
RTI Connext QoS Reference Guide
This document provides a high-level view of all the RTI® Connext® QoS Policies in release
7.3.0.

QoS Policy List

See Legend below table.

QoS Policy Description Chg. RxO Inst. Entities Ext.

AsynchronousPublisher Configures mechanism that sends user data in
a separate middleware thread BC P Y

Availability Configures Collaborative DataWriters and Dur-
able Subscriptions A R,W Y

Batch
Configures mechanism for collecting multiple
data samples to be sent in a single network
packet

BE W Y

Database Configures threads and resource limits that
control internal Connext data storage BC D Y

DataReaderProtocol, DataWriter-
Protocol

Configures DDS on-the-wire protocol (RTPS),
along with WireProtocol QoS for Reliable Top-
ics

BC R,W Y

DataReaderResourceLimits,
DataWriterResourceLimits

Configures how DataReaders/DataWriters
allocate and use physical memory for Connext
specific internal resources

BC R,W Y

DataRepresentation Specifies which CDR versions and data com-
pression algorithms are offered and requested BE Y T,R,W

DataTag
Associates name/value string pairs with
DataWriters/DataReaders that may be used
by Access Control plugin

BC R,W

Deadline Maximum duration within which an instance is
expected to be updated A Y Y T,R,W

1



QoS Policy List

2

QoS Policy Description Chg. RxO Inst. Entities Ext.

DestinationOrder
Controls how RTI deals with data from multiple
DataWriters for the same instance; "by recep-
tion timestamp" or "by source timestamp"

BE Y Y T,R,W

Discovery Configures which DomainParticipants to con-
tact, how to automatically discover and con-
nect with them

BC D Y

DiscoveryConfig BC D Y

DomainParticipantResourceLimits
Configures how DomainParticipants allocate
and use physical memory for internal
resources

BC D Y

Durability
Specifies if Connext will store and deliver pre-
viously published data to new/late-joining
Readers

BE Y T,R,W

DurabilityService
Configures external Persistence Service for
Writers with PERSISTENT or TRANSIENT
Durability

BE T,W

EntityFactory
Controls Entity behavior as a factory for other
entities (i.e., if child entities are created
enabled)

A F,D,P,S

EntityName Assigns a name to an Entity, pairs DomainPar-
ticipant with a Durable Subscription BE

D,P,S,

R,W
Y

Event Configures the internal thread in a DomainPar-
ticipant that handles timed events BC D Y

History

Controls how much data to store and how
stored data is managed for the DataWriter-
/DataReader within specified resource limits
(see ResourceLimits)

BE Y T,R,W

LatencyBudget Suggests to the middleware how much time is
allowed to deliver data A Y T,R,W

Lifespan Specifies how long Connext considers data
sent by a user application to be valid A T,W

Liveliness
Controls mechanism that allows DataReaders
to detect when matching DataWriters become
disconnected/dead

BE Y T,R,W

Logging Configures the Logging feature A F Y

Monitoring

Configures RTI Monitoring Library 2.0 to col-
lect and distribute telemetry data (metrics and
logs) associated with a Connext application,
for use by the RTI Observability Framework

A F Y

MultiChannel
Configures DataWriter to send data using dif-
ferent multicast groups (addresses) based on
data value

BC W Y



QoS Policy List

QoS Policy Description Chg. RxO Inst. Entities Ext.

Ownership
Specifies if DataReader can receive new
samples for instance of data from multiple
DataWriters at same time

BE Y Y T,R,W

OwnershipStrength Specifies strength used to arbitrate among
multiple DataWriters of same instance A Y W

Partition
Adds string IDs for finer-grained matching
between entities, such as DataWriters and
DataReaders of the same Topic

A D,P,S (Y)

Presentation Controls how Connext presents data received
by an application to DataReaders BE Y Y P,S

Profile Configures how the DomainParticipantFactory
loads XML documents containing QoS profiles BC F Y

Property
Specifies name/value pairs used to configure
parameters not exposed via formal QoS
policies

A D,R,W Y

PublishMode Specifies whether data samples will be sent in
the application thread or a middleware thread BC W Y

ReaderDataLifecyle Controls how a DataReader manages the life-
cycle of the data that it has received A R

ReceiverPool
Configures threads used to receive data from
network transports (e.g., UDP) and deliver
data to the application

BC D Y

Reliability Indicates whether samples lost by the network
should be repaired by the middleware BE Y T,R,W

ResourceLimits Limits amount of data cached by the mid-
dleware BE T,R,W

Service
Specifies the service for the entity. Only for
use by RTI infrastructure services, not user
applications

BE D,R,W Y

SystemResourceLimits Configures process-level resources, inde-
pendent of particular entities BC F Y

TimeBasedFilter Sets minimum time period before new data for
an instance is provided to a DataReader BE Y R

TopicQueryDispatch Configures the ability of a DataWriter to pub-
lish historical samples BC W Y

TransferMode Configures the properties of a Zero Copy
DataWriter BC W Y

TransportBuiltin Specifies which built-in transports are used BC D Y

TransportMulticast Sets multicast address and port number on
which DataReader will receive data BC R Y

3



QoS Policy List

4

QoS Policy Description Chg. RxO Inst. Entities Ext.

TransportMulticastMapping
Specifies automatic mapping between list of
topic expressions and multicast addresses
used by DataReaders to receive data

BC D Y

TransportPriority
On OS/transport combinations that under-
stand priority, specifies the priority on a per-
DataReader/DataWriter basis

BC T,R,W

TransportSelection
Selects which transports a DataRead-
er/DataWriter may use to send or receive its
data

BC R,W Y

TransportUnicast
Specifies a subset of transports and a port
number that can be used by an Entity to
receive data

BC D,R,W Y

TypeConsistencyEnforcement
Sets rule to determine if a type used to publish
a given topic is consistent with that used to
subscribe to it

BE R

TypeSupport

Attaches application-specific values to a
DataWriter/DataReader that are passed to
serialization/deserialization routine of asso-
ciated data type. Controls if padding bytes are
set to 0 during serialization.

A D,R,W Y

UserData [GroupData, TopicData] Attaches arbitrary application data (a buffer of
bytes) to discovery meta-data A R,W [P,S; T]

WireProtocol Configures properties for the DDS wire pro-
tocol (RTPS) BC D Y

WriterDataLifecycle
Controls how a DataWriter handles the life-
cycle of the instances that it is registered to
manage

A W

Legend:

Chg. = Changeable

RxO =
Request/Offered
Semantics

Inst. = Behavior is
applied per-in-
stance

Ext. = Extension to
DDS standard

Chg.

A = Always

BC = Before Creation

BE = Before Enable

Entities

F = Do-
mainParticipantFactory

D = DomainParticipant

T = Topic

P = Publisher

S = Subscriber

W = DataWriter

R = DataReader

Ext.

Y = Yes

(Y) = Partially Yes (see detailed descriptions for further explanation)

Blank = No



QoS Policies per Entity

QoS Policies per Entity

DomainParticipant Topic

UserData

EntityFactory

WireProtocol

TransportBuiltin

TransportUnicast

Discovery

DomainParticipantResourceLimits

Event

Partition

ReceiverPool

Database

DiscoveryConfig

Property

EntityName

TransportMulticastMapping

Service

TypeSupport

TopicData

Durability

DurabilityService

Deadline

LatencyBudget

Liveliness

Reliability

DestinationOrder

History

ResourceLimits

TransportPriority

Lifespan

Ownership

DataRepresentation

Publisher Subscriber

Presentation

Partition

Group Data

EntityFactory

AsynchronousPublisher

EntityName

Presentation

Partition

GroupData

EntityFactory

EntityName

DataWriter DataReader

Durability

DurabilityService

Deadline

LatencyBudget

Liveliness

Reliability

DestinationOrder

History

ResourceLimits

TransportPriority

Lifespan

UserData

Ownership

OwnershipStrength

WriterDataLifecycle

DataRepresentation

DataTag

DataWriterResourceLimits

DataWriterProtocol

TransportSelection

TransportUnicast

PublishMode

Property

Service

Batch

MultiChannel

Availability

EntityName

TopicQueryDispatch

TransferMode

TypeSupport

Durability

Deadline

LatencyBudget

Liveliness

Reliability

DestinationOrder

History

ResourceLimits

UserData

Ownership

TimeBasedFilter

ReaderDataLifecycle

DataRepresentation

TypeConsistencyEnforcement

DataTag

DataReaderResourceLimits

DataReaderProtocol

TransportSelection

TransportUnicast

TransportMulticast

Property

Service

Availability

EntityName

TransportPriority

TypeSupport

DomainParticipantFactory

EntityFactory

SystemResourceLimits

Profile

Logging

Monitoring

5



QoS Policy Descriptions

6

QoS Policy Descriptions

For more detailed information about the following QoS Policies, see the RTI Connext Core Libraries
User's Manual.

AsynchronousPublisher

Configures the mechanism that sends user data in an external middleware thread.

Must be used to send "large" data reliably. "Large" means data that cannot be sent as a single packet by
a transport. For example, to send data larger than 63K reliably using UDP/IP, you must configure Con-
next to send the data using asynchronous publishers. 

Can reduce the amount of time spent in the user thread to send data.

For small samples, can reduce bandwidth consumption. Using an asynchronous publisher provides
aggregation of samples (collecting many RTPS data samples into 1 network packet) since samples writ-
ten for the same topic to the same destination are coalesced within the same UDP packet, which
reduces bandwidth. For bandwidth reduction, see also Batch QoS. However, for aggregation the pre-
ferred mechanism is Batch.

Often used with:

l PublishMode—activates asynchronous publishing, a prerequisite for the use of this policy
l LatencyBudget—controls the scheduling of asynchronously published data onto the network
across Data Writers

Availability

Configures Collaborative DataWriters and Durable Subscriptions.

For a Collaborative DataWriter, specifies the group of DataWriters expected to collaboratively provide
data and the timeouts that control when to allow data to be available that may skip samples.

For a Durable Subscription, configures a set of Durable Subscriptions for a DataWriter.

Batch

Configures mechanism for collecting multiple user data samples to be sent in a single network packet.

This allows you to take advantage of the efficiency of sending larger packets and thus increase effect-
ive throughput.

Can dramatically increase the effective throughput for small data packets. Usually, throughput for small
packets (data < 2048 bytes) is limited by CPU capacity, not by network bandwidth. Batching many

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf


Database

smaller data packets so they are sent in 1 large packet increases network utilization and thus throughput
in terms of user data packets per second.

For Reliable topics, batching reduces the Reliable (RTPS) traffic because the Reliable entity is the
batch, not the sample.

Database

Configures threads and resource limits that control the internal Connext database.

Essentially a list of lists, RTI uses an internal "database" to store information about entities created loc-
ally as well as remote entities of other participants found during the discovery process. This QoS con-
figures how RTI manages its database including how often it cleans up, priority of the database thread,
and limits on resources that may be allocated by the database.

You may be interested in modifying the shutdown_timeout and shutdown_cleanup_period parameters
to decrease the time it takes to delete a DomainParticipant when your application is shutting down.

DataReaderProtocol, DataWriterProtocol

Configures DDS on-the-wire protocol (RTPS).

Connext uses a standard protocol for packet (user- and meta-data) exchange between applications.
These QoS policies control configurable portions of the protocol, including configuration of the reliable
data delivery mechanism of the protocol on a per DataWriter/DataReader basis.

These parameters control timing and timeouts and give you the ability to tradeoff between speed of
data-loss detection and repair, versus the network and CPU bandwidth used to maintain reliability.

It is important to tune the reliability protocol (on a per DataWriter and DataReader basis) to meet the
requirements of the end-user application so that data can be sent between DataWriters and DataReaders
in an efficient and optimal manner in the presence of data loss. You can also use these QoS policies to
control how Connext responds to "slow" reliable DataReaders or ones that disconnect or are otherwise
lost.

See the Reliability QoS policy for more on configuring per-DataReader/DataWriter reliability. The His-
tory and ResourceLimits QoS also play an important role in the reliable protocol.

DataReaderResourceLimits, DataWriterResourceLimits

Configures how DataReaders/DataWriters allocate and use physical memory for internal resources.

DataReaders must allocate internal structures to handle the maximum number of DataWriters that may
connect to it, whether or not a DataReader handles data fragmentation and how many data fragments
that it may handle, how many simultaneous, outstanding loans of internal memory holding data samples
can be provided to user code, as well as others.

7



DataRepresentation

8

DataWriters must allocate internal structures to handle the simultaneously blocking of threads trying to
call write() on the same DataWriter, for the storage used by batched DataWriters, and for filters for con-
tent-based filtering DataReaders.

Most of these internal structures start at an initial size and by default will grow as needed by dynam-
ically allocating additional memory. You may set fixed, maximum sizes for these internal structures if
you want to bind the amount of memory that can be used by a DataReader/DataWriter.  Setting the ini-
tial size to the maximum size will prevent Connext from dynamically allocating any memory after the
DataReader/DataWriter is created.

DataRepresentation

Specifies which versions of the Extended Common Data Representation (CDR) (version 1 or version 2)
and which data compression setting algorithms are offered and requested for your data.

A DataWriter offers one data representation and one data compression algorithm, which indicate the set-
tings the DataWriter uses to serialize and to compress its data. A DataReader requests one or more such
representations, which indicate the CDR versions and compression algorithms the DataReader accepts.
If a DataWriter's offered representations are contained within a reader’s sequence of requested rep-
resentations, then the offer satisfies the request, and the policies are compatible. Otherwise, they are
incompatible.

DataTag

Associates name/value string pairs with DataWriters and DataReaders that may be used by the Access
Control plugin.

This QoS can be used to associate a set of tags in the form of name/value string pairs with a
DataReader or DataWriter. This is similar to the Property QoS, except you cannot select whether or not
a particular pair should be propagated (included in the built-in topic); instead, data tags are always
propagated. The Access Control plugin may use the tags to determine publish and subscribe per-
missions. You can manipulate the sequence of tags (name/value pairs) with the standard methods avail-
able for sequences.

See also:

l UserData, GroupData, TopicData—these QoS policies also attach discoverable meta-data to entit-
ies.

l DomainParticipantResourceLimits—contains several parameters for configuring the resources
associated with the data tags stored in this QoS.



Deadline

Deadline

For DataReaders: specifies the maximum expected elapsed time between arriving data samples.
For DataWriters: specifies a commitment to publish samples with no greater than this elapsed time
between them.

Can be used during system integration to ensure that applications have been coded to meet design spe-
cifications.

Can be used at run time to detect when systems are performing outside of design specifications. Receiv-
ing applications can take appropriate actions to prevent total system failure when data is not received in
time. For topics on which data is not expected to be periodic, the deadline period should be set to an
infinite value.

Loss of Deadline results in loss of ownership for topics with Exclusive Ownership.

DestinationOrder

Controls how Connext deals with data sent by multiple DataWriters for the same topic.

When multiple DataWriters send data for the same Topic, the order in which data from different
DataWriters is received by the applications of different DataReaders may be different. So different
DataReaders may not receive the same "last" value when DataWriters stop sending data.

If set to "by reception timestamp":

Data will be delivered by a DataReader in the order in which it was received (which may lead to
inconsistent final values).

If set to "by source timestamp":

Data will be delivered by a DataReader in the order in which it was sent. If data arrives on the net-
work with a source timestamp earlier than the source timestamp of the last data delivered, the new
data will be dropped. This ordering therefore works best when system clocks are relatively syn-
chronized among writing machines.

Not all data sent by multiple DataWriters may be delivered to a DataReader, and not all DataReaders
will see the same data sent by DataWriters. However, all DataReaders will see the same "final" data
when DataWriters stop sending data.

Can be used to create systems that have "eventual consistency." Thus intermediate states across mul-
tiple applications may be inconsistent, but when DataWriters stop sending changes to the same topic,
all applications will end up having the same state.

9



Discovery

10

Discovery

Configures mechanism used to automatically discover and connect with new remote DomainPar-
ticipants.

This QoS specifies the identifiers used by the DomainParticipant to discover other DomainParticipants
with which to communicate. This is done via an initial peers list. The middleware will periodically send
network packets to these locations, announcing itself to any remote applications that may be present,
and will listen for announcements from those applications. This QoS policy also controls the extent of
and the transports used for discovery.

Often used with: DiscoveryConfig–to tune timeliness and reliability related parameters for the dis-
covery process.

DiscoveryConfig

Configures timeliness and reliability settings for discovery.

This QoS policy controls how often discovery data is sent as well as the reliability settings used for dis-
covery topics. The amount of network traffic required by the discovery process can vary widely, based
on how your application has configured the middleware's network addressing (e.g., unicast vs. mul-
ticast, multicast TTL, etc.), the system’s size, whether all applications are started at the same time or at
staggered times, and other factors. Your application can use this policy to make tradeoffs between dis-
covery completion time and network bandwidth utilization. You can also introduce random back-off
periods into the discovery process to decrease the probability of network contention when many applic-
ations start simultaneously.

Often used with: Discovery–to define the discovery peers.

DomainParticipantResourceLimits

Configures how DomainParticipants allocate and use physical memory for internal resources, including
maximum sizes of various properties.

This QoS policy sets size limits on variable-length parameters used by the participant and its contained
entities. It also controls the initial and maximum sizes of data structures used by the DomainParticipant
to store information about locally created and remotely discovered entities (such as DataWriters and
DataReaders), as well as parameters used by the internal database to size the hash tables it uses.

Durability

Specifies whether Connext will store and deliver previously published data to new/late-joining
DataReaders.

Durability controls whether or not new DataReaders get data that was written by DataWriters pre-
viously and how many samples (via writer_depth) the late-joining DataReaders get. The Durability can



DurabilityService

vary from not at all (the default) to persistent (stored to disk). This QoS policy helps insulate systems
from startup dependencies and can increase system tolerance to failure conditions.

Often used with:

l DurabilityService–to configure the external service parameters.

DurabilityService

Configures external Persistence Service used for DataWriters with PERSISTENCE/TRANSIENT Dur-
ability.

When a DataWriter's Durability QoS is set to PERSISTENT_DURABILITY or TRANSIENT_
DURABILITY, an external service, RTI Persistence Service, is used to store and possibly forward the
data sent by the DataWriter to DataReaders that are created after the data was initially sent. This QoS
policy configures certain parameters of RTI Persistence Service when it operates on behalf of the
DataWriter, such as how much data to store.

Often used with: Durability–to specify the level of durability for the data.

EntityFactory

Controls an Entity’s behavior as a ‘factory’ for other entities, such as whether child entities are created
in the enabled state.

This QoS policy is useful to synchronize the initialization of Entities. For example, when a DataReader
is created in an enabled state, its existence is immediately propagated for discovery and the
DataReader's listener is called as soon as data is received. The initialization process for an application
may extend beyond the creation of the DataReader, so you may not want for the DataReader to start to
receive or process any data until the initialization process is complete. By creating readers in a disabled
state, you can make sure that no data is received until the rest of the application initialization is com-
plete.

EntityName

Assigns a name to an Entity and associates a DomainParticipant with a Durable Subscription.

This QoS policy assigns a name to a DomainParticipant, Publisher, Subscriber, DataWriter, or
DataReader; this name will be sent as part of during discovery. The name will also be visible in RTI
tools (except for Publishers and Subscribers) to help you visualize and debug your system. It also
assigns a role name, which specifies the Durable Subscription to which the DataReader belongs.

Often used with: Availability–if using Durable Subscriptions.

11



Event

12

Event

Configures the internal thread in a DomainParticipant that handles timed events.

In a DomainParticipant, the Event Thread is dedicated to handling all timed events, including checking
for timeouts and deadlines, and executing internal and user-defined timeout or exception handling
routines/callbacks. An example of a timed event is the reliable heartbeat rate. If this rate is very high,
you should use a higher than normal event thread priority.

This QoS policy allows you to configure thread properties such as priority level and stack size. You can
also configure the maximum number of events that can be posted to the event thread. By default, a
DomainParticipant will dynamically allocate memory as needed for events posted to the event thread.
However, by setting a maximum value or setting the initial and maximum value to be the same, you
can either bind the amount of memory allocated for the event thread or prevent a DomainParticipant
from dynamically allocating memory for the event thread after initialization.

GroupData

Attaches arbitrary application data to discovery meta-data at the publisher/subscriber level.

See: UserData.

History

Controls how much data to store and how stored data is managed for a DataWriter or DataReader.

Controls how Connext manages data sent by a DataWriter or received for a DataReader. Two settings
are available: KEEP_ALL or KEEP_LAST with a value (depth). KEEP_ALL does not imply that Con-
next will store infinite data. How much data can actually be stored (and thus memory allocation) is con-
trolled by the ResourceLimits QoS.

When using the KEEP_LAST setting, the value of depth (number of data samples to keep) applies on a
per instance-basis (unique key value) for Topics that are keyed. For example, for a Topic that provides
data about the positions of aircraft and using the aircraft ID as a key, a KEEP_LAST setting of 1 will
tell Connext to keep the last value for each unique aircraft ID.

The major use of history is to help tune the reliability between DataWriters and DataReaders. You must
use KEEP_ALL History for both the DataWriter and DataReader if you want strict-reliability (the
DataReader must receive all of the data sent by the DataWriter). Using KEEP_LAST on either side,
Connext will only guarantee the reliability of the last N (depth) values sent.

Often used with:



LatencyBudget

l Reliability–using the KEEP_LAST kind for History depth, the level of reliability can be tuned.
l Durability–for the DataWriter side to specify how much data need to be stored and sent to new
DataReaders who request previously published data using the non-VOLATILE Durability set-
tings.

See also: ResourceLimits

LatencyBudget

Suggests how much time is allowed to deliver data.

This is an optional QoS; its implementation and usage may be determined by the implementer.

RTI uses this QoS policy to help schedule data to be sent by an asynchronous thread with a Flow Con-
troller. Data with low latency requirements can be sent ahead of data that is not latency sensitive when
using this QoS policy and the asynchronous publishing mode for a DataWriter.

The default value is 0, which implies you want to send with minimum latency.

If using this QoS policy, then all DataWriters whose data is sent by the same Flow Controller must set
the value for this QoS policy accordingly. The data of any DataWriter that uses the default value for
this QoS policy will always be sent ahead of DataWriters with non-zero values for this QoS policy.

Only used with:

l PublishMode–specifically when using DDS_ASYNCHRONOUS_PUBLISH_MODE_QoS and a
flow controller.

l DDSFlowController – specifically the DDS_EDF_FLOW_CONTROLLER_SCHED_POLICY
for DDS_FlowControllerProperty_t.

Lifespan

Specifies how long Connext should consider data sent by a user application to be valid.

Connext will timestamp all data sent and received. When a finite Lifespan is specified for a DataWriter
or DataReader, Connext will check to see how long the data has been stored in the DataWriter’s send
queue or the DataReader’s receive queue and remove any data that has exceeded its Lifespan duration. 

Connext will always compare times from the same local clock when checking Lifespan. Thus, the
Lifespan for data in the DataReader uses the time as stamped by the local clock when the data was
received as the start time for the Lifespan calculation.

You can use this QoS policy to limit how much data is stored by Connext. Even if configured for
KEEP_ALL History QoS, data may be dropped by Connext due to the use of the Lifespan QoS.

13



Liveliness

14

May interact with the Reliability QoS. Due to expired Lifespan, data in the DataWriter that has not yet
been acknowledged as have been received in a reliable connection may be dropped and thus never
repaired if the initial sample was lost.

Data in the DataReader that has not yet been accessed by the user code may also be removed due to an
expired Lifespan.

You can use this QoS policy to ensure applications don’t receive or act on data, commands, or mes-
sages that are too old and have "expired."

Liveliness

Configures the mechanism that allows DataReaders to detect when matching DataWriters become dis-
connected or dead.

In a connectionless communications model, the only way a DataReader can know if it is able to receive
data from a DataWriter is if it actually receives a message from the DataWriter. This message can
either be real data sent by user code, or a message that indicates that the DataWriter is indeed alive and
that all elements of the communications link between the DataWriter and DataReader applications is
working (network cards, switches, routers, etc.).

By using the Liveliness QoS, the user configures how the DataWriter application maintains liveliness
with the DataReader application and how fast the DataReader application is able to detect when the
DataWriter is unable to send data to the DataReader (because the sending application has died or per-
haps the link between the two applications has broken).

You can use this to ensure that important messages can be received if they are sent. For example, if a
command message like “Emergency Stop” is never sent unless the situation is encountered, Liveliness
can be used to periodically send a message to test the end-to-end connectivity of the system so that
when an “Emergency Stop” message is sent, it will likely be received by all subscribers.

You can use it at run time to detect when systems are performing outside of design specifications.
Receiving applications can take appropriate actions in response to disconnected DataWriters.

Logging

Configures the logging feature.

Allows users to configure various aspects associated with logging via XML profile files: verbosity, cat-
egory, print format, and output file.

Monitoring

Configures the RTI Monitoring Library 2.0, which is used by the RTI Connext Observability Frame-
work to collect and distribute telemetry data (metrics and logs) associated with the observable resources
created by a Connext application. These observable resources are DomainParticipants, Publishers,



MultiChannel

Subscribers, DataWriters, DataReaders, Topics, and applications (an application is a process running
Connext).

Note: This QoS policy configures the RTI Monitoring Library 2.0, not the RTI Monitoring Library.

For more information, see the RTI Observability Framework documentation.

MultiChannel

Configures DataWriter to send data using different multicast groups (addresses) based on data value.

Data published by a DataWriter can be divided into different “channels” within the same topic. This is
useful when the total volume is data is large—perhaps even larger than the capacity of a single network
link—and the number of DataReaders is large, but each DataReader is interested in only a subset of the
available data. A “channel” is defined by a filter expression and a set of multicast addresses (groups).
When data is sent, it is passed through the filter expressions for all defined channels to see if it will be
sent on a particular channel. The filter expressions are applied on the value of the data (contents of the
data structure). It is possible for the same data value to be sent on multiple channels. When sent on a
channel, Connext will send the data on all of the multicast addresses defined for the channel.

A DataWriter using the MultiChannel QoS policy will ignore the DataReader’s Transport Unicast and
Transport Multicast QoS settings. It will only send the data on the multicast addresses set for its chan-
nels. DataReaders are expected to subscribe to Content-Filtered Topics and will automatically subscribe
to data using the configured multicast addresses of a multi-channel DataWriter for the channels whose
filter intersects the Content-Filtered Topic of the DataReader.

Usually, the data of different instances within a topic are grouped together into different channels.
Since there are usually more objects than multicast addresses that can be practically used, a single mul-
ticast address assigned to a single channel will usually carry the data for more than one instance. So
using multi-channel DataWriters will greatly reduce, but probably not eliminate, the undesired delivery
and discarding of unwanted data by the subscribing machine.

Users must analyze the data usage across all applications/machines in their system and map out the data
topology to create an optimal mapping (channel filters) of objects/instances/independent substreams to
minimize network bandwidth usage as well as the CPU usage for dropping unwanted data.

Besides using Content-Filtered Topics to configure the substream of data desired, there is no additional
configuration that is needed for DataReaders.

See also: ContentFilteredTopics in the RTI Connext Core Libraries User's Manual (not a QoS policy)

Ownership

Specifies if a DataReader can receive new samples for an instance of data from multiple DataWriters at
the same time.

15

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf


OwnershipStrength

16

By default, DataReaders for a given topic can receive data from any matching DataWriter for the same
topic—this is the "shared" setting for the Ownership QoS policy. You can also configure an application
to use "exclusive" Ownership for a topic so that DataReaders only receive data from one DataWriter at
a time. Ownership applies on a per key value (instance) basis for Topics that are keyed. Thus, with
exclusive Ownership, DataReaders will only receive data from a single DataWriter for a particular
instance (unique value for the key) of a Topic. This implies that a DataReader may receive data from
multiple DataWriters as long as the DataWriters are sending data for different instances.

The value of Ownership must be the same for a DataWriter to be connected to a DataReader. Either
both sides must be shared or both sides must be exclusive. Mismatched DataWriter and DataWriter
pairs are not connected and will never exchange data.

The Ownership QoS policy can also be used to create data channels or Topics designed to be taken
over by external applications for testing or maintenance.

Often used with:

l Liveliness—to detect when DataWriters are dead and change ownership.
l Ownership Strength

OwnershipStrength

The OwnershipStrength QoS policy is used to determine which DataWriter is allowed to send data (or
updates for instances for keyed Topics) to DataReaders when Ownership is exclusive and there are mul-
tiple DataWriters all sending data for the same instance. The DataWriter with the highest value for the
OwnershipStrength QoS policy will be considered the owner of the instance of the Topic and whose
data is delivered to DataReaders. Data for the instance sent by all other DataWriters with lower Own-
ershipStrength will be dropped by Connext when received at the subscribing application.

An arbitrary but deterministic method is used to select a single DataWriter among multiple DataWriters
with the same highest OwnershipStrength, so all DataReaders will receive the data from the same
DataWriter even when the OwnershipStrength is the same value.

When the DataWriter with the highest Ownership strength loses its liveliness (as controlled by the Live-
liness QoS policy) or misses a deadline (as controlled by the Deadline QoS policy) or whose applic-
ation quits, dies, or otherwise disconnects, Connext will change ownership of the Topic instance to the
DataWriter with the highest OwnershipStrength from the remaining DataWriters.

This QoS policy can help you build systems that have redundant elements to safeguard against com-
ponent or application failures. When systems have active and hot standby components, the Ownership
QoS policy can be used to ensure that data from standby applications are only delivered in the case of
the failure of the primary.

Ownership QoS policy can also be used to create data channels or Topics designed to be taken over by
external applications for testing or maintenance.



Partition

Often used with:

l Deadline–to detect when DataWriters have not sent data in time so that a lower strength data is
accepted.

Partition

Adds additional string identifiers for matching DataWriters and DataReaders for the same Topic or for
matching DomainParticipants with the same domain ID and domain tag.

Specified for Publishers and Subscribers, the Partition QoS policy can be used to add identifiers in the
form of strings that Connext will use to match DataWriters and DataReaders. Normally, DataWriters
are connected (matched) to DataReaders of the same Topic (assuming that their QoS settings are mutu-
ally compatible). However, by using the Partition QoS policy, additional criteria is used to decide if a
DataWriter’s data is allowed to be sent to a DataReader. Referred to as partitions, one or more strings
can be added to the DataWriter’s Publisher or DataReader’s Subscriber parent. When the Partition QoS
policy is used, then a DataWriter is only connected (matched) to a DataReader for the same Topic only
if their Publisher and Subscribers have a common partition (intersecting partitions).

Specified for DomainParticipants, the Partition QoS policy can be used to add identifiers in the form of
strings that Connext will use to allow DomainParticipants with the same domain ID and domain tag to
communicate with each other.

DomainParticipant partitions and Publisher/Subscriber partitions are independent of each other. You
can use both features independently or in combination to provide the right level of isolation.

Direct comparison of partition strings is the nominal way to determine if there is a common partition.
However, one can also use strings that contain wildcards (actually regular expressions as defined by the
POSIX fnmatch API) as partitions. In that case, as long as one of the wildcard partitions matches one
of the concrete partition strings on the other side, then the entities are connected.

The set of partitions of an entity can be dynamically changed. This can be used to quickly control
which entities are allowed to connect. This facility is useful for creating temporary separation groups
among entities that would otherwise be connected to and exchange data each other. Therefore, if some-
times you want an application to be connected to another application and at other times you don’t, then
you can use the Partition QoS policy to dynamically configure the connection topology without stop-
ping/starting or destroying/re-creating applications or entities.

The application of the Partition QoS policy to DomainParticipants is an extension to the OMG Data Dis-
tribution Service (DDS) standard API, version 1.4.

Presentation

Controls how Connext presents data received by an application to the DataReaders of the data

17

https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS/1.4


Profile

18

Usually DataReaders receive data in the order it was sent by a DataWriter. (When using the Reliability
QoS policy, samples which arrive out of order will be buffered until all previous samples arrive.) Once
in order, data is presented to the DataReader immediately.

Sometimes you may want a set of data for the same topic to be presented to the receiving DataReader
only after ALL of the elements of the set have been received, but not before. You may also want the
data to be presented in a different order than it was received. Specifically, for keyed data, you may
want Connext to present the data grouped by instance (same key value).

Thus this QoS policy allows you to specify different scopes of presentation, within a topic, across
instances of a topic, and across different Topics of a Publisher. It also controls whether or not a set of
changes within the scope is delivered at the same time or can be delivered as soon as each element is
received.

See also: DestinationOrder—also impacts the order in which samples will be delivered by the mid-
dleware to the application.

Profile

Configures how XML documents containing QoS profiles are loaded by the DomainParticipantFactory.

QoS values for Entities can be configured in QoS profiles defined in XML documents. The XML doc-
uments that define QoS profiles can be passed to Connext as a string in XML format or loaded through
XML files found on a file system.

The Profile QoS policy for the DomainParticipantFactory configures Connext to load XML documents
via 3 independent mechanisms that may be used together or individually disabled.

Environment variable – the value of the environment variable NDDS_QOS_PROFILES can be used to
set the locations of files on the file system that contain XML documents to be loaded automatically by
Connext. You can also set a XML-formatted string as a value for the environment variable. You can dis-
able the use of the environment variable using the Profile QoS policy.

Default XML files – there are default locations where Connext will look for XML files to load QoS pro-
files. These include the current working directory from where an application is started and a file in the
distribution directory for Connext. You may disable any or all of these default locations using the Pro-
file QoS policy.

The locations of files as well as strings containing XML-formatted QoS profiles can be specified dir-
ectly via the Profile QoS policy.

Property

Specifies name/value pairs used to configure parameters not exposed via formal QoS policies

The Property QoS policy allows name/value pairs (in the form of strings) to be attached to the QoS of
different entities. These strings are often used to add configuration parameters to an entity without



PublishMode

having to change formal QoS policies. Behaviors configured by means of this policy are often not
known a priori (for example, dynamically loaded network transport plug-ins) or are provided on a pro-
visional basis. You may also add your own name/value pairs to the Property QoS policy of an Entity
and direct Connext to propagate this information with the Entity’s discovery information so it can be
accessed in other applications. This allows you to add meta-information about an Entity for application-
specific uses.

l Used to configure the property of builtin-transports before DomainParticipant creation.
l Used to specify dynamic loading of extension transports (such as TCP Transport).
l Used to specify multiple instances of the built-in transports.
l Allows full pluggable transport configuration for non-C/C++ languages (Java, C#, etc.).
l Used to select a clock.

Configures Durable Writer History and Durable Reader State for high reliability in the face of com-
ponent or system failures (see the chapter on "Mechanisms for Achieving Information Durability and
Persistence" in the RTI Connext Core Libraries User's Manual).

Allows you to attach additional information to entities—such as for identification, authentication, and
authorization.

Often used with:

l TransportBuiltin, TransportSelection, TransportUnicast, TransportMulticast—configures aspects
of built-in and dynamically loaded transports.

l DomainParticipantResourceLimits—configures maximum size of discoverable properties.
l Availability, Durability, DurabilityService—also relevant to highly reliable and available sys-
tems.

See also: UserData, GroupData, TopicData, DataTag—these QoS policies also attach discoverable
meta-data to entities.

PublishMode

Specifies the mechanism that sends user data in an external middleware thread

By default, data is sent in the context of the user thread that calls write()—this is typically the lowest-
latency approach. However, there are times when you may want an internal middleware thread to send
the data asynchronously instead. Thus when the user thread calls write(), the data is only serialized and
copied to an internal buffer. A thread owned by the Publisher is responsible for sending the data when
it is scheduled. This QoS policy configures this behavior. It may be SYNCHRONOUS (default) or

19

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf


ReaderDataLifecyle

20

ASYNCHRONOUS. You can also use this QoS policy to select a Flow Controller to "shape" the flow
of data onto the network.

"Shaping" a data flow usually means limiting the maximum data rates that Connext will use to send
data for a DataWriter. The flow controller will buffer data sent by the DataWriter faster than the max-
imum rate configured for the Flow Controller, and then only send the excess data when the send rate
drops below the maximum rate.

The Asynchronous publish mode must also be used to send large data with RELIABLE reliability.
Large data is any data that exceeds the maximum message (packet) size that a transport plugin is con-
figured to send—between 9 and 64 KB in the case of UDP transports, depending on the configuration.

Note that a single thread will be used to send data for all of the asynchronous DataWriter’s of a Pub-
lisher. If you want to have different threads to send data asynchronously, you must use multiple Pub-
lishers.

Often used with:

l LatencyBudget—controls the scheduling of asynchronously published data onto the network
across DataWriters.

l Property—configures maximum size of available transport plug-ins.
l AsynchronousPublisher—lower-level settings pertaining to asynchronous publication, like thread
priority and options.

See also: Flow Controllers (must be configured via the API, see the RTI Connext Core Libraries User's
Manual)

ReaderDataLifecyle

Controls how a DataReader manages the lifecycle of the data that it has received.

When a DataReader receives data, it caches that data for your application. Your application may either
take the data from the cache or leave it there. This QoS policy controls when the middleware will auto-
matically remove the stored data for a particular instance of the Topic from the cache (such that the
data is no longer accessible by the application) when it detects that there are no more DataWriters alive
for a specific instance or when a DataWriter has disposed the instance.  For Topics without keys, this
applies when there are no DataWriters alive for the Topic, or if the Topic has been disposed by a
DataWriter.

You can use this QoS policy to specify a delay in which the data removal will occur when the mid-
dleware detects one of the two states described earlier. By default, the delays are specified to be infin-
ite, which configures Connext not to remove any data from the DataReader’s cache.

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf


ReceiverPool

ReceiverPool

Configures threads used to receive and process data from transports (for example, UDP sockets).

Configures the properties of the “receive” threads that the middleware uses to receive and process data
from its installed transports. This includes setting thread properties, such as priority level and stack size
for these threads, as well as the size of the buffer used to store packets received from a transport. This
buffer size limits the largest single packet of data that a DomainParticipant will accept from a transport.
For many applications, the value 65,536 (64 KB) is a good choice, as this is the largest packet that can
be sent/received via UDP.

Note that Connext does not currently share threads among the different transport plugins. Instead, each
transport plugin is automatically allocated a single thread by default; depending on the transport plugin,
it may request a separate thread for each receive port.

Often used with:

l Property—configures the maximum message size of individual transports
l TransportUnicast, TransportMulticast—RTI uses a separate receive thread per port per transport
plug-in by default. To force Connext to use a separate thread to process the data for a
DataReader, set a unique port in the DataReader’s Transport Unicast or Transport Multicast QoS
policy.

Reliability

Enables reliability protocol for a DataWriter/DataReader connection.

This QoS policy turns on the RTPS reliability protocol between those DataWriters and DataReaders
that set this QoS policy to the RELIABLE value. When the reliability protocol is used, Connext will
attempt to repair samples that were not successfully received by reliable DataReaders.

By itself, the Reliability policy does not set the level of reliability for a connection between a
DataWriter and DataReader.  Instead, the level of reliability is controlled in conjunction with other
policies, such as History and ResourceLimits, to determine which data remains relevant and therefore
eligible for repair. For example, as a tradeoff for less memory, CPU, and network usage, you can
choose a reduced level of reliability where only the last N values are guaranteed to be delivered reliably
to DataReaders (N is configurable). With the reduced level of reliability, there are no guarantees that
data sent before the last N are received; only the last N data packets are monitored and repaired if neces-
sary.

A connection between a DataWriter and DataReader may be configured for BEST_EFFORT Reli-
ability, which means Connext will not use any resources to monitor or guarantee that the data sent by a
DataWriter is received by a DataReader. For some use cases, such as the periodic update of sensor val-
ues to a GUI displaying values to a person, "best effort" delivery is often good enough. It is the fastest,
most efficient, and least resource-intensive (CPU and network bandwidth) method of getting the

21



Reliability

22

newest/latest value for a topic from DataWriters to DataReaders. However, there is no guarantee that
the data sent will be received. It may be lost due to a variety of factors, including data loss by the phys-
ical transport such as wireless RF or even Ethernet.

For some data streams (topics), you need to be assured that all data from the DataWriter is received reli-
ably by the DataReaders. Connext will ensure data was received and repair any lost data by resending a
copy as many times as needed until the DataReader receives it. This level of reliability is considered
“strictly reliable.” For strict reliability, use the KEEP_ALL setting for the History QoS policy for both
the DataWriter and DataReader along with the RELIABLE setting for the Reliability QoS policy.

The Reliability policy also includes the instance_state_consistency_kind property to support instance
state consistency. Instance state consistency refers to the property of a DDS system where all DataRead-
ers of a given Topic have the same view of the states of instances. Recall that an instance state can be
ALIVE, NOT_ALIVE_DISPOSED, or NOT_ALIVE_NO_WRITERS. Setting the instance_state_con-
sistency_kind to DDS_RECOVER_INSTANCE_STATE_CONSISTENCY ensures that the instance
states on a DataReader are recovered when liveliness is regained with a DataWriter. Instance state con-
sistency does not apply to unkeyed topics (since unkeyed topics have no way to differentiate between
instances). The DDS_RECOVER_INSTANCE_STATE_CONSISTENCY instance_state_consistency_
kind value requires a RELIABLE kind setting in the Reliability QoS policy.

RELIABLE DataWriters may send data to both BEST_EFFORT and RELIABLE DataReaders, but
RELIABLE DataReaders can only receive data from RELIABLE DataWriters. DataWriters with DDS_
RECOVER_INSTANCE_STATE_CONSISTENCY enabled may send data to DataReaders with or
without this setting enabled, but DataReaders with DDS_RECOVER_INSTANCE_STATE_
CONSISTENCY enabled can only receive data from DataWriters that have DDS_RECOVER_
INSTANCE_STATE_CONSISTENCY enabled.

The RTPS reliability protocol is highly configurable using the DataWriterProtocol and DataRead-
erProtocol QoS policy. Most users will need to configure the reliability protocol to meet their real-
time requirements since the default configuration is not designed for speedy packet-loss detection and
repair. In the examples directory of the Connext installation, you should find an example QoS con-
figuration for the reliability protocol that is better suited for many applications.

To maintain reliability in the face of component or system failures, you can use RTI Persistence Ser-
vice to store sent data on other nodes or even to disk elsewhere on the network using the Durability and
DurabilityService QoS policies.

Often used with:

l History—governs how many previously written samples remain relevant; set history kind to
KEEP_ALL for TCP-like reliability over connectionless transports like UDP

l Lifespan—governs how long previously written samples remain relevant; data with an expired
lifespan will not be repaired even if lost



ResourceLimits

l ResourceLimits—governs the total sizes of DataWriter sample caches used to maintain com-
mitments if a finite reliability send window has not been set (see DataWriterProtocol)

l Availability, Durability, DurabilityService—configure additional data sources to maintain reliable
delivery in the face of partial or total system failure

l DataWriterProtocol—a variety of parameters for controlling the RTPS reliability protocol for a
reliable DataWriter, including the size of the reliability “send window” and the rate at which
heartbeats are sent. This also controls whether reliability will be maintained only by means of
negative acknowledgments, or by a combination of positive and negative acknowledgments (the
default).

l DataReaderProtocol—includes corresponding parameters for controlling the reliability protocol
for the reliable DataReader. Among other things, this controls whether reliability will be main-
tained only by means of negative acknowledgments, or by a combination of positive and negative
acknowledgments (the default).

ResourceLimits

Controls amount of physical memory is allocated for middleware entities; if dynamic allocations are
allowed and how they occur; and memory usage among different instance values for keyed topics.

Configures the amount of memory a DataWriter or DataReader may allocate to store data in a local
cache (also referred to as send or receive queues, respectively). The max_samples parameter in this
policy also has a role in throttling the send rate of reliable DataWriters; however, using the “send win-
dow” properties of the DataWriterProtocol QoS policy is the recommended way to configure this beha-
vior.

This QoS policy can limit how much system memory can be allocated by the middleware. For embed-
ded real-time systems and safety-critical systems, predetermination of maximum memory usage is often
required. In addition, dynamic memory allocation may introduce non-deterministic latencies in time-crit-
ical paths. By setting the initial and maximum settings to the same values for different parameters of
this QoS policy, you can be assured that an entity will not dynamically allocate more memory after its
initialization phase.

Often used with:

l History—configures the window of relevant previously written samples, which must fit within
the limits set by the ResourceLimits policy.

l Reliability—the physical data storage limits of the DataWriter and DataReader caches can affect
the performance of the protocol for reliable connections.

Service

Specifies the type of service for the entity.

23



SystemResourceLimits

24

This policy is intended for use by RTI infrastructure services and should not be modified by user applic-
ations.

SystemResourceLimits

Configures DomainParticipant-independent resources.

Within a single process (or address space for some supported real-time operating systems), applications
may create and use multiple DomainParticipants. This QoS policy governs resources at the process
level, across DomainParticipants.

This QoS policy places an effective limit on the number of DomainParticipants that can be created in a
single process. You may need to modify this QoS policy if you need to create more than 10 DomainPar-
ticipants in a process.

TimeBasedFilter

Sets a minimum time period before new data for an instance is provided to a DataReader, excess data
sent faster than the period set are not sent or otherwise discarded.

DataWriters may send data faster than needed by a DataReader. For example, a DataReader of sensor
data that is displayed to a human in a GUI application often does not need data updates faster than a
human can reasonably perceive changes in data values. The period between updates is often measured
in tenths (0.1) of a second up to several seconds. However, a sensor-information DataWriter may have
DataReaders that are processing the sensor information to control parts of the system and thus need
new data updates with periods of hundredths (0.01) or thousandths (0.001) of a second. This policy
allows you to optimize resource usage (CPU and possibly network bandwidth) by only delivering the
required amount of data to different DataReaders and filtering out samples that arrive faster than a rate
you specify (in terms of a period of time between data arrival).

You can use this QoS policy reduce the amount of data received by a DataReader in order to avoid
overwhelming a potentially slow consumer. You can also use it to reduce the amount of data placed on
the network by a DataWriter, to avoid overwhelming network resources.

Different DataReaders for the same Topic are allowed to set their own time-based filters, so that data
published faster than the period set by a DataReader will be dropped by the middleware and not
delivered to the DataReader—without perturbing other DataReaders.

This time-based data-filtering does not depend on any DataWriter settings. However, it also does not
force the DataWriter to send at a specific rate. How fast a DataWriter updates new data is entirely
under the control of the user code.

See also: ContentFilteredTopics (Not a QoS policy but a feature in which you can create DataReaders
that receive data that are filtered based on the value of the data in addition to time. See the RTI Con-
next Core Libraries User's Manual.)

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf


TopicData

TopicData

Attaches arbitrary application data to discovery meta-data at the topic level.

See: UserData.

TopicQueryDispatch

Configures the ability of a DataWriter to publish samples in response to a TopicQuery.

Enables a DataWriter to publish historical samples upon reception of a TopicQuery and controls how
often they are published. Since a TopicQuery selects previously written samples, the DataWriter must
have a non-VOLATILE DurabilityQosPolicy::kind. The ReliabilityQosPolicy::kind must be set to
RELIABLE.

A TopicQuery may select multiple samples at once. The writer will publish them periodically, inde-
pendently from newly written samples. TopicQueryDispatchQosPolicy::publication_period configures
the frequency. TopicQueryDispatchQosPolicy::samples_per_period configures the maximum number of
samples to publish each period. If the DataWriter blocks during the publication of one of these samples,
it will try again the next period. All DataWriters that belong to a single Publisher and enable Top-
icQueries share the same event thread, but each DataWriter schedules separate events. To configure
that thread, see AsynchronousPublisherQosPolicy::topic_query_publication_thread. If the DataWriter is
dispatching more than one TopicQuery at the same time, the configuration of this periodic event applies
to all of them.

TransferMode

Configures the properties of a Zero Copy DataWriter.

This QoS policy specifies the properties of a Zero Copy DataWriter. It controls whether or not the
DataWriter supports data consistency checks. By default, this QoS enables support for data consistency
checks.

TransportBuiltin

Specifies which built-in transports are used.

Three transport plug-ins are built into the core Connext libraries: UDPv4, shared memory, and UDPv6.
(This is true for most supported target platforms. However, on certain embedded platforms, shared
memory and/or UDPv6 may not be supported. Please consult the Platform Notes for more information.)
This QoS policy controls which of these built-in transport plug-ins are to be used by a DomainPar-
ticipant.

By default, the UDPv4 and (on platforms that support it) shared memory transports are enabled. Most
applications will not need to change this default.

25



TransportMulticast

26

You may want to disable the shared memory transport if you do not want applications to use shared
memory to communicate when running on the same node. This may be the case in a lab environment,
for example, where some users kill their applications ungracefully, leaving shared memory regions
orphaned and unable to be cleaned up by other users of the same machines. Be aware that the avail-
ability of the shared memory transport should be set in the same way for all applications running on the
same machine in the same domain. Otherwise, discovery will not complete.

See also:  Property—Used to install external (that is, not built in) transports.

TransportMulticast

Specifies the multicast address on which a DataReader is to receive its data.

By default, DataWriters will send individually addressed packets to each DataReader that subscribes to
the topic of the DataWriter; this is known as unicast delivery. One copy of the data is sent for each
DataReader. This configuration is the simplest to configure and the easiest to manage. However, the net-
work bandwidth used by a DataWriter increases linearly with the number of DataReaders. Multicast
addressing (on UDP/IP transports) allows a DataWriter to send a single network packet that will be
received by many DataReaders. Thus the network bandwidth usage will be nearly constant independent
of the number of DataReaders.

Coordinating the multicast address specified by DataReaders can help optimize network bandwidth
usage in systems where there are multiple DataReaders for the same Topic. Note that you can also spe-
cify a port number as well as a subset of the available transports with which to receive the multicast
data. These settings—multicast address, port number, and transports—do not need to be set uniformly
for all DataReaders of the same Topic. A DataWriter will automatically detect which DataReaders can
be reached at the same network location and which other DataReaders need to be addressed separately.

See also:

l TransportBuiltin—Identifies the available built-in transports
l Property—Used to install external (that is, not builtin) transports

TransportMulticastMapping

Specifies the automatic mapping between a list of topic expressions and multicast addresses that can be
used by a DataReader to receive data for a specific topic.

This QoS policy provides an easy way to configure and assign multicast addresses to DataReaders
based on the names of their associated Topics. You can specify an automatic mapping between a list of
topic expressions and a multicast address that can be used by the DataReader to receive the data. To
have a DataReader use this QoS policy to select its multicast address, its own TransportMulticast QoS
Policy must be set accordingly.



TransportPriority

TransportPriority

Tells Connext that the data being sent has a different "priority" than other data. Provides a priority
value to the underlying transport protocol, for those that can use it.

Some transport protocols, such as IP-based transports, have a concept of user-settable "priorities" that
may be used by operating system network stacks and switching hardware between the publisher and the
subscriber. For such transports and on supported OSs, Connext will pass this value to the transport for
its use.

In the case of IP-based transports (UDPv4, UDPv6, Real-Time WAN, and TCP), you will be able to set
the differentiated services field (DS field) with the transport priority value. The DS field replaces the
outdated IPv4 TOS field. For these transports, the transport priority value is not used as is, but trans-
formed according to the settings of certain transport properties. For details, see TRANSPORT_
PRIORITY QosPolicy in the RTI Connext Core Libraries User's Manual.

TransportSelection

Selects which transports a DataWriter or DataReader may use to send or receive its data.

This QoS policy is used in the advanced case where multiple transports have been installed and only a
subset of them are to be used with a particular DataReader or DataWriter. For example, suppose that
transports for UDP/IP, shared memory, Infiniband, and VME transports are available, and a
DataReader should only receive data over Infiniband.

See also:

l TransportBuiltin—Identifies the available built-in transports
l Property—Used to install external (that is, not built in) transports

TransportUnicast

Specifies a subset of transports and a port number that can be used by an Entity to receive data.

Connext may send data to a variety of Entities, not just DataReaders. For example, reliable DataWriters
may receive ACK/NACK packets from reliable DataReaders. During discovery, each Entity announces
to remote applications a list of (up to 4) unicast addresses to which the remote application should send
data (either user data packets or reliable protocol meta-data such as ACK/NACKs and heartbeats).

By default, the list of addresses is populated automatically with values obtained from the enabled trans-
port plug-ins that are allowed to be used by the Entity (see the TransportBuiltin and TransportSelection
QoS policies). The associated ports are automatically determined. This default behavior is appropriate
for most applications.

Use this QoS policy to manually select a subset of the available receive addresses for an Entity or to
specify a non-default receive port.

27

../users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf


TypeConsistencyEnforcement

28

See also:

l TransportBuiltin—Specifies the available built-in transports at the DomainParticipant level
l Property—Used to install additional external transports at the DomainParticipant level
l TransportSelection—Specifies a subset of the available built-in and external transports available
for a particular DataWriter or DataReader

TypeConsistencyEnforcement

Defines rules that determine whether the type used to publish a given topic is consistent with that used
to subscribe to it.

This policy specifies a type consistency kind, either DISALLOW_TYPE_COERCION or DDS_
ALLOW_TYPE_COERCION (default). When Connext is introspecting the built-in topic data declar-
ation of a remote DataReader in order to determine whether it can match with a local DataWriter, if it
observes that no TypeConsistencyEnforcementQosPolicy value is provided, it assumes a kind of
DISALLOW_TYPE_COERCION.

TypeSupport

Attaches application-specific values to a DataWriter/DataReader, which are passed to the seri-
alization/deserialization routine of the associated data type. Also controls if padding bytes are set to 0
during serialization.

You can modify the rtiddsgen-generated code so that the de/serialization routines act differently depend-
ing on the information passed in via the object pointer.

RTI generally recommends that you treat generated source files as compiler outputs (analogous to
object files) and that you do not modify them. RTI cannot support user changes to generated source
files. Furthermore, such changes would make upgrading to newer versions of Connext more difficult, as
this generated code is considered to be a part of the middleware implementation and consequently does
change from version to version. The plugin_data parameter in this QoS policy should be considered a
back door, only to be used after careful design consideration, testing, and consultation with your RTI
representative.

UserData [GroupData, TopicData]

Attaches arbitrary application data (a buffer of bytes) to discovery meta-data.

These QoS policies attach extra data that you want propagated at discovery time. This extra data is
interpreted by the end user application and is not used by the middleware itself.



WireProtocol

l UserData attaches discoverable meta-data at the DataWriter/DataReader level.
l GroupData attaches discoverable meta-data at the Publisher/Subscriber level.
l TopicData attaches discoverable meta-data at the Topic level.

Use cases for these policies include application-to-application identification, authentication, author-
ization, and encryption purposes. For example, applications can use these policies to send security cer-
tificates to each other for RSA-type security.

See also:

l DomainParticipantResourceLimits—Sets the maximum length of the extra data that can be
attached (default 256 bytes).

l Property—an alternative means of attaching discoverable meta-data to entities.
l DataTag—an alternative means of attaching discoverable meta-data to entities.

WireProtocol

Configures the DDS on-the-wire protocol (RTPS).

Configures some global RTPS properties. The DataWriterProtocol and DataReaderProtocol QoS
policies configure RTPS and reliability properties on a per DataWriter or DataReader basis.

WriterDataLifecycle

Controls how a DataWriter handles the lifecycle of the instances that it is registered to manage.

The behavior controlled by this QoS policy applies on a per instance (key) basis for keyed Topics, so
that when a DataWriter unregisters an instance, Connext can automatically also dispose that instance.
This is the default behavior.

In cases where the ownership of a Topic is exclusive (see the Ownership QoS policy), DataWriters may
want to relinquish ownership of a particular instance of the Topic to allow other DataWriters to send
updates for the value of that instance regardless of how the OwnershipStrength QoS policy is set. In
that case, you may only want a DataWriter to unregister an instance without disposing the instance. Dis-
posing an instance is a statement that an instance no longer exists. User applications may be coded to
trigger on the disposal of instances, thus the ability to unregister without disposing may be useful to
properly maintain the semantic of disposal.

© 2011-2023 Real-Time Innovations, Inc.

29


	QoS Policy List
	QoS Policies per Entity
	QoS Policy Descriptions
	AsynchronousPublisher
	Availability
	Batch
	Database
	DataReaderProtocol, DataWriterProtocol
	DataReaderResourceLimits, DataWriterResourceLimits
	DataRepresentation
	DataTag
	Deadline
	DestinationOrder
	Discovery
	DiscoveryConfig
	DomainParticipantResourceLimits
	Durability
	DurabilityService
	EntityFactory
	EntityName
	Event
	GroupData
	History
	LatencyBudget
	Lifespan
	Liveliness
	Logging
	Monitoring
	MultiChannel
	Ownership
	OwnershipStrength
	Partition
	Presentation
	Profile
	Property
	PublishMode
	ReaderDataLifecyle
	ReceiverPool
	Reliability
	ResourceLimits
	Service
	SystemResourceLimits
	TimeBasedFilter
	TopicData
	TopicQueryDispatch
	TransferMode
	TransportBuiltin
	TransportMulticast
	TransportMulticastMapping
	TransportPriority
	TransportSelection
	TransportUnicast
	TypeConsistencyEnforcement
	TypeSupport
	UserData [GroupData, TopicData]
	WireProtocol
	WriterDataLifecycle


