
RTI Connext
Core Libraries
Getting Started Guide

Addendum for Embedded Systems

Version 7.3.0

© 2012-2022 Real-Time Innovations, Inc.
All rights reserved.

April 2024.

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase,
“Your Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time
Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of
Real-Time Innovations, Inc. The software described in this document is furnished solely under and sub-
ject to RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance
with your License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate
(MSC), except to the extent otherwise accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party
license terms and conditions, including open source license terms and conditions. Copies of applicable
third-party licenses and notices are located at community.rti.com/documentation. IT IS YOUR
RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES
WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regard-
ing maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is
deprecated in a release, RTI hereby provides customer notice that RTI reserves the right after one year
from the date of such release and, with or without further notice, to immediately terminate maintenance
(including without limitation, providing updates and upgrades) for the item, and no longer support the
item, in a future release.

https://www.rti.com/terms
https://community.rti.com/documentation

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Addendum for Embedded Platforms 1
Chapter 2 Getting Started on QNX Embedded Systems

2.1 Building and Running a Hello World Example 2
Chapter 3 Getting Started on VxWorks Systems

3.1 Building the VSB 6
3.2 Building the Kernel 8
3.3 Building and Running a Hello World Example 12

3.3.1 Generate Example Code and Makefile with rtiddsgen 12
3.3.2 Building and Running an Application as a Kernel Task 13
3.3.3 Building and Running an Application as a Real-Time Process 23

3.4 Using DDS Ping and Spy 28

iv

Chapter 1 Addendum for Embedded
Platforms

In addition to enterprise-class platforms like Microsoft Windows and Linux, RTI® Connext®
supports a wide range of embedded platforms. This document is especially for users of those
platforms. It describes how to configure some of the most popular embedded systems for use
with Connext and to get up and running as quickly as possible. The code examples covered in
this document can be generated for your platform(s) using RTI Code Generator (rtiddsgen),
which accompanies Connext.

This document assumes at least minimal knowledge with the platforms it describes and is not a
substitute for the documentation from the vendors of those platforms. For further instruction on
the general operation of your embedded system, please consult the product documentation for
your board and operating system.

1

Chapter 2 Getting Started on QNX
Embedded Systems

This document provides instructions on building and running Connext applications on embed-
ded systems such as QNX® systems. It will guide you through the process of generating, com-
piling, and running a Hello World application on an embedded QNX system by expanding on
Hands-On 1 of Introduction to Publish/Subscribe, in the RTI Connext Getting Started Guide.
Please read the following alongside that section.

In the following steps:

l All commands must be executed in a command shell that has all the required environment
variables. For details, see Set Up Environment Variables (rtisetenv), in "Hands-On 1" of
Introduction to Publish/Subscribe, in the RTI Connext Getting Started Guide.

l You need to know the name of your target architecture (look in your NDDSHOME/lib
directory). Use it in place of <architecture> in the example commands. For example, your
architecture might be ‘armv8QNX7.1qcc_gpp8.3.0’.

l We assume that you have make installed. If you have make, you can use the generated
makefile to compile. If you do not have make, use your normal compilation process.
(Note: the generated makefile assumes the correct version of the compiler is already in
your path and that NDDSHOME is set.)

2.1 Building and Running a Hello World Example

This section describes the basic steps for building and running an rtiddsgen-generated example
on an embedded target such as QNX.

1. Create a directory to work in. In this example, we use a directory called myhello.

2. In the myhello directory, create a file called HelloWorld.idl that contains a user-defined
data type:

2

../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf
../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf

2.1 Building and Running a Hello World Example

3

struct HelloWorld {
string<128> msg;

};

3. Use the rtiddsgen utility to generate sample code and a makefile as shown below. Substitute
<architecture> with your target architecture string, such as armv8QNX7.1qcc_gpp8.3.0.

For C++:
rtiddsgen -language C++ -example <architecture> HelloWorld.idl

Edit the example code to add this line:
sprintf(instance->msg, "Hello World! (%d)", count);

It should look like this:
for (count=0; (sample_count == 0) || (count < sample_count); ++count) {

printf("Writing HelloWorld, count %d\n", count);

/* Modify the data to be written here */
sprintf(instance->msg, "Hello World! (%d)", count);

/* Write data */
retcode = HelloWorldDataWriter_write(

HelloWorld_writer, instance, &instance_handle);
if (retcode != DDS_RETCODE_OK) {

fprintf(stderr, "write error %d\n", retcode);
}

NDDS_Utility_sleep(&send_period);
}

4. With the NDDSHOME environment variable set, build the Publisher and Subscriber modules
using the generated makefile.

make -f makefile_HelloWorld_<architecture>

For details on setting up the NDDSHOME environment variable, see Set Up Environment Vari-
ables (rtisetenv), in "Hands-On 1" of Introduction to Publish/Subscribe, in the RTI Connext Get-
ting Started Guide.

After compiling, find the application executables in myhello/objs/<architecture>.
5. Connect to the QNX target (using ssh, for example) and start the subscriber application, Hel-

loWorld_subscriber.

HelloWorld_subscriber

In this shell, you should see that the subscriber is waking up every 4 seconds to print a message.
Here is a C++ example:

../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf
../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf

2.1 Building and Running a Hello World Example

No data after 1 second
No data after 1 second
No data after 1 second

6. Connect to the QNX target and start the publisher application, HelloWorld_publisher.

HelloWorld_publisher

In this second (publishing) shell, you should see:

Writing HelloWorld, count 0
Writing HelloWorld, count 1
Writing HelloWorld, count 2

7. Look back in the first (subscribing) shell. You should see that the subscriber is now receiving
messages from the publisher.

For example, in C++:
Received data

msg: "Hello World! (0)"
Received data

msg: "Hello World! (1)"
Received data

msg: "Hello World! (2)"

4

Chapter 3 Getting Started on VxWorks
Systems

This section provides simple instructions to configure a kernel and run Connext applications on
systems based on VxWorks 7, including more recent releases with calendar-based version num-
bers.

Please refer to the documentation provided by Wind River Systems for more information on this
operating system.

This chapter will guide you through the process of generating, compiling, and running a Hello
World application on a VxWorks 7 system by expanding on the VxWorks section of the RTI
Connext Core Libraries Platform Notes; please read the following alongside that section. This
chapter uses VxWorks 7 as an example. The steps for newer releases should be similar.

The first two sections describe how to build a VxWorks Source Build (VSB) and the kernel:

l 3.1 Building the VSB on the next page
l 3.2 Building the Kernel on page 8

The next section guides you through the steps to generate, modify, build, and run the provided
example HelloWorld application on a VxWorks target:

l 3.3 Building and Running a Hello World Example on page 12

For tips on using RTI DDS Ping and Spy, see 3.4 Using DDS Ping and Spy on page 28.

5

3.1 Building the VSB

6

3.1 Building the VSB

This section explains how to build a VxWorks Source Build (VSB), which is required in order to build
your own kernels and applications with VxWorks 7.

The following steps use the VSB defaults. For further information and special customizations, please
refer to Wind River’s documentation:
https://docs.windriver.com/bundle/Configuration_and_Build_Guide_Edition_9_1/page/1597954.html

Before you start, you should be familiar with your hardware, as you will need to select a BSP and other
hardware-specific settings. This document uses an Intel BSP as an example.

1. Launch Workbench and select File, New, Wind River Workbench Project.

2. For the Build type, select VxWorks Source Build.

3. Set your project name and click Next.

4. Configure your VSB. Set your BSP, the CPU, addressing mode, compiler, SMP, etc., according
to your platform. When you are done, click Finish.

https://docs.windriver.com/bundle/Configuration_and_Build_Guide_Edition_9_1/page/1597954.html

3.1 Building the VSB

5. After you finish, build the VSB as you would any other project.

7

3.2 Building the Kernel

8

3.2 Building the Kernel

This section explains how to build a kernel capable of loading Connext libraries. Connext libraries
require that certain components are added to the default list in the VxWorks kernel, as outlined in the
following steps.

Before you start, you should be familiar with building and deploying a default working kernel on your
target.

Note: The following steps might vary slightly depending on your chosen version of VxWorks.

1. Launch Workbench and select File, New, Wind River Workbench Project.

2. When prompted for a Build type, select VxWorks Source Build (this may be Kernel Image or
VxWorks Image depending on your version of VxWorks); click Next.

3.2 Building the Kernel

3. Give your project a name; click Next.

4. In Project Setup:
a. For the Based on field, choose a source build project.

b. For the Project, choose the VSB you created and built in 3.1 Building the VSB on page 6.
The BSP, SMP support, and other options will be correctly populated from the VSB con-
figuration.

c. For the Tool chain option, select LLVM.

d. In Options, select SMP support in kernel if your BSP supports it and you want to enable
symmetric multi-processing capability in the kernel.

e. Select IPv6 enabled kernel libraries if your architecture supports IPv6 (See the VxWorks
section of the RTI Connext Core Libraries Platform Notes to check if your architecture sup-
ports IPv6); click Next.

9

3.2 Building the Kernel

10

3.2 Building the Kernel

5. Optionally, select a configuration profile from the drop-down menu.

6. Leave everything else at its default setting. Click Finish.

Your project will be created at this time.
7. From the Project Explorer, open Kernel Configuration.

11

3.3 Building and Running a Hello World Example

12

8. Add Operating System Components, Kernel Components, _thread variables support.

9. Make sure you have the following components enabled: INCLUDE_TIMESTAMP, INCLUDE_
SHARED_DATA, INCLUDE_TLS.

Note: If you are unwilling or unable to build shared-memory support into your kernel, see the
VxWorks section of the RTI Connext Core Libraries Platform Notes.

10. If you plan to use any Connext C++ API, you will need to include the FOLDER_CPLUS section
in your kernel (the underlying kernel components may vary depending on the VxWorks version).
This includes Traditional and Modern C++ APIs and Request/Reply C++ APIs.

11. If you want support for RTP shared libraries, you need to add the component INCLUDE_SHL.
Note that shared libraries are not supported in all VxWorks architectures.

12. If you plan on accessing your target via the network, you may need the following modules:
l Telnet Server (under Network Components, Applications, Telnet Components)

This will allow you to telnet into the target.
l NFS client all (under Operating System Components, IO System Components, NFS com-
ponents)

This will allow you to see networked file systems from the target (contact your system
administrator to find out if you have them set up).

13. If you are running applications in RTP mode, you may increase Operating System components,
Real Time Processes components, Number of entries in an RTP fd table from the default
value of 20 to a higher value such as 256. This will enable you to open more sockets from an
RTP application.

14. Compile the Kernel by right-clicking the project and selecting Build Project.

The Kernel and associated symbol file will be found in <your project directory>/default/.

3.3 Building and Running a Hello World Example

This section will guide you through the steps required to successfully run an rtiddsgen-generated
example application on a VxWorks 7 target using kernel mode or RTP mode.

3.3.1 Generate Example Code and Makefile with rtiddsgen

To create the example applications:

1. Set up the environment on your development machine: set the NDDSHOME environment vari-
able and update your PATH as described in Set Up Environment Variables (rtisetenv), in
"Hands-On 1" of Introduction to Publish/Subscribe, in the RTI Connext Getting Started Guide.

../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf

3.3.2 Building and Running an Application as a Kernel Task

2. Create a directory to work in. In this example, we use a directory called myhello.

3. In the myhello directory, create a file called HelloWorld.idl that contains a user-defined data
type:

struct HelloWorld
{

string<128> msg;
};

4. Use RTI Code Generator (rtiddsgen) to generate sample code and a makefile. Choose either C or
C++.

Note: The architecture names for Kernel Mode and RTP Mode are different.

For C:
rtiddsgen -language C -example <architecture> HelloWorld.idl

For C++:
rtiddsgen -language C++ -example <architecture> HelloWorld.idl

Edit the generated example code as described in Hands-On 1 of Introduction to Pub-
lish/Subscribe, in the RTI Connext Getting Started Guide.

3.3.2 Building and Running an Application as a Kernel Task

There are two ways to build and run your Connext application:

l 3.3.2.1 Using the Command Line below
l 3.3.2.2 Using Workbench on the next page

3.3.2.1 Using the Command Line

1. Set up your environment with the wrenv.sh script or wrenv.bat batch file in the VxWorks base
directory. Execute the script with the -p parameter. For example:

wrenv.sh -p vxworks

2. Set the NDDSHOME environment variable as described in Set Up Environment Variables (rtis-
etenv), in "Hands-On 1" of Introduction to Publish/Subscribe, in the RTI Connext Getting Star-
ted Guide.

3. Build the Publisher and Subscriber modules using the generated makefile. You may have to
modify the HOST_TYPE, compiler and linker paths to match your development setup.

4. To use dynamic linking, remove the Connext libraries from the link objects in the generated
makefile.

13

../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf
../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf
../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf

3.3.2 Building and Running an Application as a Kernel Task

14

(Note: steps 5-7 can be replaced by establishing a telnet connection to the VxWorks target. In that case,
Workbench does not need to be used and both the Host Shell and Target Console will be redirected to
the telnet connection. Once in the C interpreter (you will see the prompt '->' in the shell) you can type
cmd and then help for more information on how to load and run applications on your target.)

5. Launch Workbench.

6. Make sure your target is running VxWorks and is added to the Remote Systems panel. (To add a
new target, click the New Connection button on the Remote System panel, selectWind River
VxWorks 7 Target Server Connection, click Next, enter the Target name or address, and click
Finish).

7. Connect to the target and open a host shell by right-clicking the connected target in the Target
Tools sub-menu.

8. In the shell:

If you are using static linking: Load the .so file produced by the build:
>cd "directory"
>ld 0 < HelloWorld_subscriber.so

(Where ‘directory’ refers to the location of the generated object files.) If you are using dynamic
linking: load the libraries first, in this order: libnddscore.so, libnddsc.so, libnddscpp.so; then
load the .so file produced by the build.

Note: If you are statically linking, and you try to load both the publisher and subscriber into the
kernel, you will run into duplication of symbols due to the Connext libraries being statically
linked in both modules. To overcome that situation, see the "Notes for VxWorks 7 Platforms" sec-
tion in the RTI Connext Core Libraries Platform Notes, for an explanation about how to create a
single Downloadable Kernel Module (DKM) containing both applications.

9. Run the run_subscriber_application or run_publisher_application function. For example:

>taskSpawn "sub", 255, <floating_point_option>, 150000, run_subscriber_application,
38, 10

Where <floating_point_option> is a numeric value that varies depending on the hardware. See
Enabling Floating Point Coprocessor in Kernel Tasks, in the VxWorks chapter of the RTI Con-
next Core Libraries Platform Notes.

In this example, 38 is the domain ID and 10 is the number of samples.

3.3.2.2 Using Workbench

Note: The following steps might vary slightly depending on your chosen version of VxWorks.

3.3.2 Building and Running an Application as a Kernel Task

1. Start Workbench.

2. Select File, New, Wind River Workbench Project.

3. Select the desired Target operating system; click Next.

4. When prompted to choose a Build type, select Downloadable Kernel Module; click Next.

15

3.3.2 Building and Running an Application as a Kernel Task

16

5. Give your project a name; click Next.

3.3.2 Building and Running an Application as a Kernel Task

6. Leave everything else at its default setting; click Finish.

Your project will be created at this time.

7. Copy the source and header files generated by rtiddsgen in 3.3.1 Generate Example Code and
Makefile with rtiddsgen on page 12 into the project directory.

8. View the added files by right-clicking on the project in Project Explorer, then selecting Refresh
to see the files.

17

3.3.2 Building and Running an Application as a Kernel Task

18

9. Open the project Properties by right-clicking on the project in Project Explorer and selecting
Properties.

10. In the dialog box that appears, select Build Properties in the navigation pane on the left.

11. In the Build Support and Specs tab, select the desired build spec from the Active build spec
drop-down menu; click Apply to save the changes.

3.3.2 Building and Running an Application as a Kernel Task

12. In the Build Macros or Defines tab, add -DRTI_VXWORKS to DEFINES in the Build macro
definitions; click Apply to save the changes.

19

3.3.2 Building and Running an Application as a Kernel Task

20

13. In the Variables tab, add to LIBPATH:

-L/(NDDSHOME)/lib/<architecture>

If you are using static linking, add to LIBS:

-lnddscppz -lnddscz -lnddscorez (in that order)

If you are using dynamic linking, add to LIBS:

-lnddscpp -lnddsc -lnddscore (in that order)

Click Apply to save the changes.

3.3.2 Building and Running an Application as a Kernel Task

14. In the Build Paths or Paths tab, add both of these:

-I$(NDDSHOME)/include

-I$(NDDSHOME)/include/ndds

Click Apply to save the changes.

21

3.3.2 Building and Running an Application as a Kernel Task

22

15. Click OK to exit the Properties menu.

16. Build the project by right-clicking on the project in Project Explorer, then selecting Build Pro-
ject.

3.3.3 Building and Running an Application as a Real-Time Process

17. Run the application as described starting in Step 5 in the 'Using the Command Line' section,
except load HelloWorld.out instead of HelloWorld_subscriber.so when you get to Step 8.

3.3.3 Building and Running an Application as a Real-Time Process

There are two ways to build and run your Connext RTP application:

l 3.3.3.1 Using the Command Line below
l 3.3.3.2 Using Workbench on page 25

3.3.3.1 Using the Command Line

1. Generate the source files and the makefile with RTI Code Generator (rtiddsgen).

Note: The architecture names for Kernel Mode and RTP Mode are different.

Please refer to the RTI Code Generator User’s Manual for more information on how to use
rtiddsgen.

23

3.3.3 Building and Running an Application as a Real-Time Process

24

2. Set up your environment with the wrenv.sh script or the wrenv.bat batch file in the VxWorks
base directory. Execute the script with the -p parameter. For example:

wrenv.sh -p vxworks

3. Set the NDDSHOME environment variable as described in Set Up Environment Variables (rtis-
etenv), in "Hands-On 1" of Introduction to Publish/Subscribe, in the RTI Connext Getting Star-
ted Guide.

4. Build the Publisher and Subscriber modules using the generated makefile. You may need to
modify the HOST_TYPE, compiler and linker paths to match your development setup.

Notes:
l Steps 5-12 can be replaced by establishing a telnet connection to the VxWorks tar-
get. In that case, Workbench does not need to be used and both the Host Shell and
Target Console will be redirected to the telnet connection. Once in the C interpreter
(you will see a prompt '->' in the shell) you can type cmd and then help for more
information on how to load and run applications on your target.)

Using rtpSp:
telnet raytheon-guy
cd " <PROJECT ROOT FOLDER>"
rtpSp "objs/<arch>/Foo_subscriber.vxe -domainId XX"

Or using rtp exec:
telnet raytheon-guy
cd " <PROJECT ROOT FOLDER>"
rtp exec objs/<arch>/Foo_subscriber.vxe – -domainId XX

l If you want to dynamically link your RTP to the RTI libraries, make the following
modifications the generated makefile:

LIBS = -L$(NDDSHOME)/lib/<architecture> -non-static -lnddscpp \-lnddsc -
lnddscore $(syslibs_<architecture>)

5. Add to the LD_LIBRARY_PATH environment variable the path to your RTI libraries as well as
the path to libc.so.1 of your VxWorks installation to launch your RTP successfully.

6. Launch Workbench.

7. Make sure your target is running VxWorks.

8. Connect to the target with the target manager and open a host shell and a Target Console Tool to
look at the output. Both are found by right-clicking the connected target in the Target Tools sub-
menu.

9. Right-click on your target in the Target Manager window, then select Run, Run RTP on Target.

../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf
../../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf

3.3.3 Building and Running an Application as a Real-Time Process

10. Set the Exec Path on Target to the HelloWorld_subscriber.vxe or the HelloWorld_pub-
lisher.vxe file created by the build.

11. Set the arguments (domain ID and number of samples, using -d <domain ID> and -s <number of
samples>).

A Stack size of 0x100000 should be sufficient. If your application doesn't run, try increasing this
value.

12. Click Run.

3.3.3.2 Using Workbench

Note: The following steps might vary slightly depending on your chosen version of VxWorks.

1. Start Workbench.

2. Select File, New, Wind River Workbench Project.

3. Select the desired Target Operating System; click Next.

25

3.3.3 Building and Running an Application as a Real-Time Process

26

4. When prompted to choose a Build Type, select Real Time Process Application; click Next.

5. Give your project a name; click Next.

6. Leave everything else at its default setting; click Finish.

Your project will be created at this time.
7. Copy the source and header files generated by rtiddsgen in 3.3.1 Generate Example Code and

Makefile with rtiddsgen on page 12 into the project directory. There can only be one main() in
your project, so you must choose either a subscriber or a publisher. If you want to run both, you
will need to create two separate projects.

8. View the added files by right-clicking on the project in Project Explorer, then selecting Refresh
to see the files.

9. Open the project Properties by right-clicking on the project in Project Explorer and selecting
Properties.

10. In the dialog box that appears, select Build Properties in the navigation pane on the left.

11. In the Build Support and Specs tab, select the desired build spec from the Active build spec
drop-down menu; click Apply to save the changes.

12. In the Build Macros or Defines tab, add the following to DEFINES in the Build macro defin-
itions:

3.3.3 Building and Running an Application as a Real-Time Process

-DRTI_VXWORKS

-DRTI_STATIC

-DRTI_RTP

13. In the Variables tab, add to LIBPATH:

-L/(NDDSHOME)/lib/<architecture>

If you are using static linking, add to LIBS:

-lnddscppz -lnddscz -lnddscorez (in that order)

If you are using dynamic linking, add to LIBS:

-lnddscpp -lnddsc -lnddscore (in that order)

Click Apply to save the changes.
14. In the Build Paths or Paths tab, add:

-I$(NDDSHOME)/include

-I$(NDDSHOME)/include/ndds

Click Apply to save the changes.

27

3.4 Using DDS Ping and Spy

28

15. Click OK to exit the Properties menu.

16. Build the project by right-clicking on the project in Project Explorer, then selecting Build Pro-
ject.

17. Run the application as described starting in Step 5 in the Command Line section above.

3.4 Using DDS Ping and Spy

This section describes special usage notes when running the RTI DDS Ping and Spy command-line util-
ities on VxWorks systems. For complete details on using both utilities, see the API Reference
HTML documentation (under Modules, Programming Tools).

RTI DDS Ping (rtiddsping) tests the connectivity of your system. It uses RTI Connext to send and
receive "Ping" messages to other rtiddsping applications running on the same or different computers.

RTI DDS Spy (rtiddsspy) shows you what is being published and subscribed to.

When running these utilities on VxWorks systems in RTP mode (as Real-Time processes):

3.4 Using DDS Ping and Spy

l The utilities must be executed in a command prompt (running the "cmd" command in the C-
shell)

l The utilities are statically linked so they don't require any LD_LIBRARY_PATH setup.
l The name of the utilities are suffixed with a "z" to indicate that they are statically linked (i.e.
DDS Ping is called rtiddspingz.vxe).

l Each executable can be run as in any Linux OS (e.g., rtiddspingz.vxe -help).

When running these utilities on VxWorks systems in kernel mode (as DKMs):

l The modules libnddscore.so, libnddsc.so, and libnddscpp.so must first be loaded.
l After loading the Connext modules, the utility module must be loaded in order to run it (i.e.,
rtiddsping.so).

l All the command-line options must be passed embedded in a single string (see examples below).
l The command must be typed in the VxWorks shell (either an rlogin shell, a target-server shell, or
the serial line prompt).

The examples below illustrate how to run the utilities in Kernel mode. The string "vxworks prompt>"
represents the prompt that the shell prints and is not part of the command that must be typed.

Ping:
vxworks prompt> rtiddsping "-domainId 3 -publisher -numSamples 100"
vxworks prompt> rtiddsping "-domainId 5 -subscriber -timeout 20"
vxworks prompt> rtiddsping "-help"

Spy:
vxworks prompt> rtiddsspy "-domainId 3 -topicRegex Alarm*"
vxworks prompt> rtiddsspy "-help"

Or if the stack of the shell is not large enough, use "taskSpawn" to avoid overflowing the stack (each
utility requires ~25 kB of stack).

Ping:
vxworks prompt> taskSpawn "rtiddsping", 100, <floating_point_option>, 50000, rtiddsping, \

"-domainId 3 -publisher -numSamples 100"
vxworks prompt> taskSpawn "rtiddsping", 100, <floating_point_option>, 50000, rtiddsping, \

"-domainId 5 -subscriber -timeout 20"
vxworks prompt> taskSpawn "rtiddsping", 100, <floating_point_option>, 50000, rtiddsping, "-
help"

29

3.4 Using DDS Ping and Spy

30

Spy:
vxworks prompt> taskSpawn "rtiddsspy", 100, <floating_point_option>, 50000, rtiddsspy, \

"-domainId 3 -topicRegex Alarm*"
vxworks prompt> taskSpawn "rtiddsspy", 100, <floating_point_option>, 50000, rtiddsspy, "-
help"

Where <floating_point_option> is a numeric value that varies depending on the hardware. See Enabling
Floating Point Coprocessor in Kernel Tasks, in the VxWorks chapter of the RTI Connext Core Librar-
ies Platform Notes.

	Chapter 1 Addendum for Embedded Platforms
	Chapter 2 Getting Started on QNX Embedded Systems
	2.1 Building and Running a Hello World Example

	Chapter 3 Getting Started on VxWorks Systems
	3.1 Building the VSB
	3.2 Building the Kernel
	3.3 Building and Running a Hello World Example
	3.3.1 Generate Example Code and Makefile with rtiddsgen
	3.3.2 Building and Running an Application as a Kernel Task
	3.3.3 Building and Running an Application as a Real-Time Process

	3.4 Using DDS Ping and Spy

