up a License

1.4.1 Setting up a License for the C# API

If you’re using the NuGet packages from your host installation, you don’t need a license file to run your

applications.

If you’re using the NuGet packages from nuget.org, your applications need to load a license file every time

they run. To obtain an evaluation license, click the Free Trial button at https://www.rti.com/.

There are several ways to specify your license file:

• You can copy the rti_license.dat file to the location where you run your application.

• You can set the RTI_LICENSE_FILE environment variable to the full path of your license file,

including the file name.

1.4. Setting Up a License 5

https://www.rti.com/

RTI Connext Getting Started, Version 7.3.0

• You can set the DomainParticipantQos to point to your license file (see the License Manage-

ment section in the RTI Connext Installation Guide).

1.4.2 Setting up a License for the tools and other features

Most installations require a license file to run the tools or features included in the Connext platform. If your

distribution requires a license file, you will receive one from RTI via e-mail.

The easiest way to permanently configure your license file is using Launcher, as shown below:

If you do not want to use Launcher, you can also install a license by placing it in one of these two locations:

• <installation directory>/rti_license.dat

• <workspace directory>/rti_license.dat

The workspace directory is in this location by default, depending on your operating system:

Linux

/home/<your username>/rti_workspace/

macOS

1.4. Setting Up a License 6

RTI Connext Getting Started, Version 7.3.0

/Users/<your username>/rti_workspace/

Windows

<your Windows documents folder>\rti_workspace\

A third way to install a license is to configure the environment variable RTI_LICENSE_FILE to point to

your license file.

For more details on how to install a license file, see the License Management section in the RTI Connext

Installation Guide.

1.5 Checking What is Installed

To find out what target libraries or add-ons you have installed, you can use the Launcher tool. See Starting

Launcher, in the RTI Launcher User’s Manual. Once in Launcher, open the Configuration tab.

1.6 Where Do I Get More Help?

The full RTI Connext Installation Guide contains more information:

• Installer command-line options

• Controlling the location of the RTI Workspace directory

• Additional license management options

• Special backup of RTI libraries

• How to uninstall Connext

Additional documentation and user forums can be found on community.rti.com.

Continue to Publish/Subscribe to start learning about the capabilities and features of Connext.

1.5. Checking What is Installed 7

https://community.rti.com/

Chapter 2

Publish/Subscribe

Prerequisites
• Install git

• Install the .NET 5 SDK (the C# API supports more .NET versions, but the

examples in this guide are set up to build for .NET 5)

• Install release 7.3.0 (see Before You Get Started)

• Clone repository from GitHub here

Time to complete 30 minutes

Concepts covered

in this module
• Introduction to publish/subscribe

• Introduction to DataWriters, and DataReaders, and Topics

• Using the code generator

• Using Waitsets

• Viewing your data in RTI Admin Console

The most basic communication pattern supported by RTI® Connext® is the publish/subscribe model. Pub-

lish/Subscribe is a communications model where data producers “publish” data and data consumers “sub-

scribe” to data. These publishers and subscribers don’t need to know about each other ahead of time; they

discover each other dynamically at runtime. The data they share is described by a “topic,” and publishers and

subscribers send and receive data only for the topics they are interested in. In this pattern, many publishers

may publish the same topic, and many subscribers may subscribe to the same topic. Subscribers receive data

from all of the publishers that they share a topic with. Publishers send data directly to subscribers, with no

need for a broker or centralized application to mediate communications.

8

https://git-scm.com
https://dotnet.microsoft.com
https://github.com/rticommunity/rticonnextdds-getting-started

RTI Connext Getting Started, Version 7.3.0

2.1 Introduction to DataWriters, DataReaders, and Topics

In DDS, the objects that actually publish data are called DataWriters, and the objects that subscribe to data

areDataReaders. DataWriters andDataReaders are associated with a single Topic object that describes that

data. (DDS also has Publisher and Subscriber objects, but we will talk about them later.) An application

typically has a combination of DataWriters and DataReaders.

Figure 2.1: DataWriters write data and DataReaders read data of a Topic. DataWriters of the “Choco-

lateTemperature” Topic communicate with DataReaders of the “ChocolateTemperature” Topic. DataWrit-

ers of the “ChocolateLotState” Topic communicate with DataReaders of the “ChocolateLotState” Topic.

In a chocolate factory, for example, there might be a sensor that measures and publishes the current tem-

perature of the tempering machine. Other applications monitor the temperature by subscribing to it. In this

example, your Topic might be “ChocolateTemperature.” The sensor’s DataWriter will be associated with

the “ChocolateTemperature” Topic. In a similar way, other DataWriters and DataReaders share different

types of data using additional Topics.

Connext is responsible for discovering DataWriters and DataReaders in a system, checking if they have

a matching Topic (and compatible quality of service, which we will discuss later) and then providing the

communication between those DataWriters and DataReaders. Logically, this means you can visualize your

applications as having DataWriters and DataReaders that connect to a “databus,” because your applications

are not specifying exactly which other applications they communicate with – they only specify which Topics

they read from and write to the databus, and Connext sets up the communication. Note that there is no

“databus” object in your system – it is a logical way to visualize systems in which you don’t have to configure

each communication path.

2.1. Introduction to DataWriters, DataReaders, and Topics 9

RTI Connext Getting Started, Version 7.3.0

2.2 Hands-On 1: Your First DataWriter and DataReader

We are going to start with a simple “Hello World” application to show how to use the code generator, and

how to create a DataWriter and a DataReader.

Tip: By the end of this exercise, a publishing application will send data, and a subscribing application will

receive and print it to the console using Console.WriteLine().

2.2.1 Clone Repository

Get the files you need to perform the hands-on exercises.

Note: Always use the version of the examples that matches your Connext release. By default, the GitHub

repository branch is set to master, which is always the latest release. If your version of Connext is not the
latest release, select the release version you want, such as release/<version>.

Do one of the following:

• Download the repository as a Zip file from the repository webpage here, for your desired

release (e.g., release/<version>).

• Clone the repository from GitHub.

Use the following command:

Linux

$ git clone https://github.com/rticommunity/rticonnextdds-
→˓getting-started.git

macOS

$ git clone https://github.com/rticommunity/rticonnextdds-
→˓getting-started.git

Windows

> git clone https://github.com/rticommunity/rticonnextdds-
→˓getting-started.git

Check out the desired release. For example:

Linux

$ git checkout release/<version>

macOS

2.2. Hands-On 1: Your First DataWriter and DataReader 10

https://github.com/rticommunity/rticonnextdds-getting-started

RTI Connext Getting Started, Version 7.3.0

$ git checkout release/<version>

Windows

> git checkout release/<version>

2.2.2 Set Up Environment Variables

The RTI Code Generator tool is located in <installdir>/bin/rtiddsgen (<installdir> refers
to the installation directory for Connext).

To follow the instructions in the coming sections, add <installdir>/bin to your path.

1. Open a command prompt window, if you haven’t already.

2. Add <installdir>/bin/ to your path.

Linux

$ export PATH=${PATH}:<installdir>/bin

macOS

$ export PATH=${PATH}:<installdir>/bin

Windows

> set PATH=%PATH%;<installdir>\bin

When a directory name has a space, enclose the path in quotation marks. For example: "C:\Program
Files\rti_connext_dds-<version>\bin".

2.2.3 Run Code Generator

Inside the repository you have cloned, there is a directory named 2_hello_world, which contains the
HelloWorld type definition in a file named hello_world.idl.

1. Open hello_world.idl to see the definition for our HelloWorld type:

// Hello world!
struct HelloWorld {

// String with maximum length of 256 characters
string<256> msg;

};

This language-independent interface is written in IDL, the Interface Definition Language. IDL allows

you to declare data types used for communication (we’ll cover this more in Data Types). Connext

includes a code generator that translates from this language-independent data type into code specific

2.2. Hands-On 1: Your First DataWriter and DataReader 11

RTI Connext Getting Started, Version 7.3.0

for your language. The generated code serializes and deserializes your data into and out of a network

format.

2. From a terminal or command prompt, run rtiddsgen, which runs the code generator on

hello_world.idl:

Linux

$ cd 2_hello_world
$ rtiddsgen -language c# -example net5 -d csharp hello_world.idl

macOS

$ cd 2_hello_world
$ rtiddsgen -language c# -example net5 -d csharp hello_world.idl

Windows

> cd 2_hello_world
> rtiddsgen -language c# -example net5 -d csharp -ppDisable hello_world.
→˓idl

-ppDisable disables the preprocessor. It is necessary for running rtiddsgen on a Windows system

if the preprocessor is not in your path. You can only use -ppDisable if your IDL is simple, as it

is here—otherwise you must add the preprocessor to your path. See Command-Line Arguments for

rtiddsgen, in the RTI Code Generator User’s Manual if you want more information.

If you haven’t configured your path as described in Set Up Environment Variables, run <install
dir>/bin/rtiddsgen.

-example net5 generates an example .NET 5 publisher and subscriber application.

-d csharp specifies the directory where the code will be generated.

3. Open the csharp directory to review the code.

2.2. Hands-On 1: Your First DataWriter and DataReader 12

RTI Connext Getting Started, Version 7.3.0

Overview of Generated and Example Code

The code you just generated includes the files in Table 2.1, in the csharp directory. Some of the files are

generated by rtiddsgen, some came from the GitHub repository you cloned.

Table 2.1: Generated and Example Code Files

Files Description

• hello_world.cs
• hello_worldPlugin.cs

The C# definition of your data type, and

the code used to serialize and deserialize

it (convert it to a format for the network).

This is the type-specific code that will be

used in your real application.

• hello_worldPublisher.cs
• hello_worldSubscriber.
cs

• hello_worldProgram.cs

Example code you can read and modify.

These files will compile as a .NET appli-

cation that can run as a publisher or as a

subscriber. These files were generated be-

cause you specified -example net5.

• hello_world.csproj
• NuGet.Config

Used to build and run your application.

NuGet.Config tells the .NET compiler
where to find the Rti.ConnextDds
NuGet package. These files were gen-

erated because you specified -example
net5.

• USER_QOS_PROFILES.xml
Configuration file for Quality of Service

(to be discussed more later). This file

came from the repository you cloned.

2.2.4 Open/Modify Publishing Application

To browse the code with IntelliSense (auto-completion) and inline API documentation you can use Visual

Studio Code (with the C# extension by Microsoft), Visual Studio 2019, or Visual Studio for Mac.

To browse the code in Visual Studio Code, open the 2_hello_world/csharp folder:

$ code 2_hello_world/csharp

To useVisual Studio orVisual Studio forMac, double-click on hello_world.csproj or open it from
the IDE.

Once you’ve opened the source code in your IDE of choice:

1. Open hello_worldPublisher.cs

This snippet shows how to create a Topic (with a name and data type) and create a DataWriter for that

Topic:

// A Topic has a name and a datatype.
Topic<HelloWorld> topic = participant.CreateTopic<HelloWorld>(

2.2. Hands-On 1: Your First DataWriter and DataReader 13

RTI Connext Getting Started, Version 7.3.0

"Example HelloWorld");

// A Publisher allows an application to create one or more DataWriters
// Publisher QoS is configured in USER_QOS_PROFILES.xml
Publisher publisher = participant.CreatePublisher();

// This DataWriter will write data on Topic "Example HelloWorld"
// DataWriter QoS is configured in USER_QOS_PROFILES.xml
DataWriter<HelloWorld> writer = publisher.CreateDataWriter(topic);

2. Change the Topic name from “Example HelloWorld” to “HelloWorld Topic”:

Topic<HelloWorld> topic = participant.CreateTopic<HelloWorld>(
"HelloWorld Topic");

3. Modify the code to send the message “Hello world!” with a count.

The following snippet shows how to write a HelloWorld update using the DataWriter’s write method.

In the for loop in the snippet, add the highlighted line, just after the comment // Modify the
data to be written here. This will set sample.msg to “Hello world!” with a count:

var sample = new HelloWorld();
for (int count = 0; count < sampleCount; count++)
{

// Modify the data to be written here
sample.msg = $"Hello World! {count}";

Console.WriteLine($"Writing HelloWorld, count {count}");

writer.Write(sample);

Thread.Sleep(1000);
}

Recall that your “HelloWorld Topic” describes your data. This Topic is associated with the data type

HelloWorld, which is defined in the IDL file (see Run Code Generator). The data type HelloWorld

contains a string field named msg. In this step, you have just added code to set a value for the msg

field. Now, when the DataWriter writes data, the msg field in the data will contain the string “Hello

world! 1”, “Hello world! 2”, etc.

Definition

A sample is a single update to a Topic, such as “Hello world! 1”. Every time an application calls

Write(), it is “writing a sample.” Every time an application receives data, it is “receiving a

sample.”

Note that samples don’t necessarily overwrite each other. For example, if you set up a Reli-

able Quality of Service (QoS) with a History kind of KeepAll, all samples will be saved and

accumulate. You can find more details in Basic QoS.

2.2. Hands-On 1: Your First DataWriter and DataReader 14

RTI Connext Getting Started, Version 7.3.0

2.2.5 Open/Modify Subscribing Application

The subscriber application also creates a Topic.

1. Open hello_worldSubscriber.cs:

This snippet shows how to create a Topic (with a name and data type) and create a DataReader for

that Topic:

// A Topic has a name and a datatype. Create a Topic named
// "HelloWorld Topic" with type HelloWorld
Topic<HelloWorld> topic = participant.CreateTopic<HelloWorld>(

"Example HelloWorld");

// A Subscriber allows an application to create one or more DataReaders
// Subscriber QoS is configured in USER_QOS_PROFILES.xml
Subscriber subscriber = participant.CreateSubscriber();

// This DataReader reads data on Topic "Example HelloWorld".
// DataReader QoS is configured in USER_QOS_PROFILES.xml
DataReader<HelloWorld> reader = subscriber.CreateDataReader(topic);

2. Change the Topic name from “Example HelloWorld” to “HelloWorld Topic”, just as you did in the

publishing application.

Note: The Topic names must match between the publishing and subscribing applications for the

DataWriter and DataReader to communicate.

Topic<HelloWorld> topic = participant.CreateTopic<HelloWorld>(
"HelloWorld Topic");

Details of Receiving Data

You don’t need to make any changes here, but look at the HelloWorldSubscriber.cs code to see

how it receives data. The DataReader is being notified of new data using an object called a WaitSet:

// Create a WaitSet and attach the StatusCondition
var waitset = new WaitSet();
waitset.AttachCondition(statusCondition);
while (samplesRead < sampleCount)
{

// Dispatch will call the handlers associated to the WaitSet
// conditions when they activate
Console.WriteLine("HelloWorld subscriber sleeping for 4 sec...");
waitset.Dispatch(Duration.FromSeconds(4));

}

This WaitSet object is a way for the application to sleep until some “condition” becomes true. When the

application calls waitset.Dispatch(Duration.FromSeconds(4)), it will sleep for up to the du-
ration time (4 seconds in this example), unless it is woken up due to a condition becoming true.

2.2. Hands-On 1: Your First DataWriter and DataReader 15

RTI Connext Getting Started, Version 7.3.0

There are multiple types of conditions that you can attach to a WaitSet, but this example shows a StatusCon-

dition. Here is the code for the StatusCondition:

// Obtain the DataReader's Status Condition
StatusCondition statusCondition = reader.StatusCondition;

// Enable the 'data available' status.
statusCondition.EnabledStatuses = StatusMask.DataAvailable;

// Associate an event handler with the status condition.
// This will run when the condition is triggered, in the context of
// the dispatch call (see below)
int samplesRead = 0;
statusCondition.Triggered += _ => samplesRead += ProcessData(reader);

In this example, we are saying that we are interested in waking up when the “data available” status becomes

true. This means that when data arrives:

• The reader’s DataAvailable status becomes true

• The application is woken up from the Dispatch call

• The Triggered event handler is called

A closer look at ProcessData, called by the event handler:

private static int ProcessData(DataReader<HelloWorld> reader)
{

// Take all samples. Samples are loaned to application, loan is
// returned when the samples variable is Disposed.
int samplesRead = 0;
using (var samples = reader.Take())
{

foreach (var sample in samples)
{

if (sample.Info.ValidData)
{

Console.WriteLine(sample.Data);
samplesRead++;

}
}

}

return samplesRead;
}

This code calls reader.Take(), which removes any available samples out of the DataReader queue,
and returns them in a collection. If data is arriving quickly, it is likely this collection will contain multiple

samples. In this example, the sample’s data is being printed to the screen with Console.WriteLine.

2.2. Hands-On 1: Your First DataWriter and DataReader 16

RTI Connext Getting Started, Version 7.3.0

2.2.6 Compile Your Changes

Now that you have made changes to both the publisher and subscriber code, compile the code with your

modifications. From 2_hello_world/csharp run:

$ dotnet build

You can also build the code from Visual Studio Code, Visual Studio, and Visual Studio for Mac. This

guide will use the dotnet command-line interface to build and run the applications.

2.2.7 Run the Applications

1. From within the 2_hello_world/csharp directory, enter the following:

$ dotnet run -- --pub

Note: You must be in the 2_hello_world/csharp directory when you run the previous com-

mand. Or if you opened the project in Visual Studio, make sure the current working directory is set

to the full path to 2_hello_world/csharp. The examples use Quality of Service (QoS) infor-
mation from the file USER_QOS_PROFILES.xml in the 2_hello_world/csharp directory.

We’ll talk more about QoS in a later module.

You should see this in the window for the publisher:

Writing HelloWorld, count 1
Writing HelloWorld, count 2
Writing HelloWorld, count 3
Writing HelloWorld, count 4
...

2. Open another command prompt window, and fromwithin the 2_hello_world/csharp directory,
enter the following:

$ dotnet run -- --sub

You should see this in the window for the subscriber:

msg: "Hello world! 1"
Wait timed out after 4 seconds.

msg: "Hello world! 2"
Wait timed out after 4 seconds.

msg: "Hello world! 3"
Wait timed out after 4 seconds.

msg: "Hello world! 4"
...

2.2. Hands-On 1: Your First DataWriter and DataReader 17

RTI Connext Getting Started, Version 7.3.0

Note: Since the waitTimeout for both the publisher and subscriber is up to 4 seconds, you may

or may not get the Wait timed out after 4 seconds line between the samples, depending
on the timing between the two applications.

The msg: "Hello world! <count>" line is the data being sent by the DataWriter. If the

DataWriterweren’t communicating with theDataReader, you would just see the Wait timed out
after 4 seconds lines and not the “msg” lines. (The subscribing application prints the “timed

out” lines after the WaitSet times out while waiting for data, then it prints the “msg:” lines when it

receives data from the DataWriter.)

Note: If you don’t get the results described here, see Troubleshooting.

2.2.8 Taking It Further

Under the hood, the publishing and subscribing applications are doing a lot of work:

Before communication starts, the DataWriter and DataReader discover each other and check that they have

the same Topic name, compatible data types, and compatible QoS. (We will talk more about discovery in

a later module). After discovery, the DataWriter sends data directly to the DataReader, with no message

broker required.

When you run the applications on the same machine, by default they communicate over shared memory. If

you run one on another machine, they communicate over the network using UDP.

Start up Multiple Publishing or Subscribing Applications

Try starting up multiple publishing or subscribing applications, and you will see that they will also send or

receive data. (Remember to run from the 2_hello_world/csharp directory.)

2.2. Hands-On 1: Your First DataWriter and DataReader 18

RTI Connext Getting Started, Version 7.3.0

Figure 2.2: Two applications publishing, and two subscribing, to the same Topic. Notice that each subscriber

is receiving data from both publishers.

Figure 2.3: Two applications publishing, and two subscribing, to the same Topic.

2.2. Hands-On 1: Your First DataWriter and DataReader 19

RTI Connext Getting Started, Version 7.3.0

Publish/Subscribe across Multiple Machines

To publish/subscribe between two machines:

1. Clone the repository on both machines. See Clone Repository.

2. In the 2_hello_world directory on one machine, modify and run the publishing application as

described in Open/Modify Publishing Application. See also Compile Your Changes and Run the Ap-

plications.

3. In the 2_hello_world directory on the other machine, modify and run the subscribing application
as described in Open/Modify Subscribing Application. See also Compile Your Changes and Run the

Applications.

Note: If you are running both applications and they aren’t communicating (you don’t see the “msg:”

lines shown at the end of Run the Applications), see Troubleshooting.

Create Multiple DataWriters, DataReaders, and Topics in a Single Application

So far, you have created two applications: one that uses a DataReader to subscribe to “HelloWorld Topic”

and one that uses a DataWriter to publish “HelloWorld Topic.” You have seen that these applications auto-

matically discover each other and communicate, and that you can run multiple copies of them.

In Data Types, you’ll add a second DataWriter to an application, and in Keys and Instances, you’ll create

an application that contains multiple DataWriters, DataReaders, and Topics.

Tip: Even though these initial example applications each do only one thing, typical real-world applications

contain a combination of DataWriters and DataReaders for multiple Topics in a single application. We will

illustrate this in later modules.

Figure 2.4: Sneak Preview: In a later module, wewill create a tempering application that will write a “Choco-

lateTemperature” Topic and read a “ChocolateLotState” Topic. An application can write and read multiple

Topics by creating more DataWriters and DataReaders.

2.2. Hands-On 1: Your First DataWriter and DataReader 20

RTI Connext Getting Started, Version 7.3.0

2.3 Troubleshooting

2.3.1 Why aren’t my applications communicating?

If you are running both applications and they aren’t communicating (you don’t see the msg: Hello
world lines shown at the end of Run the Applications), here are some things to check:

• Did you change the Topic name in both applications before compiling? They should match.

• Are you running both applications from the 2_hello_world/csharp directory, so they load the

same USER_QOS_PROFILES.xml file?

You must be in the 2_hello_world/csharp directory when you type dotnet run.

• If you are running on multiple machines, does your network support multicast? If it does not, seeHow

do I set my discovery peers? below, for how to specify the addresses of the remote machines your

application plans to communicate with.

• Check to see if one or both machines use a firewall. Youmay need to disable your firewall or configure

it to allow multicast traffic for communication to be established.

See also Discovery.

2.3.2 How do I set my discovery peers?

If you are running Connext on multiple machines and your network does not support multicast, specify the

address(es) of the remote machine(s) you want to communicate with:

1. In the 2_hello_world\csharp directory, find USER_QOS_PROFILES.xml.

2. Identify the following lines in USER_QOS_PROFILES.xml:

<domain_participant_qos>
<!--
The participant name, if it is set, will be displayed in the
RTI tools, making it easier for you to tell one
application from another when you're debugging.
-->
<participant_name>

<name>HelloWorldParticipant</name>
</participant_name>

</domain_participant_qos>

3. Add the <discovery> section as follows, and replace the IP address with the IP address or hostname
of the other machine you want to communicate with:

<domain_participant_qos>
<!--
The participant name, if it is set, will be displayed in the
RTI tools, making it easier for you to tell one
application from another when you're debugging.

2.3. Troubleshooting 21

RTI Connext Getting Started, Version 7.3.0

-->
<participant_name>

<name>HelloWorldParticipant</name>
</participant_name>
<discovery>

<initial_peers>
<!-- Add an element for each machine you want to communicate␣

→˓with -->
<element>192.168.1.14</element>

</initial_peers>
</discovery>

</domain_participant_qos>

If you want more information about discovery peers, see Configuring the Peers List Used in Discovery, in

the RTI Connext Core Libraries User’s Manual.

2.3.3 Why does the DataReader miss the first samples?

Discovery is not an instantaneous event. It takes some time for the discovery process between applications to

complete. The DataWriter and DataReader must discover each other before they can start communicating.

Therefore, if you send data immediately after creating the Connext entities, DataReaders will not receive

the first few samples because they are still in-process of discovering the DataWriters and vice versa. This is

true even when the DataWriters and DataReaders are reliable, because the Reliability QoS on its own does

not guarantee delivery to DataReaders that have not been discovered yet.

You can overcome this behavior with the Durability QoS Policy, which can be set to deliver historical sam-

ples (that DataWriters already sent) to late-joining DataReaders. The DataReaders will then receive the

first samples they originally missed. We’ll talk about this more in Basic QoS.

2.3.4 Why do I get a “No source for License information” error?

If you get the following error, it may be because you’re importing the Rti.ConnextDds NuGet package
from nuget.org, which requires a license.

RTI Connext DDS No source for License information
Please contact support@rti.com with any questions or comments

If you intend to use the nuget.org packages, make sure a license file is available when you run your application

(see Setting Up a License).

If you have installed the C# support package (Installing Connext), which doesn’t require a license file to

run applications, make sure there is a NuGet.Config file in the same directory where you run dotnet
build or dotnet run.

It should look like this:

<configuration>
<packageSources>

<add key="local" value="<installdir>/lib/dotnet" />

2.3. Troubleshooting 22

RTI Connext Getting Started, Version 7.3.0

</packageSources>
</configuration>

This file is generated by rtiddsgen when you specify the option -example or -create makefiles.
<installdir> refers to the installation directory for Connext.

Alternatively, you can add this package source globally with the following command:

$ dotnet nuget add source <installdir>/lib/dotnet --name RTI

After this, the Rti.ConnextDds package will be located locally without the need of NuGet.Config
files.

Note: You can remove it at any time: dotnet nuget remove source RTI.

2.4 Hands-On 2: Viewing Your Data

Now that you’ve created applications that are publishing data, you can visualize that data using the Admin

Console tool.

Note: The applications from Hands-On 1 above should be running while you perform the Admin Console

steps below. See Run the Applications.

2.4.1 Open Admin Console

Start by opening Admin Console from RTI Launcher:

2.4. Hands-On 2: Viewing Your Data 23

RTI Connext Getting Started, Version 7.3.0

The following sections guide you through Admin Console for the purposes of this exercise, but you can find

more information in the Admin Console User’s Manual.

2.4.2 Choose Automatically Join

You may be prompted to automatically or manually join domains when you first open Admin Console. For

the purposes of this exercise, choose to automatically join (the default). We’ll discuss domains in a later

module.

2.4.3 Switch to Data Visualization Perspective

Select the Data Visualization Perspective entry under the Visualization menu. (You may need to close a

Welcome tab first.) If you can’t select the Data Visualization Perspective menu item, you may already be in

that mode.

2.4. Hands-On 2: Viewing Your Data 24

../../../../../doc/manuals/connext_dds_professional/tools/admin_console/index.html
https://community.rti.com/glossary/domain

RTI Connext Getting Started, Version 7.3.0

2.4.4 Open Topic Data Tab

From the DDS Logical View, click on the “HelloWorld Topic” to open the Topic View.

Select the Topic Data tab at the bottom of the window.

Click Subscribe:

2.4.5 Subscribe to “HelloWorld Topic”

The Admin Console tool itself is a DDS application, so it must also create DataReaders to subscribe to the

“HelloWorld Topic.” (See the Admin Console online Help for more information about this.) When you

subscribe to the “HelloWorld Topic” in Admin Console, Admin Console will create a DataReader for this

Topic.

Click on the Subscribe… button or right-click on the Topic in the DDS Logical View and select Subscribe.

This will open the Create Subscription dialog seen below. Click OK to subscribe to the Topic.

2.4. Hands-On 2: Viewing Your Data 25

RTI Connext Getting Started, Version 7.3.0

2.4.6 Use Topic Data Tab

After the Topic is subscribed to, you will see your “Hello world” message.

In the Admin Console tool, you’re also able to inspect DataWriters and DataReaders, and even chart your

live data.

2.4.7 Use Admin Console across Machines

Admin Console is like any other Connext application. It discovers what DataWriters and DataReaders are

on the network, whether they’re on the same machine as Admin Console or on different machines.

If you have trouble viewing data in Admin Console across machines, the same troubleshooting tips apply

to Admin Console as apply to DataWriters and DataReaders in How do I set my discovery peers?. If your

network supports multicast, you’ll see data on the other machines in Admin Console; otherwise, specify the

IP addresses of the remote machines you want Admin Console to communicate with.

2.4. Hands-On 2: Viewing Your Data 26

RTI Connext Getting Started, Version 7.3.0

2.5 Next Steps

Congratulations! You’ve written your first DDS application, which publishes HelloWorld data. In this

exercise, you’ve experienced a quick overview of the development process from defining a data type and

using the code generator, to building an example application and using Connext Professional tools to see

that data is being published. We’ll continue to build on these skills and to use these tools in more depth in

subsequent exercises.

The next module takes a deeper dive into data types, including a little more information about how to

define common types. We will be starting to work with an example that’s more complex than a “hello

world”—we’re going to be using a chocolate factory example to showcase DDS concepts. See Data Types.

2.5. Next Steps 27

Chapter 3

Data Types

Prerequisites
• Publish/Subscribe, including:

– DataWriters, DataReaders, and Topics

– Using the code generator

• Repository cloned from GitHub here

Time to complete 30 minutes

Concepts covered

in this module
• Typed data

• Interface Definition language (IDL)

• Introduction to data flows

• Streaming data

The first step in creating a DDS application is to define the interface between applications. In DDS, the

interface is the data itself rather than the bits and bytes that make up a protocol. In DDS, the Topicwritten by

aDataWriter and read by aDataReader is associated with one data type. For example, in Publish/Subscribe,

the data type was namedHelloWorld and contained a single string. The “HelloWorld Topic” was associated

with the HelloWorld data type.

28

https://github.com/rticommunity/rticonnextdds-getting-started

RTI Connext Getting Started, Version 7.3.0

Figure 3.1: In Publish/Subscribe, you started two applications that published the “HelloWorld Topic” and

two that subscribed to the “HelloWorld Topic.” The “HelloWorld Topic” uses the HelloWorld data type.

The same data type can be reused across multiple Topics. For example, a data type named Temperature

might be associatedwith the Topics “ChocolateTemperature” and “FactoryTemperature.” Although “Choco-

lateTemperature” and “FactoryTemperature” measure two different things, they are both temperature data

types. Thus, the data type can be reused for both of these Topics.

Figure 3.2: Multiple Topics can share the same data type.

In Publish/Subscribe, you opened an IDL (.idl) file that contained the HelloWorld data type. IDL is the

“Interface Definition Language,” defined by the Object Management Group. It allows you to define data

types in a way that is not specific to the language your applications are written in, enabling applications that

are written in C, C++, Java, etc., to communicate.

29

RTI Connext Getting Started, Version 7.3.0

3.1 Common IDL Types

A few common IDL types are listed in the table below to help you get started. Many more are supported by

Connext. More information on working with IDL data types can be found in Creating User Data Types with

IDL, in the RTI Connext DDS Core Libraries User’s Manual.

Table 3.1: Some IDL Types

Type Parameters Description
boolean Boolean value (true or false)

char 8-bit quantity

double 64-bit double precision floating-point number

enum Enumerated value

float 32-bit single precision floating-point number

int16 16-bit numeric type

int32 32-bit numeric type

int64 64-bit numeric type

octet 8-bit type, used for storing binary data that should

not be serialized/deserialized by the middleware.

Usually a sequence.

sequence <type, max length> Sequence of type, with a maximum of max length

elements. Max length is optional.

string <max length> String that may contain data from length 0 to max

length. Max length is optional.

struct Structure containing other types

3.2 Introduction to Data Flows

To design your data types, decide how many you need and what each one will be used for. Consider the

relationships of all your application data. Some questions to consider:

• Is this data produced and consumed in the same places?

• Can this data logically be described by the same Topic?

• Does this data have the same data flow characteristics?

To answer the third question, it’s important to discuss what data flow characteristics are. Some of these

characteristics include:

• How frequently data is sent

• Whether data is sent periodically or asynchronously

• Whether it is okay to miss an update

There are additional data flow characteristics that we will cover later when we talk about Quality of Service

(in Basic QoS). An example of a common data flow pattern is “Streaming Sensor Data.”

3.1. Common IDL Types 30

RTI Connext Getting Started, Version 7.3.0

Tip: Streaming sensor data:

• Usually sent rapidly

• Usually sent periodically

• When data is lost over the network, it is more important to get the next update rather than wait for the

lost update

Other data flows include “State Data” and “Event and Alarm Data.”

All these data flows will be discussed in more detail in Basic QoS.

3.3 Hands-On 1: Streaming Data

This Hands-On will use an example similar to the “Hello World” example in Publish/Subscribe, but with a

few modifications. (Instructions in the following exercises are a little less detailed because we assume you

have already performed the exercises in Publish/Subscribe.)

3.3.1 Run Code Generator

The code for this example is in the directory 3_streaming_data. (See Clone Repository.)

1. In 3_streaming_data, open chocolate_factory.idl to see the definition for our temper-
ature type. (There is also a ChocolateLotState type that we will use later).

In the IDL file, we’ve changed the data type from a message string to a Temperature that includes

both a sensor ID and degrees:

// Temperature data type
struct Temperature {

// ID of the sensor sending the temperature
string<256> sensor_id;

// Degrees in Celsius
int32 degrees;

};

2. In the directory csharp/ChocolateFactoryPublisher, open the

ChocolateFactoryPublisher.cs file to see that we’ve changed the Topic to “Choco-

lateTemperature”:

// A Topic has a name and a datatype. Create a Topic named
// "ChocolateTemperature" with type Temperature
Topic<Temperature> topic = participant.CreateTopic<Temperature>(
→˓"ChocolateTemperature");

We have modified the application so that you can specify a “sensor ID” at the command-line when

running your application, by passing -i <some sensor name>. In that file, we’ve also modified

3.3. Hands-On 1: Streaming Data 31

RTI Connext Getting Started, Version 7.3.0

the data being sent so that it includes both that sensor ID and a temperature ranging between 30 and

32 degrees:

// Modify the data to be written here
sample.sensor_id = sensorId;
sample.degrees = rand.Next(30, 33); // Random number between 30 and 32

3. Run Code Generator to generate C# code for the types defined in chocolate_factory.idl. In
this exercise we already have application code, so we will only generate the type files and project files.

Linux

$ cd 3_streaming_data
$ rtiddsgen -language c# -platform net5 -create typefiles -create␣
→˓makefiles -d csharp chocolate_factory.idl

macOS

$ cd 3_streaming_data
$ rtiddsgen -language c# -platform net5 -create typefiles -create␣
→˓makefiles -d csharp chocolate_factory.idl

Windows

> cd 3_streaming_data
> rtiddsgen -language c# -platform net5 -create typefiles -create␣
→˓makefiles -d csharp -ppDisable chocolate_factory.idl

-ppDisable disables the preprocessor. It is necessary for running rtiddsgen on a Windows system

if the preprocessor is not in your path. You can only use -ppDisable if your IDL is simple, as it

is here—otherwise you must add the preprocessor to your path. See Command-Line Arguments for

rtiddsgen, in the RTI Connext DDS Code Generator User’s Manual if you want more information.

3.3.2 Modify for Streaming Data

In this step, you will modify your applications to support one of the common design patterns that most

applications need: Streaming Data. This pattern is characterized by:

• Data that is sent frequently and periodically.

• No need for reliability: if a sample is lost on the network, it is better to drop it than possibly delay the

next one.

This pattern is usually seen with sensor data.

Definition

A sample is a single data update sent or received over DDS. For example: temperature = 32.

3.3. Hands-On 1: Streaming Data 32

RTI Connext Getting Started, Version 7.3.0

Figure 3.3: DataWriter sending temperature samples

To make your application illustrate streaming data:

1. Change ChocolateFactoryPublisher.cs from 4 seconds to 100 milliseconds, as shown be-

low:

writer.Write(sample);

// Exercise #1.1: Change this to sleep 100 ms in between writing␣
→˓temperatures
Thread.Sleep(100);

(If you’re using Windows and need help on modifying this file in your IDE, see the

README_<architecture>.txt file generated with the code, in the 3_streaming_data/
<language> directory.)

2. Open the USER_QOS_PROFILES.xml file, in the same directory that contains the

ChocolateFactoryPublisher.cs and ChocolateFactorySubscriber.cs files.

We will cover Quality of Service (QoS) in greater depth in a later module, but for now we will use

this file to change ourDataWriter andDataReader to use QoS appropriate for streaming data. Do this

by changing the base_name attribute from BuiltinQosLib::Generic.StrictReliable
to BuiltinQosLib::Pattern.Streaming:

<!--
QoS profile used to configure reliable communication between the
DataWriter and DataReader created in the example code.

base_name:
Communication is reliable because this profile inherits from
the built-in profile "BuiltinQosLib::Generic.StrictReliable"

is_default_qos:
These QoS profiles will be used as the default, as long as this
file is in the working directory when running the example.

3.3. Hands-On 1: Streaming Data 33

RTI Connext Getting Started, Version 7.3.0

-->
<!-- Exercise #1.2: Use Streaming profile -->
<qos_profile name="ChocolateTemperatureProfile"

base_name="BuiltinQosLib::Pattern.Streaming"
is_default_qos="true">

Tip: This XML file is loaded from your working directory when you run your applications—this

is why we specify that you run your applications from the 3_streaming_data/<language>
directory. Notice that the profile contains the attribute is_default_qos—this means that this

profile will be used by default by the DataWriter and DataReader, as long as it is in your working

directory. Later when we talk about QoS, we will show you how to specify a particular QoS profile

instead of loading the default.

This modification to the QoS XML file will change the way Connext delivers your data from being

reliable to “best effort.” We will cover QoS in more depth in a later module.

3.3.3 Run the Applications

1. From within the 3_streaming_data/csharp directory, enter the following command, option-

ally specifying your own sensor ID to send with the data, such as “MySensor1”:

$ dotnet run -- --pub --sensor-id <some string>

Note: If you see a build or license error, see Troubleshooting.

You should run from the 3_streaming_data/csharp directory because the examples use Qual-
ity of Service (QoS) information from the file USER_QOS_PROFILES.xml in that directory. We’ll

talk more about QoS in a later module.

Note also that the arguments to the application are specified after --.

You can also build and run from Visual Studio and Visual Studio Code as outlined in the previous

section (Compile Your Changes).

2. Open another command prompt window, and from within the 3_streaming_data/csharp di-

rectory, enter the following command:

$ dotnet run -- --sub

After modifying the publishing and subscribing applications as described above, and running both ap-

plications from the3_streaming_data/csharp directory where you generated code, you should
see data rapidly arriving:

ChocolateTemperature subscriber sleeping for 4 sec...
[sensor_id: MySensor1, degrees: 32]
ChocolateTemperature subscriber sleeping for 4 sec...
[sensor_id: MySensor1, degrees: 32]

3.3. Hands-On 1: Streaming Data 34

RTI Connext Getting Started, Version 7.3.0

ChocolateTemperature subscriber sleeping for 4 sec...
[sensor_id: MySensor1, degrees: 30]
ChocolateTemperature subscriber sleeping for 4 sec...
[sensor_id: MySensor1, degrees: 31]

Figure 3.4: In this exercise, a DataWriter of the “ChocolateTemperature” Topic communicates with a

DataReader of the “ChocolateTemperature” Topic. In the next Hands-On, you will add a “ChocolateLot-

State” Topic.

Congratulations! You now have streaming Temperature data.

3.4 Publishers, Subscribers, and DomainParticipants

Before we go any farther, it’s important that we define a few more objects that you will see in your DDS

applications. You may have noticed some of these objects already in the code, and you’ll be using one of

them in the next Hands-On. These objects are: Publishers, Subscribers, and DomainParticipants. Most

of the time in these hands-on exercises we will ignore these, and focus on DataWriters, DataReaders, and

Topics. But it’s important to know that these other objects exist in every application.

3.4. Publishers, Subscribers, and DomainParticipants 35

RTI Connext Getting Started, Version 7.3.0

Figure 3.5: DomainParticipants create and manage Publishers and Subscribers. Publishers create and man-

age DataWriters. Subscribers create and manage DataReaders. DataWriters and DataReaders send and

receive your data.

Definition

• A DomainParticipant object in Connext is used to create and manage one or more Publishers and

Subscribers. The DomainParticipant is a container for most other objects, and is responsible for the

discovery process. In most applications, you will have only one DomainParticipant, even if you have

many DataWriters and DataReaders.

• A Publisher object in Connext is used to create and manage one or more DataWriters. A Subscriber

object is used to create and manage one or more DataReaders. For more information, see Publishers,

in the RTI Connext Core Libraries User’s Manual and Subscribers, in the RTI Connext Core Libraries

User’s Manual.

We will be using the Publisher object in your temperature_publisher application to create a new

DataWriter in the next Hands-On section.

We will see DomainParticipants again when we talk about QoS, and then when we talk about discovery and

domains. Since they are used to create nearly every other DDS object in your system, they’re one of the first

objects you create when creating a DDS application. DomainParticipants also create Topics, which get used

by your DataWriters and DataReaders. You’ll see that when you add a second Topic in the next Hands-On.

Note: It’s a common beginner’s mistake to create one DomainParticipant per DataWriter or DataReader.

As you can see, it’s not necessary. You typically create one DomainParticipant per application. It’s also a

bad idea to use more than you need, because DomainParticipants use significant resources such as threads,

and they use network bandwidth for discovery. We’ll talk more about DomainParticipants in a later module

on discovery.

3.4. Publishers, Subscribers, and DomainParticipants 36

RTI Connext Getting Started, Version 7.3.0

3.5 Hands-On 2: Add a Second DataWriter

Now that you have created your first streaming data, we will add another DataWriter to the chocolate_fac-

tory_publisher application. This will give you an idea how to add a new DataWriter or DataReader,

which will be useful because the code in the next module will have more-complex applications with multiple

DataReaders and DataWriters.

3.5.1 Add the New DataWriter

EveryDataWriter needs to write on a Topic, and this newDataWriter will use a different Topic and data type

than the temperature DataWriter. This new DataWriter will write the Topic “ChocolateLotState” with the

data type ChocolateLotState that is defined in the IDL file. We will use this new “ChocolateLotState”

Topic again in the next module.

1. Stop running both of the applications from the previous Hands-On if you haven’t already.

2. Add a new Topic.

Inside of ChocolateFactoryPublisher.cs you should see this comment:

// Exercise #2.1: Add new Topic

Add the following code after the comment to create the new Topic:

Topic<ChocolateLotState> lotStateTopic = participant.CreateTopic
→˓<ChocolateLotState>(

"ChocolateLotState");

3. Now, create the new DataWriter using that Topic. Look for this comment:

// Exercise #2.2: Add new DataWriter and data sample

Right after the comment, add the new DataWriter that writes on the new Topic, as well as the sample

to write:

DataWriter<ChocolateLotState> lotStateWriter =
publisher.CreateDataWriter(lotStateTopic);

var lotStateSample = new ChocolateLotState();

4. Finally, set some values in the ChocolateLotState data, and write the sample. Look for this comment:

// Exercise #2.3 Write data with new ChocolateLotState DataWriter

Add the following code after the comment:

lotStateSample.lot_id = (uint) (count % 100);
lotStateSample.lot_status = LotStatusKind.WAITING;
lotStateWriter.Write(lotStateSample);

5. Now, compile and run the chocolate_factoryPublisher application from the

3_streaming_data/csharp directory where you generated code. You do not need to

3.5. Hands-On 2: Add a Second DataWriter 37

RTI Connext Getting Started, Version 7.3.0

run the chocolate_factorySubscriber application, because next we will show you another way to

visualize your data.

Figure 3.6: You added a second DataWriter that writes on the “ChocolateLotState” Topic.

Congratulations! You have added a second DataWriter that writes on a new Topic with a new data type! In

the next module, you will continue adding to these applications to make them more complete.

3.5.2 Visualize the Data in rtiddsspy

The rtiddsspy utility is a quick way to visualize data when you just need a simple text view. This utility does

two things:

1. Displays the DataWriters and DataReaders in your system, but in a text format rather than the graph-

ical format of Admin Console.

2. Automatically createsDataReaders for any Topic beingwritten on the network and prints outmessages

when its DataReaders receive data.

rtiddsspy does both of these without requiring very much configuration, making it a convenient tool for

debuggingwhen your applications are not communicating, or when you need to quickly see your data. Unlike

Admin Console, rtiddsspy can be run directly on an embedded machine, which makes it useful if you need

to debug applications that are not on the same network as a Windows, Linux, or macOS machine.

1. To open rtiddsspy, start by opening the Launcher tool. (rtiddsspy can also be run from the

command-line, but Launcher provides a useful front-end).

2. Click on the Utilities tab.

3. Click on the DDS Spy icon.

3.5. Hands-On 2: Add a Second DataWriter 38

RTI Connext Getting Started, Version 7.3.0

4. In the dialog box that appears, select “Print samples” and click “Run.”

3.5. Hands-On 2: Add a Second DataWriter 39

RTI Connext Getting Started, Version 7.3.0

rtiddsspy will show you:

• That it has discovered two DataWriters

• The data being published by the two DataWriters

RTI DDS Spy built with DDS version:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
rtiddsspy is listening for data, press CTRL+C to stop it.

22:20:59 New writer from 10.30.1.134 : topic="ChocolateTemperature
→˓" type="Temperature" name="ChocolateTemperatureDataWriter"
22:20:59 New writer from 10.30.1.134 : topic="ChocolateLotState"␣
→˓type="ChocolateLotState" name="ChocolateTemperatureDataWriter"
22:21:37 New data from 10.30.1.134 : topic="ChocolateLotState"␣
→˓type="ChocolateLotState"
lot_id: 46
lot_status: WAITING

22:21:37 New data from 10.30.1.134 : topic="ChocolateTemperature
→˓" type="Temperature"
sensor_id: "MySensor1"
degrees: 30

3.5. Hands-On 2: Add a Second DataWriter 40



RTI Connext Getting Started, Version 7.3.0

22:21:38 New data from 10.30.1.134 : topic="ChocolateLotState"␣
→˓type="ChocolateLotState"
lot_id: 47
lot_status: WAITING

22:21:38 New data from 10.30.1.134 : topic="ChocolateTemperature
→˓" type="Temperature"
sensor_id: "MySensor1"
degrees: 31

22:21:38 New data from 10.30.1.134 : topic="ChocolateLotState"␣
→˓type="ChocolateLotState"
lot_id: 48
lot_status: WAITING

The first two lines indicate that rtiddsspy has discovered the two DataWriters in your chocolate_fac-

tory_publisher application. The subsequent lines indicate that rtiddsspy is receiving data. Since you se-

lected the “Print Samples” option in Launcher, you can also see the contents of the ChocolateLotState data

and the Temperature data your DataWriters are writing.

After you stop (CTRL+C) rtiddsspy, you will see the number of DataWriters and DataReaders discovered,

and samples received:

---- Statistics ----
Discovered 10 DataWriters and 7 DataReaders
Received samples (Data, Dispose, NoWriters):

366, 0, 0 (Topic="ChocolateTemperature" Type="Temperature")
366, 0, 0 (Topic="ChocolateLotState" Type="ChocolateLotState")

There are additional values that rtiddsspy can display if you use keys and instances (which we haven’t talked

about yet). For an overview of all the output of rtiddsspy, see the RTI DDS Spy documentation.

3.6 Next Steps

Next, we will look a little farther into data design with Keys and Instances, then dive into more detail about

Quality of Service (QoS) in Basic QoS.

3.6. Next Steps 41



Chapter 4

Keys and Instances

Prerequisites
• Data Types, including:

– Typed data

– Interface Definition Language (IDL)

– Introduction to data flows

– Streaming data

• Repository cloned from GitHub here

Time to complete 1 hour

Concepts covered

in this module
• Definition of an instance

• Benefits of using instances

• How key fields identify an instance

• How to write a new instance

• Instance lifecycles

So far, we’ve talked about samples. A DataWriter, for example, publishes samples of a particular Topic.

Sometimes, we want to use one Topic to publish samples of data for several different objects, such as flights

or sensors. Connext uses “instances” to represent these real-world objects. (See Table 4.1.)

When you need to represent multiple objects within a DDS Topic, you use a key to establish instances. A

key in DDS is similar to a primary key in a database—it is a unique identifier of something within your data.

An instance is the object identified by the key. A key can be composed of multiple fields in your data as

long as they uniquely identify the object you are representing. For example, in an air traffic control system,

the key fields might be the airline name and flight number. Samples would be the updated locations of each

flight “instance.” See other examples of keys, instances, and samples in the following table.

42

https://github.com/rticommunity/rticonnextdds-getting-started


RTI Connext Getting Started, Version 7.3.0

Table 4.1: Examples of Instances and Keys in Distributed Systems

Instance Key Data Type Samples
Commercial

flight being

tracked

Airline name and flight

number, such as:

Airline: “United Air-

lines”

Flight number: 901

@key string␣
→˓airline
@key int16␣
→˓flight_num
float latitude
float longitude

UA, 901, 37.7749, -122.4194

UA, 901, 37.7748, -122.4195

Sensor sending

data, such as

an individual

temperature

sensor

Unique identifier of that

sensor, such as:

“tempering-machine-1”

or “FirstFloorSensor1”

@key string␣
→˓sensor_id
int32 temperature

tempering-machine-1, tempera-

ture = 175

tempering-machine-1, tempera-

ture = 176

Car being

monitored

Vehicle identification

number (VIN) of the

car

@key string VIN
float latitude
float longitude

JH4DA9370MS016526,

37.7749, -122.4194

JH4DA9370MS016526,

37.7748, -122.4195

Chocolate lot

being pro-

cessed in a

factory

Chocolate lot identifier;

likely an incrementing

number that rolls over

@key uint32 lot_
→˓num
LotStatusKind␣
→˓state

1, waiting for cocoa

1, waiting for sugar

To specify one or more key fields, annotate them with “@key” in the IDL file. For example:

// Temperature data type
struct Temperature {

// Unique ID of the sensor sending the temperature. Each time a sample is
// written with a new ID, it represents a new sensor instance.
@key
string<256> sensor_id;

// Degrees in Celsius
int32 degrees;

};

You add an @key annotation before each field that is part of the unique identifier of your instance.

43



RTI Connext Getting Started, Version 7.3.0

4.1 Why and How Do We Use Instances?

Not every data model requires that you use instances. You’re already dividing up your data into multiple

Topics. So why use instances at all?

• Less memory and discovery time

Creating a new instance is lighter-weight than creating a new DataWriter/DataReader/Topic. For

example, if you’re representing airline flights, you could create a new DataWriter, DataReader, and

Topic each time a new flight takes off. At a major airport, that’s over a thousand flights per day! The

problem with a one-Topic-per-flight system is that it uses more memory than necessary, and it takes

more time for discovery. Using instances to represent unique flights requires less memory, and the

instances do not need to be discovered the way DataWriters and DataReaders discover each other.

(See Discovery.)

• Lifecycle

Instances allow you to model the behavior of real-world objects that come and go. For example, you

can use the instance lifecycle to detect an event such as a flight landing or a chocolate lot finishing.

We will go into this in more detail when we talk about the Instance Lifecycle below.

• QoS

Several Quality of Service (QoS) policies are applied per-instance. This is a huge benefit, and we’ll

talk about this in greater detail later in Basic QoS.

4.1.1 Writing an Instance

To send a sample of an instance, all you need to do is make sure the key fields are set to the unique ID of

your instance. Let’s refer back to the following example type, representing temperature sensor data:

// Temperature data type
struct Temperature {

// Unique ID of the sensor sending the temperature. Each time a sample is
// written with a new ID, it represents a new sensor instance.
@key
string<256> sensor_id;

// Degrees in Celsius
int32 degrees;

};

For the purposes of this example, assume that each physical sensor in our distributed system has a unique

ID assigned to it, and this ID maps to the sensor_id field in our type. By marking sensor_id with the
@key annotation, we have marked it a key field, and therefore each unique sensor_id string we write

will represent a different DDS instance.

If we want to write values for multiple sensors, we can change our code so the application takes an ID as a

command-line parameter. Then, it can use that ID from the command line as part of the string that becomes

the unique sensor ID—for example, TemperingMachine-<id>.

4.1. Why and How Do We Use Instances? 44



RTI Connext Getting Started, Version 7.3.0

// Modify the data to be written here
// Specify the sensor instance sending the temperature. ID is passed at
// the command line. Each unique "TemperingMachine-<id>" is a
// unique instance.
temperature.sensor_id = "TemperingMachine-" + sensorId;
temperature.degrees = 32;

writer.Write(temperature)

Each time you pass a new ID parameter to the application, you have a new instance in your system. Any

time a DataWriter writes a sample with a unique value in the sample’s key fields, it is writing to a unique

instance. A DataWriter can write multiple instances just by setting the key fields to unique values.

In our current example, each DataWriter writes a single instance; however, as shown in Figure 4.2, the

number of instances is not directly related to the number of DataWriters. One DataWriter can write many

instances. Or multiple DataWriters can write one or more instances.

You have the flexibility to design your system however you want. Any DataWriter of a given Topic can be

responsible for updating one or more instances within that Topic, depending on your requirements.

Tip: Remember: a “sample” is a single update of data. Every time your application calls the DataWriter’s

write method, theDataWriter sends a sample. This is true whether you have instances in your system or not.

Figure 4.1: Samples without instances

4.1. Why and How Do We Use Instances? 45



RTI Connext Getting Started, Version 7.3.0

Figure 4.2: Samples with instances

4.1.2 Reading an Instance

An instance lifecycle event will set the data_available status to true, similar to what we have previ-

ously seen when a new sample is available for a DataReader. In the code we have seen so far, the WaitSet

wakes when the data_available status becomes true and when we can process the sample. When the

application gets the data_available notification from an instance lifecycle event, retrieving an instance

is identical to retrieving a sample (except that you have some additional options). You may remember the

code from “Hello World”, where a DataReader calls take() to retrieve data from the middleware, and

then iterates over a collection of all the samples:

// Take all samples
using var samples = reader.Take();
foreach (var data in samples)
{

if (sample.Info.ValidData)
{

Console.WriteLine(sample.Data);
}

}

In a system with instances, the Take() call will return a sequence of samples for all of the instances in the
system. (There is also a Select() call that can be used to retrieve samples for a particular instance.)

Take a closer look at that code, and you will notice there is a line where we check that the sample is valid:

if (sample.Info.ValidData)

You may be wondering: what does it mean for the sample to not contain valid data? The answer is: a sample

can contain data or it can contain information about the instance’s lifecycle. The data_available event
notifies the DataReader about these updates in the same way, so the “valid” data flag indicates whether the

update is a sample containing data or a sample containing an instance lifecycle update.

4.1. Why and How Do We Use Instances? 46



RTI Connext Getting Started, Version 7.3.0

4.1.3 Instance Lifecycle

An instance can have the following states, which are all part of the instance lifecycle:

• Alive: A DataReader has received samples for the instance. (A DataWriter has written the instance,

and the DataWriter is still in the system.)

• Not alive, disposed: All DataReaders in the system have been notified via a DataWriter API call that

this instance has been “disposed.” For example, you might set up a system in which once a flight has

landed, it is disposed (we don’t need to track it anymore).

• Not alive, no writers: The DataReader is no longer receiving samples for the instance. (Every

DataWriter that wrote that instance has left the system or declared it is no longer writing that instance.)

We can use the state of instances in our application (i.e., the instance lifecycle) to trigger specific logic or

to track specific events. What does it mean at a system level when an instance is not alive because of no

writers, or if it is disposed? This depends on your system—DDS notifies the DataReaders that the instance

has changed state, and you can decide what it means in your system. In the next section, Example: Chocolate

Factory, we’ll look at one way that you can use instance states in a chocolate factory example.

All of the information about an instance’s lifecycle is part of the SampleInfo, which you access using

sample.Info, the same way we do in the previous example code to check if the sample is valid. Take a
look at Instance States, in the RTI Connext Core Libraries User’s Manual to see the state diagram describing

the instance lifecycle. To review the state data that is specific to instances, you use the sample.Info.
State.Instance property—you can query this state to see if the instance is Alive, NotAliveDis-
posed, or NotAliveNoWriters.

So, what is the typical lifecycle of an instance? An instance first becomes alive; this happens when a

DataReader receives a sample for an instance for the first time. Then the instance may receive updates

for some period of time from DataWriters publishing to that instance. If an instance becomes not alive, the

instance will transition to either “Not alive, no writers” or “Not alive, disposed”. An instance may become

not alive for a variety of reasons, which are detailed in the following table.

4.1. Why and How Do We Use Instances? 47



RTI Connext Getting Started, Version 7.3.0

Table 4.2: Instance State Transitions

State How Change Occurs
Alive

• Any time the instance is written

Not alive, dis-

posed
• Any single DataWriter that has written this instance calls DisposeIn-
stance()

Not alive, no writ-

ers
• All DataWriters that have written this instance have been shut down (or lost

liveliness; see LIVELINESS QosPolicy, in the RTI Connext Core Libraries

User’s Manual).

• All DataWriters that have written this instance call UnregisterIn-
stance(). This API indicates that a DataWriter is no longer updating a

particular instance. For more information on this and the difference between

“unregistered” and “disposed,” seeManaging Instances (Workingwith Keyed

Data Types), in the RTI Connext Core Libraries User’s Manual.

4.2 Example: Chocolate Factory

This example illustrates the use of instance states in the context of a chocolate factory, where different

stations add ingredients to a chocolate lot, and where the final stage is a tempering station that heats and then

cools the chocolate to a specific temperature.

In the chocolate factory that we are creating, there will be two data types: Temperature and ChocolateLot-

State. We saw these types earlier, in Data Types.

Since a temperature reading doesn’t “go away” like a flight does, we will not use the instance lifecycle for the

“Temperature” Topic. Instead, we will focus on the “ChocolateLotState” Topic, which can utilize instance

lifecycle events.

4.2.1 Chocolate Factory: System Overview

We will start building this system with the following applications:

• Monitoring/Control application:

– Starts off processing a chocolate lot bywriting a sample of the “ChocolateLotState” Topic, saying

that a chocolate lot is ready to be processed.

– Monitors the “ChocolateLotState” Topic as it’s updated by the different stations.

– Finally, reads the “ChocolateTemperature” Topic to check that tempering is done correctly.

• Tempering Station application:

4.2. Example: Chocolate Factory 48



RTI Connext Getting Started, Version 7.3.0

– Writes to the “ChocolateTemperature” Topic to let the Monitoring/Control application know the

current tempering temperature.

– Monitors the “ChocolateLotState” Topic to see if it needs to process a lot.

– Processes the lot and updates the state of the lot by writing to the “ChocolateLotState” Topic.

• Ingredient Station application (not implemented until a later module):

– Monitors the “ChocolateLotState” Topic to see if it needs to process a lot.

– Processes the lot (adds an ingredient) and updates the state of the lot by writing to the “Choco-

lateLotState” Topic.

Figure 4.3: There are three applications in this chocolate factory. We will illustrate only the Tempering

Application and the Monitoring/Control Application for now.

4.2.2 Chocolate Factory: Data Overview

A chocolate lot is processed by various stations described above. At each station, the chocolate lot transitions

through three states:

• Waiting at station

• Processing at station

• Completed by station

To represent the state of each chocolate lot that we are processing, we are going to be using a more complex

version of the ChocolateLotState data type than we saw in the last module.

Recall that in the IDL file, the ChocolateLotState data type uses a lot ID (lot_id) as the key field:

struct ChocolateLotState {
// Unique ID of the chocolate lot being produced.
// rolls over each day.
@key
int32 lot_id;

// Which station is producing the status

4.2. Example: Chocolate Factory 49



RTI Connext Getting Started, Version 7.3.0

StationKind station;

// This will be the same as the current station if the station producing
// the status is currently processing the lot.
StationKind next_station;

// Current status of the chocolate lot: Waiting/Processing/Completed
LotStatusKind lot_status;

};

As a chocolate lot receives ingredients from stations in the factory, the stations update the “ChocolateLot-

State” Topic.

The fields station and next_station in the IDL file represent the current station processing the lot,

and the next station that should process the lot. If there is no current station (because the lot is waiting for

the first station), station will be INVALID_CONTROLLER. If the lot is processing at a station and is

not ready to be sent to the next station, the next_station field will be INVALID_CONTROLLER. The
stations are represented by an enumeration in the IDL (not shown here).

The lot_status field describes the status of the lot at a given controller: WAITING, PROCESSING, or

COMPLETED. This status is represented in an enumeration in the IDL (not shown here).

When a chocolate lot finishes, the tempering application disposes the instance with lotStatusWriter.
DisposeInstance().

Note: Disposing an instance does not necessarily free up memory. There is some subtlety about memory

management when using instances, so when you get past the basics, it’s a good idea to review Instance

Memory Management, in the RTI Connext DDS Core Libraries User’s Manual.

4.3 Hands-On 1: Build the Applications and View in Admin Console

To keep this example from getting too complex, we are focusing on just the Monitoring/Control and Tem-

pering applications right now. These applications have more than a single DataReader or DataWriter, as

you can see below:

4.3. Hands-On 1: Build the Applications and View in Admin Console 50



RTI Connext Getting Started, Version 7.3.0

Figure 4.4: Our applications have more than one DataReader or DataWriter.

Let’s look at the “ChocolateLotState” DataWriters and DataReaders more closely:

Figure 4.5: In our example, the DataWriter in each application communicates with two DataReaders—one

in its own application and one in another application

Here’s a view of the “ChocolateLotState” DataWriters and DataReaders with samples:

4.3. Hands-On 1: Build the Applications and View in Admin Console 51



RTI Connext Getting Started, Version 7.3.0

Figure 4.6: Notice that both DataWriters are communicating with both DataReaders

(Actually, the DataReader in the Tempering application only cares about the chocolate lot state if the next

station is itself. Right now, the code tells that DataReader to ignore any next station state that isn’t the

Tempering application, but later we will use content filtering to do this instead.)

Note: Figure 4.5 and Figure 4.6 demonstrate that it doesn’t matter where the matching DataWriters and

DataReaders are. They could be in the same application or different applications. As long as they match in

Topic and Quality of Service (more on Basic QoS later), they can communicate.

4.3.1 Build the Applications

In this exercise, you’ll be working in the directory 4_keys_instances/csharp. This directory was
created when you cloned the getting started repository from GitHub in the first module, in Clone Repository.

Unlike the previous examples where we built a single application, this directory contains a solution

(KeysInstances.sln) made of three C# projects:

• MonitoringCtrlApplication/MonitoringCtrlApplication.csproj

• TemperingApplication/TemperingApplication.csproj

• ChocolateFactoryTypes/ChocolateFactoryTypes.csproj

The first two build an application each, and reference the third one, which builds a library with the types we

will generate from chocolate_factory.idl.

1. Run the Code Generator (rtiddsgen) to generate the C# code for the IDL file:

Linux

4.3. Hands-On 1: Build the Applications and View in Admin Console 52



RTI Connext Getting Started, Version 7.3.0

$ cd 4_keys_instances
$ rtiddsgen -language c# -d csharp/ChocolateFactoryTypes chocolate_
→˓factory.idl

macOS

$ cd 4_keys_instances
$ rtiddsgen -language c# -d csharp/ChocolateFactoryTypes chocolate_
→˓factory.idl

Windows

> cd 4_keys_instances
> rtiddsgen -language c# -d csharp/ChocolateFactoryTypes -ppDisable␣
→˓chocolate_factory.idl

-ppDisable disables the preprocessor. It is necessary for running rtiddsgen on a Windows system

if the preprocessor is not in your path. You can only use -ppDisable if your IDL is simple, as it

is here—otherwise you must add the preprocessor to your path. See Command-Line Arguments for

rtiddsgen, in the RTI Connext DDS Code Generator User’s Manual if you want more information.

We’re generating the code in the csharp/ChocolateFactoryTypes directory, which already

contains a project file (ChocolateFactoryTypes.csproj) that will compile the types as a
.NET library.

For more information, see Run Code Generator in the previous example.

2. Configure the NuGet package source.

In this exercise the rtiddsgen command we just ran only generates the type files, not the project

files or NuGet.Config. In order to have dotnet find the Connext package, you have two options:

• Copy the NuGet.Config file that you generated in the previous exercise

from 2_hello_world/csharp or 3_streaming_data/csharp to

4_keys_instances/csharp, or

• Configure NuGet globally by running the following command:

$ dotnet nuget add source <installdir>/lib/dotnet --name RTI

If you don’t configure the package source, the package will be fetched from nuget.org (which requires

a license to run).

3. Using the dotnet CLI from 4_keys_instances/csharp, enter:

$ dotnet build

These application projects are configured to build .NET 5 applications. If you want to

build, for example, .NET Core 3.1 applications, edit MonitoringCtrlApplication.
csproj and TemperingApplication.csproj and change <TargetFramework>net5</
TargetFramework> to <TargetFramework>netcoreapp3.1</TargetFramework>.

4.3. Hands-On 1: Build the Applications and View in Admin Console 53

https://www.nuget.org/packages/Rti.ConnextDds/


RTI Connext Getting Started, Version 7.3.0

4.3.2 Run Multiple Copies of the Tempering Application

For now, we will focus on visualizing the Tempering application’s instances. Run multiple copies of the

Tempering application. Be sure to specify different sensor IDs at the command line:

1. Open a terminal window and run the Tempering application with a sensor ID as a parameter:

$ dotnet run --project TemperingApplication -- --sensor-id 1

2. Open a second terminal window and run the Tempering application with a different sensor ID as a

parameter:

$ dotnet run --project TemperingApplication -- --sensor-id 2

Note: You should run from the 4_keys_instances/csharp directory because the examples use

Quality of Service (QoS) information from the file USER_QOS_PROFILES.xml in that directory. We’ll

talk more about QoS in a later module.

Note that --project TemperingApplication tells dotnet to run the project in the TemperingAp-
plication directory. Arguments to the application (--sensor-id 2) are specified after --.

You should see output similar to the following in both windows:

ChocolateTemperature Sensor with ID: 1 starting
Waiting for lot
Waiting for lot
Waiting for lot
Waiting for lot
Waiting for lot
Waiting for lot
Waiting for lot
Waiting for lot

4.3. Hands-On 1: Build the Applications and View in Admin Console 54



RTI Connext Getting Started, Version 7.3.0

4.3.3 View the Data in Admin Console

1. Make sure your two Tempering applications from the previous step are still running.

2. Like you did in Hands-On 2: Viewing Your Data, open up Admin Console and switch to the Data

Visualization Perspective.

(If the Data Visualization Perspective is grayed out, you may already be in that view.)

3. Select the “ChocolateTemperature” Topic in the Logical View:

Note: Don’t worry about the warnings. We’ll look at those in Hands-On 4: Debugging the System

and Completing the Application.

4. Select the Topic Data tab at the bottom of the window.

5. Subscribe to the “ChocolateTemperature” Topic.

Click the Subscribe button:

4.3. Hands-On 1: Build the Applications and View in Admin Console 55



RTI Connext Getting Started, Version 7.3.0

Then click OK:

6. View the samples coming in.

Recall that in the “Hello World” hands-on exercise, we did not yet have instances. Every sample

updated in a single row in Admin Console:

With instances, however, you see multiple rows in Admin Console:

4.3. Hands-On 1: Build the Applications and View in Admin Console 56



RTI Connext Getting Started, Version 7.3.0

Figure 4.7: Since sensor_id is a key field for the ChocolateTemperature data type, Admin Console under-
stands that every sample is an update to a particular sensor_id instance. Therefore, Admin Console can

display each instance separately, and you can see the degrees value from each sensor displayed separately.

Admin Console can show you one row per instance because it recognizes each instance as a different

object.

7. Click Unsubscribe.

In Hands-On 4: Debugging the System and Completing the Application, we will debug your system

using Admin Console. We do not want Admin Console subscribing to any data for that exercise.

4.4 Hands-On 2: Run Both Applications

4.4.1 Run Monitoring and Tempering Applications

1. In the previous hands-on, you ran multiple copies of the tempering application—quit them now if

they’re still running.

2. From any command prompt window, run the Monitoring/Control application, which you already built

in Build the Applications:

$ dotnet run --project MonitoringCtrlApplication

You should see output like the following:

Starting lot:
[lot_id: 0 next_station: TEMPERING_CONTROLLER]

Starting lot:
[lot_id: 1 next_station: TEMPERING_CONTROLLER]
Received lot update:
[lot_id: 1, station: INVALID_CONTROLLER, next_station: TEMPERING_

4.4. Hands-On 2: Run Both Applications 57



RTI Connext Getting Started, Version 7.3.0

→˓CONTROLLER, lot_status: WAITING]

Starting lot:
[lot_id: 2 next_station: TEMPERING_CONTROLLER]
Received lot update:
[lot_id: 2, station: INVALID_CONTROLLER, next_station: TEMPERING_
→˓CONTROLLER, lot_status: WAITING]

This output shows the two things that the Monitoring/Control application is doing:

• Starts the chocolate lots by writing a sample, which indicates that the next station is the TEM-

PERING_CONTROLLER. This line shows the application in its control capacity (“I’m starting

the lot”):

Starting lot:
[lot_id: 1 next_station: StationKind::TEMPERING_CONTROLLER]

• Reads the current state of the chocolate lot and prints that to the console. This line shows the

application in its monitoring capacity (“right now, the lot is starting”).

[lot_id: 1, station: StationKind::INVALID_CONTROLLER , next_station:
StationKind::TEMPERING_CONTROLLER , lot_status:
LotStatusKind::WAITING ]

Since theMonitoring/Control application is the only application running right now, the lots will always

be WAITING. In the next step, this will change when you start the Tempering application.

3. In your other command prompt window, run the Tempering application with a sensor ID as a param-

eter:

$ dotnet run --project TemperingApplication -- --sensor-id 1

You should see output like the following:

Waiting for lot
ChocolateTemperature Sensor with ID: 1 starting
Processing lot #16
Waiting for lot
Waiting for lot
Processing lot #17
Waiting for lot
Waiting for lot
Processing lot #18

Note: You may notice that the Monitoring/Control application starts with lot #0, but the Tempering

application’s DataReader does not receive notifications about lot #0, or any lots from before it starts

up. We will talk about this more when we talk about the Durability QoS in Basic QoS.

4. Review the output of the Monitoring/Control application now that you have started the Tempering

application. You can see that the lot states changed to “PROCESSING” at the tempering station:

4.4. Hands-On 2: Run Both Applications 58



RTI Connext Getting Started, Version 7.3.0

Starting lot:
[lot_id: 16 next_station: StationKind::TEMPERING_CONTROLLER ]
Received Lot Update:
[lot_id: 16, station: StationKind::INVALID_CONTROLLER , next_station:
StationKind::TEMPERING_CONTROLLER , lot_status:
LotStatusKind::WAITING ]
Received Lot Update:
[lot_id: 16, station: StationKind::TEMPERING_CONTROLLER ,
next_station: StationKind::INVALID_CONTROLLER , lot_status:
LotStatusKind::PROCESSING ]

Starting lot:
[lot_id: 17 next_station: StationKind::TEMPERING_CONTROLLER ]
Received Lot Update:
[lot_id: 17, station: StationKind::INVALID_CONTROLLER , next_station:
StationKind::TEMPERING_CONTROLLER , lot_status:
LotStatusKind::WAITING ]
Received Lot Update:
[lot_id: 17, station: StationKind::TEMPERING_CONTROLLER ,
next_station: StationKind::INVALID_CONTROLLER , lot_status:
LotStatusKind::PROCESSING ]

5. Quit both applications.

4.4.2 Review the Tempering Application Code

This code is significantly more complex than the previous examples, because we are starting to build appli-

cations that are closer to real-world applications, with multiple DataWriters and DataReaders. Let’s start

by examining the TemperingApplication.cs code.

Some of this file should look familiar to you. This application is writing temperature data in the Pub-
lishTemperaturemethod. Even though a real temperingmachine would raise the temperature of choco-
late and then lower it to around freezing, in this example we’re just sending a “temperature” that’s close to

freezing (in Fahrenheit).

private void PublishTemperature(
DataWriter<Temperature> writer,
string sensorId)

{
// Create temperature sample for writing
var temperature = new Temperature();
while (!shutdownRequested)
{

// Modify the data to be written here
temperature.sensor_id = sensorId;
temperature.degrees = rand.Next(30, 33); // Random value between 30␣

→˓and 32

writer.Write(temperature);

Thread.Sleep(100);

4.4. Hands-On 2: Run Both Applications 59



RTI Connext Getting Started, Version 7.3.0

}
}

Now take a look at the ProcessLotmethod. This looks similar to the ProcessDatamethods you have
seen in the previous hands-on exercises. However, this function takes both a DataWriter and a DataReader

instead of just aDataReader. This function calls Take() to retrieve data from theDataReader’s queue just

like we did in the previous hands-on exercises. However, after taking that data, it updates the state of the lot

to PROCESSING. In this example, instead of actually processing the lot, we’re going to sleep for 5 seconds

to represent the processing.

// Take all samples. Samples are loaned to application, loan is
// returned when LoanedSamples is Disposed. ValidData iterates only over
// samples such that sample.Info.ValidData is true.
using var samples = lotStateReader.Take();
foreach (var sample in samples.ValidData())
{

if (sample.next_station == StationKind.TEMPERING_CONTROLLER)
{

Console.WriteLine("Processing lot #" + sample.lot_id);

// Send an update that the tempering station is processing lot
var updatedState = new ChocolateLotState(sample)
{

lot_status = LotStatusKind.PROCESSING,
next_station = StationKind.INVALID_CONTROLLER,
station = StationKind.TEMPERING_CONTROLLER

};
lotStateWriter.Write(updatedState);

// "Processing" the lot.
Thread.Sleep(5000);

// Exercise #3.1: Since this is the last step in processing,
// notify the monitoring application that the lot is complete
// using a dispose

}
}

4.5 Hands-On 3: Dispose the ChocolateLotState

The Tempering application will use the NOT_ALIVE_DISPOSED instance state to indicate that a chocolate

lot has finished processing.

4.5. Hands-On 3: Dispose the ChocolateLotState 60



RTI Connext Getting Started, Version 7.3.0

4.5.1 Add Code to Tempering Application to Dispose ChocolateLotState

Add a call to DisposeInstance() for the ChocolateLotState data in the Tempering application, since

it is the last step in the chocolate factory.

1. In TemperingApplication.cs, find the comment:

// Exercise #3.1: Since this is the last step in processing,
// notify the monitoring application that the lot is complete
// using a dispose

2. Add the following code after the comment to dispose the ChocolateLotState:

lotStateWriter.DisposeInstance(
lotStateWriter.LookupInstance(updatedState));

Console.WriteLine("Lot completed");

4.5.2 Detect the Dispose in the Monitoring Application

Open MonitoringCtrlApplication.cs to look at the Monitoring/Control application. Note that it

does two things right now:

1. Kicks off processing chocolate lots, by sending the first update to the “ChocolateLotState” Topic.

Since we are skipping all the ingredient station steps (for now) in this example, the Monitoring/Con-

trol application sends the lot directly to wait at the tempering machine, as you can see in the pub-
lish_start_lot function:

private void PublishStartLot(
DataWriter<ChocolateLotState> writer,
uint lotsToProcess)

{
...
sample.lot_id = count % 100;
sample.lot_status = LotStatusKind.WAITING;
sample.next_station = StationKind.TEMPERING_CONTROLLER;

Console.WriteLine("Starting lot:");
Console.WriteLine($"[lot_id: {sample.lot_id} next_station: {sample.

→˓next_station}]");
writer.Write(sample);
...

}

2. Monitors the lot state, and prints out the current state of the lots, as you can see in the moni-
tor_lot_state function:

private int MonitorLotState(DataReader<ChocolateLotState> reader)
{

int samplesRead = 0;
using var samples = reader.Take();
foreach (var sample in samples)

4.5. Hands-On 3: Dispose the ChocolateLotState 61



RTI Connext Getting Started, Version 7.3.0

{
Console.WriteLine("Received Lot Update: ");
if (sample.Info.ValidData)
{

Console.WriteLine(sample.Data);
samplesRead++;

}
else
{

// Exercise #3.2: Detect that a lot is complete by checking␣
→˓for

// the disposed state.
}

}

return samplesRead;
}

Add code to check the instance state and print the ID of the completed lot:

1. InMonitoringCtrlApplication.cs, in theMonitorLotStatemethod, find the comment:

// Exercise #3.2: Detect that a lot is complete by checking for
// the disposed state.

2. Add the following code after the comment:

if (sample.Info.State.Instance == InstanceState.NotAliveDisposed)
{

// Create a sample to fill in the key values associated
// with the instance
var keyHolder = new ChocolateLotState();
reader.GetKeyValue(keyHolder, sample.Info.InstanceHandle);
Console.WriteLine($"[lot_id: {keyHolder.lot_id} is completed]");

}

The code you just added:

• Checks that the instance state was NOT_ALIVE_DISPOSED.

• Creates a temporary ChocolateLotState object, and passes it to reader.GetKeyValue() to get

the value of the key fields associated with the instance handle.

• Prints out the ID of the lot that is completed.

4.5. Hands-On 3: Dispose the ChocolateLotState 62



RTI Connext Getting Started, Version 7.3.0

4.5.3 Run the Applications

In one command terminal:

$ dotnet run --project MonitoringCtrlApplication

In another terminal:

$ dotnet run --project TemperingApplication -- --sensor-id 1

You should see the following output from the Tempering application:

Waiting for lot
Processing lot #1
Lot completed
Waiting for lot
Waiting for lot
Processing lot #2
Lot completed

You should see the following output from the Monitoring/Control application:

Starting lot:
[lot_id: 1 next_station: StationKind::TEMPERING_CONTROLLER ]
Received Lot Update:
[lot_id: 1, station: StationKind::INVALID_CONTROLLER , next_station:
StationKind::TEMPERING_CONTROLLER , lot_status:
LotStatusKind::WAITING ]
Received Lot Update:
[lot_id: 1, station: StationKind::TEMPERING_CONTROLLER ,
next_station: StationKind::INVALID_CONTROLLER , lot_status:
LotStatusKind::PROCESSING ]
Received Lot Update:
[lot_id: 1 is completed]

Starting lot:
[lot_id: 2 next_station: StationKind::TEMPERING_CONTROLLER ]
Received Lot Update:
[lot_id: 2, station: StationKind::INVALID_CONTROLLER , next_station:
StationKind::TEMPERING_CONTROLLER , lot_status:
LotStatusKind::WAITING ]
Received Lot Update:
[lot_id: 2, station: StationKind::TEMPERING_CONTROLLER ,
next_station: StationKind::INVALID_CONTROLLER , lot_status:
LotStatusKind::PROCESSING ]
Received Lot Update:
[lot_id: 2 is completed]

Notice that when we first ran the Monitoring/Control application, we saw WAITING and PROCESSING

statuses. Now we also see a “completed” status. The “completed” status occurs because we added the code

to dispose the instance in the Tempering application and because we checked for the disposed status in the

Monitoring/Control application.

4.5. Hands-On 3: Dispose the ChocolateLotState 63



RTI Connext Getting Started, Version 7.3.0

4.6 Hands-On 4: Debugging the System and Completing the Appli-
cation

This hands-on is not specific to using instances, but it will make you more familiar with how to create

multipleDataReaders andDataWriters in an application. This will help you as you continue with upcoming

modules, and the exercises become more complex.

4.6.1 Debug in Admin Console

So far, we have only used Admin Console for data visualization. Now we will use it for system debugging.

1. Make sure your applications (monitoring_ctrl_application and tempering_application) are running.

2. Like you did inHands-On 2: Viewing Your Data, in the first module, open up the Admin Console tool.

3. Click Unsubscribe if you haven’t already in Hands-On 1.

4. Choose the Administration Perspective toolbar icon in the top right corner of the window.

You should see a Logical View pane in the upper left.

5. Notice that one of your Topics has a warning:

6. Click on the Topic with a warning, and you should see a visualization of that Topic and DataWriter in

the main window:

4.6. Hands-On 4: Debugging the System and Completing the Application 64



RTI Connext Getting Started, Version 7.3.0

7. Hover your mouse over the writer (DW). You should see this warning message:

The reason for this warning is because there are noDataReaders reading the “ChocolateTemperature”

Topic.

4.6. Hands-On 4: Debugging the System and Completing the Application 65



RTI Connext Getting Started, Version 7.3.0

Figure 4.8: Using Admin Console, we identified that theDataReader for the “ChocolateTemperature” Topic

is missing from the Monitoring/Control Application.

If you look more carefully at the code in MonitoringCtrlApplication.cs, you’ll see that
although the Monitoring/Control application reads and writes to the “ChocolateLotState” Topic, it

never creates a DataReader to read the “ChocolateTemperature” Topic!

8. Quit the applications.

4.6.2 Add the ChocolateTemperature DataReader

In this exercise, you will add the missing DataReader.

First, review the RunExample function in MonitoringCtrlApplication.cs. Notice that it uses
a single DomainParticipant to create a Publisher and a Subscriber. (See Publishers, Subscribers, and Do-

mainParticipants.)

DomainParticipant participant = DomainParticipantFactory.Instance
.CreateParticipant(domainId);

...
// A Publisher allows an application to create one or more DataWriters
// Publisher QoS is configured in USER_QOS_PROFILES.xml
Publisher publisher = participant.CreatePublisher();

...
// A Subscriber allows an application to create one or more DataReaders
// Subscriber QoS is configured in USER_QOS_PROFILES.xml
Subscriber subscriber = participant.CreateSubscriber();

In the following steps, you’re going to add a second DataReader to the Monitoring/Control application that

reads the ChocolateTemperature Topic. In Hands-On 2: Add a Second DataWriter (in Section 3), you used

4.6. Hands-On 4: Debugging the System and Completing the Application 66



RTI Connext Getting Started, Version 7.3.0

a single Publisher to create multipleDataWriters. In this example, you will use a single Subscriber to create

multiple DataReaders.

To add a second DataReader to the Monitoring/Control application:

1. Create a “ChocolateTemperature” Topic that the DataReader will be reading. (Right now, this appli-

cation only has the “ChocolateLotState” Topic defined, so you must add a “ChocolateTemperature”

Topic to be used by the new DataReader.)

In MonitoringCtrlApplication.cs, find this comment in the code:

// Exercise #4.1: Add a Topic for Temperature to this application

Add the following code immediately after that comment to create a “ChocolateTemperature” Topic,

which uses the Temperature data type:

Topic<Temperature> temperatureTopic = participant.CreateTopic
→˓<Temperature>(

CHOCOLATE_TEMPERATURE_TOPIC.Value);

Tip: It is a best practice to use a variable defined inside the IDL file while creating the Topic in-

stead of passing a string literal. Using a variable ensures that our Topic names are identical in our

applications. (Recall that if they’re not identical, our DataWriter and DataReader won’t communi-

cate.) It is convenient to use the IDL file to define the variable, since the IDL file is used by all of

our applications. Here is what the Topic name looks like in the IDL file, which can be found in the

4_keys_instances directory:

const string CHOCOLATE_TEMPERATURE_TOPIC = "ChocolateTemperature";

Recall that one data type can be associated with several Topic names. Therefore, you may be defining

more Topic names than data types in your IDL.

2. Add a new DataReader.

Now that we have a “ChocolateTemperature” Topic, we can add a new DataReader. Find this com-

ment in the code:

// Exercise #4.2: Add a DataReader for Temperature to this application

Remember from Details of Receiving Data (in Section 2) that the StatusCondition defines a condition

we can attach to a WaitSet. The WaitSet will wake when the StatusCondition becomes true.

Add a new temperature DataReader and set up its StatusCondition by adding this code immediately

after the comment:

DataReader<Temperature> temperatureReader =
subscriber.CreateDataReader(temperatureTopic);

// Obtain the DataReader's Status Condition
StatusCondition temperatureStatusCondition = temperatureReader.
→˓StatusCondition;

4.6. Hands-On 4: Debugging the System and Completing the Application 67



RTI Connext Getting Started, Version 7.3.0

// Enable the 'data available' status.
temperatureStatusCondition.EnabledStatuses = StatusMask.DataAvailable;

// Associate a handler with the status condition. This will run when the
// condition is triggered, in the context of the dispatch call (see␣
→˓below)
temperatureStatusCondition.Triggered += _ =>␣
→˓MonitorTemperature(temperatureReader);

3. Associate the new DataReader’s status condition with the WaitSet. Find this comment in the code:

// Exercise #4.3: Add the new DataReader's StatusCondition to the Waitset

Add this line below the comment:

waitset.AttachCondition(temperatureStatusCondition);

4. Add a function that processes the temperature data and prints a message if it ever exceeds 32 degrees.

Find this comment in the code:

// Exercise #4.4: Add monitor_temperature function

Add the following function to print out a message if the temperature exceeds 32 degrees immediately

after that comment:

private void MonitorTemperature(DataReader<Temperature> reader)
{

using var samples = reader.Take();
foreach (var data in samples.ValidData())
{

// Receive updates from tempering station about chocolate␣
→˓temperature.

// Only an error if over 32 degrees Fahrenheit.
if (data.degrees > 32)
{

Console.WriteLine("Temperature high: " + data);
}

}
}

4.6.3 Run the Applications

Recompile and run the Tempering and Monitoring/Control applications again.

Notice that Admin Console no longer shows a warning, because the Monitoring/Control application now has

a DataReader that is reading the “ChocolateTemperature” Topic that the Tempering application is writing.

Note: We’ve intentionally written the applications in a way that you won’t actually see temperature output

4.6. Hands-On 4: Debugging the System and Completing the Application 68



RTI Connext Getting Started, Version 7.3.0

printed to the console, to keep the code simpler, but we’ll change this in a later exercise.

Congratulations! In this module, you have learned to do the following:

• Change an instance’s state to NOT_ALIVE_DISPOSED.

• Get notified of the state change.

• Debug your system using Admin Console.

• Add a new DataReader to an application.

4.7 Next Steps

Next we will look at how to configure the behavior of your DataWriters and DataReaders using Quality of

Service.

4.7. Next Steps 69



Chapter 5

Basic QoS

Prerequisites
• Keys and Instances, including:

– Instances

– Key fields

• Repository cloned from GitHub here

Time to complete 1 hour

Concepts covered

in this module
• Reliability

• Durability

• History depth

• Deadline

• QoS compatibility and matching

• QoS profiles

Connext provides a variety of configuration options to change how your data is delivered and to fine-tune

the performance of your system. These configuration options are called Quality of Service, or QoS. QoS

settings are configured on DataWriters and DataReaders (and on other DDS objects, such as Publishers and

Subscribers).

Some of the basic QoS policies configured on DataWriters and DataReaders include the following:

• Reliability QoS Policy: Should the arrival of each sample be guaranteed, or is best-effort enough and

the risk of missing a sample acceptable?

• History QoS Policy: How many samples should be stored for reliability purposes?

• Resource Limits QoS Policy: What is the maximum allowed size of aDataWriter’s orDataReader’s

queue due to memory constraints?

• Durability QoS Policy: Should samples be stored and automatically sent to newDataReaders as they

start up? If yes, how many samples?

• Deadline QoS Policy: How do we detect that streaming data is being sent at an acceptable rate?

70

https://github.com/rticommunity/rticonnextdds-getting-started


RTI Connext Getting Started, Version 7.3.0

There are many more QoS policies that control discovery, fault-tolerance, and more. We will focus on just a

few in this module. For a broader look at the QoS policies available, see the QoS Reference Guide. Although

we will be focusing on QoS policies that are set on DataWriters and DataReaders, you can set QoS policies

on other DDS objects; in Hands-On 1: Update One QoS Profile in the Monitoring/Control Application, we

will set a QoS policy on a DomainParticipant.

5.1 Request-Offered QoS Policies

Some QoS policies are “Request-Offered,” meaning that a DataWriter offers a level of service, and a

DataReader requests a level of service. If the DataWriter offers a level of service that’s the same as or

higher than the DataReader requests, the QoS policies are matching. If the DataReader requests a higher

level of service than the DataWriter is offering, the QoS policies are considered “incompatible,” and the

DataWriter will not send data to the DataReader. Request-Offered semantics are abbreviated with the term

“RxO.”

One example of a Request-Offered QoS policy is Reliability. Reliable delivery is considered a higher level of

service than best-effort delivery. Although a DataWriter may offer reliable delivery, not every DataReader

it’s communicating with needs reliability. Let’s look at an example of a system that tracks aircraft. Some

DataReaders—such as those in the air traffic control application—need the aircraft locations reliably, mean-

ing they cannot miss an update. OtherDataReaders—such as those in an application that updates flight times

for customers to view departures and arrivals—do not need to receive every flight position update. The radar

application DataWriter will send aircraft positions to all the DataReaders that need it, but not all of those

DataReaders need it reliably.

Figure 5.1: The Customer Application’s DataReader does not need flight location data reliably. The Radar

Application’s DataWriter can send to both DataReaders because its Reliability QoS Policy is the same as

or higher than theirs.

5.1. Request-Offered QoS Policies 71



RTI Connext Getting Started, Version 7.3.0

Now imagine that the system in Figure 5.1 is misconfigured, so theDataWriter offers Best Effort data, which

is a lower level of service. In this situation, the Air Traffic Control Application can’t receive data reliably,

even though it is critical that it receive every update. This is an error in the configuration of the system, and

Connext treats it that way: the DataWriter and DataReader of these applications will not communicate, and

the DataReader and DataWriter will instead be notified that they have incompatible QoS policies.

Figure 5.2: The DataWriter is misconfigured to offer only Best Effort reliability, and now it does not

match with the Reliable DataReader. The DataWriter is still compatible with the Customer Application’s

DataReader.

In previous modules, our applications have only been notified of data being available (see Details of Receiv-

ing Data). In Hands-On 3: Incompatible QoS Notification, we will update one of the applications to receive

incompatible QoS notifications in addition to Data Available notifications.

Not all Quality of Service policies have Request-Offered semantics. For example, the History QoS Policy

that we will discuss below is not request-offered: DataWriters and DataReaders can have their own history

settings, independent of each other; therefore, their History QoS policies do not need to match. You can

check which QoS policies do and do not have request-offered semantics by looking at the RxO column in

the QoS Reference Guide.

5.1. Request-Offered QoS Policies 72



RTI Connext Getting Started, Version 7.3.0

5.2 Some Basic QoS Policies

5.2.1 Reliability and History QoS Policies

The Reliability QoS Policy and History QoS Policy work together to determine how reliably data gets sent.

“Best Effort” Reliability

In Data Types, we introduced one data flow pattern where the QoS setting isn’t Reliable, called “Streaming

Sensor Data.” Remember that Streaming Sensor Data has these characteristics:

• Usually sent rapidly

• Usually sent periodically

• When data is lost over the network, it is more important to get the next update than to wait for retrans-

mission of the lost update

Because of these characteristics, streaming sensor data is generally not configured to be reliable. It is con-

figured with “Best Effort” reliability. It is one end of the spectrum of how reliably your data can be sent.

Figure 5.3: Best-Effort Reliability: Samples that the DataReader did not receive are not resent.

Table 5.1: Reliability QoS Policy

Reliability
(RxO)

Level (Lowest to High-
est)

Definition

kind BEST_EFFORT Do not send data reliably. If samples are lost, they are

not resent.

RELIABLE Send data reliably. Resend samples lost on the network,

depending on theHistoryQoS Policy andResource Lim-

its QoS Policy settings.

5.2. Some Basic QoS Policies 73



RTI Connext Getting Started, Version 7.3.0

“Reliable” Reliability + “Keep All” History

The other end of the spectrum is a pattern called “Event and Alarm Data.” The typical characteristics of

event and alarm data are:

• May be sent rapidly

• Sent intermittently

• Important to see every update for events and alarms that occur

Event and Alarm Data requires a level of reliability where all data is kept for reliable DataReaders. This

means that Connext will try to resend all data not received by existing DataReaders, and it will maintain

a queue of data that has not been delivered to the DataReaders. It also means that a DataWriter will not

overwrite data in its queue until all DataReaders have acknowledged they received the previously sent data

(or have gone offline). This level of reliability is set up using:

• Reliability kind = RELIABLE

• History kind = KEEP_ALL

Figure 5.4: Keep-All Reliability: Now there is a queue, and all samples are kept in the queue. Samples

cannot be overwritten until they are received. (More details and caveats are explained in Reliability Models

for Sending Data, in the RTI Connext Core Libraries User’s Manual.)

“Reliable” Reliability + “Keep Last” History

There is one more reliability configuration in-between “Best Effort” and “Keep-All” called Keep-Last Reli-

ability.

Keep-Last Reliability is a configuration where the last N number of samples sent are reliably delivered. This

allows the DataWriter to overwrite older samples with newer samples, even if some DataReaders have not

received those older samples. This configuration is set up using:

• Reliability kind = RELIABLE

5.2. Some Basic QoS Policies 74



RTI Connext Getting Started, Version 7.3.0

• History kind = KEEP_LAST

• History depth = Number of samples to keep for each instance

Figure 5.5: Keep-Last Reliability (unkeyed or with a single instance): In this example, you have four slots

open on the writer side to keep samples that have not yet been received by the reader.

Imagine that theDataWriter in Figure 5.5 rapidly writes 10 samples. Four of those samples will overwrite the

four samples that are kept in the queue; the next four will overwrite those four, and so on. The DataReader

might accept those samples as rapidly as the DataWriter writes them—if not, some of them might be lost.

There is one important feature of how the History depth works that makes it important for many design

patterns: the History depth QoS setting is applied per instance. This means that you specify a History

depth of N samples, and Connext will reliably deliver the last N samples of each instance (for example, of

each flight).

Figure 5.6: Keep-Last Reliability (with multiple instances): A history of four samples per instance are

available to be reliably delivered to a DataReader.

5.2. Some Basic QoS Policies 75



RTI Connext Getting Started, Version 7.3.0

We’ve been focused on the DataWriter’s queue when talking about Keep-Last Reliability, but the behavior

is the same for the DataReader: the DataReader queue keeps History depth samples for each instance, and

when a new sample arrives, it is allowed to overwrite an existing sample in the DataReader’s queue for that

instance.

On the DataWriter side, the History depth controls how many samples to keep around until all matching

DataReaders have fully acknowledged the samples. There is another depth, writer_depth, in the Durability

QoS Policy, that controls what subset of the historical samples to send to DataReaders that come late to the

system. We’ll learn more about that in Durability QoS Policy.

Table 5.2: History QoS Policy

History (Not
RxO)

Value Definition

kind KEEP_LAST Keep the last depth number of samples per instance in

the queue until they are reliably delivered

KEEP_ALL Keep all samples (subject to Resource Limits that we

will discuss next) until they are reliably delivered

depth <integer value> How many samples to keep per instance for reliable de-

livery if Keep Last is specified

Summary

You have a range of reliability options using the Reliability and History QoS policies, for various data

patterns:

• Streaming data like “ChocolateTemperature” that does not need reliability at all

• State data like “ChocolateLotState”, where DataReaders generally want to reliably receive the latest

state and can accept missing some state updates when the state is changing rapidly

• Event and Alarm data that needs guaranteed delivery of every sample

Figure 5.7: A range of reliability options between Best Effort and Reliable. If a RELIABLE kind is selected,

the History QoS Policy comes into play.

5.2. Some Basic QoS Policies 76



RTI Connext Getting Started, Version 7.3.0

5.2.2 Resource Limits QoS Policy

Even in a system where you need strict Keep-All Reliability, there may be a limit to the number of samples

that you want to keep in a DataWriter’s or DataReader’s queue at one time, because of memory resource

constraints. You may want to set a maximum number of samples allowed in a DataWriter or DataReader

queue so that it does not grow indefinitely.

The Resource Limits QoS Policy contains several limits, but the one we will focus on ismax_samples. This

setting limits the total number of samples in a DataWriter’s or DataReader’s queue across all instances.

If aDataWriter orDataReader has its History kind set to KEEP_ALL, it is not allowed to overwrite samples

in its queue to make room for new samples. So what happens if a DataWriter or DataReader exceeds its

max_samples resource limit? The DataWriter and DataReader handle this situation slightly differently.

DataWriters with Keep-All Reliability handle hitting their Resource Limits by blocking the write() call,
waiting for an empty slot in the queue as the DataReaders receive the reliable data. DataReaders with

Keep-All Reliability handle hitting their Resource Limits by rejecting any samples that arrive when their

queue is full, and notifying the application so that the application can call take() to remove samples from
the queue.

Figure 5.8: DataWriter View: The DataWriter’s write() call will block if it hits its resource limits, and

one or more DataReaders have not received all the data. If the write() call times out without being able

to send data, write() will return or throw an error. If you’re interested in the details of the reliability

protocol and how DataWriters handle non-responsive DataReaders without becoming blocked forever, see

Reliability Models for Sending Data, in the RTI Connext DDS Core Libraries User’s Manual.

5.2. Some Basic QoS Policies 77



RTI Connext Getting Started, Version 7.3.0

Figure 5.9: DataReader view: The DataReader rejects samples if it has reached its resource limits.

Table 5.3: Resource Limits QoS Policy

Resource Limits (Not
RxO)

Value Definition

max_samples <integer value> The maximum samples allowed in a DataWriter’s

or DataReader’s queue across all instances

max_instances <integer value> The maximum number of instances a DataWriter

can write or a DataReader can read

max_samples_per_in-

stance

<integer value> The maximum number of samples allowed for each

instance in a DataWriter’s or DataReader’s queue

We’ve covered only a few resource limits here. For more information, see RESOURCE_LIMITSQosPolicy,

in the RTI Connext Core Libraries User’s Manual.

5.2.3 Durability QoS Policy

The Durability QoS Policy specifies whether data will be delivered to a DataReader that was not known

to the DataWriter at the time the data was written (also called a “late-joining” DataReader). Perhaps the

DataReader wasn’t there or hadn’t been discovered at the time the samples were written. This QoS policy

is used in multiple patterns, including the State Data pattern.

One example of State Data is the ChocolateLotState data in the chocolate factory. Recall that the applications

in our example update the state of the lot, and the Monitoring/Control application monitors that state.

The typical characteristics of state data are:

• Typically state data does not change rapidly and periodically (otherwise, it would be streaming data).

• Applications monitoring state data would like to reliably receive that data.

• Applications monitoring state data need to know the current state. It is more important to receive the

current state than to receive every state update that has ever happened, even if that means missing

some state updates.

5.2. Some Basic QoS Policies 78



RTI Connext Getting Started, Version 7.3.0

These requirements of the State Data pattern can be met by setting History kind to KEEP_LAST, Durability

kind to TRANSIENT_LOCAL or higher, and Durability writer_depth to the number of samples you want

delivered to late-joining DataReaders.

Typically when an application needs state data, it wants to receive the current states as soon as it starts up.

The one thing we’ve been missing in our example is that if an application with a DataReader starts up late,

right now it doesn’t find out the current state of the chocolate lots in the system. This is especially obvious

if you start the Monitoring/Control application before you start the Tempering Station application:

$ dotnet run --project TemperingApplication
waiting for lot
Processing lot #3
waiting for lot
waiting for lot
waiting for lot
Processing lot #4

The Monitoring/Control application has sent lots #0-4 to the Tempering application—but the first thing the

Tempering application sees is lot #3! It lost the notifications about all the previous lots. We will fix this

in one of the hands-on exercises later in this module, by using the Durability QoS Policy together with the

Reliability and History QoS policies. We’ll use a QoS profile that will specify a higher Durability level

than the default, so the Tempering application’s DataReader receives ChocolateLotState updates that were

written before it started.

The lowest level of durability is “Volatile,” which means that historical data is not sent to any late-joining

DataReader. (“Historical” data is any data sent by a DataWriter before it discovers a DataReader.)

“Volatile” is the default durability setting. The next level of durability is “Transient Local,” which means

that historical data is automatically maintained in the DataWriter’s queue, up to the writer_depth.

By default, the Durability writer_depth is the same as the History depth, but you can set it to be a subset

of the History depth, as shown in Figure 5.10.

Figure 5.10: History depth determines how many samples to keep for reliability purposes (for example,

for redelivering to DataReaders that haven’t acknowledged them yet). Durability writer_depth determines

what subset of the History depth samples to deliver to late-joining DataReaders.

5.2. Some Basic QoS Policies 79



RTI Connext Getting Started, Version 7.3.0

Late-joining DataReaders that also use reliability and Transient Local durability are automatically sent his-

torical data, up to the Durabilitywriter_depth, when they discover theDataWriter. “Transient Local” is the

setting we will use in the hands-on exercise later in this module. This setting will ensure that the Tempering

application receives notifications about all previous lots when it starts up late.

Typically, a writer_depth of 1 is used in the State Data pattern:

Figure 5.11: State Data pattern using reliability with a writer depth of 1. The late-joiningDataReader doesn’t

need to know all or several previous states, just the most recent state.

In Figure 5.11, the DataWriter is updating the ChocolateLotState only when that state changes. In the real

world, this may happen infrequently, depending on how long it takes the station to process a lot. If the

ChocolateLotState DataWriter was using Best Effort and the DataReader missed an update, the DataWriter

would not necessarily send new data right away—so the DataReader might not receive the state of the lot

for a long time. With a Reliability kind of RELIABLE and a Durability writer_depth of 1 (as well as a

TRANSIENT_LOCAL kind or higherDurability QoS Policy), theDataReader has at least the last available

state.

It may not be obvious why this is so powerful at first, but this is the basis for the State Data pattern and we’ll

see it at work in the last hands-on exercise in this module.

The Durability QoS Policy is a Request-Offered policy. For example, if theDataReader requests “Transient

Local” durability, but the DataWriter is set to “Volatile” durability, the entities are not compatible and they

will not communicate.

5.2. Some Basic QoS Policies 80



RTI Connext Getting Started, Version 7.3.0

Table 5.4: Durability QoS Policy

Durability
(RxO)

Value (Lowest to Highest) Definition

kind VOLATILE Do not save or deliver historical DDS samples.

(Historical samples are samples that were writ-

ten before the DataReader was discovered by the

DataWriter.)

TRANSIENT_LOCAL Save and deliver historical DDS samples if the

DataWriter still exists.

TRANSIENT_DURABILITY Save and deliver historical DDS samples using

RTI Persistence Service to store samples in volatile

memory.

PERSISTENT_DURABILITY Save and deliver historical DDS samples using RTI

Persistence Service to store samples in non-volatile

memory.

writer_depth <integer value> How many samples are stored by the DataWriter

application for sending to late-joiningDataReaders

(DataReaders that are found after the DDS samples

were initially written). Must be <= to the History

depth.

As you can see in the table above, Durability has two additional kinds: TRANSIENT and PERSISTENT.

These levels of durability allow historical data to be available to late-joiningDataReaders even if the original

DataWriter is no longer in the system (because it has been shut down, for example). These higher levels of

durability require that data is also stored by RTI Persistence Service. These QoS settings are sometimes used

as part of the Event and AlarmData pattern in systems where you need to guarantee delivery of Events even if

theDataWriter no longer exists. They might also be used in a State Data pattern where state synchronization

is important: for example, a DataWriter changes the state of a system (writes the result of some process)

and then ends, and the next application must read that state in order to continue working with it.

Tip: To summarize:

• The History QoS Policy controls how many samples to keep for reliable delivery.

• The Resource Limits QoS Policy limits the total resources that can be used for samples in the

DataWriter and DataReader queues.

• The Durability QoS Policy determines whether, and how many, of the most recent samples are deliv-

ered to late-joining DataReaders.

5.2. Some Basic QoS Policies 81



RTI Connext Getting Started, Version 7.3.0

5.2.4 Deadline QoS Policy

The Deadline QoS Policy is used for periodic and streaming data, and can be configured on both the

DataWriter and the DataReader.

When the Deadline QoS Policy is set on a DataReader, it specifies that the DataReader expects to receive

data within a particular time period, or else the application should be notified. When the Deadline QoS

Policy is set on a DataWriter, it specifies that the DataWriter commits to writing data within a particular

time period, or else the application will be notified. For example, if an application hangs instead of writing

within the deadline period, Connext will notify that application that it’s not fulfilling the quality of service it

offered. We will look at how to receive these notifications in Hands-On 3: Incompatible QoS Notification.

The Deadline QoS Policy is a request-offered QoS: the DataWriter must offer the same or shorter deadline

than what theDataReader requests. Typically, theDataWriter is configured with a shorter deadline than the

DataReader, due to the possibility of network latency.

Figure 5.12: Deadline QoS Policy: The DataWriter commits to writing data within a particular time period;

the DataReader expects to receive data within a particular time period.

Table 5.5: Deadline QoS Policy

Deadline (RxO) Value Definition
period deadline time: DataWriter

deadline must be <=

DataReader request

Time period in which a DataWriter offers to write and a

DataReader requests to receive periodic samples

5.2. Some Basic QoS Policies 82



RTI Connext Getting Started, Version 7.3.0

5.2.5 QoS Patterns Review

The design patterns you will use for your data are made up of combinations of QoS settings. Here is a review

of the patterns we have covered:

Table 5.6: QoS Patterns

Pattern Reliability kind History Durability Deadline period
Streaming

(Periodic)

Data

BEST_EFFORT
• kind: N/A

• depth: N/A

• kind:

VOLATILE

• writer_depth:

N/A

Period in which

you expect to send

or receive periodic

data

Event/Alarm

Data

RELIABLE
• kind:

KEEP_ALL

• depth: N/A

• kind: Various

(see below)

• writer_depth:

Number of sam-

ples to keep in

the queue to

be delivered

to late-joining

DataReaders

N/A

State Data RELIABLE
• kind:

KEEP_LAST

• depth:

Number of

samples to

keep in the

queue to

be reliably

delivered

• kind: TRAN-

SIENT_LOCAL

• writer_depth:

Number of sam-

ples to keep in

the queue to

be delivered

to late-joining

DataReaders.

Typically 1

N/A

Event and AlarmData may have various levels of Durability kind, depending on whether your system design

requires Events andAlarms to be available to late-joiningDataReaders, andwhether Events andAlarmsmust

be available even if the original DataWriter is no longer in the system.

The Resource Limits QoS Policy that we have discussed is mostly orthogonal to our design patterns: it is

ultimately a limit on the maximummemory for samples and instances that your system should use, and that is

part of your overall system design. Typically, you design your data flows first, such as Streaming (Perioidic)

Data, and set your QoS policies based on that data pattern. Then you refine your QoS settings, overriding

individual settings such as resource limits, to make your QoS configuration work for your system.

5.2. Some Basic QoS Policies 83



RTI Connext Getting Started, Version 7.3.0

5.3 QoS Profiles

QoS profiles are groupings of QoS settings defined in an XML file. Connext provides many builtin QoS

profiles that you can use as a starting point for your systems. Some of these profiles cover the patterns we

have just discussed, such as the “Pattern.Streaming” profile we have used before. The pattern-based profiles

start with “Pattern” in the name. There are alsomany that are made up of basic sets of QoS configurations that

you can use to build your own patterns. For example, there are QoS profiles based on data flow characteristics

such as “Generic.StrictReliable.HighThroughput,” which is configured for high-throughput, strictly-reliable

data. All of the available Builtin QoS profiles can be viewed in the file <NDDSHOME>/resource/xml/
BuiltinProfiles.documentationONLY.xml.

Note: As its name implies, the BuiltinProfiles.documentationONLY.xml file is only for view-
ing what the builtin profiles contain. You cannot modify the builtin profiles; however, you can create your

own profile that inherits from a builtin profile. Then you can overwrite parts of the inherited profile with

your own QoS settings.

In Modify for Streaming Data (in Data Types), we already changed a QoS profile in the XML to inherit

from a builtin QoS profile. In that exercise, though, our code loaded a profile implicitly because is_de-
fault_qos was set to true in the XML file. This is dangerous, because the default QoS profile may not

have all of the settings you want (and some settings you don’t want). In the next hands-on exercises, we’ll

review new QoS profiles that inherit from builtin profiles and override some values. We will change the

code to load those QoS profiles, allowing our application to specify the profiles it wants to use for individual

DomainParticipants, DataWriters, or DataReaders.

Note: Using is_default_qos="true" is not a best practice in production applications. It’s a conve-
nient way to get you started quickly, but in production applications you should explicitly specify which QoS

profile to use, instead of relying on a default.

5.4 Hands-On 1: Update One QoS Profile in the Monitoring/Control
Application

In this exercise, you are starting with applications in the repository where we have pre-configured only some

of the QoS profiles. We will start by configuring some of the correct QoS profiles for theMonitoring/Control

application, but we will intentionally leave oneDataWriter configured to use the default QoS profile in error.

This will allow us to debug incompatible QoS profiles.

We will do the following:

• Hands-On 1:

– Load the QoS file.

– Set up a DomainParticipant QoS profile, to better help you debug QoS profiles in Admin Con-

sole. (For more information on DomainParticipants, see Publishers, Subscribers, and Domain-

Participants.)

5.3. QoS Profiles 84



RTI Connext Getting Started, Version 7.3.0

– Set up the correct QoS profiles in the DataReaders, but not the DataWriter.

• Hands-On 2: Debug the incompatible QoS profiles in Admin Console.

• Hands-On 3: Add code to help debug incompatible QoS profiles directly in one of the applications.

• Hands-On 4: Change the Monitoring/Control DataWriter’s QoS profile to the correct QoS profile, so

now the DataWriters and DataReaders are compatible.

In this exercise, you’ll be working in the directory 5_basic_qos/csharp, which was created when you
cloned the getting started repository from GitHub in the first module, in Clone Repository.

1. Run RTI Code Generator (rtiddsgen) to generate the C# code for the IDL file

chocolate_factory.idl as explained in Build the Applications.

2. Within the application, load the qos_profiles.xml file from the repository by performing the

following steps:

Open the MonitoringCtrlApplication.cs file and look for the comment:

// Exercise #1.1: Add QoS provider

Add the following code after the comment:

// Exercise #1.1: Add QoS provider
// Loads the QoS from the qos_profiles.xml file.
var qosProvider = new QosProvider("./qos_profiles.xml");

This code explicitly loads an XML QoS file named qos_profiles.xml that we have pro-

vided for you in the csharp directory, instead of relying on the file with a default name

(USER_QOS_PROFILES.xml) as we did in Section 3 (Modify for Streaming Data).

Tip: QoS profile XML files can be modified and loaded without recompiling the application.

3. Review the QoS profiles in the qos_profiles.xml file.

This XML file contains the QoS profiles that will be used by your applications. The file defines a QoS

library, “ChocolateFactoryLibrary,” that contains the QoS profiles we will be using:

<qos_library name="ChocolateFactoryLibrary">

Take a look at the “TemperingApplication” and “MonitoringControlApplication” qos_profiles in the

XML file:

<!-- QoS profile to set the participant name for debugging -->
<qos_profile name="TemperingApplication"

base_name="BuiltinQosLib::Generic.Common">
<domain_participant_qos>

<participant_name>
<name>TemperingAppParticipant</name>

</participant_name>
</domain_participant_qos>

</qos_profile>

5.4. Hands-On 1: Update One QoS Profile in the Monitoring/Control Application 85



RTI Connext Getting Started, Version 7.3.0

<!-- QoS profile to set the participant name for debugging -->
<qos_profile name="MonitoringControlApplication"

base_name="BuiltinQosLib::Generic.Common">
<domain_participant_qos>

<participant_name>
<name>MonitoringControlParticipant</name>

</participant_name>
</domain_participant_qos>

</qos_profile>

We haven’t talked about setting QoS profiles on the DomainParticipants yet–we will say more about

this when we talk about discovery. For now, what’s important is that if you set the partici-
pant_name QoS setting, Connext makes that name visible to other applications. Since Domain-

Participants own all your DataWriters and DataReaders, giving your DomainParticipants unique

names makes it easier to tell your DataWriters and DataReaders apart when you are debugging in

Admin Console.

These DomainParticipant profiles are pretty simple. They inherit from the builtin QoS profile

“Generic.Common” by specifying that as the base profile:

base_name="BuiltinQosLib::Generic.Common"

Then these QoS profiles override the default DomainParticipant’s name:

<domain_participant_qos>
<participant_name>

<name>MonitoringControlParticipant</name>
</participant_name>

</domain_participant_qos>

In the next step, we will change the Monitoring/Control Application’s DomainParticipant to use this

QoS profile to help us debug in Admin Console.

Now review the “ChocolateTemperatureProfile” Qos profile, which will be used to specify QoS poli-

cies for DataWriters and DataReaders in our applications:

<qos_profile name="ChocolateTemperatureProfile"
base_name="BuiltinQosLib::Pattern.Streaming">

This profile inherits from the “Pattern.Streaming” profile, which provides a basic pattern for

DataWriter and DataReader QoS profiles for streaming data, including the following:

• Reliability kind = BEST_EFFORT

• Deadline period = 4 seconds

Remember you can review the details of the default profiles like “Pattern.Streaming” in

<NDDSHOME>/resource/xml/BuiltinProfiles.documentationONLY.xml.

Review the “ChocolateLotStateProfile” QoS profile, which will be used to specify QoS policies for

DataWriters and DataReaders in our applications:

5.4. Hands-On 1: Update One QoS Profile in the Monitoring/Control Application 86



RTI Connext Getting Started, Version 7.3.0

<qos_profile name="ChocolateLotStateProfile"
base_name="BuiltinQosLib::Pattern.Status">

This profile inherits from the “Pattern.Status” profile, which provides the following DataWriter and

DataReader QoS settings:

• Reliability kind = RELIABLE

• Durability kind = TRANSIENT_LOCAL

• History kind = KEEP_LAST

• History depth = 1

• Durability writer_depth = AUTO_WRITER_DEPTH (i.e., inherited from the History depth,

which is 1 in this example; AUTO_WRITER_DEPTH is the default setting for writer_depth)

This is the State Data pattern described above, in “Reliable” Reliability + “Keep Last” History.

4. Add the DomainParticipant’s QoS profile in MonitoringCtrlApplication.cs.

Look for the comment:

// Exercise #1.2: Load DomainParticipant QoS profile

Replace this line:

DomainParticipant participant = DomainParticipantFactory.Instance
.CreateParticipant(domainId);

So the code looks like this:

// Exercise #1.2: Load DomainParticipant QoS profile
var participantQos = qosProvider.GetDomainParticipantQos(

"ChocolateFactoryLibrary::MonitoringControlApplication");
DomainParticipant participant = DomainParticipantFactory.Instance

.CreateParticipant(domainId, participantQos);

With this code, you have just explicitly loaded the “MonitoringControlApplication” QoS profile,

which is part of the ChocolateFactoryLibrary. Remember that this QoS profile inherits from the default

DomainParticipant QoS profile, but specifies the participant_name to be “MonitoringControl-

Participant” in the QoS file.

5. Add the DataReaders QoS profile in MonitoringCtrlApplication.cs.

Look for the comment:

// Exercise #1.3: Update the lotStateReader and temperatureReader
// to use correct QoS

Replace these lines:

DataReader<ChocolateLotState> lotStateReader =
subscriber.CreateDataReader(lotStateTopic);

5.4. Hands-On 1: Update One QoS Profile in the Monitoring/Control Application 87



RTI Connext Getting Started, Version 7.3.0

// Add a DataReader for Temperature to this application
DataReader<Temperature> temperatureReader =

subscriber.CreateDataReader(temperatureTopic);

So the code looks like this:

// Exercise #1.3: Update the lot_state_reader and temperature_reader
// to use correct QoS
var readerQos = qosProvider.GetDataReaderQos(

"ChocolateFactoryLibrary::ChocolateLotStateProfile");
DataReader<ChocolateLotState> lotStateReader =

subscriber.CreateDataReader(lotStateTopic, readerQos);

// Add a DataReader for Temperature to this application
readerQos = qosProvider.GetDataReaderQos(

"ChocolateFactoryLibrary::ChocolateTemperatureProfile");
DataReader<Temperature> temperatureReader =

subscriber.CreateDataReader(temperatureTopic, readerQos);

Now that you have added that code, the DataReaders are each loading the correct QoS profiles. You

have not changed the DataWriter, so it is erroneously using the default QoS profile.

6. Run the Monitoring/Control application:

$ dotnet run --project MonitoringCtrlApplication

In another command prompt window, run the Tempering application with a sensor ID as a parameter:

$ dotnet run --project TemperingApplication -- --sensor-id 9

Note: Make sure you run dotnet from 5_basic_qos/csharp since that’s where the applica-

tions expect to find qos_profiles.xml.

7. Look at the output of the applications:

The Monitoring/Control application starts lots, but we never see lot updates:

Starting lot:
[lot_id: 0 next_station: StationKind::TEMPERING_CONTROLLER ]

Starting lot:
[lot_id: 1 next_station: StationKind::TEMPERING_CONTROLLER ]

The Tempering application waits for lots, but it never gets any updates about lots:

ChocolateTemperature Sensor with ID: 9 starting
Waiting for lot
Waiting for lot
Waiting for lot
Waiting for lot
Waiting for lot

5.4. Hands-On 1: Update One QoS Profile in the Monitoring/Control Application 88



RTI Connext Getting Started, Version 7.3.0

The DataWriters and DataReaders are not communicating because they have incompatible QoS pro-

files, which we will debug in the next hands-on exercise.

8. Keep the applications running for the next hands-on exercise.

5.5 Hands-On 2: Incompatible QoS in Admin Console

As we mentioned above, the Tempering application is using all correct QoS settings, and we updated the

DataReaders in theMonitoring/Control application. But we intentionally didn’t update theMonitoring/Con-

trol application’s DataWriter. We will debug this problem using Admin Console.

1. Make sure the monitoring_ctrl_application and tempering_application are still running.

2. Open Admin Console.

• Open Admin Console from RTI Launcher.

• Choose the Administration view:

(The Administration view might be selected for you already, since we used that view in the

previous module.)

3. You should immediately notice that there is a red error showing on your “ChocolateLotState” Topic.

If you hover over the ChocolateLotState Topic, you will see an error: “Request/offered QoS.”

4. Click on the “ChocolateLotState” Topic in the DDS Logical View, and you should see a diagram

showing the DataWriters and DataReaders that are writing and reading the Topic.

It’s easy to see which application the DataWriters and DataReaders belong to, because you’ve set

the participant_name QoS setting, which allows you to see the names of the DomainPartici-

5.5. Hands-On 2: Incompatible QoS in Admin Console 89



RTI Connext Getting Started, Version 7.3.0

pants (MonitoringControlParticipant and TemperingAppParticipant) that own the DataWriters

and DataReaders in this system.

In the above view, some DataWriters and DataReaders are matching, while others are not. The

DataWriter that is configured correctly is green, the misconfigured one is red. The “ChocolateLot-

State” DataReaders in the system, in yellow, are partially matched: they match with the DataWriter

in the Tempering application that is configured correctly.

Remember that the “ChocolateLotState” DataWriters and DataReaders look like Figure 5.13 in our

system; the Monitoring/Control application’s DataWriter is not configured correctly:

5.5. Hands-On 2: Incompatible QoS in Admin Console 90



RTI Connext Getting Started, Version 7.3.0

Figure 5.13: TwoDataWriters and twoDataReaders should be communicating in our example system, when

configured correctly. But theDataWriterQoS policy in theMonitoring/Control application is not configured

correctly. (See also Figure 4.5.)

5. Click on the red DataWriter for the Monitoring/Control application.

At the bottom of Admin Console’s screen, click on the Match Analyses tab:

Notice in the Offered and Requested columns that the misconfigured DataWriter is offering Volatile

durability (meaning that it will not save data for late-joining DataReaders). However, the two

DataReaders are requesting Transient Local durability (meaning that they need data saved for when

they join late—this is the correct setting, since it follows the State Data pattern). The DataReader is

requesting a higher level of QoS setting (“I need data saved”) than the DataWriter is offering (“I’m

not saving data”). This is a system error, caused by incompatible QoS policies. Scroll down in this

view to see the second DataReader that is mismatched with the DataWriter.

Tip: Any time a DataReader requests a higher level of service than the DataWriter offers, Connext

reports it as a system error.

5.5. Hands-On 2: Incompatible QoS in Admin Console 91



RTI Connext Getting Started, Version 7.3.0

5.6 Hands-On 3: Incompatible QoS Notification

Both your DataWriters and DataReaders can be notified in your own applications when they discover a

DataReader or DataWriter with incompatible QoS settings. In the 5_basic_qos directory, we are moni-
toring the RequestedIncompatibleQosDataReader event to detect incompatible QoS policies. (This

is a change to the Tempering application from the version used in the previous module, in 4_keys_in-
stances.) In the steps below, you will review this additional code and add new code that prints out the

error.

1. Quit both of your applications if you haven’t already.

2. Open the TemperingApplication.cs file.

3. Review the code. Notice that we have already added code to detect when the DataReader discov-

ers a DataWriter with an incompatible QoS policy. When this happens, it calls the event handler

OnRequestedIncompatibleQos:

DataReader<ChocolateLotState> lotStateReader = subscriber.
→˓CreateDataReader(

lotStateTopic,
qos: qosProvider.GetDataReaderQos(

→˓"ChocolateFactoryLibrary::ChocolateLotStateProfile"),
preEnableAction: reader => reader.RequestedIncompatibleQos +=␣

→˓OnRequestedIncompatibleQos);

We configure the event handler in a preEnableAction to ensure that the event handler is installed
before the DataReader is enabled and therefore we don’t miss any status update.

4. Find the OnRequestedIncompatibleQos method, and add code after the comment:

// Exercise #3.1 add a message to print when this DataReader discovers an
// incompatible DataWriter
Type incompatiblePolicy = status.LastPolicy;
Console.WriteLine(

"Discovered DataWriter with incompatible policy: " +␣
→˓incompatiblePolicy.Name);

The code you just added will print an error message when the DataReader discovers an incompatible

DataWriter.

5. Rebuild and run both applications.

When you run the Tempering application, you will now see notifications when it discovers DataWrit-

ers with incompatible QoS policies:

ChocolateTemperature Sensor with ID: 33 starting
waiting for lot
Discovered DataWriter with incompatible policy: Durability
waiting for lot
waiting for lot

(Connext prints the error only the first time it notices the incompatibility.)

6. Quit both applications.

5.6. Hands-On 3: Incompatible QoS Notification 92



RTI Connext Getting Started, Version 7.3.0

5.7 Hands-On 4: Using Correct QoS Profile

Finally, let’s go back to the Monitoring/Control application. This is where you added the QoS profile for the

DomainParticipant and DataReaders earlier. Now you will be modifying the DataWriter’s QoS profile to

use the correct values.

1. Edit MonitoringCtrlApplication.cs.

Find the comment:

// Exercise #4.1: Load ChocolateLotState DataWriter QoS profile after
// debugging incompatible QoS

Replace this line:

DataWriter<ChocolateLotState> lotStateWriter =
publisher.CreateDataWriter(lotStateTopic);

So the code looks like this:

// Exercise #4.1: Load ChocolateLotState DataWriter QoS profile after
// debugging incompatible QoS
var writerQos = qosProvider.GetDataWriterQos(

"ChocolateFactoryLibrary::ChocolateLotStateProfile");
DataWriter<ChocolateLotState> lotStateWriter =

publisher.CreateDataWriter(lotStateTopic, writerQos);

You have now configured the “ChocolateLotState” DataWriter to use the “ChocolateLotStateProfile”

QoS profile. Recall that this profile sets a Durability kind of TRANSIENT_LOCAL and an effective

writer_depth of 1, so that late-joining DataReaders can get the latest data.

2. Rebuild and run both applications.

Now you see that they are communicating correctly, and the Tempering application always starts pro-

cessing lot #0, even if the Tempering application started after the Monitoring/Control application.

This is because the Tempering application is using the State Data pattern for its QoS profile: Relia-

bility kind = RELIABLE, History kind = KEEP_LAST, Durability kind = TRANSIENT_LOCAL,

Durability writer_depth = 1 (inherited from the History depth of 1).

Recall that the Tempering application processes the lot and updates the status of each lot it receives.

ChocolateTemperature Sensor with ID: 35 starting
waiting for lot
Processing lot #0
Lot completed
waiting for lot
Processing lot #1
Lot completed
waiting for lot
waiting for lot
Processing lot #2
Lot completed
waiting for lot

5.7. Hands-On 4: Using Correct QoS Profile 93



RTI Connext Getting Started, Version 7.3.0

Recall that the Monitoring/Control application starts each lot at the TEMPERING CONTROLLER.

The TEMPERING CONTROLLER then updates the lot state to indicate it is WAITING, PROCESS-

ING, or completed. (The “current station” is invalid before the tempering controller starts processing

the lot, because the Tempering application is the first station, so there is no station before that.)

Starting lot:
[lot_id: 0 next_station: StationKind::TEMPERING_CONTROLLER ]
Received Lot Update:
[lot_id: 0, station: StationKind::INVALID_CONTROLLER , next_station:
StationKind::TEMPERING_CONTROLLER , lot_status:
LotStatusKind::WAITING ]
Received Lot Update:
[lot_id: 0, station: StationKind::TEMPERING_CONTROLLER ,
next_station: StationKind::INVALID_CONTROLLER , lot_status:
LotStatusKind::PROCESSING ]
Received Lot Update:
[lot_id: 0 is completed]

Starting lot:
[lot_id: 1 next_station: StationKind::TEMPERING_CONTROLLER ]
Received Lot Update:
[lot_id: 1, station: StationKind::INVALID_CONTROLLER , next_station:
StationKind::TEMPERING_CONTROLLER , lot_status:
LotStatusKind::WAITING ]
Received Lot Update:
[lot_id: 1, station: StationKind::TEMPERING_CONTROLLER ,
next_station: StationKind::INVALID_CONTROLLER , lot_status:
LotStatusKind::PROCESSING ]
Received Lot Update:
[lot_id: 1 is completed]

3. If you haven’t already, start the Monitoring/Control application before the Tempering application and

see that the Tempering application processes all of the lots, starting with 0, even though the Tempering

application in this scenario is a late joiner.

Upon startup, the Tempering application gets a current view of your entire system. This is because

all of the QoS policies relevant to the State Data pattern are working together: since Reliability kind

is RELIABLE and Durability kind is TRANSIENT_LOCAL, the Tempering application sees all the

ChocolateLotState instances even if its DataReader is a late-joiner; since Durability writer_depth is

1, it sees one sample from each instance. Contrast this with our discussion in Durability QoS Policy,

where the Monitoring/Control application sent lots #0-4, but the Tempering application saw only lot

#3 at the start. This was because we hadn’t set Durability yet.

5.7. Hands-On 4: Using Correct QoS Profile 94



RTI Connext Getting Started, Version 7.3.0

Figure 5.14: Reliability, History, and Durability QoS policies work together so that the late-joining

DataReader sees one sample per instance.

5.8 Next Steps

Congratulations! You have learned about several of the basic Quality of Service offered by Connext. We

only scratched the surface of the configuration options you have available, so for further information about

QoS policies, you should look at the following documents:

• QoS Reference Guide

• DataWriter QoS, in the RTI Connext Core Libraries User’s Manual

• DataReader QoS, in the RTI Connext Core Libraries User’s Manual

• Configuring QoS with XML, in the RTI Connext Core Libraries User’s Manual

In an upcoming module, we will be looking at filtering data using ContentFilteredTopics.

5.8. Next Steps 95



Chapter 6

ContentFilteredTopics

Prerequisites
• Basic QoS

• Repository cloned from GitHub here

Time to complete 45 minutes

Concepts covered

in this module

Content Filtering

In the Publish/Subscribe communication pattern,DataWriters send data toDataReaderswith the same Topic.

But sometimes aDataReadermay be interested in only a subset of the data that is being sent. Some examples

are:

• A DataReader only cares about the temperature when it goes outside of a certain bound.

• A DataReader only cares about log messages with levels WARNING or ERROR.

• A DataReader only cares about the ChocolateLotState if the DataReader belongs to the next station

that processes the chocolate lot.

Note that in all of these examples, there might be someDataReaders that want to receive a subset of data, and

other DataReaders that might want to receive all data. For example, in our chocolate factory, an individual

station only cares about a chocolate lot if it is the next station to process the lot, but the monitoring application

wants to receive every update about every chocolate lot.

Connext offers a mechanism to allow DataReaders to filter data so that they only receive the data they are

interested in. Applications can do this by creating ContentFilteredTopics instead of normal Topics. Since

differentDataReadersmaywant to receive a different subset of the data, ContentFilteredTopics are specified

on the DataReaders. No changes are required on DataWriters to use content-filters: they continue to use a

normal Topic, and they can communicate both with DataReaders that use a normal Topic and DataReaders

that use a ContentFilteredTopic.

Although ContentFilteredTopics are specified on DataReaders, in most cases the DataWriter does the fil-

tering, in which case no network bandwidth is used for those filtered samples. (The DataWriter finds out

during discovery that a DataReader has a ContentFilteredTopic.)

96

https://github.com/rticommunity/rticonnextdds-getting-started


RTI Connext Getting Started, Version 7.3.0

Definition

A ContentFilteredTopic is a Topic with filtering properties. It makes it possible to subscribe to

Topics and at the same time specify that you are only interested in a subset of the Topic’s data.

AContentFilteredTopic consists of a Topic, a filter expression, and optional parameters. The filter expression

and parameters can be changed at runtime. You can think of the filter expression as being like the “where”

clause in SQL.

Figure 6.1: A ContentFilteredTopic that only allows samples with degrees > 32.

6.1 The Complete Chocolate Factory

ContentFilteredTopics are the final piece we need to put together the last part of the Chocolate Factory: the

ingredient stations.

If you recall, the process the chocolate lot takes through the chocolate factory looks like this:

Figure 6.2: DataReaders in our system will use content filtering to filter out any ChocolateLotState that

doesn’t have “next_station” equal to that DataReader’s station.

6.1. The Complete Chocolate Factory 97



RTI Connext Getting Started, Version 7.3.0

The Monitoring/Control Application starts each lot by writing a sample to the ChocolateLotState Topic,

with next_station set to one of the ingredient stations. Each ingredient station processes the lot by

adding an ingredient, and then updates the next_station. The last station is the tempering machine,
which processes the lot by tempering it, and then calls dispose() on the lot instance to say that the lot

has completed.

Figure 6.3: A chocolate lot is waiting, processing, or completed by an ingredient station. When a lot is

completed, the next_station field indicates the next station to process the chocolate lot.

Figure 6.4: A chocolate lot is waiting, processing, or disposed by the tempering application.

6.1. The Complete Chocolate Factory 98



RTI Connext Getting Started, Version 7.3.0

The Monitoring/Control Application wants to monitor every state of the chocolate lots as they are processed

by the stations. However, an individual station only wants to know about a lot if the next_station field
indicates it is the station that will process the lot next.

In the previous exercises, we had code in the ProcessLot function in TemperingApplication.cs
to check whether the tempering station was the next station:

private void ProcessLot(
DataReader<ChocolateLotState> lotStateReader,
DataWriter<ChocolateLotState> lotStateWriter)

{
using var samples = lotStateReader.Take();
foreach (var sample in samples.ValidData())
{

if (sample.next_station == StationKind.TEMPERING_CONTROLLER)
{

...
}

}
}

Instead of doing that, we can use a ContentFilteredTopic to filter out all the lot updates where the tempering

controller is not the next_station. This cleans up the logic when the tempering application receives
data, because it no longer needs to check whether a chocolate lot update is intended for it. This can also

save network bandwidth because DataWriters perform the filtering. When the application uses a Content-

FilteredTopic, Connext can filter out the data more efficiently than the application, and may not even send

updates to an application that is not interested.

6.2 Hands-On 1: Update the ChocolateLotState DataReader with a
ContentFilteredTopic

We are going to update the DataReader in the Tempering Application to use a ContentFilteredTopic instead

of checking whether the data is important to this application every time a DataWriter updates the Choco-

lateLotState. Remember that the Tempering Application only cares about a lot if the next_station field
indicates that the tempering machine is the next station.

1. Find the examples as described in Clone Repository.

2. Generate the C# code for chocolate_factory.idl as explained in Build the Applications.

3. Create a ContentFilteredTopic that filters out ChocolateLotState data unless the next_station
field in the data refers to this application.

Open TemperingApplication.cs and look for the comment:

// Exercise #1.1: Create a Content-Filtered Topic that filters out
// chocolate lot state unless the next_station = TEMPERING_CONTROLLER

Add the following code after the comment, so it looks like the following:

6.2. Hands-On 1: Update the ChocolateLotState DataReader with a ContentFilteredTopic99



RTI Connext Getting Started, Version 7.3.0

// Exercise #1.1: Create a Content-Filtered Topic that filters out
// chocolate lot state unless the next_station = TEMPERING_CONTROLLER
ContentFilteredTopic<ChocolateLotState> filteredLotStateTopic =

participant.CreateContentFilteredTopic(
name: "FilteredLot",
relatedTopic: lotStateTopic,
filter: new Filter(

expression: "next_station = %0",
parameters: new string[] { "'TEMPERING_CONTROLLER'" }));

This code creates a ContentFilteredTopic, using the ChocolateLotState Topic, that will filter out all

chocolate lot state data that the Tempering Application does not care about.

4. Use the ContentFilteredTopic instead of a plain Topic.

In TemperingApplication.cs, look for the comment:

// Exercise #1.2: Change the DataReader's Topic to use a
// Content-Filtered Topic

Replace these lines:

DataReader<ChocolateLotState> lotStateReader = subscriber.
→˓CreateDataReader(

lotStateTopic,
...);

So the code looks like this (the highlighted line has changed):

// Exercise #1.2: Change the DataReader's Topic to use a
// Content-Filtered Topic
DataReader<ChocolateLotState> lotStateReader = subscriber.
→˓CreateDataReader(

filteredLotStateTopic,
...);

Now the DataReader is using the ContentFilteredTopic. You don’t need to make any changes on the

DataWriter side.

5. Remove the code from the ProcessLot that checks that next_station is the Tempering Appli-
cation.

In TemperingApplication.cs, look for the comment:

// Exercise #1.3: Remove the check that the Tempering Application is
// the next_station. This will now be filtered automatically.

Delete the following if condition:

if (sample.next_station == StationKind.TEMPERING_CONTROLLER)

So the code looks like this:

6.2. Hands-On 1: Update the ChocolateLotState DataReader with a ContentFilteredTopic100



RTI Connext Getting Started, Version 7.3.0

foreach (var sample in samples.ValidData())
{

// Exercise #1.3: Remove the check that the Tempering Application is
// the next_station. This will now be filtered automatically.
Console.WriteLine("Processing lot " + sample.lot_id);
...
Console.WriteLine("Lot completed");

}

Now Connext automatically filters out ChocolateLotState data before your application processes it.

6.3 Hands-On 2: Review the Temperature DataReader’s ContentFil-
teredTopic

We have already made a similar change as you made in Hands-On 1 to the Monitoring/Control Application’s

Temperature DataReader: we added content filtering to it. That application now filters out data unless the

temperature is outside of the expected range. (And it prints an error when the temperature is above or below

that range.)

1. In MonitoringCtrlApplication.cs, review the following code:

// A Topic has a name and a datatype. Create a Topic with type
// ChocolateLotState. Topic name is a constant defined in the IDL file.
Topic<ChocolateLotState> lotStateTopic =

participant.CreateTopic<ChocolateLotState>("ChocolateLotState");
// Add a Topic for Temperature to this application
Topic<Temperature> temperatureTopic =

participant.CreateTopic<Temperature>("ChocolateTemperature");
ContentFilteredTopic<Temperature> filteredTemperatureTopic =

participant.CreateContentFilteredTopic(
name: "FilteredTemperature",
relatedTopic: temperatureTopic,
filter: new Filter(

expression: "degrees > %0 or degrees < %1",
parameters: new string[] { "32", "30" }));

Notice that we have added a ContentFilteredTopic that will filter out temperature data unless it’s

outside of the expected range. This uses a slightly more complex filter expression than the one you

added to the Tempering Application in Hands-On 1: Update the ChocolateLotState DataReader with

a ContentFilteredTopic. More information about the possible filter expressions can be found in SQL

Filter Expression Notation, in the RTI Connext Core Libraries User’s Manual.

2. You can see later in the code that the Temperature DataReader has been updated to use the Content-

FilteredTopic:

DataReader<Temperature> temperatureReader =
subscriber.CreateDataReader(filteredTemperatureTopic, readerQos);

3. The logic in the MonitorTemperature function no longer checks whether the temperature is out
of range, because temperature data is only received when it’s out of range. Now the function looks

6.3. Hands-On 2: Review the Temperature DataReader’s ContentFilteredTopic 101



RTI Connext Getting Started, Version 7.3.0

like this:

foreach (var data in samples.ValidData())
{

// Receive updates from tempering station about chocolate␣
→˓temperature.

// Only an error if below 30 or over 32 degrees Fahrenheit.
Console.WriteLine("Temperature high: " + data);

}

4. Build and run the applications.

$ dotnet build

Use the script to start all the applications at once:

Linux

$ ./start_all.sh

macOS

$ ./start_all.sh

Windows

> start_all.bat

The script runs four copies of the Ingredient Application, each one specifying a different type of in-

gredient it is providing. The script also runs the Tempering Application and the Monitoring/Control

Application. You can watch each lot get processed by the ingredient applications, and then the tem-

pering machine.

6.3. Hands-On 2: Review the Temperature DataReader’s ContentFilteredTopic 102



RTI Connext Getting Started, Version 7.3.0

If you do not want to run the script, you can start up each of the applications by opening a new terminal

for each application, and starting each application as follows:

$ dotnet run -p IngredientApplication -- --station-kind COCOA_BUTTER_
→˓CONTROLLER

$ dotnet run -p IngredientApplication -- --station-kind SUGAR_CONTROLLER

$ dotnet run -p IngredientApplication -- --station-kind MILK_CONTROLLER

$ dotnet run -p IngredientApplication -- --station-kind VANILLA_
→˓CONTROLLER

$ dotnet run -p TemperingApplication

$ dotnet run -p MonitoringCtrlApplication

6.3. Hands-On 2: Review the Temperature DataReader’s ContentFilteredTopic 103



RTI Connext Getting Started, Version 7.3.0

6.4 Hands-On 3: Review the Larger System in Admin Console

We now have six applications that are publishing and subscribing to data, which is not a very large distributed

system. This can start to look overwhelming, so we’re going to open Admin Console to get an overview of

this system. This hands-on exercise does not relate directly to content filtering, but shows how multiple

applications start to look in Admin Console.

1. Make sure all of your applications are still running.

2. Open Admin Console.

• Open Admin Console from RTI Launcher.

• Choose the Administration view:

(The Administration view might be selected for you already.)

3. In the DDS Logical View, click on the Domain in your system:

4. Explore the chocolate factory system. Even though it looks complex with multiple applications run-

ning, you can navigate by clicking on the Topic name or the application. This makes it much easier to

visualize the larger system.

6.4. Hands-On 3: Review the Larger System in Admin Console 104



RTI Connext Getting Started, Version 7.3.0

Figure 6.5: Each Ingredient Application shows one DataReader and one DataWriter communicating on the

ChocolateLotState Topic

6.4. Hands-On 3: Review the Larger System in Admin Console 105



Chapter 7

Discovery

Prerequisites
• Publish/Subscribe

• Repository cloned from GitHub here

Time to complete 30 minutes

Concepts covered

in this module
• Discovery

• Domains

• DomainParticipants

Before we talk about discovery, we should talk about the DomainParticipant entity that you create when

you create your DDS application. If you walk through all of the code we have used so far, you will see that

creating a DomainParticipant is nearly the first step our applications take, and a DomainParticipant is used

to create all the Publishers, Subscribers (and ultimately the DataWriters and DataReaders) your application

uses. When you create a DomainParticipant, it starts the discovery process.

Definition

Discovery is the process in whichDomainParticipants find out about otherDomainParticipants

and exchange information about their DataWriters and DataReaders. When a DomainPartici-

pant learns about the DataWriters and DataReaders belonging to another DomainParticipant,

it analyzes whether they have matching Topics, datatypes, and compatible QoS with its own

DataReaders and DataWriters. If a DataWriter and DataReader are determined to be compati-

ble, they communicate. By default, discovery starts as soon as you create a DomainParticipant

in your application.

Discovery is an ongoing process—wheneverDataWriters andDataReaders are created, modified, or deleted,

their DomainParticipant sends that information to the other DomainParticipants in the system. In addition,

DomainParticipants maintain their liveliness in the system using periodic discovery announcements.

106

https://github.com/rticommunity/rticonnextdds-getting-started


RTI Connext Getting Started, Version 7.3.0

Figure 7.1: Simplified discovery diagram. AllDomainParticipants in your systemwill send discovery infor-

mation at startup (by default), and they will all determine whether they have DataWriters and DataReaders

that match. Any time you create a new DataWriter or DataReader in your application, its DomainPartici-

pant will announce the existence of the new DataWriter or DataReader to all the DomainParticipants it has

discovered.

Tip: Notice that creating a DomainParticipant means creating discovery traffic over the network. This is

one reason we recommend you create as few DomainParticipants as possible, according to your system de-

sign. Often there is only oneDomainParticipant per application withmultipleDataReaders andDataWriters

underneath it, but that may depend on the number of domains you need.

7.1 Domains

When you create a DomainParticipant, you pass it a positive integer value that represents the DDS domain

it should communicate in. A DDS domain is a logical DDS network. If you create DomainParticipants in

different domains, they will not communicate with each other.

Tip: Using multiple domains is not a way to secure your DDS system, but it is a way to keep DDS appli-

cations that should not communicate from interfering with each other or from using unnecessary resources

storing information about DataWriters or DataReaders they will never communicate with. For information

on securing a DDS system, see the RTI Security Plugins Getting Started Guide.

There are many reasons for creating multiple DDS domains. For example:

• You need to run a production system and a test system on the same network, and you do not want them

to communicate with each other.

• You have multiple developers running tests, and you don’t want them to collide with each other

• You have different subsystems in your overall system, and they don’t need to communicate with each

other.

7.1. Domains 107

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/getting_started_guide/


RTI Connext Getting Started, Version 7.3.0

• You are using Security Plugins (RTI Security Plugins), and you want to support both a secure domain

and a non-secure domain in your system.

Sometimes, you may have an application that needs to interact in multiple DDS domains. It does that by

creating a DomainParticipant for each domain it wants to communicate in.

Figure 7.2: DomainParticipants in different domains do not send announcements to each other.

7.2 Initial Peers

The initial peers define where a DomainParticipant sends its first announcements. These peers are a list

of addresses (in string format) that a DomainParticipant should attempt to contact. Connext can support

transports other than UDP, so these strings use a format called a “locator” that allows you to specify which

transport as well as the address. The details on how to format locator strings can be found in Discovered

RTPS Locators and Changes with IPMobility, in the RTI Connext DDS Core Libraries User’s Manual. Most

of the time you will be specifying locators that look like normal host names and IP addresses.

By default, a DomainParticipant sends its announcements to:

• A multicast IP address with a port associated with the domain the participant is communicating in.

• Loopback IP address with ports associated with the domain the participant is communicating in.

• A shared memory locator with an ID associated with the domain the participant is communicating in.

If you need to change the initial peers your DomainParticipants contact, you can do that a few different

ways, but the easiest way is in the XML configuration file:

<qos_library>
<qos_profile name="DefaultProfile">

<domain_participant_qos>
<discovery>

<initial_peers>
<!-- Add an element for each machine you want to␣

→˓communicate with -->
<element>IP address of machine to contact</element>

</initial_peers>
</discovery>

</domain_participant_qos>

7.2. Initial Peers 108



RTI Connext Getting Started, Version 7.3.0

</qos_profile>
</qos_library>

7.3 Hands-On 1: Troubleshooting Discovery

Discovery may not work for a number of reasons. The most common reasons for discovery not working (or

appearing not to work) are:

• A firewall is blocking some or all DDS traffic.

• There is a router in your network that is not allowing multicast traffic through.

• Discovery is working, but your Topic names are misconfigured.

• Discovery is working, but your QoS profiles are misconfigured.

To troubleshoot whether there is DDS communication going between applications, we will use the rtiddsping

utility. This is a simple utility that sends ping messages over DDS from a DataWriter to a DataReader, and

can help determine whether an issue is with discovery or with misconfiguration. This is more interesting

when run on multiple machines, but you can do this hands-on on a single machine to understand how to do

this simple troubleshooting step.

1. In one terminal, run rtiddsping:

Linux

$ <NDDSHOME>/bin/rtiddsping

macOS

$ <NDDSHOME>/bin/rtiddsping

Windows

> <NDDSHOME>\bin\rtiddsping.bat

2. In a second terminal, run rtiddsping with the -subscriber parameter:

Linux

$ <NDDSHOME>/bin/rtiddsping -subscriber

macOS

$ <NDDSHOME>/bin/rtiddsping -subscriber

Windows

> <NDDSHOME>\bin\rtiddsping.bat -subscriber

After you start both applications, you should see output similar to the following in the rtiddsping

publishing application:

7.3. Hands-On 1: Troubleshooting Discovery 109



RTI Connext Getting Started, Version 7.3.0

RTI Connext DDS Ping built with DDS version: ...
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sending data... value: 0000000
Found 1 additional ping subscriber(s).
Current subscriber tally is: 1
Sending data... value: 0000001
Sending data... value: 0000002
Sending data... value: 0000003
Sending data... value: 0000004
Sending data... value: 0000005
Sending data... value: 0000006

You should see output similar to the following in the rtiddsping subscribing application:

RTI Connext DDS Ping built with DDS version: 6.1.0 (Core: 1.9a.00, C:
1.9a.00, C++: 1.9a.00)
Copyright 2012 Real-Time Innovations, Inc.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
rtiddsping is listening for data, press CTRL+C to stop it.
Found 1 additional ping publishers(s).
Current publisher tally is: 1
Found 1 additional alive ping publishers(s).
Current alive publisher tally is: 1
rtiddsping, issue received: 0000001
Detected Missed Sample(s) current: 1 cumulative: 1 (50.0)%
rtiddsping, issue received: 0000002
rtiddsping, issue received: 0000003
rtiddsping, issue received: 0000004
rtiddsping, issue received: 0000005
rtiddsping, issue received: 0000006

If you do not see “issue received” messages in the subscribing rtiddsping application, there is likely

an issue with a firewall or with your network. Now, try running rtiddsping with the option -peer.
Specify the IP address of the machine where you are running the other rtiddsping application. This

will help you determine whether there is an issue with multicast (perhaps due to a router between your

machines). If communication occurs when you specify a peer, it is likely that there is no multicast

available between your machines. This means that you may need to specify initial peers when running

your applications.

For further troubleshooting steps, see this HOWTO article on the RTI community site: HOWTO Do Basic

Debugging for System-Level DDS.

7.3. Hands-On 1: Troubleshooting Discovery 110

https://community.rti.com/howto/do-basic-debugging-system-level-dds
https://community.rti.com/howto/do-basic-debugging-system-level-dds


RTI Connext Getting Started, Version 7.3.0

7.4 Hands-On 2: Start Applications in Different Domains

All of the applications we have built so far can take a parameter to start in a different domain than the default.

Go back to any one of the previous examples, and start one of the applications with -d 1. Notice that it
doesn’t communicate with applications that are not in the same domain.

For example:

1. Start two applications.

In the 6_content_filters/csharp/ directory, type the following:

$ dotnet run -p MonitoringCtrlApplication -- --domain-id 1

$ dotnet run -p TemperingApplication -- --domain-id 0

Notice that the two applications do not communicate, because they are in different domains.

2. Open Admin Console and see that there are two domains in your system: domain 0 and domain 1. You

can see that the ChocolateLotState and ChocolateTemperature Topics exist in both domains.

Click on domain 0.

You can see which DataWriters and DataReaders are communicating within domain 0. For example,

you can see there are no DataReaders and one DataWriter of the ChocolateTemperature Topic:

7.4. Hands-On 2: Start Applications in Different Domains 111



RTI Connext Getting Started, Version 7.3.0

7.5 Next Steps

Congratulations! You have learned the basics of discovery, domains, and initial peers. You have also learned

about one of the utilities that can help you troubleshoot discovery issues. For more details on discovery, see

Discovery, in the RTI Connext Core Libraries User’s Manual

7.5. Next Steps 112



Chapter 8

Next Steps

We invite you to explore further by referring to the wealth of available information and resources.

8.1 Documentation

After installing Connext, you’ll find the following resources in <NDDSHOME>/doc/manuals/
connext_dds_professional1 and at https://community.rti.com/documentation.

• If you are using Connext on an embedded platform, this document specifically addresses

these configurations:

– Addendum for Embedded Systems

• User’s Manual: Describes the features of the product and how to use them.

You’ll also find API Reference HTML Documentation at <NDDSHOME>/README.html and https://

community.rti.com/documentation. This extensively cross-referenced documentation, available for all sup-

ported programming languages, is your in-depth reference to every operation in Connext.

• C API Reference

• C++ Traditional API Reference

• C++ Modern API Reference

• C# API Reference

• Java API Reference

• Python API Reference

1 <NDDSHOME> refers to the main installation directory. See Paths Mentioned in Documentation.

113

https://community.rti.com/documentation
https://community.rti.com/documentation
https://community.rti.com/documentation


RTI Connext Getting Started, Version 7.3.0

8.2 Examples

In addition to the basic examples in your rti_workspace directory, you can find over 50 examples on

how to use specific Connext features in the rticonnextdds-examples section on GitHub. Examples include

asynchronous publication, compression, FlatData™, network capture, discovery (including builtin topics),

DynamicData, and many more.

8.3 Updates

This Getting Started Guidemay sometimes be updated online. Please see the RTI Community documentation

website (https://community.rti.com/documentation) for updates or language additions.

8.2. Examples 114

https://github.com/rticommunity/rticonnextdds-examples
https://community.rti.com/documentation


Chapter 9

Copyrights and Notices

© 2020-2024 Real-Time Innovations, Inc. All rights reserved. April 2024

Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Working

as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All other

trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form (in-

cluding electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time

Innovations, Inc. The software described in this document is furnished solely under and subject to RTI’s

standard terms and conditions available at https://www.rti.com/terms and in accordance with your License

Acknowledgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to the extent

otherwise accepted in writing by a corporate officer of RTI.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved by,

Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the

OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic software written by Eric

Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

115

https://www.rti.com/terms
http://www.openssl.org/
mailto:eay@cryptsoft.com
mailto:tjh@cryptsoft.com


RTI Connext Getting Started, Version 7.3.0

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,

Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding

maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.

Removedmeans that the item is discontinued or no longer supported. By specifying that an item is deprecated

in a release, RTI hereby provides customer notice that RTI reserves the right after one year from the date of

such release and, with or without further notice, to immediately terminate maintenance (including without

limitation, providing updates and upgrades) for the item, and no longer support the item, in a future release.

Technical Support Real-Time Innovations, Inc. 232 E. Java Drive Sunnyvale, CA 94089 Phone: (408)

990-7444 Email: support@rti.com Website: https://support.rti.com/

116

mailto:support@rti.com
https://support.rti.com/

	1 Before You Get Started
	1.1 What is Connext?
	1.2 Downloading Connext
	1.3 Installing Connext
	1.3.1 Installing a Host
	1.3.2 Installing additional packages with a GUI
	1.3.3 Installing additional packages from a Command Line
	1.3.4 Paths Mentioned in Documentation

	1.4 Setting Up a License
	1.4.1 Setting up a License for the C# API
	1.4.2 Setting up a License for the tools and other features

	1.5 Checking What is Installed
	1.6 Where Do I Get More Help?

	2 Publish/Subscribe
	2.1 Introduction to DataWriters, DataReaders, and Topics
	2.2 Hands-On 1: Your First DataWriter and DataReader
	2.2.1 Clone Repository
	2.2.2 Set Up Environment Variables
	2.2.3 Run Code Generator
	Overview of Generated and Example Code

	2.2.4 Open/Modify Publishing Application
	2.2.5 Open/Modify Subscribing Application
	Details of Receiving Data

	2.2.6 Compile Your Changes
	2.2.7 Run the Applications
	2.2.8 Taking It Further
	Start up Multiple Publishing or Subscribing Applications
	Publish/Subscribe across Multiple Machines
	Create Multiple DataWriters, DataReaders, and Topics in a Single Application


	2.3 Troubleshooting
	2.3.1 Why aren’t my applications communicating?
	2.3.2 How do I set my discovery peers?
	2.3.3 Why does the DataReader miss the first samples?
	2.3.4 Why do I get a “No source for License information” error?

	2.4 Hands-On 2: Viewing Your Data
	2.4.1 Open Admin Console
	2.4.2 Choose Automatically Join
	2.4.3 Switch to Data Visualization Perspective
	2.4.4 Open Topic Data Tab
	2.4.5 Subscribe to “HelloWorld Topic”
	2.4.6 Use Topic Data Tab
	2.4.7 Use Admin Console across Machines

	2.5 Next Steps

	3 Data Types
	3.1 Common IDL Types
	3.2 Introduction to Data Flows
	3.3 Hands-On 1: Streaming Data
	3.3.1 Run Code Generator
	3.3.2 Modify for Streaming Data
	3.3.3 Run the Applications

	3.4 Publishers, Subscribers, and DomainParticipants
	3.5 Hands-On 2: Add a Second DataWriter
	3.5.1 Add the New DataWriter
	3.5.2 Visualize the Data in rtiddsspy

	3.6 Next Steps

	4 Keys and Instances
	4.1 Why and How Do We Use Instances?
	4.1.1 Writing an Instance
	4.1.2 Reading an Instance
	4.1.3 Instance Lifecycle

	4.2 Example: Chocolate Factory
	4.2.1 Chocolate Factory: System Overview
	4.2.2 Chocolate Factory: Data Overview

	4.3 Hands-On 1: Build the Applications and View in Admin Console
	4.3.1 Build the Applications
	4.3.2 Run Multiple Copies of the Tempering Application
	4.3.3 View the Data in Admin Console

	4.4 Hands-On 2: Run Both Applications
	4.4.1 Run Monitoring and Tempering Applications
	4.4.2 Review the Tempering Application Code

	4.5 Hands-On 3: Dispose the ChocolateLotState
	4.5.1 Add Code to Tempering Application to Dispose ChocolateLotState
	4.5.2 Detect the Dispose in the Monitoring Application
	4.5.3 Run the Applications

	4.6 Hands-On 4: Debugging the System and Completing the Application
	4.6.1 Debug in Admin Console
	4.6.2 Add the ChocolateTemperature DataReader
	4.6.3 Run the Applications

	4.7 Next Steps

	5 Basic QoS
	5.1 Request-Offered QoS Policies
	5.2 Some Basic QoS Policies
	5.2.1 Reliability and History QoS Policies
	“Best Effort” Reliability
	“Reliable” Reliability + “Keep All” History
	“Reliable” Reliability + “Keep Last” History
	Summary

	5.2.2 Resource Limits QoS Policy
	5.2.3 Durability QoS Policy
	5.2.4 Deadline QoS Policy
	5.2.5 QoS Patterns Review

	5.3 QoS Profiles
	5.4 Hands-On 1: Update One QoS Profile in the Monitoring/Control Application
	5.5 Hands-On 2: Incompatible QoS in Admin Console
	5.6 Hands-On 3: Incompatible QoS Notification
	5.7 Hands-On 4: Using Correct QoS Profile
	5.8 Next Steps

	6 ContentFilteredTopics
	6.1 The Complete Chocolate Factory
	6.2 Hands-On 1: Update the ChocolateLotState DataReader with a ContentFilteredTopic
	6.3 Hands-On 2: Review the Temperature DataReader’s ContentFilteredTopic
	6.4 Hands-On 3: Review the Larger System in Admin Console

	7 Discovery
	7.1 Domains
	7.2 Initial Peers
	7.3 Hands-On 1: Troubleshooting Discovery
	7.4 Hands-On 2: Start Applications in Different Domains
	7.5 Next Steps

	8 Next Steps
	8.1 Documentation
	8.2 Examples
	8.3 Updates

	9 Copyrights and Notices

