
RTI Connext
Core Libraries

Platform Notes

Version 7.3.0



© 2003-2024 Real-Time Innovations, Inc.
All rights reserved.

April 2024.

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase,
“Your Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time
Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of
Real-Time Innovations, Inc. The software described in this document is furnished solely under and sub-
ject to RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance
with your License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate
(MSC), except to the extent otherwise accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party
license terms and conditions, including open source license terms and conditions. Copies of applicable
third-party licenses and notices are located at community.rti.com/documentation. IT IS YOUR
RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES
WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regard-
ing maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is
deprecated in a release, RTI hereby provides customer notice that RTI reserves the right after one year
from the date of such release and, with or without further notice, to immediately terminate maintenance
(including without limitation, providing updates and upgrades) for the item, and no longer support the
item, in a future release.

https://www.rti.com/terms
https://community.rti.com/documentation


Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/


Contents
Chapter 1 Introduction

1.1 Paths Mentioned in Documentation 3
Chapter 2 Building Applications—Notes for All Platforms

2.1 Running on a Computer Not Connected to a Network 6
2.2 Connext Header Files — All Platforms 6
2.3 Choosing the Right Libraries 7

2.3.1 Required Libraries 7
2.3.2 Mixing Static and Dynamic Libraries is not Supported 7

2.4 Building for Java Platforms 8
2.5 Building with CMake 8

Chapter 3 AIX Platforms

3.1 Building Applications for AIX Platforms 10
3.1.1 Additional Libraries for Other Features 12
3.1.2 How the Connext Libraries were Built 13

3.2 Running User Applications 14
3.3 Multicast Support 14
3.4 Transports 14

3.4.1 Notes for Using Shared Memory 14
3.5 Unsupported Features 15
3.6 Thread Configuration 15

3.6.1 Changing Thread Priority 17
Chapter 4 Android Platforms

4.1 Building Applications for Android Platforms 18
4.1.1 Required Libraries and Compiler Flags 18
4.1.2 Additional Libraries for Other Features 20
4.1.3 Target Configuration 22

iv



v

4.1.4 ‘Release’ and ‘Debug’ Terminology 22
4.1.5 How the Connext Libraries were Built 22

4.2 Running Your Applications 23
4.3 Support for Modern C++ API 24
4.4 Multicast Support 24
4.5 Transports 24
4.6 Unsupported Features 24
4.7 Monotonic Clock Support 25
4.8 Thread Configuration 25
4.9 Support for Remote Procedure Calls (RPCs) 26
4.10 Third-Party Software Versions used for Android 12 Development and Testing 27

Chapter 5 Linux Platforms

5.1 Building Applications for Linux Platforms 30
5.1.1 Required Libraries and Compiler Flags 30
5.1.2 Additional Libraries for Other Features 33
5.1.3 Linux Compatibility and Determining Factors 36
5.1.4 How the Connext Libraries were Built 38

5.2 Running Your Applications 41
5.3 Support for the Modern C++ API 41
5.4 Support for the .NET (C#) API 41
5.5 Support for the Python API 41
5.6 Multicast Support 42
5.7 Transports 42

5.7.1 Shared Memory Support 42
5.8 Limitations of FACE Architectures 42
5.9 Monotonic Clock Support 43
5.10 Thread Configuration 43

5.10.1 Support for Controlling CPU Core Affinity for RTI Threads 44
5.10.2 Using REALTIME_PRIORITY 45

5.11 Durable Writer History and Durable Reader State Features 46
5.12 Support for 'Find Package' CMake Script 46
5.13 Backtrace Support 46
5.14 Support for Remote Procedure Calls (RPC) 47

Chapter 6 macOS Platforms

6.1 Building Applications for macOS Platforms 48
6.1.1 Additional Libraries for Other Features 51



6.1.2 How the Connext Libraries were Built 54
6.2 Running User Applications 55
6.3 Support for the Modern C++ API 55
6.4 Support for the .NET (C#) API 55
6.5 Support for the Python API 56
6.6 Multicast Support 56
6.7 Transports 56
6.8 Unsupported Features 56
6.9 System Integrity Protection (SIP) 56

6.9.1 SIP and Java Applications 56
6.9.2 SIP and Connext Tools, Infrastructure Services, and Utilities 58

6.10 Thread Configuration 58
6.11 Support for 'Find Package' CMake Script 59
6.12 Backtrace Support 59
6.13 Resolving NDDSUtility_sleep() Issues 60
6.14 Support for Remote Procedure Calls (RPC) 60

Chapter 7 QNX Platforms

7.1 Building Applications for QNX Platforms 62
7.1.1 Required Change for Building with C++ Libraries 64
7.1.2 Additional Libraries for Other Features 64
7.1.3 How the Connext Libraries were Built 67

7.2 Running Your Application 70
7.3 Support for Modern C++ API 70
7.4 Multicast Support 71
7.5 Transports 71
7.6 Unsupported Features 71
7.7 Monotonic Clock Support 72
7.8 Thread Configuration 72

7.8.1 Support for Controlling CPU Core Affinity for RTI Threads 73
7.9 Support for 'Find Package' CMake Script 73
7.10 Support for Remote Procedure Calls (RPC) 73
7.11 Restarting Applications on QNX Systems 74

Chapter 8 VxWorks Platforms

8.1 Building Applications for VxWorks Platforms 75
8.1.1 Libraries for RTP Mode on VxWorks Systems 76
8.1.2 Required Libraries and Compiler Flags 77

vi



vii

8.1.3 Additional Libraries for Other Features 79
8.1.4 How the Connext Libraries were Built 81

8.2 Running User Applications 84
8.3 Known Defects 84
8.4 Increasing the Stack Size 84
8.5 Enabling Floating Point Coprocessor in Kernel Tasks 84
8.6 Downloadable Kernel Modules (DKM) for Kernel Mode on VxWorks Systems 85
8.7 Requirement for Restarting Applications 85
8.8 Support for Modern C++ API and Remote Procedure Calls (RPCs) 86
8.9 Multicast Support 86
8.10 Transports 86

8.10.1 Shared-Memory Communication between Applications Running in Kernel Mode and RTP Requires Expli-
citly Set Participant ID 87

8.10.2 How To Run Connext Libraries in Kernels Built without Shared Memory 87
8.11 Unsupported Features 88
8.12 Monotonic Clock Support 88
8.13 Use of Real-Time Clock 88
8.14 Thread Configuration 88

Chapter 9 Windows Platforms

9.1 Building Applications for Windows Platforms 92
9.2 Configuring the Build of Your Connext Application 92

9.2.1 Additional Libraries for Other Features 95
9.2.2 How the Connext Libraries were Built 98
9.2.3 Location of OpenSSL Libraries 100

9.3 Running Your Applications 100
9.4 Support for the Modern C++ API 101
9.5 Support for the .NET (C#) API 102
9.6 Support for the Python API 102
9.7 Multicast Support 102
9.8 Transports 102
9.9 Unsupported Features 102
9.10 Monotonic Clock Support 103
9.11 Thread Configuration 103
9.12 Support for 'Find Package' CMake Script 104
9.13 Durable Writer History and Durable Reader State Features 105
9.14 Backtrace Support 105
9.15 Support for Remote Procedure Calls (RPC) 105



9.16 Domain ID Support 105

viii



Chapter 1 Introduction
This document provides platform-specific instructions that you will need to build and run RTI®
Connext® applications.

For each supported OS, this document describes:

l Supported combinations of OS versions, CPUs, and compilers
l Building your application

l Required Connext and system libraries
l Required compiler and linker flags
l Additional required libraries when using features such as Distributed Logger, Mon-
itoring, Real-Time WAN Transport, TCP and TLS Support, and Zero Copy Trans-
fer Over Shared Memory

l Details on how the Connext libraries were built

l Running your application
l Whether or not certain features, APIs, and transports are supported, such as:

l Modern C++, .NET, and Python APIs
l Multicast
l Transports
l Monotonic clock
l Durable Writer History and Durable Reader State
l 'Find Package' CMake script
l Backtraces
l Remote Procedure Calls

1



Chapter 1 Introduction

2

l Thread configuration
l Other platform-specific information

To see all supported platforms, refer to the table of Supported Platforms tables in the RTI Connext
Core Libraries Release Notes. These tables show which RTI products are supported for each platform.

../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf
../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf


1.1 Paths Mentioned in Documentation

1.1 Paths Mentioned in Documentation

The documentation refers to:

l <NDDSHOME>

This refers to the installation directory for RTI® Connext®. The default installation paths are:
l macOS® systems:
/Applications/rti_connext_dds-7.3.0

l Linux systems, non-root user:
/home/<your user name>/rti_connext_dds-7.3.0

l Linux systems, root user:
/opt/rti_connext_dds-7.3.0

l Windows® systems, user without Administrator privileges:
<your home directory>\rti_connext_dds-7.3.0

l Windows systems, user with Administrator privileges:
C:\Program Files\rti_connext_dds-7.3.0

You may also see $NDDSHOME or%NDDSHOME%, which refers to an environment vari-
able set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users:When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quotation
marks. For example:
“C:\Program Files\rti_connext_dds-7.3.0\bin\rtiddsgen”

Or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

l <path to examples>

By default, examples are copied into your home directory the first time you run RTI Launcher or
any script in <NDDSHOME>/bin. This document refers to the location of the copied examples
as <path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:
l macOS systems: /Users/<your user name>/rti_workspace/7.3.0/examples
l Linux systems: /home/<your user name>/rti_workspace/7.3.0/examples

3



1.1 Paths Mentioned in Documentation

4

l Windows systems: <your Windows documents folder>\rti_workspace\7.3.0\examples

Where 'your Windows documents folder' depends on your version of Windows. For
example, on Windows 10, the folder is C:\Users\<your user name>\Documents.

Note: You can specify a different location for rti_workspace. You can also specify that you do
not want the examples copied to the workspace. For details, see Controlling Location for
RTI Workspace and Copying of Examples in the RTI Connext Installation Guide.



Chapter 2 Building Applications—Notes for
All Platforms

This chapter provides general information on how to build Connext applications, for all plat-
forms. Details such as exactly which libraries to link, compiler flags, etc., are in the platform-
specific chapters in this document.

l First, make sure you've installed Connext 7.x.y. For installation instructions, see the RTI
Connext Installation Guide.

l Make sure the NDDSHOME environment variable is set to the root directory of the Con-
next installation (such as /home/user/rti_connext_dds-7.x.y or C:\Program Files\rti_
connext_dds-7.x.y). To confirm, type this at a command prompt:
echo %NDDSHOME%

l To become familiar with Connext and the build process, follow the hands-on exercises in
the RTI Connext Getting Started Guide.

l Review this chapter, which applies to all platforms.
l Build and test your applications on a Linux or Windows platform. They are both good
starting points. See the instructions in either:

l Chapter 5 Linux Platforms on page 28
l Chapter 9 Windows Platforms on page 91

l Finally, build and run your applications on other platforms as needed. See the instructions
in the other platform-specific chapters in this document.

To build a non-Java application using Connext, you must specify:

l NDDSHOME environment variable
l Connext header files

5

../installation_guide/RTI_ConnextDDS_InstallationGuide.pdf
../installation_guide/RTI_ConnextDDS_InstallationGuide.pdf
../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf


2.1 Running on a Computer Not Connected to a Network

6

l Connext libraries to link
l Compatible system libraries
l Compiler options

To build Java applications using Connext, you must specify:

l NDDSHOME environment variable
l Connext JAR files
l Compatible Java virtual machine (JVM)
l Compiler options

2.1 Running on a Computer Not Connected to a Network

If you want to run two or more Connext applications on the same computer, and that computer is not
connected to a network, you must set the environment variable NDDS_DISCOVERY_PEERS so that it
will only use shared memory. For example:
set NDDS_DISCOVERY_PEERS=4@shmem://

(The number 4 is only an example. This is the maximum participant ID.)

2.2 Connext Header Files — All Platforms

You must include the appropriate Connext header files, As you will see in Table 2.1 Header Files to
Include for Connext (All Platforms), the header files that need to be included depend on the API being
used.

Connext API Header Files

C #include “ndds/ndds_c.h”

C++ #include “ndds/ndds_cpp.h”

C++/CLI, C#, Java none

Table 2.1 Header Files to Include for Connext (All Platforms)

For the compiler to find the included files, the path to the appropriate include directories must be
provided. Table 2.2 Include Paths for Compilation (All Platforms) lists the appropriate include path for
use with the compiler. The exact path depends on where you installed Connext. See 1.1 Paths Men-
tioned in Documentation on page 3.



2.3 Choosing the Right Libraries

Connext API Include Path Directories

C and C++
<NDDSHOME>/include

<NDDSHOME>/include/ndds

C++/CLI, C#, Java none

Table 2.2 Include Paths for Compilation (All Platforms)

You must also include the header files that define the data types you want to use in your application.
For example, Table 2.3 Header Files to Include for User Data Types (All Platforms) lists the files to be
include for type “Foo” (these are the filenames generated by RTI Code Generator, described in Data
Types and DDS Data Samples chapter in the RTI Connext Core Libraries User's Manual).

Connext API User Data Type Header Files

C and C++
#include “Foo.h”

#include “FooSupport.h”

C++/CLI, C#, Java none

Table 2.3 Header Files to Include for User Data Types (All Platforms)

2.3 Choosing the Right Libraries

2.3.1 Required Libraries

All required system and Connext libraries are listed in the chapters for each platform.

Choose between dynamic (shared) and static libraries. Do not mix the different types of libraries during
linking. The benefit of linking against the dynamic libraries is that your final executables’ sizes will be
significantly smaller. You will also use less memory when you are running several Connext applic-
ations on the same node. However, shared libraries require more setup and maintenance during
upgrades and installations.

To see if dynamic libraries are supported for your target platform, review the Building Instructions
table in the chapter for that platform.

2.3.2 Mixing Static and Dynamic Libraries is not Supported

You must choose either static or dynamic linking. Mixing static and dynamic RTI libraries—for
example, using RTI static core libraries and dynamic TCP Transport—is not supported.

The examples in this section are for Linux systems, but except for small differences in names, the same
concepts apply to Windows and macOS systems.

7

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf


2.4 Building for Java Platforms

8

Suppose you have a Connext-based application myApp, and you want to use the TCP Transport plugin.
The library dependency looks something like Figure 2.1: Library Dependency below. This shows a
simple and common situation, but make sure that the core libraries that your application uses are the
same kinds of libraries that the TCP Transport plugin uses. For example, if myApp links statically with
nddsc, but you load nddstransporttcp dynamically, there will be a mismatch between the libraries,
potentially creating a dangerous situation. You must use static or dynamic linking, but not both.
Figure 2.1: Library Dependency

Important: Even if a combination of static and dynamic libraries seems to work, RTI cannot
guarantee there won't be issues when running the Connext application.

2.4 Building for Java Platforms

Before building an application for a Windows or Linux Java platform, make sure that:

l Connext 7.x.y is installed (where 7.x.y stands for the version numbers of the current release).
l A supported JDK version is installed. See the Supported Platforms table at the beginning of the
chapter for your platform.

Java Libraries: Certain Java archive (JAR) files must be on your classpath when running Connext
applications.

Native Libraries: Connext for Java is implemented using Java Native Interface (JNI), so it is necessary
to provide your Connext distributed applications with access to certain native shared libraries.

See the Building Instructions and Running Instructions tables in the chapter for your platform.

2.5 Building with CMake

Connext allows you to integrate the Connext libraries with build systems implemented using CMake®.

A “Find Package” CMake script is provided as part of the Connext installation. This script helps the
build system find all the RTI Connext libraries and include directories needed by your application. So,



2.5 Building with CMake

instead of setting the variables manually in your CMake scripts, you can call the Connext “Find Pack-
age CMake” script to set all the variables needed by your application.

Note: This script is not supported on all platforms. The chapter for your platform will show if it is sup-
ported.

You can find the script (FindRTIConnextDDS.cmake) in <NDDSHOME>/resource/cmake. To learn
about the input and output variables, see the documentation included in the script.

9



Chapter 3 AIX Platforms
Table 3.1 Supported AIX Platforms in Connext 7.3.0 LTS below shows the supported IBM®
AIX® platforms.

Table 3.1 Supported AIX Platforms in Connext 7.3.0 LTS

Operating System CPU Compiler RTI Architecture
Abbreviation

AIX 7.2

Custom-supported target platform.
Contact your RTI sales representative or sales@rti.com for more
information.

POWER9™ xlclang 16.1 64p9AIX7.2xlclang16.1

3.1 Building Applications for AIX Platforms

See Table 3.2 Building Instructions for AIX Architectures on the next page for the compiler
flags and the libraries you will need to link into your application.

Depending on which Connext features you want to use, you may need additional libraries; see
3.1.1 Additional Libraries for Other Features on page 12.

Make sure you are consistent in your use of static, dynamic, debug and release versions
of the libraries. Do not link both static and dynamic libraries. Similarly, do not mix
release and debug libraries.

10



3.1 Building Applications for AIX Platforms

11

API Library
Format

Required RTI
Libraries[a]

Required System
Libraries Required Compiler Flags

Traditional C++

Static
Release

libnddscppz.a
or
libnddscpp2z.a

libnddscz.a
libnddscorez.a

librticonnextmsgcppz.a
or
librticonnextmsgcpp2z.a

N/A -O -q64 -qminimaltoc -DCPU=Power9
-DRTI_AIX -DRTI_UNIX -DRTI_64BIT

Static
Debug

libnddscppzd.a
or
libnddscpp2zd.a

libnddsczd.a
libnddscorezd.a

librticonnextmsgcppzd.a
or
librticonnextmsgcpp2zd.a

N/A -g -O -q64 -qminimaltoc -DCPU=Power9
-DRTI_AIX -DRTI_UNIX -DRTI_64BIT

Dynamic
Release

libnddscpp.so
or
libnddscpp2.so

libnddsc.so
libnddscore.so

librticonnextmsgcpp.so
or
librticonnextmsgcpp2.so

-ldl -lnsl -lm
-pthread -brtl

-O -q64 -qminimaltoc -DCPU=Power9
-DRTI_AIX -DRTI_UNIX -DRTI_64BIT
-G -qmkshrobj -brtl -bbigtoc -qthreaded

Dynamic
Debug

libnddscppd.so
or
libnddscpp2d.so

libnddscd.so
libnddscored.so

librticonnextmsgcppd.so
or
librticonnextmsgcpp2d.so

-ldl -lnsl -lm
-pthread -brtl

-g -O -q64 -qminimaltoc -DCPU=Power9
-DRTI_AIX -DRTI_UNIX -DRTI_64BIT
-G -qmkshrobj -brtl -bbigtoc -qthreaded

C

Static
Release

libnddscz.a
libnddscorez.a
librticonnextmsgcz.a

N/A -O -q64 -qminimaltoc -DCPU=Power9
-DRTI_AIX -DRTI_UNIX -DRTI_64BIT

Static De-
bug

libnddsczd.a
libnddscorezd.a
librticonnextmsgczd.a

N/A -g -O -q64 -qminimaltoc -DCPU=Power9
-DRTI_AIX -DRTI_UNIX -DRTI_64BIT

Dynamic
Release

libnddsc.so
libnddscore.so
librticonnextmsgc.so

-ldl -lnsl -lm
-pthread -brtl

-O -q64 -qminimaltoc -DCPU=Power9
-DRTI_AIX -DRTI_UNIX -DRTI_64BIT
-G -qmkshrobj -brtl -bbigtoc -qthreaded

Dynamic
Debug

libnddscd.so
libnddscored.so
librticonnextmsgcd.so

-ldl -lnsl -lm
-pthread -brtl

-g -O -q64 -qminimaltoc -DCPU=Power9
-DRTI_AIX -DRTI_UNIX -DRTI_64BIT
-G -qmkshrobj -brtl -bbigtoc -qthreaded

Table 3.2 Building Instructions for AIX Architectures

[a] Connext C/C++ libraries are in ${NDDSHOME}/lib/<architecture>. NDDSHOME is where Connext is installed.



3.1.1 Additional Libraries for Other Features

3.1.1 Additional Libraries for Other Features

3.1.1.1 Libraries Required for Distributed Logger

To use the Distributed Logger APIs, link against the additional libraries in Table 3.3 Additional Librar-
ies for using RTI Distributed Logger below.

Table 3.3 Additional Libraries for using RTI Distributed Logger

Language Static Release Static Debug Dynamic Release Dynamic Debug

C librtidlcz.a librtidlczd.a librtidlc.so librtidcd.so

C++
(Traditional API)

librtidlcz.a

librtidlcppz.a

librtidlczd.a

librtidlcppzd.a

librtidlc.so

librtidlcpp.so

librtidlcd.so

librtidlcppd.so

3.1.1.2 Libraries Required for Monitoring

Make sure you are consistent in your use of static, dynamic, debug and release versions of the libraries.
For example, if your Connext application is linked with the static release version of the Connext lib-
raries, you will need to also use the static release version of the monitoring library. Do not link both
static and dynamic libraries. Similarly, do not mix release and debug libraries.

If you are statically linking your application with DDS libraries and you want to add monitoring to
your application, you will also need to statically link the monitoring library. The library cannot be
loaded dynamically strictly through the QoS profile because it also depends on DDS to publish its data.
Therefore, it depends on DDS; the DDS functionality would cause duplicate symbols to be found res-
ulting, in the termination of the process.

Notes: 

l Memory and CPU usage is not available in monitoring data.
l If you plan to use static libraries, the RTI library from Table 3.4 Additional Libraries for Using
Monitoring on the next page must appear first in the list of libraries to be linked.

12



3.1.2 How the Connext Libraries were Built

13

Static Release Static Debug Dynamic Release Dynamic Debug

librtimonitoringz.a librtimonitoringzd.a librtimonitoring.so librtimonitoringd.so

Table 3.4 Additional Libraries for Using Monitoring

3.1.1.3 Libraries Required for Zero Copy Transfer Over Shared Memory

To use the Zero Copy transfer over shared memory feature, link against the additional library in Table
3.5 Additional Libraries for Zero Copy Transfer Over Shared Memory below. This feature is supported
in the C, traditional C++, and modern C++ programming languages.

Static Release Static Debug Dynamic Release Dynamic Debug

libnddsmetpz.a libnddsmetpzd.a libnddsmetp.so libnddsmetpd.so

Table 3.5 Additional Libraries for Zero Copy Transfer Over Shared Memory

3.1.2 How the Connext Libraries were Built

Table 3.6 provides details on how the libraries were built. This table is provided strictly for inform-
ational purposes; you do not need to use these parameters to compile your application. You may find
this information useful if you are involved in any in-depth debugging.

RTI
Architecture

Library Format
(Static & Dynamic) Compiler Flags Used by RTI

64p9AIX7.2xlclang16.1

Release
-O -q64 -qminimaltoc -D_LINUX_SOURCE_COMPAT -D_EXTENSIONS_ -DCPU=Power9
-O -fPIC -qpic=large -qthreaded -qalias=noansi -G -qmkshrobj -brtl -DNDEBUG -DRTI_AIX
-DRTI_UNIX -DRTI_64BIT -Werror-implicit-function-declaration

Debug
-g -O -q64 -qminimaltoc -D_LINUX_SOURCE_COMPAT -D_EXTENSIONS_ -DCPU=Power9
-O -fPIC -qpic=large -qthreaded -qalias=noansi -G -qmkshrobj -brtl -DRTI_AIX -DRTI_UNIX
-DRTI_64BIT -Werror-implicit-function-declaration

Table 3.6 Library-Creation Details for AIX Architectures



3.2 Running User Applications

3.2 Running User Applications

Table 3.7 provides details on the environment variables that must be set at run time for an AIX archi-
tecture.

RTI Architecture Library Format
(Release & Debug) Required Environment Variables[a]

64p9AIX7.2xlclang16.1
Static EXTSHM=ON

Dynamic LIBPATH=$(NDDSHOME)/lib/<arch>: $(LIBPATH) EXTSHM=ON

Table 3.7 Running Instructions for AIX Architectures

3.3 Multicast Support

Multicast is supported on all AIX platforms and is configured out of the box. That is, the default value
for the initial peers list (NDDS_DISCOVERY_PEERS) includes a multicast address. See the
API Reference HTML documentation for more information.

3.4 Transports

l Shared memory: Supported and enabled by default.
l UDPv4: Supported and enabled by default.
l UDPv6: Not supported.
l TCP/IPv4: Not supported.

3.4.1 Notes for Using Shared Memory

By default, the maximum number of shared memory segments you can use with AIX is quite small and
limits the capability of Connext applications to work properly over shared memory. To increase the
maximum number of shared memory segments an application can use, set the following environment
variable before invoking your Connext application:
EXTSHM=ON

This environment variable is not required if your application does not use the shared memory transport.

[a] See Section 3.4.1 .

14



3.5 Unsupported Features

15

To see a list of shared memory resources in use, please use the 'ipcs' command. To clean up shared
memory and shared semaphore resources, please use the 'ipcrm' command.

The shared memory keys used by Connext are in the range of 0x400000. For example:
ipcs -m | grep 0x004

The shared semaphore keys used by Connext are in the range of 0x800000; the shared mutex keys are
in the range of 0xb00000. For example:
ipcs -s | grep 0x008
ipcs -s | grep 0x00b

Please refer to the shared-memory transport online documentation for details on the shared memory and
semaphore keys used by Connext.

3.5 Unsupported Features

These features are not supported on AIX platforms:

l Java, Python, .NET, and Modern C++ APIs
l Backtrace
l Controlling CPU Core Affinity
l Durable Writer History and Durable Reader State
l 'Find Package' CMake script
l Internal setting of thread names at the operating-system level
l Remote Procedure Calls (RPCs)
l Monotonic clock

See also: Supported Platforms tables in the RTI Connext Core Libraries Release Notes. These tables
show which RTI products are supported for each platform.

3.6 Thread Configuration

See Table 3.8 Thread Settings for AIX Platforms on the next page and Table 3.9 Thread-Priority Defin-
itions for AIX Platforms on page 17.

../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf


3.6 Thread Configuration

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

Asynchronous Publisher,
Asynchronous flushing thread

mask OS default thread type

priority OS default thread priority

stack_size 192*1024

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Database thread

mask DDS_THREAD_SETTINGS_STDIO

priority OS default thread priority

stack_size 192*1024

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Event thread

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_
SETTINGS_FLOATING_POINT

priority OS default thread priority

stack_size 4*192*1024

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

ReceiverPool threads

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_
SETTINGS_FLOATING_POINT

priority OS default thread priority

stack_size 4*192*1024

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Table 3.8 Thread Settings for AIX Platforms

16



3.6.1 Changing Thread Priority

17

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_DEFAULT

If any of these constants are used to set the priority of the
thread in the QoS, the OS's default thread priority will be
used.

THREAD_PRIORITY_HIGH

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_LOW

Table 3.9 Thread-Priority Definitions for AIX Platforms

3.6.1 Changing Thread Priority

Due to the AIX threading-model implementation, there are situations that require you to run your Con-
next application with root privileges:

l For all APIs: Your application must have root privileges to use the thread option, DDS_
THREAD_SETTINGS_REALTIME_PRIORITY, for the event and receiver pool thread QoS
(DDS_DomainParticipantQos.event.thread, DDS_DomainParticipantQos.receiver_pool.-
thread).

l For the Java API only: Your application must have root privileges to change the event and
receiver pool thread priorities (DDS_DomainParticipantQos.event.thread, DDS_DomainPar-
ticipantQos.receiver_pool.thread).



Chapter 4 Android Platforms
Table 4.1 shows the supported Android™ platforms.

Operating System CPU Compiler RTI Architecture
Abbreviation

Android 12

(Advanced example generation in Code Generator not supported.)
Arm v8

Clang 12.0.8

arm64Android12clang12.0.8ndkr23b
AdoptOpenJDK
17.0.6

Table 4.1 Supported Android Target Platforms in Connext 7.3.0 LTS

4.1 Building Applications for Android Platforms

4.1.1 Required Libraries and Compiler Flags

First, see the basic instructions in Chapter 2 Building Applications—Notes for All Platforms on
page 5.

See Table 4.2 Building Instructions for Android Architectures for a list of the compiler flags
and libraries you will need to link into your application.

Depending on which Connext features you want to use, you may need additional libraries; see
4.1.2 Additional Libraries for Other Features on page 20.

Additional Documentation: See the RTI Connext Core Libraries Getting Started Guide
Addendum for Android Systems.

Make sure you are consistent in your use of debug and release versions of the libraries.
Do not mix release and debug libraries.

18

../getting_started_platforms/android_systems_addendum/RTI_ConnextDDS_CoreLibraries_GettingStarted_AndroidSystemsAddendum.pdf
../getting_started_platforms/android_systems_addendum/RTI_ConnextDDS_CoreLibraries_GettingStarted_AndroidSystemsAddendum.pdf


4.1.1 Required Libraries and Compiler Flags

19

API Library
Format

Required RTI
Libraries

and JAR Files[a] [b]
Required System Libraries Required

Compiler Flags

C++
(Traditional
and Modern
APIs)

Release

libnddscore.so
libnddsc.so

libnddscpp.so
or
libnddscpp2.so

librticonnextmsgcpp.so

libc++_shared.so -L$(ANDROID_NDK_ROOT)/toolchains/llvm/prebuilt/linux-x86_
64/sysroot/usr/lib/aarch64-linux-android
-lc++_shared

-DRTI_LINUX
-DRTI_UNIX
-DRTI_64BIT
-DRTI_ANDROID=12

Debug

libnddscored.so
libnddscd.so

libnddscppd.so
or
libnddscpp2d.so

librticonnextmsgcppd.so
libc++_shared.so

C
Release

libnddscore.so
libnddsc.so
librticonnextmsgc.so

-L$(ANDROID_NDK_ROOT)/toolchains/llvm/prebuilt/linux-x86_
64/sysroot/usr/lib/aarch64-linux-android/31
-llog -lc -lm

-DRTI_LINUX
-DRTI_UNIX
-DRTI_64BIT
-DRTI_ANDROID=12

Debug

libnddscored.so

libnddscd.so

librticonnextmsgcd.so

Java

Release

When not building Apps
(*.apk):
nddsjava.jar
rticonnextmsg.jar

When building Apps (*.apk):
nddsjava.jar
libnddsjava.so
libnddscore.so
libnddsc.so
rticonnextmsg.jar

N/A None required

Debug

When not building Apps
(*.apk):
nddsjavad.jar
rticonnextmsgd.jar

When building Apps (*.apk):
nddsjavad.jar
libnddsjavad.so
libnddscored.so
libnddscd.so
rticonnextmsgd.jar

Table 4.2 Building Instructions for Android Architectures

[a] Choose libnddscpp*.* for the Traditional C++ API or libnddscpp2*.* for the Modern C++ API.
[b] The RTI C/C++/Java libraries are in $(NDDSHOME)/lib/<architecture>.



4.1.2 Additional Libraries for Other Features

4.1.2 Additional Libraries for Other Features

4.1.2.1 Libraries Required for Distributed Logger

RTI Distributed Logger is supported on all the platforms in Table 4.1 Supported Android Target Plat-
forms in Connext 7.3.0 LTS.

To use the Distributed Logger APIs, link against the additional libraries in Table 4.3 Additional Librar-
ies for using RTI Distributed Logger.

Select the files appropriate for your chosen library format. Make sure you are consistent in your use of
debug and release versions of the libraries. Do not mix release and debug libraries.

Language Release Debug

C librtidlc.so librtidcd.so

C++
(Traditional API)

librtidlc.so

librtidlcpp.so

librtidlcd.so

librtidlcppd.so

Java
distlog.jar

distlogdatamodel.jar

distlogd.jar

distlogdatamodeld.jar

Table 4.3 Additional Libraries for using RTI Distributed Logger

4.1.2.2 Libraries Required for Monitoring

Make sure you are consistent in your use of debug and release versions of the libraries. For example, if
your Connext application is linked with the release version of the Connext libraries, you will need to
also use the release version of the monitoring library. Do not mix release and debug libraries.

Library Format Monitoring Libraries[a]

Release librtimonitoring.so

Debug librtimonitoringd.so

Table 4.4 Additional Libraries for Using Monitoring

4.1.2.3 Libraries Required for Real-Time WAN Transport

If you choose to use RTI Real-Time WAN Transport, you must download and install a separate package
that contains the transport libraries. See the RTI Real-Time WAN Transport Installation Guide for
details.

[a] These libraries are in <NDDSHOME>/lib/<architecture>.

20

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/addon_products/realtime_wan_transport/installation_guide/RTI_RealTime_WAN_Transport_InstallationGuide.pdf


4.1.2 Additional Libraries for Other Features

21

Using Real-Time WAN Transport requires using one of the libraries in Table 4.5 Additional Libraries
for Using RTI Real-Time WAN Transport APIs. Select the file appropriate for your chosen library
format.

For more information, see Enabling Real-Time WAN Transport, in the RTI Connext Core Libraries
User's Manual.

Library Format Real-Time WAN Transport Libraries[a]

Release libnddsrwt.so

Debug libnddsrwtd.so

Table 4.5 Additional Libraries for Using RTI Real-Time WAN Transport APIs

4.1.2.4 Libraries Required for TCP Transport and TLS Support

To use the TCP Transport APIs, link against the additional libraries in Table 4.6 Additional Libraries
for Using RTI TCP Transport APIs. If you are using RTI TLS Support, also link against the libraries in
Table 4.7 Additional Libraries for Using RTI TCP Transport APIs with TLS Enabled. Select the files
appropriate for your chosen library format.

Library Format TCP Transport Libraries[b]

Release libnddstransporttcp.so

Debug libnddstransporttcpd.so

Table 4.6 Additional Libraries for Using RTI TCP Transport APIs

Library Format TCP Transport Libraries[c] OpenSSL Libraries[d]

Release libnddstls.so
librtisslsupport.so

Debug libnddstlsd.so

Table 4.7 Additional Libraries for Using RTI TCP Transport APIs with TLS Enabled

[a] These libraries are in <NDDSHOME>/lib/<architecture>.
[b] These libraries are in <NDDSHOME>/lib/<architecture>.
[c] These libraries are in <NDDSHOME>/lib/<architecture>.
[d] OpenSSL libraries are in <NDDSHOME>/third_party/openssl-3.0.12/<architecture>/<format>/lib.



4.1.3 Target Configuration

4.1.3 Target Configuration

Connext supports the Android operating system as a target platform. The target can be in one of two
configurations: a consumer device (e.g., a Google™ Nexus™ 7 tablet) or as a "raw" Linux distribution.
Building applications for the target occurs on a development machine using an Android SDK and, for
C/C++, an Android NDK.

For a consumer device, all programs (applications and DDS utilities) must be installed on the device as
Apps (*.apk files). All Android Apps are loaded and executed by an instance of the Dalvik VM run-
ning as a Linux process. No Connext components or libraries have to be pre-installed on the device—
that is taken care of by the Android build and packaging tools. See the Android documentation for a
full description of building and packaging Android Apps.

For a raw Linux distribution, all programs are executables that are linked with the necessary Connext
libraries (see Table 4.1 Supported Android Target Platforms in Connext 7.3.0 LTS). The build process
is similar to other Linux variants, see 5.1 Building Applications for Linux Platforms on page 30.

4.1.4 ‘Release’ and ‘Debug’ Terminology

Android and Connext use these terms differently. For Android, "release" and "debug" refer to how
application packages (*.apk) are signed as part of the Android Security Model. A "release" package is
cryptographically signed by a key that can be trusted by virtue of some certificate chain. A "debug"
package is signed by a key distributed with the SDK. It says nothing about the origin of the package. It
allows the package to be installed during development testing, hence "debug." For Connext, debug
means libraries created with debug symbols to facilitate debugging with gdb, for example. A "release"
library does not contain debug information.

4.1.5 How the Connext Libraries were Built

Table 4.8 Library-Creation Details for Android Architectures on the next page provides details on how
the libraries were built. This table is provided strictly for informational purposes; you do not need to
use these parameters to compile your application. You may find this information useful if you are
involved in any in-depth debugging.

The details for building user applications is in 4.1 Building Applications for Android Platforms on
page 18.

22



4.2 Running Your Applications

23

RTI Architecture Library
Format Compiler Flags Used by RTI

arm64Android12clang12.0.8ndkr23b
when not using Java

Release

--target=aarch64-none-linux-android31
--sysroot=/opt/toolchains/arm64Android12clang12.0.8ndkr23b/android-ndk-r23b/tool-
chains/llvm/prebuilt/linux-x86_64/sysroot
-DLINUX -DPtrIntType=long DRTI_64BIT -DRTI_ANDROID=12 -DRTI_ENDIAN_LITTLE
-DRTI_LINUX -DRTI_LINUX26 -DRTI_MONITORING_ARCHITECTURE -DRTI_MULTICAST
-DRTI_NDDS_VERSION_MAJOR=6 -DRTI_NDDS_VERSION_MINOR=1
-DRTI_NDDS_VERSION_RELEASE=1 -DRTI_NDDS_VERSION_REVISION=0
-DRTI_OPENSSL_ARCHITECTURE -DRTI_POSIX_SEMAPHORES -DRTI_POSIX_THREADS
-DRTI_PRECONDITION_TEST -DRTI_RTISQLITE3_ARCHITECTURE
-DRTI_SECURITY_ARCHITECTURE -DRTI_SHARED_BUILD -DRTI_UNIX -DRTI_X64CPU
-O0 -Wall -Wno-unknown-pragmas -Wno-deprecated-declarations -Wno-macro-redefined
-Wno-tautological-pointer-compare -Wno-logical-not-parentheses -Wno-constant-conversion
-Wno-return-type-c-linkage -Wno-deprecated-register
-Wno-tautological-constant-out-of-range-compare -Wno-enum-conversion -Wno-format-security
-Wno-switch-bool -Wno-instantiation-after-specialization -Wno-exceptions
-Wno-non-literal-null-conversion -Wstrict-prototypes -Wunused-parameter -funwind-tables
-no-canonical-prefixes -fexceptions -DNDEBUG -fPIC -Werror-implicit-function-declaration

Debug

--target=aarch64-none-linux-android31
--sysroot=/opt/toolchains/arm64Android12clang12.0.8ndkr23b/android-ndk-r23b/tool-
chains/llvm/prebuilt/linux-x86_64/sysroot
-DLINUX -DRTI_ANDROID=12-DPtrIntType=long DRTI_64BIT -DRTI_ANDROID=12
-DRTI_ENDIAN_LITTLE -DRTI_LINUX -DRTI_LINUX26 -DRTI_MONITORING_ARCHITECTURE
-DRTI_MULTICAST -DRTI_NDDS_VERSION_MAJOR=6 -DRTI_NDDS_VERSION_MINOR=1
-DRTI_NDDS_VERSION_RELEASE=1 -DRTI_NDDS_VERSION_REVISION=0
-DRTI_OPENSSL_ARCHITECTURE -DRTI_POSIX_SEMAPHORES -DRTI_POSIX_THREADS
-DRTI_PRECONDITION_TEST -DRTI_RTISQLITE3_ARCHITECTURE
-DRTI_SECURITY_ARCHITECTURE -DRTI_SHARED_BUILD -DRTI_UNIX -DRTI_X64CPU
-O0 -Wall -Wno-unknown-pragmas -Wno-deprecated-declarations -Wno-macro-redefined
-Wno-tautological-pointer-compare -Wno-logical-not-parentheses -Wno-constant-conversion
-Wno-return-type-c-linkage -Wno-deprecated-register
-Wno-tautological-constant-out-of-range-compare -Wno-enum-conversion -Wno-format-security
-Wno-switch-bool -Wno-instantiation-after-specialization -Wno-exceptions
-Wno-non-literal-null-conversion -Wstrict-prototypes -Wunused-parameter -funwind-tables
-no-canonical-prefixes -fexceptions -fPIC -Werror-implicit-function-declaration

All supported Android architectures for
Java

Release -target 1.8 -source 1.8

Debug -target 1.8 -source 1.8 -g

Table 4.8 Library-Creation Details for Android Architectures

4.2 Running Your Applications

For the environment variables that must be set at run time, see Table 4.9 Running Instructions for
Android Architectures.

RTI Architecture Library Format Required Environment Variables

All supported Android architectures
when not using Java

App (*.apk) None

Dynamic LD_LIBRARY_PATH=$LD_LIBRARY_PATH: <path-to-ndds-libs>

Table 4.9 Running Instructions for Android Architectures



4.3 Support for Modern C++ API

RTI Architecture Library Format Required Environment Variables

All supported Android architectures
when using Java

App (*.apk) None

Dex
LD_LIBRARY_PATH=$LD_LIBRARY_PATH: <path-to-ndds-libs>

CLASSPATH=<path-to-dex>/classes.dex

Table 4.9 Running Instructions for Android Architectures

4.3 Support for Modern C++ API

Connext provides two C++ APIs, which we refer to as the "Traditional C++" and "Modern C++" APIs.

l The Modern C++ API requires C++11 compilers or newer.
l The Traditional C++ API supports C++98 compilers or newer.

For more information, see Traditional vs. Modern C++, in the RTI Connext Core Libraries User's
Manual.

4.4 Multicast Support

Multicast is available on supported Android platforms and is configured out of the box. That is, the
default value for the initial peers list (NDDS_DISCOVERY_PEERS) includes a multicast address. See
the API Reference HTML documentation for more information. Multicast has not been tested for this
release and so, though available, is not officially supported. This should be addressed in a future
release.

4.5 Transports

l Shared memory: Not supported for this release. For a consumer device, shared memory com-
munication between Apps is often not desirable.

l UDPv4: Supported and enabled by default.
l UDPv6: Supported (no traffic class support).
l TCP/IPv4: Supported.

4.6 Unsupported Features

These features are not supported on Android platforms:

l .NET and Python APIs
l Backtrace

24



4.7 Monotonic Clock Support

25

l Controlling CPU Core Affinity
l Durable Writer History and Durable Reader State
l 'Find Package' CMake script
l Setting of thread names by Connext at the operating-system level
l Using DDS_WireProtocolQosPolicyAutoKind's RTPS_AUTO_ID_FROM_MAC to calculate the
GUID prefix is not supported.

l Zero Copy Transfer Over Shared Memory

See also: Supported Platforms tables in the RTI Connext Core Libraries Release Notes. These tables
show which RTI products are supported for each platform.

4.7 Monotonic Clock Support

The monotonic clock (described in Configuring the Clock per DomainParticipant, in the RTI Connext
Core Libraries User's Manual) is supported on all Android platforms.

4.8 Thread Configuration

See Table 4.10 Thread Settings for Android Platforms and Table 4.11 Thread-Priority Definitions for
Android Platforms.

Applicable Threads DDS_ThreadSettings_t Platform-Specific Setting

Asynchronous Publisher,
Asynchronous flushing thread

mask OS default thread type

priority OS default thread priority

stack_size OS default stack size

cpu_list
CPU core affinity not supported

cpu_rotation

Database thread

mask DDS_THREAD_SETTINGS_STDIO

priority OS default thread priority

stack_size OS default stack size

cpu_list
CPU core affinity not supported

cpu_rotation

Table 4.10 Thread Settings for Android Platforms

../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf


4.9 Support for Remote Procedure Calls (RPCs)

Applicable Threads DDS_ThreadSettings_t Platform-Specific Setting

Event thread

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority OS default thread priority

stack_size OS default stack size

cpu_list
CPU core affinity not supported

cpu_rotation

ReceiverPool threads

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority OS default thread priority

stack_size OS default stack size

cpu_list
CPU core affinity not supported

cpu_rotation

Table 4.10 Thread Settings for Android Platforms

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_DEFAULT

If any of these constants are used to set the priority of the thread in the QoS, the
OS's default thread priority will be used.

THREAD_PRIORITY_HIGH

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_LOW

Table 4.11 Thread-Priority Definitions for Android Platforms

4.9 Support for Remote Procedure Calls (RPCs)

RPCs are an experimental feature available only for the C++11 API. It is supported on Android archi-
tectures.

See Remote Procedure Calls, in the RTI Connext Core Libraries User's Manual.

26



4.10 Third-Party Software Versions used for Android 12 Development and Testing

27

4.10 Third-Party Software Versions used for Android 12 Development
and Testing

Third-Party Software Version

Android Studio Bumblebee 2021.1.1 Patch 3 (2020.3.1 or higher)

Android Build Tools 33

Android Command-Line Tools 6.0

Android SDK Platforms-Tools 33

Android API Level 31

Android NDK NDK 23b LTS (23.1.7779620)

Gradle Plugin 7.3.0

Gradle 7.5.1

Table 4.12 Third-Party Software Versions Used for Android 12 Development and Testing



Chapter 5 Linux Platforms
Table 5.1 shows the supported Linux® platforms.

OS Version CPU GLIBC GLIBCXX Toolchain RTI Architecture
Abbreviation

Linux
(Intel)

Red Hat Enterprise Linux 8,
9

Ubuntu 18.04 LTS, 20.04
LTS, 22.04 LTS

x64 2.27 6.0.25

gcc 7.3.0
or
AdoptOpenJDK
17.0.6

x64Linux4gcc7.3.0

Ubuntu 22.04 LTS x64 2.35 N/A

clang 15.0.1 [a]
or
AdoptOpenJDK
17.0.6

x64Linux5Unreal5.2clang15
[b]

Red Hat Enterprise Linux 8

Ubuntu 18.04 LTS, 20.04
LTS

(Only for use with Connext
TSS)

x64 2.27 6.0.25 gcc 7.3.0
x64Linux4gcc7.3.0FACE_GP
[c]

Table 5.1 Supported Linux Platforms in Connext 7.3.0 LTS

[a] Included with Unreal Engine® 5.2.1
[b] Target libraries for Unreal Engine 5.2.
[c] FACE platforms do not support the Request/Reply API, DDS Spy, or DDS Ping.

28



Chapter 5 Linux Platforms

29

OS Version CPU GLIBC GLIBCXX Toolchain RTI Architecture
Abbreviation

Linux (Arm)

Ubuntu 18.04 LTS Arm v7 2.27 6.0.25

gcc 7.5.0
or
AdoptOpenJDK
17.0.6

armv7Linux4gcc7.5.0 [a]

Ubuntu 18.04 LTS, 22.04
LTS Arm v8 2.27 6.0.25

gcc 7.3.0
or
AdoptOpenJDK
17.0.6

armv8Linux4gcc7.3.0

The following rows show custom-supported target platforms, only available on demand.
Please contact your RTI sales representative or sales@rti.com for more information on using these
platforms:

Linux (Intel)

Red Hat Enterprise Linux 7,
7.3, 7.5, 7.6

CentOS 7.0

x64 2.17 6.0.19

gcc 4.8.2
or
AdoptOpenJDK
17.0.6

x64Linux3gcc4.8.2
(Custom support)

x86 2.17 6.0.19 gcc 4.8.2 i86Linux3gcc4.8.2
(Custom support)

RedHawk Linux 8.4.1

x64 2.28 6.0.19

gcc 8.5.0
or
AdoptOpenJDK
17.0.6

x64RedHawk8.4gcc8.5.0
(Custom support)

x86 2.17 6.0.19 gcc 8.5.0 i86RedHawk8.4gcc8.5.0
(Custom support)

Linux (Arm) TI Linux 8.2.0.3 Arm v8 2.30 6.0.28

gcc 9.2.1
or
AdoptOpenJDK
17.0.6

armv8Linux-armgcc9.2.1
(Custom support)

Table 5.1 Supported Linux Platforms in Connext 7.3.0 LTS

(Custom support) means this is a custom-supported target architecture, only available on demand.
Please contact your RTI sales representative or sales@rti.com for more information.

[a] These libraries require a hardware FPU in the processor and are compatible with systems that have hard-float libc.
See 5.1 Building Applications for Linux Platforms on the next page for compiler flag details.



5.1 Building Applications for Linux Platforms

5.1 Building Applications for Linux Platforms

First, see the basic instructions in Chapter 2 Building Applications—Notes for All Platforms on page 5.

Then make sure that:

l Connext 7.x.y is installed (where 7.x.y stands for the version number of the current release). For
installation instructions, refer to the RTI Connext Installation Guide.

l A “make” tool is installed. RTI recommends GNU Make. If you do not have it, you may be able
to download it from your operating system vendor. Learn more at www.gnu.org/software/make/
or download from ftpmirror.gnu.org/make as source code.

l The NDDSHOME environment variable is set to the root directory of the Connext installation
(such as /home/user/rti_connext_dds-7.x.y).

l To confirm, type this at a command prompt:

echo $NDDSHOME
env | grep NDDSHOME

l If it is not set or is set incorrectly, type:

export NDDSHOME=<correct directory>

5.1.1 Required Libraries and Compiler Flags

To compile a Connext application of any complexity, either modify the auto-generated makefile created
by running RTI Code Generator or write your own makefile. See 5.1 Building Applications for Linux
Platforms above for required compiler flags.

Table 5.2 Building Instructions for Linux Architectures lists the compiler flags and libraries you will
need to link into your application.

Depending on which Connext features you want to use, you may need additional libraries; see 5.1.2
Additional Libraries for Other Features on page 33

Make sure you are consistent in your use of static, dynamic, debug and release versions of the
libraries. Do not link both static and dynamic libraries. Similarly, do not mix release and debug
libraries.

30

../installation_guide/RTI_ConnextDDS_InstallationGuide.pdf
http://www.gnu.org/software/make/
http://ftpmirror.gnu.org/make


5.1.1 Required Libraries and Compiler Flags

31

API Library
Format

Required RTI
Libraries

or Jar Files [a] [b]
Required System

Libraries Required Compiler Flags

C++
(Traditional and Modern APIs)

(Modern C++ API is not
available for
x64Linux5Unreal5.2clang15)

Static
Release

libnddscorez.a
libnddscz.a

libnddscppz.a
or
libnddscpp2z.a

librticonnextmsgcppz.a
or
librticonnextmsgcpp2z.a

-ldl -lm -lpthread -lrt

For Ubuntu 18.04 LTS on
Arm v7, also add:

-latomic

For 64-bit architectures:

-DRTI_LINUX  -DRTI_UNIX -m64

For Unreal Engine 5.2.1, also add:

-stdlib=libc++ -fno-rtti

For any Linux platform with GCC 6 or higher linker
flag (see Note below table), also add:

-no-pie

For Ubuntu 18.04 LTS on Arm v7: 

-march=armv7 -mthumb -mfloat-abi=hard
-mabi=aapcs-linux -funwind-tables

For all architectures, if you want backtrace in-
formation, also add:

Compiler flag: -fno-omit-frame-pointer

Linker flag: -rdynamic

Arm architectures: -funwind-tables

(see 5.13 Backtrace Support on page 46)

Static
Debug

libnddscorezd.a
libnddsczd.a

libnddscppzd.a
or
libnddscpp2zd.a

librticonnextmsgcppzd.a
or
librticonnextmsgcpp2zd.a

Dynamic
Release

libnddscore.so
libnddsc.so

libnddscpp.so
or
libnddscpp2.so

librticonnextmsgcpp.so
or
librticonnextmsgcpp2.so

Dynamic
Debug

libnddscored.so
libnddscd.so

libnddscppd.so
or
libnddscpp2d.so

librticonnextmsgcppd.so
or
librticonnextmsgcpp2d.so

Table 5.2 Building Instructions for Linux Architectures

[a] Choose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
[b] RTI C/C++/Java libraries are in <NDDSHOME>/lib/<architecture>. The jar files are in <NDDSHOME>/lib/java.



5.1.1 Required Libraries and Compiler Flags

API Library
Format

Required RTI
Libraries

or Jar Files [a] [b]
Required System

Libraries Required Compiler Flags

C

Static
Release

libnddscorez.a
libnddscz.a
librticonnextmsgcz.a

-ldl -lm -lpthread -lrt

For Ubuntu 18.04 LTS on
Arm v7, also add:

-latomic

For 64-bit architectures:

-DRTI_LINUX  -DRTI_UNIX -m64

For any Linux platform with GCC 6 or higher linker
flag (see Note below table), also add:

-no-pie

For Ubuntu 18.04 LTS on Arm v7: 

-march=armv7 -mthumb
-mfloat-abi=hard -mabi=aapcs-linux
-funwind-tables

For all architectures, if you want backtrace
information, also add:

Compiler flag: -fno-omit-frame-pointer

Linker flag: -rdynamic

Arm architectures: -funwind-tables

(see 5.13 Backtrace Support on page 46)

Static De-
bug

libnddscorezd.a
libnddsczd.a
librticonnextmsgczd.a

Dynamic
Release

libnddscore.so
libnddsc.so
librticonnextmsgc.so

Dynamic
Debug

libnddscored.so
libnddscd.so
librticonnextmsgcd.so

Java

Release nddsjava.jar
rticonnextmsg.jar

N/A None required

Debug nddsjavad.jar
rticonnextmsgd.jar

Table 5.2 Building Instructions for Linux Architectures

Note:

For Linux platforms with GCC 6 or higher, it's possible to configure the compiler driver to link, by
default, executables with PIE (position independent executable) support on amd64 and ppc64el archi-
tectures. Depending on the distributor of the GCC package, automatic PIE generation may or may not
be enabled.

To correctly generate backtraces, PIE executables cannot be used with RTI's libraries. This is due to
Address Space Layout Randomization (ASLR), which prevents the correct generation of backtraces of
our binaries on certain systems. For this reason, RTI has linked Linux executables using the -no-pie
flag when the GCC version is 6 or higher.

If you are using GCC 6 or higher, you must link the executable with -no-pie to prevent PIE generation
and to correctly generate backtraces.

[a] Choose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
[b] RTI C/C++/Java libraries are in <NDDSHOME>/lib/<architecture>. The jar files are in <NDDSHOME>/lib/java.

32



5.1.2 Additional Libraries for Other Features

33

5.1.2 Additional Libraries for Other Features

5.1.2.1 Libraries Required for Distributed Logger

To see which platforms support RTI Distributed Logger, refer to the Supported Platforms tables in the
RTI Connext Core Libraries Release Notes.

To use the Distributed Logger APIs, link against the additional libraries in Table 5.3 Additional Librar-
ies for using RTI Distributed Logger .

Language
Static Dynamic

Release Debug Release Debug

C librtidlcz.a librtidlczd.a librtidlc.so librtidcd.so

C++
(Traditional API)

librtidlcz.a

librtidlcppz.a

librtidlczd.a

librtidlcppzd.a

librtidlc.so

librtidlcpp.so

librtidlcd.so

librtidlcppd.so

Java N/A N/A
distlog.jar

distlogdatamodel.jar

distlogd.jar

distlogdatamodeld.jar

Table 5.3 Additional Libraries for using RTI Distributed Logger

5.1.2.2 Libraries Required for Monitoring

To see which platforms support Monitoring, refer to the Supported Platforms tables in the RTI Connext
Core Libraries Release Notes.

Make sure you are consistent in your use of static, dynamic, debug and release versions of the libraries.
For example, if your Connext application is linked with the static release version of the Connext lib-
raries, you will need to also use the static release version of the monitoring library. Do not link both
static and dynamic libraries. Similarly, do not mix release and debug libraries.

If you are statically linking your application with DDS libraries and you want to add monitoring to
your application, you will also need to statically link the monitoring library. The library cannot be
loaded dynamically strictly through the QoS profile because it also depends on DDS to publish its data.
Therefore, it depends on DDS; the DDS functionality would cause duplicate symbols to be found res-
ulting, in the termination of the process.

Note: If you plan to use static libraries, the RTI library in Table 5.4 Additional Libraries for Using
Monitoring on the next page must appear first in the list of libraries to be linked.

../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf
../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf
../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf
../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf


5.1.2 Additional Libraries for Other Features

Library Format Monitoring Libraries [a]

Dynamic Release librtimonitoring.so

Dynamic Debug librtimonitoringd.so

Static Release librtimonitoringz.a

Static Debug librtimonitoringzd.a

Table 5.4 Additional Libraries for Using Monitoring

5.1.2.3 Libraries Required for Real-Time WAN Transport

To see which platforms support Real-Time WAN Transport, refer to the Supported Platforms tables in
the RTI Connext Core Libraries Release Notes.

If you choose to use Real-Time WAN Transport, you must download and install a separate package that
contains the transport libraries. See the RTI Real-Time WAN Transport Installation Guide for details.

Using Real-Time WAN Transport requires one of the libraries in Table 5.5 Additional Libraries for
Using Real-Time WAN Transport APIs. Select the file appropriate for your chosen library format.

For more information, see Enabling Real-Time WAN Transport, in the RTI Connext Core Libraries
User's Manual.

Library Format Real-Time WAN Transport Libraries[b]

Dynamic Release libnddsrwt.so

Dynamic Debug libnddsrwtd.so

Static Release libnddsrwtz.a

Static Debug libnddsrwtzd.a

Table 5.5 Additional Libraries for Using Real-Time WAN Transport APIs

5.1.2.4 Libraries Required for TCP Transport and TLS Support

To see which platforms support TLS Support, refer to the Supported Platforms tables in the RTI Con-
next Core Libraries Release Notes. For information on which platforms support the TCP transport, see
5.7 Transports on page 42.

To use the TCP Transport APIs, link against the additional libraries in Table 5.6 Additional Libraries
for using RTI TCP Transprt APIs on the next page.

[a] These libraries are in <NDDSHOME>/lib/<architecture>.
[b] These libraries are in <NDDSHOME>/lib/<architecture>.

34

../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf
../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/addon_products/realtime_wan_transport/installation_guide/RTI_RealTime_WAN_Transport_InstallationGuide.pdf
../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf
../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf


5.1.2 Additional Libraries for Other Features

35

Library Format RTI TCP Transport Libraries[a]

Dynamic Release libnddstransporttcp.so

Dynamic Debug libnddstransporttcpd.so

Static Release libnddstransporttcpz.a

Static Debug libnddstransporttcpzd.a

Table 5.6 Additional Libraries for using RTI TCP Transprt APIs

If you are using RTI TLS Support, see Table 5.7 Additional Libraries for using RTI TCP Transport
APIs with TLS Enabled below. Select the files appropriate for your chosen library format.

RTI TLS Support is an optional product for use with the TCP transport that is included with
RTI Connext®. If you choose to use TLS Support, it must be installed on top of a Connext installation
with the same version number; it can only be used on architectures that support TCP transport.

Library Format RTI TLS Libraries[b] OpenSSL Libraries[c]

Dynamic Release libnddstls.so

libssl.so

libcrypto.so

Dynamic Debug libnddstlsd.so

Static Release libnddstlsz.a

Static Debug libnddstlszd.a

Table 5.7 Additional Libraries for using RTI TCP Transport APIs with TLS Enabled

5.1.2.5 Libraries Required for Zero Copy Transfer Over Shared Memory

The Zero Copy Transfer Over Shared Memory feature is supported on all the platforms in Table 5.1
Supported Linux Platforms in Connext 7.3.0 LTS on page 28.

To use this feature, link against the additional library in Table 5.8 Additional Libraries for Zero Copy
Transfer Over Shared Memory on the next page.

[a] These libraries are in <NDDSHOME>/lib/<architecture>.
[b] These libraries are in <NDDSHOME>/lib/<architecture>.
[c] OpenSSL libraries are in <NDDSHOME>/third_party/openssl-3.0.12/<architecture>/<format>/lib.



5.1.3 Linux Compatibility and Determining Factors

Library Format Zero Copy Transfer Over Shared Memory Libraries[a]

Dynamic Release libnddsmetp.so

Dynamic Debug libnddsmetpd.so

Static Release libnddsmetpz.a

Static Debug libnddsmetpzd.a

Table 5.8 Additional Libraries for Zero Copy Transfer Over Shared Memory

5.1.3 Linux Compatibility and Determining Factors

RTI has concluded that there are four factors that can be used to determine the compatibility of RTI's
Linux core libraries on a specific Linux distribution or system. You can use this information to identify
which Connext Linux libraries are suitable for your system. If a system matches the compatibility
factors, RTI has a high level of confidence that the core libraries will work with no issues.

RTI has identified four Linux compatibility factors:

l CPU architecture (such as x64, Arm v8)
l Minimum GLIBC version
l GLIBCXX version
l Floating-Point scheme

5.1.3.1 Compatibility factors explained

The CPU architecture is the CPU family of the target system. Note that this important value is not for
the physical CPU used to run, but the configuration of the system where it will be executed. For
example, you may have an x64 CPU but your system kernel may run as if it were an x86 CPU. In this
case, a 32-bit version of the Connext library should be selected.

The minimum GLIBC is the minimum required value of the GLIBC library used in the target system. If
the target system's GLIBC version is less than the minimum version required by Connext, run-time
errors can occur, such as undefined symbol errors.

The GLIBCXX range is the range of the Standard C++ Library that the target system must support. In
some cases this value is a range and in others it’s a minimum value just like the minimum GLIBC sup-
port.

The floating-point scheme defines how the assembly code is generated relative to the floating-point
registers and instructions; this should only be a concern on Arm v7 architectures. The options available
are soft floating-point and hard floating-point. All newer architectures use hard floating-point.

[a] These libraries are in <NDDSHOME>/lib/<architecture>.

36



5.1.3 Linux Compatibility and Determining Factors

37

Table 5.9 Compatibility Ranges

Library Name CPU Minimum GLIBC GLIBCXX Range

x64Linux3gcc4.8.2 x64 2.17 6.0.19 <= X < 6.0.21

x64Linux4gcc7.3.0 x64 2.25 6.0.21 <= X

armv8Linux4gcc7.3.0 Arm v8 2.25 6.0.21 <= X

5.1.3.2 How to determine the GLIBC version on your target system

There are two ways to determine the GLIBC version in a target system. On most systems, you can run
ldd --version. If the command ldd is not available, you must find where the libc.so library is located,
then execute it. This will provide you the version of the library in the terminal. Note that you must per-
form this process on the target system in the case of cross-compiled architectures.

As an example, you can see the following output from an Ubuntu 20.04 system:
$ ldd --version
ldd (Ubuntu GLIBC 2.31-0ubuntu9.2) 2.31
Copyright (C) 2020 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Written by Roland McGrath and Ulrich Drepper.
$ ./lib/x86_64-linux-gnu/libc.so.6
GNU C Library (Ubuntu GLIBC 2.31-0ubuntu9.2) stable release version 2.31.
Copyright (C) 2020 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Compiled by GNU CC version 9.3.0.
libc ABIs: UNIQUE IFUNC ABSOLUTE
For bug reporting instructions, please see:
<https://bugs.launchpad.net/ubuntu/+source/glibc/+bugs>.

Given the output of both commands, we can say that the GLIBC version of this system is 2.31.

5.1.3.3 How to determine the GLIBCXX version on your target system

To determine the GLIBCXX version of the target system, you must find the libstdc++.so.6.0.XX lib-
rary on your system. On some systems, you may have a libstdc++.so file, which is a symbolic link to
the actual library.

The name of the libstdc++ library provides the version number, such as "6.0.XX" at the end of its
name. Note that you must perform this process in the target system in the case of cross-compiled archi-
tectures. As an example, you can see the following output from an Ubuntu 20.04 system:
$ ls -l lib/x86_64-linux-gnu/libstdc++.so.6
lrwxrwxrwx 1 root root 19 May 29 2021 lib/x86_64-linux-gnu/libstdc++.so.6 ->
libstdc++.so.6.0.28



5.1.4 How the Connext Libraries were Built

Given this output, we can determine that the GLIBCXX version for this system is 6.0.28.

5.1.4 How the Connext Libraries were Built

Table 5.10 Library-Creation Details for Linux Architectures provides details on how RTI built the
Linux libraries. This table is provided strictly for informational purposes. You do not need to use these
parameters to compile your application. You may find this information useful if you are involved in
any in-depth debugging.

RTI Architecture Library Format Compiler Flags Used by RTI

armv7Linux4gcc7.5.0

Release
(static and dynamic)

-Wall -Wno-unknown-pragmas -march=armv7 -mthumb -mfloat-abi=hard
-mabi=aapcs-linux -fno-omit-frame-pointer -funwind-tables -O -DNDEBUG -fPIC
-Werror=implicit-function-declaration

Debug
(static and dynamic)

-Wall -Wno-unknown-pragmas -march=armv7 -mthumb -mfloat-abi=hard
-mabi=aapcs-linux -fno-omit-frame-pointer -funwind-tables -O0 -g -fPIC
-Werror=implicit-function-declaration

armv8Linux4gcc7.3.0

Static Release
-O -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -funwind-tables
-O -DNDEBUG -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"armv8Linux4gcc7.3.0\"
-Werror=implicit-function-declaration

Static Debug
-O0 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -funwind-tables
-O0 -g -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"armv8Linux4gcc7.3.0\"
-Werror=implicit-function-declaration

Dynamic Release
-O -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -funwind-tables
-O -DNDEBUG -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"armv8Linux4gcc7.3.0\"
-Werror=implicit-function-declaration

Dynamic Debug
-O0 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -funwind-tables
-O0 -g -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"armv8Linux4gcc7.3.0\"
-Werror=implicit-function-declaration

armv8Linux-armgcc9.2.1

Static Release
-DLINUX -DPtrIntType=long -DTARGET="armv8Linux-armgcc9.2.1" -O -Wall
-Wno-unknown-pragmas -feliminate-unused-debug-types -fno-omit-frame-pointer
-funwind-tables -O -DNDEBUG -fPIC -Werror=implicit-function-declaration

Static Debug
-DLINUX -DPtrIntType=long -DTARGET="armv8Linux-armgcc9.2.1" -O -Wall
-Wno-unknown-pragmas -feliminate-unused-debug-types -fno-omit-frame-pointer
-funwind-tables -O0 -g -fPIC -Werror=implicit-function-declaration

Dynamic Release
-DLINUX -DPtrIntType=long -DTARGET="armv8Linux-armgcc9.2.1" -O -Wall
-Wno-unknown-pragmas -feliminate-unused-debug-types -fno-omit-frame-pointer
-funwind-tables -O -DNDEBUG -fPIC -Werror=implicit-function-declaration

Dynamic Debug
-DLINUX -DPtrIntType=long -DTARGET="armv8Linux-armgcc9.2.1" -O -Wall
-Wno-unknown-pragmas -feliminate-unused-debug-types -fno-omit-frame-pointer
-funwind-tables -O0 -g -fPIC -Werror=implicit-function-declaration

Table 5.10 Library-Creation Details for Linux Architectures

38



5.1.4 How the Connext Libraries were Built

39

RTI Architecture Library Format Compiler Flags Used by RTI

i86Linux3gcc4.8.2

Static Release
-O -m32 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O
-DNDEBUG -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"i86Linux3gcc4.8.2\"
-Werror=implicit-function-declaration

Static Debug
-O0 -m32 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O0
-g -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"i86Linux3gcc4.8.2\"
-Werror=implicit-function-declaration

Dynamic Release
-O -m32 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O
-DNDEBUG -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"i86Linux3gcc4.8.2\"
-Werror=implicit-function-declaration

Dynamic Debug
-O0 -m32 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O0
-g -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"i86Linux3gcc4.8.2\"
-Werror=implicit-function-declaration

i86RedHawk8.4gcc8.5.0

Static Release -m32 -Wall -Wno-unknown-pragmas -O -DNDEBUG -Werror=implicit-function-declaration

Static Debug -m32 -Wall -Wno-unknown-pragmas -O0 -g -Werror=implicit-function-declaration

Dynamic Release -m32 -Wall -Wno-unknown-pragmas -O -DNDEBUG -fPIC -Werror=implicit-function-declaration

Dynamic Debug -m32 -Wall -Wno-unknown-pragmas -O0 -g -fPIC -Werror=implicit-function-declaration

x64Linux3gcc4.8.2

Static Release
-O -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer
-O -DNDEBUG -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux3gcc4.8.2\"
-Werror=implicit-function-declaration

Static Debug
-O0 -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer
-O0 -g -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux3gcc4.8.2\"
-Werror=implicit-function-declaration

Dynamic Release
-O -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer
-O -DNDEBUG -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux3gcc4.8.2\"
-Werror=implicit-function-declaration

Dynamic Debug
-O0 -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer
-O0 -g -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux3gcc4.8.2\"
-Werror=implicit-function-declaration

x64Linux4gcc7.3.0

Static Release
-O -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer
-O -DNDEBUG -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0\"
-Werror=implicit-function-declaration

Static Debug
-O0 -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer
-O0 -g -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0\"
-Werror=implicit-function-declaration

Dynamic Release
-O -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer
-O -DNDEBUG -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0\"
-Werror=implicit-function-declaration

Dynamic Debug
-O0 -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer
-O0 -g -fPIC -DLINUX -DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0\"
-Werror=implicit-function-declaration

Table 5.10 Library-Creation Details for Linux Architectures



5.1.4 How the Connext Libraries were Built

RTI Architecture Library Format Compiler Flags Used by RTI

x64Linux4gcc7.3.0FACE_GP

Static Release

-O -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O -DNDEBUG -fPIC 
-DLINUX -DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0FACE_GP\"
-DFACE_COMPLIANCE_LEVEL_GENERAL=4
-DENABLE_FACE_COMPLIANCE=FACE_COMPLIANCE_LEVEL_GENERAL
-Werror=implicit-function-declaration

Static Debug

-O0 -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O0 -g -fPIC -DLINUX
-DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0FACE_GP\"
-DFACE_COMPLIANCE_LEVEL_GENERAL=4
-DENABLE_FACE_COMPLIANCE=FACE_COMPLIANCE_LEVEL_GENERAL
-Werror=implicit-function-declaration

Dynamic Release

-O -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O -DNDEBUG -fPIC
-DLINUX -DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0FACE_GP\"
-DFACE_COMPLIANCE_LEVEL_GENERAL=4
-DENABLE_FACE_COMPLIANCE=FACE_COMPLIANCE_LEVEL_GENERAL
-Werror=implicit-function-declaration

Dynamic Debug

-O0 -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O0 -g -fPIC -DLINUX
-DPtrIntType=long -DTARGET=\"x64Linux4gcc7.3.0FACE_GP\"
-DFACE_COMPLIANCE_LEVEL_GENERAL=4
-DENABLE_FACE_COMPLIANCE=FACE_COMPLIANCE_LEVEL_GENERAL
-Werror=implicit-function-declaration

x64Linux5Unreal5.2clang15

Release
(static and dynamic)

--sysroot=<unreal_install_path>/Engine/Extras/ThirdPartyNotUE/SDKs/HostLinux/
Linux_x64/v21_clang-15.0.1-centos7/x86_64-unknown-linux-gnu -O0
-fno-omit-frame-pointer -DNDEBUG -fPIC -Werror=implicit-function-declaration -fuse-ld=lld

Debug
(static and dynamic)

--sysroot=<unreal_install_path>/Engine/Extras/ThirdPartyNotUE/SDKs/HostLinux/
Linux_x64/v21_clang-15.0.1-centos7/x86_64-unknown-linux-gnu -O0
-fno-omit-frame-pointer -g -fPIC -Werror=implicit-function-declaration -fuse-ld=lld

x64RedHawk8.4gcc8.5.0

Static Release -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O -DNDEBUG
-Werror=implicit-function-declaration

Static Debug -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O0 -g
-Werror=implicit-function-declaration

Dynamic Release -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O -DNDEBUG -fPIC
-Werror=implicit-function-declaration

Dynamic Debug -m64 -Wall -Wno-unknown-pragmas -fno-omit-frame-pointer -O0 -g -fPIC
-Werror=implicit-function-declaration

All supported Linux
architectures for Java

Dynamic Release -target 1.8 -source 1.8

Dynamic Debug -target 1.8 -source 1.8 -g

Table 5.10 Library-Creation Details for Linux Architectures

40



5.2 Running Your Applications

41

5.2 Running Your Applications

For the environment variables that must be set at run time, see Table 5.11 Running Instructions for
Linux Architectures below.

RTI Architecture Library Format Environment Variables

All supported Linux
architectures when using
Java

N/A
LD_LIBRARY_PATH= ${NDDSHOME}/lib/<architecture>: ${LD_LIBRARY_PATH}

Note: For all 64-bit Java architectures (...64Linux...), use -d64 in the command line.

All supported Linux
architectures when not
using Java

Static
(Release & Debug) None required

Dynamic
(Release & Debug) LD_LIBRARY_PATH= ${NDDSHOME}/lib/<architecture>: ${LD_LIBRARY_PATH}

Table 5.11 Running Instructions for Linux Architectures

5.3 Support for the Modern C++ API

Connext provides two C++ APIs, which we refer to as the "Traditional C++" and "Modern C++" APIs.

l The Modern C++ API requires C++11 compilers or newer.
l The Traditional C++ API supports C++98 compilers or newer.

For more information, see Traditional vs. Modern C++, in the RTI Connext Core Libraries User's
Manual.

The Modern C++ API is available for all supported Linux platforms except the POSIX-compliant archi-
tectures that end with "FACE_GP" and the x64Linux5Unreal5.2clang15 architecture (because it
requires Run-Time Type Information, which is not supported by the Unreal Engine).

5.4 Support for the .NET (C#) API

The C# API is supported on Intel x64, Arm v7, and Arm v8 CPUs. For more information on .NET, see
the Connext C# API Reference.

5.5 Support for the Python API

The Python API is supported for Python 3.6 - 3.12, on Intel x64 and Arm v8 CPUs. For more inform-
ation, see the Connext Python API Reference.

https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_csharp/index.html
https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_python/index.html


5.6 Multicast Support

5.6 Multicast Support

Multicast is supported on all Linux platforms and is configured out of the box. That is, the default
value for the initial peers list (NDDS_DISCOVERY_PEERS) includes a multicast address. See the
API Reference HTML documentation for more information.

5.7 Transports

l Shared memory: Supported and enabled by default. To clean up shared memory resources,
reboot the kernel.

l UDPv4: Supported and enabled by default.
l UDPv6: Supported for all platforms.

The UDPv6 transport is not enabled by default, and the peers list must be modified to support
IPv6.

Traffic Class support is only provided on architectures with gcc 4.1.0 or later that support the
UDPv6 transport.

l TCP/IPv4: Supported for all Linux platforms, except POSIX-compliant architectures that end
with "FACE_GP". This is not a built-in transport.

5.7.1 Shared Memory Support

To see a list of shared memory resources in use, please use the 'ipcs' command. To clean up shared
memory and shared semaphore resources, please use the 'ipcrm' command.

The shared memory keys used by Connext are in the range of 0x400000. For example:
ipcs -m | grep 0x004

The shared semaphore keys used by Connext are in the range of 0x800000; the shared mutex keys are
in the range of 0xb00000. For example:
ipcs -s | grep 0x008
ipcs -s | grep 0x00b

Please refer to the shared-memory transport online documentation for details on the shared memory and
semaphore keys used by Connext.

5.8 Limitations of FACE Architectures

This section describes limitations when using a FACE architecture. This is a POSIX-compliant archi-
tectures, available with RTI Connext TSS:

l x64Linux4gcc7.3.0FACE_GP

42



5.9 Monotonic Clock Support

43

The builtin shared memory transport of this architecture will not interoperate with non-FACE archi-
tectures.

When using the shared memory transport, shared memory resources may not be cleaned up by Connext.
Consequently, each application should clean up its own shared memory resources by removing the files
in /dev/shm/RTIOsapiSharedMemorySegment.

The following features, utilities, and tools are not supported by the FACE architecture:

l Java, Python, .NET, and Modern C++ APIs
l Backtrace
l Cmake Find package
l Distributed Logger
l Durable writer history and durable reader state
l Modern C++
l Monitoring
l Real-time clock
l Request/Reply communication pattern
l Remote Procedure Calls
l Setting thread names by Connext at the operating-system level
l RTI DDS Ping and Spy

See also: Supported Platforms tables in the RTI Connext Core Libraries Release Notes. These tables
show which RTI products are supported for each platform.

5.9 Monotonic Clock Support

The monotonic clock (described in Configuring the Clock per DomainParticipant, in the RTI Connext
Core Libraries User's Manual) is supported on all Linux platforms.

5.10 Thread Configuration

Table 5.12 Thread Settings for Linux Platforms on the next page lists the thread settings for Linux plat-
forms.

See also: Table 5.13 Thread-Priority Definitions for Linux Platforms on page 45 and Table 5.14 Thread
Kinds for Linux Platforms on page 45.

../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf


5.10.1 Support for Controlling CPU Core Affinity for RTI Threads

5.10.1 Support for Controlling CPU Core Affinity for RTI Threads

Support for controlling CPU core affinity (described in "Controlling CPU Core Affinity" in the User's
Manual) is available on all supported Linux platforms except x64Linux5Unreal5.2clang15.

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

Asynchronous Publisher,

Asynchronous flushing thread

mask OS default thread type

priority OS default thread priority

stack_size OS default thread stack size

cpu_list Empty CPU list (Supported on Linux platforms)

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Database thread

mask DDS_THREAD_SETTINGS_STDIO

priority OS default thread priority

stack_size OS default thread stack size

cpu_list Empty CPU list

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Event thread

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority OS default thread priority

stack_size OS default thread stack size

cpu_list Empty CPU list

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

ReceiverPool threads

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority OS default thread priority

stack_size OS default thread stack size

cpu_list Empty CPU list

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Table 5.12 Thread Settings for Linux Platforms

44

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf


5.10.2 Using REALTIME_PRIORITY

45

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_DEFAULT

If any of these constants are used to set the priority of the thread in
the QoS, the OS's default thread priority will be used.

THREAD_PRIORITY_HIGH

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_LOW

Table 5.13 Thread-Priority Definitions for Linux Platforms

Thread Kinds Operating-System Configurationa

DDS_THREAD_SETTINGS_FLOATING_POINT  N/A

DDS_THREAD_SETTINGS_STDIO N/A

DDS_THREAD_SETTINGS_REALTIME_PRIORITY Set schedule policy to SCHED_FIFO

DDS_THREAD_SETTINGS_PRIORITY_ENFORCE N/A

Table 5.14 Thread Kinds for Linux Platforms

5.10.2 Using REALTIME_PRIORITY

If the mask field includes DDS_THREAD_SETTINGS_REALTIME_PRIORITY, a value must also be
explicitly specified for the "priority" field in the QoS. (This is because using DDS_THREAD_
SETTINGS_REALTIME_PRIORITY changes the scheduler used by Linux for the thread to SCHED_
FIFO. If the priority field is not explicitly set, it will default to a value of 0, but this is an invalid value
for a priority when using SCHED_FIFO.) Note that running with REALTIME_PRIORITY requires the
appropriate privileges: the process will need to be run with root privileges on Linux in order to set the
scheduler.

aSee the Linux programmer’s manuals for more information.



5.11 Durable Writer History and Durable Reader State Features

5.11 Durable Writer History and Durable Reader State Features

The Durable Writer History and Durable Reader State features have been tested with all supported
Linux architectures except:

l x64RedHawk8.4gcc8.5.0
l i86RedHawk8.4gcc8.5.0
l x64Linux4gcc7.3.0FACE_GP
l armv8Linux-armgcc9.2.1

5.12 Support for 'Find Package' CMake Script

The 'Find Package' CMake script is only supported on these Linux platforms:

l x64Linux3gcc4.8.2
l x64Linux4gcc7.3.0
l x64Linux5Unreal5.2clang15

For information on using this script, see 2.5 Building with CMake on page 8

5.13 Backtrace Support

Backtrace is supported on all Linux platforms except POSIX-compliant architectures that end with
"FACE_GP".

l If you are using GCC 6 or newer, you must link the executable with -no-pie in order to correctly
generate backtraces. See the Note below Table 5.2 Building Instructions for Linux Architectures.

l You will also need to compile with -fno-omit-frame-pointer.
l For Linux architectures on Arm CPUs, also use the -funwind-tables compiler option. This
creates a table that allows the program to walk back through the function call stack from a given
execution point.

l Symbol names may be unavailable without the use of special linker options. RTI has compiled
Linux architectures using the linker option -rdynamic to display backtrace information. To dis-
play backtrace information on your Linux architecture, you must also compile with -rdynamic.

See Logging a Backtrace for Failures, in the RTI Connext Core Libraries User's Manual.

46



5.14 Support for Remote Procedure Calls (RPC)

47

5.14 Support for Remote Procedure Calls (RPC)

RPC is an experimental feature, only available for the C++11 API. It is only supported on these Linux
architectures:

l armv8Linux-armgcc9.2.1
l armv7Linux4gcc7.5.0
l armv8Linux4gcc7.3.0
l i86RedHawk8.4gcc8.5.0
l x64Linux4gcc7.3.0
l x64RedHawk8.4gcc8.5.0

See Remote Procedure Calls, in the RTI Connext Core Libraries User's Manual.



Chapter 6 macOS Platforms
Table 6.1 Supported macOS Platforms in Connext 7.3.0 LTS lists the architectures supported on
macOS® operating systems.

Operating System CPU Compiler RTI Architecture Abbreviation

macOS 11, 12 , and 13
(host and target)

x64
clang 12.0, 13.0, 14.0
or
AdoptOpenJDK 17.0.6

x64Darwin20clang12.0

Arm v8
clang 12.0, 13.0, 14.0
or
AdoptOpenJDK 17.0.6

arm64Darwin20clang12.0

Table 6.1 Supported macOS Platforms in Connext 7.3.0 LTS

6.1 Building Applications for macOS Platforms

Table 6.2 Building Instructions for macOS Architectures lists the compiler flags and libraries
you will need to link into your application. Depending on which Connext features you want to
use, you may need additional libraries; see 6.1.1 Additional Libraries for Other Features on
page 51.

Make sure you are consistent in your use of static, dynamic, debug and release versions
of the libraries. Do not link both static and dynamic libraries. Similarly, do not mix
release and debug libraries.

48



6.1 Building Applications for macOS Platforms

49

API Library Format Required RTI Libraries [a] [b] Required System Libraries Required Compiler Flags

C++
(Traditional
and Modern
APIs)

Static Release

libnddscorez.a
libnddscz.a

libnddscppz.a
or
libnddscpp2z.a

librticonnextmsgcppz.a
or
librticonnextmsgcpp2z.a

-ldl -lm -lpthread

For x64 architectures:

-dynamic

-single_module

-DRTI_UNIX

-DRTI_DARWIN

-DRTI_64BIT

For Arm v8 architectures:

-DRTI_UNIX

-DRTI_DARWIN

Static Debug

libnddscorezd.a
libnddsczd.a

libnddscppzd.a
or
libnddscpp2zd.a

librticonnextmsgcppzd.a
or
librticonnextmsgcpp2zd.a

Dynamic Release

libnddscore.dylib
libnddsc.dylib

libnddscpp.dylib
or
libnddscpp2.dylib

librticonnextmsgcpp.dylib
or
librticonnextmsgcpp2.dylib

Dynamic Debug

libnddscored.dylib
libnddscd.dylib

libnddscppd.dylib
or
libnddscpp2d.dylib

librticonnextmsgcppd.dylib
or
librticonnextmsgcpp2d.dylib

Table 6.2 Building Instructions for macOS Architectures

[a] Choose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
bThe Connext C/C++ libraries are in <NDDSHOME>/lib/<architecture>/.
<NDDSHOME> is where Connext is installed, see 1.1 Paths Mentioned in Documentation on page 3



6.1 Building Applications for macOS Platforms

API Library Format Required RTI Libraries [a] [b] Required System Libraries Required Compiler Flags

C

Static Release

libnddscorez.a

libnddscz.a

librticonnextmsgcz.a

-ldl -lm -lpthread

For x64 architectures:

-dynamic

-single_module

-DRTI_UNIX

-DRTI_DARWIN

-DRTI_64BIT

For Arm v8 architectures:

-DRTI_UNIX

-DRTI_DARWIN

Static Debug

libnddscorezd.a

libnddsczd.a

librticonnextmsgczd.a

Dynamic Release

libnddscore.dylib

libnddsc.dylib

librticonnextmsgc.dylib

Dynamic Debug

libnddscored.dylib

libnddscd.dylib

librticonnextmsgcd.dylib

Java

Release
nddsjava.jar

rticonnextmsg.jar
N/A None required

Debug
nddsjavad.jar

rticonnextmsgd.jar

Table 6.2 Building Instructions for macOS Architectures

[a] Choose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
bThe Connext C/C++ libraries are in <NDDSHOME>/lib/<architecture>/.
<NDDSHOME> is where Connext is installed, see 1.1 Paths Mentioned in Documentation on page 3

50



6.1.1 Additional Libraries for Other Features

51

6.1.1 Additional Libraries for Other Features

6.1.1.1 Libraries Required for Distributed Logger

RTI Distributed Logger is supported on macOS platforms. Table 6.3 Additional Libraries for using RTI
Distributed Logger lists the additional libraries you will need in order to use Distributed Logger.

Language
Static Dynamic

Release Debug Release Debug

C++
(Traditional API)

librtidlcz.a
librtidlcppz.a

librtidlczd.a
librtidlcppzd.a

librtidlc.dylib
librtidlcpp.dylib

librtidlcd.dylib
librtidlcppd.dylib

C librtidlcz.a librtidlczd.a librtidlc.dylib librtidlcd.dylib

Java N/A N/A distlog.jar
distlogdatamodel.jar

distlogd.jar
distlogdatamodeld.jar

Table 6.3 Additional Libraries for using RTI Distributed Logger

6.1.1.2 Libraries Required for Monitoring

Make sure you are consistent in your use of static, dynamic, debug and release versions of the libraries.
For example, if your Connext application is linked with the static release version of the Connext lib-
raries, you will need to also use the static release version of the monitoring library. Do not link both
static and dynamic libraries. Similarly, do not mix release and debug libraries.

If you are statically linking your application with DDS libraries and you want to add monitoring to
your application, you will also need to statically link the monitoring library. The library cannot be
loaded dynamically strictly through the QoS profile because it also depends on DDS to publish its data.
Therefore, it depends on DDS; the DDS functionality would cause duplicate symbols to be found res-
ulting, in the termination of the process.

Note: If you are plan to use static libraries, the RTI library in Table 6.4 Additional Libraries for Using
Monitoring must appear first in the list of libraries to be linked.

Library Format Monitoring Libraries [a]

Dynamic Release librtimonitoring.dylib

Dynamic Debug librtimonitoringd.dylib

Table 6.4 Additional Libraries for Using Monitoring

[a] These libraries are in <NDDSHOME>/lib/<architecture>.



6.1.1 Additional Libraries for Other Features

Library Format Monitoring Libraries [a]

Static Release librtimonitoringz.a

Static Debug librtimonitoringzd.a

Table 6.4 Additional Libraries for Using Monitoring

6.1.1.3 Libraries Required for Real-Time WAN Transport

If you choose to use Real-Time WAN Transport, you must download and install a separate package that
contains the transport libraries. See the RTI Real-Time WAN Transport Installation Guide for details.

Using Real-Time WAN Transport requires one of the libraries in Table 6.5 Additional Libraries for
Using Real-Time WAN Transport APIs. Select the file appropriate for your chosen library format.

For more information, see Enabling Real-Time WAN Transport, in the RTI Connext Core Libraries
User's Manual.

Library Format Real-Time WAN Transport Libraries [b]

Dynamic Release libnddsrwt.dylib

Dynamic Debug libnddsrwtd.dylib

Static Release libnddsrwtz.a

Static Debug libnddsrwtzd.a

Table 6.5 Additional Libraries for Using Real-Time WAN Transport APIs

6.1.1.4 Libraries Required for TCP Transport

To use the TCP Transport APIs, link against the additional libraries in Table 6.6 Additional Libraries
for using RTI TCP Transport APIs. If you are using RTI TLS Support, see Table 6.7 Additional Librar-
ies for using RTI TCP Transport APIs with TLS Enabled. Select the files appropriate for your chosen
library format.

[a] These libraries are in <NDDSHOME>/lib/<architecture>.
[b] These libraries are in <NDDSHOME>/lib/<architecture>.

52

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/addon_products/realtime_wan_transport/installation_guide/RTI_RealTime_WAN_Transport_InstallationGuide.pdf


6.1.1 Additional Libraries for Other Features

53

Library Format RTI TCP Transport Libraries [a]

Dynamic Release libnddstransporttcp.dylib

Dynamic Debug libnddstransporttcpd.dylib

Static Release libnddstransporttcpz.a

Static Debug libnddstransporttcpzd.a

Table 6.6 Additional Libraries for using RTI TCP Transport APIs

Library Format RTI TLS Libraries [b] OpenSSL Libraries [c]

Dynamic Release libnddstls.dylib
libssl.dylib
libcrypto.dylib

Dynamic Debug libnddstlsd.dylib

Static Release libnddstlsz.a
libsslz.a
libcryptoz.a

Static Debug libnddstlszd.a

Table 6.7 Additional Libraries for using RTI TCP Transport APIs with TLS Enabled

6.1.1.5 Libraries Required for Zero Copy Transfer Over Shared Memory

To use the Zero Copy Transfer Over Shared Memory feature, link against the additional library in
Table 6.8 Additional Libraries for Zero Copy Transfer Over Shared Memory .

Library Format Zero Copy Transfer Over Shared Memory Library

Dynamic Release libnddsmetp.dylib

Dynamic Debug libnddsmetpd.dylib

Static Release libnddsmetpz.a

Static Debug libnddsmetpzd.a

Table 6.8 Additional Libraries for Zero Copy Transfer Over Shared Memory

[a] These libraries are in <NDDSHOME>/lib/<architecture>.
[b] These libraries are in <NDDSHOME>/lib/<architecture>.
[c] OpenSSL libraries are in <NDDSHOME>/third_party/openssl-3.0.12/<architecture>/<format>/lib..



6.1.2 How the Connext Libraries were Built

6.1.2 How the Connext Libraries were Built

Table 6.9 Library-Creation Details for macOS Architectures provides details on how the libraries were
built by RTI. This table is provided strictly for informational purposes; you do not need to use these
parameters to compile your application. You may find this information useful if you are involved in
any in-depth debugging.

RTI Architecture Library Format
(Static & Dynamic) Compiler Flags Used by RTI

arm64Darwin20clang12.0

Release -Dunix -O -Wall -Wno-unknown-pragmas -Wno-trigraphs -Wmissing-field-initializers
-Wuninitialized -O -DNDEBUG -fPIC -Werror=implicit-function-declaration

Debug -Dunix -O0 -Wall -Wno-unknown-pragmas -Wno-trigraphs -Wmissing-field-initializers
-Wuninitialized -O0 -g -fPIC -Werror=implicit-function-declaration

x64Darwin20clang12.0

Release
-arch x86_64 -Wno-trigraphs -fpascal-strings -fasm-blocks -O -Wall -Wno-unknown-pragmas
-DPtrIntType=long -DTARGET=\"x64Darwin20clang12.0\" -DNDEBUG
-Werror=implicit-function-declaration

Debug
-arch x86_64 -Wno-trigraphs -fpascal-strings -fasm-blocks -g -O -Wall
-Wno-unknown-pragmas -DPtrIntType=long -DTARGET=\"x64Darwin20clang12.0\"
-Werror=implicit-function-declaration

arm64Darwin20clang12.0
and
x64Darwin20clang12.0
for Java

Release -target 1.8 -source 1.8

Debug -target 1.8 -source 1.8 -g

Table 6.9 Library-Creation Details for macOS Architectures

54



6.2 Running User Applications

55

6.2 Running User Applications

Table 6.10 Running Instructions for macOS Architectures provides details on the environment variables
that must be set at run time for a macOS architecture.

RTI Architecture
Library Format
(Release &
Debug)

Required Environment Variables [a]

arm64Darwin20clang12.0
Static None required

Dynamic DYLD_LIBRARY_PATH=${NDDSHOME}/lib/arm64Darwin20clang12.0:${DYLD_LIBRARY_PATH}

arm64Darwin20clang12.0
for Java N/A DYLD_LIBRARY_PATH=${NDDSHOME}/lib/arm64Darwin20clang12.0:${DYLD_LIBRARY_ PATH}

x64Darwin20clang12.0
Static None required

Dynamic DYLD_LIBRARY_PATH=${NDDSHOME}/lib/x64Darwin20clang12.0:${DYLD_LIBRARY_ PATH}

x64Darwin20clang12.0
for Java N/A DYLD_LIBRARY_PATH=${NDDSHOME}/lib/x64Darwin20clang12.0:${DYLD_LIBRARY_ PATH}

Table 6.10 Running Instructions for macOS Architectures

6.3 Support for the Modern C++ API

Connext provides two C++ APIs, which we refer to as the "Traditional C++" and "Modern C++" APIs.

l The Modern C++ API requires C++11 compilers or newer.
l The Traditional C++ API supports C++98 compilers or newer.

For more information, see Traditional vs. Modern C++, in the RTI Connext Core Libraries User's
Manual.

6.4 Support for the .NET (C#) API

The C# API is supported on macOS platforms with Intel and Apple silicon (Arm v8) CPUs. For more
information on .NET, see the Connext C# API Reference.

[a] ${NDDSHOME} is where Connext is installed. ${DYLD_LIBRARY_PATH} represents the value of the DYLD_LIBRARY_PATH
variable prior to changing it to support Connext. When using nddsjava.jar, the Java virtual machine (JVM) will attempt to load release
versions of the native libraries (nddsjava.dylib, nddscore.dylib, nddsc.dylib). When using nddsjavad.jar, the JVM will attempt to load
debug versions of the native libraries (nddsjava.dylib, nddscore.dylib, nddsc.dylib).

https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_csharp/index.html


6.5 Support for the Python API

6.5 Support for the Python API

The Python API is supported on macOS platforms Intel and Apple silicon (Arm v8) CPUs. For more
information, see the Connext Python API Reference.

6.6 Multicast Support

Multicast is supported on macOS platforms and is configured out of the box. That is, the default value
for the initial peers list (NDDS_DISCOVERY_PEERS) includes a multicast address. See the online
documentation for more information.

6.7 Transports

l Shared memory: Supported and enabled by default
l UDPv4: Supported and enabled by default
l UDPv6: Supported
l TCP/IPv4: Supported

6.8 Unsupported Features

These features are not supported on macOS platforms:

l Controlling CPU Core Affinity
l Monotonic clock

See also: Supported Platforms tables in the RTI Connext Core Libraries Release Notes. These tables
show which RTI products are supported for each platform.

6.9 System Integrity Protection (SIP)

A feature called System Integrity Protection (SIP) was introduced in macOS 10.11. If enabled, this fea-
ture strips out the environment variable DYLD_LIBRARY_PATH, which is used to specify the loc-
ation of shared libraries for a program. For more details, see https://support.apple.com/en-
us/HT204899.

6.9.1 SIP and Java Applications

If you run Connext applications using a Java Runtime Environment located under one of the paths pro-
tected by SIP (e.g., /usr/bin) and rely on the DYLD_LIBRARY_PATH environment variable to set the
path to the Connext run-time libraries (or any other third party run-time libraries, such as OpenSSL),
Java will fail to load them with an error message such as:

56

https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_python/index.html
../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf
https://support.apple.com/en-us/HT204899
https://support.apple.com/en-us/HT204899


6.9.1 SIP and Java Applications

57

The library libnddsjava.dylib could not be loaded by your operating system

To overcome this limitation, when running Java applications on macOS systems, you must use the
java.library.path variable instead of the DYLD_LIBRARY_PATH environment variable to indicate
the path to the Connext libraries. This is automatically performed by the scripts to run applications gen-
erated by the RTI Code Generator. However, if you are manually running your Connext application
using the Java Runtime Environment, or you are writing our own scripts to run your Java application,
you can indicate it as follows:
java -Djava.library.path="<installation_dir>/lib/<architecture>" -classpath
.:"<installation_dir>/lib/java/nddsjava.jar" <your_class>

Additionally, some Connext applications may need to dynamically load functionality that is imple-
mented in separate libraries (e.g., for the RTI Monitoring Library or transport plugins such as
RTI TLS Support). In that case, specifying the path to the lib directory using java.library.path is not
sufficient, because the path to those libraries is not exposed to the underlying Connext infrastructure.

To work around this limitation, you must provide the full path and extension of the dynamic libraries
that are loaded at run time. In the case of the RTI Monitoring Library, this implies adding the following
to your XML configuration file:
<domain_participant_qos>

<property>
<value>

<element>
<name>rti.monitor.library</name>
<value>/full-path-to-librtimonitoring.dylib</value>

</element>
<!-- ... -->

</value>
</property>

</domain_participant_qos>

Likewise, for transport plugins that are loaded dynamically (e.g., the TCP transport plugin), you must
add the full path to the XML configuration file:
<domain_participant_qos>

<property>
<!-- ... -->
<value>

<element>
<name>dds.transport.TCPv4.tcp1.library</name>
<value>/full-path-to-libnddstransporttcp.dylib</value>

</element>
<!-- ... -->

</value>
</property>

</domain_participant_qos>

For more on transport plugins, see 6.1.1.4 Libraries Required for TCP Transport on page 52.



6.9.2 SIP and Connext Tools, Infrastructure Services, and Utilities

6.9.2 SIP and Connext Tools, Infrastructure Services, and Utilities

The SIP feature also makes it impossible for the scripts under <installation_dir>/bin to pick up the
value of the DYLD_LIBRARY_PATH environment variable at run time. To workaround this issue,
Connext tools, infrastructure services, and utilities rely on RTI_LD_LIBRARY_PATH, an alternative
environment variable that can be used in lieu of DYLD_LIBRARY_PATH and LD_LIBRARY_PATH
to add library paths on Linux systems.

For example, to add <OPENSSLHOME>/lib and <NDDSHOME/lib/<architecture> (i.e., the library
paths required for running RTI Routing Service with the TLS transports) to your library path, you can
export the RTI_LD_LIBRARY_PATH environment variable and run Routing Service as follows:
export RTI_LD_LIBRARY_PATH=<OPENSSLHOME>/lib:<NDDSHOME>/lib/<ARCHITECTURE>

<installation_dir>/bin/rtiroutingservice -cfgName <your_configuration>

6.10 Thread Configuration

See Table 6.11 Thread Settings for macOS Platforms and Table 6.12 Thread-Priority Definitions for
macOS Platforms.

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

Asynchronous Publisher,

Asynchronous flushing thread

mask OS default thread type

priority OS default thread priority

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Database thread

mask DDS_THREAD_SETTINGS_STDIO

priority OS default thread priority

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Table 6.11 Thread Settings for macOS Platforms

58



6.11 Support for 'Find Package' CMake Script

59

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

Event thread

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority OS default thread priority

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

ReceiverPool threads

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority OS default thread priority

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Table 6.11 Thread Settings for macOS Platforms

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_DEFAULT

If any of these constants are used to set the priority of the thread in the QoS,
the OS's default thread priority will be used.

THREAD_PRIORITY_HIGH

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_LOW

Table 6.12 Thread-Priority Definitions for macOS Platforms

6.11 Support for 'Find Package' CMake Script

The 'Find Package' CMake script is supported on macOS platforms. For information on using this
script, see2.5 Building with CMake on page 8.

6.12 Backtrace Support

Backtrace is supported on macOS platforms and is configured out of the box. See Logging a Backtrace
for Failures, in the RTI Connext Core Libraries User's Manual.



6.13 Resolving NDDSUtility_sleep() Issues

6.13 Resolving NDDSUtility_sleep() Issues

When running on a macOS system, you may experience timing issues in your calls to NDDSUtility_
sleep(). If you request to sleep for a small enough time period, you will notice that the actual sleep time
is significantly longer.

macOS systems have a timer coalescing feature, enabled by default. This is a power-saving technique
that reduces the precision of software timers, achieving a reduction in CPU usage.

What effect does this have on your Connext application? Suppose you send samples from your pub-
lisher at a 5 ms rate, using NDDSUtility_sleep() to calculate that wait time. You have a subscriber with
a deadline set to 6 ms. The timer coalescing feature could make your sleep last much longer than 5-6
ms, so when the next sample reaches the subscriber, the deadline period has expired and you will exper-
ience missed samples.

If you are having similar issues, see if your kernel has timer coalescing enabled. You can tell by using
this command:
user@osx:~$ /usr/sbin/sysctl -a | grep coalescing_enabled

In the reply, a 1 means enabled, 0 means disabled.
kern.timer.coalescing_enabled: 1

To overcome this situation, you must disable timer coalescing in the kernel configuration. (Note that
you must have sudo or root access to be able to edit this kernel parameter.)
user@osx:~$ sudo /usr/sbin/sysctl -w kern.timer.coalescing_enabled=0

The reply should be:
kern.timer.coalescing_enabled: 1 -> 0

This change won’t be permanent though, and will go back to the default when the system is rebooted.

To make this change permanent, add the configuration line in the file /etc/sysctl.conf. You can use
your favorite editor to do it, or use this command:
user@osx:~$ sudo echo "kern.timer.coalescing_enabled=0" >> /etc/sysctl.conf

6.14 Support for Remote Procedure Calls (RPC)

RPC is an experimental feature. It is only available for the C++11 API. It is supported on macOS archi-
tectures.

See Remote Procedure Calls, in the RTI Connext Core Libraries User's Manual.

60



Chapter 7 QNX Platforms
Table 7.1 Supported QNX Platforms for Connext 7.3.0 LTS lists the architectures supported on
QNX operating systems.[a]

Operating System CPU Compiler RTI Architecture

QNX Neutrino 7.1
Arm v8 qcc_gpp 8.3.0 (GNU C++ library) armv8QNX7.1qcc_gpp8.3.0

x64 qcc_cxx 8.3.0 (LLVM C++ library) x64QNX7.1qcc_cxx8.3.0

The following rows show custom-supported target platforms, only available on demand.
Please contact your RTI sales representative or sales@rti.com for more information on using these platforms:

QNX Neutrino 7.0.4 [b]

Arm v7 qcc_cxx 5.4.0
armv7QNX7.0.0qcc_cxx5.4.0 [c]

(Custom support)

Arm v8 qcc_cxx 5.4.0 (LLVM C++ library)
armv8QNX7.0.0qcc_cxx5.4.0

(Custom support)

x64 qcc_gpp 5.4.0 (GNU C++ library)
x64QNX7.0.0qcc_gpp5.4.0

(Custom support)

QNX Neutrino 7.1 Arm v8 qcc_cxx 8.3.0 (LLVM C++ library)
armv8QNX7.1qcc_cxx8.3.0

(Custom support)

QNX for Safety (QOS 2.2) Arm v8 qcc_cxx 8.3.0 (LLVM C++ library)
armv8QOS2.2qcc_cxx8.3.0

(Custom support)

Table 7.1 Supported QNX Platforms for Connext 7.3.0 LTS

[a] For use with Windows or Linux hosts as supported by QNX and RTI.
[b] Tested with QNX 7.0.0 kernel.
[c] Requires a hardware FPU in the processor and is compatible with systems that have hard-float libc.

61



7.1 Building Applications for QNX Platforms

62

7.1 Building Applications for QNX Platforms

The libraries on Arm 7 CPUs require a hardware FPU in the processor and are compatible with systems
that have hard-float libc. See Table 7.9 Library-Creation Details for QNX Architectures for compiler
flag details.

Table 7.2 Building Instructions for QNX Architectures lists the libraries you will need to link into your
application.

Depending on which Connext features you want to use, you may need additional libraries; see 7.1.2
Additional Libraries for Other Features on page 64.

Additional Documentation: You should also review the QNX chapter of the RTI Connext Core Librar-
ies Getting Started Guide Addendum for Embedded Systems.

Make sure you are consistent in your use of static, dynamic, debug and release versions of the
libraries. Do not link both static and dynamic libraries. Similarly, do not mix release and debug
libraries.

../getting_started_platforms/embedded_systems_addendum/RTI_ConnextDDS_CoreLibraries_GettingStarted_EmbeddedSystemsAddendum.pdf
../getting_started_platforms/embedded_systems_addendum/RTI_ConnextDDS_CoreLibraries_GettingStarted_EmbeddedSystemsAddendum.pdf


7.1 Building Applications for QNX Platforms

API Library Format RTI Libraries [a] [b] Required
System Libraries

Required
Compiler Flags

C++
(Traditional and Modern APIs)

Static Release

libnddscorez.a
libnddscz.a

libnddscppz.a
or
libnddscpp2z.a

librticonnextmsgcppz.a
or
librticonnextmsgcpp2z.a

-lm -lsocket -DRTI_QNX

Static Debug

libnddscorezd.a
libnddsczd.a

libnddscppzd.a
or
libnddscpp2zd.a

librticonnextmsgcppzd.a
or
librticonnextmsgcpp2zd.a

Dynamic Release

libnddscore.so
libnddsc.so

libnddscpp.so
or
libnddscpp2.so

librticonnextmsgcpp.so
or
librticonnextmsgcpp2.so

Dynamic Debug

libnddscored.so
libnddscd.so

libnddscppd.so
or
libnddscpp2d.so

librticonnextmsgcppd.so
or
librticonnextmsgcpp2d.so

C

Static Release
libnddscorez.a
libnddscz.a
librticonnextmsgcz.a

-lm -lsocket -DRTI_QNX

Static Debug
libnddscorezd.a
libnddsczd.a
librticonnextmsgczd.a

Dynamic Release
libnddscore.so
libnddsc.so
librticonnextmsgc.so

Dynamic Debug
libnddscored.so
libnddscd.so
librticonnextmsgcd.so

Table 7.2 Building Instructions for QNX Architectures

[a] Choose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
[b] The DDS C/C++ libraries are in $(NDDSHOME)/lib/<architecture>.

63



7.1.1 Required Change for Building with C++ Libraries

64

7.1.1 Required Change for Building with C++ Libraries

The C++ libraries for QNX platforms are built without the -frtti flag and with the -fexceptions flag.
You must build your C++ applications without -fno-exceptions in order to link with the RTI libraries.
In summary:

l Do not use -fno-exceptions when building a C++ application or the build will fail.
l It is not necessary to use -fexceptions, but doing so will not cause a problem.
l It is not necessary to use -frtti, but doing so will not cause a problem.

7.1.2 Additional Libraries for Other Features

7.1.2.1 Libraries Required for Distributed Logger

RTI Distributed Logger is supported on all QNX platforms.

Table 7.3 Additional Libraries for using RTI Distributed Logger lists the additional libraries you will
need in order to use Distributed Logger.

Language
Static Dynamic

Release Debug Release Debug

C librtidlcz.a librtidlczd.a librtidlc.so librtidcd.so

C++
(Traditional API)

librtidlcz.a
librtidlcppz.a

librtidlczd.a
librtidlcppzd.a

librtidlc.so
librtidlcpp.so

librtidlcd.so
librtidlcppd.so

Table 7.3 Additional Libraries for using RTI Distributed Logger

7.1.2.2 Libraries Required for Monitoring

Make sure you are consistent in your use of static, dynamic, debug and release versions of the libraries.
For example, if your Connext application is linked with the static release version of the Connext lib-
raries, you will need to also use the static release version of the monitoring library. Do not link both
static and dynamic libraries. Similarly, do not mix release and debug libraries.

If you are statically linking your application with DDS libraries and you want to add monitoring to
your application, you will also need to statically link the monitoring library. The library cannot be
loaded dynamically strictly through the QoS profile because it also depends on DDS to publish its data.
Therefore, it depends on DDS; the DDS functionality would cause duplicate symbols to be found res-
ulting, in the termination of the process.



7.1.2 Additional Libraries for Other Features

Notes:

l To use static libraries: the RTI library from Table 7.4 Additional Libraries for Using Monitoring
must appear first in the list of libraries to be linked.

l To use dynamic libraries: make sure the permissions on the .so library files are readable by every-
one.

Library Format Monitoring Libraries [a]

Dynamic Release librtimonitoring.so

Dynamic Debug librtimonitoringd.so

Static Release librtimonitoringz.a

Static Debug librtimonitoringzd.a

Table 7.4 Additional Libraries for Using Monitoring

7.1.2.3 Libraries Required for Real-Time WAN Transport

If you choose to use RTI Real-Time WAN Transport, you must download and install a separate package
that contains the transport libraries. See the RTI Real-Time WAN Transport Installation Guide for
details.

Using Real-Time WAN Transport requires one of the libraries in Table 7.5 Additional Libraries for
Using RTI Real-Time WAN Transport APIs. Select the file appropriate for your chosen library format.

For more information, see Enabling Real-Time WAN Transport, in the RTI Connext Core Libraries
User's Manual.

[a] These libraries are in <NDDSHOME>/lib/<architecture>.

65

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/addon_products/realtime_wan_transport/installation_guide/RTI_RealTime_WAN_Transport_InstallationGuide.pdf


7.1.2 Additional Libraries for Other Features

66

Library Format Real-Time WAN Transport Libraries [a]

Dynamic Release libnddsrwt.so

Dynamic Debug libnddsrwtd.so

Static Release libnddsrwtz.a

Static Debug libnddsrwtzd.a

Table 7.5 Additional Libraries for Using RTI Real-Time WAN Transport APIs

7.1.2.4 Libraries Required for TCP Transport APIs and TLS Support

To use the TCP Transport APIs, link against the additional libraries in Table 7.6 Additional Libraries
for using RTI TCP Transport APIs .

Note: Not all platforms support the TCP Transport - see 7.5 Transports on page 71.

Library Format RTI TCP Transport Libraries [b]

Dynamic Release libnddstransporttcp.so

Dynamic Debug libnddstransporttcpd.so

Static Release libnddstransporttcpz.a

Static Debug libnddstransporttcpzd.a

Table 7.6 Additional Libraries for using RTI TCP Transport APIs

If you are using RTI TLS Support, also see Table 7.7 Additional Libraries for using RTI TCP Transport
APIs with TLS Enabled. (Select the files appropriate for your chosen library format.) See the RTI TLS
Support Release Notes for a list of supported platforms.

[a] These libraries are in <NDDSHOME>/lib/<architecture>.
[b] These libraries are in <NDDSHOME>/lib/<architecture>.

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/transports/tls_support/release_notes/RTI_TLS_Support_ReleaseNotes.pdf
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/transports/tls_support/release_notes/RTI_TLS_Support_ReleaseNotes.pdf


7.1.3 How the Connext Libraries were Built

Library Format RTI TLS Libraries [a] OpenSSL Libraries [b]

Dynamic Release libnddstls.so

libssl.so
libcrypto.so

Dynamic Debug libnddstlsd.so

Static Release libnddstlsz.a

Static Debug libnddstlszd.a

Table 7.7 Additional Libraries for using RTI TCP Transport APIs with TLS Enabled

7.1.2.5 Libraries Required for Zero Copy Transfer Over Shared Memory

To use the Zero Copy Transfer Over Shared Memory feature, link against the additional library in
Table 7.8 Additional Libraries for Zero Copy Transfer Over Shared Memory.

Library Format Zero Copy Transfer Over Shared Memory Libraries [c]

Dynamic Release libnddsmetp.so

Dynamic Debug libnddsmetpd.so

Static Release libnddsmetpz.a

Static Debug libnddsmetpzd.a

Table 7.8 Additional Libraries for Zero Copy Transfer Over Shared Memory

7.1.3 How the Connext Libraries were Built

Table 7.9 Library-Creation Details for QNX Architectures on the next page shows the compiler flags
that RTI used to build the Connext libraries. This is provided strictly for informational purposes; you do
not need to use these parameters to compile your application. You may find this information useful if
you are involved in any in-depth debugging.

The details for building user applications are in 7.1 Building Applications for QNX Platforms on
page 62.

[a] These libraries are in <NDDSHOME>/lib/<architecture>.
[b] OpenSSL libraries are in <NDDSHOME>/third_party/openssl-3.0.12/<architecture>/<format>/lib.
[c] These libraries are in <NDDSHOME>/lib/<architecture>.

67



7.1.3 How the Connext Libraries were Built

68

RTI Architecture Library Format Compiler Flags Used by RTI

armv8QNX7.1qcc_gpp8.3.0

Static Release
-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fPIC -fexceptions -DFD_SETSIZE=512 -O
-DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_gpp8.3.0\" -DNDEBUG -DRTI_QNX
-Werror-implicit-function-declaration

Static Debug
-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fPIC -fexceptions -DFD_SETSIZE=512 -O0 -g
-DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_gpp8.3.0\" -DRTI_QNX
-Werror-implicit-function-declaration

Dynamic Release
-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fexceptions -DFD_SETSIZE=512 -O
-DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_gpp8.3.0\"-DNDEBUG -DRTI_QNX -fPIC 
-Werror-implicit-function-declaration

Dynamic Debug
-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fexceptions -DFD_SETSIZE=512 -O0 -g
-DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_gpp8.3.0\" -DRTI_QNX -fPIC 
-Werror-implicit-function-declaration

x64QNX7.1qcc_cxx8.3.0

Static Release
-Vgcc/8.3.0,gcc_ntox86_64 -Y_cxx -DFD_SETSIZE=512 -O -DPtrIntType=long
-DCSREAL_IS_FLOAT -DCPU=AMD64 -DNDEBUG -DRTI_QNX -fPIC
-Werror-implicit-function-declaration

Static Debug
-Vgcc/8.3.0,gcc_ntox86_64 -Y_cxx -DFD_SETSIZE=512 -O0 -g -DPtrIntType=long
-DCSREAL_IS_FLOAT -DCPU=AMD64 -DTARGET=\"x64QNX7.1qcc_cxx8.3.0\"
-DRTI_QNX -fPIC -Werror-implicit-function-declaration

Dynamic Release
-Vgcc/8.3.0,gcc_ntox86_64 -Y_cxx -DFD_SETSIZE=512 -O -DPtrIntType=long
-DCSREAL_IS_FLOAT -DCPU=AMD64 -DNDEBUG -DRTI_QNX -fPIC
-Werror-implicit-function-declaration

Dynamic Debug
-Vgcc/8.3.0,gcc_ntox86_64 -Y_cxx -DFD_SETSIZE=512 -O0 -g -DPtrIntType=long
-DCSREAL_IS_FLOAT -DCPU=AMD64 -DTARGET=\"x64QNX7.1qcc_cxx8.3.0\"
-DRTI_QNX -fPIC -Werror-implicit-function-declaration

armv7QNX7.0.0qcc_cxx5.4.0 [a]

Static Release
-Vgcc/5.4.0,gcc_ntoarmv7le -DCPU=ARMV7 -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"armv7QNX7.0.0qcc_cxx5.4.0\" -O -Wall -Wno-unknown-pragmas -fPIC 
-fexceptions -v -Y_cxx -O -DNDEBUG -Werror-implicit-function-declaration

Static Debug
-Vgcc/5.4.0,gcc_ntoarmv7le -DCPU=ARMV7 -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"armv7QNX7.0.0qcc_cxx5.4.0\" -O0 -Wall -Wno-unknown-pragmas -fPIC 
-fexceptions -v -Y_cxx -O0 -g -Werror-implicit-function-declaration

Dynamic Release
-Vgcc/5.4.0,gcc_ntoarmv7le -DCPU=ARMV7 -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"armv7QNX7.0.0qcc_cxx5.4.0\" -O -Wall -Wno-unknown-pragmas
-fexceptions -v -Y_cxx -O -DNDEBUG -fPIC -Werror-implicit-function-declaration

Dynamic Debug
-Vgcc/5.4.0,gcc_ntoarmv7le -DCPU=ARMV7 -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"armv7QNX7.0.0qcc_cxx5.4.0\" -O0 -Wall -Wno-unknown-pragmas
-fexceptions -v -Y_cxx -O0 -g -fPIC -Werror-implicit-function-declaration

Table 7.9 Library-Creation Details for QNX Architectures

[a] Requires a hardware FPU in the processor and is compatible with systems that have hard-float libc.



7.1.3 How the Connext Libraries were Built

RTI Architecture Library Format Compiler Flags Used by RTI

armv8QNX7.0.0qcc_cxx5.4.0

Static Release
-Vgcc/5.4.0,gcc_ntoaarch64le -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"armv8QNX7.0.0qcc_cxx5.4.0\" -O -Wall -Wno-unknown-pragmas
-fPIC -fexceptions -v -Y_cxx -O -DNDEBUG -Werror-implicit-function-declaration

Static Debug
-Vgcc/5.4.0,gcc_ntoaarch64le -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"armv8QNX7.0.0qcc_cxx5.4.0\" -O0 -Wall -Wno-unknown-pragmas
-fPIC -fexceptions -v -Y_cxx -O0 -g -Werror-implicit-function-declaration

Dynamic Release
-Vgcc/5.4.0,gcc_ntoaarch64le -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"armv8QNX7.0.0qcc_cxx5.4.0\" -O -Wall -Wno-unknown-pragmas
-fexceptions -v -Y_cxx -O -DNDEBUG -fPIC -Werror-implicit-function-declaration

Dynamic Debug
-Vgcc/5.4.0,gcc_ntoaarch64le -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"armv8QNX7.0.0qcc_cxx5.4.0\" -O0 -Wall -Wno-unknown-pragmas
-fexceptions -v -Y_cxx -O0 -g -fPIC -Werror-implicit-function-declaration

x64QNX7.0.0qcc_gpp5.4.0

Static Release

-Vgcc/5.4.0,gcc_ntox86_64 -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"x64QNX7.0.0qcc_gpp5.4.0\" -D_GLIBCXX_USE_C99 -O -Wall
-Wno-unknown-pragmas -fPIC -fexceptions -v -Y_gpp -O -DNDEBUG
-Werror-implicit-function-declaration

Static Debug

-Vgcc/5.4.0,gcc_ntox86_64 -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"x64QNX7.0.0qcc_gpp5.4.0\" -D_GLIBCXX_USE_C99 -O0 -Wall
-Wno-unknown-pragmas -fPIC -fexceptions -v -Y_gpp -O0 -g
-Werror-implicit-function-declaration

Dynamic Release

-Vgcc/5.4.0,gcc_ntox86_64 -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"x64QNX7.0.0qcc_gpp5.4.0\" -D_GLIBCXX_USE_C99 -O -Wall
-Wno-unknown-pragmas -fexceptions -v -Y_gpp -O -DNDEBUG -fPIC
-Werror-implicit-function-declaration

Dynamic Debug

-Vgcc/5.4.0,gcc_ntox86_64 -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET=\"x64QNX7.0.0qcc_gpp5.4.0\" -D_GLIBCXX_USE_C99 -O0 -Wall
-Wno-unknown-pragmas -fexceptions -v -Y_gpp -O0 -g -fPIC
-Werror-implicit-function-declaration

armv8QNX7.1qcc_cxx8.3.0

Static Release
-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fPIC -fexceptions -DFD_SETSIZE=512 -O
-DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_cxx8.3.0\" -DNDEBUG -DRTI_QNX
-Werror-implicit-function-declaration

Static Debug
-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fPIC -fexceptions -DFD_SETSIZE=512 -O0
-g -DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_cxx8.3.0\" -DRTI_QNX
-Werror-implicit-function-declaration

Dynamic Release
-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fexceptions -DFD_SETSIZE=512 -O
-DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_cxx8.3.0\" -DNDEBUG
-DRTI_QNX -fPIC -Werror-implicit-function-declaration

Dynamic Debug
-Vgcc/8.3.0,gcc_ntoaarch64le -Y_gpp -fexceptions -DFD_SETSIZE=512 -O0
-g -DPtrIntType=long -DTARGET=\"armv8QNX7.1qcc_cxx8.3.0\" -DRTI_QNX -fPIC
-Werror-implicit-function-declaration

Table 7.9 Library-Creation Details for QNX Architectures

69



7.2 Running Your Application

70

RTI Architecture Library Format Compiler Flags Used by RTI

armv8QOS2.2qcc_cxx8.3.0

Static Release
-Vgcc/8.3.0,gcc_ntoaarch64le -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET="armv8QOS2.2qcc_cxx8.3.0" -O -fexceptions -Y_cxx -DNDEBUG -fPIC
-Werror-implicit-function-declaration

Static Debug
-Vgcc/8.3.0,gcc_ntoaarch64le -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET="armv8QOS2.2qcc_cxx8.3.0" -O0 -fexceptions -Y_cxx -g -fPIC
-Werror-implicit-function-declaration

Dynamic Release
-Vgcc/8.3.0,gcc_ntoaarch64le -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET="armv8QOS2.2qcc_cxx8.3.0" -O -fexceptions -Y_cxx -DNDEBUG -fPIC
-Werror-implicit-function-declaration

Dynamic Debug
-Vgcc/8.3.0,gcc_ntoaarch64le -DFD_SETSIZE=512 -DPtrIntType=long
-DTARGET="armv8QOS2.2qcc_cxx8.3.0" -O0 -fexceptions-Y_cxx -g -fPIC
-Werror-implicit-function-declaration

Table 7.9 Library-Creation Details for QNX Architectures

7.2 Running Your Application

Table 7.10 Running Instructions for QNX Architectures provides details on the environment variables
that must be set at run time for a QNX architecture.

Starting with Connext 6.0.1, you need the dirname tool to run the scripts in the bin directory.

RTI Architecture Library Format
(Release & Debug) Environment Variables

All supported QNX
architectures

Static None required

Dynamic LD_LIBRARY_PATH= ${NDDSHOME}/lib/<architecture>: ${LD_LIBRARY_PATH} [a]

Table 7.10 Running Instructions for QNX Architectures

7.3 Support for Modern C++ API

Connext provides two C++ APIs, which we refer to as the "Traditional C++" and "Modern C++" APIs.
All supported QNX platforms support both.

l The Modern C++ API requires C++11 compilers or newer.
l The Traditional C++ API supports C++98 compilers or newer.

[a] ${NDDSHOME} represents the root directory of your Connext installation. ${LD_LIBRARY_PATH} represents the value of the
LD_LIBRARY_PATH variable prior to changing it to support Connext. When using nddsjava.jar, the Java virtual machine (JVM) will at-
tempt to load release versions of the native libraries. When using nddsjavad.jar, the JVM will attempt to load debug versions of the native
libraries.



7.4 Multicast Support

For more information, see Traditional vs. Modern C++, in the RTI Connext Core Libraries User's
Manual.

7.4 Multicast Support

Multicast is supported on QNX platforms and is configured out of the box. That is, the default value for
the initial peers list (NDDS_DISCOVERY_PEERS) includes a multicast address. See the online doc-
umentation for more information.

7.5 Transports

l Shared Memory: Supported and enabled by default.

To see a list of the shared memory resources, enter:
'ls /dev/shmem/RTIOsapiSharedMemorySegment-*'

To clean up the shared memory resources, remove the files listed in /dev/shmem/. The shared
resource names used by Connext begin with 'RTIOsapiSharedMemorySem-'. To see a list of
shared semaphores, enter:
'ls /dev/sem/RTIOsapiSharedMemorySemMutex*'

To clean up the shared semaphore resources, remove the files listed in /dev/sem/.

The permissions for the semaphores created by Connext are modified by the process' umask
value. If you want to have shared memory support between different users, run the command
"umask 000" to change the default umask value to 0 before running your Connext application.

l UDPv4: Supported and enabled by default.
l UDPv6: Supported. The transport is not enabled by default; the peers list must be modified to
support IPv6. No Traffic Class support.

To use the UDPv6 transport, the network stack must provide IPv6 capability. Enabling UDPv6
may involve switching the network stack server and setting up IPv6 route entries.

l TCP/IPv4: Supported.

7.6 Unsupported Features

These features are not supported on QNX platforms:

l Java, .NET, and Python APIs
l Backtrace

71



7.7 Monotonic Clock Support

72

l Controlling CPU Core Affinity
l Durable Writer History and Durable Reader State

See also: Supported Platforms tables in the RTI Connext Core Libraries Release Notes. These tables
show which RTI products are supported for each platform.

7.7 Monotonic Clock Support

The monotonic clock (described in Configuring the Clock per DomainParticipant, in the RTI Connext
Core Libraries User's Manual) is supported on all QNX platforms.

7.8 Thread Configuration

See Table 7.11 Thread Settings for QNX Platforms and Table 7.12 Thread-Priority Definitions for
QNX Platforms.

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

Asynchronous Publisher,
Asynchronous flushing thread

mask OS default thread type

priority 10

stack_size 64 * 1024

cpu_list Empty CPU list (Supported on QNX platforms)

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Database thread

mask DDS_THREAD_SETTINGS_STDIO

priority 8

stack_size 64 * 1024

cpu_list Empty CPU list (Supported on QNX platforms)

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Event thread

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority 8

stack_size 4 * 64 * 1024

cpu_list Empty CPU list (Supported on QNX platforms)

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Table 7.11 Thread Settings for QNX Platforms

../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf


7.8.1 Support for Controlling CPU Core Affinity for RTI Threads

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

ReceiverPool threads

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority 12

stack_size 4 * 64 * 1024

cpu_list Empty CPU list (Supported on QNX platforms)

cpu_rotation DDS_THREAD_SETTINGS_CPU_NO_ROTATION

Table 7.11 Thread Settings for QNX Platforms

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_DEFAULT 10

THREAD_PRIORITY_HIGH 14

THREAD_PRIORITY_ABOVE_NORMAL 12

THREAD_PRIORITY_NORMAL 10

THREAD_PRIORITY_BELOW_NORMAL 8

THREAD_PRIORITY_LOW 6

Table 7.12 Thread-Priority Definitions for QNX Platforms

7.8.1 Support for Controlling CPU Core Affinity for RTI Threads

Support for controlling CPU core affinity (described in Controlling CPU Core Affinity in the RTI Con-
next Core Libraries User's Manual) is available on all supported QNX platforms except arm-
v8QOS2.2qcc_cxx8.3.0.

7.9 Support for 'Find Package' CMake Script

The 'Find Package' CMake script is supported on all QNX platforms except armv7QNX7.0.0qcc_
cxx5.4.0. For information on using this script, see 2.5 Building with CMake on page 8.

7.10 Support for Remote Procedure Calls (RPC)

RPC is an experimental feature available only for the C++11 API. It is supported on all QNX plat-
forms.

See Remote Procedure Calls, in the RTI Connext Core Libraries User's Manual.

73

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf


7.11 Restarting Applications on QNX Systems

74

7.11 Restarting Applications on QNX Systems

Due to a limitation in the POSIX API, the allocation and the initialization of a shared memory mutex
need to be done in separate steps.

The first (and only the first) Connext application that runs in the system using the shared-memory trans-
port on a given domain will create a shared-memory mutex, in separate steps as described above, and
subsequent Connext applications will attach to—but not create—this mutex, which is necessary to pro-
tect access to the shared-memory area across multiple processes.

It is possible under some extreme circumstances that the Connext application that creates the mutex
crashes—or terminates ungracefully—having only partially created the mutex. If this occurs, other Con-
next applications will consider the mutex is still being created and will not be able to continue their exe-
cution, reporting a timeout error and indicating the mutex name.

If this situation occurs, you must manually delete the shared-memory mutex and its segment before re-
launching any application in the same DDS domain. The files to delete are:

l /dev/sem/RTIOsapiSharedMemoryMutex-<identifier>
l /dev/shmem/RTIOsapiSharedMemorySegment-<identifier>



Chapter 8 VxWorks Platforms
Table 8.1 Supported VxWorks Target Platforms in Connext 7.3.0 LTS lists the architectures sup-
ported on VxWorks® operating systems. You can build a VxWorks application by cross-com-
piling from your development host.

Operating System CPU Compiler RTI Architecture
Abbreviation

VxWorks 23.09 x64 llvm 16.0
x64Vx23.09llvm16.0

x64Vx23.09llvm16.0 _rtp

The following rows show custom-supported target platforms, only available on demand.
Please contact your RTI sales representative or sales@rti.com for more information on using these platforms:

VxWorks 7.0 (SR0630) x64 llvm 8.0.0.2

x64Vx7SR0630llvm8.0.0.2

x64Vx7SR0630llvm8.0.0.2_rtp

(Custom support)

VxWorks 22.03 ppc gcc 8.3.0
ppc32Vx22.03gcc8.3.0_rtp

(Custom support)

Table 8.1 Supported VxWorks Target Platforms in Connext 7.3.0 LTS

8.1 Building Applications for VxWorks Platforms

The following notes apply to VxWorks 7-based platforms, including VxWorks 23.09.

l Compiling a Connext application for VxWorks depends on the development platform. For
more information, such as specific compiler flags, see the VxWorks Programmer’s Guide.
Table 8.7 Library-Creation Details for VxWorks Architectures on page 82 provides
details on how the VxWorks libraries were built. We recommend that you use similar set-
tings.

75



8.1.1 Libraries for RTP Mode on VxWorks Systems

76

l Cross-compiling for any VxWorks platform is similar to building for a Linux target. To build a
VxWorks application, create a makefile that reflects the compiler and linker for your target with
appropriate flags defined. There will be several target-specific compile flags you must set to
build correctly. For more information, see the VxWorks Programmer’s Guide.

l Required Makefile Change

After you run rtiddsgen, either edit the generated makefile to specify which VxWorks Source
Build (VSB) you want to use or set an environment variable called VSB_DIR that points to the
VSB. In the generated makefile, find this line and change it to match your VSB directory:
VSB_DIR = # Specify your VSB directory here.

Note: RTI uses a VSB based on the itl_generic BSP provided by Wind River to build the Con-
next libraries for VxWorks 7.0 for x64 CPUs.

l To run VxWorks tasks with Thread Local Storage, the kernel must be configured in advance with
an explicit size for the TLS variables through the kernel parameter, DKM_TLS_SIZE. To run
Connext in a VxWorks task, DKM_TLS_SIZE must be 160 or higher to fit the TLS variables.
For more information, see the tlsLib API reference in your VxWorks 7 documentation.

l To avoid symbol duplication in applications generated with rtiddsgen, in statically linked Down-
loadable Kernel Modules (DKMs):

When using rtiddsgen to generate a Connext application, publisher and subscriber are created. By
default, the generated makefile will create a separate application for the publisher and the sub-
scriber. This poses a problem when linking static kernel modules. In this case, you would have a
static DKM containing the publisher application + Connext libraries, and another static DKM con-
taining the subscriber application + Connext libraries. When those two modules are loaded into
the kernel, all the Connext symbols will be duplicated and you will likely run into issues.

To overcome this limitation, an additional target is created in the makefile for the VxWorks ker-
nel architectures called pubsub. This target will create a single DKM containing both the pub-
lisher and subscriber application, plus the Connext libraries. With this approach, you can link this
single DKM and still have the publisher and subscriber applications available in the kernel
without duplication of symbols.

8.1.1 Libraries for RTP Mode on VxWorks Systems

Dynamic libraries are not available for VxWorks systems with Real Time Processes (RTP mode) on
PowerPC (PPC) CPUs. This is due to a platform limitation in VxWorks PPC platforms that puts an
upper bound on the size of the Global Offset Table (GOT) for any single library, which limits how
many symbols the library can export. Some Connext libraries (in particular, libnddsc) export a number
of symbols that exceed this upper bound.

Dynamic libraries are available for VxWorks systems with RTP mode.



8.1.2 Required Libraries and Compiler Flags

8.1.2 Required Libraries and Compiler Flags

First, see the basic instructions in Chapter 2 Building Applications—Notes for All Platforms on page 5.

Table 8.2 Building Instructions for VxWorks Architectures on the next page lists the libraries you will
need to link into your application and the required compiler flags.

Depending on which Connext features you want to use, you may need additional libraries; see 8.1.3
Additional Libraries for Other Features on page 79.
Additional Documentation: See the RTI Connext Core Libraries Getting Started Guide Addendum for
Embedded Systems.

Make sure you are consistent in your use of static, dynamic, debug and release versions of the
libraries. Do not link both static and dynamic libraries. Similarly, do not mix release and debug
libraries.

77

../getting_started_platforms/embedded_systems_addendum/RTI_ConnextDDS_CoreLibraries_GettingStarted_EmbeddedSystemsAddendum.pdf
../getting_started_platforms/embedded_systems_addendum/RTI_ConnextDDS_CoreLibraries_GettingStarted_EmbeddedSystemsAddendum.pdf


8.1.2 Required Libraries and Compiler Flags

78

API Library Format Required RTI
Libraries [a] [b] Required Kernel Components Required Compiler

Flags

C++ (Traditional
and Modern APIs)

Static Release

libnddscorez.a
libnddscz.a

libnddscppz.a
or
libnddscpp2z.a

librticonnextmsgcppz.a
or
librticonnextmsgcpp2z.a

INCLUDE_TIMESTAMP

INCLUDE_POSIX_CLOCKS

For RTI architectures with SMP support also use:
INCLUDE_TLS

-DRTI_VXWORKS

-DRTI_CLANG

-DRTI_64BIT

Static Debug

libnddscorezd.a
libnddsczd.a

libnddscppzd.a
or
libnddscpp2zd.a

librticonnextmsgcppzd.a
or
librticonnextmsgcpp2zd.a

Dynamic Release

libnddscore.so
libnddsc.so

libnddscpp.so
or
libnddscpp2.so

librticonnextmsgcpp.so
or
librticonnextmsgcpp2.so

Dynamic Debug

libnddscored.so

libnddscd.so

libnddscppd.so
or
libnddscpp2d.so

librticonnextmsgcppd.so
or
librticonnextmsgcpp2d.so

Table 8.2 Building Instructions for VxWorks Architectures

[a] Choose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
[b] The Connext C/C++ libraries are in <NDDSHOME>/lib/<architecture>.



8.1.3 Additional Libraries for Other Features

API Library Format Required RTI
Libraries [a] [b] Required Kernel Components Required Compiler

Flags

C

Static Release
libnddscorez.a
libnddscz.a
librticonnextmsgcz.a

INCLUDE_TIMESTAMP

INCLUDE_POSIX_CLOCKS

For RTI architectures with SMP support, also
use: INCLUDE_TLS

-DRTI_VXWORKS

-DRTI_CLANG

-DRTI_64BIT

Static Debug
libnddscorezd.a
libnddsczd.a
librticonnextmsgczd.a

Dynamic Release
libnddscore.so
libnddsc.so
librticonnextmsgc.so

Dynamic Debug
libnddscored.so
libnddscd.so
librticonnextmsgcd.so

Table 8.2 Building Instructions for VxWorks Architectures

8.1.3 Additional Libraries for Other Features

8.1.3.1 Libraries Required for Distributed Logger

RTI Distributed Logger is supported all VxWorks architectures. Table 8.3 Additional Libraries for
using RTI Distributed Logger lists the additional libraries you will need in order to use Distributed
Logger.

Language
Static [c] Dynamic [d]

Release Debug Release Debug

C librtidlcz.a librtidlczd.a librtidlc.so librtidcd.so

C++ (Traditional API) librtidlcz.a
librtidlcppz.a

librtidlczd.a
librtidlcppzd.a

librtidlc.so
librtidlcpp.so

librtidlcd.so
librtidlcppd.so

Table 8.3 Additional Libraries for using RTI Distributed Logger

8.1.3.2 Libraries Required for Monitoring

Make sure you are consistent in your use of static, dynamic, debug and release versions of the libraries.
For example, if your Connext application is linked with the static release version of the Connext lib-
raries, you will need to also use the static release version of the monitoring library. Do not link both
static and dynamic libraries. Similarly, do not mix release and debug libraries.

[a] Choose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
[b] The Connext C/C++ libraries are in <NDDSHOME>/lib/<architecture>.
[c] These libraries are in <NDDSHOME>/lib/<architecture>.
[d] These libraries are in <NDDSHOME>/lib/<architecture>.

79



8.1.3 Additional Libraries for Other Features

80

If you are statically linking your application with DDS libraries and you want to add monitoring to
your application, you will also need to statically link the monitoring library. The library cannot be
loaded dynamically strictly through the QoS profile because it also depends on DDS to publish its data.
Therefore, it depends on DDS; the DDS functionality would cause duplicate symbols to be found res-
ulting, in the termination of the process.

Notes:

l Automatic loading of the dynamic monitoring library through QoS is not supported.
l Memory and CPU usage is not available in monitoring data.
l If you plan to use static libraries, the RTI library from Table 8.4 Additional Libraries for Mon-
itoring must appear first in the list of libraries to be linked.

Library Format Monitoring Libraries [a]

Dynamic Release librtimonitoring.so [b]

Dynamic Debug librtimonitoringd.so [c]

Static Release librtimonitoringz.a

Static Debug librtimonitoringzd.a

Table 8.4 Additional Libraries for Monitoring

8.1.3.3 Libraries Required for Real-Time WAN Transport APIs

If you choose to use Real-Time WAN Transport, you must download and install a separate package that
contains the transport libraries. See the RTI Real-Time WAN Transport Installation Guide for details.

Using Real-Time WAN Transport requires one of the libraries in Table 8.5 Additional Libraries for
Using Real-Time WAN Transport APIs. Select the file appropriate for your chosen library format.

For more information, see Enabling Real-Time WAN Transport, in the RTI Connext Core Libraries
User's Manual.

[a] These libraries are in <NDDSHOME>/lib/<architecture>.
[b]Dynamic libraries are not supported for VxWorks platforms on PPC CPUs using RTP mode.
[c]Dynamic libraries are not supported for VxWorks platforms on PPC CPUs using RTP mode.

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/addon_products/realtime_wan_transport/installation_guide/RTI_RealTime_WAN_Transport_InstallationGuide.pdf


8.1.4 How the Connext Libraries were Built

Library Format Real-Time WAN Transport Libraries [a]

Dynamic Release libnddsrwt.so

Dynamic Debug libnddsrwtd.so

Static Release libnddsrwtz.a

Static Debug libnddsrwtzd.a

Table 8.5 Additional Libraries for Using Real-Time WAN Transport APIs

8.1.3.4 Libraries Required for Zero Copy Transfer Over Shared Memory

To use the Zero Copy Transfer Over Shared Memory feature, link against the additional library in
Table 8.6 Additional Libraries for Zero Copy Transfer Over Shared Memory.

Library Format Zero Copy Over Shared Memory Libraries [b]

Dynamic Release libnddsmetp.so

Dynamic Debug libnddsmetpd.so

Static Release libnddsmetpz.a

Static Debug libnddsmetpzd.a

Table 8.6 Additional Libraries for Zero Copy Transfer Over Shared Memory

8.1.4 How the Connext Libraries were Built

Table 8.2 Building Instructions for VxWorks Architectures on page 78 shows the compiler flags that
RTI used to build the Connext libraries. This is provided strictly for informational purposes; you do not
need to use these parameters to compile your application. You may find this information useful if you
are involved in any in-depth debugging.

The details for building user applications are in 8.1 Building Applications for VxWorks Platforms on
page 75.

[a] These libraries are in <NDDSHOME>/lib/<architecture>.
[b] These libraries are in <NDDSHOME>/lib/<architecture>.

81



8.1.4 How the Connext Libraries were Built

82

RTI Architecture Library Format Compiler Flags Used by RTI

ppc32Vx22.03gcc8.3.0_rtp

Static Release

-DPtrIntType=long -DTARGET=\"ppc32Vx22.03gcc8.3.0_rtp\" -DTOOL=gnu -DTOOL_FAMILY=gnu
-D_USE_INIT_ARRAY -D_VX_CPU=VX_PPCE500MC -D__RTP__ -D__VXWORKS__ -D__ppc
-D__ppc__ -D__vxworks -O -mabi=no-altivec -mno-altivec -mstrict-align -msecure-plt -fno-builtin
-fno-strict-aliasing -DNDEBUG -Werror-implicit-function-declaration

Static Debug

-DPtrIntType=long -DTARGET="ppc32Vx22.03gcc8.3.0_rtp" -DTOOL=gnu -DTOOL_FAMILY=gnu
-D_USE_INIT_ARRAY -D_VX_CPU=VX_PPCE500MC -D__RTP__ -D__VXWORKS__ -D__ppc
-D__ppc__ -D__vxworks -O0 -mabi=no-altivec -mno-altivec -mstrict-align -msecure-plt -fno-builtin
-fno-strict-aliasing -g -Werror-implicit-function-declaration

x64Vx23.09llvm16.0

Static Release

--target=x86_64-wrs-vxworks -DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS
-D_USE_INIT_ARRAY -D_VX_CPU=_VX_CORE -D_WRS_CONFIG_SMP -D_WRS_KERNEL
-D__ELF__ -D__VXWORKS__ -D__vxworks -O2 -m64 -march=core2 -fno-builtin -fno-strict-aliasing
-nostdlibinc -mcmodel=kernel -mno-implicit-float -mno-red-zone -fno-omit-frame-pointer
-ftls-model=local-exec -DNDEBUG -std=c11 -Werror-implicit-function-declaration

Static Debug

--target=x86_64-wrs-vxworks -DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS
-D_USE_INIT_ARRAY -D_VX_CPU=_VX_CORE -D_WRS_CONFIG_SMP -D_WRS_KERNEL
-D__ELF__ -D__VXWORKS__ -D__vxworks -O0 -m64 -march=core2 -fno-builtin -fno-strict-aliasing
-nostdlibinc -mcmodel=kernel -mno-implicit-float -mno-red-zone -fno-omit-frame-pointer
-ftls-model=local-exec -g -std=c11 -Werror-implicit-function-declaration

Dynamic Release

--target=x86_64-wrs-vxworks -DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS
-D_USE_INIT_ARRAY -D_VX_CPU=_VX_CORE -D_WRS_CONFIG_SMP -D_WRS_KERNEL
-D__ELF__ -D__VXWORKS__ -D__vxworks -O2 -m64 -march=core2 -fno-builtin -fno-strict-aliasing
-nostdlibinc -mcmodel=kernel -mno-implicit-float -mno-red-zone -fno-omit-frame-pointer
-ftls-model=local-exec -DNDEBUG -std=c11 -Werror-implicit-function-declaration

Dynamic Debug

--target=x86_64-wrs-vxworks -DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS
-D_USE_INIT_ARRAY -D_VX_CPU=_VX_CORE -D_WRS_CONFIG_SMP -D_WRS_KERNEL
-D__ELF__ -D__VXWORKS__ -D__vxworks -O0 -m64 -march=core2 -fno-builtin -fno-strict-aliasing
-nostdlibinc -mcmodel=kernel -mno-implicit-float -mno-red-zone -fno-omit-frame-pointer
-ftls-model=local-exec -g -std=c11 -Werror-implicit-function-declaration

x64Vx23.09llvm16.0 _rtp

Static Release

--target=x86_64-wrs-vxworks -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D_VX_CPU=_VX_CORE -D_VX_TOOL=llvm -D_VX_TOOL_FAMILY=llvm -D__ELF__
-D__RTP__ -D__VXWORKS__ -D__vxworks -O2 -m64 -march=core2 -fno-builtin
-fno-strict-aliasing -nostdlibinc -mcmodel=small -fasm
-fno-omit-frame-pointer -DNDEBUG -std=c11 -Werror-implicit-function-declaration

Static Debug

--target=x86_64-wrs-vxworks -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D_VX_CPU=_VX_CORE -D_VX_TOOL=llvm -D_VX_TOOL_FAMILY=llvm -D__ELF__
-D__RTP__ -D__VXWORKS__ -D__vxworks -O0 -m64 -march=core2 -fno-builtin
-fno-strict-aliasing -nostdlibinc -mcmodel=small -fasm
-fno-omit-frame-pointer -O0 -g -std=c11 -Werror-implicit-function-declaration

Dynamic Release

--target=x86_64-wrs-vxworks -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D_VX_CPU=_VX_CORE -D_VX_TOOL=llvm -D_VX_TOOL_FAMILY=llvm -D__ELF__
-D__RTP__ -D__VXWORKS__ -D__vxworks -O2 -m64 -march=core2 -fno-builtin
-fno-strict-aliasing -nostdlibinc -mcmodel=small -fasm
-fno-omit-frame-pointer -DNDEBUG -fPIC -std=c11 -Werror-implicit-function-declaration

Dynamic Debug

--target=x86_64-wrs-vxworks -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D_VX_CPU=_VX_CORE -D_VX_TOOL=llvm -D_VX_TOOL_FAMILY=llvm -D__ELF__
-D__RTP__ -D__VXWORKS__ -D__vxworks -O0 -m64 -march=core2 -fno-builtin
-fno-strict-aliasing -nostdlibinc -mcmodel=small -fasm
-fno-omit-frame-pointer -g -fPIC -std=c11 -Werror-implicit-function-declaration

Table 8.7 Library-Creation Details for VxWorks Architectures



8.1.4 How the Connext Libraries were Built

RTI Architecture Library Format Compiler Flags Used by RTI

x64Vx7SR0630llvm8.0.0.2

Static Release

-DCPU=_VX_CORE -DPtrIntType=long -DTARGET=\"x64Vx7SR0630llvm8.0.0.2\"
-DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D_WRS_CONFIG_SMP -D_WRS_KERNEL -D__ELF__ -D__VXWORKS__ -D__vxworks
-O --target=x86_64 -m64 -mcmodel=kernel -mno-red-zone -nostdlib -fno-omit-frame-pointer
-march=core2 -nostdlibinc -nostdinc++ -mno-implicit-float -ftls-model=local-exec -fno-builtin
-fno-strict-aliasing -Wall -Wno-unknown-pragmas
-Werror-implicit-function-declaration -O -DNDEBUG -std=c11

Static Debug

-DCPU=_VX_CORE -DPtrIntType=long -DTARGET=\"x64Vx7SR0630llvm8.0.0.2\"
-DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D_WRS_CONFIG_SMP -D_WRS_KERNEL -D__ELF__ -D__VXWORKS__ -D__vxworks
-O0 --target=x86_64 -m64 -mcmodel=kernel -mno-red-zone -nostdlib -fno-omit-frame-pointer
-march=core2 -nostdlibinc -nostdinc++ -mno-implicit-float -ftls-model=local-exec -fno-builtin
-fno-strict-aliasing -Wall -Wno-unknown-pragmas
-Werror-implicit-function-declaration -O0 -g -std=c11

Dynamic Release

-DCPU=_VX_CORE -DPtrIntType=long -DTARGET=\"x64Vx7SR0630llvm8.0.0.2\"
-DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D_WRS_CONFIG_SMP -D_WRS_KERNEL -D__ELF__ -D__VXWORKS__ -D__vxworks
-O --target=x86_64 -m64 -mcmodel=kernel -mno-red-zone -nostdlib -fno-omit-frame-pointer
-march=core2 -nostdlibinc -nostdinc++ -mno-implicit-float -ftls-model=local-exec -fno-builtin
-fno-strict-aliasing -Wall -Wno-unknown-pragmas
-Werror-implicit-function-declaration -O -DNDEBUG -std=c11

Dynamic Debug

-DCPU=_VX_CORE -DPtrIntType=long -DTARGET=\"x64Vx7SR0630llvm8.0.0.2\"
-DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D_WRS_CONFIG_SMP -D_WRS_KERNEL -D__ELF__ -D__VXWORKS__ -D__vxworks
-O0 --target=x86_64 -m64 -mcmodel=kernel -mno-red-zone -nostdlib -fno-omit-frame-pointer
-march=core2 -nostdlibinc -nostdinc++ -mno-implicit-float -ftls-model=local-exec -fno-builtin
-fno-strict-aliasing -Wall -Wno-unknown-pragmas
-Werror-implicit-function-declaration -O0 -g -std=c11

x64Vx7SR0630llvm8.0.0.2_rtp

Static Release

-DCPU=_VX_CORE -DPtrIntType=long -DTARGET=\"x64Vx7SR0630llvm8.0.0.2_rtp\"
-DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D__ELF__ -D__RTP__ -D__VXWORKS__ -D__vxworks -O --target=x86_64 -m64
-mcmodel=small -fno-omit-frame-pointer -march=core2 -fno-strict-aliasing -fno-builtin
-nostdlibinc -nostdinc++ -fasm -Wall -Wno-unknown-pragmas
-Werror-implicit-function-declaration -O -DNDEBUG -std=c11

Static Debug

-DCPU=_VX_CORE -DPtrIntType=long -DTARGET=\"x64Vx7SR0630llvm8.0.0.2_rtp\"
-DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D__ELF__ -D__RTP__ -D__VXWORKS__ -D__vxworks -O0 --target=x86_64 -m64
-mcmodel=small -fno-omit-frame-pointer -march=core2 -fno-strict-aliasing -fno-builtin
-nostdlibinc -nostdinc++ -fasm -Wall -Wno-unknown-pragmas
-Werror-implicit-function-declaration -O0 -g -std=c11

Dynamic Release

-DCPU=_VX_CORE -DPtrIntType=long -DTARGET=\"x64Vx7SR0630llvm8.0.0.2_rtp\"
-DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D__ELF__ -D__RTP__ -D__VXWORKS__ -D__vxworks -O --target=x86_64 -m64
-mcmodel=small -fno-omit-frame-pointer -march=core2 -fno-strict-aliasing -fno-builtin
-nostdlibinc -nostdinc++ -fasm -Wall -Wno-unknown-pragmas
-Werror-implicit-function-declaration -O -DNDEBUG -fPIE -std=c11

Dynamic Debug

-DCPU=_VX_CORE -DPtrIntType=long -DTARGET=\"x64Vx7SR0630llvm8.0.0.2_rtp\"
-DTOOL=llvm -DTOOL_FAMILY=llvm -D_HAVE_TOOL_XTORS -D_USE_INIT_ARRAY
-D__ELF__ -D__RTP__ -D__VXWORKS__ -D__vxworks -O0 --target=x86_64 -m64
-mcmodel=small -fno-omit-frame-pointer -march=core2 -fno-strict-aliasing -fno-builtin
-nostdlibinc -nostdinc++ -fasm -Wall -Wno-unknown-pragmas
-Werror-implicit-function-declaration -O0 -g -fPIE -std=c11

Table 8.7 Library-Creation Details for VxWorks Architectures

83



8.2 Running User Applications

84

8.2 Running User Applications

Table 8.8 Running Instructions for VxWorks Architectures below provides details on the environment
variables that must be set at runtime for a VxWorks architecture.

RTI Architecture

Library
Format

(Release &
Debug)

Environment Variables

VxWorks Kernel mode ar-
chitectures DKM None required

VxWorks RTP architectures
Dynamic LD_LIBRARY_PATH= <path_to_connext_libs>;<path_to_libc>" [a]

Static None required

Table 8.8 Running Instructions for VxWorks Architectures

8.3 Known Defects

Defect V7COR-8916 can cause unpredictable segmentation faults in VxWorks 23.09 RTP applications.
There is a patch available from Wind River, which they will provide upon request through their Sup-
port Network. This patch is required in order to support the x64Vx23.09llvm16.0 rtp architecture.

8.4 Increasing the Stack Size

Connext applications may require more than the default stack size on VxWorks.

To prevent stack overrun, you can create/enable the DomainParticipant in a thread with a larger stack,
or increase the default stack size of the shell task by recompiling the kernel. For more information,
please see the Solutions on the RTI Community portal, accessible from https://community.rti.com/kb.

8.5 Enabling Floating Point Coprocessor in Kernel Tasks

Some applications may require you to spawn the kernel with floating-point coprocessor support. To do
so, you must pass the VX_FP_TASK option to the "options" argument of taskSpawn (please refer to
Wind River documentation for more information about taskSpawn arguments).

If you spawn the task from the c-shell, the VX_FP_TASK definition is not available and you must
provide a numeric value: 0x1000000 for VxWorks 6.x and newer versions. If the target system runs a
PowerPC e500v2 CPU, you need to pass VX_SPE_TASK instead, whose value is 0x4000000.

[a] To run dynamic RTP executables, the runtime libc.so library must be accessible. See the VxWorks Application Programmer's guide
for more information.

https://community.rti.com/kb


8.6 Downloadable Kernel Modules (DKM) for Kernel Mode on VxWorks Systems

8.6 Downloadable Kernel Modules (DKM) for Kernel Mode on VxWorks
Systems

The Connext Professional, Research, and LM packages include support for the Request-Reply Com-
munication Pattern, for all platforms in Table 8.1 Supported VxWorks Target Platforms in Connext
7.3.0 LTS on page 75 and all programming languages.

In VxWorks kernel mode, dynamic libraries are not supported. Instead, Downloadable Kernel Modules
(DKMs) are used. Once a DKM has been loaded into the kernel, all the symbols from that DKM will
be accessible from the kernel.

In VxWorks kernel mode, before a C++ DKM can be downloaded to the VxWorks kernel, it must
undergo an additional host processing step known as munching. This step is necessary for proper ini-
tialization of static objects and to ensure that the C++ run-time support calls the correct
constructor/destructors in the correct order for all static objects. All the Connext DKMs
(libnddscore.so, libnddsc.so, libnddscpp.so, etc) are shipped already munched.

When you create an application as a DKM for use in kernel mode, you have two options for linking:

l Perform a static linkage: This involves linking all the needed Connext libraries inside the DKM
(such as libnddscorez.a). Note that if you plan to load several statically linked DKMs into the
kernel, you will have issues related to duplicate symbols, because the symbols from Connext will
be loaded once per DKM.

l Perform a partial linkage: This involves building your application without linking against the Con-
next libraries. Later, at load time, you will need to load into the kernel the required Connext lib-
raries and your application DKM. This is recommended if you plan to have more than one DKM
using Connext.

For both options, you will need to munch your application DKMs.

8.7 Requirement for Restarting Applications

When restarting a VxWorks application, you may need to change the ‘appId’ value. In general, this is
only required if you still have other Connext applications running on other systems that were talking to
the restarted application. If all the Connext applications are restarted, there should be no problem.

This section explains why this is necessary and how to change the appId.

All Connext applications must have a unique GUID (globally unique ID). This GUID is composed of a
hostId and an appId. RTI implements unique appIds by using the process ID of the application. On
VxWorks systems, an application’s process ID will often be the same across reboots. This may cause
logged errors during the discovery process, or discovery may not complete successfully for the restarted
application.

85



8.8 Support for Modern C++ API and Remote Procedure Calls (RPCs)

86

The workaround is to manually provide a unique appId each time the application starts. The appId is
stored in the DomainParticipant’sWireProtocol QosPolicy. There are two general approaches to provid-
ing a unique appId. The first approach is to save the appId in NVRAM or the file system, and then
increment the appId across reboots. The second approach is to base the appId on something that is
likely to be different across reboots, such as a time-based register.

8.8 Support for Modern C++ API and Remote Procedure Calls (RPCs)

Connext provides two C++ APIs, which we refer to as the "Traditional C++" and "Modern C++" APIs.

l The Traditional C++ API supports C++98 compilers or newer. It is supported on all VxWorks
Platforms.

l The Modern C++ API requires C++11 compilers or newer. It is supported as noted in Table 8.9

Operating System RTI Architecture Modern C++ API and RPC Support

VxWorks 23.09
x64Vx23.09llvm16.0

x64Vx23.09llvm16.0 _rtp
Yes (without RPC support)

VxWorks 7.0 (SR0630)
x64Vx7SR0630llvm8.0.0.2 No

x64Vx7SR0630llvm8.0.0.2_rtp Yes (without RPC support)

VxWorks 22.03 ppc32Vx22.03gcc8.3.0_rtp Yes (without RPC support)

Table 8.9 C++ API and RPC Support

For more information, see Traditional vs. Modern C++, in the RTI Connext Core Libraries User's
Manual.

RPC is an experimental feature, only available for the Modern C++ API on the architectures noted in
Table 8.9 .

See Remote Procedure Calls, in the RTI Connext Core Libraries User's Manual.

8.9 Multicast Support

Multicast is supported on all VxWorks architectures. It is configured out of the box. That is, the default
value for the initial peers list (NDDS_DISCOVERY_PEERS) includes a multicast address. See the
API Reference HTML documentation for more information.

8.10 Transports

l Shared memory: Shared memory is supported and enabled by default on all VxWorks archi-
tectures. See also:



8.10.1 Shared-Memory Communication between Applications Running in Kernel Mode and RTP

l 8.10.1 Shared-Memory Communication between Applications Running in Kernel Mode
and RTP Requires Explicitly Set Participant ID below

l 8.10.2 How To Run Connext Libraries in Kernels Built without Shared Memory below

l UDPv4: Supported and enabled by default.
l UDPv6: Supported. No Traffic Class support.
l TCP/IPv4: Not supported.

8.10.1 Shared-Memory Communication between Applications Running in
Kernel Mode and RTP Requires Explicitly Set Participant ID

By default, applications using the auto-generated Participant ID (-1) cannot communicate between user
space and kernel space on the same host via SHMEM. The root cause is that the participants use the
same participant ID. Therefore the workaround for this issue is to explicitly provide a participant ID
when creating the DomainParticipants. The participant ID is set in the DomainParticipant’sWirePro-
tocol QoS policy.

8.10.2 How To Run Connext Libraries in Kernels Built without Shared Memory

Since Connext libraries support shared memory as a built-in transport, building a kernel without shared-
memory support will cause loading or linking errors, depending on whether the Connext libraries are
loaded after boot, or linked at kernel build time.

The most straightforward way to fix these errors is to include shared-memory support in the kernel
(INCLUDE_SHARED_DATA in the kernel build parameters ).

However, in some versions of VxWorks, it is not possible to include shared-memory support without
also including RTP support. If you are unwilling or unable to include shared-memory support in your
configuration, you will need to do the following:

1. Add the component INCLUDE_POSIX_SEM

2. Define stubs that return failure for the missing symbols sdOpen and sdUnmap as described
below:

l For sdOpen, we recommend providing an implementation that returns NULL, and sets
errno to ENOSYS. For the function prototype, refer to the file sdLib.h in the VxWorks dis-
tribution.

l For sdUnmap, we recommend providing an implementation that returns ERROR and sets
errno to ENOSYS. For the function prototype, refer to the file sdLibCommon.h in the
VxWorks distribution.

In addition to providing the symbol stubs for sdOpen and sdUnmap, we also recommend disabling the
SHMEM transport by using the transport_builtin mask in the QoS configuration.

87



8.11 Unsupported Features

88

8.11 Unsupported Features

These features are not supported on any VxWorks platforms:

l Java, .NET, and Python APIs
l Backtrace
l Controlling CPU Core Affinity
l Durable Writer History and Durable Reader State
l 'Find Package' CMake script
l TCP v4 transport

See also: Supported Platforms tables in the RTI Connext Core Libraries Release Notes. These tables
show which RTI products are supported for each platform.

8.12 Monotonic Clock Support

The monotonic clock (described in Configuring the Clock per DomainParticipant, in the RTI Connext
Core Libraries User's Manual) is supported on all VxWorks platforms.

8.13 Use of Real-Time Clock

Starting with 5.3.0, Connext uses the Real Time Clock to get the time from the System Clock on
VxWorks 6.x and higher platforms. Previously tickGet() was used for the system clock.

8.14 Thread Configuration

See these tables:

l Table 8.10 Thread Setting for VxWorks Platforms on the next page
l Table 8.11 Thread-Priority Definitions for VxWorks Platforms on the next page
l Table 8.12 Thread Kinds for VxWorks Platforms on page 90

../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf


8.14 Thread Configuration

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting
for kernel tasks and RTP threads

Asynchronous Publisher,
Asynchronous flushing thread

mask OS default thread type

priority 100

stack_size 30 * 1024

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Database thread

mask DDS_THREAD_SETTINGS_STDIO

priority 120

stack_size 30 * 1024

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Event thread

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority 110

stack_size 4 * 30 * 1024

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

ReceiverPool threads

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority 71

stack_size 4 * 30 * 1024

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Table 8.10 Thread Setting for VxWorks Platforms

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_DEFAULT 100

THREAD_PRIORITY_HIGH 68

THREAD_PRIORITY_ABOVE_NORMAL 71

Table 8.11 Thread-Priority Definitions for VxWorks Platforms

89



8.14 Thread Configuration

90

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_NORMAL 100

THREAD_PRIORITY_BELOW_NORMAL 110

THREAD_PRIORITY_LOW 120

Table 8.11 Thread-Priority Definitions for VxWorks Platforms

Thread Kinds Operating-System Configuration [a]

DDS_THREAD_SETTINGS_FLOATING_POINT  Uses VX_FP_TASK when calling taskSpawn()

DDS_THREAD_SETTINGS_STDIO Uses VX_STDIO when calling taskSpawn() (Kernel mode only)

DDS_THREAD_SETTINGS_REALTIME_PRIORITY Configures the schedule policy to SCHED_FIFO.

DDS_THREAD_SETTINGS_PRIORITY_ENFORCE N/A

Table 8.12 Thread Kinds for VxWorks Platforms

[a] See VxWorks manuals for more information.



Chapter 9 Windows Platforms
This release supports the Windows platforms in Table 9.1 .

Table 9.1 Supported Windows Platforms in Connext 7.3.0 LTS

CPU
Visual
Studio®
Version

RTI Architecture Supported
Target OS

Minimum MSVC++
Redistributable

.NET
Version JDK Version

x64
VS 2017 Update 2,
VS 2019,
VS 2022

x64Win64VS2017
Windows 10, 11

Windows Server
2012 R2 - 2022

Microsoft Visual C++
Redistributable for Visual
Studio 2017 for x64

.NET
Standard 2.0

AdoptOpenJDK
17.0.6

Arm v8 VS 2022 arm64Win64VS2022 Windows 11
Microsoft Visual C++
Redistributable for Visual
Studio 2022 for Arm v8

The following rows show custom-supported target platforms, only available on demand.
Please contact your RTI sales representative or sales@rti.com for more information on using these platforms:

x64 VS 2015 Update 3
x64Win64VS2015

(Custom support)

Windows 10

Windows Server
2012 R2 - 2022

Microsoft Visual C++ 2015
Redistributable Update 3 for
x64

.NET
Standard 2.0

AdoptOpenJDK
17.0.6

x86

VS 2015 Update 3
i86Win32VS2015

(Custom support) Windows 10

Windows Server
2016

Microsoft Visual C++ 2015
Redistributable Update 3 for
x86

VS 2017 Update 2,
VS 2019

i86Win32VS2017

(Custom support)

Microsoft Visual C++ 2017
Redistributable Update 3 for
x86

For a list of Windows OS versions supported by your Visual Studio version, please see official
Microsoft documentation.

Note regarding C# API Support: The C# API is supported on Windows 10 systems, but it
doesn't support Visual Studio 2015 for development. Development is supported on Visual Stu-
dio 2017 or newer, Visual Studio Code, and the .NET command-line interface. For more inform-
ation on .NET, see the Connext C# API Reference.

91

https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_csharp/index.html


9.1 Building Applications for Windows Platforms

92

9.1 Building Applications for Windows Platforms

Before starting to build your Connext application, make sure that:

l A supported version of Visual Studio is installed on the machine you are using to build your
application (see Table 9.1 above), and you have installed a valid SDK for your target platform.

l You have installed Connext and an RTI architecture package that supports your desired target
platform on the build machine. You can find more instructions in the RTI Connext Getting Star-
ted Guide.

Note for Windows on Arm architectures: There is no Arm64 host installer. If you want to link
your application against the dynamic version of the Connext libraries, you will need to install the
x64 host and the target package on the target machine, or manually copy to the target the Con-
next installation folder with the desired libraries installed.

l You have set up your build environment following the basic instructions in Chapter 2 Building
Applications—Notes for All Platforms on page 5

9.2 Configuring the Build of Your Connext Application

To compile a Hello World application with Connext, we recommend starting with one of the VS Project
examples provided with Connext or generating an example using RTI Code Generator (rtiddsgen).

If you want to create your own project files from scratch, or build your application without using a pro-
ject file, follow these steps:

1. Set up your build environment following the basic instructions in Chapter 2 Building Applic-
ations—Notes for All Platforms on page 5

2. Add the path to your Connext installation folder to a environment variable called NDDSHOME:
set NDDSHOME=<Path to your connext installation folder>

3. Include these additional include directories (/I)
l $(NDDSHOME)\include
l $(NDDSHOME)\include\ndds

4. Include the following path in your PATH environment variable or as an additional Libpath
(/LIBPATH):

l $(NDDSHOME)\lib<architecture>

5. Link against the Windows C Run-Time Libraries. All Connext libraries must link against the
dynamic Windows C Run-Time (CRT).

../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf
../getting_started_guide/cpp11/RTI_ConnextDDS_GettingStartedGuide_cpp11.pdf


9.2 Configuring the Build of Your Connext Application

a. Specify the runtime library to use, based on the Connext library version you want to link
against:

l If you are using a Release version: Multithread-specific and DLL-specific (/MD)
l If you are using a Debug version: Multithread-specific and DLL-specific debug
(/MDd)

b. Remove the following default libraries from the list of libraries to be searched for when
resolving external references: (/NODEFAULTLIB)

l libcmtd
l libcmt

6. If you want to use the MFC library in you application, you must link against the dynamic ver-
sion. (If you use the static version, your Connext application may stop receiving DDS samples
once the Windows sockets are initialized.)

7. Specify that the linker should use the required RTI and system libraries, and the compiler flags
from Table 9.2 Building Instructions for Windows Architectures below, depending on the version
of the libraries you plan to link against. Make sure you are consistent in your use of static (.lib),
dynamic (.dll), debug and release versions of the libraries. Do not link both static and dynamic
libraries. Similarly, do not mix release and debug libraries.

API Library
Format

RTI Libraries
or Jar Files [a] [b]

Required
System
Libraries

Required
Compiler Flags

C

Static
Release

nddscorez.lib
nddscz.lib
rticonnextmsgcz.lib

netapi32.lib
advapi32.lib
user32.lib
ws2_32.lib

WIN32_LEAN_AND_MEANWIN32

If linking against dynamic RTI libraries, add NDDS_DLL_VARIABLE

If linking against a static RTI libraries and using the RTI Security Plugins, add
RTI_STATIC

Static
Debug

nddscorezd.lib
nddsczd.lib
rticonnextmsgczd.lib

Dynamic
Release

nddscore.lib
nddsc.lib
rticonnextmsgc.lib

Dynamic
Debug

nddscored.lib
nddscd.lib
rticonnextmsgcd.lib

Table 9.2 Building Instructions for Windows Architectures

[a] Choose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
[b] The RTI C/C++/Java libraries are in <NDDSHOME>\lib\<architecture>. Jar files are in <NDDSHOME>\lib\java.

93



9.2 Configuring the Build of Your Connext Application

94

API Library
Format

RTI Libraries
or Jar Files [a] [b]

Required
System
Libraries

Required
Compiler Flags

C++
(Traditional
and
Modern
APIs)

Static
Release

nddscorez.lib
nddscz.lib

nddscppz.lib
or
nddscpp2z.lib

rticonnextmsgcppz.lib
or
rticonnextmsgcpp2z.lib

netapi32.lib
advapi32.lib
user32.lib
ws2_32.lib

WIN32_LEAN_AND_MEANWIN32

If linking against dynamic RTI libraries, add NDDS_DLL_VARIABLE

If linking against a static RTI libraries and using the RTI Security Plugins, add
RTI_STATIC

Static
Debug

nddscorezd.lib
nddsczd.lib

nddscppzd.lib
or
nddscpp2zd.lib

rticonnextmsgcppzd.lib
or
rticonnextmsgcpp2zd.lib

Dynamic
Release

nddscore.lib
nddsc.lib

nddscpp.lib
or
nddscpp2.lib

rticonnextmsgcpp.lib
or
rticonnextmsgcpp2.lib

Dynamic
Debug

nddscored.lib
nddscd.lib

nddscppd.lib
or
nddscpp2d.lib

rticonnextmsgcppd.lib
or
rticonnextmsgcpp2d.lib

Java

Release nddsjava.jar
rticonnextmsg.jar

N/A N/A

Debug nddsjavad.jar
rticonnextmsgd.jar

Table 9.2 Building Instructions for Windows Architectures

[a] Choose *cpp*.* for the Traditional C++ API or *cpp2*.* for the Modern C++ API.
[b] The RTI C/C++/Java libraries are in <NDDSHOME>\lib\<architecture>. Jar files are in <NDDSHOME>\lib\java.



9.2.1 Additional Libraries for Other Features

9.2.1 Additional Libraries for Other Features

9.2.1.1 Libraries Required for Distributed Logger

RTI Distributed Logger is supported on all Windows platforms. Table 9.3 Additional Libraries for
using RTI Distributed Logger lists the additional libraries you will need to use Distributed Logger.

Language
Static [a] Dynamic [b]

Release Debug Release Debug

C rtidlcz.lib rtidlczd.lib rtidlc.lib
rtidlc.dll

rtidlcd.lib
rtidlcd.dll

C++
(Traditional API)

rtidlcz.lib
rtidlcppz.lib

rtidlczd.lib
rtidlcppzd.lib

rtidlc.lib
rtidlc.dll

rtidlcpp.lib
rtidlcpp.dll

rtidlcd.lib
rtidlcd.dll

rtidlcppd.lib
rtidlcppd.dll

Java N/A N/A distlog.jar
distlogdatamodel.jar

distlogd.jar
distlogdatamodeld.jar

Table 9.3 Additional Libraries for using RTI Distributed Logger

9.2.1.2 Libraries Required for Monitoring

To use the Monitoring APIs, reference the libraries in Table 9.4 Additional Libraries for Using Mon-
itoring.

Make sure you are consistent in your use of static, dynamic, debug and release versions of the libraries.
For example, if your Connext application is linked with the static release version of the Connext lib-
raries, you will need to also use the static release version of the monitoring library. Do not link both
static and dynamic libraries. Similarly, do not mix release and debug libraries.

If you are statically linking your application with DDS libraries and you want to add monitoring to
your application, you will also need to statically link the monitoring library. The library cannot be
loaded dynamically strictly through the QoS profile because it also depends on DDS to publish its data.
Therefore, it depends on DDS; the DDS functionality would cause duplicate symbols to be found, caus-
ing the process to terminate.

[a] These libraries are in <NDDSHOME>\lib\<architecture>.
[b] These libraries are in <NDDSHOME>\lib\<architecture>.

95



9.2.1 Additional Libraries for Other Features

96

Library Format Monitoring Libraries [a]

Dynamic Release rtimonitoring.lib
rtimonitoring.dll

Dynamic Debug rtimonitoringd.lib
rtimonitoringd.dll

Static Release rtimonitoringz.lib
Psapi.lib

Static Debug rtimonitoringzd.lib
Psapi.lib

Table 9.4 Additional Libraries for Using Monitoring

9.2.1.3 Libraries Required for Real-Time WAN Transport

If you choose to use Real-Time WAN Transport, you must download and install a separate package that
contains the transport libraries. See the RTI Real-Time WAN Transport Installation Guide for details.

Using Real-Time WAN Transport requires one of the libraries in 9.2.1 Additional Libraries for Other
Features. Select the file appropriate for your chosen library format.

For more information, see Enabling Real-Time WAN Transport, in the RTI Connext Core Libraries
User's Manual.

Library Format Real-Time WAN Transport Libraries [b]

Dynamic Release nddsrwt.lib
nddsrwt.dll

Dynamic Debug nddsrwtd.lib
nddsrwtd.dll

Static Release nddsrwtz.lib

Static Debug nddsrwtzd.lib

Table 9.5 Additional Libraries for Using Real-Time WAN Transport APIs

For details on the OpenSSL libraries, see 9.2.3 Location of OpenSSL Libraries on page 100.

[a] These libraries are in <NDDSHOME>\lib\<architecture>.
[b] These libraries are in <NDDSHOME>\lib\<architecture>.

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/addon_products/realtime_wan_transport/installation_guide/RTI_RealTime_WAN_Transport_InstallationGuide.pdf


9.2.1 Additional Libraries for Other Features

9.2.1.4 Libraries Required for RTI TCP Transport

To use the TCP Transport APIs, reference the libraries in Table 9.6 Additional Libraries for Using RTI
TCP Transport APIs.

Library Format RTI TCP Transport Libraries [a]

Dynamic Release nddstransporttcp.lib
nddstransporttcp.dll

Dynamic Debug nddstransporttcpd.lib
nddstransporttcpd.dll

Static Release nddstransporttcpz.lib

Static Debug nddstransporttcpzd.lib

Table 9.6 Additional Libraries for Using RTI TCP Transport APIs

If you are also using RTI TLS Support, see Table 9.7 Additional Libraries for using RTI TCP Transport
APIs with TLS Enabled. (Select the files appropriate for your chosen library format.)

Library Format RTI TLS Libraries [b] OpenSSL Libraries System Libraries

Dynamic Release nddstls.lib
nddstls.dll

libssl.lib
libssl-<version>.dll

libcrypto.lib
libcrypto-<version>.dll

(none)

Dynamic Debug nddstlsd.lib
nddstlsd.dll

Static Release nddstlsz.lib libsslz.lib

libcryptoz.lib
crypt32.lib

Static Debug nddstlszd.lib

Table 9.7 Additional Libraries for using RTI TCP Transport APIs with TLS Enabled

For details on the OpenSSL libraries, see 9.2.3 Location of OpenSSL Libraries on page 100.

[a] These libraries are in <NDDSHOME>\lib\<architecture>.
[b] These libraries are in <NDDSHOME>\lib\<architecture>.

97



9.2.2 How the Connext Libraries were Built

98

9.2.1.5 Libraries Required for Zero Copy Transfer Over Shared Memory

To use the Zero Copy Transfer Over Shared Memory feature, reference the libraries in Table 9.8 Addi-
tional Libraries for Zero Copy Transfer Over Shared Memory.

Library Format Zero Copy Transfer Over Shared Memory Libraries [a]

Dynamic Release nddsmetp.lib
nddsmetp.dll

Dynamic Debug nddsmetpd.lib
nddsmetpd.dll

Static Release nddsmetpz.lib

Static Debug nddsmetpzd.lib

Table 9.8 Additional Libraries for Zero Copy Transfer Over Shared Memory

9.2.2 How the Connext Libraries were Built

Table 9.9 Library-Creation Details for Windows Architectures shows the compiler flags that RTI used
to build the Connext libraries. This is provided strictly for informational purposes; you do not need to
use these parameters to compile your application. You may find this information useful if you are
involved in any in-depth debugging.

The details for building user applications are in 9.1 Building Applications for Windows Platforms on
page 92.

RTI Architecture Library
Format Compiler Flags Used by RTI

arm64Win64VS2022

Static
Release

-D_WIN32_WINNT=0x0600 -D_WINDOWS -D_CRT_SECURE_NO_DEPRECATE -DWIN32
-DWIN32_LEAN_AND_MEAN -DCOMPILED_FROM_DSP -DSTDC99 /W3 /Oy- /MD /O2 /Ob0
/DNDEBUG /nodefaultlib:libc.lib /nodefaultlib:libcd.lib /defaultlib:Winmm.lib /we4013

Static
Debug

-D_WIN32_WINNT=0x0600 -D_WINDOWS -D_CRT_SECURE_NO_DEPRECATE -DWIN32
-DWIN32_LEAN_AND_MEAN -DCOMPILED_FROM_DSP -DSTDC99 /W3 /Oy- /MDd /Zi /Ob0
/Od /RTC1 /nodefaultlib:libc.lib /nodefaultlib:libcd.lib /defaultlib:Winmm.lib /we4013

Dynamic
Release

-D_WIN32_WINNT=0x0600 -D_WINDOWS -D_CRT_SECURE_NO_DEPRECATE -DWIN32
-DWIN32_LEAN_AND_MEAN -DCOMPILED_FROM_DSP -DSTDC99 /W3 /Oy- /MD /O2 /Ob0
/DNDEBUG /we4013

Dynamic
Debug

-D_WIN32_WINNT=0x0600 -D_WINDOWS -D_CRT_SECURE_NO_DEPRECATE -DWIN32
-DWIN32_LEAN_AND_MEAN -DCOMPILED_FROM_DSP -DSTDC99 /W3 /Oy- /MDd /Zi /Ob0
/Od /RTC1 /we4013

Table 9.9 Library-Creation Details for Windows Architectures

[a] These libraries are in <NDDSHOME>\lib\<architecture>.



9.2.2 How the Connext Libraries were Built

RTI Architecture Library
Format Compiler Flags Used by RTI

i86Win32VS2015

Static
Release

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=I80586 -DTARGET=\"x86Win32VS2015\"
-DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600 -DWIN32_LEAN_AND_MEAN /O2 /Oy- /Zi /MD
/nodefaultlib:"libcmt.lib" /defaultlib:"msvcrt.lib" /EHsc -D_CRT_SECURE_NO_DEPRECATE -DNDEBUG -c
/we4013

Static
Debug

/W3 -DSTDC99 -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=I80586 -DTARGET=\"x86Win32VS2015\"
-DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600 -DWIN32_LEAN_AND_MEAN /Od /ZI /MDd
/nodefaultlib:"libcmtd.lib" /defaultlib:"msvcrtd.lib" /EHsc /RTC1 -D_CRT_SECURE_NO_DEPRECATE -c /we4013

Dynamic
Release

/W3 -DSTDC99 -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=I80586 -DTARGET=\"x86Win32VS2015\"
-DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600 -DWIN32_LEAN_AND_MEAN /O2 /Oy- /Zi /MD /EHsc
-D_CRT_SECURE_NO_DEPRECATE -DNDEBUG -c /we4013

Dynamic
Debug

/W3 -DSTDC99 -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=I80586 -DTARGET=\"x86Win32VS2015\"
-DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600 -DWIN32_LEAN_AND_MEAN /Od /ZI /MDd /EHsc /RTC1
-D_CRT_SECURE_NO_DEPRECATE -c /we4013

i86Win32VS2017

Static
Release

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=I80586 -DTARGET=\"x86Win32VS2017\"
-DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600 -DWIN32_LEAN_AND_MEAN /O2 /Oy- /Zi /MD
/nodefaultlib:"libcmt.lib" /defaultlib:"msvcrt.lib" /EHsc -D_CRT_SECURE_NO_DEPRECATE -DNDEBUG -c
/we4013

Static
Debug

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=I80586 -DTARGET=\"x86Win32VS2017\"
-DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600 -DWIN32_LEAN_AND_MEAN /Od /ZI /MDd
/nodefaultlib:"libcmtd.lib" /defaultlib:"msvcrtd.lib" /EHsc /RTC1 -D_CRT_SECURE_NO_DEPRECATE -c /we4013

Dynamic
Release

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=I80586 -DTARGET=\"x86Win32VS2017\"
-DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600 -DWIN32_LEAN_AND_MEAN /O2 /Oy- /Zi /MD /EHsc
-D_CRT_SECURE_NO_DEPRECATE -DNDEBUG -c /we4013

Dynamic
Debug

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=I80586 -DTARGET=\"x86Win32VS2017\"
-DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600 -DWIN32_LEAN_AND_MEAN /Od /ZI /MDd /EHsc /RTC1
-D_CRT_SECURE_NO_DEPRECATE -c /we4013

x64Win64VS2015

Static
Release

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2015\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600
-DWIN32_LEAN_AND_MEAN /O2 /Zi /MD /nodefaultlib:"libcmt.lib" /defaultlib:"msvcrt.lib"
/EHsc -D_CRT_SECURE_NO_DEPRECATE -DNDEBUG -c /we4013

Static
Debug

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2015\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600
-DWIN32_LEAN_AND_MEAN /Od /ZI /MDd /nodefaultlib:"libcmtd.lib" /defaultlib:"msvcrtd.lib"
/EHsc /RTC1 -D_CRT_SECURE_NO_DEPRECATE -c /we4013

Dynamic
Release

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2015\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600
-DWIN32_LEAN_AND_MEAN /O2 /Zi /MD /EHsc -D_CRT_SECURE_NO_DEPRECATE
-DNDEBUG -c /we4013

Dynamic
Debug

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2015\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600
-DWIN32_LEAN_AND_MEAN /Od /ZI /MDd /EHsc /RTC1
-D_CRT_SECURE_NO_DEPRECATE -c /we4013

Table 9.9 Library-Creation Details for Windows Architectures

99



9.2.3 Location of OpenSSL Libraries

100

RTI Architecture Library
Format Compiler Flags Used by RTI

x64Win64VS2017

Static
Release

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2017\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600
-DWIN32_LEAN_AND_MEAN /O2 /Zi /MD /nodefaultlib:"libcmt.lib" /defaultlib:"msvcrt.lib"
/EHsc -D_CRT_SECURE_NO_DEPRECATE -DNDEBUG -c /we4013

Static
Debug

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2017\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600
-DWIN32_LEAN_AND_MEAN /Od /ZI /MDd /nodefaultlib:"libcmtd.lib" /defaultlib:"msvcrtd.lib"
/EHsc /RTC1 -D_CRT_SECURE_NO_DEPRECATE -c /we4013

Dynamic
Release

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2017\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600
-DWIN32_LEAN_AND_MEAN /O2 /Zi /MD /EHsc -D_CRT_SECURE_NO_DEPRECATE
-DNDEBUG -c /we4013

Dynamic
Debug

/W3 -DSTDC99 /FS -DPtrIntType=long -DCSREAL_IS_FLOAT -DCPU=AMD64
-DTARGET=\"x64Win64VS2017\" -DWIN32 -D_WINDOWS -D_WIN32_WINNT=0x0600
-DWIN32_LEAN_AND_MEAN /Od /ZI /MDd /EHsc /RTC1
-D_CRT_SECURE_NO_DEPRECATE -c /we4013

Windows
architectures for Java

Dynamic
Release -target 1.8 –source 1.8

Dynamic
Debug -target 1.8 –source 1.8 -g

Table 9.9 Library-Creation Details for Windows Architectures

9.2.3 Location of OpenSSL Libraries

The OpenSSL libraries are installed here:

l OpenSSL .lib files are in:
<NDDSHOME>\third_party\openssl-3.0.12\<architecture>\<format>\lib.

l OpenSSL .dll files are in:
<NDDSHOME>\third_party\openssl-3.0.12\<architecture>\<format>\bin.

Where:

l <architecture> is your architecture string, as listed in Table 9.1 Supported Windows Platforms in
Connext 7.3.0 LTS on page 91, such as x64Win64VS2017.

l <format> is debug, release, static_debug, or static_release.

The .dll filenames have a <version> and <CPU architecture> suffix. For example, libssl-1_1-x64.dll is
for OpenSSL 1.1 on an x64 CPU.

9.3 Running Your Applications

Before running a Connext application, make sure that:



9.4 Support for the Modern C++ API

1. You have a valid Visual Studio Redistributable installed on the target machine; which redis-
tributable depends on your target architecture, see Table 9.1 Supported Windows Platforms in
Connext 7.3.0 LTS on page 91.

2. The location of the RTI libraries for your target architecture are in the PATH environment vari-
able as noted in Table 9.10 Running Instructions for Windows Architectures below.

In some cases, when components need third-party libraries, you may need to add other locations,
and set up other variables. We recommend using the provided rtisetenv_<architecture> script to
set up your environment. (See Set Up Environment Variables, in the RTI Connext Getting Star-
ted Guide.)

For a detailed explanation on how to run your applications, see Run the Applications, in the RTI Con-
next Getting Started Guide.

RTI Architecture Library Format Environment Variables [a]

All supported Windows architectures for Java N/A Path=%NDDSHOME%\lib\<architecture>; %Path%

All other supported Windows architectures
Static (Release and Debug) None required

Dynamic (Release and Debug) Path=%NDDSHOME%\lib\<architecture>; %Path%

Table 9.10 Running Instructions for Windows Architectures

Debug versions of applications and the various Visual C++ DLLs are not redistributable.
Therefore, if you want to run debug versions, you must have the compiler installed or manually
copy the files to your target.

9.4 Support for the Modern C++ API

Connext provides two C++ APIs, which we refer to as the "Traditional C++" and "Modern C++" APIs.
Both are supported on all Windows platforms.

l The Modern C++ API requires C++11 compilers or newer.
l The Traditional C++ API supports C++98 compilers or newer.

For more information, see Traditional vs. Modern C++, in the RTI Connext Core Libraries User's
Manual.

[a]%Path% represents the value of the Path variable prior to changing it to support Connext. When using nddsjava.jar, the Java virtual
machine (JVM) will attempt to load release versions of the native libraries. When using nddsjavad.jar, the JVM will attempt to load
debug versions of the native libraries.

101



9.5 Support for the .NET (C#) API

102

9.5 Support for the .NET (C#) API

The C# API is supported on Intel x64 and Arm v8 CPUs.[a] For more information on .NET, see the
Connext C# API Reference.

9.6 Support for the Python API

The Python API is supported for Python 3.6 - 3.12, on Intel x64 CPUs. For more information, see the
Connext Python API Reference.

9.7 Multicast Support

Multicast is supported on all platforms and is configured out of the box. That is, the default value for
the initial peers list (NDDS_DISCOVERY_PEERS) includes a multicast address. See the online doc-
umentation for more information.

9.8 Transports

l Shared memory: Shared memory is supported and enabled by default. The Windows operating
system manages the shared memory resources automatically. Cleanup is not required.

l UDPv4: Supported and enabled by default.
l UDPv6: Supported but disabled on architectures that use Visual Studio. The peers list (NDDS_
DISCOVERY_PEERS) must be modified to support UDPv6. No Traffic Class support.

l TCP/IPv4: Supported on architectures that use Visual Studio. (This is not a built-in transport.)

9.9 Unsupported Features

These features are not supported on Windows platforms:

l Controlling CPU Core Affinity
l Setting thread names by Connext at the operating-system level in release mode

These features are not supported on Windows platforms with Arm v8 CPUs:

l Python API
l rtiddsgen server
l RTI Connector for JavaScript

[a] The C# API is also supported on Intel x86 with Visual Studio 2017 (i86Win32VS2017, a custom-supported platform).

https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_csharp/index.html
https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_python/index.html


9.10 Monotonic Clock Support

See also: Supported Platforms tables in the RTI Connext Core Libraries Release Notes. These tables
show which RTI products are supported for each platform.

9.10 Monotonic Clock Support

The monotonic clock (described in Configuring the Clock per DomainParticipant, in the RTI Connext
Core Libraries User's Manual) is supported on all Windows platforms.

9.11 Thread Configuration

See these tables:

l Table 9.11 Thread Settings for Windows Platforms
l Table 9.12 Thread-Priority Definitions for Windows Platforms
l Table 9.13 Thread Kinds for Windows Platforms

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

Asynchronous Publisher,
Asynchronous flushing thread,

mask OS default thread type

priority 0

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Database thread

mask DDS_THREAD_SETTINGS_STDIO

priority -3

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Event thread

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority -2

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Table 9.11 Thread Settings for Windows Platforms

103

../release_notes/RTI_ConnextDDS_CoreLibraries_ReleaseNotes.pdf


9.12 Support for 'Find Package' CMake Script

104

Applicable Thread DDS_ThreadSettings_t Platform-Specific Setting

ReceiverPool threads

mask DDS_THREAD_SETTINGS_STDIO | DDS_THREAD_SETTINGS_FLOATING_POINT

priority 2

stack_size OS default thread stack size

cpu_list CPU core affinity not supported

cpu_rotation CPU core affinity not supported

Table 9.11 Thread Settings for Windows Platforms

Thread-Priority Definition Operating-System Priority

THREAD_PRIORITY_DEFAULT 0

THREAD_PRIORITY_HIGH 3

THREAD_PRIORITY_ABOVE_NORMAL 2

THREAD_PRIORITY_NORMAL 0

THREAD_PRIORITY_BELOW_NORMAL -2

THREAD_PRIORITY_LOW -3

Table 9.12 Thread-Priority Definitions for Windows Platforms

Thread Kinds Operating-System Configuration [a]

DDS_THREAD_SETTINGS_FLOATING_POINT 

N/A
DDS_THREAD_SETTINGS_STDIO

DDS_THREAD_SETTINGS_REALTIME_PRIORITY

DDS_THREAD_SETTINGS_PRIORITY_ENFORCE

Table 9.13 Thread Kinds for Windows Platforms

9.12 Support for 'Find Package' CMake Script

The 'Find Package' CMake script is supported on all Windows platforms except those on x86 CPUs.

For information on using this script, see 2.5 Building with CMake on page 8.

[a] See Windows manuals for additional information.



9.13 Durable Writer History and Durable Reader State Features

9.13 Durable Writer History and Durable Reader State Features

The Durable Writer History and Durable Reader State features have been tested with all supported Win-
dows platforms.

9.14 Backtrace Support

To support the display of the backtrace on Windows systems, you need the Dbghelp.dll and NtDll.dll
libraries. Without these libraries, the backtrace will not be available.

l To get the latest version of DbgHelp.dll, go to https://developer.microsoft.com/en-us/win-
dows/downloads/windows-10-sdk and download Debugging Tools for Windows. Refer to
“Calling the DbgHelp Library” for information on proper installation.

l NtDll.dll exports the Windows Native API. It is installed automatically during the installation of
the Windows operating system.

On 32-bit Windows architectures: You must use the /Oy- optimization flag to disable "Frame-Pointer
Omission" optimization.

See https://docs.microsoft.com/en-us/cpp/build/reference/oy-frame-pointer-omission?view=vs-2019.

See also Logging a Backtrace for Failures, in the RTI Connext Core Libraries User's Manual.

9.15 Support for Remote Procedure Calls (RPC)

RPC is an experimental feature available only for the C++11 API. It is supported on all Windows plat-
forms.

See Remote Procedure Calls, in the RTI Connext Core Libraries User's Manual.

9.16 Domain ID Support

On Windows platforms, you should avoid using ports 49152 through 65535 for inbound traffic. Con-
next’s ephemeral ports (see Ports Used for Communication, in the RTI Connext Core Libraries User's
Manual) may be within that range (see https://msdn.microsoft.com/en-us/lib-
rary/windows/desktop/ms737550(v=vs.85).aspx).

With the default RtpsWellKnownPorts settings, port 49152 corresponds to domain ID 167, so using
domain IDs 168 through 232 on Windows platforms introduces the risk of a port collision and failure to
create the DomainParticipant when using multicast discovery. You may see this error:
RTIOsapiSocket_bindWithIP:OS bind() failure, error 0X271D: An attempt was made to access a
socket in a way forbidden by its access permissions.

105

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://docs.microsoft.com/en-us/cpp/build/reference/oy-frame-pointer-omission?view=vs-2019
https://msdn.microsoft.com/en-us/library/windows/desktop/ms737550(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms737550(v=vs.85).aspx

	Chapter 1 Introduction
	1.1 Paths Mentioned in Documentation

	Chapter 2 Building Applications—Notes for All Platforms
	2.1 Running on a Computer Not Connected to a Network
	2.2 Connext Header Files — All Platforms
	2.3 Choosing the Right Libraries
	2.3.1 Required Libraries
	2.3.2 Mixing Static and Dynamic Libraries is not Supported

	2.4 Building for Java Platforms
	2.5 Building with CMake

	Chapter 3 AIX Platforms
	3.1 Building Applications for AIX Platforms
	3.1.1 Additional Libraries for Other Features
	3.1.2 How the Connext Libraries were Built

	3.2 Running User Applications
	3.3 Multicast Support
	3.4 Transports
	3.4.1 Notes for Using Shared Memory

	3.5 Unsupported Features
	3.6 Thread Configuration
	3.6.1 Changing Thread Priority


	Chapter 4 Android Platforms
	4.1 Building Applications for Android Platforms
	4.1.1 Required Libraries and Compiler Flags
	4.1.2 Additional Libraries for Other Features
	4.1.3 Target Configuration
	4.1.4 ‘Release’ and ‘Debug’ Terminology
	4.1.5 How the Connext Libraries were Built

	4.2 Running Your Applications
	4.3 Support for Modern C++ API
	4.4 Multicast Support
	4.5 Transports
	4.6 Unsupported Features
	4.7 Monotonic Clock Support
	4.8 Thread Configuration
	4.9 Support for Remote Procedure Calls (RPCs)
	4.10  Third-Party Software Versions used for Android 12 Development and Testing

	Chapter 5 Linux Platforms
	5.1 Building Applications for Linux Platforms
	5.1.1 Required Libraries and Compiler Flags
	5.1.2 Additional Libraries for Other Features
	5.1.3 Linux Compatibility and Determining Factors
	5.1.4 How the Connext Libraries were Built

	5.2 Running Your Applications
	5.3 Support for the Modern C++ API
	5.4 Support for the .NET (C#) API
	5.5 Support for the Python API
	5.6 Multicast Support
	5.7 Transports
	5.7.1 Shared Memory Support

	5.8 Limitations of FACE Architectures
	5.9 Monotonic Clock Support
	5.10 Thread Configuration
	5.10.1 Support for Controlling CPU Core Affinity for RTI Threads
	5.10.2 Using REALTIME_PRIORITY

	5.11 Durable Writer History and Durable Reader State Features
	5.12 Support for 'Find Package' CMake Script
	5.13 Backtrace Support
	5.14 Support for Remote Procedure Calls (RPC)

	Chapter 6 macOS Platforms
	6.1 Building Applications for macOS Platforms
	6.1.1 Additional Libraries for Other Features
	6.1.2 How the Connext Libraries were Built

	6.2 Running User Applications
	6.3 Support for the Modern C++ API
	6.4 Support for the .NET (C#) API
	6.5 Support for the Python API
	6.6 Multicast Support
	6.7 Transports
	6.8 Unsupported Features
	6.9 System Integrity Protection (SIP)
	6.9.1 SIP and Java Applications
	6.9.2 SIP and Connext Tools, Infrastructure Services, and Utilities

	6.10 Thread Configuration
	6.11 Support for 'Find Package' CMake Script
	6.12 Backtrace Support
	6.13 Resolving NDDSUtility_sleep() Issues
	6.14 Support for Remote Procedure Calls (RPC)

	Chapter 7 QNX Platforms
	7.1 Building Applications for QNX Platforms
	7.1.1 Required Change for Building with C++ Libraries
	7.1.2 Additional Libraries for Other Features
	7.1.3 How the Connext Libraries were Built

	7.2 Running Your Application
	7.3 Support for Modern C++ API
	7.4 Multicast Support
	7.5 Transports
	7.6 Unsupported Features
	7.7 Monotonic Clock Support
	7.8 Thread Configuration
	7.8.1 Support for Controlling CPU Core Affinity for RTI Threads

	7.9 Support for 'Find Package' CMake Script
	7.10 Support for Remote Procedure Calls (RPC)
	7.11 Restarting Applications on QNX Systems

	Chapter 8 VxWorks Platforms
	8.1 Building Applications for VxWorks Platforms
	8.1.1 Libraries for RTP Mode on VxWorks Systems
	8.1.2 Required Libraries and Compiler Flags
	8.1.3 Additional Libraries for Other Features
	8.1.4 How the Connext Libraries were Built

	8.2 Running User Applications
	8.3 Known Defects
	8.4 Increasing the Stack Size
	8.5 Enabling Floating Point Coprocessor in Kernel Tasks
	8.6 Downloadable Kernel Modules (DKM) for Kernel Mode on VxWorks Systems
	8.7 Requirement for Restarting Applications
	8.8 Support for Modern C++ API and Remote Procedure Calls (RPCs)
	8.9 Multicast Support
	8.10 Transports
	8.10.1 Shared-Memory Communication between Applications Running in Kernel Mode and RTP Requires Explicitly Set Participant ID
	8.10.2 How To Run Connext Libraries in Kernels Built without Shared Memory

	8.11 Unsupported Features
	8.12 Monotonic Clock Support
	8.13 Use of Real-Time Clock
	8.14 Thread Configuration

	Chapter 9 Windows Platforms
	9.1 Building Applications for Windows Platforms
	9.2 Configuring the Build of Your Connext Application
	9.2.1 Additional Libraries for Other Features
	9.2.2 How the Connext Libraries were Built
	9.2.3 Location of OpenSSL Libraries

	9.3 Running Your Applications
	9.4 Support for the Modern C++ API
	9.5 Support for the .NET (C#) API
	9.6 Support for the Python API
	9.7 Multicast Support
	9.8 Transports
	9.9 Unsupported Features
	9.10 Monotonic Clock Support
	9.11 Thread Configuration
	9.12 Support for 'Find Package' CMake Script
	9.13 Durable Writer History and Durable Reader State Features
	9.14 Backtrace Support
	9.15 Support for Remote Procedure Calls (RPC)
	9.16 Domain ID Support


