
RTI Connext Core Libraries Release Notes

Version 7.3.0

Contents

1 Copyrights and Notices 1

2 Introduction 3
2.1 Additional Documentation . 3

3 System Requirements 4
3.1 Supported Platforms . 5

3.1.1 RTI Architecture Names . 5
3.1.2 RTI Infrastructure Services . 6
3.1.3 RTI Tools . 7
3.1.4 RTI Security Extensions and Security Plugins SDK 8
3.1.5 RTI Connext Add-ons . 9
3.1.6 Other Connext Professional Features . 9
3.1.7 Footnotes . 10

3.2 Requirements when Using Microsoft Visual Studio . 12
3.3 Disk and Memory Usage . 13

4 Compatibility 14
4.1 Wire Protocol Compatibility . 14
4.2 Code and Configuration Compatibility . 15
4.3 Extensible Types Compatibility . 15

5 What’s New in 7.3.0 LTS 16
5.1 Sending and Receiving Data . 16

5.1.1 Type evolution now allowed with Zero Copy transfer over sharedmemory when using
FlatData types . 16

5.1.2 Simpler DataReader and DataWriter constructors (Python, Modern C++ APIs) . . . 17
5.1.3 Topic constructors now receive std::string_view arguments 17
5.1.4 Directly get duration in nanoseconds, instead of calculating it, using new to_nanosec

function in Duration class . 17
5.1.5 JSON now a fully supported data format, enabling easier integration of Connext with

other technologies . 18
5.2 Performance . 19

5.2.1 Skip deserialization in DynamicData for efficient data handling, using new property . 19
5.2.2 Compression level applied to built-in Instance State Consistency DataWriter reduced,

speeding up response time and reducing CPU usage 19
5.2.3 Performance improvement for durable writer history and Persistence Service with

high late-joiner activity . 19

i

5.2.4 Performance improvement in large systems using SHMEM transport 20
5.2.5 More efficient use of network and CPU resources, through support for multiple in-

stances of a UDPv4/UDPv6 transport in a single DomainParticipant 20
5.3 Debugging and Logging . 21

5.3.1 Set exactly the metrics you want to collect for Observability Framework, using new
setting in MONITORING QoS policy . 21

5.3.2 Better understand port collision warnings through improved logging 21
5.3.3 New log message warning if sample’s serialized size exceeds MTU and risks not

being sent . 22
5.3.4 Overly long activity context section of log message now truncated instead of gener-

ating additional log messages . 22
5.3.5 Set finer-grained time values for logging properties that take a duration 22
5.3.6 Log messages for use by Logger Device contain further useful information: times-

tamp, source (facility), and message ID . 23
5.3.7 New logging APIs provide ability to emit custom log messages in Connext applications 23
5.3.8 New log warnings when SPDP and SPDP2 participants cannot communicate 24

5.4 DDS Ping and DDS Spy . 24
5.4.1 New option in DDS Ping and DDS Spy to configure Builtin Discovery Plugins 24
5.4.2 New option in DDS Ping and DDS Spy to configure participant partitions 24

5.5 Miscellaneous . 24
5.5.1 Python API supports latest version, Python 3.12 24
5.5.2 Determine a dynamic type’s minimum serialized sample size using new cdr_serial-

ized_sample_min_size . 25
5.5.3 Validate a license using a shared library call . 25
5.5.4 Micro Compatibility Builtin Profile updated to not send serialized types 25
5.5.5 EXCLUSIVE_AREA QoS Policy no longer supported; documentation removed . . . 25

5.6 Third-Party Software Changes . 25

6 What’s Fixed in 7.3.0 LTS 27
6.1 Discovery . 27

6.1.1 [Critical] SPDP2 participants with RTPS peers and participant_liveliness_assert_pe-
riod less than participant_announcement_period may have crashed upon deletion * . 27

6.1.2 [Major] Rediscovery failed if participant with SPDP2 lost liveliness before receiving
remote participant’s configuration message * . 27

6.1.3 [Major] Participants with SPDP2 failed to discover new participant that was using
the same unicast locator as a previously discovered (and not removed) participant * . 28

6.2 Serialization and Deserialization . 28
6.2.1 [Critical] Endpoint creation failed for types with large maximum serialized size . . . 28

6.3 Usability . 29
6.3.1 [Major] Incorrect, too-restrictive maximum string size enforced on certain XML fields 29
6.3.2 [Major] rtipkginstaller error in Windows when user name had space * 29

6.4 Transports . 29
6.4.1 [Critical] High CPU and several warnings in some cases when using MultiChannel

or TransportUnicast QoS . 29
6.4.2 [Critical] Participant may have received RTPS traffic over SHMEM transport not

intended for participant . 30
6.4.3 [Critical] Undefined behavior of shared memory transport if shared mutex or

semaphores removed externally . 30

ii

6.4.4 [Minor] DLL leak when using UDP/TCP transports 30
6.5 Reliability Protocol and Wire Representation . 31

6.5.1 [Critical] Writer-side filtered samples not marked as acknowledged when application
acknowledgement was used . 31

6.6 Debuggability . 31
6.6.1 [Major] Thread names longer than 15 characters on QNX platforms caused errors in

API calls . 31
6.6.2 [Major] Wrong information in shared memory ‘send’ error log message 31
6.6.3 [Minor] take_discovery_snapshot APIs incorrectly always printed keyed_type as

false * . 31
6.7 Content Filters and Query Conditions . 32

6.7.1 [Critical] Error message printed for each filtered sample when using writer-side fil-
tering, FlatData, and Zero Copy over shared memory * 32

6.8 TopicQueries . 32
6.8.1 [Critical] Communication could stop when using bounded max_samples and Topic-

Queries . 32
6.8.2 [Major] max_samples resource limit not honored in some cases when using an un-

keyed topic and TopicQueries . 33
6.9 Logging . 33

6.9.1 [Major] Modern C++ Distributed Logger Options header incorrectly included gen-
erated header file * . 33

6.9.2 [Major] Misleading log message when sending specific number of bytes through
socket * . 33

6.9.3 [Major] Missing logging on the standard output for Windows GUI applications . . . 33
6.9.4 [Minor] Incorrect error message when setting inconsistent ReaderDataLifeCycle-

QosPolicy values . 34
6.9.5 [Minor] Log messages truncated below maximum size of 1024 bytes * 34
6.9.6 [Trivial] Error message that was printed when failing to allocate the writer buffer

pool was wrong * . 34
6.9.7 [Trivial] Missing space between Activity Context and message text if Logging Cate-

gory was printed * . 35
6.10 Dynamic Data . 35

6.10.1 [Major] DynamicData equals operation returned incorrect results for sequences of
different lengths . 35

6.11 APIs (C or Traditional C++) . 35
6.11.1 [Critical] Traditional C++ get_participants() API returned invalid pointer if Moni-

toring Library 2.0 was enabled . 35
6.11.2 [Major] Potential error when waiting for samples in C API 36

6.12 APIs (Modern C++ API) . 36
6.12.1 [Major] Potential crash when mixing the C and Modern C++ APIs in the same exe-

cutable . 36
6.12.2 [Major] DataReader created with builtin topic not automatically destroyed * 36
6.12.3 [Major] Possible link error when building a Windows DLL * 36
6.12.4 [Minor] Conversion of invalid Time to integer units caused unexpected behavior . . 37

6.13 APIs (Java) . 37
6.13.1 [Major] DynamicData API now supports setting and getting wchar fields 37
6.13.2 [Major] Possible data serialization error for keyed DataReaders using XCDR2 format 37
6.13.3 [Minor] “data_to_string” of DynamicDataTypeSupport failed with exception 38

iii

6.14 APIs (Python) . 38
6.14.1 [Critical] Potential deadlock in applications that call certain APIs and use Entity

Listeners . 38
6.14.2 [Minor] Possible memory leak in DynamicData.loan_value 38
6.14.3 [Minor] Converting a SampleInfo object to string failed when source_timestamp was

invalid . 38
6.14.4 [Minor] Some functions didn’t allow keyword arguments 39

6.15 APIs (Multiple Languages) . 39
6.15.1 [Major] Using a Listener and a Waitset in the same application may have resulted in

the Waitset waking up unexpectedly . 39
6.15.2 [Major] Sentinel constant for “invalid” Time contained unexpected value * 39
6.15.3 [Minor] IDL printing of Enum TypeCodes was not standards-compliant 39
6.15.4 [Minor] Extensibility of unions defined within modules incorrectly printed as IDL * . 40
6.15.5 [Minor] Incorrect output when printing a union with an enum discriminator as IDL . 40
6.15.6 [Trivial] First enum label not printed . 41

6.16 XML Configuration . 41
6.16.1 [Critical] Potential segmentation fault when using XML application creation if the

names of <domain_participant_library> and <domain_library> were the same . . . 41
6.16.2 [Major] Micro Compatibility Builtin Profiles updated UDPv4 message_size_max so

that samples larger than 8192 were not silently dropped by Micro applications 41
6.16.3 [Minor] XML parser did not parse scientific notation 42

6.17 Instances . 42
6.17.1 [Critical] Two log messages used memory after it was freed * 42
6.17.2 [Major] Instance state consistency may not have worked for DataReaders using mul-

tiple data representations * . 42
6.17.3 [Major] Indeterminate instance state in systems with multiple DataWriters * 42

6.18 Crashes . 42
6.18.1 [Critical] Crash when deserializing PID_TYPE_OBJECT_LB with class ID of

RTI_OSAPI_COMPRESSION_CLASS_ID_NONE 42
6.18.2 [Critical] Potential crash while calling DynamicData APIs when running out of sys-

tem memory . 43
6.18.3 [Critical] Potential crash when calling DDS_TypeCodeFactory_create_value_tc_ex

with a NULL ex parameter . 43
6.18.4 [Critical] Crash when calling DDS_DataWriter_set_qos with a NULL qos parameter 43
6.18.5 [Critical] Crash when performing an illegal call to DDS_DataWriter_get_qos 43
6.18.6 [Critical] Crash if SPDP2 participant received unexpected field in participant dis-

covery message * . 44
6.18.7 [Critical] Crash during DomainParticipant initialization if failure to get local address

mapping when using UDPV4_WAN transport . 44
6.18.8 [Critical] Crash when converting a DynamicData object to a CDR buffer 44
6.18.9 [Critical] Potential crash if allocation of RTI Monitoring Library’s publish thread failed 45
6.18.10 [Critical] Segmentation fault upon destruction of DDSGuardCondition or DDSWaitset 45
6.18.11 [Critical] Crash if participant received endpoint discovery sample and was not able

to allocate memory to process it . 45
6.18.12 [Critical] Possible exception after using a Condition object if it was not explicitly

disposed . 45
6.18.13 [Critical] Potential crash or errors when using SHMEM transport in QNX * 45

iv

6.18.14 [Critical] Crash if participant failed to allocate memory for endpoint discovery type
plugins . 46

6.18.15 [Critical] Modern C++ Distributed Logger may hang or crash upon instance final-
ization * . 46

6.18.16 [Critical] Invalid multicast locator could cause precondition error or segmentation
violation . 46

6.18.17 [Critical] Crash during DomainParticipant enable operation when running out of sys-
tem memory . 46

6.18.18 [Critical] Segmentation fault when a reader was deleted while a remote writer cleanup
event was scheduled * . 47

6.18.19 [Critical] Race condition between the creation of a Replier and the call to its Listener 47
6.18.20 [Critical] Undefined behavior when Requesters or Repliers for same service name

were concurrently created and deleted . 47
6.18.21 [Critical] Hang led to crash if Monitoring Library 2.0 was enabled then right away

disabled * . 47
6.18.22 [Critical] Possible crash when creation of TCP Transport failed 48
6.18.23 [Critical] Possible crash upon destruction of TCP transport if it was created program-

matically and it logged messages . 48
6.19 Hangs . 48

6.19.1 [Critical] Undefined behavior when using SHMEM transport in Linux, macOS,
QNX, INTEGRITY, and LynxOS . 48

6.19.2 [Major] Possible deadlock related to failures in DNS Tracker 49
6.19.3 [Critical] Segmentation fault or hang when using SHMEM transport on VxWorks 6

or higher platforms . 49
6.20 Memory Leaks/Growth . 49

6.20.1 [Critical] Memory leak in best-effort writers when switching from more than one
unicast locator to a multicast locator . 49

6.20.2 [Critical] Concurrency problem in AsynchronousWaitSet’s global instance initializa-
tion led to memory and TSS key leaks in multi-threading scenarios 49

6.20.3 [Critical] Memory leak when creating a QueryCondition with Parameters 50
6.20.4 [Critical] Memory leak when using NetworkCaptureParams 50
6.20.5 [Critical] Memory Leak in Java API when printing QoS objects 51
6.20.6 [Critical] Asynchronous WaitSet global instance’s thread-specific storage key leaked . 51
6.20.7 [Major] Memory leak when using XML-Based Application Creation and DynamicData 52
6.20.8 [Minor] Memory leak when finalizing DomainParticipantFactory for first time 52
6.20.9 [Minor] DomainParticipantFactory was leaked when factory finalization failed 52
6.20.10 [Minor] Potential Memory leak upon ContentFilteredTopic creation failure 52
6.20.11 [Critical] ODBC DataWriters may have leaked instances when they were replaced if

writer-side filtering was used . 52
6.21 Data Corruption . 53

6.21.1 [Critical] Undefined behavior using XCDR2 with keyed topic types with key union
members . 53

6.21.2 [Critical] Stack overflow if value of “rti.monitor.config.publish_thread_options”
property had 512 or more characters . 53

6.21.3 [Critical] Failure to send serialized key with dispose when using dds.data_writer.his-
tory.memory_manager.fast_pool.pool_buffer_max_size property 53

6.21.4 [Critical] Error uncompressing samples when using batching and setting serial-
ize_key_with_dispose to TRUE . 54

v

6.21.5 [Critical] SampleInfo’s flag and related_original_publication_virtual_guid may have
had invalid information for unkeyed Topics . 54

6.21.6 [Critical] DataReader on a Topic using an appendable type may have received sam-
ples with incorrect value . 54

6.22 OMG Specification Compliance . 55
6.22.1 [Critical] Extensible types did not include padding size in length value of each ele-

ment of RTPS parameter list . 55
6.22.2 [Critical] Problems exchanging data with other vendors for types containing un-

bounded members . 55
6.22.3 [Critical] Non-primitive sequences and arrays serialized incorrectly

with XCDR2_DATA_REPRESENTATION when using dds.type_plu-
gin.dheader_in_non_primitive_collections . 56

6.22.4 [Critical] DataReader on a Topic using an appendable type may have received sam-
ples with incorrect value . 56

6.22.5 [Major] FlatData did not support XCDR2-compliant serialization 56
6.23 Entities . 57

6.23.1 [Critical] FlatData language binding allowed you to specify XCDR data representation 57
6.24 Interoperability . 57

6.24.1 [Minor] JRE version check prevented desktop Java tools from opening 57
6.25 Other . 58

6.25.1 [Critical] Potential bus error when calling print and to_string APIs in TypeCode * . 58
6.25.2 [Critical] Restarted keyed DataReaders using durable reader state and destination

order by source timestamp may have received old samples 58
6.25.3 [Critical] Reliable DataReader may have stopped receiving samples fromDataWriter

using durable writer history and DDS fragmentation 58
6.25.4 [Critical] Support for systems running beyond 2038 when using a database and logging 58
6.25.5 [Major] Durable writer history failed to restore data in buildable sources 59
6.25.6 [Minor] Discovery plugins libraries did not close if creation of plugin failed 59
6.25.7 [Trivial] Strings with default size (255) may have printed as unbounded when printing

TypeCodes as IDL . 59
6.25.8 [Trivial] Alias’s annotations may not have printed out correctly 59

7 Previous Releases 60
7.1 What’s New in 7.2.0 . 60
7.2 What’s Fixed in 7.2.0 . 60

7.2.1 Discovery . 60
[Critical] SPDP2 participants may not have completed discovery if IP mobility event

occurred during discovery * . 60
[Critical] Crash if initial_peers sequence contained a NULL string 61
[Critical] Unbounded memory growth when creating/deleting DomainParticipants * . 61
[Major] Failure to deserialize participant discovery information incorrectly allowed

discovery to complete . 61
7.2.2 Serialization and Deserialization . 61

[Critical] Unbounded memory growth when deserializing SPDP discovery sample . . 61
[Critical] Potential unexpected behavior or crash when deserializing SPDP discovery

sample . 62
[Trivial] Wrong error message when deserializing PropertyQos property value and

exceeding property_string_max_length resource limit 62

vi

7.2.3 Debuggability . 62
[Major] DataWriter instance statistics were not updated in all cases 62
[Trivial] Instance State Consistency QoS was commented out when printed out as

XML from code * . 62
7.2.4 Transports . 63

[Critical] Ungracefully terminated QNX processes using SHMEM transport prevented
startup of new processes due to unclosed POSIX semaphores 63

[Critical] Stalled communication when using shared-memory transport 63
[Major] Connext started before Windows completed duplicate address detection on

network interfaces . 64
[Minor] QNX applications using shared-memory transport may have led to thread pri-

ority inversion issues . 64
[Minor] Overflow in default TransportMulticastMappingQosPolicy procedure 64

7.2.5 Reliability Protocol and Wire Representation . 65
[Critical] Samples lost by reliable reader acknowledging samples it did not receive after

remote writer update . 65
[Critical] Sample loss when using asynchronous publisher due to missing GAP 65
[Major] Inconsistent RTPS protocol versions broadcasted by Connext 66

7.2.6 Content Filters and Query Conditions . 66
[Critical] Instance handling on a DataReader and filtering operations in ContentFil-

teredTopics, QueryCondition, TopicQueries, and Multi-Channel DataWrit-
ers may have failed . 66

7.2.7 Dynamic Data . 66
[Major] Problems with int8/uint8 support . 66

7.2.8 Performance and Scalability . 67
[Major] Performance issues when using FlatData with payload encryption or compression 67
[Major] Transport utilization metrics overflowed in applications with high throughput * 67
[Minor] Performance degradation when using FlatData with ContentFilteredTopics . . 67

7.2.9 APIs (C or Traditional C++) . 68
[Critical] SomeDDS_TypeCode operations may have crashed when invalid arguments

were used . 68
[Critical] Several C API DDS_GUID functions did not account for NULL parameters

correctly . 68
7.2.10 APIs (Modern C++ API) . 68

[Critical] Unexpected rti.connextdds.PreconditionNotMetError when setting optional
string members in QoS policies . 68

[Critical] Move constructors for some of the built-in topic-types were incorrectly im-
plemented . 69

[Critical] Manually closing some built-in readers could lead to a crash 69
[Critical] Incorrect implementation of DynamicDataMemberInfo constructor and as-

signment may have led to undefined behavior 69
[Major] int8_t, uint64_t, int64_t not supported as primitive types in Dynamic Type API 69
[Major] Policy getter for rti::core::policy::Monitoring previously missing * 70

7.2.11 APIs (Java) . 70
[Critical] Possible memory leak in DynamicData copy constructor 70
[Major] Some ReliabilityQos methods did not consider the instance state consistency

QoS * . 70
7.2.12 APIs (Python) . 70

vii

[Major] Access to collection elements in some DynamicData accessors was not
zero-based . 70

7.2.13 APIs (Multiple Languages) . 71
[Major] Looking up a DataReader using the wrong class in Modern C++ or Python

did not raise clear exception * . 71
[Minor] Alias type not obtainable using a QosProvider 71

7.2.14 XML Configuration . 71
[Major] Creating Topic-specific entities from a <qos_profile> using QoS profile inher-

itance and/or composition returned incorrect values 71
[Major] Using languageBinding attribute on union types in XML caused parsing error 72
[Minor] configuration_variables tag was not effective 72
[Minor] Incorrect parsing of data_representation attribute in XML type definitions . . 72

7.2.15 Instances . 72
[Major] Instance purging based on source timestamp did not work * 72
[Minor] Instances transitioned due to instance state consistency did not respect propa-

gate_dispose_of_unregistered_instances * 73
7.2.16 Crashes . 73

[Critical] Race condition when using multiple threads to enable same DomainParticipant 73
[Critical] Possible crash gathering periodic metrics for a resource that was being added

or deleted at the same time * . 73
[Critical] Potential crash when configuring logging verbosity to NDDS_CON-

FIG_LOG_VERBOSITY_STATUS_LOCAL or higher 74
[Critical] Malloc called when handling SIGSEGV 74
[Critical] Calling delete_contained_entities APIs could cause a crash in the thread that

collects periodic metrics * . 74
[Critical] Application could crash when disabling and re-enabling Monitoring Library

2.0 due to internal error * . 75
[Critical] Low-memory conditions could lead to crash on several platforms if allocation

of high resolution clock failed . 75
7.2.17 Entities . 75

[Critical] Application may have hung when deleting a monitored DDS entity * 75
[Major] Monitoring Library 2.0 incorrectly collected both enabled and disabled DDS

Entities * . 76
[Major] Monitoring Library 2.0 did not assert disabled DDS Entities when the Entities

were enabled * . 76
7.2.18 Interoperability . 76

[Critical] Possible incomplete endpoint discovery when communicating with other
DDS vendors . 76

7.2.19 Vulnerabilities . 77
[Critical] Out-of-bounds read while deserializing malformed partition parameters

from malicious RTPS message * . 77
[Critical] Out-of-bounds read while deserializing malformed IPv6 locator from mali-

cious RTPS message . 77
[Critical] Remote modification of DomainParticipant names in unsecure system . . . 78

7.2.20 Other . 78
[Critical] Possible hang in application if something failed while adding a new observ-

able resource * . 78

viii

[Critical] Application may have hung when event and event snapshot were published
simultaneously for same observable resource * 79

[Critical] Unable to start Launcher, Admin Console, Code Generator, and Monitor in
Windows when the RTI Workspace contained white spaces * 79

[Critical] Deadlock issue resolved when disabling Monitoring Library 2.0 during com-
mand processing * . 79

[Major] Native Android applications were not shipped 79
[Major] References to missing header file in Connext Professional source bundle . . . 80
[Major] Access to an internal field of observable resources was not thread safe * . . . 80
[Minor] Running rtisetenv_<arch>.bat caused issues in PATH environment * 80
[Minor] Error creating a DataWriter using durable writer history if setting property

dds.data_writer.history.odbc_plugin.builtin.sample_cache_max_size to -1 . 80
[Trivial] Connext did not print array dimensions for aliases that were arrays 81

7.3 What’s New in 7.1.0 . 81
7.4 What’s Fixed in 7.1.0 . 81

7.4.1 Fixes Related to Discovery . 81
[Critical] Unbounded memory growth when using domain tags or DomainParticipant

partitions . 81
[Critical] Most up-to-date participant configuration may not have been received by

other participants and may have led to discovery not completing 81
[Major] Error deleting remote endpoints with specific GUID prefixes using debug li-

braries . 82
[Major] Participant failed to assert remote participant if usability of shared memory

transport changed * . 82
[Major] Unexpected warning during discovery when multicast disabled 83
[Minor] Potential memory leak when creation of any of the built-in discovery plugins

failed . 83
[Minor] Unexpected, invalid locator propagated within builtin topics 83

7.4.2 Fixes Related to Serialization and Deserialization 83
[Critical] Unexpected union value when receiving a discriminator that does not select

any union member on DataReader’s type 83
[Critical] Serialization of samples failed or produced a segmentation fault for types

with max serialized size larger than 2GB 85
[Critical] Potential sample corruption when deserializing a malformed RTPS message 86
[Critical] Unbounded memory growth when deserializing a malformed RTPS message 86

7.4.3 Fixes Related to Debuggability . 86
[Critical] Hang/crash when invoking a DataReader/DataWriter discovery snapshot

within a callback function * . 86
[Major] Unexpected fatal error when number of instances reached the limit * 86
[Trivial] Memory leak if network capture initialization failed 87
[Trivial] Unexpected log messages at warning verbosity 87

7.4.4 Fixes Related to Transports . 87
[Critical] Possible data loss after a Connext application lost its multicast interfaces or

gained its first multicast interface . 87
[Major] DomainParticipant with non-default metatraffic_transport_priority QoS did

not complete discovery . 88
[Major] TCP Transport did not run with Windows debug libraries when socket_mon-

itoring_kind was set to IOCP * . 88

ix

[Minor] dds.transport.minimum_compatibility_version property did not properly ad-
just locator format . 88

7.4.5 Fixes Related to Reliability Protocol and Wire Representation 89
[Critical] Samples not delivered to Required Subscription DataReaders when

DataWriter used durable writer history and DataReaders disabled positive
ACKs . 89

[Critical] DataReader may not have received samples that were sent as gapped samples
to another DataReader over multicast . 89

[Critical] Unexpected precondition error with debug libraries on a reliable DataWriter
while sending a GAP . 89

[Minor] DDS fragmentation may have led to more fragments than expected for a sam-
ple * . 90

7.4.6 Fixes Related to Content Filters and Query Conditions 90
[Critical] Unexpected “RTIXCdrSampleInterpreter_initializeSampleWInstruction”

error log messages when using QueryConditions, ContentFilteredTopics,
TopicQueries, or Multi-Channel . 90

7.4.7 Fixes Related to Dynamic Data . 91
[Major] DynamicData DataWriters incorrectly serialized optional empty sequences as

null . 91
7.4.8 Fixes Related to APIs . 91

[Minor] DynamicData method to get member type missing in Modern C++ and C#
APIs . 91

Fixes Related to Modern C++ API . 92
Fixes Related to C# API . 92
Fixes Related to Java API . 93
Fixes Related to Python API . 94

7.4.9 Fixes Related to XML Configuration . 96
[Critical] Memory leak after an error parsing XML file with <include> tag 96
[Minor] Failed to parse XML configuration file containing type member with useVec-

tor attribute . 97
[Minor] XML composition overwrote system information properties with defaults in-

stead of correct values . 97
7.4.10 Fixes Related to Request-Reply and RPC . 98

[Critical] Exceptions sending result of remote operation may have crashed server ap-
plication . 98

[Critical] RPC: deadlock when Server::close() was called before Server::run() 99
[Critical] Possible unbounded memory growth when creating many Requesters 99
[Critical] Memory leak in Java Request-Reply API 99
[Critical] Possible data race using Sample and WriteSample classes (Traditional C++

API only) . 99
[Major] RPC interface evolution did not work . 100

7.4.11 Fixes Related to Shipped Examples . 100
[Minor] Hello World TCP example always linked TCP Transport library dynamically . 100

7.4.12 Fixes Related to Vulnerabilities . 101
[Critical] Arbitrary read access while parsing malicious RTPS message * 101
[Critical] Out-of-bounds read while parsing malicious RTPS message 101
[Critical] Out-of-bounds write while parsing malicious RTPS message 102
[Critical] Buffer overflow in shared memory if memory was tampered 102

x

[Critical] Out-of-bounds read while uncompressing malformed data from malicious
RTPS message . 103

7.4.13 Fixes Related to Crashes . 103
[Critical] Rare segmentation fault when deleting DomainParticipant or Publisher con-

taining DataWriters using durable writer history 103
[Critical] Segmentation fault when creation of DomainParticipant failed due to lack of

resources . 104
[Critical] Potential hang upon SIGSEGV signal from a Connext application 104
[Critical] Creating DynamicDataTypePlugin with TypeCode from discovery and using

content filtering caused segmentation fault 104
[Critical] Application crash when calling DDS_DataReader_take_discovery_snapshot

on a DataReader with a ContentFilteredTopic * 105
[Critical] Crash with NULL listeners and non-none status masks in C applications that

mixed types with and without Zero Copy 105
[Critical] Memory was read after it was freed by deleting a Topic with local logging

level enabled . 105
[Critical] Possible segmentation fault when disabling loopback interface 106
[Critical] Segmentation fault could occur if creation of DataReader failed 106
[Critical] Potential crash when DomainParticipant deleted after creating DataWriter

with automatic liveliness kind . 106
[Critical] Possible crash on TCP transport when large number of file descriptors were

open . 106
[Critical] Application using Monitoring Libraries may have produced segmentation

fault during DataReader creation . 106
[Critical] Possible segmentation fault when using Monitoring Library 107

7.4.14 Other Fixes . 107
[Critical] Broken communication when DataWriter with transport priority discovered

DataReader with multicast receive address 107
[Critical] Potential hang upon SIGSEGV signal from a Connext application 107
[Critical] Samples could be lost using group order access or collaborative DataWriters 108
[Critical] Release 6.1.2 was not FACE compliant 108
[Critical] Using dh_param_files leaked memory . 108
[Critical] Segmentation fault when mixing build types in applications linked against

libraries in “Find Package” Cmake script 108
[Major] Error sending batch when batch size exceeded transport MTU 109
[Major] No more than 100 asynchronous publisher threads could be created 109
[Major] Unexpected precondition error while creating a DomainParticipant with de-

bugging libraries using fast database cleanup period 109
[Major] In FindPackage script, low_bandwidth_edisc imported target library wasmissing109
[Minor] Potential memory leak when creation of any of the built-in discovery plugins

failed . 110
[Minor] Problems visualizing participants using Generic.MinimalMemoryFootprint

profile with Admin Console . 110
[Minor] Failure to load a string-based private key leaked memory 110
[Minor] CONNEXTDDS_ARCH environment variable in FindPackage script was not

picked up correctly . 111
[Trivial] Incorrect “Supported platforms” documentation section for FindRTICon-

nextDDS.cmake . 111

xi

7.5 What’s New in 7.0.0 . 111
7.6 What’s Fixed in 7.0.0 . 111

7.6.1 Fixes Related to Callbacks and Waitsets . 111
[Critical] Unsafe combinations of masks and Listeners may have led to segmentation

fault . 111
[Critical] Failure calling DDS_Subscriber::get_datareaders in DDS_SubscriberLis-

tener::on_data_on_readers callback implementation 112
[Critical] Using certain callbacks at DomainParticipant or Publisher level may have

led to segmentation fault . 112
[Major] DDS_SubscriberListener::on_data_on_readers on a participant or subscriber

not called when Listener installed after the entity is enabled 113
[Major] Unable to assign callback function for on_sample_removed event using Mod-

ern C++ API . 113
7.6.2 Fixes Related to Discovery . 113

[Critical] Unexpected memory growth when DataReader could not be matched with
DataWriter due to unexpected error condition 113

[Critical] Possible crash upon discovery of applications with unreachable locators . . . 113
[Critical] Communication problems with applications using shared memory on IN-

TEGRITY systems . 114
[Critical] Unboundedmemory growth in Spywhen discoveringmultiple endpoints with

the same Topics and types . 114
[Major] Types containing Typedefs were sent without the typedefs in discovery when

using DynamicData . 114
[Major] Unnecessary discovery traffic related to IP mobility events on interfaces irrel-

evant to the transport . 115
7.6.3 Fixes Related to Transports . 115

[Critical] Communication problems with applications using shared memory on IN-
TEGRITY systems . 115

[Critical] Race condition could cause unbounded memory growth in TCP Transport
Plugin . 116

7.6.4 Fixes Related to Filtering and TopicQuery . 116
[Critical] Connext application using filtering feature may have crashed after running

out of memory . 116
[Critical] Creation of a ContentFilteredTopic or reception of TopicQuery samples may

have taken long time for complex types 116
[Critical] rti::topic::find_registered_content_filters led to infinite recursion 116
[Critical] Incorrect results for Unions when using DynamicData or Content Filters . . 117
[Major] Unnecessary repair traffic for DataWriters using TopicQueries and asyn-

chronous publishing . 118
[Major] Continuous creation of TopicQueries may have led to unnecessary memory

fragmentation in OS memory allocator . 118
[Major] Samples may have been unnecessarily filtered by Connext DataReader when

DataWriter was from different DDS vendor 118
[Minor] Unnecessary sample filtering on a DataReader for samples already filtered by

a DataWriter . 119
7.6.5 Fixes Related to Group Presentation . 119

[Critical] Application may not have received samples of coherent set when using
GROUP access scope and TRANSIENT_LOCAL durability 119

xii

[Critical] Segmentation fault when using GROUP_PRESENTATION_QOS or
HIGHEST_OFFERED_PRESENTATION_QOS and setting filter_redun-
dant_samples to FALSE on DataReader 120

[Major] Application may stop receiving samples from DataReaders using
GROUP_PRESENTATION_QOS . 120

7.6.6 Fixes Related to XML Configuration . 120
[Major] Parsing error loading XML configuration file containing a const whose expres-

sion refers to an enumerator . 120
[Major] Parsing error loading an XML configuration file with enum type containing

enumerator whose value was an expression 121
[Major] Parsing error loading an XML configuration file with an enum type containing

an enumerator whose value was an expression referring to another enumerator121
[Minor] Discrepancy between range defined by schema and that defined by API 122
[Minor] Parsing error loading XML configuration file with enum type containing enu-

merator whose value was an expression referring to a const 122
[Minor] Type limits not checked for some attributes of XML types definition 122
[Trivial] Removed some elements in the XSD that were not supported internally but

could be defined in XML . 123
[Trivial] Builtin Discovery Plugins was not treated as a mask by the XSD file 124

7.6.7 Fixes Related to Vulnerabilities . 124
Fixes related to Connext . 124
Fixes related to third-party dependencies . 124

7.6.8 Fixes Related to APIs . 125
[Major] Copy of SampleInfo::coherent_set_info field was not supported 125
[Major] Corruption of LoanedDynamicData object when moved in some situations

(Modern C++ API only) . 126
[Major] Calling DynamicData::set_complex_member with an aliased type failed . . . 126
[Major] Possible wrong results when adding Time or Duration objects that used very

large numbers . 127
[Major] Java API did not support RtpsReliableReaderProtocol_t.receive_window_size 128
[Minor] Input parameters to Property and DataTag helper functions do not have “const”128
[Minor] Standard 64-bit integer types are now supported (Modern C++ API) 128
[Minor] Assigning DataWriter and DataReaderQos from a TopicQos caused a build

error . 128
[Minor] In XML-based applications, generated IDL types did not take precedence over

XML DynamicTypes (C# API) . 129
[Minor] Namespaces ignored when a type was explicitly registered in C# for

XML-based applications . 129
7.6.9 Fixes Related to Crashes . 129

[Critical] DataReader C++ application crashed if it received tampered sample with
unsupported encapsulation ID . 129

[Critical] Segmentation fault after calling DomainParticipant::register_durable_sub-
scription with a group containing a long role_name 129

[Critical] Segmentation fault when application using MultiChannel ran out of memory 130
[Critical] Application crashed when capturing traffic for a DomainParticipant created

before enabling network capture . 130
[Critical] Possible crash when writing a sample . 130
[Critical] Potential crash during type registration if system ran out of memory 131

xiii

[Critical] Segmentation fault after calling DomainParticipant::delete_durable_sub-
scription with a group containing a long role_name 131

[Critical] Potential crash or memory corruption if user application using
thread-specific storage . 131

[Minor] Simultaneous deletion of an entity by multiple threads caused a crash when
using Java . 131

7.6.10 Other Fixes . 132
[Critical] Serialization/deserialization of non-primitive sequences and arrays for

XCDR2_DATA_REPRESENTATION did not follow Extensible Types
specification . 132

[Critical] Possible hang when using best-effort writers and asynchronous publishing . . 132
[Critical] Runtime error when using debug libraries for QNX x86 platform 133
[Critical] Pushed samples may not have been received by reliable DataReader when

DataWriter published Type that supports Zero Copy transfer over shared
memory . 133

[Critical] Potential truncation of application-level acknowledgment response data . . . 133
[Critical] Potential Valgrind invalid read when logging a message or enabling heap

monitoring . 134
[Major] Various issues with RtpsReliableWriterProtocol_t::nack_suppression_duration 134
[Major] Possible error message printed during Entity disposal 135
[Major] Source IP on Spy was not correct when DataWriters with same Topic were on

different machines . 135
[Minor] Unboundedmemory growth inMonitoring Library when creating and deleting

endpoints . 135
[Minor] Unexpected behavior when two threads crashed at the same time onWindows

systems . 136
[Minor] DataReaders setting reader_qos.protocol.expects_inline_qos to TRUE incor-

rectly matched with DataWriters . 136
[Minor] Writer using durable writer history may not have blocked after send window

filled up when disable positive ACKs was enabled 136
[Trivial] Error messages displayed that should not have been, when printing DataRead-

erQoS objects . 137
[Trivial] Unnecessary sockets created during initialization of library 137
[Trivial] Malformed IDL printed if multiple labels used for default case of a union . . 137

8 Known Issues 138
8.1 Known Issues with Discovery (SPDP2) . 138

8.1.1 Features under future consideration for SPDP2 . 138
8.1.2 Participants using SPDP2 and allow_unauthenticated_participants fail to communi-

cate if only one participant fails authentication . 139
8.2 Known Issues with Serialization and Deserialization . 139

8.2.1 Some parameters cannot be received multiple times within same SPDP sample . . . 139
8.2.2 Connext not compliant with Extended CDR encoding version 2 for types containing

arrays and sequences of non-primitive types . 140
8.3 Known Issues with Usability . 140

8.3.1 Cannot open USER_QOS_PROFILES.xml in rti_workspace/examples from Visual
Studio . 140

xiv

8.3.2 DataWriter’s Listener callback on_application_acknowledgment() not triggered by
late-joining DataReaders . 140

8.3.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communication
failure when writing small samples . 141

8.3.4 Memory leak if Foo:initialize() called twice . 141
8.3.5 Wrong error code after timeout on write() from Asynchronous Publisher 141
8.3.6 Type Consistency enforcement disabled for structs with more than 10000 members . 141
8.3.7 Escaping special characters in regular/filter expressions not supported in some cases . 142

8.4 Known Issues with Code Generation . 142
8.4.1 Examples and generated code for Visual Studio 2017 and later may not compile

(Error MSB8036) . 142
8.5 Known Issues with Instance Lifecycle . 143

8.5.1 RECOVER_INSTANCE_STATE_CONSISTENCY setting not fully supported by
RTI Infrastructure Services . 143

8.5.2 Persistence Service DataReaders ignore serialized key propagated with dispose updates143
8.5.3 instance_state_consistency_kind QoS cannot be modified before containing entity is

enabled . 143
8.6 Known Issues with Reliability . 143

8.6.1 DataReaders with different reliability kinds under Subscriber with GROUP_PRE-
SENTATION_QOS may cause communication failure 143

8.7 Known Issues with Content Filters and Query Conditions 144
8.7.1 Writer-side filtering may cause missed deadline . 144
8.7.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated correctly . . 144

8.8 Known Issues with TopicQueries . 144
8.8.1 TopicQueries not supported with DataWriters configured to use batching or Durable

Writer History . 144
8.9 Known Issues with Transports . 145

8.9.1 AppAck messages cannot be greater than underlying transport message size 145
8.9.2 DataReader cannot persist AppAck messages greater than 32767 bytes 145
8.9.3 Discovery with Connext Micro fails when shared memory transport enabled 145
8.9.4 Communication may not be reestablished in some IP mobility scenarios 146
8.9.5 Corrupted samples may be forwarded through Routing Service when using

Zero-Copy transfer over shared memory . 146
Use automatic application acknowledgment . 146
Ensure that the number of available samples accounts for Routing Service processing

time . 147
8.9.6 Network Capture does not support frames larger than 65535 bytes 147
8.9.7 Shared memory transport in QNX 7.0 and earlier can result in priority inversion . . . 147
8.9.8 Ungracefully terminated QNX processes using SHMEM transport prevents startup

of new processes due to unclosed POSIX semaphores (QNX 7.0 and earlier) 147
8.10 Known Issues with FlatData . 148

8.10.1 FlatData language bindings do not support automatic initialization of arrays of prim-
itive values to non-zero default values . 148

8.10.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined behavior . . 148
8.11 Known Issues with Coherent Sets . 148

8.11.1 Some coherent sets may be lost or reported as incomplete with batching configurations148
8.11.2 Copy of SampleInfo::coherent_set_info field is not supported 149
8.11.3 Other known issues with coherent sets . 149

xv

8.12 Known Issues with Dynamic Data . 149
8.12.1 Conversion of data by member-access primitives limited when converting to types

that are not supported on all platforms . 149
8.12.2 Types that contain bit fields not supported . 149
8.12.3 Long double not supported for DynamicData in Java API 150
8.12.4 Limitation for C# recursive types . 150

8.13 Known Issues with Logging . 150
8.13.1 Possible crash when closing a logger device while it is used 150

8.14 Known Issues with RTI Monitoring Library . 150
8.14.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Par-

ticipant Sends Monitoring Data . 150
8.14.2 Participant’s CPU and memory statistics are per application 151
8.14.3 ResourceLimit channel_seq_max_length must not be changed 151

8.15 Other Known Issues . 151
8.15.1 Possible Valgrind still-reachable leaks when loading dynamic libraries 151
8.15.2 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) not supported151
8.15.3 Creating multiple DataReaders for the same Topic under the same Subscriber con-

figured with Group Ordered Access is not supported 152
8.15.4 With DISALLOW_TYPE_COERCION and Types containing unbounded mem-

bers, other vendor DataWriters/DataReaders will not match Connext DataWrit-
ers/DataReaders . 152

9 Experimental Features 153

xvi

Chapter 1

Copyrights and Notices

© 2003-2024 Real-Time Innovations, Inc. All rights reserved. Apr 04, 2024

Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Working
as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All other
trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publicationmay be reproduced, stored in a retrieval system, or transmitted in any form (including
electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time Innova-
tions, Inc. The software described in this document is furnished solely under and subject to RTI’s standard
terms and conditions available at https://www.rti.com/terms and in accordance with your License Acknowl-
edgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to the extent otherwise
accepted in writing by a corporate officer of RTI.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved by,
Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

1

https://www.rti.com/terms
http://www.openssl.org/
mailto:eay@cryptsoft.com
mailto:tjh@cryptsoft.com

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations, Inc.
Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding mainte-
nance and support of RTI’s software.

Deprecatedmeans that the item is still supported in the release, but will be removed in a future release. Removed
means that the item is discontinued or no longer supported. By specifying that an item is deprecated in a release,
RTI hereby provides customer notice that RTI reserves the right after one year from the date of such release and,
with or without further notice, to immediately terminate maintenance (including without limitation, providing
updates and upgrades) for the item, and no longer support the item, in a future release.

Technical Support Real-Time Innovations, Inc. 232 E. Java Drive Sunnyvale, CA 94089 Phone: (408)
990-7444 Email: support@rti.com Website: https://support.rti.com/

2

mailto:support@rti.com
https://support.rti.com/

Chapter 2

Introduction

RTI® Connext® 7.3.0 is a long-term support release that is built upon and combines all of the features in
releases 7.0.0, 7.1.0, and 7.2.0. This document highlights changes since Connext 6.1.2.

For an overview of new features in 7.3.0, see RTI Connext Core Libraries What’s New .

2.1 Additional Documentation

Many readers will also want to look at additional documentation available online. In particular, RTI recom-
mends the following:

• Use the RTI Customer Portal (https://support.rti.com) to download RTI software and contact RTI
Support. The RTI Customer Portal requires a username and password. You will receive this in the email
confirming your purchase. If you do not have this email, please contact license@rti.com. Resetting
your login password can be done directly at the RTI Customer Portal.

• The RTI Community Forum (https://community.rti.com) provides a wealth of knowledge to help you
use Connext, including:

– Documentation, at https://community.rti.com/documentation

– Best Practices,

– Example code for specific features, as well as more complete use-case examples,

– Solutions to common questions,

– A glossary,

– Downloads of experimental software,

– And more.

• Whitepapers and other articles are available from http://www.rti.com/resources.

• Performance benchmark results for Connext are published online at http://www.rti.com/products/dds/
benchmarks.html. Updated results for new releases are typically published within two months after
general availability of that release.

3

https://support.rti.com/
https://community.rti.com/
https://community.rti.com/documentation
http://www.rti.com/resources
http://www.rti.com/products/dds/benchmarks.html
http://www.rti.com/products/dds/benchmarks.html

Chapter 3

System Requirements

Connext requires a multi-threaded operating system. This section describes the supported host and target sys-
tems.

In this context, a host is the computer on which you will be developing a Connext application. A target is the
computer on which the completed application will run. A host installation provides the RTI Code Generator
tool (rtiddsgen), examples and documentation, as well as the header files required to build a Connext application
for any architecture. You will also need a target installation, which provides the libraries required to build a
Connext application for that particular target architecture.

Supported platforms, for all products in the Connext suite, are listed in Supported Platforms.

Future releases may not support all of the platforms supported in this release, or may support different versions
of platforms supported in this release.

See the Core Libraries Platform Notes for more information on each platform.

4

3.1 Supported Platforms

A platform refers to the combination of your target machine’s OS version, CPU, and toolchain (compiler or Visual Studio). Each platform has an RTI
architecture name, which is a shorthand way to identify the platform. The “target” is the machine where you will deploy your completed application. (As
opposed to a “host”, which is where you will be developing the application.)

For example, if you have a 64-bit Windows machine with Visual Studio® 2017, the architecture name is x64Win64VS2017. For a 64-bit Linux
machine with gcc version 7.3.0, the architecture name is x64Linux4gcc7.3.0.

The first table lists the supported operating systems and their architecture names.

• Section 3.1.1 RTI Architecture Names

Once you know your architecture name, use the following tables to see which products/features are supported. Youwill also need to know your architecture
name when downloading/installing various Connext libraries.

These table have columns that show you the supported products/features for each architecure. In these tables, Y means Supported.

Note: You may need to scroll down to the end of each table and then scroll to the right in order to see all the content.

• Section 3.1.2 RTI Infrastructure Services

• Section 3.1.3 RTI Tools

• Section 3.1.4 RTI Security Extensions and Security Plugins SDK

• Section 3.1.5 RTI Connext Add-ons

• Section 3.1.6 Other Connext Professional Features

3.1.1 RTI Architecture Names

Table 3.1: Architecture Names for Connext Professional

OS Version CPU RTI Architecture [2]
Android Android 12 ARM64 arm64Android12clang12.0.8 ndkr23b [5]

Linux Ubuntu 18.04 LTS Arm v7 armv7Linux4gcc7.5.0 [6]

Ubuntu 18.04 LTS, 22.04 LTS Arm v8 armv8Linux4gcc7.3.0

Red Hat Enterprise Linux 8, 9; Ubuntu 18.04 LTS, 20.04 LTS, 22.04 LTS x64 x64Linux4gcc7.3.0 [10]

x64Linux4gcc7.3.0FACE_GP [8]

Ubuntu 22.04 LTS x64 x64Linux5Unreal5.2clang15 [9]

macOS macOS 11, 12, 13 ARM64 arm64Darwin20clang12.0

continues on next page

RTIConnextDDS
Core

Libraries
Release

N
otes,Version

7.3.0

Table 3.1 – continued from previous page
OS Version CPU RTI Architecture [2]

x64 x64Darwin20clang12.0

QNX QNX Neutrino 7.1 Arm v8 armv8QNX7.1qcc_gpp8.3.0

x64 x64QNX7.1qcc_cxx8.3.0

VxWorks VxWorks 23.09 x64 x64Vx23.09llvm16.0

x64Vx23.09llvm16.0_rtp

Windows Windows 11 ARM64 arm64Win64VS2022

Windows 10, 11; Windows Server 2016, 2022 x64 x64Win64VS2017

Custom-supported target platforms, only available on demand:

AIX AIX 7.2 POWER9 64p9AIX7.2xlclang16.1 [1]

Linux TI Linux 8.2.0.3 Arm v8 armv8Linux-armgcc9.2.1 [1]

Red Hat Enterprise Linux 7.x [23]; CentOS 7.0 x64 x64Linux3gcc4.8.2 [1]

x86 i86Linux3gcc4.8.2 [1]

RedHawk Linux 8.4.1 x64 x64RedHawk8.4gcc8.5.0 [1]

x86 i86RedHawk8.4gcc8.5.0 [1]

QNX QNX for Safety 2.2 Arm v8 armv8QOS2.2qcc_cxx8.3.0 [1]

QNX Neutrino 7.0.4 Arm v8 armv8QNX7.0.0qcc_cxx5.4.0 [1]

Arm v7 armv7QNX7.0.0qcc_cxx5.4.0 [1, 6, 11]

QNX Neutrino 7.1 Arm v8 armv8QNX7.1qcc_cxx8.3.0 [1]

QNX Neutrino 7.0.4 x64 x64QNX7.0.0qcc_gpp5.4.0 [1]

VxWorks VxWorks 7.0 (SR0630) x64 x64Vx7SR0630llvm8.0.0.2 [1]

x64Vx7SR0630llvm8.0.0.2_rtp [1]

VxWorks 22.03 ppc ppc32Vx22.03gcc8.3.0_rtp [1]

Windows Windows 10; Windows Server 2012 R2, 2016 x64 x64Win64VS2015 [1]

Windows 10; Windows Server 2016 x86 i86Win32VS2015 [1]

i86Win32VS2017 [1]

3.1.2 RTI Infrastructure Services

This table shows which RTI Infrastructure Services are supported on each architecture.

Table 3.2: RTI Infrastructure Services

OS RTI Architecture [2] Persistence [4] Routing Recording Web Integration
Android arm64Android12clang12.0.8 ndkr23b [5]

Linux armv7Linux4gcc7.5.0 [6] Y Y Y

armv8Linux4gcc7.3.0 Y Y Y Y

x64Linux4gcc7.3.0 [10] Y Y Y Y

x64Linux4gcc7.3.0FACE_GP [8]

x64Linux5Unreal5.2clang15 [9] Y Y Y Y

macOS arm64Darwin20clang12.0 Y Y Y Y

x64Darwin20clang12.0 Y Y Y Y

QNX armv8QNX7.1qcc_gpp8.3.0 Y Y

x64QNX7.1qcc_cxx8.3.0 Y Y

VxWorks x64Vx23.09llvm16.0

x64Vx23.09llvm16.0_rtp

Windows arm64Win64VS2022 Y Y Y

x64Win64VS2017 Y Y Y Y

Custom-supported target platforms, only available on demand:

AIX 64p9AIX7.2xlclang16.1 [1]

Linux armv8Linux-armgcc9.2.1 [1] Y Y

continues on next page

3.1.
Supported

Platform
s

6

RTIConnextDDS
Core

Libraries
Release

N
otes,Version

7.3.0

Table 3.2 – continued from previous page
OS RTI Architecture [2] Persistence [4] Routing Recording Web Integration

x64Linux3gcc4.8.2 [1] Y Y Y Y

i86Linux3gcc4.8.2 [1] Y Y Y

x64RedHawk8.4gcc8.5.0 [1] Y Y

i86RedHawk8.4gcc8.5.0 [1] Y Y

QNX armv8QOS2.2qcc_cxx8.3.0 [1] Y Y

armv8QNX7.0.0qcc_cxx5.4.0 [1] Y Y

armv7QNX7.0.0qcc_cxx5.4.0 [1, 6, 11] Y

armv8QNX7.1qcc_cxx8.3.0 [1] Y Y

x64QNX7.0.0qcc_gpp5.4.0 [1] Y Y

VxWorks x64Vx7SR0630llvm8.0.0.2 [1]

x64Vx7SR0630llvm8.0.0.2_rtp [1]

ppc32Vx22.03gcc8.3.0_rtp [1]

Windows x64Win64VS2015 [1] Y Y Y Y

i86Win32VS2015 [1] Y Y Y

i86Win32VS2017 [1] Y Y Y

3.1.3 RTI Tools

This table shows which RTI Tools are supported on each architecture.

Table 3.3: RTI Tools

OS RTI Architecture [2] Shapes Demo Launcher Monitor Admin Console System Designer
Android arm64Android12clang12.0.8 ndkr23b [5]

Linux armv7Linux4gcc7.5.0 [6]

armv8Linux4gcc7.3.0

x64Linux4gcc7.3.0 [10] Y Y Y Y Y [12]

x64Linux4gcc7.3.0FACE_GP [8]

x64Linux5Unreal5.2clang15 [9] Y Y Y Y Y [12]

macOS arm64Darwin20clang12.0 Y Y Y Y Y [13]

x64Darwin20clang12.0 Y Y Y Y Y [14]

QNX armv8QNX7.1qcc_gpp8.3.0

x64QNX7.1qcc_cxx8.3.0

VxWorks x64Vx23.09llvm16.0

x64Vx23.09llvm16.0_rtp

Windows arm64Win64VS2022

x64Win64VS2017 Y Y Y Y Y [7]

Custom-supported target platforms, only available on demand:

AIX 64p9AIX7.2xlclang16.1 [1]

Linux armv8Linux-armgcc9.2.1 [1]

x64Linux3gcc4.8.2 [1] Y Y Y Y Y [12]

i86Linux3gcc4.8.2 [1]

x64RedHawk8.4gcc8.5.0 [1] Y

i86RedHawk8.4gcc8.5.0 [1]

QNX armv8QOS2.2qcc_cxx8.3.0 [1]

armv8QNX7.0.0qcc_cxx5.4.0 [1]

armv7QNX7.0.0qcc_cxx5.4.0 [1, 6, 11]

armv8QNX7.1qcc_cxx8.3.0 [1]

x64QNX7.0.0qcc_gpp5.4.0 [1]

VxWorks x64Vx7SR0630llvm8.0.0.2 [1]

continues on next page

3.1.
Supported

Platform
s

7

RTIConnextDDS
Core

Libraries
Release

N
otes,Version

7.3.0

Table 3.3 – continued from previous page
OS RTI Architecture [2] Shapes Demo Launcher Monitor Admin Console System Designer

x64Vx7SR0630llvm8.0.0.2_rtp [1]

ppc32Vx22.03gcc8.3.0_rtp [1]

Windows x64Win64VS2015 [1] Y Y Y Y Y [7]

i86Win32VS2015 [1]

i86Win32VS2017 [1]

3.1.4 RTI Security Extensions and Security Plugins SDK

This table shows which architectures support the RTI Security Extensions, and the separate add-on Security Plugins SDK.

Table 3.4: Security Extensions and Security Plugins SDK

Security Extensions Add-on
OS RTI Architecture [2] Security Plugins (for OpenSSL) [15] Security Plugins (for wolfSSL) [16] TLS Support [15] Security Plugins SDK [15, 16]
Android arm64Android12clang12.0.8 ndkr23b [5] Y Y

Linux armv7Linux4gcc7.5.0 [6] Y Y

armv8Linux4gcc7.3.0 Y Y

x64Linux4gcc7.3.0 [10] Y Y Y Y

x64Linux4gcc7.3.0FACE_GP [8]

x64Linux5Unreal5.2clang15 [9] Y Y

macOS arm64Darwin20clang12.0 Y Y Y

x64Darwin20clang12.0 Y Y Y

QNX armv8QNX7.1qcc_gpp8.3.0 Y Y Y Y

x64QNX7.1qcc_cxx8.3.0 Y Y

VxWorks x64Vx23.09llvm16.0 Y [18]

x64Vx23.09llvm16.0_rtp Y [18]

Windows arm64Win64VS2022 Y Y

x64Win64VS2017 Y Y Y

Custom-supported target platforms, only available on demand:

AIX 64p9AIX7.2xlclang16.1 [1]

Linux armv8Linux-armgcc9.2.1 [1] Y Y

x64Linux3gcc4.8.2 [1] Y Y Y Y

i86Linux3gcc4.8.2 [1] Y Y

x64RedHawk8.4gcc8.5.0 [1] Y [17] Y [17]

i86RedHawk8.4gcc8.5.0 [1] Y [17] Y [17]

QNX armv8QOS2.2qcc_cxx8.3.0 [1] Y Y Y Y

armv8QNX7.0.0qcc_cxx5.4.0 [1] Y Y Y

armv7QNX7.0.0qcc_cxx5.4.0 [1, 6, 11] Y Y

armv8QNX7.1qcc_cxx8.3.0 [1] Y Y

x64QNX7.0.0qcc_gpp5.4.0 [1] Y Y

VxWorks x64Vx7SR0630llvm8.0.0.2 [1] Y [19]

x64Vx7SR0630llvm8.0.0.2_rtp [1] Y [19]

ppc32Vx22.03gcc8.3.0_rtp [1]

Windows x64Win64VS2015 [1] Y Y Y

i86Win32VS2015 [1] Y Y

i86Win32VS2017 [1] Y Y

3.1.
Supported

Platform
s

8

RTIConnextDDS
Core

Libraries
Release

N
otes,Version

7.3.0

3.1.5 RTI Connext Add-ons

This table shows various add-on products and which architectures support them.

Table 3.5: Add-ons

OS RTI Architecture [2] Cloud Discovery Service Real-Time WAN Transport Ada [20] Ltd. Bandwidth [21] Queuing Service
Android arm64Android12clang12.0.8 ndkr23b [5] Y

Linux armv7Linux4gcc7.5.0 [6] Y

armv8Linux4gcc7.3.0 Y Y

x64Linux4gcc7.3.0 [10] Y Y Y Y

x64Linux4gcc7.3.0FACE_GP [8]

x64Linux5Unreal5.2clang15 [9] Y Y Y Y

macOS arm64Darwin20clang12.0 Y Y Y

x64Darwin20clang12.0 Y Y Y

QNX armv8QNX7.1qcc_gpp8.3.0 Y

x64QNX7.1qcc_cxx8.3.0 Y

VxWorks x64Vx23.09llvm16.0 Y

x64Vx23.09llvm16.0_rtp Y

Windows arm64Win64VS2022 Y Y Y

x64Win64VS2017 Y Y Y Y

Custom-supported target platforms, only available on demand:

AIX 64p9AIX7.2xlclang16.1 [1]

Linux armv8Linux-armgcc9.2.1 [1] Y

x64Linux3gcc4.8.2 [1] Y Y Y Y Y

i86Linux3gcc4.8.2 [1] Y Y Y

x64RedHawk8.4gcc8.5.0 [1] Y

i86RedHawk8.4gcc8.5.0 [1] Y

QNX armv8QOS2.2qcc_cxx8.3.0 [1] Y

armv8QNX7.0.0qcc_cxx5.4.0 [1] Y Y

armv7QNX7.0.0qcc_cxx5.4.0 [1, 6, 11] Y

armv8QNX7.1qcc_cxx8.3.0 [1] Y

x64QNX7.0.0qcc_gpp5.4.0 [1] Y

VxWorks x64Vx7SR0630llvm8.0.0.2 [1] Y

x64Vx7SR0630llvm8.0.0.2_rtp [1] Y

ppc32Vx22.03gcc8.3.0_rtp [1] Y

Windows x64Win64VS2015 [1] Y Y Y Y

i86Win32VS2015 [1] Y Y Y

i86Win32VS2017 [1] Y Y Y

3.1.6 Other Connext Professional Features

This table shows other features in Connext Professional and which architectures support them.

Table 3.6: Other Features

OS RTI Architecture [2] Distributed Logger Monitoring Monitoring 2.0 LBED [3] Observability Collector Service
Android arm64Android12clang12.0.8 ndkr23b [5] Y Y Y

Linux armv7Linux4gcc7.5.0 [6] Y Y Y

armv8Linux4gcc7.3.0 Y Y Y Y

x64Linux4gcc7.3.0 [10] Y Y Y Y Y

continues on next page

3.1.
Supported

Platform
s

9

RTIConnextDDS
Core

Libraries
Release

N
otes,Version

7.3.0

Table 3.6 – continued from previous page
OS RTI Architecture [2] Distributed Logger Monitoring Monitoring 2.0 LBED [3] Observability Collector Service

x64Linux4gcc7.3.0FACE_GP [8]

x64Linux5Unreal5.2clang15 [9] Y Y Y Y

macOS arm64Darwin20clang12.0 Y Y Y

x64Darwin20clang12.0 Y Y Y

QNX armv8QNX7.1qcc_gpp8.3.0 Y Y Y

x64QNX7.1qcc_cxx8.3.0 Y Y Y

VxWorks x64Vx23.09llvm16.0 Y Y [22] Y

x64Vx23.09llvm16.0_rtp Y Y [22] Y

Windows arm64Win64VS2022 Y Y Y Y

x64Win64VS2017 Y Y Y Y

Custom-supported target platforms, only available on demand:

AIX 64p9AIX7.2xlclang16.1 [1] Y Y [22] Y

Linux armv8Linux-armgcc9.2.1 [1] Y Y Y

x64Linux3gcc4.8.2 [1] Y Y Y Y Y

i86Linux3gcc4.8.2 [1] Y Y Y Y

x64RedHawk8.4gcc8.5.0 [1] Y Y Y

i86RedHawk8.4gcc8.5.0 [1] Y Y Y

QNX armv8QOS2.2qcc_cxx8.3.0 [1] Y Y Y

armv8QNX7.0.0qcc_cxx5.4.0 [1] Y Y Y Y

armv7QNX7.0.0qcc_cxx5.4.0 [1, 6, 11] Y Y Y

armv8QNX7.1qcc_cxx8.3.0 [1] Y Y Y

x64QNX7.0.0qcc_gpp5.4.0 [1] Y Y Y

VxWorks x64Vx7SR0630llvm8.0.0.2 [1] Y Y [22] Y

x64Vx7SR0630llvm8.0.0.2_rtp [1] Y Y [22] Y

ppc32Vx22.03gcc8.3.0_rtp [1] Y Y [22] Y

Windows x64Win64VS2015 [1] Y Y Y Y

i86Win32VS2015 [1] Y Y Y Y

i86Win32VS2017 [1] Y Y Y Y

3.1.7 Footnotes

These are the footnotes used in the preceding tables.

Table 3.7: Footnotes for Supported Platforms Tables
1 Custom Target Library (CTL), only available on demand. Contact your RTI sales representative or sales@rti.com for more information.
2 Supports DDS 1.4 and RTPS 2.5.
3 LBED = Limited Bandwidth Endpoint Discovery. Supports dynamic linking only.
4 Tested with filesystem only in PERSISTENT mode.
5 Advanced example generation in code generator not supported.
6 These libraries require a hardware FPU in the processor and are compatible with systems that have hard-float libc. See the Platform Notes for compiler flag details.
7 Tested on x64 Windows 10 with Chrome version 112 and Firefox version 108.
8 Request-reply API not supported, DDS Ping and Spy not supported. FACE architectures only available for Connext TSS.
9 Target libraries for Unreal Engine 5.2.
10 This should also work on Wind River Linux 9.
11 Tested with QNX 7.0.0 kernel.
12 Tested on x64 Linux, with Chrome version 112 and Firefox version 108.
13 Tested on ARM64 macOS, with Chrome version 112, and Firefox version 108.
14 Tested on x64 Mac OS 10 with Chrome version 112, Firefox version 108, and Safari version 16.2.
15 Tested with OpenSSL 3.0.12 unless stated otherwise.
16 Tested with wolfSSL 5.5.1.
17 Tested with OS stock version of OpenSSL (OpenSSL 1.1.1k FIPS).

continues on next page

3.1.
Supported

Platform
s

10

mailto:sales@rti.com

RTIConnextDDS
Core

Libraries
Release

N
otes,Version

7.3.0

Table 3.7 – continued from previous page
18 Tested with OpenSSL from VxWorks 23 (OpenSSL 3.1.1).
19 Tested with OpenSSL from VxWorks 7 (OpenSSL 1.1.1).
20 Built with AdaCore GNAT Pro 18.2, compatible with version 18.2-23.3.
21 Ltd. Bandwidth = Limited Bandwidth Plugins
22 Memory and CPU usage not available in monitoring data.
23 7.x refers to Red Hat Enterprise Linux 7.0, 7.3, 7.5, and 7.6.

3.1.
Supported

Platform
s

11

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

3.2 Requirements when Using Microsoft Visual Studio

Note: Debug versions of applications and the various Visual C++ DLLs are not redistributable. Therefore, if
you want to run debug versions, you must have the compiler installed.

When Using Visual Studio 2015 — Update 3 Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2015 Update 3 installed on the machine where
you are running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all
Java applications.

You can download theVisual C++Redistributable for Visual Studio 2015Update 3 from thisMicrosoft website:
https://www.microsoft.com/en-us/download/details.aspx?id=53840.

When Using Visual Studio 2017 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2017 installed on the machine where you are
running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all Java
applications.

You can download the Visual C++ Redistributable for Visual Studio 2017 from this Microsoft website:
https://visualstudio.microsoft.com/vs/older-downloads/. Then look in this section: “Redistributables and
Build Tools” for Microsoft Visual C++ Redistributable for Visual Studio 2017”.

When Using Visual Studio 2019 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2019 installed on the machine where you are
running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all Java
applications.

You can download the Visual C++ Redistributable for Visual Studio 2019 from this Microsoft website: https:
//visualstudio.microsoft.com/vs/older-downloads/. Then look in this section: “Other Tools and Frameworks”
for Microsoft Visual C++ Redistributable for Visual Studio 2019”.

When Using Visual Studio 2022 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2022 installed on the machine where you are
running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all Java
applications.

You can download the Visual C++ Redistributable for Visual Studio 2022 from this Microsoft website:
https://www.visualstudio.com/downloads/. Then look in this section: “Other Tools, Frameworks, and Re-
distributables” for Microsoft Visual C++ Redistributable for Visual Studio 2022”.

3.2. Requirements when Using Microsoft Visual Studio 12

https://www.microsoft.com/en-us/download/details.aspx?id=53840
https://visualstudio.microsoft.com/vs/older-downloads/
https://visualstudio.microsoft.com/vs/older-downloads/
https://visualstudio.microsoft.com/vs/older-downloads/
https://www.visualstudio.com/downloads/

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

3.3 Disk and Memory Usage

Disk usage for a typical host-only installation is approximately 802 MB on Linux systems and 821 MB on
Windows systems. Each additional architecture (host or target) requires an additional 498MB on Linux systems
and 609 MB on Windows systems.

We recommend that you have at least 256 MB RAM installed on your host development system. The target
requirements are significantly smaller and they depend on the complexity of your application and hardware
architecture.

3.3. Disk and Memory Usage 13

Chapter 4

Compatibility

Below is basic compatibility information for this release.

Note: For backward-compatibility information between this and previous releases, see the Migration Guide
on the RTI Community Portal (https://community.rti.com/documentation).

4.1 Wire Protocol Compatibility

Connext communicates over the wire using the formal Real-Time Publish-Subscribe (RTPS) protocol. RTPS
has been developed from the ground up with performance, interoperability and extensibility in mind. The
RTPS protocol is an international standard managed by the OMG. The RTPS protocol has built-in extensibility
mechanisms that enable new revisions to introduce new message types, extend the existing messages, or extend
the Quality of Service settings in the product—without breaking interoperability.

RTPS 1.0 was introduced in 2001. The currently supported version is OMG Real-Time Publish-Subscribe
(RTPS) specification, version 2.5, although some features are not supported. Unsupported features currently
are FilteredCountFlag in GAP Submessage, HeartbeatFrag Submessage, and ALIVE_FILTERED instance
state. RTI plans to maintain interoperability between middleware versions based on RTPS 2.1. For more
details, see Table 4.1 RTPS Versions.

Table 4.1 RTPS Versions shows RTPS versions supported for each Connext release. In general, RTPS 2.1 and
higher versions are interoperable, unless noted otherwise. RTPS 2.0 and RTPS 1.2 are incompatible with
current (4.2e and later) versions of Connext.

Although RTPS 2.1 and higher versions are generally interoperable, there may be specific wire protocol interop-
erability issues between Connext releases. These issues are documented in the “Wire Protocol” section for your
release, in the Migration Guide on the RTI Community Portal (https://community.rti.com/documentation).
Wire protocol issues between 5.3.1 and previous releases are documented in the Core Libraries Release Notes
for release 5.3.1.

14

https://community.rti.com/documentation
https://www.omg.org/spec/DDSI-RTPS/2.5
https://www.omg.org/spec/DDSI-RTPS/2.5
https://community.rti.com/documentation

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Table 4.1: RTPS Versions
Connext Release RTPS Stan-

dard Ver-
sionPage 15, 1

RTPS Proto-
col Version2

Connext 7.1.0 and above 2.5 (partial
support)

2.5

Connext 6 and 7.0.0 2.3 (partial
support)

2.3

Connext 5.2 and 5.3 2.2 2.1
Connext 4.5f - 5.1 2.1 2.1
Data Distribution Service 4.2e - 4.5e 2.1 2.1
Data Distribution Service 4.2c 2.0 2.0
Data Distribution Service 4.2b and lower 1.2 1.2

4.2 Code and Configuration Compatibility

The Connext core uses an API that is an extension of the OMGData Distribution Service (DDS) standard API,
version 1.4. RTI strives to maintain API compatibility between versions, but will conform to changes in the
OMG DDS standard.

The Connext core primarily consists of a library and a set of header files. In most cases, upgrading simply
requires you to recompile your source using the new header files and link the new libraries. In some cases,
minor modifications to your application code might be required; any such changes are noted in the Migration
Guide on the RTI Community Portal (https://community.rti.com/documentation). The Migration Guide also
indicates whether and how to regenerate code.

4.3 Extensible Types Compatibility

This release of Connext includes partial support for the OMG ‘Extensible and Dynamic Topic Types for DDS’
specification, version 1.3 (DDS-XTypes) from the Object Management Group (OMG). This support allows
systems to define data types in a more flexible way, and to evolve data types over time without giving up
portability, interoperability, or the expressiveness of the DDS type system.

For information related to compatibility issues associated with the Extensible Types support, see theMigration
Guide on the RTI Community Portal (https://community.rti.com/documentation). See also the RTI Connext
Core Libraries Extensible Types Guide for a full list of the supported and unsupported extensible types features.

1 Version number of the RTPS standards document, OMG Real-Time Publish-Subscribe (RTPS) specification, version 2.5
2 RTPS wire protocol version number that Connext announces in messages it puts on the wire

4.2. Code and Configuration Compatibility 15

https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS/1.4
https://community.rti.com/documentation
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3
https://community.rti.com/documentation
https://www.omg.org/spec/DDSI-RTPS/2.5

Chapter 5

What’s New in 7.3.0 LTS

This section describes what’s new in the Core Libraries compared to release 7.2.0. For information on new
features in releases 7.0.0, 7.1.0, and 7.2.0, which are all also part of 7.3.0 LTS, see Previous Releases, in the
RTI Connext What’s New.

For what’s new and fixed in other products in the Connext suite, see those products’ release notes on https:
//community.rti.com/documentation or in your installation. Or start with the RTI Connext What’s New for a
launchpad to all products.

Note: For backward compatibility information between 7.3.0 LTS and previous releases, see the Migration
Guide on the RTI Community Portal (https://community.rti.com/documentation).

5.1 Sending and Receiving Data

5.1.1 Type evolution now allowed with Zero Copy transfer over shared memory
when using FlatData types

Previously, type coercion was not permitted for any topics using Zero Copy regardless of the lan-
guage binding, which means that you could not evolve the types. If you had set reader_qos.
type_consistency.kind to AUTO_TYPE_COERCION for a Zero Copy DataReader, Connext trans-
lated this value to DISALLOW_TYPE_COERCION. Setting reader_qos.type_consistency.
kind to ALLOW_TYPE_COERCION resulted in an error when creating a Zero Copy DataReader.

In this release, this restriction no longer applies to topics using Zero Copy when the underlying type is annotated
as a FlatData type, allowing type evolution while using Zero Copy.

See Other Considerations, in Zero Copy Transfer Over Shared Memory, in the RTI Connext Core Libraries
User’s Manual, for more information.

16

https://community.rti.com/documentation
https://community.rti.com/documentation
https://community.rti.com/documentation
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/SendingLDZeroCopyConsider.htm

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

5.1.2 Simpler DataReader and DataWriter constructors (Python, Modern C++ APIs)

Many applications don’t need an explicit Subscriber or Publisher if they don’t require features like ordered access
or partitions. Starting with this release, in the Python and Modern C++ APIs, the subscriber argument
for the DataReader constructors and the publisher argument to the DataWriter constructors are
optional. When not specified, the implicit subscriber and the implicit publisher are used, respectively.

For example, this new way to create a DataReader is available:

In Python:

reader = dds.DataReader(topic, Foo)

In modern C++:

DataReader<Foo> reader(topic);

These are equivalent to the following:

In Python:

reader = dds.DataReader(topic.participant.implicit_publisher, topic, Foo)

In modern C++:

DataReader<Foo> reader(rti::sub::implicit_subscriber(topic.participant()),␣
→˓topic);

Note that other language APIs that use a factory pattern are unchanged, since the DomainParticipant pro-
vides create_datareader() and create_datawriter() methods that don’t require a Subscriber
or Publisher.

5.1.3 Topic constructors now receive std::string_view arguments

When an application using the Modern C++ API is compiled with support for C++17 or higher, the Topic
constructors now receive a std::string_view argument instead of a std::string. Many applications
define their topic names as string constants in the application or in IDL. The new IDL4-C++ mapping translates
IDL string constants to std::string_view in C++. By declaring a std::string_view argument, the
Topic constructors now accept any type of string (std::string, std::string_view, char*, etc.).

5.1.4 Directly get duration in nanoseconds, instead of calculating it, using new
to_nanosec function in Duration class

A new function, to_nanosec, is now available in the Duration class to get the number of nanoseconds
equivalent to the time expressed in a Duration object. This new functionality enables you to get a duration
value directly in nanoseconds. You no longer need to calculate nanoseconds from the output of other functions
(like the output of to_microsec).

5.1. Sending and Receiving Data 17

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

5.1.5 JSON now a fully supported data format, enabling easier integration of Con-
next with other technologies

Connext already provided to_string APIs that allowed converting a data sample into a JSON string (and
other formats). This release adds from_string APIs that allow creating a data sample from a JSON string
representation.

For example, given an IDL type Point, defined as follows:

struct Point {
int32 x;
int32 y;

};

Connext applications can now create and publish a Point instance from a JSON string such as {"x": 1,
"y": 2}.

The following APIs have been added.

• In the Modern C++ API: rti::topic::from_string

Point p = rti::topic::from_string<Point>("{\"x\": 10, \"y\": 20}");

• In the Python API: TypeSupport.from_string and, for convenience, TypeSupport.
from_json as well as TypeSupport.to_json:

import rti.types as idl

point_support = idl.get_type_support(Point)
point = point_support.from_json(r'{"x": 10, "y": 20}')

• In the C# API, <Type>Support.FromString:

Point p = PointSupport.Instance.FromString("{\"x\": 10, \"y\": 20}")

• In the Java API, <Type>TypeSupport.data_from_string:

Point p = PointTypeSupport.get_instance().data_from_string("{\"x\": 10, \"y\
→˓": 20}")

It’s also possible to convert from DynamicData samples to JSON strings; the class DynamicData includes
a new from_string method.

After obtaining thePoint data sample, you can publish it using aDataWriter for Point (or DynamicData)
as usual. A DataReader can receive the Point sample and convert it to JSON using the to_string APIs.

(Note that in the C and Traditional C++ APIs, only DynamicData provides this functionality.)

5.1. Sending and Receiving Data 18

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

5.2 Performance

5.2.1 Skip deserialization in DynamicData for efficient data handling, using new
property

By default, a DynamicData object stores its contents in an implementation-specific representation that allows
you to get and set fields by name or ID. For this to work, Connext must deserialize the sample; however, there
are cases where you do not need to mutate or access the data. One such case is when you are storing the data
for later. Another is when you are bridging samples to another domain and do not need to inspect the data. For
enhanced performance in these types of cases, you can now skip deserialization.

The property skip_deserialization can be set to true to skip the automatic deserialization of
DynamicData objects. To determine if a sample is in this internal format, use the DDS_Dynamic-
Data_is_cdr functions. Additionally, some function names have been changed to be consistent with
this new functionality. DDS_DynamicData_set_and_lock_buffer has been changed to DDS_Dy-
namicData_set_cdr_buffer. DDS_DynamicData_get_storage_buffer has been renamed
DDS_DynamicData_get_cdr_buffer. Both of these functions can be used to work with the data that
has not been deserialized yet. For more information about them, see the language-specific API Reference docu-
mentation. Also find an example here: https://github.com/rticommunity/rticonnextdds-examples/tree/master/
examples/connext_dds/dynamic_data_skip_serialization.

5.2.2 Compression level applied to built-in Instance State Consistency DataWriter
reduced, speeding up response time and reducing CPU usage

Instance state consistency is achieved through the use of a built-in DataWriter that sends information regarding
instances to a built-inDataReader. The samples sent by thisDataWriter can be very large, and so compression is
applied to this channel. The compression level was previously DDS_COMPRESSION_LEVEL_BEST_COM-
PRESSION (slowest, but best, compression). This compression level has been updated to DDS_COMPRES-
SION_LEVEL_BEST_SPEED. See Data Compression in the RTI Connext Core Libraries User’s Manual for
more information on these compression levels. (Note that the builtin DataWriter/DataReader for instance state
consistency does not use the same compression_settings defaults as described in Data Compression. It uses
ZLIB, BEST_SPEED, and 1024 as the defaults.)

5.2.3 Performance improvement for durable writer history and Persistence Service
with high late-joiner activity

You may have experienced performance degradation while using durable writer history and Persistence
Service, particularly in scenarios with high late-joiner activity. This problem was due to the durable
DataWriter not caching repair samples in the durable writer history, leading to excessive database queries
from the different late-joiners. Connext now caches repair samples if the cache has sufficient ca-
pacity (writer_qos.resource_limits.max_samples is less than or equal to writer_qos.
durability.storage_settings.writer_instance_cache_allocation.max_count).

5.2. Performance 19

https://github.com/rticommunity/rticonnextdds-examples/tree/master/examples/connext_dds/dynamic_data_skip_serialization
https://github.com/rticommunity/rticonnextdds-examples/tree/master/examples/connext_dds/dynamic_data_skip_serialization
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/DATAREPRESENTATION_Qos.htm#Data2
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/DATAREPRESENTATION_Qos.htm#Data2

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

5.2.4 Performance improvement in large systems using SHMEM transport

This release introduces changes to the SHMEM transport that may lead to application performance improve-
ments in systems that create many DomainParticipants on the same host that communicate with each other
over SHMEM. Before, all DataWriter write operations in a DomainParticipant were serialized at the trans-
port level, regardless of whether the application employed distinct Publishers for different DataWriters. With
this improvement, a DomainParticipant can now perform concurrent writes to other DomainParticipants in the
system.

5.2.5 More efficient use of network and CPU resources, through support for multi-
ple instances of a UDPv4/UDPv6 transport in a single DomainParticipant

By default, it is not possible to have multiple instances of the UDPv4 or UDPv6 transport in the same Domain-
Participant, because all instances will try to bind to the same UDP port(s) for receiving data. This release adds
the ability to instantiate multiple instances of the UDPv4 and UDPv6 transport within a single DomainPar-
ticipant, if desired, using two new properties, dds.transport.UDPv4.builtin.port_offset and
dds.transport.UDPv6.builtin.port_offset. This enhancement enables more efficient use of
network and CPU resources, which is particularly beneficial when Connext applications are operating across
various subnets.

With the new properties, you can specify an offset that will be added to the RTPS port(s) to determine the UDP
port(s) to bind to. In this way, you can have multiple instances of the UDPv4/UDPv6 transport in the same
DomainParticipant, if each instance uses different offsets. For more information, see Instantiating Multiple
Instances of UDPv4/UDPv6 Transports in the RTI Connext Core Libraries User’s Manual.

5.2. Performance 20

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/InstantiatingMultipleInstances_Transports.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/InstantiatingMultipleInstances_Transports.htm

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

5.3 Debugging and Logging

5.3.1 Set exactly the metrics you want to collect for Observability Framework, us-
ing new setting in MONITORING QoS policy

Previously, every observable resource (DomainParticipant, Publisher, DataReader, etc.) was, by default, sub-
scribed to all the available metrics for that resource when it was registered. However, you may not be interested
in collecting all of those metrics.

Starting in release 7.3.0, you can now configure the initial set of metrics a resource will be subscribed to upon
registration, using the MonitoringQosPolicy. More precisely, you can use the <metrics> tag under <partici-
pant_factory_qos>/<monitoring> in XML or the field telemetry_data.metrics in theMONITORINGQosPol-
icy documentation.

Note: Starting in this release, by default no metrics will be enabled for any resource unless you specify them in
themetricsQoS setting. However, if you choose to enable monitoring by using the built-in snippet Feature.
Monitoring2.Enable, all available metrics will be enabled for all resources.

5.3.2 Better understand port collision warnings through improved logging

If enabled, some benign warning level log messages are printed during Automatic Participant ID Selection (see
Choosing Participant IDs in the RTI Connext Core libraries User’s Manual for more information) because of an
expected port collision. Before 7.3.0, these log messages were shown as follows:

WARNING [0x0101B4A0,0x30B6995B,0x3CA153D8:0x000001C1{Domain=0}|CREATE␣
→˓DP|ENABLE|LC:DISC]NDDS_Transport_UDPv4_Socket_bind_with_ip:0X1CF2 in use
WARNING [0x0101B4A0,0x30B6995B,0x3CA153D8:0x000001C1{Domain=0}|CREATE␣
→˓DP|ENABLE|LC:DISC]NDDS_Transport_UDPv4_SocketFactory_create_receive_
→˓socket:invalid port 7410
WARNING [0x0101B4A0,0x30B6995B,0x3CA153D8:0x000001C1{Domain=0}|CREATE␣
→˓DP|ENABLE|LC:DISC]NDDS_Transport_UDP_create_recvresource_rrEA:!create socket

From 7.3.0, these log messages have been improved to clarify that they are benign, adding the AUTO ID
COMPUTE activity context and a last log message clarifying that we are trying the next port:

WARNING [0x01018B7A,0x24B6E2C3,0xC6FB093A:0x000001C1{Domain=0}|CREATE␣
→˓DP|ENABLE|AUTO ID COMPUTE|LC:Discovery]NDDS_Transport_UDPv4_Socket_bind_
→˓with_ip:BIND FAILURE | Port 7410 in use
WARNING [0x01018B7A,0x24B6E2C3,0xC6FB093A:0x000001C1{Domain=0}|CREATE␣
→˓DP|ENABLE|AUTO ID COMPUTE|LC:Discovery]NDDS_Transport_UDPv4_SocketFactory_
→˓create_receive_socket:BIND FAILURE | Invalid port 7410
WARNING [0x01018B7A,0x24B6E2C3,0xC6FB093A:0x000001C1{Domain=0}|CREATE␣
→˓DP|ENABLE|AUTO ID COMPUTE|LC:Discovery]NDDS_Transport_UDP_create_
→˓recvresource_rrEA:CREATION FAILURE | Socket
WARNING [0x01018B7A,0x24B6E2C3,0xC6FB093A:0x000001C1{Domain=0}|CREATE␣
→˓DP|ENABLE|AUTO ID COMPUTE|LC:Discovery]DDS_DomainParticipantPresentation_
→˓reserve_participant_index_entryports:Trying next port...

5.3. Debugging and Logging 21

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/MONITORING_QosPolicy.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/MONITORING_QosPolicy.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/WIRE_PROTOCOL_Qos.htm#44.10.1_Choosing_Participant_IDs

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

5.3.3 New log message warning if sample’s serialized size exceeds MTU and risks
not being sent

A new warning level log message has been added that lets you know when you have created a type whose serial-
ized size is greater than the smallest message_size_max across all transports. This message is not logged
if asynchronous publishing is used or if the type contains unbounded members. If you receive this message and
you do not update the message_size_max, the samples will not be able to be sent. See Large Data Frag-
mentation in the RTI Connext Core Libraries User’s Manual for more information on message_size_max.

5.3.4 Overly long activity context section of log message now truncated instead of
generating additional log messages

Previously, if the activity context section of a log message was too long to fit in the log message, the following
log message would be printed:

There was a problem while logging the following LOCAL message through the␣
→˓Connext built-in logging system. It will be logged only to STDOUT:␣
→˓RTIOsapiActivityContext_getString:!context maxEntryCount has been reached.

This log message has been removed. The activity context section of the log message will now be truncated, and
the last 14 characters will be replaced with (msgTruncated). An example of a truncated log message is
below:

LOCAL [0xDFCD91E1,0x68683864,0xB9B0569F:0x000001C1{Domain=0}|CREATE␣
→˓DP|ENABLE|:0x00000188{Entity=Pu,Domain=0}|CREATE DW WITH TOPIC␣
→˓DCPSParticipantVolatileMessageSecure|:0xFF0202C3{Entity=DW,
→˓Topic=DCPSParticipantVolatileMessageSecure,Type=ParticipantGenericMessage,
→˓Domain=0}|ENABLE|:0x000001C1{Domain=0}|ASSERT REMOTE DW|:0xFF0202C4
→˓{Entity=DR,Topic=DCPSParticipantVolatileMessageSecure,
→˓Type=ParticipantGenericMessage,Domain=0}|LINK 0xDFCD91E1,0x68683864,
→˓0xB9B0569F:0xFF0202C3{Type=ParticipantGenericMessag(msgTruncated)|LC:DISC,
→˓SEC]RTI_Security_Cryptography_registerEndpoint:{"DDS:Security:LogTopicV2":{
→˓"f":"10","s":"3","t":{"s":"1698688649","n":"612150999"},"h":"RTI-10827.local
→˓","i":"0.0.0.0","a":"RTI Secure DDS Application","p":"38892","k":"security",
→˓"x":[{"DDS":[{"domain_id":"0"},{"guid":"dfcd91e1.68683864.b9b0569f.1c1"},{
→˓"plugin_class":"Cryptography"},{"plugin_method":"RTI_Security_Cryptography_
→˓registerEndpoint"}]}],"m":"successfully registered endpoint"}}

5.3.5 Set finer-grained time values for logging properties that take a duration

The following properties now accept values smaller than one second:

• dds.participant.logging.time_based_logging.event.timeout

• dds.participant.logging.time_based_logging.send.timeout

• dds.participant.logging.time_based_logging.process_received_message.timeout

• dds.participant.logging.time_based_logging.authentication.timeout

5.3. Debugging and Logging 22

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/LargeData_Fragmentation.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/LargeData_Fragmentation.htm

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

The properties still accept a single number, which represents the threshold in seconds, but they also accept
a value in the form of #s#ms#us#ns so that seconds, milliseconds, microseconds, and nanoseconds can be
specified as part of the threshold. The format allows any of the values to be provided, or not, in any order.
Some examples of accepted values are:

• 2

• 1s500ms

• 250000000ns

See Setting Warnings for Operation Delays in the RTI Connext Core Libraries User’s Manual.

5.3.6 Log messages for use by Logger Device contain further useful information:
timestamp, source (facility), and message ID

This feature was introduced in 7.1.0, but not documented at that time.

The LogMessage data type now contains three new fields:

• facility: The Syslog facility associated with the log message. In the Syslog Protocol, the facility
is a numerical code that represents the machine process that created a Syslog event. Connext uses the
facility to represent the source of a given log message. Valid values are: 23 (middleware), 10
(security_event), 22 (service), and 1 (user).

• message_id: A numeric code that identifies a specific log message. Two log messages that have the
same message_id will have a similar structure. For example, the message_id of both “ERROR:
Failed to get DataWriterQos” and “ERROR: Failed to get TopicName” is associated with the get failure.

• timestamp: A Duration structure referring to the time when the message was logged.

These fields are available in your application through the use of a Logger Device. See Customizing the Handling
of Generated Log Messages. The new fields are documented in the API Reference HTML documentation (for
example, here in the Modern C++ API Reference).

5.3.7 New logging APIs provide ability to emit custom log messages in Connext
applications

The new logging APIs provide the ability to emit custom log messages in Connext applications. This feature will
provide more control over the logging process, capture specific application events, and provide deeper insights
into the behavior of the application. These new APIs are flexible and allow developers to include relevant in-
formation about application-specific events, errors, warnings, or any other important data that requires logging.
The new APIs support the use of NDDS_Config_SyslogLevel severity levels and provide an API function in
the NDDS_Config_Logger for each level. A new log category NDDS_CONFIG_LOG_CATEGORY_USER
has been added to NDDS_Config_LogCategory to accommodate this new category of log messages.

5.3. Debugging and Logging 23

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/SettingWarnings_OperationDelays.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/CustomizingHandlingGenerated.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/CustomizingHandlingGenerated.htm
https://community.rti.com/static/documentation/connext-dds/current/doc/api/connext_dds/api_cpp2/structrti_1_1config_1_1LogMessage.html
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/api/connext_dds/api_cpp2/group__DDSLoggingModule.html#ga742d32db74c108f6390df837edff6dbd
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/api/connext_dds/api_cpp2/classrti_1_1config_1_1Logger.html
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/api/connext_dds/api_cpp2/structrti_1_1config_1_1LogCategory__def.html#a3feb447d91d7fb9e2765092ac6b02ee1

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

5.3.8 New log warnings when SPDP and SPDP2 participants cannot communicate

DomainParticipants using different discovery protocols (SPDP vs SPDP2) cannot communicate. Now, in this
release, when DomainParticipants using different discovery protocols detect each other, a log message is gen-
erated at the warning level. By default, this logging of mismatch warnings is enabled. You can disable or
enable this log message using the boolean property dds.participant.discovery_config.log_discovery_mis-
match. The messages generated by this condition are:

SPDP2 participant received message from SPDP participant. These two␣
→˓participants will not communicate.

SPDP participant received message from SPDP2 participant. These two␣
→˓participants will not communicate.

5.4 DDS Ping and DDS Spy

5.4.1 New option in DDS Ping and DDS Spy to configure Builtin Discovery Plugins

There is a new option, -discoveryPlugins, in DDS Ping and DDS Spy to support configuring the Builtin
Discovery Plugins. This new option accepts two values:

• SDP: Simple Participant Discovery Protocol and Simple Endpoint Discovery Protocol.

• SDP2: Simple Participant Discovery Protocol 2.0 (SPDP2) and Simple Endpoint Discovery Protocol.

The -discoveryPlugins option enables you to configure the discovery mechanism (to SDP or SDP2)
more easily without the need to load an XML file with that configuration (and then specify that configuration
using the -qosProfile option).

See the RTI DDS Spy User’s Manual and the RTI DDS Ping User’s Manual.

5.4.2 New option in DDS Ping and DDS Spy to configure participant partitions

There is a new option, -participantPartition, in DDS Ping and DDS Spy to support configuring Do-
mainParticipant partitions. Also, the existing, partition option in DDS Spy has been renamed to -sub-
scriberPartition.

5.5 Miscellaneous

5.5.1 Python API supports latest version, Python 3.12

This release adds support for the Connext Python API on Python 3.12. The API now runs on versions 3.6 to
3.12.

5.4. DDS Ping and DDS Spy 24

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/Simple_Participant_Discovery.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/Simple_Participant_Discovery_2.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/tools/rti_dds_spy/index.html
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/tools/rti_dds_ping/index.html

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

5.5.2 Determine a dynamic type’s minimum serialized sample size using new
cdr_serialized_sample_min_size

The Python API now exposes a function, cdr_serialized_sample_min_size, for finding the min-
imum size in bytes that a Dynamic Type can be. This function can be used to help determine the minimum
resource limits required. For example, along with the maximum serialized size, you can now determine how
much disk space or RAM your system will need in order to perform a task. The maximum size was already
available.

5.5.3 Validate a license using a shared library call

This release adds the option for a Connext application to validate an activation string (license) provided through
a shared library call that you can implement. This feature removes the need for a license file on the system
where Connext runs, and supports use cases where applications retrieve activation strings from a license server.
See License Management in the RTI Connext Installation Guide for details.

5.5.4 Micro Compatibility Builtin Profile updated to not send serialized types

The Generic.ConnextMicroCompatibility builtin QoS profile has been updated to set the
type_code_max_serialized_length and type_object_max_serialized_length re-
source limits to 0, which disables sending serialized types as part of endpoint discovery. Connext Micro does
not use serialized type information for endpoint discovery, so sending the type from a Connext Professional
application to a Connext Micro application is unnecessary.

5.5.5 EXCLUSIVE_AREAQoSPolicy no longer supported; documentation removed

To advance the deprecation of the EXCLUSIVE_AREA QoS Policy, RTI has removed the EXCLU-
SIVE_AREA QoS policy documentation. RTI no longer supports the use of this QoS policy. This change
specifically targets the EXCLUSIVE_AREA QoS policy, eliminating the ability to set use_shared_ex-
clusive_area. In future releases, RTI plans to remove Connext components that support or implement the
EXCLUSIVE_AREA QoS Policy.

5.6 Third-Party Software Changes

The following third-party software is now used by Connext:

Table 5.1: New Third-Party Software
Third-Party Software Version
y2038 20100403

The following third-party software used by Connext has been upgraded:

5.6. Third-Party Software Changes 25

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/installation_guide/installation_guide/License_Management.htm
https://community.rti.com/static/documentation/connext-dds/6.1.2/doc/manuals/connext_dds_professional/whats_new/index.htm#whats_new/WhatsNew611.htm

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Table 5.2: Third-Party Software Upgrades
Third-Party Software Old Version New Version
InstallBuilder 21.6.0 23.10.1

For information on third-party software used by Connext products, see the “3rdPartySoftware” documents in
your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_3rdparty.

5.6. Third-Party Software Changes 26

Chapter 6

What’s Fixed in 7.3.0 LTS

This section describes bugs fixed in Connext 7.3.0 LTS. These are fixes since 7.2.0. For information on what
was fixed in releases 7.0.0, 7.1.0, and 7.2.0, which are all also part of 7.3.0 LTS, see Previous Releases.

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

6.1 Discovery

6.1.1 [Critical] SPDP2 participants with RTPS peers and participant_liveliness_as-
sert_period less than participant_announcement_period may have crashed
upon deletion *

Applications with DomainParticipants using SPDP2, with RTPS initial_peers (that is, peers pre-
fixed with rtps@) and a participant_liveliness_assert_period less than the partici-
pant_announcement_period, may have crashed upon deleting the participant.

[RTI Issue ID CORE-14089]

6.1.2 [Major] Rediscovery failed if participant with SPDP2 lost liveliness before re-
ceiving remote participant’s configuration message *

For participants with SPDP2, participant discovery is only considered “complete” after a local participant has
received both a bootstrap message (DATA(Pb)) and a configuration message (DATA(Pc)) from a remote par-
ticipant. If the local participant does not receive a configuration message from the remote participant within
the remote participant’s participant_liveliness_lease_duration after receiving the bootstrap
message, then the local participant will consider the remote participant to be unalive and can remove it. In pre-
vious releases, if the remote participant regained liveliness and sent additional bootstrap messages to the local
participant, the local participant failed to rediscover the remote participant. This bug only affected a liveli-
ness loss that occurred before participant discovery completed; participants that lost liveliness after participant
discovery completed could be correctly rediscovered. Now, a local participant will successfully rediscover a
remote participant that loses liveliness before participant discovery completes.

27

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[RTI Issue ID CORE-13386]

6.1.3 [Major] Participants with SPDP2 failed to discover new participant that was
using the same unicast locator as a previously discovered (and not removed)
participant *

A DomainParticipant with SPDP2 failed to discover a new participant that had the same unicast locators as a
previously discovered participant if that participant had not been removed. For example, Participant A and Par-
ticipant B discover each other. Participant B then shuts down ungracefully (for example, the process receives
a SIGINT signal without a signal handler attached to shut down the participant) and does not send a dispose
message to Participant A. Participant A still thinks Participant B is alive until Participant B’s partici-
pant_liveliness_lease_duration passes. A new process is then launched which starts Participant
C on the same host as Participant B, giving it the same locators as Participant B. Participant C sends a bootstrap
message to Participant A; however, Participant A does not respond with additional bootstrap messages because
it stopped sending bootstrap messages to those locators. Participant C then cannot discover Participant A be-
cause it will never receive a bootstrap message from it. Once Participant A removed Participant B, Participant
A could send bootstrap messages to Participant C.

This problem has been fixed. Participant A will now be able to send bootstrap messages to Participant C’s
locators even when Participant B is still considered “alive”, so discovery can complete.

[RTI Issue ID CORE-14048]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

6.2 Serialization and Deserialization

6.2.1 [Critical] Endpoint creation failed for types with large maximum serialized
size

Endpoint (DataWriter orDataReader) creationmay have failed for all language bindings except Java with errors
like these:

RTIXCdrInterpreter_generateTypePluginProgram:failure generating skip program␣
→˓for type recording::final_zero_copy::PackageMessages: too many primitive␣
→˓values
RTIXCdrInterpreterPrograms_generate:failure generating skip program for type␣
→˓recording::final_zero_copy::PackageMessages
RTIXCdrInterpreterPrograms_generateTopLevelPrograms:failure generating␣
→˓programs for type recording::final_zero_copy::PackageMessages
RTIXCdrInterpreterPrograms_initializeWithParams:failure generating programs␣
→˓for type recording::final_zero_copy::PackageMessages
DDS_TypeCodeFactory_assert_programs_w_parameters:ERROR: Failed to initialize␣
→˓resultPrograms
DDS_TypeCodeFactory_assert_programs_in_global_list:!assert_programs
PRESPsService_enableLocalEndpointWithCursor:failed to attach endpoint to␣
→˓typePlugin
PRESPsService_enableLocalEndpoint:!enable local endpoint

6.2. Serialization and Deserialization 28

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

The issue may have occurred when the following three conditions were true:

• The code for the type was generated with optimization level 2 (default). The optimization level was
configured with the command-line option -optimization.

• Inline expansion of nested types was applied to the type.

• The maximum serialized size of the type was greater than 256 MB.

[RTI Issue ID CORE-14174]

6.3 Usability

6.3.1 [Major] Incorrect, too-restrictive maximum string size enforced on certain
XML fields

There was a bug in the way the accumulated length for allow_interfaces_list, deny_in-
terfaces_list, allow_multicast_interfaces_list, and deny_multicast_inter-
faces_list was computed. As a result, in rare cases where a huge number of interfaces was configured
through XML, the maximum limit (32768 bytes) may have incorrectly been applied to the combination of the
contents of the allow_interfaces_list, deny_interfaces_list, allow_multicast_in-
terfaces_list, and deny_multicast_interfaces_list fields, as opposed to being enforced on
a per-field basis. The maximum limit is now applied per field as intended.

[RTI Issue ID CORE-14225]

6.3.2 [Major] rtipkginstaller error in Windows when user name had space *

Windows users who have a space in their user name will now be able to use rtipkginstaller without having to
worry about their installation path.

[RTI Issue ID INSTALL-965]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

6.4 Transports

6.4.1 [Critical] High CPU and several warnings in some cases when using Multi-
Channel or TransportUnicast QoS

On Linux systems using a UDP transport, it was possible to run into a rare situation in which a socket was
marked for removal but then reused before the removal was complete.

In this situation, the partially shutdown socket would return immediately from any recvfrom() call. If a
message was waiting in the receive buffer, it would be read correctly, but if there was no message, the
receive thread printed a warning similar to WARNING NDDS_Transport_UDP_receive_rEA:got

6.3. Usability 29

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

unknown message on port 56005 from host 10.0.0.1 port 49825 and then immedi-
ately called recvfrom() again, causing this message to be printed continuously until the receive socket was
eventually deleted.

This situation could have occurred when using the MultiChannelQosPolicy and changing the locator filter, or
when using the TransportUnicastQosPolicy and deleting, then immediately recreating, an endpoint with the
same QoS values.

Any sockets being shut down are now completely destroyed and cannot be reused while in an inconsistent state.

[RTI Issue ID CORE-13883]

6.4.2 [Critical] Participant may have received RTPS traffic over SHMEM transport
not intended for participant

A DomainParticipant using the shared memory (SHMEM) transport may have received RTPS traffic over
SHMEM intended for a remote DomainParticipant running in a different host. This may have led to perfor-
mance issues in large systems.

The affected traffic included DomainParticipant announcement traffic and NACK traffic sent from reliable
DataReaders to reliableDataWriters. In addition, if you disabled or limited the sending of transport information
with the participant announcements (for example, you set participant_qos.resource_limits.
transport_info_list_max_length to 0), the affected traffic was all traffic.

[RTI Issue ID CORE-13828]

6.4.3 [Critical] Undefined behavior of shared memory transport if shared mutex or
semaphores removed externally

The shared memory transport uses shared mutexes and semaphores to control access to the shared memory
segment. In some operating systems, like Linux, those semaphores could be removed externally, in some cases,
without your knowing. This behavior occurred on Linux systems when someone running the application
disconnected all sessions while a Connext application was still running in the background (as a service), and
RemoveIPC=yes was configured in logind.conf (which is the default value in recent Linux versions).

When the shared resources were removed, the behavior of the shared memory transport was undefined. Unde-
fined behaviors included errors handled by Connext, CPU usage of 100%, or application crashes.

[RTI Issue ID CORE-13852]

6.4.4 [Minor] DLL leak when using UDP/TCP transports

AWindows DLL was leaked when using UDP or TCP transports.

[RTI Issue ID CORE-14045]

6.4. Transports 30

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.5 Reliability Protocol and Wire Representation

6.5.1 [Critical] Writer-side filtered samples not marked as acknowledged when ap-
plication acknowledgement was used

When application acknowledgements were used in conjunction with ContentFilteredTopics, samples that were
writer-side filtered were not immediately marked as acknowledged. This meant, for example, that calling
DDS_DataWriter_wait_for_acknowledgements() would always time out (until a sample that
was not filtered out was sent). This no longer happens: samples that are writer-side filtered that are being
sent to DataReaders using application acknowledgments are now automatically marked as acknowledged. If
installed, the on_application_acknowledgement() callback on the DataWriter is called for these
samples with an empty DDS_AcknowledgmentInfo::response_data.

[RTI Issue ID CORE-6132]

6.6 Debuggability

6.6.1 [Major] Thread names longer than 15 characters on QNX platforms caused
errors in API calls

When you set a thread name longer than 15 characters on a QNX platform, certain uses of the Connext API,
such as creating a waitset by calling DDS_WaitSet_new() using the C API, failed with an error related to
the name of the worker thread. This regression was introduced in release 6.1.2. You can once again set thread
names up to the maximum allowed by the QNX platform.

[RTI Issue ID CORE-13827]

6.6.2 [Major] Wrong information in shared memory ‘send’ error log message

When the send operation of the shared memory transport failed due to the shared memory queue being full, the
log message displayed information referring to the local shared memory transport instead of the information
related to the shared memory transport that caused the failure, making the problem hard to debug. Now, the
information in the message refers to the right transport.

[RTI Issue ID CORE-13832]

6.6.3 [Minor] take_discovery_snapshot APIs incorrectly always printed
keyed_type as false *

Discovery snapshots’ keyed_type was always printed as false even if the type of a specific row was keyed,
which provided misleading information for debugging. Now the information provided by take_discov-
ery_snapshot APIs is correct.

[RTI Issue ID CORE-13818]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

6.5. Reliability Protocol and Wire Representation 31

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.7 Content Filters and Query Conditions

6.7.1 [Critical] Error message printed for each filtered sample when using
writer-side filtering, FlatData, and Zero Copy over shared memory *

When using FlatData, Zero Copy over shared memory, and writer-side filtering, every sample that was filtered
incorrectly caused an error similar to the following to be logged:

ERROR [0x0101501F,0x044D6680,0xBF657AAB:0x80000002{Entity=DW,
Topic=Example CameraImage,Type=CameraImage,Domain=0}|WRITE]
REDAThresholdBufferPool_returnBuffer:!attempting to return a buffer
to a pool that it was not allocated from.

There was no impact on functionally, the samples were still filtered correctly.

[RTI Issue ID CORE-14144]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

6.8 TopicQueries

6.8.1 [Critical] Communication could stop when using bounded max_samples and
TopicQueries

Communication may have stopped when using TopicQueries and setting the DataReader’s max_samples QoS
setting to less than 256 x (the number of DataWriters responding to the TopicQueries).

This situation could only happen if all of the following were also true:

• The DataReader was configured with KEEP_LAST history kind.

• TheDataReader createdmultiple TopicQueries, and the responses to those TopicQueries contained some
of the same samples.

• There were dropped samples.

If all of those conditions were met and, before the losses were repaired, the DataReader’s queue filled up to the
max_samples resource limit, then the DataReader would never accept any more samples into its queue.

[RTI Issue ID CORE-13784]

6.7. Content Filters and Query Conditions 32

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.8.2 [Major] max_samples resource limit not honored in some cases when using
an unkeyed topic and TopicQueries

If aDataReader created multiple TopicQueries and had a finitemax_samples resource limit, that limit was not
correctly enforced in TopicQuery queues. After some time, the DataReader may have accepted more samples
thanmax_samples or failed to allocate more samples, leading to errors and lost samples. This only happened
if the topic was unkeyed. Now, when a DataReader issues multiple TopicQueries, themax_samples resource
limit is properly enforced for each of the TopicQuery queues correctly.

[RTI Issue ID CORE-14363]

6.9 Logging

6.9.1 [Major] Modern C++ Distributed Logger Options header incorrectly included
generated header file *

TheModern C++Distributed Logger implementation included a header file in DistLoggerOptions.hpp
that should not be needed. The header file distlogSupport.h is no longer required.

[RTI Issue ID DISTLOG-237]

6.9.2 [Major] Misleading log message when sending specific number of bytes
through socket *

In 7.2.0, a misleading warning was printed whenConnext sent some specific number of bytes through the socket.
The log message would look like, or similar to, this one:

NDDS_Transport_UDP_send:SENDING FAILURE | Inconsistent message size. Written␣
→˓bytes (<inconsistent_value>) and bytes to send (<expected_value>)

The <inconsistent_value> could be 0 or a big number. This warning is now only printed when Connext
has actually failed to send a message through the socket.

[RTI Issue ID CORE-14007]

6.9.3 [Major] Missing logging on the standard output forWindowsGUI applications

Windows graphical user interface (GUI) applications using Connext libraries were not able to print log messages
to a console through the standard output. The console was opened, but the messages did not appear. Log
messages are now displayed properly in the console.

[RTI Issue ID CORE-14061]

6.9. Logging 33

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.9.4 [Minor] Incorrect error message when setting inconsistent ReaderDataLife-
CycleQosPolicy values

The error messages that were printed when inconsistent values were used in the ReaderDataLifeCycleQosPol-
icy referenced the wrong fields. For example, when the value for autopurge_nowriter_samples_de-
lay was set to a value that was out of bounds, the error message incorrectly referenced autopurge_dis-
posed_samples_delay. These messages now reference the correct fields.

[RTI Issue ID CORE-14148]

6.9.5 [Minor] Log messages truncated below maximum size of 1024 bytes *

Some log messages were truncated below the maximum size of 1024 bytes if NDDS_Config_LogPrint-
Format had been configured to print the timestamp, log level, thread ID, category, or activity context. Log
messages are now logged with the full 1024 bytes.

[RTI Issue ID CORE-14105]

6.9.6 [Trivial] Error message that was printed when failing to allocate the writer
buffer pool was wrong *

The error message that was printed when failing to allocate the writer buffer pool was wrong. It printed the
incorrect resource limit value and the size of the buffers in the pool was always printed as 0.

Previous message:

PRESTypePluginDefaultEndpointData_createWriterPool:ALLOCATION FAILURE |
9 initial samples with size 0 in writer buffer pool. Consider setting
dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size
if your type has a large or unbounded max serialized size or reduce
initial_samples.

New message:

PRESTypePluginDefaultEndpointData_createWriterPool:ALLOCATION FAIL-
URE | 32 initial samples with size 2147482620 in writer buffer pool.
Consider setting dds.data_writer.history.memory_manager.fast_pool.
pool_buffer_max_size if your type has a large or unbounded max seri-
alized size or reduce initial_samples.

[RTI Issue ID CORE-14218]

6.9. Logging 34

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.9.7 [Trivial] Missing space between Activity Context andmessage text if Logging
Category was printed *

If a log message belongs to the Security or Discovery category and your application logging was configured to
print the Activity Context and the Logging Category, then there was a space missing between the end of the
Activity Context and the beginning of the message. For example:

WARNING [0x01017774,0xFF40EEF6,0xEC566CA8:0x000001C1{Domain=2}
→˓|ENABLE|LC:Discovery]NDDS_Transport_UDPv4_Socket_bind_with_ip:0X1EE6 in use

Now, a space is always printed:

WARNING [0x01017774,0xFF40EEF6,0xEC566CA8:0x000001C1{Domain=2}
→˓|ENABLE|LC:Discovery] NDDS_Transport_UDPv4_Socket_bind_with_ip:0X1EE6 in use

[RTI Issue ID CORE-14262]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

6.10 Dynamic Data

6.10.1 [Major] DynamicData equals operation returned incorrect results for se-
quences of different lengths

When two DynamicData objects were created with a TypeCode representing a sequence type, and were com-
pared using the DynamicData::equals operation or the == operator in C++, the results were incorrect
if the sequences had different lengths. If instead the DynamicData objects were created with a TypeCode
of structures that contained sequences, then the equals operation compared the sequences correctly and
reported correct results when the sequences had different lengths.

[RTI Issue ID CORE-14288]

6.11 APIs (C or Traditional C++)

6.11.1 [Critical] Traditional C++ get_participants() API returned invalid pointer if
Monitoring Library 2.0 was enabled

If RTI Monitoring Library 2.0 was enabled in a Traditional C++ Connext application through the Monitor-
ingQosPolicy, the DDSDomainParticipantFactory::get_participants() API returned an
extra invalid DomainParticipant pointer, in addition to the DomainParticipants created by your application.
Dereferencing that pointer had an undefined behavior, leading to a segmentation fault in the worst case.

This issue happened because the Traditional C++ DomainParticipantFactory instance is used to enable Mon-
itoring Library 2.0 and to create the dedicated DomainParticipant that the library uses. That is a C Domain-
Participant, which doesn’t have an associated C++ DomainParticipant. The get_participants() API
added the nonexistent C++ Monitoring DomainParticipant anyway, which had an arbitrary value.

6.10. Dynamic Data 35

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

The get_participants() API now only returns valid DomainParticipants for C++.

[RTI Issue ID CORE-13925]

6.11.2 [Major] Potential error when waiting for samples in C API

When using one of the functions to wait for samples on either the Requester or the Replier, a potential error
may have occurred in which the wait ended with an error instead of returning DDS_RETCODE_TIMEOUT
when it timed out.

[RTI Issue ID REQREPLY-126]

6.12 APIs (Modern C++ API)

6.12.1 [Major] Potential crash whenmixing the C andModern C++ APIs in the same
executable

Applications that used the C and modern C++ APIs in the same executable could crash when a DomainPartic-
ipant initially created using the C API was used to create a Modern C++ Topic.

This error is now detected and an exception is thrown.

Note that this is an uncommon use case. It has been documented in the Knowledge Base.

[RTI Issue ID CORE-14075]

6.12.2 [Major] DataReader created with builtin topic not automatically destroyed *

A regression in Connext 7.2.0 caused a user-created DataReader for the built-in topic VirtualSubscrip-
tionBuiltinTopicData to not be deleted by its destructor. Calling close() explicitly still worked.
The DataReader destructor now works as expected in this case.

[RTI Issue ID CORE-14005]

6.12.3 [Major] Possible link error when building a Windows DLL *

Trying to build a Windows DLL that uses the Modern C++ API may have failed with the following link error:

error LNK2019: unresolved external symbol DDS_LENGTH_AUTO

[RTI Issue ID CORE-14431]

6.12. APIs (Modern C++ API) 36

https://community.rti.com/node/6411/

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.12.4 [Minor] Conversion of invalid Time to integer units caused unexpected be-
havior

Given a Time object with value Time::invalid(), the conversion to integer units (such as to_mi-
crosecs()) caused unexpected behavior.

• Before Connext 7.2: the operations returned a large integer value.

• In Connext 7.2: the operations threw an unexpected exception.

These operations now return 0 (zero) when the value is Time::invalid().

[RTI Issue ID CORE-14283]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

6.13 APIs (Java)

6.13.1 [Major] DynamicData API now supports setting and getting wchar fields

The DynamicData Java API did not provide a way to use wchar data fields. It now allows working with wide
character (wchar) fields, including sequences and arrays. Specifically, the implementation of the following
APIs was enhanced:

• set_char and get_char: now accept char values representing a wchar.

• set_char_array and get_char_array: now accept char[] with values representing a
wchar.

• set_char_seq and get_char_seq: now accept WcharSeq.

Wide characters in the context of the Java API are restricted to Unicode BMP characters—that is, characters
representable as 16-bit integers. These map directly to Java’s char primitive type, a 16-bit unsigned value,
and so a new API was not needed.

[RTI Issue ID CORE-5933]

6.13.2 [Major] Possible data serialization error for keyed DataReaders using
XCDR2 format

Java applications subscribing to some data types with keys may have printed an error such as the following:

Exception in thread "Thread-7" com.rti.dds.cdr.IllegalCdrStateException: not␣
→˓enough available space in CDR buffer

This may have caused the DataReader to not receive data.

This problem only affected certain non-mutable types when the XCDR2 format was used (the default is XCDR).

[RTI Issue ID CORE-13888]

6.13. APIs (Java) 37

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.13.3 [Minor] “data_to_string” of DynamicDataTypeSupport failed with exception

When using the DynamicDataTypeSupport’s data_to_string operation, an exception was raised
with the following error:

java.lang.IllegalStateException: (de)serialization of dynamic types should␣
→˓take place in native code

While this made it impossible to transformDynamicData samples into strings usingDynamicDataType-
Support, it was still possible to transform DynamicData samples into strings using the instance method
to_string.

[RTI Issue ID CORE-14325]

6.14 APIs (Python)

6.14.1 [Critical] Potential deadlock in applications that call certain APIs and use
Entity Listeners

Applications that installed an Entity Listener (for example, with DataReader.set_listener)
and called certain APIs may have deadlocked. The affected APIs were the following three
properties: Entity.status_changes , Condition.trigger_value, and DataWriter.
matched_subscriptions_locators.

[RTI Issue ID PY-114]

6.14.2 [Minor] Possible memory leak in DynamicData.loan_value

The DynamicData method loan_value may have leaked memory when the argument to loan_value
was a nested field name as shown in this example:

dynamic_data.loan_value("foo.bar")

Using index numbers or non-nested names, such as “foo,” as the argument didn’t cause the leak.

[RTI Issue ID PY-133]

6.14.3 [Minor] Converting a SampleInfo object to string failed when source_times-
tamp was invalid

Given a SampleInfo object info, calling str(info) threw an exception if info.
source_timestamp.sec < 0 or info.source_timestamp == Time.invalid.

Now str(info) will simply omit the source_timestamp when it’s invalid.

[RTI Issue ID PY-154]

6.14. APIs (Python) 38

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.14.4 [Minor] Some functions didn’t allow keyword arguments

The following functions in the Python API didn’t support keyword arguments: DataTag.set, Logger.
verbosity_by_category, Logger.output_file and TopicQuery.find. They now allow
them.

[RTI Issue ID PY-143]

6.15 APIs (Multiple Languages)

6.15.1 [Major] Using a Listener and a Waitset in the same application may have
resulted in the Waitset waking up unexpectedly

In applications where both a Waitset and a Listener are used on the same DataReader, if the application did
not provide a Listener upon Entity creation, but later used the DDS_DataReader_set_listener API,
the Waitset may have repeatedly woken unexpectedly.

[RTI Issue ID CORE-11125]

6.15.2 [Major] Sentinel constant for “invalid” Time contained unexpected value *

Due to a regression in 7.2.0, the sentinel Time value that indicates an “invalid” timestamp was incorrect and
didn’t match the value of an “invalid” SampleInfo::source_timestamp (which can be returned when
an instance state is NOT_ALIVE_NO_WRITERS). This made a comparison such as the following to never be
true:

if (info.source_timestamp() == Time::invalid()) {} // never true due to this␣
→˓bug

Time::invalid() now contains the expected sentinel value.

[RTI Issue ID CORE-14334]

6.15.3 [Minor] IDL printing of Enum TypeCodes was not standards-compliant

The DDS_TypeCode_to_string API can be used to print a DDS_TypeCode in IDL representation.
When used to print enums, TypeCodes were printed in a non-standard format, as follows:

enum MyEnum {
ZERO = 0,
ONE = 1

};

The following format is mandated in the OMG ‘Interface Definition Language’ specification, version 4.2:

6.15. APIs (Multiple Languages) 39

https://www.omg.org/spec/IDL/4.2

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

enum MyEnum {
@value(0) ZERO,
@value(1) ONE

};

Now, enums are printed using the @value annotation.

[RTI Issue ID CORE-13956]

6.15.4 [Minor] Extensibility of unions defined within modules incorrectly printed as
IDL *

When a union that was defined within a module was printed, the extensibility of that union was printed at the
scope of the module, instead of the union.

[RTI Issue ID CORE-13945]

6.15.5 [Minor] Incorrect output when printing a union with an enum discriminator
as IDL

The DDS_TypeCode_to_stringAPI allows TypeCodes to be printed as IDL.When printing a union that
had an enum as its discriminator, the case labels may have been incorrectly printed, if the enum case labels
were not used in the same order in which they were defined in the enum. For example:

enum MyEnum {
RED,
GREEN,
YELLOW

};

union MyUnion switch (MyEnum) {
case YELLOW:

char x;
case GREEN:
case RED:

uint32 data;
};

The union would have been printed with incorrect case labels, since the case labels appeared in an order different
than the order in which they were defined.

[RTI Issue ID CORE-13941]

6.15. APIs (Multiple Languages) 40

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.15.6 [Trivial] First enum label not printed

By default, when printing TypeCodes (using the DDS_TypeCode_to_string APIs), the ordinal values
associated with an enum are only printed if they are explicitly provided in the type definition. There was a bug
where the first ordinal value was never printed (even if it was explicitly supplied in the type definition).

[RTI Issue ID CORE-14400]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

6.16 XML Configuration

6.16.1 [Critical] Potential segmentation fault when using XML application creation
if the names of <domain_participant_library> and <domain_library> were
the same

A bug in the XML parser meant that an application may have suffered a segmentation fault if it used XML ap-
plication creation, and the XML tags <domain_participant_library> and <domain_library>
had the same value for their name attribute. The segmentation fault would occur when creating a second par-
ticipant from that XML file. This could have happened when using XML Application Creation directly or
indirectly (for example, via RTI Connector).

This problem has been resolved. If an XML file that would have caused the crash is used, an error message is
now produced and the DomainParticipant is not created. Using the same name for multiple XML objects is
currently not supported.

[RTI Issue ID CORE-13692]

6.16.2 [Major] Micro Compatibility Builtin Profiles updated UDPv4 mes-
sage_size_max so that samples larger than 8192 were not silently dropped
by Micro applications

The Generic.ConnextMicroCompatibility, Generic.ConnextMicroCompatibility.2.4.9, and Generic.Con-
nextMicroCompatibility.2.4.3 builtin QoS profiles have been updated to use a UDPv4 message_size_max
of 8192, because that is what Connext Micro 2.x versions use. By default, Connext Professional uses a larger
UDPv4 message_size_max of 65507. If messages larger than 8192 were sent by Connext Professional,
these messages would be dropped by the Connext Micro application. The new QoS profile values ensure that
this will not happen.

[RTI Issue ID CORE-12749]

6.16. XML Configuration 41

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.16.3 [Minor] XML parser did not parse scientific notation

The XML parser failed with an error message when parsing numeric literals expressed in scientific notation.

[RTI Issue ID CORE-10767]

6.17 Instances

6.17.1 [Critical] Two log messages used memory after it was freed *

When the instance state consistency feature was enabled and the logging level was set to local, two log messages
could have been generated that used memory after the memory had been freed.

[RTI Issue ID CORE-14475]

6.17.2 [Major] Instance state consistency may not have worked for DataReaders
using multiple data representations *

Instance state consistency updates may not have been applied for DataReaders using multiple data represen-
tations. Note that the state of the instance would only have been incorrect if the DataReader was using a
Durability of VOLATILE and the instance of interest had not changed state during the disconnection.

[RTI Issue ID CORE-14076]

6.17.3 [Major] Indeterminate instance state in systems with multiple DataWriters *

Instance state consistency is used to ensure that, upon recovering from a disconnection, DataReaders have
the latest instance state data for each instance. In scenarios where a DataReader lost liveliness with multiple
DataWriters, there may have been some indeterminism in the final state, depending on which DataWriter the
DataReader recovered liveliness with first. This issue has been resolved for DataReaders that have a Des-
tionationOrderKind of BY_SOURCE_TIMESTAMP. Upon recovering liveliness, the eventual state of each
instance will be the latest state across all DataWriters with which liveliness has been recovered.

[RTI Issue ID CORE-13740]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

6.18 Crashes

6.18.1 [Critical] Crash when deserializing PID_TYPE_OBJECT_LB with class ID of
RTI_OSAPI_COMPRESSION_CLASS_ID_NONE

A DomainParticipant would crash when deserializing an endpoint discovery message containing
PID_TYPE_OBJECT_LB that was followed by a compression class ID of RTI_OSAPI_COMPRES-
SION_CLASS_ID_NONE (0x00000000). This should not have occurred in normal operation but was possible

6.17. Instances 42

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

to encounter if a packet had been tampered with or corrupted. Now the DomainParticipant does not crash but
will log an error message and not deserialize the compressed type object.

[RTI Issue ID CORE-14079]

6.18.2 [Critical] Potential crash while calling DynamicData APIs when running out
of system memory

Running out of memory during certain DynamicData initialization API calls, such as DDS_Dynamic-
DataTypeSupport_new, may have resulted in a crash. Now, running out of memory during DynamicData
initialization APIs will provoke those APIs to gracefully fail.

[RTI Issue ID CORE-14232]

6.18.3 [Critical] Potential crash when calling DDS_TypeCodeFactory_cre-
ate_value_tc_ex with a NULL ex parameter

Performing a call to DDS_TypeCodeFactory_create_value_tc_ex with a NULL ex parameter
(which is a valid input value) may have resulted in a crash. Specifically, the crash would have been triggered
if passing a not NULL concrete_base and an exception occurred. DDS_TypeCodeFactory_cre-
ate_value_tc_ex no longer crashes if passing a NULL ex parameter.

[RTI Issue ID CORE-14224]

6.18.4 [Critical] Crash when calling DDS_DataWriter_set_qos with a NULL qos pa-
rameter

Performing a call to DDS_DataWriter_set_qos with a NULL qos parameter resulted in a crash. Now,
an illegal call to DDS_DataWriter_set_qos will gracefully fail and return DDS_RETCODE_BAD_PA-
RAMETER.

[RTI Issue ID CORE-14223]

6.18.5 [Critical] Crash when performing an illegal call to DDS_DataWriter_get_qos

Performing an illegal call to DDS_DataWriter_get_qos (see Restricted Operations in Listener
Callbacks in the RTI Core Libraries User’s Manual) resulted in a crash. Now, an illegal call to
DDS_DataWriter_get_qos will gracefully fail and return DDS_RETCODE_ILLEGAL_OPERATION.

[RTI Issue ID CORE-14222]

6.18. Crashes 43

https://community.rti.com/static/documentation/connext-dds/current/doc/manuals/connext_dds_professional/users_manual/users_manual/Restricted_Operations_in_Listener_Callba.htm
https://community.rti.com/static/documentation/connext-dds/current/doc/manuals/connext_dds_professional/users_manual/users_manual/Restricted_Operations_in_Listener_Callba.htm

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.18.6 [Critical] Crash if SPDP2 participant received unexpected field in participant
discovery message *

This issue was fixed in 7.2.0, but not documented at that time.

Aparticipant using Simple Participant Discovery 2.0 would crash if it received a bootstrap or configurationmes-
sage with a PID that it was unable to deserialize. This occurred with a subset of PIDs. The participant would
crash if it received a bootstrap message with any of the following fields present: PID_PROPERTY_LIST,
PID_USER_DATA, PID_ENTITY_NAME, PID_ROLE_NAME. The participant would crash if it received a
configuration message with any of the following fields present: PID_DOMAIN_TAG, PID_IDENTITY_TO-
KEN, PID_PERMISSIONS_TOKEN, PID_TRANSPORT_INFO.

Now if these fields are unexpectedly present in a participant discovery message, the participant will not attempt
to deserialize them and will simply skip the field.

[RTI Issue ID CORE-13695]

6.18.7 [Critical] Crash during DomainParticipant initialization if failure to get local
address mapping when using UDPV4_WAN transport

Using UDPV4_WAN when creating a DomainParticipant may have resulted in a crash if Connext failed to get
the local address mapping.

[RTI Issue ID CORE-14272]

6.18.8 [Critical] Crash when converting a DynamicData object to a CDR buffer

If a DynamicData object was bound to another DynamicData object or was populated as a result of a call
to DynamicData::get_complex_member, and the top-level DynamicData object was an unbounded
type, any attempt to convert the nested DynamicData object to a CDR buffer resulted in a crash.

For example, using the following types:

struct MyA {
string str;

};

struct MyB {
MyA my_a;

};

Creating a DynamicData object with type MyB, then getting a DynamicData object for member my_a, and
finally converting that DynamicData object to a serialized buffer in CDR format, resulted in a crash.

[RTI Issue ID CORE-14167]

6.18. Crashes 44

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.18.9 [Critical] Potential crash if allocation of RTI Monitoring Library’s publish
thread failed

A crash could occur if the allocation of the RTI Monitoring Library’s publish thread failed. Now, the creation
of the thread will gracefully fail.

[RTI Issue ID MONITOR-644]

6.18.10 [Critical] Segmentation fault upon destruction of DDSGuardCondition or
DDSWaitset

When using the Traditional C++ or Modern C++ API, a segmentation fault occurred if theDomainParticipant-
Factory was finalized in the same scope as stack-allocated DDSGuardCondition or DDSWaitset instances.

[RTI Issue ID CORE-8967]

6.18.11 [Critical] Crash if participant received endpoint discovery sample and was
not able to allocate memory to process it

If a DomainParticipant received an endpoint discovery sample and was unable to allocate the memory to prop-
erly process it (for example, if the system was out of memory), the DomainParticipant may have crashed.

[RTI Issue ID CORE-14342]

6.18.12 [Critical] Possible exception after using a Condition object if it was not
explicitly disposed

An exception may have occurred after using a ReadCondition or GuardCondition if you did not
explicitly dispose it. This may have also affected the methods TakeReplies(SampleIdentity re-
latedRequestId) and ReadReplies(SampleIdentity relatedRequestId) from the C#
Request-Reply API.

[RTI Issue ID CORE-14154]

6.18.13 [Critical] Potential crash or errors when using SHMEM transport in QNX *

If you used the shared-memory (SHMEM) transport in Connext 7.2.0, you may have seen unexpected errors
or crashes in your applications during startup. The errors were more likely to occur when all the applications
in the system were started at the same time.

[RTI Issue ID CORE-14038]

6.18. Crashes 45

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.18.14 [Critical] Crash if participant failed to allocate memory for endpoint discov-
ery type plugins

If a DomainParticipant failed to allocate memory for the Simple Endpoint Discovery plugins (for example,
because the system was out of memory), the DomainParticipant crashed while starting up.

[RTI Issue ID CORE-14343]

6.18.15 [Critical] Modern C++ Distributed Logger may hang or crash upon instance
finalization *

The Modern C++ Distributed Logger may have produced a crash after calling DistLogger::final-
ize() when a DomainParticipant had been set by the user.

[RTI Issue ID DISTLOG-238]

6.18.16 [Critical] Invalid multicast locator could cause precondition error or seg-
mentation violation

When particular combinations of Data(p) messages were received by aDomainParticipant, a precondition error
(using the debug version of our libraries) or a segmentation violation (using the release version of our libraries)
occurred. Such a combination ofmessages is beyond the scope of regular system operations and could only arise
through the manipulation of Data(p) RTPS messages. Such manipulation might have stemmed from internal
testing scenarios or unauthorized access by a malicious entity in systems where DDS security measures were
not fully implemented or enforced.

There were various combinations of Data(p) messages that triggerred this behavior, but the essential scenario
required the discovery by a DomainParticipant of at least two other DomainParticipants. One of these dis-
covered DomainParticipants initially used a multicast locator, but later switched to unicast locators due to a
corrupted Data(p) RTPS message. The other discovered DomainParticipant used unicast locators and was
discovered before the first DomainParticipant switched to unicast locators.

[RTI Issue ID CORE-14349]

6.18.17 [Critical] Crash during DomainParticipant enable operation when running
out of system memory

Running out of memory during DomainParticipant enable() may have resulted in a crash. Now, running
out of memory during DomainParticipant enable() provokes the enable operation to gracefully fail.

[RTI Issue ID CORE-14220]

6.18. Crashes 46

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/Simple_Endpoint_Discovery.htm

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.18.18 [Critical] Segmentation fault when a reader was deleted while a remote
writer cleanup event was scheduled *

To prevent unbounded memory growth when the Instance State Consistency feature is enabled, DataRead-
ers periodically purge information associated with DataWriters that are no longer communicating with the
DataReader. If the purge event ran for a deleted DataReader, a segmentation violation occurred.

[RTI Issue ID CORE-14438]

6.18.19 [Critical] Race condition between the creation of a Replier and the call to
its Listener

A race condition may have caused a ReplierListener to be called in a state where the Replier was not fully
created, potentially causing a crash or an exception. This issue has been resolved in the Modern C++ and Java
APIs. A fix for other APIs is expected soon.

[RTI Issue ID REQREPLY-132]

6.18.20 [Critical] Undefined behavior when Requesters or Repliers for same ser-
vice name were concurrently created and deleted

A race condition in the creation and destruction of the Requester type may have caused a failure or crash when
several Requesters for the same service name were created or deleted in different threads. The Replier type
was also affected.

Protecting the creation and destruction of these objects with a mutex resolved the problem. This issue has been
resolved in the Modern C++ and Java APIs. A fix for other APIs is expected soon.

[RTI Issue ID REQREPLY-127]

6.18.21 [Critical] Hang led to crash if Monitoring Library 2.0 was enabled then right
away disabled *

WhenMonitoring Library 2.0 is enabled, it creates a set of threads used for collecting and publishing telemetry
data.

If the library was disabled right after enablement, there was a chance that one of these threads was still setting
up all the components it needs to operate. Setting up these components required taking a semaphore that was
already taken by the disablement operation. At the same time, the disablement operation was waiting for that
thread to finish. This situation led to a hang.

The hang was not indefinite. The disablement of the library waits for a fixed period of time for the thread
to finish. After that period, the disablement continues regardless of whether the thread was stopped. Once
the disable operation released the semaphore, the thread that was waiting for it continued with its execution,
accessing already freed memory and producing a crash.

Before the crash, these errors occurred:

6.18. Crashes 47

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

ERROR RTIOsapiJoinableThread_shutdown:Join timeout (20000 millisec) for␣
→˓thread expired
ERROR RTI_MonitoringEventSnapshotThread_finalize:FAILED TO FINALIZE |␣
→˓Monitoring Event Snapshot Thread

The hang is now fixed.

[RTI Issue ID MONITOR-664]

6.18.22 [Critical] Possible crash when creation of TCP Transport failed

A failure in the creation of the TCP Transport could lead to a crash while trying to finalize the partially created
transport. This error is now managed without crashing.

[RTI Issue ID COREPLG-731]

6.18.23 [Critical] Possible crash upon destruction of TCP transport if it was created
programmatically and it logged messages

When creating the TCP Transport plugin object programmatically, a crash could happen when the transport
was destroyed, if the transport produced log messages during its execution. The crash did not happen when the
transport was created through QoS configuration. Programmatic creation of the transport now works properly.

[RTI Issue ID COREPLG-718]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

6.19 Hangs

6.19.1 [Critical] Undefined behavior when using SHMEM transport in Linux, ma-
cOS, QNX, INTEGRITY, and LynxOS

There was an issue in the SHMEM transport implementation that may have led to undefined behavior in your
Connext application, including data corruption, errors, and hangs.

When the undefined behavior was a hang, you may have seen the following stack trace in some of the threads
in your process:

#1 0x00007f42d1348d39 in RTIOsapiSharedMemorySemMutex_take_os () from␣
→˓libnddscore.so
#2 0x00007f42d134938f in RTIOsapiSharedMemorySemMutex_take () from␣
→˓libnddscore.so
#3 0x00007f42d14a468a in NDDS_Transport_Shmem_send () from libnddscore.so

The problem could occur on the following platforms: Linux, macOS, QNX, INTEGRITY, and LynxOS.

[RTI Issue ID CORE-12923]

6.19. Hangs 48

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.19.2 [Major] Possible deadlock related to failures in DNS Tracker

In some cases there could have been a deadlock after an error occurred starting the DNS tracker or removing
a hostname from an internal list. The error conditions were not handled appropriately, and a lock which had
been previously taken was never released.

[RTI Issue ID CORE-13813]

6.19.3 [Critical] Segmentation fault or hang when using SHMEM transport on Vx-
Works 6 or higher platforms

A localDomainParticipant in a Connext application on a VxWorks 6 or higher platform, using the shared mem-
ory transport, may have generated a segmentation fault or hang when a remoteDomainParticipant communicat-
ing with the local DomainParticipant was deleted or lost its liveliness. If you configured individual DataWriters
and DataReaders on the remote DomainParticipant to use their own receive port using the TransportUnicas-
tQosPolicy and TransportMulticastQosPolicy, the problem could have also occurred when you deleted these
DataReaders or DataWriters.

In some cases, before the segmentation fault or hang, you may have seen the following error message:

RTIOsapiSharedMemorySegment_detach:OS sdUnmap() failure, error
0XBE000A: S_sdLib_NOT_MAPPED

[RTI Issue ID CORE-14041]

6.20 Memory Leaks/Growth

6.20.1 [Critical] Memory leak in best-effort writers when switching from more than
one unicast locator to a multicast locator

Each time a best-effort DataWriter transitioned from using more than one unicast locator to using a multicast
locator, a small amount of memory leaked. Such a transition is beyond the scope of regular system operations
and can only arise through the manipulation of Data(p) RTPS messages. Such manipulation might stem from
internal testing scenarios or unauthorized access by a malicious entity in systems where DDS security measures
have not been fully implemented or enforced.

[RTI Issue ID CORE-14427]

6.20.2 [Critical] Concurrency problem in Asynchronous WaitSet’s global instance
initialization led to memory and TSS key leaks in multi-threading scenarios

The first time an Asynchronous WaitSet is created, Connext initializes a global singleton instance shared among
all the Asynchronous WaitSets in your application. That global instance contains some fields used in the Asyn-
chronous WaitSet logic, like a thread-specific storage (TSS) key.

6.20. Memory Leaks/Growth 49

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Due to a concurrency problem, several threads could initialize that global singleton instance at the same time,
without realizing that the instance was already initialized. Some existing pointers were overwritten with new
ones, resulting in a leak of the TSS key and a memory leak similar to the following:

==44591== 32 bytes in 1 blocks are definitely lost in loss record 1 of 1
==44591== at 0x483DD99: calloc (in /usr/lib/x86_64-linux-gnu/valgrind/
→˓vgpreload_memcheck-amd64-linux.so)
==44591== by 0x49789AD: RTIOsapiHeap_reallocateMemoryInternal (heap.c:830)
==44591== by 0x4A8DF06: REDAWorkerPerThread_newWithTss (Worker.c:1599)
==44591== by 0x99D63F: DDS_AsyncWaitSetGlobals_initializeConcurrency␣
→˓(AsyncWaitSetGlobals.c:247)
==44591== by 0x99DB9E: DDS_AsyncWaitSetGlobals_get_instance␣
→˓(AsyncWaitSetGlobals.c:351)
...

This issue could happen if your application had several threads creating Asynchronous WaitSets (or calling
DDS_DomainParticipantFactory_unregister_thread) simultaneously and for the first time.

If this process was repeated enough times in a loop after calling DDS_DomainParticipantFac-
tory_finalize_instance (that deletes the global singleton instance), theoretically, this concurrency
problem could lead to an unbounded memory growth or to reaching the maximum limit of TSS keys available
in your operating system (the consequences of reaching that limit are explained in CORE-14157). In practice,
the timing for this race condition to happen was highly unlikely.

The concurrency issue is now fixed and the threads do nothing if the global singleton instance is already initial-
ized.

[RTI Issue ID CORE-14321]

6.20.3 [Critical] Memory leak when creating a QueryCondition with Parameters

When creating a newQueryCondition with Parameters using the create_querycondition_w_params
API, some memory was leaked.

[RTI Issue ID CORE-14301]

6.20.4 [Critical] Memory leak when using NetworkCaptureParams

When using the JavaAPI, some nativememory could be leakedwhen startingNetworkCapture with non-default
parameters or when setting new default parameters. This leak was restricted to using parameters, and did not
affect Network Capture execution itself.

[RTI Issue ID CORE-14275]

6.20. Memory Leaks/Growth 50

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.20.5 [Critical] Memory Leak in Java API when printing QoS objects

When using the Java API, printing QoS objects could have caused some native memory to be leaked. This
issue affected any QoS field of variable-length, such as Entity Name; therefore, it affected the following:

• DomainParticipantQos

• PublisherQos

• SubscriberQos

• DataWriterQos

• DataReaderQos

[RTI Issue ID CORE-14252]

6.20.6 [Critical] Asynchronous WaitSet global instance’s thread-specific storage
key leaked

The first time an Asynchronous WaitSet is created, Connext initializes a global singleton instance shared among
all the Asynchronous WaitSets in your application. That global instance contains some fields used in the Asyn-
chronous WaitSet logic, like a thread-specific storage (TSS) key.

The Asynchronous WaitSet global instance is deleted when calling DDS_DomainParticipantFac-
tory_finalize_instance. However, the TSS key was never deleted, resulting in a leak of the key.

If, for some reason, your application created AsyncWaitSets and finalized the DomainParticipantFactory in-
stance enough times in a loop, you could eventually reach the limit of available TSS keys imposed by your
operating system. Once that limit was reached, next attempts of Connext to create a TSS key resulted in failure:

ERROR DDS_AsyncWaitSetGlobals_initializeConcurrency:ERROR: Failed to create␣
→˓thread-specific storage for WSCT
ERROR DDS_AsyncWaitSetGlobals_get_instance:!init concurrency
ERROR DDS_AsyncWaitSet_newI:!init DDS_AsyncWaitSet

Not only AsyncWaitSets use TSS keys in Connext. If your system ran out of keys because of this leak, the issue
could affect any other Connext feature relying on thread-specific storage.

The TSS key is now always deleted when calling DDS_DomainParticipantFactory_final-
ize_instance.

Note: Even if your application doesn’t use Asynchronous WaitSets, you could have been affected by this issue
if you called DDS_DomainParticipantFactory_unregister_thread. This function also initial-
izes the global singleton if it is not already initialized.

[RTI Issue ID CORE-14157]

6.20. Memory Leaks/Growth 51

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.20.7 [Major] Memory leak when using XML-Based Application Creation and Dy-
namicData

When using XML-Based Application Creation and DynamicData, a small amount of memory was leaked for
every DynamicData type registered in a DomainParticipant, upon DomainParticipant deletion.

[RTI Issue ID CORE-14163]

6.20.8 [Minor] Memory leak when finalizing DomainParticipantFactory for first time

When finalizing the DomainParticipantFactory for the first time, and only for the first time, some
native memory was never being freed. The leak could be observed when using HeapMonitoring.
take_heap_snapshot. For example:

block_id, timestamp, block_size, alloc_method_name, type_name, pool_alloc,␣
→˓pool_buffer_size, pool_buffer_count, topic_name, function_name, activity_
→˓context
359, 1702981391, 48, RTIOsapiHeap_allocateStructure, struct␣
→˓REDAObjectPerWorker, MALLOC, 0, 0, unknown, unknown, unknown

[RTI Issue ID CORE-14180]

6.20.9 [Minor] DomainParticipantFactory was leaked when factory finalization
failed

When an error occurred during the finalization of the DomainParticipantFactory (for example, because some
DomainParticipants were not deleted), the DomainParticipantFactory itself would have been leaked.

[RTI Issue ID CORE-14302]

6.20.10 [Minor] Potential Memory leak upon ContentFilteredTopic creation failure

When creating a ContentFilteredTopic with a custom filter, a native memory leak could occur if the compile
function of the filter failed with a Java exception.

[RTI Issue ID CORE-14333]

6.20.11 [Critical] ODBC DataWriters may have leaked instances when they were
replaced if writer-side filtering was used

DataWriters configured to use an ODBC database may have leaked instances when they were replaced. The
instances were leaked if writer-side filtering was used, and a sample for that instance was filtered on the
writer-side.

[RTI Issue ID CORE-14434]

6.20. Memory Leaks/Growth 52

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.21 Data Corruption

6.21.1 [Critical] Undefined behavior using XCDR2 with keyed topic types with key
union members

XCDR2 with keyed topic types with key union members was not supported. For example:

union MyUnion switch(long) {
 case 0:
 long m_long;
 case 1:
 short m_short;
};

struct StructWithUnionKey {
 @key MyUnion m_union;
 long m_long;
};

The behavior was undefined if any of your topic types had a union key member going from a potential segmen-
tation fault to an erroneous key hash in which two different instances could be considered equal.

[RTI Issue ID CORE-14186]

6.21.2 [Critical] Stack overflow if value of “rti.monitor.config.publish_thread_op-
tions” property had 512 or more characters

If RTI Monitoring Library was enabled for a DomainParticipant and the rti.monitor.config.
publish_thread_options property was specified with a string value of 512 or more characters, a stack
overflow happened in the application. Now, if the property value has 512 characters or more, an error will be
printed.

[RTI Issue ID MONITOR-643]

6.21.3 [Critical] Failure to send serialized key with dispose when using
dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size
property

You may have seen a serialization error when disposing instances. This error occurred under spe-
cific conditions: when the writer_qos.protocol.serialize_key_with_dispose setting was
enabled (set to TRUE) and the dds.data_writer.history.memory_manager.fast_pool.
pool_buffer_max_size was configured to a size that required the serialization buffer to be allocated
from the heap instead of from pre-allocated memory.

This error only occurred in cases where the serialized key was not aligned on a 4-byte boundary.

[RTI Issue ID CORE-14370]

6.21. Data Corruption 53

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.21.4 [Critical] Error uncompressing samples when using batching and setting
serialize_key_with_dispose to TRUE

A DataReader failed to uncompress batch samples when the DataWriter set the QoS writer_qos.protocol.se-
rialize_key_with_dispose to TRUE, and the batch sample contained one or more dispose messages.

When this problem occurred, the DataReader printed an error like this:

ERROR RTIOsapi_Zlib_uncompress:The input data was corrupted
ERROR RTICdrStream_uncompress:!uncompress sample
ERROR PRESReaderQueue_decodeAndUncompress:FAILED TO TRANSFORM | Stream␣
→˓decompression failed.
ERROR PRESCstReaderCollator_newData:FAILED TO TRANSFORM | Failed to decode␣
→˓and/or uncompress sample.

[RTI Issue ID CORE-14344]

6.21.5 [Critical] SampleInfo’s flag and related_original_publication_virtual_guid
may have had invalid information for unkeyed Topics

If unkeyed Topic samples had valid_data in the SampleInfo set to FALSE and instance_state set to
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, the DataReader provided incorrect information in the
flag and related_original_publication_virtual_guid fields of the SampleInfo for those samples.

[RTI Issue ID CORE-14260]

6.21.6 [Critical] DataReader on a Topic using an appendable type may have re-
ceived samples with incorrect value

A DataReader subscribing to a Topic on an appendable type may have received incorrect samples from a
matching DataWriter.

The problem only occurred when the DataWriter published a type with fewer members than the DataReader
type. For example, consider a DataWriter on FooBase and a DataReader on FooDerived:

@appendable struct FooBase {
sequence<uint8,1024>base_value;

};

@appendable struct FooDerived {
sequence<uint8,1024> base_value;
@default(12) uint8 derived_value;

};

When the DataWriter published a sample with type FooBase, in some cases the DataReader received a
sample in which the field derived_value was set to 0 instead of 12.

This issue was caused by a bug in which Connext was not setting the padding bits in the encapsulation header
for a serialized sample as required by the OMG ‘Extensible and Dynamic Topic Types for DDS’ specification,
version 1.3. As a result, some of the padding bytes were interpreted as data.

6.21. Data Corruption 54

https://www.omg.org/spec/DDS-XTypes/1.3?
https://www.omg.org/spec/DDS-XTypes/1.3?

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Note: This fix may lead to a compatibility issue causing a Connext Professional DataWriter to not match with
a Connext Micro or Connext Cert DataReader. For details, see Extensible Types Compliance Mask in the RTI
Connext Core Libraries Extensible Types Guide.

[RTI Issue ID CORE-9042]

6.22 OMG Specification Compliance

6.22.1 [Critical] Extensible types did not include padding size in length value of
each element of RTPS parameter list

Previously, Connext did not follow the OMG ‘Extensible and Dynamic Topic Types for DDS’ specification,
version 1.3 with regards to the Parameterized CDR Encoding. For each element of the RTPS Parameter list,
the specification states that any padding bytes that may follow a serialized member won’t be taken into account
in the parameter length of the member.

Connext now follows this specification; however, to be compatible with previous releases and not
break backward compatibility, Connext does not follow the specification by default. To enable
this fix and follow the specification, you have to unset the bit NDDS_CONFIG_XTYPES_PARAME-
TER_LENGTH_WITH_PADDING_BIT(0x00000004). For details, see Extensible Types Compliance
Mask in the RTI Connext Core Libraries Extensible Types Guide.

Note that Connext ’s non-compliance with the specification did not break functional correctness, it only affected
interoperability with other vendors who were compliant with the specification.

[RTI Issue ID CORE-8640]

6.22.2 [Critical] Problems exchanging data with other vendors for types containing
unbounded members

Connext did not follow the OMG ‘Extensible and Dynamic Topic Types for DDS’ specification, version 1.1 with
regards to treating a 0 bound as UNBOUNDED when received as part of the TypeObject v1 for an endpoint.
(TypeObject v1 was replaced with TypeObject v2 in version 1.2, but Connext does not support TypeObject v2
yet.) Therefore, youmay have encountered issues when exchanging data with other vendors for types containing
unbounded collections. For example:

struct MyType {
string m1;
sequence<long> m2;

};

The use of this unbounded type led to specific issues:

Deserialization Errors with DynamicData Readers

1. When using MyType’s TypeCode from the endpoints discovered from other vendors (type_code field in
PublicationBuiltinTopicData and SubscriptionBuiltinTopicData) to create a Dynam-
icData DataReader, you may have seen errors in deserializing data coming from DataWriters.

6.22. OMG Specification Compliance 55

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/extensible_types_guide/extensible_types/Data_Representation.htm#ComplianceMask
https://www.omg.org/spec/DDS-XTypes/1.3?
https://www.omg.org/spec/DDS-XTypes/1.3?
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/extensible_types_guide/extensible_types/Data_Representation.htm#ComplianceMask
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/extensible_types_guide/extensible_types/Data_Representation.htm#ComplianceMask
https://www.omg.org/spec/DDS-XTypes/1.1?

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Incompatibility in DataReader and DataWriter Matching with Type Coercion

2. If reader_qos.type_consistency.kind was set to ALLOW_TYPE_COERCION in a
DataReader for MyType from a different vendor, a Connext DataWriter for the same type failed to match
with the DataReader.

3. Conversely, when reader_qos.type_consistency.kindwas set to DISALLOW_TYPE_COER-
CION, a Connext DataReader/DataWriter for MyType wouldn’t match with a DataReader/DataWriter from
another vendor.

This update resolves the first two issues. The third issue, involving matching problems when disallowing type
coercion, is targeted for resolution in future releases. See Other Known Issues.

[RTI Issue ID CORE-14185]

6.22.3 [Critical] Non-primitive sequences and arrays serialized incorrectly
with XCDR2_DATA_REPRESENTATION when using dds.type_plu-
gin.dheader_in_non_primitive_collections

The property dds.type_plugin.dheader_in_non_primitive_collections was added in
7.0.0 to allow for compliance with the OMG ‘Extensible and Dynamic Topic Types for DDS’ specification,
version 1.3. When this property was enabled, an additional DHEADER was serialized after the member
header. However, the fix was incomplete, and there were still cases where setting dds.type_plugin.
dheader_in_non_primitive_collections to TRUE did not lead to specification compliance.

This problem has been fixed. In addition, the property dds.type_plugin.
dheader_in_non_primitive_collections has been removed and replaced with the ability
to set an Extensible Types compliance mask. To allow compliance with the OMG ‘Extensible and Dynamic
Topic Types for DDS’ specification, version 1.3, for XCDR 2, you will need to set the bit NDDS_CON-
FIG_XTYPES_DHEADER_IN_NON_PRIMITIVE_COLLECTIONS_BIT instead of setting the property.
For details, see Extensible Types Compliance Mask in the RTI Connext Core Libraries Extensible Types Guide.

[RTI Issue ID CORE-13906]

6.22.4 [Critical] DataReader on a Topic using an appendable type may have re-
ceived samples with incorrect value

See RTI Issue ID CORE-9042 in Data Corruption.

6.22.5 [Major] FlatData did not support XCDR2-compliant serialization

The serialization/deserialization of sequences and arrays with non-primitive members for FlatData did not
follow the OMG ‘Extensible and Dynamic Topic Types for DDS’ specification, version 1.3. This led to com-
patibility issues with other DDS implementations.

This problem has been fixed, although the new behavior is not enabled by default, in order to keep backward
compatibility with previous Connext releases. If interoperability with other vendors is a concern, you can

6.22. OMG Specification Compliance 56

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/release_notes/whats_fixed/700/fixes_other700.html
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/release_notes/whats_fixed/700/fixes_other700.html
https://www.omg.org/spec/DDS-XTypes/1.3?
https://www.omg.org/spec/DDS-XTypes/1.3?
https://www.omg.org/spec/DDS-XTypes/1.3?
https://www.omg.org/spec/DDS-XTypes/1.3?
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/extensible_types_guide/extensible_types/Data_Representation.htm#ComplianceMask
https://www.omg.org/spec/DDS-XTypes/1.3?

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

enable the new standard-compliant serialization by setting the rti::config::compliance::XType-
sMask::dheader_in_non_primitive_collections() compliance mask. For information, see
the API Reference HTML documentation. (For example, see the Modern C++ API Reference here.)

[RTI Issue ID CORE-13944]

6.23 Entities

6.23.1 [Critical] FlatData language binding allowed you to specify XCDR data rep-
resentation

Since the debut of the RTI FlatData™ language binding in release 6.0.0, you have been able to specify XCDR
as the data representation in Quality of Service (QoS) settings for entities that use FlatData, although the only
valid data representation for FlatData types is XCDR2. When XCDR was selected in these scenarios, the
system would usually issue a warning and convert the data representation to XCDR2 to maintain functionality.
While this process was intended to safeguard against configuration errors, it could lead to confusion about the
actual data representation being used and could cause a segmentation fault. Note that the FlatData language
binding is only valid for the Traditional C++ and Modern C++ APIs.

To ensure clarity and system integrity, the QoS validation logic has been refined. From this release forward,
when specifying the data representation QoS for entities using the FlatData language binding, strict enforcement
will be applied to require XCDR2. Any attempt to configure an entity with XCDR as the data representation
for FlatData types will be blocked, with the entity creation call failing.

Starting in this release, if you use the Traditional C++ and Modern C++ APIs, you should examine your entity
QoS configurations to ensure compliance with the new validation rules. Make adjustments to use XCDR2where
the FlatData language binding is in use, to align with the updated and more stringent requirements.

[RTI Issue ID CORE-14059]

6.24 Interoperability

6.24.1 [Minor] JRE version check prevented desktop Java tools from opening

A bug prevented desktop Java tools from opening if they detected certain versions of the Java Runtime Envi-
ronment (JRE).

[RTI Issue ID INSTALL-898]

6.23. Entities 57

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/api/connext_dds/api_cpp2/classrti_1_1config_1_1compliance_1_1XTypesMask.html#ae424cd3a118d6b8a6f6016363d7c37ba

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.25 Other

6.25.1 [Critical] Potential bus error when calling print and to_string APIs in Type-
Code *

In 7.1.0, your application may have generated a bus error after calling the print and to_string APIs, such as
DDS_TypeCode_print_IDL, in TypeCode.

This issue only happened when TypeCode propagation was enabled by setting participant_qos.
resource_limits.type_code_max_serialized_length to a value greater than zero (the de-
fault is zero) and when using the affected APIs in the TypeCodes that were part of PublicationBuilt-
inTopicData and SubscriptionBuiltinTopicData.

[RTI Issue ID CORE-13968]

6.25.2 [Critical] Restarted keyed DataReaders using durable reader state and des-
tination order by source timestamp may have received old samples

A keyed DataReader may have received old samples after being restarted. This occurred when using durable
reader state and destination order by source timestamp. In this scenario, the restarted DataReader received
samples that should have been filtered out because their source timestamps were older than the last source
timestamp received by the DataReader before it was restarted.

[RTI Issue ID CORE-14103]

6.25.3 [Critical] Reliable DataReader may have stopped receiving samples from
DataWriter using durable writer history and DDS fragmentation

A reliableDataReader may have stopped receiving samples from aDataWriter using durable writer history and
DDS fragmentation (asynchronous publishing with samples that exceed the minimum mesage_size_max
across all installed transports). This issue occurred when a sample fragment was lost, which is more likely to
occur in lossy networks.

[RTI Issue ID CORE-14099]

6.25.4 [Critical] Support for systems running beyond 2038 when using a database
and logging

In release 7.2.0, Connext added support for systems running beyond the year 2038. See Support for systems
running beyond 2038. However, 2038 support for Connext applications that use a database, like Persistence
Service, or that use durable writer history, was not added at that time. Now, release 7.3.0 adds that 2038
support, too. Logging has also been updated to properly display the date up to year 2106.

[RTI Issue ID CORE-13866]

6.25. Other 58

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/whats_new/whats_new/WhatsNew730.htm#1.3_Support_for_Systems_Running_beyond_2038
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/whats_new/whats_new/WhatsNew730.htm#1.3_Support_for_Systems_Running_beyond_2038

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

6.25.5 [Major] Durable writer history failed to restore data in buildable sources

There was a bug in Buildable Sources code that caused durable writer history to fail while restoring data.

[RTI Issue ID CORE-14255]

6.25.6 [Minor] Discovery plugins libraries did not close if creation of plugin failed

In previous releases, if your Connext application used any discovery plugin (like Limited Bandwidth Endpoint
Discovery or Limited Bandwidth Participant Discovery) and the creation of the discovery plugin object failed
(for example, due to an incorrect properties configuration), the loaded plugin’s dynamic library was not properly
closed, resulting in a memory leak.

Now if there is a failure, opened library handlers are closed.

[RTI Issue ID CORE-13410]

6.25.7 [Trivial] Strings with default size (255) may have printed as unboundedwhen
printing TypeCodes as IDL

When printing a TypeCode in IDL format, strings and wstrings may have incorrectly been printed as unbounded
if they had the default size (255).

For example, the following member:

string<255> my_string;

would have been printed as:

string my_string;

[RTI Issue ID CORE-14095]

6.25.8 [Trivial] Alias’s annotations may not have printed out correctly

Annotations can be given to an alias in IDL or XML. When printing out this alias as IDL (using the
DDS_TypeCode_print function), the annotations would not have been printed, unless the alias was be-
ing printed within a struct.

[RTI Issue ID CORE-14084]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

6.25. Other 59

Chapter 7

Previous Releases

For “What’s New” in the Core Libraries in previous releases, see RTI Connext Core Libraries What’s New .

7.1 What’s New in 7.2.0

For what’s new in the Core Libraries in 7.2.0, see What’s New in 7.2.0 in the Previous Releases section of the
RTI Connext What’s New.

7.2 What’s Fixed in 7.2.0

This section describes bugs fixed in Connext 7.2.0. These are fixes since 7.1.0.

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

7.2.1 Discovery

[Critical] SPDP2 participants may not have completed discovery if IP mobility event oc-
curred during discovery *

When using Simple Participant Discovery Protocol 2.0, discovery may not have completed between two Do-
mainParticipants if oneDomainParticipant changed locators due to an IPmobility event before its configuration
message was received by the remote participant. You would have had to wait for DomainParticipant liveliness
to expire at the participant_liveliness_lease_duration for discovery to be restarted. Now,
the locator change is correctly propagated to the remote participant and participant discovery will complete.

[RTI Issue ID CORE-13384]

60

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Crash if initial_peers sequence contained a NULL string

Previously, if you configured the initial peers sequence through code, you could potentially add a NULL ele-
ment. Connext did not check for the NULL element; therefore, when the DomainParticipant was created in
this case, Connext crashed. Now a NULL element will be reported, resulting in an ‘inconsistent qos’ failure
when creating the DomainParticipant.

[RTI Issue ID CORE-13802]

[Critical] Unbounded memory growth when creating/deleting DomainParticipants *

In Connext 7.1.0, a DomainParticipant was not freeing some of the memory associated with a remote Domain-
Participant that was deleted. This may have led to unbounded memory growth if your applications continuosly
create/deleteDomainParticipants. When this growth occurred, you may have seen the following error message:

ERROR [DELETE DP|LC:DISC]COMMENDAnonWriterService_as-
sertRemoteReader:DELETION FAILURE | skiplist node already removed

This problem has been fixed.

[RTI Issue ID CORE-13964]

[Major] Failure to deserialize participant discovery information incorrectly allowed discov-
ery to complete

It was possible for participant discovery to “succeed” even if the deserialization of the participant discovery
information failed. In those cases, this error was printed:

PRESCstReaderCollator_storeSampleData:deserialize sample error in topic
'DISCParticipant' with type 'DISCParticipantParameter'

This incorrect ‘success’ could have led to unexpected behavior or crashes. This problem has been fixed. Now
participant discovery won’t complete if deserialization issues are detected.

[RTI Issue ID CORE-12952]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.2.2 Serialization and Deserialization

[Critical] Unbounded memory growth when deserializing SPDP discovery sample

Potential unbounded memory growth occurred when some parameters appeared multiple times within a Sim-
ple Participant Discovery Protocol (SPDP) discovery sample. This problem has been fixed. See also Some
parameters cannot be received multiple times within same SPDP sample.

[RTI Issue ID CORE-13594]

7.2. What’s Fixed in 7.2.0 61

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Potential unexpected behavior or crash when deserializing SPDP discovery sam-
ple

Potential unexpected behavior or a crash could occur when deserializing some inconsistent or malformed pa-
rameters within a Simple Participant Discovery Protocol (SPDP) discovery sample. This problem has been
fixed.

[RTI Issue ID CORE-13811]

[Trivial] Wrong error message when deserializing PropertyQos property value and exceed-
ing property_string_max_length resource limit

If property_string_max_length was exceeded when deserializing the PropertyQos property value, the resulting
error message was wrong (the value of the maximum size in particular). This problem has been fixed. Now
the error message shows the correct information.

[RTI Issue ID CORE-13678]

7.2.3 Debuggability

[Major] DataWriter instance statistics were not updated in all cases

The instance statistics within the DDS_DataWriterCacheStatus were not correct if dds.
data_writer.history.source_timestamp_based_autopurge_instances_delay
on that DataWriter was also being used. This issue has been resolved.

[RTI Issue ID CORE-13278]

[Trivial] Instance State Consistency QoS was commented out when printed out as XML
from code *

When the instance_state_consistency_kind in the RELIABILITY QoS policy was printed as
XML from code (for example, while calling DDS_DataWriterQos_to_string_w_params() in the
C API), it was commented out. It is printed out now without the XML <!-- and --> strings.

[RTI Issue ID CORE-13909]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.2. What’s Fixed in 7.2.0 62

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

7.2.4 Transports

[Critical] Ungracefully terminated QNX processes using SHMEM transport prevented
startup of new processes due to unclosed POSIX semaphores

If a QNX application using the shared-memory transport was ungracefully shut down, crashed, or otherwise had
an abnormal termination while holding a POSIX semaphore used by the transport (for example, while sending
data through the shared-memory transport), Connext applications launched after that point on the same domain
may have waited forever for that semaphore to be released.

This problem has been resolved for QNX 7.1 and higher only. However, the fix makes communication with
applications from a previous Connext version impossible when using the shared-memory transport. If you try
to use shared memory with old applications, you will see the following error message(s):

incompatible shared memory protocol detected.
Current version 5.0 not compatible with x.y.

OR

incompatible shared memory protocol detected.
Current version x.y not compatible with 5.0.

There is no way to be backwards-compatible. You will have to use other transports such as UDPv4.

[RTI Issue ID CORE-9434]

[Critical] Stalled communication when using shared-memory transport

On systems with a weak memory architecture, such as Arm®, the shared-memory transport may have been
corrupted due to a data race in the concurrent queue where the messages are written into the shared-memory
segment. This data race may have occurred until received_message_count_max messages were sent
through the transport. The corrupted transport resulted in parsing errors, which filled up the shared-memory
segment. For example, you may have seen messages such as the following:

MIGInterpreter_parse:available space 24 < 28
MIGInterpreter_parse:!RTPS
MIGInterpreter_parse:INVALID from 0X1014D5A,0X7E8C7D92
NDDS_Transport_Shmem_send:failed to add data. shmem queue for port 0x1d3e is␣
→˓full (received_message_count_max=2880, receive_buffer_size=100971520). Try␣
→˓to increase queue resource limits.

This problem has been resolved. Now the data race that led to this situation cannot occur.

[RTI Issue ID CORE-13846]

7.2. What’s Fixed in 7.2.0 63

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] Connext started before Windows completed duplicate address detection on net-
work interfaces

In some cases, such as the use of Connext in a Windows service, Connext would be started before Windows
completed duplicate address detection on its network interfaces. This would result in the inability to use those
interfaces in Connext.

Connext will now delay the usage of Windows network interfaces until duplicate address detection completes
successfully (i.e., the DadState is IpDadStatePreferred).

[RTI Issue ID CORE-13425]

[Minor] QNX applications using shared-memory transport may have led to thread priority
inversion issues

Running QNX applications using the Connext shared-memory transport may have led to thread priority inver-
sion issues.

This problem has been resolved for QNX 7.1 and higher only. However, the fix makes communication with
applications from a previous Connext version impossible when using the shared-memory transport. If you try
to use shared memory with old applications, you will see the following error message(s):

incompatible shared memory protocol detected.
Current version 5.0 not compatible with x.y.

OR

incompatible shared memory protocol detected.
Current version x.y not compatible with 5.0.

There is no way to be backwards-compatible. You will have to use other transports such as UDPv4.

[RTI Issue ID CORE-13745]

[Minor] Overflow in default TransportMulticastMappingQosPolicy procedure

This release fixes an integer overflow in a function that maps a multicast IP address to DataReaders. You may
now see a different IP address being assigned to a DataReader when the TRANSPORT_MULTICAST_MAP-
PING QoS policy is set and the default DDS_TransportMulticastMappingFunction_t is used.

[RTI Issue ID CORE-13653]

7.2. What’s Fixed in 7.2.0 64

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

7.2.5 Reliability Protocol and Wire Representation

[Critical] Samples lost by reliable reader acknowledging samples it did not receive after
remote writer update

A reliable DataReader may have lost samples by incorrectly acknowledging samples it did not receive. This
could occur after a remote DataWriter update, such as if the writer had an IP mobility event or updated its QoS
policy. When the reader processed this event, it began sending a periodic ACK/NACK at the nack_period
to the writer until it received another message from the writer. This ACK/NACK acknowledged samples up to
the last sequence number that it received from the writer, even if samples before that sequence number had not
been received. When the writer received this ACK/NACK, it may have considered those samples to be fully
acknowledged.

The reader could request the lost samples again, but if the reader was usingVOLATILE durability, the remote
writer would GAP for the samples and they would not be resent. If the reader was using TRANSIENT_LO-
CAL durability, the writer would resend the samples if they were still available, but if the writer had updated
the send window beyond the samples being requested, the samples would not be resent and would be lost.

This issue has been resolved. If a reader receives a remote writer update from a writer that is still alive, it will
not begin sending additional ACK/NACKs at the nack_period to the writer. This prevents the reader from
incorrectly acknowledging samples it did not receive. If a reader receives a remote writer update from a writer
that is not alive, it will send additional ACK/NACKs at the nack_period to the writer, but the bitmap will
accurately represent the missing samples rather than acknowledging the last received sample. Samples are no
longer lost because they are not incorrectly acknowledged.

[RTI Issue ID CORE-13611]

[Critical] Sample loss when using asynchronous publisher due to missing GAP

Samples may have been lost when using an asynchronous publisher in the following scenario:

1. A reader sent a NACK to the writer requesting missing samples where the first m (where m >= 0)
samples should have been sent to the reader and at least the last n (where n >= 2) samples were not
for the reader (for example, were filtered with a content filter).

2. Some (but not all) of the n samples were no longer present in the writer queue (for example, were
removed due to exceeding the writer_qos.history.depth).

3. The next sample after the NACK bitmap sent by the reader was also not for the reader.

In this scenario, the writer may have failed to send a GAP to the reader to inform the reader about the samples
that were not for the reader. The reader may then have continued to NACK for these samples and failed to
progress, leading to sample loss.

[RTI Issue ID CORE-13844]

7.2. What’s Fixed in 7.2.0 65

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] Inconsistent RTPS protocol versions broadcasted by Connext

Previously, Connext broadcasted different RTPS protocol versions in different messages. The versions are fixed
and unified in this release.

[RTI Issue ID CORE-13676]

7.2.6 Content Filters and Query Conditions

[Critical] Instance handling on a DataReader and filtering operations in ContentFiltered-
Topics, QueryCondition, TopicQueries, and Multi-Channel DataWriters may have failed

Starting in 6.0.0, you may have experienced invalid results in filtering operations when using ContentFil-
teredTopics, QueryCondition, TopicQueries, or Multi-Channel DataWriters. This issue may have resulted in
DataReaders not receiving samples they should have. The following error message occurred: DDS_SqlFil-
ter_evaluateOnSerialized:deserialization error: sample. This issue may also have
caused failures on aDataReader when setting writer_qos.protocol.disable_inline_keyhash
to TRUE on a matching DataWriter. This could have led to incorrect instance handling, where two different
instances were considered the same.

This problem was specific to Topic types containing optional members, and occurred when the DataReaders
and DataWriters on the Topic used XCDRv1 encapsulation. The problem affected all languages.

This problem has been resolved.

[RTI Issue ID CORE-13829]

7.2.7 Dynamic Data

[Major] Problems with int8/uint8 support

Previous releases of Connext had problems supporting int8/uint8. There were issues serializing/deserializing
the type and getting/setting the values with DynamicData.

Support for int8/int8 has been improved. Generated code will now send and receive the data correctly in all
languages. The only pending issue (not yet fixed in this release) is int8/uint8 collection in Python (RTI Issue ID
CODEGENII-1912). This release also adds a method to DynamicData to set and get the data with the correct
type and sign. This release provides a Java method to access unsigned integers.

This fix does not change the Type Kind on the wire. Features and products, such as Admin Console, that rely
on the Type Kind for the data will not be able to detect the type correctly.

[RTI Issue ID CORE-8865]

7.2. What’s Fixed in 7.2.0 66

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

7.2.8 Performance and Scalability

[Major] Performance issues when using FlatData with payload encryption or compression

You may have seen performance issues when using the FlatData language binding along with compression or
payload encryption. In this case, the number of copies of each sample was not reduced to two, as is expected
when using FlatData. (See “34.1.4 FlatData Language Binding” in the Core Libraries User’s Manual.) This
issue removed the performance improvement that FlatData provides, but only when compression or payload
encryption was enabled. This problem did not occur when using FlatData without compression or payload
encryption. This problem has been fixed.

[RTI Issue ID CORE-11262]

[Major] Transport utilization metrics overflowed in applications with high throughput *

Transport utilization periodic metrics (like dds_participant_udpv4_us-
age_in_net_bytes_count ordds_participant_udpv6_usage_out_net_bytes_count)
could overflow in high-throughput applications (for example, applications that wrote and/or received large data
with high frequency). If the polling period ofMonitoring Library 2.0 (previously called Observability Library)
was big enough, the variation of the metrics in the period of time did not fit into a 32-bit integer.

If a metric overflowed, an error message like the following was produced:

ERROR RTI_Monitoring_getTransportUtilizationStatistics:TYPE CONVERSION␣
→˓FAILURE | count (4421753352) exceeds max. representable UINT32 for metric␣
→˓with metricGroupIndex 22

The metric was not propagated to Observability Dashboards in this case.

To mitigate this issue, transport utilization count metrics have been promoted to a 64-bit integer. Reducing the
polling period also makes the overflow less likely.

[RTI Issue ID MONITOR-597]

[Minor] Performance degradation when using FlatData with ContentFilteredTopics

In previous releases, a DataWriter using FlatData and doing writer-side filtering for DataReaders using Con-
tentFilteredTopics may have done more data copies than necessary, leading to suboptimal performance. This
problem has been fixed.

[RTI Issue ID CORE-13250]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.2. What’s Fixed in 7.2.0 67

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

7.2.9 APIs (C or Traditional C++)

[Critical] Some DDS_TypeCode operations may have crashed when invalid arguments
were used

Some operations related to DDS_TypeCode did not properly check for NULL arguments, which could have
caused a crash. Checks are now in place to avoid this issue.

[RTI Issue ID CORE-13681]

[Critical] Several C API DDS_GUID functions did not account for NULL parameters correctly

Multiple DDS_GUID functions from the C API such as DDS_GUID_copy did not account for NULL as their
input parameters. Both the documentation and the implementation for these functions should now reflect the
correct behavior.

[RTI Issue ID CORE-13483]

7.2.10 APIs (Modern C++ API)

[Critical] Unexpected rti.connextdds.PreconditionNotMetError when setting optional string
members in QoS policies

Attempting to assign a non-set value to an optional string member in a QoS policy in modern C++ resulted in
the generation of an rti.connextdds.PreconditionNotMetError.

The QoS policy members affected by this issue were:

EntityName::name

EntityName::role_name

Monitoring::application_name

MonitoringPeriodicDistributionSettings::datawriter_qos_profile_name

MonitoringEventDistributionSettings::datawriter_qos_profile_name

MonitoringLoggingDistributionSettings::datawriter_qos_profile_name

MonitoringDedicatedParticipantSettings::participant_qos_profile_name

MonitoringDistributionSettings::publisher_qos_profile_name

This problem has been resolved.

[RTI Issue ID CORE-13801]

7.2. What’s Fixed in 7.2.0 68

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Move constructors for some of the built-in topic-types were incorrectly imple-
mented

This issue was fixed in release 6.1.0, but not documented at that time.

The implementation of the move constructor and move assignment for the built-in topic types, such as Publi-
cationBuiltinTopicType, may have caused undefined behavior. This problem has been resolved.

[RTI Issue ID CORE-13791]

[Critical] Manually closing some built-in readers could lead to a crash

Calling close() on the built-in DataReaders with topic names service_request_topic_name or
virtual_subscription_topic_name could have led to a crash. (Note that if they were not manually
closed, which is not necessary, the issue did not happen.) This issue has been fixed.

[RTI Issue ID CORE-13757]

[Critical] Incorrect implementation of DynamicDataMemberInfo constructor and assign-
ment may have led to undefined behavior

It was not safe to copy a DynamicDataMemberInfo object. Using its copy constructor or copy-assignment
operator may have led to undefined behavior if the DynamicData object that created it had been destroyed
before. This problem has been resolved by making DynamicDataMemberInfo a true value type. It now
owns the memory instead of relying on the related DynamicData object to be alive.

[RTI Issue ID CORE-13753]

[Major] int8_t, uint64_t, int64_t not supported as primitive types in Dynamic Type API

The types int8_t, uint64_t, int64_t were not accepted as a valid type for the templates of
dds::core::xtypes::PrimitiveType. Therefore, the following code did not compile with C++11:

my_struct_type.add_
→˓member((dds::core::xtypes::Member(dds::core::xtypes::PrimitiveType<int8_t>
→˓()));
my_struct_type.add_
→˓member((dds::core::xtypes::Member(dds::core::xtypes::PrimitiveType<int64_t>
→˓()));
my_struct_type.add_
→˓member((dds::core::xtypes::Member(dds::core::xtypes::PrimitiveType<uin64_t>
→˓()));

The issue with int64_t and uint64_t was fixed in release 7.0.0. The error with int8_t is fixed in this release,
7.2.0. Now, the above code will compile and work.

[RTI Issue ID CORE-13689]

7.2. What’s Fixed in 7.2.0 69

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] Policy getter for rti::core::policy::Monitoring previously missing *

The policy getter for the rti::core::policy::Monitoring QoS was previously missing in Modern
C++. The missing getter has now been added.

[RTI Issue ID MONITOR-552]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.2.11 APIs (Java)

[Critical] Possible memory leak in DynamicData copy constructor

In the JavaAPI only, under certain conditions, copying aDynamicData object using the constructor that receives
another DynamicData object may have leaked native heap memory. This problem has been fixed.

[RTI Issue ID CORE-13609]

[Major] Some ReliabilityQos methods did not consider the instance state consistency QoS
*

The copy_from and equals methods, as well as the implementation of the hash code for objects of that
class, were not complete; they were missing the instance_state_consistency_kind QoS. This
problem has been remedied.

[RTI Issue ID CORE-13785]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.2.12 APIs (Python)

[Major] Access to collection elements in someDynamicData accessors was not zero-based

Given a DynamicData instance sample with a sequence or array field (my_seq), when accessed via a nested
field expression, the indexes were 1-based, not 0-based as in the rest of the API accessors. For example, the
following was incorrect because the first element was 1:

value = sample["my_seq[0].x"]

This problem has been resolved. Now, indexes are zero-based and the expression above is valid.

[RTI Issue ID PY-98]

7.2. What’s Fixed in 7.2.0 70

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

7.2.13 APIs (Multiple Languages)

[Major] Looking up a DataReader using the wrong class in Modern C++ or Python did not
raise clear exception *

In Modern C++, when using the find_datareader_by_topic_name or
find_datawriter_by_topic_name functions and the wrong DataReader type, the function
may have returned an invalid entity. Now, it will throw a dds::core::InvalidArgumentError. For
example:

auto dr =
rti::sub::find_datareader_by_topic_name<DataReader<Foo>>(
dds::sub::builtin_subscriber(participant),
dds::topic::publication_topic_name());

In Python, the following code now throws a dds.InvalidArgumentError:

dr = dds.DataReader.find_by_topic(
participant.builtin_subscriber, dds.PublicationBuiltinTopicData.

→˓topic_name)

since the right DataReader class for the built-in PublicationBuiltinTopicData reader is dds.
PublicationBuiltinTopicData.DataReader, not dds.DataReader.

[RTI Issue ID CORE-13800]

[Minor] Alias type not obtainable using a QosProvider

Alias types were not obtainable using a QosProvider. This problem affected all language bindings that support
a QosProvider. This problem has been fixed.

[RTI Issue ID CORE-13830]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.2.14 XML Configuration

[Major] Creating Topic-specific entities from a <qos_profile> using QoS profile inheritance
and/or composition returned incorrect values

Topic-specific entities include DataWriter, DataReader and Topic. Their corresponding tags
<datareader_qos>, <datawriter_qos> and <topic_qos> contain the topic_filter
attribute that allows you to indicate which Topic name the XML values should be used for. The internal
mechanism of the Core Libraries XML parser had a bug where incorrect values could be returned from a
<qos_profile> when the following conditions were true:

1. The <qos_profile> used QoS Profile inheritance and/or composition, where the parent QoS Profiles
contained any of the above Topic-specific entities.

7.2. What’s Fixed in 7.2.0 71

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

2. The <qos_profile> did not contain the QoS tag for the Topic-specific entity being cre-
ated by pointing to it: for example, in the C API, if you called DDS_DomainPartici-
pant_create_datawriter_with_profile() on a <qos_profile> that did not contain
a <datawriter_qos> tag.

This issue has been resolved.

[RTI Issue ID CORE-13438]

[Major] Using languageBinding attribute on union types in XML caused parsing error

When a union type that used the languageBinding attribute was created in XML, a parsing error would result.
This issue has been fixed.

[RTI Issue ID CORE-13905]

[Minor] configuration_variables tag was not effective

The <configuration_variables> tag was visible and accepted by the Connext .xsd files, but it had no
effect: the configured values were not used by the Core Libraries to set the value of XML-defined environment
variables. This has been corrected. Now, the <configuration_variables> tag can be used to define
default values for XML-defined environment variables, which will take effect if those environment variables
are not set on the terminal.

[RTI Issue ID CORE-11871]

[Minor] Incorrect parsing of data_representation attribute in XML type definitions

The type attribute data_representation was not parsed correctly. This could result in a type requiring
a different representation (XCDR1, XCDR2, or both) than defined by the XML for the type.

[RTI Issue ID CORE-13769]

7.2.15 Instances

[Major] Instance purging based on source timestamp did not work *

In 7.1.0, the source timestamp-based purge delay did not purge instances based on their source times-
tamp. Instead, it purged instances based on their sequence number. This problem has been resolved. Now,
the dds.data_writer.history.source_timestamp_based_autopurge_instances_delay property works as in-
tended.

[RTI Issue ID CORE-13911]

7.2. What’s Fixed in 7.2.0 72

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Minor] Instances transitioned due to instance state consistency did not respect propa-
gate_dispose_of_unregistered_instances *

By default, Connext does not support transitions between NOT_ALIVE instance states; however, this can
be configured on the DataReader by setting propagate_dispose_of_unregistered_instances and/or propa-
gate_unregister_of_disposed_instances in the DATA_READER_PROTOCOL QoS policy. Instances that
were transitioned due to instance state consistency (i.e., instances that transitioned upon recovering liveliness
with a previously matched DataWriter) were not abiding by this configuration and may have transitioned from
NOT_ALIVE_NO_WRITERS to NOT_ALIVE_DISPOSED even though propagate_dispose_of_unregis-
ter_instances was false. This issue has been resolved.

[RTI Issue ID CORE-13477]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.2.16 Crashes

[Critical] Race condition when using multiple threads to enable same DomainParticipant

Suppose you created a disabled DomainParticipant. If you used multiple threads to enable this DomainPartic-
ipant, then a race condition may have led to a segmentation fault in release libraries or a precondition error in
debug libraries. The precondition error looked similar to this:

REDAWeakReference_getReferent:!precondition: !((reference) != ((void *)0) &&␣
→˓(reference)->_manager != ((void *)0) && (reference)->_
→˓referentEpochAtCreation != (0)) || tableWithStartedCursor==((void *)0)

RTINetioReceiver_removeEntryport:!goto WR NetioReceiver_Entryport

This problem has been fixed. Calling enable() on a DomainParticipant is now thread-safe with respect to
other calls to enable() on the same DomainParticipant.

[RTI Issue ID CORE-13535]

[Critical] Possible crash gathering periodic metrics for a resource that was being added or
deleted at the same time *

Due to concurrency issues in the thread that gathers the periodic metrics of the observable resources, an appli-
cation might have crashed because the thread accessed invalid memory. The crash could occur in any of the
following scenarios:

• When a resource was deleted (for example, you deleted a DataWriter) at the same time that Monitoring
Library 2.0 (formerly called Observability Library) was gathering the periodic metrics of that resource.
The thread may have accessed already freed memory.

• When a resource was added (for example, you created aDataWriter), the thread could start gathering the
periodic metrics of that resource before the resource was completely initialized. The thread may have
accessed uninitialized memory.

7.2. What’s Fixed in 7.2.0 73

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Depending on the configured polling_period for periodic metrics and the frequency your application
creates and deletes observable resources, the chances of the conditions explained above happening at the same
time were unlikely.

These concurrency issues are now fixed. Monitoring Library 2.0 will not gather periodic metrics for resources
that are being deleted or added.

[RTI Issue ID MONITOR-533]

[Critical] Potential crash when configuring logging verbosity to NDDS_CONFIG_LOG_VER-
BOSITY_STATUS_LOCAL or higher

Connext Receive threads may have crashed as a result of a race condition during the Receive thread destruction
process.

This problem, which was only possible when the Connext logging verbosity was set to NDDS_CON-
FIG_LOG_VERBOSITY_STATUS_LOCAL or higher (i.e., more verbose than STATUS_LOCAL), is now
resolved: Receive threads no longer crash during their destruction.

[RTI Issue ID CORE-13649]

[Critical] Malloc called when handling SIGSEGV

Previously, when handling a segmentation violation signal (SIGSEGV), it was possible for malloc to be called
while logging backtrace information. In certain scenarios, this could cause another segmentation violation, and
this cycle of events would continue indefinitely. Now, malloc will not be called when handling segmentation
violation signals.

[RTI Issue ID CORE-13396]

[Critical] Calling delete_contained_entities APIs could cause a crash in the thread that col-
lects periodic metrics *

If your application used any of thedelete_contained_entitiesAPIs (e.g., DDS_DomainPartic-
ipant_delete_contained_entities) and Monitoring Library 2.0 (previously called Observability
Library) was still enabled, there was a possibility of a crash happening in the thread that collects periodic met-
rics. The crash happened because the children DDS Entities were removed before deleting their observable
resources. Therefore, the periodic metrics thread could try to collect metrics for an observable resource whose
DDS Entity no longer exists.

This issue is now fixed. The periodic metrics collector thread will not try to collect metrics for observable
resources that are being deleted.

[RTI Issue ID MONITOR-549]

7.2. What’s Fixed in 7.2.0 74

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Application could crash when disabling and re-enabling Monitoring Library 2.0
due to internal error *

If there was an error in an internal function of Monitoring Library 2.0 (formerly known as Observability Li-
brary), depending on the memory state an application using the Library could crash in the following scenario:

1. Monitoring Library 2.0 was enabled.

2. You created some DDS Entities (DomainParticipant, Publisher, DataReader…) in your application.

3. You disabled and re-enabled the Library. Due to an internal error, an exception was printed in the
RTI_Monitoring_collectDdsResources function.

4. You deleted any DDS Entity before disabling the Library.

Because of the error in RTI_Monitoring_collectDdsResources, the observable resources associ-
ated with the DDS Entities were not updated for the second activation of the Library. The DDS Entities kept
the old observable resources object from the previous activation, which were no longer valid.

When deleting the DDS Entities, these old observable resources were used without checking their validity. The
behavior was undefined at that point and, depending on the memory state, the application could crash.

This issue is now fixed. Monitoring Library 2.0 no longer uses observable resources without checking their
validity first.

[RTI Issue ID MONITOR-548]

[Critical] Low-memory conditions could lead to crash on several platforms if allocation of
high resolution clock failed

If the system was running very low in memory, a failure to allocate the high-resolution clock could then lead
to a crash, since a NULL pointer would have been dereferenced while attempting to handle the failure. This
issue applied to all platforms except Windows, Solaris, and Integrity, where the issue would not have occurred.
This problem has been fixed.

[RTI Issue ID CORE-13899]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.2.17 Entities

[Critical] Application may have hung when deleting a monitored DDS entity *

If RTI Monitoring Library 2.0 (previously called Observability Library) was enabled, you deleted a DDS entity
(for example, by calling DDS_Publisher_delete_datawriter or a similar API), and periodic metrics
were being collected for the same DDS entity, the application may have hung. The hang occurred because the
deletion thread and the periodic thread took the same pair of semaphores in inverted order.

This hang is now fixed. Periodic metrics are not collected for an entity that is being deleted.

[RTI Issue ID MONITOR-580]

7.2. What’s Fixed in 7.2.0 75

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] Monitoring Library 2.0 incorrectly collected both enabled and disabled DDS Entities
*

In the previous release, Monitoring Library 2.0 (then called Observability Library) incorrectly collected both
enabled and disabled DDS Entities if the library was enabled after creating the entities. Now, Monitoring
Library 2.0will only assert enabled DDS Entities, ensuring that disabled entities are not unnecessarily collected.
Disabled DDS Entities are asserted when they are enabled.

[RTI Issue ID MONITOR-594]

[Major] Monitoring Library 2.0 did not assert disabled DDS Entities when the Entities were
enabled *

IfMonitoring Library 2.0 (previously called Observability Library) was enabled in an application and then DDS
Entities were created disabled (by setting the entity_factory.autoenable_created_entities
QoS setting to false), disabled Entities were not asserted by the library when they were enabled. This meant
that these DDS Entities were never observed by Monitoring Library 2.0.

This issue is fixed. Disabled DDS Entities (and all their contained Entities) are now asserted after enabling.

[RTI Issue ID MONITOR-574]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.2.18 Interoperability

[Critical] Possible incomplete endpoint discovery when communicating with other DDS
vendors

Connext only supports a maximum of four representations in the DATA_REPRESENTATION QoS policy for
readers, and one representation for writers. However, other DDS vendors may support more than this. If a
Connext endpoint was communicating with another vendor’s endpoint with more than the supported represen-
tations, there may have been interoperability issues:

• Without Security: Builtin Topic Publication/Subscription listeners failed to call the associated callbacks
for received discovery samples from other vendors announcing more than one data representation for
writers, or more than four data representations for readers.

• With Security: If enabled, the Securıty Plugıns (RTI Security Plugins) failed to interoperate with other
vendors announcing more than one data representation for writers, or more than four data representations
for readers.

This problem no longer occurs. In the case of a DataReader with more than four representations, Connext now
uses only the first four. In the case of a DataWriter with more than one representation, Connext now uses only
the first.

[RTI Issue ID CORE-13836]

7.2. What’s Fixed in 7.2.0 76

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

7.2.19 Vulnerabilities

[Critical] Out-of-bounds read while deserializing malformed partition parameters from ma-
licious RTPS message *

An out-of-bounds readmay have occurred while deserializingmalformed partition parameters from amalicious
RTPS message. This issue has been fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Out-of-bounds read while parsing a malicious RTPS message.

• Remotely exploitable.

• Potential impact on confidentiality of Connext application.

• CVSS Base Score: 6.5 MEDIUM

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

User Impact with Security

Same as “User Impact without Security,” above.

[RTI Issue ID CORE-13669]

[Critical] Out-of-bounds read while deserializing malformed IPv6 locator from malicious
RTPS message

An out-of-bounds read may have occurred while deserializing a malformed IPv6 locator from a malicious
RTPS message. This issue has been fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Out-of-bounds read while parsing a malicious RTPS message.

• Remotely exploitable.

• Potential impact on confidentiality of Connext application.

• CVSS Base Score: 6.5 MEDIUM

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

7.2. What’s Fixed in 7.2.0 77

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

User Impact with Security

Same as “User Impact without Security,” above.

[RTI Issue ID CORE-13764]

[Critical] Remote modification of DomainParticipant names in unsecure system

In a system without security, a vulnerability in the Connext application could have potentially allowed remote
attackers to modify the DomainParticipant name of any DomainParticipant in the system. This issue has been
fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Any DomainParticipant could have its participant’s name changed by an attacker.

• Remotely exploitable.

• Potential impact on integrity of Connext application.

• CVSS Base Score: 5.3 MEDIUM

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

User Impact with Security

No impact when using the Securıty Plugıns if enabling rtps_protection or if discovery_protec-
tion_kind is different than NONE: in this case, participant discovery samples will be protected against tam-
pering from an external malicious agent after authentication is completed. Moreover, non-legitimate changes in
the participant discovery information before authentication are always prevented by the authentication process,
which ensures that the participant discovery information is authentic.

[RTI Issue ID CORE-13817]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.2.20 Other

[Critical] Possible hang in application if something failed while adding a new observable
resource *

An application might have hanged if something went wrong while adding a new observable resource (for exam-
ple, you created a DataWriter). Before the hang, you would have seen an exception error in the RTI_Moni-
toringResourceRegistry_assertResource function. However, not all errors in this function led
to the hang. This issue is now fixed.

7.2. What’s Fixed in 7.2.0 78

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[RTI Issue ID MONITOR-534]

[Critical] Application may have hung when event and event snapshot were published si-
multaneously for same observable resource *

When RTI Observability Collector Service discovers a Connext application, RTI Monitoring Library 2.0 (previ-
ously called Observability Library) automatically sends a special sample named “event snapshot”. This sample
contains the current values of event metrics for each observable resource. If an event (for example, liveliness
change) was triggered for an observable resource at the same time as an event snapshot was being published for
the same resource, the application may have hung. The hang occurred because the thread that published the
event and the thread that published the snapshot took the same pair of semaphores in inverted order.

This hang is fixed. Now, both threads take the semaphores in the same order.

[RTI Issue ID MONITOR-584]

[Critical] Unable to start Launcher, Admin Console, Code Generator, and Monitor in Win-
dows when the RTI Workspace contained white spaces *

On Windows systems, Launcher, Admin Console, Code Generator, and Monitor failed to start when the RTI
Workspace contained white spaces. This issue has been fixed.

[RTI Issue ID TELEMETRY-28]

[Critical] Deadlock issue resolved when disabling Monitoring Library 2.0 during command
processing *

In the previous release, a deadlock could occur if RTI Monitoring Library 2.0 (previously known as RTI Ob-
servability Library) was disabled while a remote administration command was being processed. The hang was
caused because the thread that processed the command and the thread that disabled the Library took the same
pair of semaphores in inverted order.

This issue has been addressed in this release. Disabling the Library while a remote administration command
is being processed is now thread safe.

[RTI Issue ID MONITOR-609]

[Major] Native Android applications were not shipped

Native Android applications are now included in Android target bundles, along with the APKs.

[RTI Issue ID INSTALL-789]

7.2. What’s Fixed in 7.2.0 79

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] References to missing header file in Connext Professional source bundle

The Connext Professional source bundle included references to a header file in the xmlutils.1.0 module
that is not part of the source bundle. As a result, if you were building Connext from source, you were unable to
complete the build due to themissing header file. RTI has now removed this dependency from thexmlutils.
1.0 module.

[RTI Issue ID CORE-12846]

[Major] Access to an internal field of observable resources was not thread safe *

In Monitoring Library 2.0 (previously known as Observability Library), if a remote administration command
was issued for an observable resource (such as changing the Forwarding verbosity level of an application) at
the same time that periodic metrics were collected for the same resource, an internal field of the resource was
accessed by the two threads unsafely. The value of the internal field could remain in an inconsistent state,
which, in the worst case, might have led to a deadlock when deleting the resource.

This issue is fixed. Accesses to the internal field are now thread safe.

[RTI Issue ID MONITOR-575]

[Minor] Running rtisetenv_<arch>.bat caused issues in PATH environment *

In release 7.1.0, running rtisetenv_<arch>.bat may have caused issues in the PATH environment on
Windows. This problem has been fixed.

[RTI Issue ID INSTALL-880]

[Minor] Error creating a DataWriter using durable writer history if setting property
dds.data_writer.history.odbc_plugin.builtin.sample_cache_max_size to -1

Creating a DataWriter using durable writer history and setting the property dds.data_writer.
history.odbc_plugin.builtin.sample_cache_max_size to -1 may have failed with the fol-
lowing error:

!allocate sample buffer pool

Even if the DataWriter creation did not fail, the value of dds.data_writer.history.
odbc_plugin.builtin.sample_cache_max_size would be incorrectly applied. The value was
set to dds.data_writer.history.odbc_plugin.builtin.instance_cache_max_size
for keyed topics and 1 for unkeyed topics.

This problem has been resolved.

[RTI Issue ID CORE-13732]

7.2. What’s Fixed in 7.2.0 80

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Trivial] Connext did not print array dimensions for aliases that were arrays

When printing the type information for a type that is an alias of an array type, the array dimensions are now
output for both the IDL and XML representations.

[RTI Issue ID CORE-13651]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.3 What’s New in 7.1.0

For what’s new in the Core Libraries in 7.1.0, see What’s New in 7.1.0 in the Previous Releases section of the
RTI Connext What’s New.

7.4 What’s Fixed in 7.1.0

This section describes bugs fixed in Connext 7.1.0. These are fixes since 7.0.0.

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

7.4.1 Fixes Related to Discovery

[Critical] Unbounded memory growth when using domain tags or DomainParticipant parti-
tions

Whenever a DomainParticipant discovered another DomainParticipant that it did not match with, either due to
a mismatched domain tag or participant partition, some state was kept that was never removed if the Domain-
Participant never received an announcement from that same mismatched participant indicating that it had been
shut down. This led to unbounded memory growth, which could become an issue in systems where Domain-
Participants with various different domain tags or partitions were coming and going.

[RTI Issue ID CORE-12973]

[Critical] Most up-to-date participant configuration may not have been received by other
participants and may have led to discovery not completing

It was possible that a configuration change in DomainParticipant ‘A’ may not have been received by Domain-
Participant ‘B’ if the change occurred while the two participants were discovering each other. Examples of
configuration changes are a change in the PROPERTY QoS policy or an IP mobility event in which Domain-
Participant ‘A’ changes one of its IP addresses.

Not having the most recent configuration may have led to discovery not happening if the change was due to an
IP mobility event.

7.3. What’s New in 7.1.0 81

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

The problem only occurred when discovery used multiple transports (e.g, SHMEM and UDPv4). This problem
has been fixed.

[RTI Issue ID CORE-13359]

[Major] Error deleting remote endpoints with specific GUID prefixes using debug libraries

An error occurred when using debug libraries in the unlikely case that a DomainParticipant had a zero value as
the hostId, appId, or instanceId. This problem has been fixed.

[RTI Issue ID CORE-13261]

[Major] Participant failed to assert remote participant if usability of shared memory trans-
port changed *

In 7.0.0, a DomainParticipant failed to assert a remote DomainParticipant if the usability of the shared memory
transport changed, resulting in the following log message:

ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}
→˓|RECEIVE FROM 0x00000000,0x00000000,0x00000000:0x000100C2|:0x000001C1
→˓{Domain=0}|ASSERT REMOTE DP|LC:DISC]PRESParticipant_
→˓assertConfiguredRemoteParticipant:ASSERT FAILURE | compare immutable remote␣
→˓participant 0x01017851,0x3B428DDD,0x514330AA config RW
ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}
→˓|RECEIVE FROM 0x00000000,0x00000000,
→˓0x00000000:0x000100C2|LC:DISC]DISCParticipantDiscoveryPlugin_
→˓assertRemoteParticipantConfig:!assert remote participant: 0x01017851,
→˓0x3B428DDD,0x514330AA,0x000001C1
ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}
→˓|RECEIVE FROM 0x00000000,0x00000000,
→˓0x00000000:0x000100C2|LC:DISC]DISCParticipantDiscoveryPlugin_
→˓assertRemoteParticipantFull:ASSERT FAILURE | remote participant 0x01017851,
→˓0x3B428DDD,0x514330AA config information
ERROR [0x010114FE,0x12488672,0x8EE3B6BC:0x000100C7{Entity=DR,MessageKind=DATA}
→˓|RECEIVE FROM 0x00000000,0x00000000,
→˓0x00000000:0x000100C2|LC:DISC]PRESParticipantAnnouncementChannelReaderListenerSpdp_
→˓onDataAvailable:!assert remote participant

You may have run into this issue if a shared memory segment was deleted during runtime and a DomainPar-
ticipant updated its configuration information. A change in the shared memory usability will no longer cause
this failure.

[RTI Issue ID CORE-13360]

7.4. What’s Fixed in 7.1.0 82

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] Unexpected warning during discovery when multicast disabled

Connext logged a warning during the discovery process when multicast was disabled. The message warned
about unreachable multicast locators. The message was unexpected and has been removed.

[RTI Issue ID CORE-13403]

[Minor] Potential memory leak when creation of any of the built-in discovery plugins failed

The first time a DomainParticipant is created in an application, some memory is allocated globally for each of
the built-in discovery plugins (SPDP and SEDP) enabled for that DomainParticipant. This global memory is
released when finalizing the DomainParticipantFactory instance.

However, if there was a failure in the creation of any of the builtin discovery plugins during the DomainPartic-
ipant creation, the DomainParticipantFactory was not notified properly that this global memory was allocated.
Therefore, finalizing the DomainParticipantFactory instance did not release the memory, causing a leak.

This problem is fixed. Finalizing the DomainParticipantFactory instance always releases the memory if it was
previously allocated, regardless of whether or not a failure occurred.

[RTI Issue ID CORE-12882]

[Minor] Unexpected, invalid locator propagated within builtin topics

A DataReader could unexpectedly propagate an invalid locator to a DataWriter for certain builtin topics. The
issue did not affect functionality, since the locator was discarded on the DataWriter side. The bug that sent the
invalid locator has been fixed.

[RTI Issue ID CORE-13416]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.4.2 Fixes Related to Serialization and Deserialization

[Critical] Unexpected union value when receiving a discriminator that does not select any
union member on DataReader’s type

When the property dds.sample_assignability.accept_unknown_union_discriminatorwas set to 1, previous
Connext releases were not always compliant with the latest OMG ‘Extensible and Dynamic Topic Types for
DDS’ specification, version 1.3 when a DataWriter publishes a union sample with a discriminator value that
selects a union member, and a DataReader subscribes to a union type that does not have a union member for
the discriminator published by the DataWriter.

For example:

/* Publisher */
union MyUnion switch(int32) {

case 0:
int32 m1;

7.4. What’s Fixed in 7.1.0 83

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

case 1:
int16 m2;

case 2:
double m3;

};

/* Subscriber */
union MyUnion switch(int32) {

case 0:
int32 m1;

case 1:
int16 m2;

};

In this example, if the DataWriter published a sample with a discriminator value set to 2 selecting m3, the
DataReader received a sample where the discriminator is set to 0 and m1 is set to 0, the default value of the
union. According to the OMG ‘Extensible and Dynamic Topic Types for DDS’ specification, version 1.3, the
DataReader should preserve the discriminator value received from the DataWriter even if this discriminator
value does not select any member in the DataReader’s union.

This problem only occurred when one of these conditions was true:

• The unions are mutable regardless of the data encapsulation (XCDR1 or XCDR2).

• The unions are appendable, and the encapsulation is XCDR2.

Note if the union discriminator did not select any member on the DataWriter’s type, such as 3 in the above
example, the DataReader received the expected discriminator 3.

This release accepts a new value for the dds.sample_assignability.accept_unknown_union_discriminator
property:

• 0 (existing value and default value): Received samples containing a union discriminator value that selects
a union member on the DataWriter but not on the DataReader are dropped.

• 1 (existing value) : Received samples containing a union discriminator value that selects a union member
on the DataWriter but not on the DataReader are set to the default union value.

• 2 (new value): Received samples containing a union discriminator value that selects a union member on
the DataWriter but not on the DataReader preserve the discriminator value.

Received samples containing a union discriminator value that does not select a union member on the
DataWriter always preserve the discriminator value on the DataReader with dds.sample_assignability.ac-
cept_unknown_union_discriminator set to 1 or 2, unless the union discriminator value is an enumerator
which is not valid on the DataReader’s type. In this case, the union is set to its default value.

To be compliant with the OMG ‘Extensible and Dynamic Topic Types for DDS’ specification, version 1.3, set
the value to 2.

[RTI Issue ID CORE-13058]

7.4. What’s Fixed in 7.1.0 84

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Serialization of samples failed or produced a segmentation fault for types with
max serialized size larger than 2GB

A DataWriter may have failed to send a sample due to serialization errors when the sample’s type had a max
serialized size with a value larger than 2GB.

For example:

@nested
struct MyNestedStruct2 {

sequence<octet, 1500000000> m1;
};

@nested
struct MyNestedStruct {

sequence<octet, 1000000000> m1;
MyNestedStruct2 m2;

};

struct MyStruct {
MyNestedStruct m1;

};

In this example, the serialize operation failed with an error like this:

[0x0101C50B,0x0D4E0B41,0xBBFA04AC:0x80000003{E=DW,T=Example MyStruct,
→˓C=MyStruct,D=56}|WRITE] PRESWriterHistoryDriver_serializeSample:serialize␣
→˓sample error in topic 'Example MyStruct' with type 'MyStruct' and␣
→˓encapsulationId 1

For 32-bit platforms, the application may have produced a segmentation fault instead of failing to serialize.

This problem has been fixed.

[RTI Issue ID CORE-12687]

7.4. What’s Fixed in 7.1.0 85

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Potential sample corruption when deserializing a malformed RTPS message

A sample could be corrupted/incomplete with no error logged in the case of a deserialization failure in the
transport info parameter of the RTPS message. This problem has been fixed.

[RTI Issue ID CORE-13366]

[Critical] Unbounded memory growth when deserializing a malformed RTPS message

Potential unbounded memory growth occurred while parsing a malicious RTPS message. This problem has
been fixed.

[RTI Issue ID CORE-13397]

7.4.3 Fixes Related to Debuggability

[Critical] Hang/crash when invoking a DataReader/DataWriter discovery snapshot within a
callback function *

A hang or even a crash occurred when trying to get a discovery snapshot from a DataReader or DataWriter
within a callback. RTI strongly recommends avoiding calling discovery snapshot APIs in callback functions in
release 7.0.0. This issue has been fixed in 7.1.0.

[RTI Issue ID CORE-12959]

[Major] Unexpected fatal error when number of instances reached the limit *

In 7.0.0, an unexpected fatal error could be logged when the following occurred:

• A DataWriter is configured to use durable writer history.

• The number of instances reached themax_instances limit set in theDataWriter’s RESOURCE_LIMITS
QoS.

• Connext could not find an instance to delete (such as an unregistered one), to replace with the new
instance. So the new instance could not be added.

This log message is expected, but it is not a fatal error, so its verbosity has been updated to WARNING, as
follows:

WriterHistoryOdbcPlugin_createResources:FIND FAILURE | Instance for␣
→˓replacement
WriterHistoryOdbcPlugin_addInstance:OUT OF RESOURCES | Exceeded the number of␣
→˓instances. Current registered instances (128), maximum number of instances␣
→˓(128)(writer_qos.resource_limits.max_instances)

[RTI Issue ID CORE-13496]

7.4. What’s Fixed in 7.1.0 86

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Trivial] Memory leak if network capture initialization failed

Failure to initialize network capture for a DomainParticipant may have caused a memory leak of 746 kB. The
leak only happened (uponDomainParticipant creation) if the initialization failed when creating the status mutex
for a manager:

!create status mutex for the network capture manager

This issue is now fixed. A failure creating the status mutex for a manager does not leak memory anymore.

[RTI Issue ID CORE-13018]

[Trivial] Unexpected log messages at warning verbosity

You may have seen the following unexpected log messages at the warning verbosity level:

!get xxx remoteWriter
!get xxx remoteReader
!goto WR xxx remote reader
!goto WR xxx remote writer

These warnings did not signal any unexpected scenario, and they have been removed.

[RTI Issue ID CORE-13434]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.4.4 Fixes Related to Transports

[Critical] Possible data loss after a Connext application lost its multicast interfaces or
gained its first multicast interface

The IP mobility feature detects when the interfaces of an application change, then propagates these changes. If
an IP mobility event causes either the loss of the last interface that supported multicast or the gain of the first
interface that supports multicast, the way other applications communicate with the application that experienced
the IP mobility event changes.

Previously, that transition did not happen properly and may have led to data losses. This problem has been
fixed. Now, communication is not affected by these interface changes.

[RTI Issue ID CORE-12609]

7.4. What’s Fixed in 7.1.0 87

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] DomainParticipant with non-default metatraffic_transport_priority QoS did not
complete discovery

A DomainParticipant that had a non-defaultmetatraffic_transport_priority in the DISCOVERY QoS Policy
was not able to complete endpoint discovery due to a unicast metatraffic channel that was not created correctly.
(The channel is used by the participant to send Data(R) and Data(W).)

This issue was introduced in 6.1.0. This issue has been resolved.

[RTI Issue ID CORE-12739]

[Major] TCP Transport did not run with Windows debug libraries when socket_monitor-
ing_kind was set to IOCP *

An internal error prevented the TCP transport from running on Windows with debug libraries
when the socket_monitoring_kind was set to the recommended value of NDDS_TRANS-
PORT_TCPV4_SOCKET_MONITORING_KIND_WINDOWS_IOCP. The error has been corrected.

[RTI Issue ID COREPLG-654]

[Minor] dds.transport.minimum_compatibility_version property did not properly adjust lo-
cator format

Connext 5.3.0 introduced a new shared memory locator format. DomainParticipants in Connext 5.3.0 (and
above) use the new locator format by default. To allow interoperability with Connext versions before 5.3.0, you
must indicate to DomainParticipants to use the old locator format.

There are two properties for telling a DomainParticipant to use the old locator format: dds.trans-
port.use_530_shmem_locator_matching (undocumented and deprecated) and dds.transport.mini-
mum_compatibility_version. The latter is a newer property that combines several other properties. Its
purpose is to set the transport to be compatible with the specified version in a simplified manner.

The problem with the newer property, dds.transport.minimum_compatibility_version, was that it did not
adjust the locator format depending on the Connext version. The workaround was to use the dds.trans-
port.use_530_shmem_locator_matching property instead. This issue has been fixed. You can now use
dds.transport.minimum_compatibility_version without issue.

[RTI Issue ID CORE-12789]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.4. What’s Fixed in 7.1.0 88

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

7.4.5 Fixes Related to Reliability Protocol and Wire Representation

[Critical] Samples not delivered to Required Subscription DataReaders when DataWriter
used durable writer history and DataReaders disabled positive ACKs

A sample may not have been delivered to a Required Subscription DataReader if the DataWriter was us-
ing durable writer history and there were matching DataReaders configured with reader_qos.protocol.dis-
able_positive_acks. This behavior violated the required subscription contract. This problem has been re-
solved.

[RTI Issue ID CORE-12825]

[Critical] DataReader may not have received samples that were sent as gapped samples to
another DataReader over multicast

A DataReader may not have received samples that were sent as gapped samples to another DataReader over
multicast. A GAP tells a DataReader that it should not expect to receive the samples that are listed in the GAP
message. In some cases, when a DataWriter was responding to a DataReader’s NACK message, the response
contained a GAP which identified samples that should not have been gapped for any other DataReader aside
from the DataReader whose NACK was being responded to. This was a problem if the NACK response
was sent over multicast and was received by other DataReaders, because those DataReaders would incorrectly
assume those gapped samples were irrelevant and would never receive them.

This issue has been resolved.

[RTI Issue ID CORE-13104]

[Critical] Unexpected precondition error with debug libraries on a reliable DataWriter while
sending a GAP

In the 6.1.2 and 7.0.0 releases, you may have seen the following precondition error while using the Connext
debug libraries.

DL Debug: : Backtrace:
141: DL Debug: : #4 COMMENDSrWriterService_sendGapToRR /rti/jenkins/
→˓workspace/connextdds_ci_fastbuild-debug_develop/commend.1.0/srcC/srw/
→˓SrWriterService.c:4096 (discriminator 9) [0x5B101E]
141: DL Debug: : #5 COMMENDSrWriterService_onSendDataEvent /rti/jenkins/
→˓workspace/connextdds_ci_fastbuild-debug_develop/commend.1.0/srcC/srw/
→˓SrWriterService.c:6570 [0x5BACF6]
141: DL Debug: : #6 RTIEventActiveGeneratorThread_loop /rti/jenkins/
→˓workspace/connextdds_ci_fastbuild-debug_develop/event.1.0/srcC/
→˓activeGenerator/ActiveGenerator.c:307 [0x28E2FC]
141: DL Debug: : #7 RTIOsapiThreadFactory_onSpawned /rti/jenkins/
→˓workspace/connextdds_ci_fastbuild-debug_develop/osapi.1.0/srcC/
→˓threadFactory/ThreadFactory.c:208 [0x1F3A42]
141: DL Debug: : #8 RTIOsapiThreadFactory_onSpawned /rti/jenkins/
→˓workspace/connextdds_ci_fastbuild-debug_develop/osapi.1.0/srcC/
→˓threadFactory/ThreadFactory.c:208 [0x1F3A42]
141: DL Debug: : #9 RTIOsapiThreadChild_onSpawned /rti/jenkins/workspace/

7.4. What’s Fixed in 7.1.0 89

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

→˓connextdds_ci_fastbuild-debug_develop/osapi.1.0/srcC/thread/Thread.c:1941␣
→˓[0x1EDB64]
141: DL Debug: : #10 start_thread /build/glibc-CVJwZb/glibc-2.27/nptl/
→˓pthread_create.c:463 [0x76DB]
141: DL Debug: : #11 clone /build/glibc-CVJwZb/glibc-2.27/misc/../sysdeps/
→˓unix/sysv/linux/x86_64/clone.S:97 [0x12161F]
141: DL Fatal: : FATAL rCoRTInk####Evt [0x01014F91,0x39810444,
→˓0x4EC68AEA:0x000004C2|RECEIVE FROM remote DR (GUID: 0x01015FBD,0x5892DC7E,
→˓0x9DB082D4:0x000004C7).
141:] Mx00:/rti/jenkins/workspace/connextdds_ci_fastbuild-debug_develop/
→˓commend.1.0/srcC/srw/SrWriterService.c:4099:RTI0x200003b:!precondition:
→˓"((((gapStartSn)->high) > (((&(gapBitmap)->_lead))->high)) ? 1 :␣
→˓((((gapStartSn)->high) < (((&(gapBitmap)->_lead))->high)) ? -1 :␣
→˓((((gapStartSn)->low) > (((&(gapBitmap)->_lead))->low)) ? 1 :␣
→˓((((gapStartSn)->low) < (((&(gapBitmap)->_lead))->low)) ? -1 : 0)))) >= 0"
141: DL Error: : ERROR [0x01014F91,0x39810444,0x4EC68AEA:0x000004C2|RECEIVE␣
→˓FROM remote DR (GUID: 0x01015FBD,0x5892DC7E,0x9DB082D4:0x000004C7).
141:] COMMENDSrWriterService_onSendDataEvent:!send GAP

This error was generated by a reliable DataWriter sending a GAP to a reliable DataReader. After the error was
printed, the DataReader may have stopped receiving data from the DataWriter, leading to a non-recoverable
situation. This problem did not occur with release libraries. This problem has been fixed.

[RTI Issue ID CORE-13462]

[Minor] DDS fragmentation may have led to more fragments than expected for a sample *

In 7.0.0, you may have noticed that when using middleware-level fragmentation and a flow controller where
bytes_per_token is set to a value smaller than the minimum transportmessage_size_max across all installed
transports, the number of sample fragments generated for a sample may have been bigger than expected. Al-
though this was not a functional issue, it may have led to performance degradation.

This problem has been fixed.

[RTI Issue ID CORE-13190]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.4.6 Fixes Related to Content Filters and Query Conditions

[Critical] Unexpected “RTIXCdrSampleInterpreter_initializeSampleWInstruction” error log
messages when using QueryConditions, ContentFilteredTopics, TopicQueries, or
Multi-Channel

In releases 6.0.x and 6.1.x, a Connext application using QueryConditions, ContentFilteredTopics, Topic-
Queries, or Multi-Channel may have logged an error message like the following when applying filtering to
some samples:

RTIXCdrSampleInterpreter_initializeSampleWInstruction: <Type>:<Field Name>␣
→˓initialize error

7.4. What’s Fixed in 7.1.0 90

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

A potential workaround was to set the property dds.content_filter.sql.deserialized_sample.min_buffer_size
to -1 in the participant_qos.property QoS Policy. However, this may have led to a higher memory utilization.

This problem has been resolved.

[RTI Issue ID CORE-13328]

7.4.7 Fixes Related to Dynamic Data

[Major] DynamicData DataWriters incorrectly serialized optional empty sequences as null

In previous 6.0.0 releases and above, a DynamicData DataWriter incorrectly serialized an optional empty se-
quence as null. When a DataReader received the sample, it deserialized the wrong value.

For example, assume the following type:

struct AuditLogEntry {
long long Nanoseconds;
@optional sequence<long long, 100> Details;

};

If the publishing application set Details to an empty sequence with zero elements, the serialized value was
incorrectly set to null. When a DataReader received the sample, it incorrectly set Details to null instead of the
empty sequence with zero elements.

This problem has been fixed.

[RTI Issue ID CORE-12866]

7.4.8 Fixes Related to APIs

[Minor] DynamicData method to get member type missing in Modern C++ and C# APIs

The method to retrieve a member type from a DynamicData object was not provided in the Modern C++ and
C# APIs. The following methods have now been added:

• C++: DynamicData::member_type(const std::string& name) and member_type(uint32_t id)

• C#: DynamicData.GetMemberType(string name) and GetMemberType(int id)

[RTI Issue ID CORE-13371]

7.4. What’s Fixed in 7.1.0 91

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Fixes Related to Modern C++ API

[Major] banish and subject_name APIs were unresolved in Modern C++ Windows dynamic
libraries *

The Modern C++ APIs banish_ignored_participants, discovered_participant_subject_name, and dis-
covered_participants_from_subject_name were unresolved symbols in the nddscpp2 Windows dynamic li-
braries. If you attempted to use them, you would get LNK2019 unresolved external symbol errors. This
problem has been fixed.

[RTI Issue ID CORE-13053]

[Major] Unnecessary small memory allocation in some operations, including read/take

Every call to a DataReader read/take operation caused an unnecessary small memory allocation that was im-
mediately released. More generally, initializing a reference type to dds::core::null caused the same allocation.
For example:

DomainParticipant p = dds::core::null;

This unnecessary allocation has been removed. Constructing a reference type to dds::core::null no longer
allocates memory.

[RTI Issue ID CORE-13262]

[Major] close() operation of a ContentFilteredTopic created from XML didn’t work

The close() operation of a ContentFilteredTopic created from XML didn’t actually close it. However, when its
DomainParticipant was closed or destroyed, the ContentFilteredTopic was correctly closed. This problem has
been resolved.

[RTI Issue ID CORE-13367]

Fixes Related to C# API

[Critical] Exceptionwhen disposing aDomainParticipant or when entitieswere not properly
disposed

In previous releases of the .NET API, an exception may have occurred when disposing a DomainParticipant or
whenever unused entities that had not been properly disposed were garbage-collected.

[RTI Issue ID CORE-13231]

7.4. What’s Fixed in 7.1.0 92

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] Windows library dependency missing from .NET API NuGet packages *

In release 7.0.0, Windows machines that did not have the Visual Studio redistributable may not have been
able to run DDS .NET applications out of the box. This dependency is now managed internally and no longer
required by the user.

[RTI Issue ID CORE-13120]

Fixes Related to Java API

[Critical] Java API leaked some objects in certain DomainParticipantFactory operations

The Java API created and pinned a number of objects as a result of calling most methods in the DomainPar-
ticipantFactory, including the creation of DomainParticipants. While these objects did not consume significant
amounts of memory, certain JVMs could have exhausted the maximum number of allowed global references,
causing applications to fail. This problem has been resolved.

[RTI Issue ID CORE-12838]

[Major] get_typecode method of a DomainParticipant in Java API failed when the type con-
tained a wstring element

In the Java API, calling the get_typecode method on a DomainParticipant for a registered type that contained
a wstring element failed with the following exception:

Exception in thread "main" com.rti.dds.infrastructure.BAD_TYPECODE: Error␣
→˓creating type code

Exception in thread "main" com.rti.dds.infrastructure.BAD_TYPECODE: Error␣
→˓creating type code
at com.rti.dds.typecode.TypeCodeFactory.create_tc_from_native(TypeCodeFactory.
→˓java:984)

Exception in thread "main" com.rti.dds.infrastructure.BAD_TYPECODE: Error␣
→˓creating type code
at com.rti.dds.typecode.TypeCodeFactory.create_tc_from_native(TypeCodeFactory.
→˓java:984)
at com.rti.dds.domain.DomainParticipantImpl.get_
→˓typecode(DomainParticipantImpl.java:2027)

The exception was caused by a problem in the way the Connext Java API interfaced with its internal C imple-
mentation. This problem has been resolved.

[RTI Issue ID CORE-13302]

7.4. What’s Fixed in 7.1.0 93

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Fixes Related to Python API

[Critical] Possible deadlock between creation of a dds.Topic and a listener callback

A possible deadlock could have occurred, leaving the Python interpreter hanging indefinitely when a dds.Topic
was created at the same time as a listener callback was in process. This problem has been resolved.

[RTI Issue ID PY-88]

[Major] DynamicData accessor for an enum member in a base type failed (Python API)

Given a DynamicData for a struct type (my_struct) with a base type containing an enum member (my_enum),
the following code failed:

sample = dds.DynamicData(my_struct)

sample = dds.DynamicData(my_struct)
print(sample["my_enum"]) # error: member my_enum doesn't exist

This problem has been resolved.

[RTI Issue ID PY-30]

[Major] Possible incorrect default values when receiving extensible data

Given the following situation:

• An application uses a dds.DataReader for an extensible IDL type “T1” containing a non-optional prim-
itive member “a”.

• The reader receives data for a different-but-compatible type “T2” that doesn’t define “a”.

The reader is expected to return a data sample where “a” is set to its default value (normally 0). However,
in some situations the data sample may have contained an unexpected value for “a”. This problem has been
resolved.

[RTI Issue ID PY-77]

[Major] Some APIs where missing, incorrectly named, or have been deleted

Removed types, methods, and fields:

• TopicInstance and all related operations in the DataReader and DataWriter have been removed.

• The static properties dds.WriterDataLifecycle.auto_dispose_unregistered_instances and dds.Wri-
terdataLifecycle.manually_dispose_unregistered_instances have been removed due to being too
similar to the non-static properties.

• The DataReader operations read_next and take_next have been removed.

7.4. What’s Fixed in 7.1.0 94

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Renamed types, methods and fields:

• dds.ReaderDataLifecycle.autopurge_unregistered_instances_delay was incorrectly named and has
been renamed to autopurge_nowriter_samples_delay; autopurge_nowriter_instances_delay was
missing and has been added.

• dds.Filter.sql_filter_name has been renamed to dds.Filter.SQL_FILTER_NAME; dds.Fil-
ter.stringmatch_filter_name has been renamed to dds.Filter.STRINGMATCH_FILTER_NAME.
The same constants have been renamed in dds.MultiChannel.

• dds.DataWriterResourceLimitsInstaceReplacementKind was misspelled and has been renamed to
dds.DataWriterResourceLimitsInstanceReplacementKind.

• dds.TransportMulticast.settings has been renamed to dds.TransportMulticast.value; dds.Trans-
portMulticastMapping.settings has been renamed to dds.TransportMulticastMapping.value;
dds.TransportSelection.enabled_transports has been renamed to dds.TransportSelection.value;
dds.TransportUnicast.settings has been renamed to dds.TransportUnicast.value.

Newly added missing types, methods, and fields:

• The DataReader operation acknowledge_sample with ack_response_data was missing and has been
added.

• dds.Presentation.drop_incomplete_coherent_set was missing and has been added.

• dds.DomainParticipant - the following methods have been added: discovered_participant_sub-
ject_name, discovered_participants_from_subject_name, banish_ignored_participants.

• dds.DomainParticipantQos - the followingQoS policies have been added: partition, default_unicast.

• dds.BuiltinTopicReaderResourceLimits was missing max_fragmented_samples_per_re-
mote_writer, which has now been added.

• The constant dds.DataReaderResourceLimits.AUTO_MAX_TOTAL_INSTANCES was missing and
has been added.

• dds.DataWriterProtocol.initial_virtual_sequence_number was missing and has been added.

• dds.DiscoveryConfigBuiltinChannelKindMask was missing and has been added.

• dds.DomainParticipantResourceLimits.serialized_type_object_dynamic_allocation_threshold
was missing and has been added.

• The constant dds.PublishMode.PUBLICATION_PRIORITY_UNDEFINED was missing and has been
added.

• dds.SystemResourceLimits.initial_objects_per_thread was missing and has been added.

• dds.DataWriterCacheStatus was missing the following read-only properties, which have been
added: alive_instance_count, alive_instance_count_peak, disposed_instance_count, disposed_in-
stance_count_peak, unregistered_instance_count, unregistered_instance_count_peak.

7.4. What’s Fixed in 7.1.0 95

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

• dds.CompressionSettings was missing the following constants, which have been added: COM-
PRESSION_LEVEL_DEFAULT, COMPRESSION_LEVEL_BEST_SPEED, COMPRES-
SION_LEVEL_BEST_COMPRESSION.

• dds.Cookie was missing a no-argument constructor, which has been added.

• dds.AcknowledgmentInfo.cookie was missing and has been added.

• The constant dds.FlowControllerProperty.DEFAULT_FLOW_CONTROLLER_NAME was missing
and has been added.

• dds.Property can now be created from a dictionary.

Other

• In Entity types, listener is now a read-only property; use set_listener to change it with a status mask.

• The DataReader read/take operations include several changes. See RTI Connext Core Libraries What’s
New.

• dds.GroupData’s constructor did not initialize the bytes correctly and has been fixed.

• Setting dds.EntityName.name and role_name to None explicitly was not supported and caused a crash.
This has been fixed.

[RTI Issue ID PY-85]

[Major] Listeners may not have been called in some situations

Entity listener callbacksmay not have been called in some situations, causing the application tomiss notifications
about Entity status changes. This problem was due to a bug in pybind11 version 2.8.1. The build instructions
have been updated to require pybind11 2.9.0, which solves this problem.

[RTI Issue ID PY-92]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.4.9 Fixes Related to XML Configuration

[Critical] Memory leak after an error parsing XML file with <include> tag

If the user’s application failed to parse an XML file containing an <include> tag, this caused a memory leak.
For example:

<types>
<include file=""myFile.xml"">

<struct name=""MyStruct"">
<member name=""m1"" type=""unknownType"" />

</struct>

7.4. What’s Fixed in 7.1.0 96

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

</types>

This file cannot be parsed because m1 refers to an unknown type. When the application finished, running a
memory profiling tool such as ValgrindTM showed there was a memory leak. This problem has been resolved.

[RTI Issue ID CORE-12831]

[Minor] Failed to parse XML configuration file containing type member with useVector at-
tribute

Connext libraries failed to parse XML files containing a type member with the attribute useVector, although
this is a legal attribute.

For example:

<types>
<struct name= "MyType">

<member name="m1" sequenceMaxLength="100" useVector="true" type="int32
→˓"/>

</struct>
</types>

Parsing this file failed with the following error:

RTIXMLParser_validateOnStartTag:Parse error at line xxx: Unexpected attribute
→˓'useVector'

This problem has been fixed.

[RTI Issue ID CORE-12949]

[Minor] XML composition overwrote system information properties with defaults instead
of correct values

The XML composition mechanism (described in QoS Profile Inheritance and Composition) had an issue with
the way system properties (described in System Properties) set in an XML Snippet were applied to a <do-
main_participant_qos> in an XML Profile referencing the Snippet. The properties set in the XML Snippet
were not applied to the <domain_participant_qos>, which ended up using the automatic values generated by
Connext.

Here is an example that illustrates the problem:

<qos_library name="SampleQoSLib">
<qos_profile name="ParentProfile">

<domain_participant_qos>
<property>

<value>
<element>

<name>dds.sys_info.hostname</name>

7.4. What’s Fixed in 7.1.0 97

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

<value>CustomHostName</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>

<qos_profile name="ChildProfile" is_default_qos="true">
<domain_participant_qos>

<base_name>
<element>SampleQosLib::ParentProfile</element>

</base_name>
<property>

<value>
<element>

<name>dds.sys_info.username</name>
<value>CustomUserName</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>
</qos_library>

The <domain_participant_qos> in the ChildProfile ended up with the following values for the system informa-
tion properties:

• dds.sys_info.hostname - The default value rather than the CustomHostName value as set in the <do-
main_participant_qos> in ParentProfile, because of the overwriting problem described above.

• dds.sys_info.username - The set value of CustomUserName, which is the correct value.

This issue has been resolved.

[RTI Issue ID CORE-13090]

7.4.10 Fixes Related to Request-Reply and RPC

[Critical] Exceptions sending result of remote operation may have crashed server applica-
tion

In an RPC server-side application, the user implements the functional interface. The Server uses a thread pool
to call those functions with the input sent from the client (Request) and obtain the result. The result is then
sent to the client (Reply). The Reply is automatically written using a DDS DataWriter. If the write() operation
failed, the resulting exception would crash the current thread in the thread pool and possibly crash the entire
server-side application (a typical write() exception is a Timeout). Since the Reply is sent by the server from a
separate thread, the user application has no way of catching the exception or sending the Reply again.

This problem has been resolved. If an exception occurs, it is caught and logged. The Reply is never sent. User
applications have two ways to react to this event:

• The server application can install a rti::config::Logger::output_handler to monitor errors.

7.4. What’s Fixed in 7.1.0 98

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

• The client application will see a timeout in the function call. The application can then react accordingly
(e.g., calling the function again later).

[RTI Issue ID REQREPLY-111]

[Critical] RPC: deadlock when Server::close() was called before Server::run()

In the unlikely scenario that a Server was created and then closed before running (the method Server::close()
was called before Sever::run()), run() would never return unless a timeout was specified. This problem has
been resolved.

[RTI Issue ID REQREPLY-113]

[Critical] Possible unbounded memory growth when creating many Requesters

This issue was fixed in release 7.0.0, but not documented at that time.

When a Requester is created, a ContentFilteredTopic is internally created on the Requester’s DomainPartic-
ipant. This ContentFilteredTopic is exclusively created for each Requester and was never deleted until the
DomainParticipant was deleted. This may have caused applications that continuously create and delete Re-
questers on the same DomainParticipant to see unbounded memory growth.

This problem has been resolved in all language APIs. The Requester destructor or deletion function now deletes
its ContentFilteredTopic.

[RTI Issue ID REQREPLY-35]

[Critical] Memory leak in Java Request-Reply API

This issue was fixed in release 7.0.0, but not documented at that time.

The Java Request-Reply API leaked a small amount of native heapmemory every time a Requester was created.
The leak was caused by a few internal WaitSet objects, which did not have a finalizer and were not explicitly
deleted either.

[RTI Issue ID REQREPLY-94]

[Critical] Possible data race using Sample and WriteSample classes (Traditional C++ API
only)

This issue was fixed in release 7.0.0, but not documented at that time.

The Sample and WriteSample classes are wrapper classes in the Traditional C++ Request-Reply API that used
to initialize the underlying user data lazily: the data was initialized the first time it was accessed with the data()
member function.

This approach made the access to the data unsafe. A data race could occur when two or more threads competed
to access the same sample object for the first time. This problem has been resolved. The lazy approach has
been reversed, and the data is now initialized in the constructor.

7.4. What’s Fixed in 7.1.0 99

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[RTI Issue ID REQREPLY-95]

[Major] RPC interface evolution did not work

Remote Procedure Call (RPC) interfaces were designed to be extensible. A service and a client can communi-
cate even when they have a different number of interfaces. For example:

A base service definition in IDL could be as follows:

@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
float get_speed();

};

If you add new operations to the service interface, such as the following:

@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
float get_speed();
float get_position();

};

Or remove operations from the service interface, such as the following:

@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
};

They should remain interoperable.

However, in the previous release, the service and the client wouldn’t communicate in any case.

This problem has been resolved. A client can now invoke an operation in a service with more or fewer opera-
tions. If the operation exists in the service, it will receive a valid response. If the operation doesn’t exist in the
service, the service will respond accordingly and the client will throw the standard exception dds::rpc::Remo-
teUnknownOperationError.

[RTI Issue ID REQREPLY-105]

7.4.11 Fixes Related to Shipped Examples

[Minor] Hello World TCP example always linked TCP Transport library dynamically

The C hello_world_tcp example always linked the RTI TCP Transport library dynamically, even if you wanted
to use static linking. This issue has been fixed. Now, the nddstransporttcp library is linked statically unless
you choose Debug DLL or Release DLL from the configuration pull-down menu of the provided projects on
Windows. Or, when using a makefile, the TCP Transport library is now linked statically, unless you pass the
“SHAREDLIB=1” argument to the make command.

7.4. What’s Fixed in 7.1.0 100

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Furthermore, the README file for the example has been updated with further instructions on what additional
libraries need to be added to the makefile or project file when TLS is enabled.

[RTI Issue ID COREPLG-577]

7.4.12 Fixes Related to Vulnerabilities

[Critical] Arbitrary read access while parsing malicious RTPS message *

Arbitrary read access could occur while parsing a malicious RTPS message. This issue has been fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Arbitrary read access while parsing a malicious RTPS message.

• Remotely exploitable.

• Potential impact on confidentiality of Connext application.

• CVSS Base Score: 8.2 HIGH

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:H

User Impact with Security

Same impact as described in “User Impact without Security,” above.

[RTI Issue ID CORE-13160]

[Critical] Out-of-bounds read while parsing malicious RTPS message

An out-of-bounds read could occur while parsing a malicious RTPS message. This issue has been fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Out-of-bounds read while parsing a malicious RTPS message.

• Remotely exploitable.

• Potential impact on confidentiality of Connext application.

• CVSS Base Score: 6.5 MEDIUM

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

7.4. What’s Fixed in 7.1.0 101

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:H
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

User Impact with Security

Same impact as described in “User Impact without Security,” above.

[RTI Issue IDs CORE-13240 and CORE-13264]

[Critical] Out-of-bounds write while parsing malicious RTPS message

An out-of-bounds write could occur while parsing a malicious RTPS message. This issue has been fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Out-of-bounds write while parsing a malicious RTPS message.

• Remotely exploitable.

• Potential impact on integrity of Connext application.

• CVSS Base Score: 8.2 HIGH

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H

User Impact with Security

Same impact as described in “User Impact without Security,” above.

[RTI Issue ID CORE-13279 and CORE-13150]

[Critical] Buffer overflow in shared memory if memory was tampered

A buffer overflow occurred when publishing or receiving metadata or data over a tampered shared memory
segment. This issue has been fixed.

User Impact without Security

• Exploitable from the same node the Connext application is running (needs access to shared memory
segment).

• Application crash. Potential impact to the integrity or confidentiality of the Connext application.

• CVSS Base Score: 7.8 HIGH

• CVSS v3.1 Vector: AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

7.4. What’s Fixed in 7.1.0 102

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

User Impact with Security

Same impact as described in “User Impact without Security,” above.

[RTI Issue ID CORE-13300]

[Critical] Out-of-bounds read while uncompressing malformed data from malicious RTPS
message

An out-of-bounds read occurred while uncompressing malformed data from a malicious RTPS message. This
issue has been fixed.

User Impact without Security

A vulnerability in the Connext application could have resulted in the following:

• Out-of-bounds read while uncompressing malformed data from a malicious RTPS message.

• Remotely exploitable.

• Potential impact on confidentiality of Connext application.

• CVSS Base Score: 4.8 MEDIUM

• CVSS v3.1 Vector: AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:L

User Impact with Security

Same impact as described in “User Impact without Security,” above.

[RTI Issue ID CORE-13548]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.4.13 Fixes Related to Crashes

[Critical] Rare segmentation fault when deleting DomainParticipant or Publisher containing
DataWriters using durable writer history

A Connext application may have crashed after deleting a DomainParticipant or Publisher containing DataWrit-
ers using durable writer history. This issue has been fixed.

[RTI Issue ID CORE-12297]

7.4. What’s Fixed in 7.1.0 103

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:L

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Segmentation fault when creation of DomainParticipant failed due to lack of re-
sources

An application may have produced a segmentation fault using the release libraries if the creation of a Domain-
Participant failed because the following resource limit was exceeded: participant_factory_qos.resource_lim-
its.max_objects_per_thread.

With debug libraries, you may have seen a precondition error such as this:

FATAL U000000011d1a15c0_ [CREATE DP|LC:DISC]Mx06:/connextdds/event.1.0/srcC/
→˓activeDatabase/ActiveDatabase.c:275:RTI0x2000027:!precondition

This problem has been fixed.

[RTI Issue ID CORE-12654]

[Critical] Potential hang upon SIGSEGV signal from a Connext application

For debuggability purposes, Connext applications log a backtrace when a SIGSEGV signal is triggered.

In previous releases, this feature may have triggered a hang during the logging of the backtrace. In this release,
we address this issue by disabling the logging of the backtrace by default in release libraries (but still keeping
it enabled for debug libraries).

This default behavior can bemodified by setting the newDomainParticipant-level property dds.participant.en-
able_backtrace_upon_sigsegv. See “New property to manually enable or disable logging backtrace upon
SIGSEGV signal from a Connext application” in RTI Connext Core Libraries What’s New.

[RTI Issue ID CORE-12794]

[Critical] Creating DynamicDataTypePlugin with TypeCode from discovery and using con-
tent filtering caused segmentation fault

If the TypeCode that was received from endpoint discovery data (PublicationBuiltinTopicData.type_code
or SubscriptionBuiltinTopicData.type_code) was used to create a DynamicDataTypeSupport in an applica-
tion that was also using ContentFilteredTopics and setting ResourceLimitsQosPolicy.type_code_max_seri-
alized_length to a non-zero value, the application issued a segmentation fault.

ResourceLimitsQosPolicy.type_code_max_serialized_length is 0 by default, which avoids the segmenta-
tion fault.

This issue has been fixed.

[RTI Issue ID CORE-12992]

7.4. What’s Fixed in 7.1.0 104

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Application crash when calling DDS_DataReader_take_discovery_snapshot on a
DataReader with a ContentFilteredTopic *

When taking a discovery snapshot by calling the DDS_DataReader_take_discovery_snapshot function on a
DataReader with a ContentFilteredTopic, the application crashed when trying to obtain non-valid DomainPar-
ticipant information. This issue has been fixed. Now, DomainParticipant information is obtained correctly for
DataReaders with ContentFilteredTopics.

[RTI Issue ID CORE-13011]

[Critical] Crash with NULL listeners and non-none status masks in C applications that
mixed types with and without Zero Copy

In a C application, a crash occurred when both of these were true:

• Types with and without Zero Copy transfer over shared memory were mixed inside the same Domain-
ParticipantFactory instance.

• ADataReader orDataWriter of the non-Zero Copy types had a NULL listener and aDDS_StatusMask
different than DDS_STATUS_MASK_NONE.

The crash occurred becauseConnext invoked a NULL listener callback for the statuses enabled in the endpoints’
DDS_StatusMask.

When there is a Zero Copy type inside an application, some extra pre-processing related to Zero Copy is done
before creating the endpoints and setting the listeners. In that extra pre-processing, for non-Zero Copy types,
the NULL listener was incorrectly replaced with a non-null listener object with all its callbacks set to NULL.
Then, Connext was not checking if the callbacks were NULL before calling them (the listener consistency
is checked before the incorrect replacement; therefore, at that point, it was assumed the listener object was
consistent).

This issue is fixed. The listener is no longer replaced with an invalid listener object, and Connext will always
check if the callbacks are NULL before calling them.

[RTI Issue ID CORE-13151]

[Critical] Memory was read after it was freed by deleting a Topic with local logging level
enabled

If the local logging level was enabled while deleting a topic, Connext would use recently freed memory from
the deleted Topic to print a log message. Using the recently freed memory could cause a crash if local logging
was enabled. A log message is now printed immediately before the Topic is deleted, so the possibility of using
freed memory is eliminated.

[RTI Issue ID CORE-13226]

7.4. What’s Fixed in 7.1.0 105

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Possible segmentation fault when disabling loopback interface

When a previously enabled loopback interface on a host computer was disabled, a segmentation fault could
occur. The handling of loopback interfaces has been redesigned to remove this possibility.

[RTI Issue ID CORE-13228]

[Critical] Segmentation fault could occur if creation of DataReader failed

In some cases, a segmentation fault would occur if the creation of a DataReader failed. This problem has been
fixed.

[RTI Issue ID CORE-13387]

[Critical] Potential crash when DomainParticipant deleted after creating DataWriter with
automatic liveliness kind

There was a small possibility of a crash occurring when the DomainParticipant was deleted immediately after
creating a DataWriter with an AUTOMATIC_LIVELINESS_QOS kind in the LIVELINESS QoS policy.
This problem has been resolved.

[RTI Issue ID CORE-13524]

[Critical] Possible crash on TCP transport when large number of file descriptors were open

A Connext application that used the TCP transport and was built using _FORTIFY_SOURCE, which is set
by default by some operating systems, could crash if one of the sockets for TCP had a file descriptor higher
than FD_SETSIZE (1024). This issue has been fixed. Now, Connext overwrites the value of FD_SETSIZE,
allowing an application using the TCP transport to open up to 32768 file descriptors, except on Android, where
it is not possible to overwrite this value.

[RTI Issue ID COREPLG-644]

[Critical] Application using Monitoring Libraries may have produced segmentation fault
during DataReader creation

In 6.0.x releases and above, an application using Monitoring Library may have produced a segmentation fault
during DataReader creation. The issue was very rare and only occurred if a DataReader received a sample
immediately after being enabled. This issue has been fixed.

[RTI Issue ID MONITOR-429]

7.4. What’s Fixed in 7.1.0 106

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Possible segmentation fault when using Monitoring Library

When using monitoring libraries, a rare race condition may have led to a segmentation fault. This issue was
more likely to occur if the Connext application using the monitoring libraries created and deleted entities often.
This problem has been resolved.

Note: This problem was reported as fixed in MONITOR-252, in release 6.0.1; however, that fix did not apply
to Publishers and Subscribers. This fix protects applications when frequently creating and deleting Publisher or
Subscriber entities as well.

[RTI Issue ID MONITOR-516]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.4.14 Other Fixes

[Critical] Broken communication when DataWriter with transport priority discovered
DataReader with multicast receive address

If aDataWriter that had a non-defaultDataWriterQos.transport_priority value set discovered aDataReader
with a multicast receive address, the DataWriter and any other DataWriters within the same participant were
not able to send any traffic over unicast. This could cause communication failures in a number of different
scenarios, including a broken reliability protocol due to the inability to send heartbeats over unicast or the
inability to communicate with other DataReaders that have not been configured to use a multicast receive
address.

This issue was introduced in 6.1.0. This issue has been resolved.

[RTI Issue ID CORE-12772]

[Critical] Potential hang upon SIGSEGV signal from a Connext application

For debuggability purposes, Connext applications have the ability to flog a backtrace when a SIGSEGV signal
is triggered.

In previous releases, this feature may have triggered a hang during the logging of the backtrace. In this release,
we address this issue by disabling the logging of the backtrace in release libraries (but still keeping it enabled
for debug libraries).

This default behavior can be modified by setting a new participant-level property, dds.participant.en-
able_backtrace_upon_sigsegv. The accepted values for this new property are: “auto” for the default behavior
(backtrace only enabled in debug libraries), “true” for enabling the logging of the backtrace, and “false” for
disabling it.

Note: This property takes effect upon the creation of the first DomainParticipant within a process. Conse-
quently, if a SIGSEGV signal is received before the creation of the firstDomainParticipant, the default behavior
will be applied (backtrace enabled in debug libraries and disabled in release libraries).

[RTI Issue ID CORE-12794]

7.4. What’s Fixed in 7.1.0 107

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Samples could be lost using group order access or collaborative DataWriters

There was a possibility of DataReader queue corruption, when using group order access or collaborative
DataWriters, that may have provoked the DataReader to stop receiving samples. The possibility was very
small and may have occurred randomly since it was caused by an uninitialized flag.

[RTI Issue ID CORE-13153]

[Critical] Release 6.1.2 was not FACE compliant

The |CONNEXTDDS_ITALIC| 6.1.2 release was not FACE compliant due to usage of the realpath system call.
This problem has been resolved.

[RTI Issue ID CORE-13340]

[Critical] Using dh_param_files leaked memory

Using the property tls.cipher.dh_param_files leaked memory when deleting the DomainParticipant.
A memory checking tool, such as valgrind, would have reported the leak in the OpenSSL function
PEM_read_bio_DHparams, which is called by the RTI function RTITLS_tmp_dhparam_callback. This
problem only affected applications using OpenSSL 1.0.2 or applications communicating with applications using
OpenSSL 1.0.2. For example, TLS Support 5.3 uses OpenSSL 1.0.2, but version 7.0.0 of TLS Support could
still communicate with version 5.3, so the leak could also happen in version 7.0.0.

This problem has been fixed; memory will no longer be leaked in this scenario. For example, if TLS Support
7.1.0 communicates with an application using OpenSSL 1.0.2, the leak will not occur.

[RTI Issue ID COREPLG-641]

[Critical] Segmentation fault when mixing build types in applications linked against li-
braries in “Find Package” Cmake script

Mixing Release and Debug build types in applications linked against Connext libraries in the “Find Package”
script (FindRTIConnextDDS.cmake) could lead to undesired behaviors like double-freeing pointers, once
for the Debug symbol and once for the Release symbol, and in the end causing the application to abort.

The new CONNEXT_LIBS_BUILD_TYPE CMake variable has been added to control the Connext libraries
build type (Release/Debug). This variable will allow three values: Auto, Release, and Debug.

By default (the Auto value), FindRTIConnextDDS.cmakewill populate the IMPORTED_LOCATION_DE-
BUG and IMPORTED_LOCATION_RELEASE properties of all the Connext imported target libraries. This
means that the Connext libraries will be provided in the same build type as the global build (specified by the
CMAKE_BUILD_TYPE value).

If you provide Release or Debug values to the CONNEXT_LIBS_BUILD_TYPE variable, the script will force
populating only the IMPORTED_LOCATION property of the Connext imported target libraries. So, regard-
less of the CMAKE_BUILD_TYPE value, the Connext libraries will have the build type given in the CON-
NEXT_LIBS_BUILD_TYPE variable.

[RTI Issue ID INSTALL-793]

7.4. What’s Fixed in 7.1.0 108

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] Error sending batch when batch size exceeded transport MTU

ADataWriter configured to use batching may have failed to send a batch to the destination addresses associated
with a transport (e.g, UDPv4) if the batch size exceeded the message_size_max (MTU) of the transport.

This problem has been resolved. Now, the batch is automatically flushed when exceeding the minimum mes-
sage_size_max across all installed transports.

[RTI Issue ID CORE-2639]

[Major] No more than 100 asynchronous publisher threads could be created

A change to the thread naming convention inadvertently limited the number of asynchronous publisher threads
to 100. The limit is now 65,536. These limits also apply to receive threads, asynchronous waitset threads, and
persistence service threads.

[RTI Issue ID CORE-12874]

[Major] Unexpected precondition error while creating a DomainParticipant with debugging
libraries using fast database cleanup period

You may have seen the following precondition error while creating a DomainParticipant with debugging li-
braries if participant_qos.database.cleanup_period was updated to a small value.

FATAL rCo96144####Dtb Mx0D:/rti/jenkins/workspace/connextdds_ci_fastbuild-
→˓debug_develop/pres.1.0/srcC/participant/Participant.c:3102:RTI0x200003b:!
→˓precondition: "me->_service == ((void *)0)"

Release libraries did not have this issue.

This problem has been fixed.

[RTI Issue ID CORE-13204]

[Major] In FindPackage script, low_bandwidth_edisc imported target library was missing

In the “FindPackage” script (FindRTIConnextDDS.cmake), the low_bandwidth_edisc imported target li-
brary was missing, incorrectly named low_bandwidth_discovery_static. When you tried to link against
low_bandwidth_discovery_static, the script actually linked against the LOW_BANDWIDTH_EDISC li-
braries. And you couldn’t link against low_bandwidth_edisc because there was no imported target with that
name.

In the following example, the second TARGET should have been called low_bandwidth_edisc:

######################## Low bandwidth plugins #########################
Discovery Static
create_connext_imported_target(

TARGET "low_bandwidth_discovery_static"
VAR "LOW_BANDWIDTH_DISCOVERY_STATIC"
DEPENDENCIES

7.4. What’s Fixed in 7.1.0 109

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

RTIConnextDDS::c_api
)

EDISC
create_connext_imported_target(

TARGET "low_bandwidth_discovery_static"
VAR "LOW_BANDWIDTH_EDISC"
DEPENDENCIES

RTIConnextDDS::c_api
)

This problem has been fixed.

[RTI Issue ID INSTALL-719]

[Minor] Potential memory leak when creation of any of the built-in discovery plugins failed

The first time a DomainParticipant is created in an application, some memory is allocated globally for each of
the builtin discovery plugins (SPDP and SEDP) enabled for that DomainParticipant. This global memory is
released when finalizing the DomainParticipantFactory instance.

However, if there was a failure in the creation of any of the builtin discovery plugins during the DomainPartic-
ipant creation, the DomainParticipantFactory was not notified properly that this global memory was allocated.
Therefore, finalizing the DomainParticipantFactory instance did not release the memory, causing a leak.

This problem is fixed. Finalizing the DomainParticipantFactory instance always releases the memory if it was
previously allocated, regardless of whether or not a failure occurred.

[RTI Issue ID CORE-12882]

[Minor] Problems visualizing participants using Generic.MinimalMemoryFootprint profile
with Admin Console

RTI Admin Console could not correctly visualize DomainParticipants using the Generic.MinimalMemory-
Footprint profile. Some of the information, such as process ID and host name, was invalid. This problem has
been fixed.

[RTI Issue ID CORE-13509]

[Minor] Failure to load a string-based private key leaked memory

If you set the property tls.identity.private_key or tls.identity.rsa_private_key, and you either specified a
wrong or missing value for the property tls.identity.private_key_password or specified a malformed private
key, then memory would be leaked upon DomainParticipant creation failure. A memory checking tool, such
as valgrind, would report the leak in the OpenSSL function BIO_new_mem_buf, which is called by the RTI
function RTITLS_context_init.

This problem has been fixed. Memory will no longer be leaked in this scenario.

[RTI Issue ID COREPLG-643]

7.4. What’s Fixed in 7.1.0 110

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Minor] CONNEXTDDS_ARCH environment variable in FindPackage script was not picked
up correctly

Previously, only the CONNEXTDDS_ARCH CMake variable in the “FindPackage” script
(FindRTIConnextDDS.cmake) could be used to define the Connext official architecture to use. Now,
the environment variable with the same name can be used, too.

[RTI Issue ID INSTALL-691]

[Trivial] Incorrect “Supported platforms” documentation section for FindRTICon-
nextDDS.cmake

Now the documentation section in the “FindPackage” script (FindRTIConnextDDS.cmake) file listing the
“Supported platforms” matches the Core Libraries Platform Notes.

[RTI Issue ID INSTALL-548]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

7.5 What’s New in 7.0.0

For what’s new in the Core Libraries in 7.0.0, see What’s New in 7.0.0 in the Previous Releases section of the
RTI Connext What’s New.

7.6 What’s Fixed in 7.0.0

This section describes bugs fixed in Connext 7.0.0. These are fixes since 6.1.2.

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

7.6.1 Fixes Related to Callbacks and Waitsets

[Critical] Unsafe combinations of masks and Listeners may have led to segmentation fault

When entities are created, a Listener may be provided by the user to receive calls when specified events occur.
The events of interest are set using a StatusKindmask. If an event set in the StatusKindmask occurs, but no
callback function has been assigned by the user, a null pointer dereference will occur. Connext checks for many
of these errors and prevents the creation of entities when this error is present. However, some of these cases
were not checked, allowing unsafe combinations of masks and Listeners to be used. This problem has been
resolved. The new, stricter checking may cause entity creation errors when no errors were detected before.

[RTI Issue ID CORE-12610]

7.5. What’s New in 7.0.0 111

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Failure calling DDS_Subscriber::get_datareaders in DDS_SubscriberLis-
tener::on_data_on_readers callback implementation

You may have seen the following errors when invoking DDS_Subscriber::get_datareaders() within the im-
plementation of the DDS_SubscriberListener::on_data_on_readers() callback:

ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS] REDACursor_modifyReadWriteArea:!freeze read write area

ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS] PRESPsReaderGroup_getEA:!modify pres psReaderGroup
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS] PRESPsReaderGroup_lock:!take semaphore
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS] PRESPsReaderGroup_beginGetPsReaders:!get PRESPsReaderGroup_lock

ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS}
DDS_Subscriber_begin_get_datareadersI:ERROR: Failed to get PRESPsReaderGroup_
→˓beginGetPsReaders

ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET␣
→˓READERS]
DDS_Subscriber_get_datareaders:ERROR: Failed to get DDS_Subscriber_begin_get_
→˓datareaders

In addition, when using the Traditional C++ API and the legacy .NET API, the application generated a seg-
mentation fault after printing the error. The problem occurred only when:

• You installed a Listener on the Subscriber using the API DDS_Subscriber::set_listener() after the
Subscriber was enabled.

• Or, you installed a Listener on the DomainParticipant using the API DDS_Participant::set_listener()
after the DomainParticipant was enabled. This problem has been resolved.

[RTI Issue ID CORE-12316]

[Critical] Using certain callbacks at DomainParticipant or Publisher level may have led to
segmentation fault

Handlers were not correctly implemented for the on_instance_replaced(), on_sample_removed(), on_ap-
plication_acknowledgment(), and on_service_request_accepted() callbacks at the DomainParticipant and
Publisher levels. This could have led to segmentation faults when the corresponding events were enabled. This
problem has been resolved.

[RTI Issue ID CORE-12647]

7.6. What’s Fixed in 7.0.0 112

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] DDS_SubscriberListener::on_data_on_readers on a participant or subscriber not
called when Listener installed after the entity is enabled

The callback DDS_SubscriberListener::on_data_on_readers() was not invoked when there was data avail-
able, if these two conditions were met:

• The Listener callback on_data_on_readers() was installed after the Subscriber or DomainParticipant
implementing it was enabled.

• The Listener callback on_data_available() was not installed at any level (DomainParticipant, Publisher,
or DataReader).

This problem has been resolved.

[RTI Issue ID CORE-12338]

[Major] Unable to assign callback function for on_sample_removed event using Modern
C++ API

You may have been unable to assign a callback function for the on_sample_removed event using the Modern
C++ API. Support for this callback has been added to the Modern C++ API in this release.

[RTI Issue ID CORE-12646]

7.6.2 Fixes Related to Discovery

[Critical] Unexpected memory growth when DataReader could not be matched with
DataWriter due to unexpected error condition

Failing to match a DataReader with a DataWriter because of unexpected error conditions may have led to
unexpectedmemory growth, becauseConnext may not have cleaned up the resources associated with the remote
match completely. This problem has been resolved.

[RTI Issue ID CORE-8257]

[Critical] Possible crash upon discovery of applications with unreachable locators

If an application used DDS_STATUS_MASK_ALL for a DomainParticipant or Publisher Listener and an
unreachable locator was discovered, the application enabling the Listener may have crashed. An unreachable
locator occurs most commonly when a Subscribing application uses a transport that the Publishing application
does not use. For example, the Publishing application could use UDPv4 and the Subscribing application could
use both UDPv4 and UDPv6.

More rarely, a crash may have occurred when a pre-5.2.0 Subscribing application used the shared memory
transport and a 5.2.0+ Publishing application was not using the UDPv6 transport. A log message was generated
if both participants were running on the same machine and this condition occurred. This condition was caused
by a change to the way that transports are identified starting in version 5.2.0.

[RTI Issue ID CORE-11818]

7.6. What’s Fixed in 7.0.0 113

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Communication problems with applications using shared memory on INTEGRITY
systems

If an application on an INTEGRITY platform used the shared-memory transport, the Connext libraries some-
times incorrectly assessed that a shared-memory segment was stale and could be reclaimed, when in fact it was
not stale. This situation caused problems with communication between DomainParticipants, since information
could be sent to a shared-memory segment that did not get dequeued by the intended recipient.

You may have seen error messages like these and the application may have hung while deleting the Domain-
Participant:

<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS␣
→˓WaitForSemaphore() failure, error 0XD: ObjectClosed
<Target Output> ERROR NDDS_Transport_Shmem_receive_rEA:!take semaphore
<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS␣
→˓WaitForSemaphore() failure, error 0X9: ObjectIsUseless

This problem has been resolved.

Incompatibility with 6.1.1 and prior releases:
The fix for this issue involved some changes that make shared-memory segments in applications incompatible
with those in 6.1.1 (and earlier) versions.

[RTI Issue ID CORE-12097]

[Critical] Unbounded memory growth in Spy when discovering multiple endpoints with the
same Topics and types

Each time DDS Spy discovered an endpoint, it unnecessarily made a copy of the TypeCode that was associated
with the endpoint’s Topic, leading to unbounded memory growth. This issue has been fixed.

[RTI Issue ID CORE-12136]

[Major] Types containing Typedefs were sent without the typedefs in discovery when using
DynamicData

When an application was using a DynamicDataReader or DynamicDataWriter and using a type that contained
a typedef, the type that was sent during endpoint discovery for that endpoint did not contain the typedef. While
this did not cause any mismatches or communication failure, it did cause a number of issues that may have been
noticeable depending on what other products you may have also been using.

See “Unbounded memory growth in Spy when discovering multiple endpoints with the same Topics and types,”
below, for details about the specific issues that you may have encountered. The RTI Admin Console Release
Notes and RTI Routing Service Release Notes also have related information. (See ADMINCONSOLE-997 and
ROUTING-971, respectively.)

7.6. What’s Fixed in 7.0.0 114

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

This issue has been resolved, meaning that the exact type definition that is registered with the participant,
containing typedefs, is sent during discovery. This is a change in behavior from 6.0.0-based applications,
which sent the type definitions without the typedef information.

[RTI Issue ID CORE-12107]

[Major] Unnecessary discovery traffic related to IP mobility events on interfaces irrelevant
to the transport

When there is a change on a network interface (an IP mobility event), a Connext application will update and
resend its discovery information to include these changes. The transport can consider a change on an interface
irrelevant (for example, changes on interfaces in the deny_interfaces_list of the transport). In this case, the
new discovery messages are exactly the same as announced before, generating unnecessary discovery traffic
that could affect the performance of the application.

This problem has been fixed. Now Connext only updates and resends its discovery information if there was a
change on an interface relevant to the transport.

[RTI Issue ID CORE-12664]

7.6.3 Fixes Related to Transports

[Critical] Communication problems with applications using shared memory on INTEGRITY
systems

If an application on an INTEGRITY platform used the shared-memory transport, the Connext libraries some-
times incorrectly assessed that a shared-memory segment was stale and could be reclaimed, when in fact it was
not stale.

This situation caused problems with communication between DomainParticipants, since information could be
sent to a shared-memory segment that did not get dequeued by the intended recipient.

You may have seen error messages like these and the application may have hung while deleting the Domain-
Participant:

<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS␣
→˓WaitForSemaphore() failure, error 0XD: ObjectClosed
<Target Output> ERROR NDDS_Transport_Shmem_receive_rEA:!take semaphore
<Target Output> ERROR RTIOsapiSharedMemoryBinarySemaphore_take:OS␣
→˓WaitForSemaphore() failure, error 0X9: ObjectIsUseless

This problem has been resolved.

Incompatibility with 6.1.1 and prior releases:
The fix for this issue involved some changes that make the shared memory segments incompatible with those
in 6.1.1 (and earlier) versions.

7.6. What’s Fixed in 7.0.0 115

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[RTI Issue ID CORE-12097]

[Critical] Race condition could cause unbounded memory growth in TCP Transport Plugin

Due to a race condition, the TCP Transport Plugin may have leaked memory when creating a new connection
if the creation happened at the same time the DomainParticipant was being destroyed. The cause of the leak
was the TCP Transport Plugin reallocating memory that was already released by the DomainParticipant. The
race condition was unlikely to happen. However, in a system that frequently creates and destroys entities (and,
therefore, TCP connections) and that runs for long enough, it may have lead to unbounded memory growth.
The issue has been resolved.

[RTI Issue ID COREPLG-618]

7.6.4 Fixes Related to Filtering and TopicQuery

[Critical] Connext application using filtering feature may have crashed after running out of
memory

In release 6.1.1.2, a Connext application using filtering features (that is, ContentFilteredTopic, QueryCondi-
tions, or TopicQuery) may have crashed after running out of memory. This problem has been resolved.

[RTI Issue ID CORE-12661]

[Critical] Creation of a ContentFilteredTopic or reception of TopicQuery samples may have
taken long time for complex types

The creation of a ContentFilteredTopic or reception of TopicQuery samples, may have taken a long time for
complex types. This issue has been resolved.

[RTI Issue ID CORE-12179]

[Critical] rti::topic::find_registered_content_filters led to infinite recursion

The function rti::topic::find_registered_content_filters() was incorrectly implemented and would lead to
infinite recursion and stack overflow in any application that called it. This problem has been resolved. This
function returns the names of previously registered custom content filters. It is a little-used feature and does
not affect the commonly used SQL content filter.

[RTI Issue ID CORE-12512]

7.6. What’s Fixed in 7.0.0 116

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Incorrect results for Unions when using DynamicData or Content Filters

When using a DynamicDataReader, samples containing a union may have had incorrect or invalid data after
deserialization if the DataReader’s type contained members that were not present in the DataWriter’s type and
those members had non-zero default values.

When using content filters, the filter results may have been incorrect if the type contained a union and the filter
expression filtered on fields within the union that were present in the DataReader’s type but were not present
in the DataWriter’s type and those members had non-zero default values.

For example, see this DataWriterType:

struct innerStructPub {
short shortMember;

};
@mutable
union ComplexUnionTypePub switch(long) {

case 0:
long longMember;

case 1:
innerStructPub structMember;

};

and this DataReaderType:

struct innerStructPub {
short shortMember;

};
@mutable
union ComplexUnionTypePub switch(long) {

case 0:
long longMember;

case 1:
innerStructPub structMember;

};
struct innerStructSub {

short shortMember;
@default(5) long longMemberWithDefault;

};
@mutable
union ComplexUnionTypeSub switch(long) {

case 0:
long longMember;

case 1:
innerStructSub structMember;

};

In the above types, the member longMemberWithDefault is only present in the DataReader’s type and has a
default value of 5, so any sample that is received from the DataWriter should have this value set to 5 when read
from the DataReader’s queue. Instead, the value was incorrectly 0 when using DynamicData.

In addition, if this member was used as part of a content filter expression, a DataReader always used the value
of 0 instead of 5 when evaluating a sample from a DataWriter using the DataWriterType which could lead to

7.6. What’s Fixed in 7.0.0 117

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

incorrect filter results. These issues have been fixed.

[RTI Issue ID CORE-12517]

[Major] Unnecessary repair traffic for DataWriters using TopicQueries and asynchronous
publishing

Samples that are sent in response to a TopicQuery are directed to the DataReader that created that Topic-
Query. This means that those samples are only sent to the DataReader that made the request and have that
DataReader’s GUID attached to each sample in the sample’s metadata. All other DataReaders receive GAP
protocol messages, indicating to them that a given sequence number or set of sequence numbers is not meant
for them.

Due to a defect, when aDataReader sent a NACKmessage requesting someTopicQuery samples to be repaired,
if the requested sequence numbers included samples that weremeant for a differentDataReader, theDataWriter
did not filter these samples and resend a GAP message. Instead, the DataWriter sent the DataReader samples
that were not meant for it and theDataReader had to filter these samples out itself. As a result, theDataReaders
may have received samples that should have been filtered out on the DataWriter side, leading to an increase in
network traffic.

The problem only affected repair traffic. When a sample was filtered out by the DataWriter because it was
directed to a different DataReader, the DataWriter sent a GAP protocol message to the DataReader. If the
GAP message was lost, the DataReader NACKed for the sample; instead of sending a new GAP message, the
DataWriter sent the sample. This problem has been resolved.

[RTI Issue ID CORE-12589]

[Major] Continuous creation of TopicQueries may have led to unnecessary memory frag-
mentation in OS memory allocator

In releases 6.0.x and 6.1.x, the continuous creation of TopicQueries may have led to unnecessary memory
fragmentation in the OSmemory allocator of the applications that receive the TopicQuery requests and dispatch
responses. This issue may have resulted in an unexpected increase of the resident set size (RSS) memory of the
application receiving and dispatching the TopicQueries compared to previous Connext releases. This problem
has been fixed.

[RTI Issue ID CORE-12352]

[Major] Samples may have been unnecessarily filtered by Connext DataReader when
DataWriter was from different DDS vendor

AConnextDataReader using a ContentFilteredTopic unnecessarily evaluated its filter on samples coming from
a different vendorDataWriter that already marked the samples as passing theDataReader filter. This issue may
have led to an increase in CPU utilization on the DataReader side, but it did not affect functional correctness
or bandwidth utilization.

The problem occurred because Connext was not compliant with the way a filter signature is calculated according
to the Section 9.6.4.1, Content filter info (PID_CONTENT_FILTER_INFO), in the Real-time Publish-Subscribe
Protocol DDS Interoperability Wire Protocol (DDSI-RTPSTM) Specification version 2.5).

7.6. What’s Fixed in 7.0.0 118

https://www.omg.org/spec/DDSI-RTPS/2.5/PDF
https://www.omg.org/spec/DDSI-RTPS/2.5/PDF

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

This problem has been resolved.

[RTI Issue ID CORE-12531]

[Minor] Unnecessary sample filtering on a DataReader for samples already filtered by a
DataWriter

When doing writer-side filtering, a late-joining DataReader using a ContentFilteredTopic may have spent
unnecessary CPU cycles evaluating samples that pass the ContentFilteredTopic’s expression. When using
writer-side filtering, the filter evaluation is done by the DataWriter and it should not be necessary for the
DataReader to do it again on samples that pass the filter expression. This problem, which only occurred for
late-joining DataReaders, has been fixed.

[RTI Issue ID CORE-11084]

7.6.5 Fixes Related to Group Presentation

[Critical] Application may not have received samples of coherent set when using GROUP
access scope and TRANSIENT_LOCAL durability

An application using GROUP access scope and TRANSIENT_LOCAL (or higher) durability may not have
received the samples for some coherent sets, or it may have received the samples with delay.

Assume a coherent set ‘CS1’ published by a set of DataWriters that are part of the same group. This coherent
set was not provided to the application if all the following conditions were true:

1. The DataReaders receiving ‘CS1’ matched with the DataWriters publishing ‘CS1’ after the coherent set
was published.

2. ‘CS1’ did not contain samples for some of the DataWriters in the group, or the samples were removed
after applying the Lifespan QoS Policy. If ‘CS1’ contained at least one sample per DataWriter in the
group, this problem did not occur.

3. The application did not publish a new coherent set after ‘CS1’; or, if it did, the new coherent set did not
contain samples from at least one of the DataWriters that were missing samples from ‘CS1’.

If the third condition was not met, then the delivery of the coherent set would be delayed instead of the coherent
set not being provided.

[RTI Issue ID CORE-12350]

7.6. What’s Fixed in 7.0.0 119

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Segmentation fault when using GROUP_PRESENTATION_QOS or HIGH-
EST_OFFERED_PRESENTATION_QOS and setting filter_redundant_samples to FALSE on
DataReader

An application generated a segmentation fault if it created a DataReader with the following valid configuration:

• subscriber_qos.presentation.access_scope = DDS_GROUP_PRESENTATION_QOS or DDS_HIGH-
EST_OFFERED_PRESENTATION_QOS

• datareader_qos.availability.max_data_availability_waiting_time = DDS_DURATION_ZERO

• datareader_qos.availability.max_endpoint_availability_waiting_time = DDS_DURATION_ZERO

• datareader_qos.property contained dds.data_reader.state.filter_redundant_sampleswith the value
“false”

This problem has been resolved by allowing the DataReader to be created.

[RTI Issue ID CORE-12771]

[Major] Application may stop receiving samples from DataReaders using GROUP_PRE-
SENTATION_QOS

An application may have stopped receiving samples from DataReaders that were part of a Subscriber using
GROUP_PRESENTATION_QOS under the following scenario:

• The Publisher’s group contained at least one keyed DataWriter and one unkeyed DataWriter.

• The Subscriber’s group contained only keyed DataReaders or unkeyed DataReaders, but not both.

This problem has been resolved.

[RTI Issue ID CORE-12161]

7.6.6 Fixes Related to XML Configuration

[Major] Parsing error loading XML configuration file containing a const whose expression
refers to an enumerator

Connext failed to load an XML configuration file containing a const whose expression referred to an enumerator.
For example:

<enum name="Enum1">
<enumerator name="Enumerator1" value="1"/>

</enum>
<const name="Const1" type="int32" value="Enumerator1+1"/>

Loading this XML failed with an error similar to this:

DDS_XMLConst_initialize:Parse error at line 10: type 'Enum1' is not typedef

7.6. What’s Fixed in 7.0.0 120

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

This problem has been fixed.

[RTI Issue ID CORE-5553]

[Major] Parsing error loading an XML configuration file with enum type containing enumer-
ator whose value was an expression

Connext failed to load an XML configuration file with an enum type containing an enumerator whose value was
an expression. For example:

<enum name="Enum1">
<enumerator name="Enumerator1" value="1 + 1"/>

</enum>

Loading this XML failed with an error similar to this:

DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

[RTI Issue ID CORE-10269]

[Major] Parsing error loading an XML configuration file with an enum type containing an
enumerator whose value was an expression referring to another enumerator

Connext failed to load an XML configuration file with an enum type containing an enumerator whose value was
an expression using another enumerator. For example:

<enum name="Enum1">
<enumerator name="Enumerator1" value="0"/>

</enum>

<enum name="Enum2">
<enumerator name="Enumerator2" value="Enumerator1"/>

</enum>

Loading this XML would have failed with an error similar to this:

DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

[RTI Issue ID CORE-12781]

7.6. What’s Fixed in 7.0.0 121

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Minor] Discrepancy between range defined by schema and that defined by API

There were discrepancies between the ranges defined by the schema files and those defined by the API for
certain elements. This problem has been resolved. Now, validating an XML against the XSD should not fail
when setting a value that is inside the range as defined by the API.

[RTI Issue ID CORE-7099]

[Minor] Parsing error loading XML configuration file with enum type containing enumerator
whose value was an expression referring to a const

Connext failed to load an XML configuration file with an enum type containing an enumerator whose value was
an expression referring to a const. For example:

<const name="Const1" type="int32" value="10"/>
<enum name="Enum1">

<enumerator name="Enumerator1" value="Const1"/>
</enum>

Loading this XML failed with an error similar to this:

DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

[RTI Issue ID CORE-10060]

[Minor] Type limits not checked for some attributes of XML types definition

When XML was used for defining types (for example, when using DynamicData), type limits were not checked
for some attributes. If the specified value for any of the attributes was too large or too small, a variable overflow
occurred, leading to undefined behavior.

This problem is fixed. Type limits are checked, throwing a meaningful error when they are not met.

The affected attributes were as follows:

• value in union’s caseDiscriminator. Valid values should be between -2147483648 and 2147483647.

• sequenceMaxLength. Valid values should be between 0 and 2147483647. -1 (unbounded) is also
allowed.

• stringMaxLength. Valid values should be between 0 and 2147483647. -1 (unbounded) is also allowed.

• arrayDimensions. Valid values should be between 1 and 4294967295.

[RTI Issue ID CORE-12181]

7.6. What’s Fixed in 7.0.0 122

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Trivial] Removed some elements in the XSD that were not supported internally but could
be defined in XML

The following elements were configurable in XML although internally they are not supported:

Publisher QoS:

• presentation.drop_incomplete_coherent_set

• asynchronous_publisher.thread.cpu_list

• asynchronous_publisher.thread.cpu_rotation

• asynchronous_publisher.asynchronous_batch_thread.cpu_list

• asynchronous_publisher.asynchronous_batch_thread.cpu_rotation

• asynchronous_publisher.topic_query_publication_thread.cpu_list

• asynchronous_publisher.topic_query_publication_thread.cpu_rotation

Participant QoS:

• discovery_config.publication_reader.min_app_ack_response_keep_duration

• discovery_config.subscription_reader.min_app_ack_response_keep_duration

• discovery_config.asynchronous_publisher.thread.cpu_list

• discovery_config.asynchronous_publisher.thread.cpu_rotation

• discovery_config.asynchronous_publisher.disable_asynchronous_batch

• discovery_config.asynchronous_publisher.asynchronous_batch_thread

• discovery_config.asynchronous_publisher.disable_topic_query_publication

• discovery_config.asynchronous_publisher.topic_query_publication_thread

EventQosPolicy:

• thread.cpu_list

• thread.cpu_rotation

DatabaseQosPolicy:

• thread.cpu_list

• thread.cpu_rotation

Those elements have been removed from the XSD and are no longer configurable in XML.

[RTI Issue ID CORE-12366]

7.6. What’s Fixed in 7.0.0 123

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Trivial] Builtin Discovery Plugins was not treated as a mask by the XSD file

Because of a bug in the XML Schema Definition (XSD), if you specified more than one value for the Discov-
eryConfigQosPolicy::builtin_discovery_plugins mask, your XML editor reported that the expression was
not valid when it should have been.

For example, according to the XSD, this expression was not allowed:

<domain_participant_qos>
<discovery_config>

<builtin_discovery_plugins>SPDP|SEDP</builtin_discovery_plugins>
</discovery_config>

</domain_participant_qos>

This issue has been fixed, and the XSD now accepts expressions containing more than one Builtin Discovery
Plugin. This issue occurred only while editing XML files because of the schema. If you ran an application with
the above configuration, it did not fail.

[RTI Issue ID CORE-12740]

7.6.7 Fixes Related to Vulnerabilities

Fixes related to Connext

This release fixes some potential vulnerabilities, including RTI Issue IDs CORE-12510 and CORE-12752.

Fixes related to third-party dependencies

This release fixes some potential vulnerabilities related to third-party dependencies, described below.

[Critical] Potential crash or leak of sensitive information in Core Libraries XML parser due
to vulnerabilities in Expat

The Core Libraries XML parser had a third-party dependency on Expat version 2.4.4, which is known to be
affected by a number of publicly disclosed vulnerabilities.

These vulnerabilities have been fixed by upgrading Expat to the latest stable version, 2.4.8. See “Third-Party
Software Upgrades” in RTI Connext Core Libraries What’s New.

The impact on Connext applications of using the previous version varied depending on your Connext application
configuration:

• With Security (enabling RTPS protection):

• – Exploitable through a compromised local file system containing malicious XML/DTD files.

– Could lead to arbitrary code execution.

– CVSS v3.1 Score: 8.4 HIGH

7.6. What’s Fixed in 7.0.0 124

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

– CVSS v3.1 Vector: AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

• Without Security:

• – Exploitable through a compromised local file system containing malicious XML/DTD files.

– Remotely exploitable through malicious RTPS messages.

– Could lead to arbitrary code execution.

– CVSS v3.1 Score: 9.8 CRITICAL

– CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

[RTI Issue ID CORE-12872]

[Critical] Potential memory corruption when using Zlib compression due to vulnerability in
Zlib

The user-data compression feature in the Core Libraries had a third-party dependency on Zlib version 1.2.11,
which is known to be affected by a publicly disclosed vulnerability.

This vulnerability has been fixed by upgrading Zlib to the latest stable version, 1.2.12. See “Third-Party Soft-
ware Upgrades” in RTI Connext Core Libraries What’s New.

The impacts on Connext applications of using the previous version were as follows:

• Exploitable by triggering the compression of a sample containing a malicious payload.

• The application could crash.

• CVSS v3.1 Score: 7.5 HIGH

• CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

[RTI Issue ID CORE-12877]

7.6.8 Fixes Related to APIs

[Major] Copy of SampleInfo::coherent_set_info field was not supported

SampleInfo::coherent_set_info was not available when using take/read operations that did not loan the sam-
ples. The SampleInfo::coherent_set_info field was always set to NULL when you called the take/read opera-
tions that did not loan the samples. To get the coherent_set_info value, you had to use the read/take operations
that loan the data.

In addition, the copy constructor and assignment operator in the Traditional C++ andModern C++APIs did not
copy the SampleInfo::coherent_set_info field. This field was always set to NULL; it was your responsibility
to make the copy and handle memory allocation and deletion for this field.

This problem has been fixed. If you work with the C API, starting with this release you will have to use the
following functions to manipulate SampleInfo structures:

• DDS_SampleInfo_initialize()

7.6. What’s Fixed in 7.0.0 125

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H&version=3.1

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

• DDS_SampleInfo_copy()

• DDS_SampleInfo_finalize()

[RTI Issue ID CORE-11213]

[Major] Corruption of LoanedDynamicData object whenmoved in some situations (Modern
C++ API only)

Given a DynamicData sample, accessing a nested member within another nested member via loan_value() and
then moving the latter may have corrupted the former. For example, given a sample such that “my_sample.a.b”
is a member of a constructed type (struct or union):

DynamicData my_sample(my_dynamic_type);
LoanedDynamicData loan1 = my_sample.loan_value(""a"");
LoanedDynamicData loan2 = loan1.get().loan_value(""b"");
// The following corrupts loan2
LoanedDynamicData loan1_moved = std::move(loan1);

This may have affected applications that explicitly move-constructed a double-nested LoanedDynamicData or
that otherwise indirectly called the move constructor in this situation (for example, by resizing a std::vector of
LoanedDynamicData elements).

The LoanedDynamicData’s move constructor and move-assignment operators have been fixed.

[RTI Issue ID CORE-12272]

[Major] Calling DynamicData::set_complex_member with an aliased type failed

CallingDynamicData::set_complex_member() with an aliased type failed. For example, given the following
types:

struct Foo {
long x;
long y;
};
typedef Foo TypedefFoo;
struct MyType {
Foo my_inner_struct;
TypedefFoo my_typedef_struct;
};

The following code should have worked to set the my_typedef_struct member:

struct Foo {
long x;
long y;
};
typedef Foo TypedefFoo;
struct MyType {
Foo my_inner_struct;

7.6. What’s Fixed in 7.0.0 126

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

TypedefFoo my_typedef_struct;
};
DDS_DynamicData *data = DDS_DynamicData_new(

MyType_get_typecode(),
&DDS_DYNAMIC_DATA_PROPERTY_DEFAULT);
DDS_DynamicData *inner_data = DDS_DynamicData_new(
TypedefFoo_get_typecode(),
&DDS_DYNAMIC_DATA_PROPERTY_DEFAULT);

// This call fails. If the above call used Foo_get_typecode instead then it␣
→˓would work

retcode = DDS_DynamicData_set_complex_member(data, ""my_typedef_struct"", 0,␣
→˓inner_data);
if (retcode != DDS_RETCODE_OK) {

fprintf(stderr, ""_set_complex_member %d\n"", retcode);
return -1;

}

But instead, it failed with these errors:

DDS_DynamicData2_copy: Objects have different types. self type = TypedefFoo,␣
→˓other type = TypedefFoo
DDS_DynamicData2_finalize_ex: finalizing object bound to a member,␣
→˓automatically unbinding now.
DDS_DynamicData2_set_complex_member:ERROR: Failed to copy value
DDS_DynamicData2_unbind_complex_member:ERROR: Bad parameter: self has no␣
→˓bound member
DDS_DynamicData2_set_complex_member:!unbind complex member

This issue has been fixed. Now, using either the aliased type (TypedefFoo in our example) or the original type
(Foo in our example) works to set a complex member using the DynamicData API.

[RTI Issue ID CORE-12273]

[Major] Possible wrong results when adding Time or Duration objects that used very large
numbers

Adding Time or Duration objects could have previously produced wrong results when using very large numbers.
Necessary checks are now in place to ensure that wrong results do not occur.

[RTI Issue ID CORE-12413]

7.6. What’s Fixed in 7.0.0 127

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] Java API did not support RtpsReliableReaderProtocol_t.receive_window_size

This QoS setting was ignored by the Java API, and readers were always created with the default value (256).
This problem has been resolved.

[RTI Issue ID CORE-12451]

[Minor] Input parameters to Property and DataTag helper functions do not have “const”

In the C API, the following functions were incorrectly missing a const before the policy parameter:

• DDS_PropertyQosPolicyHelper_lookup_property()

• DDS_PropertyQosPolicyHelper_lookup_property_with_prefix()

• DDS_PropertyQosPolicyHelper_get_properties()

• DDS_DataTagQosPolicyHelper_lookup_tag()

This problem has been fixed. The policies are now “const” because these functions do not change the policy.

[RTI Issue ID CORE-3166]

[Minor] Standard 64-bit integer types are now supported (Modern C++ API)

Previous releases of the Modern C++ API had platform-specific definitions for 64-bit integers, defined in
rti::core::int64 and rti::core::uint64. This was required to support certain pre-C++11 platforms.

This release redefines those two types as std::int64_t and std::uint64_t.

[RTI Issue ID CORE-10913]

[Minor] Assigning DataWriter and DataReaderQos from a TopicQos caused a build error

DataWriterQos and DataReaderQos could not be constructed from a TopicQos assignment. You may have
seen a compiler error such as:

error: conversion from 'TEntityQos<rti::topic::qos::TopicQosImpl>' to
non-scalar type 'TEntityQos<rti::pub::qos::DataWriterQosImpl>' requested.

This problem has been resolved. Now this type of assignment works correctly. Any fields that are not in the
TopicQos will use the default for the DataWriterQos or DataReaderQos.

[RTI Issue ID CORE-11185]

7.6. What’s Fixed in 7.0.0 128

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Minor] In XML-based applications, generated IDL types did not take precedence over XML
DynamicTypes (C# API)

In the C# API in previous releases, if a type was declared in XML as a dynamic type and also generated
and registered by the application, the XML dynamic type took precedence. This led to the DataReaders or
DataWriters using DynamicData instead of the generated C# user class. This behavior was unintuitive and
inconsistent with the other language APIs. It has been resolved.

[RTI Issue ID CORE-11389]

[Minor] Namespaces ignored when a type was explicitly registered in C# for XML-based
applications

When a type was explicitly registered (this is only necessary to support generated IDL types with XML-Based
Application Creation) as follows:

DomainParticipantFactory.RegisterType<A.B.Foo>()

The registered type name was to set to “Foo” instead of the expected “A::B::Foo”. In some situations, this
may have stopped applications written in other languages to communicate with a C# application, if the regular
algorithm of type matching was disabled.

[RTI Issue ID CORE-12074]

7.6.9 Fixes Related to Crashes

[Critical] DataReader C++ application crashed if it received tampered sample with unsup-
ported encapsulation ID

If a C++ application with aDataReader received a sample with a tampered or malformed encapsulation kind, a
segmentation fault occurred when theDataReader attempted to deserialize the sample, leading to an application
crash. This problem has been fixed.

[RTI Issue ID CORE-12356]

[Critical] Segmentation fault after calling DomainParticipant::register_durable_subscrip-
tion with a group containing a long role_name

An application using the API DomainParticipant::register_durable_subscription() may have experienced
a segmentation fault if the role_name of the input group was NULL or had a length greater than 512 bytes.
This problem has been fixed.

[RTI Issue ID CORE-12460]

7.6. What’s Fixed in 7.0.0 129

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Segmentation fault when application using MultiChannel ran out of memory

A Connext application using MultiChannel might have produced a segmentation fault if the system ran out of
memory. This problem has been fixed.

[RTI Issue ID CORE-12493]

[Critical] Application crashedwhen capturing traffic for a DomainParticipant created before
enabling network capture

To capture network traffic, youmust enable this feature before creating theDomainParticipants that will capture
the traffic. Applications not satisfying this requirement crashed when starting, pausing, or resuming the capture.

This problem has been fixed. Connext will no longer crash in this situation, but will fail and log messages such
as the following:

ERROR NDDS_Utility_start_network_capture_w_params_for_participant:!get␣
→˓network capture manager for DomainParticipant. Network capture must be␣
→˓enabled before creating the DomainParticipant

ERROR NDDS_Utility_start_network_capture_for_participant:!network capture␣
→˓could not be started for the participant

ERROR NDDS_Utility_run_network_capture_operation_for_all_participants:!failed␣
→˓to run network capture operation for participant

ERROR NDDS_Utility_start_network_capture_w_params:!error starting network␣
→˓capture for all participants

ERROR NDDS_Utility_start_network_capture:!start network capture for all␣
→˓participants. There was at least one participant that could not be started

[RTI Issue ID CORE-12511]

[Critical] Possible crash when writing a sample

Due to an internal error, an application could crash when writing a sample using either a best-effort or reliable
DataWriter. Before the crash, an error message in either of the following functions was printed:

* COMMENDBeWriterService_write

* COMMENDSrWriterService_write

This problem has been resolved.

[RTI Issue ID CORE-12561]

7.6. What’s Fixed in 7.0.0 130

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Potential crash during type registration if system ran out of memory

A crash may have occurred during type registration if the application ran out of memory. This problem has
been resolved.

[RTI Issue ID CORE-12734]

[Critical] Segmentation fault after calling DomainParticipant::delete_durable_subscription
with a group containing a long role_name

An application using the API DomainParticipant::register_durable_subscription() may have experienced
a segmentation fault if the role_name of the input group was NULL or had a length greater than 512 bytes.
This problem has been fixed.

[RTI Issue ID CORE-12787]

[Critical] Potential crash or memory corruption if user application using thread-specific
storage

Starting with release 6.1.0, there was an issue that could lead to a potential crash or memory corruption if the
user application was using thread-specific storage.

In particular, when using Activity Context or HeapMonitoring, a race condition could have been triggered upon
creating a thread with the ThreadFactory at the same time the DomainParticipantFactory instance was initial-
ized or finalized. When this race condition was triggered, Connext might have overwritten the user application’s
thread-specific storage, leading to memory corruption or crashes.

This issue is now fixed. If the race condition that led to the issue happens in an application, the following benign
warning will be logged:

Unexpected RTIOsapiContextSupport_g_tssKey value. This could mean that this␣
→˓thread was
created at the same time you are destroying the DDSDomainParticipantFactory.

If that is the case, Activity Context and Heap Monitoring won’t be available for that thread.

[RTI Issue ID CORE-12966]

[Minor] Simultaneous deletion of an entity by multiple threads caused a crash when using
Java

When two threads deleted an entity at the same time, in Java, this may have caused a crash with the following
backtrace:

#7 0x00007f7c630dad3b in REDAWeakReference_getReferent (reference=0x78,␣
→˓slNode=0x7f7c4407f988, frOut=0x0, tableWithStartedCursor=0x7f7c6452c000) at␣
→˓WeakReference.c:144

#8 0x00007f7c630d2ff3 in REDACursor_gotoWeakReference (c=0x7f7c4407f950,␣

7.6. What’s Fixed in 7.0.0 131

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

→˓fr=0x0, wr=0x78) at
Cursor.c:230
#9 0x00007f7c62d5ed46 in PRESPsService_destroyLocalEndpoint␣
→˓(me=0x7f7c64367cc0, failReason=0x7f7cb0136fc0, group=0x7f7c64dbb340,␣
→˓endpoint=0x7f7c644f0e88, worker=0x7f7c44015f70) at PsService.c:2130

#10 0x00007f7c62b6fc26 in PRESParticipant_destroyLocalEndpoint␣
→˓(me=0x7f7c64368a00, failReason=0x7f7cb0136fc0, group=0x7f7c64dbb340,␣
→˓endpoint=0x7f7c644f0e88, worker=0x7f7c44015f70) at Participant.c:5882
#11 0x00007f7c636fcc32 in DDS_DataReader_deleteI (reader=0x7f7c644f1070) at␣
→˓DataReader.c:4250
#12 0x00007f7c6372667e in DDS_Subscriber_delete_datareader␣
→˓(self=0x7f7c64dbb620, reader=0x7f7c644f1070) at Subscriber.c:1159

#13 0x00007f7c63daf24b in Java_com_rti_dds_subscription_SubscriberImpl_DDS_
→˓1Subscriber_1delete_1datareader (env=0x7f7c781061f8, self_
→˓class=0x7f7cb0137148, self=140172244792864, readerL=140172235575408) at␣
→˓SubscriberImpl.c:790

This issue has been resolved. Now one thread will remove the entity and the other thread will throw an exception
with the error code com.rti.dds.infrastructure.RETCODE_ALREADY_DELETED.

[RTI Issue ID CORE-10768]

7.6.10 Other Fixes

[Critical] Serialization/deserialization of non-primitive sequences and arrays for
XCDR2_DATA_REPRESENTATION did not follow Extensible Types specification

The serialization/deserialization of sequences and arrays with non-primitive members for
XCDR2_DATA_REPRESENTATION did not follow the OMG ‘Extensible and Dynamic Topic Types
for DDS’ specification, version 1.3. This led to compatibility issues with other DDS implementations.

This problem has been fixed, although the new behavior is not enabled by default, in order to keep backward
compatibility with previous Connext releases. You can configure a DomainParticipant to align with the specifi-
cation by setting dds.type_plugin.dheader_in_non_primitive_collections to true in theDomainParticipant’s
PROPERTY QoS Policy for all the DomainParticipants created by your Connext applications.

[RTI Issue ID CORE-12464]

[Critical] Possible hang when using best-effort writers and asynchronous publishing

Due to an internal error, an application hung when using a best-effort writer and asynchronous publishing.
Before the hang, the following error message was printed:

COMMENDBeWriterService_write:!retrieveJob
This problem is now fixed.

[RTI Issue ID CORE-12562]

7.6. What’s Fixed in 7.0.0 132

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Runtime error when using debug libraries for QNX x86 platform

When using the i86QNX6.6qcc_cpp4.7.3 debug libraries, your application may have had a runtime error and
hung. This was because the debug libraries included the symbol for a math function (“isinff”) that was discon-
tinued in QNX 6.3.

This problem has been resolved. The debug libraries now include “isinf” instead, which is supported.

A full list of the math functions that were discontinued in QNX 6.3 can be found here: http://www.qnx.com/
developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html.

Note: QNX platforms on x86 are not supported in Connext 7.0.0.

[RTI Issue ID CORE-12695]

[Critical] Pushed samples may not have been received by reliable DataReader when
DataWriter published Type that supports Zero Copy transfer over shared memory

A reliable DataReader may not have received pushed samples from a DataWriter publishing a Topic on a
type configured with the zero-copy transfer over shared memory @transfer_mode(SHMEM_REF). This
may have led to significant performance degradation because the DataReader has to continuously NACK the
missing samples.

This problem only occurred when the following three conditions were true:

1. The DataWriter ran in a different host, or the DataReader did not have the builtin SHMEM transport
enabled.

2. The DataReader used a ContentFilteredTopic, and the DataWriter did writer-side filtering, or the
DataReader created TopicQueries.

3. The DataWriter was not configured to use an asynchronous publisher. This problem has been resolved.

[RTI Issue ID CORE-12775]

[Critical] Potential truncation of application-level acknowledgment response data

Connext enforced a wrong maximum length for application-level acknowledgment response data. Specif-
ically, Connext incorrectly allowed setting the DATA_READER_RESOURCE_LIMITS QosPolicy’s
max_app_ack_response_length longer than the maximum serializable data, which resulted in the truncation
of data when the length got close to 64kB.

This problem has been resolved: Connext now enforces a maximum length of 32kB for max_app_ack_re-
sponse_length as part of DataReader QoS consistency checks, and it will log an error if you try to set
max_app_ack_response_length longer than 32kB.

[RTI Issue ID CORE-12450]

7.6. What’s Fixed in 7.0.0 133

http://www.qnx.com/developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html
http://www.qnx.com/developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Critical] Potential Valgrind invalid read when logging a message or enabling heap moni-
toring

When activity context was enabled in logging, or when heap monitoring was enabled, a Valgrind invalid read
similar to the following one may have been reported:

==1344490== Invalid read of size 4
==1344490== at 0x4A3FA0A: RTIOsapiActivityContext_skipResourceGuid␣
→˓(ActivityContext.c:246)
==1344490== by 0x4A417B3: RTIOsapiActivityContext_getString (ActivityContext.
→˓c:820)

This issue has been resolved. The Valgrind invalid read error no longer appears.

[RTI Issue ID CORE-12537]

[Major] Various issues with RtpsReliableWriterProtocol_t::nack_suppression_duration

There were various issues with the RtpsReliableWriterProtocol_t::nack_suppression_duration QoS:

• NACKs were being incorrectly suppressed with asynchronous publishing or non-zero
min/max_nack_response_delay if two NACK messages were received within the nack_sup-
pression_duration window, even if they were NACKing for different sets of sequence numbers.
The nack_suppression_duration is only meant to suppress NACKs with the same leading sequence
number that are received within the nack_suppression_duration window. If two consecutive
NACKs have different leading sequence numbers, this indicates that the reader is making progress
and the second one should not be suppressed, regardless of the nack_suppression_duration. In-
correct suppression of NACKs was not an issue if min/max_nack_response_delay was zero and
PublishModeQosPolicy.kind was SYNCHRONOUS_PUBLISH_MODE_QOS..

• If a NACK was received and suppressed due to the nack_suppression_duration before the previous
NACK was responded to, then the NACK that had not been responded to yet, along with all NACKs
for the duration of the nack_suppression_duration, were incorrectly suppressed. This problem did
not occur if min/max_nack_response_delay was zero and PublishModeQosPolicy.kind was SYN-
CHRONOUS_PUBLISH_MODE_QOS.

• When PublishModeQosPolicy.kind was ASYNCHRONOUS_PUBLISH_MODE_QOS, if there
were no GAP messages sent in response to a NACK, the nack_suppression_duration had no effect
and NACKs were never suppressed. (GAP messages are sent to a DataReader to indicate that a sam-
ple or a set of samples are not meant for that DataReader. This can happen, for example, because the
DataWriter has applied writer-side filtering or no longer has those samples in its queue.)

These issues have been resolved.

[RTI Issue ID CORE-12603]

7.6. What’s Fixed in 7.0.0 134

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Major] Possible error message printed during Entity disposal

Upon the disposal of an entity, an error message from a callback associated with an event may have been
printed. An excerpt of what the error may have looked like this:

ERROR [0x01013D3F,0x79453D76,0xA3558BB2:0x00000000|REMOVE REMOTE DR␣
→˓0x01013D3F,0x79453D76,0xA3558BB2:0x80000007]␣
→˓OnReliableReaderActivityChangedCallback:An exception was thrown: Omg.Dds.
→˓Core.DdsException: DDS operation failed:
at Rti.Dds.NativeInterface.Helpers.ReturnCode.CheckResult(IntPtr result)

...

The disposal of entities has now been modified to ensure this error does not happen.

[RTI Issue ID CORE-12641]

[Major] Source IP on Spy was not correct when DataWriters with same Topic were on dif-
ferent machines

The source IP on Spy may not have been correct when DataWriters with the same Topic were on different
machines. This issue has been fixed. Now the source IP is per Entity, not per Topic, and the output will look
like this:

11:35:13 New reader from 10.200.130.20 : topic=""Example app"" type=""app""
11:35:18 New writer from 10.200.129.195 : topic=""Example app"" type=""app""
11:35:16 New writer from 10.200.130.3 : topic=""Example app"" type=""app""
11:42:58 New data from 10.200.129.195 : topic=""Example app"" type=""app""
11:42:58 New data from 10.200.130.3 : topic=""Example app"" type=""app""
11:43:00 New data from 10.200.129.195 : topic=""Example app"" type=""app""
11:43:00 New data from 10.200.130.3 : topic=""Example app"" type=""app""

[RTI Issue ID CORE-12169]

[Minor] Unbounded memory growth in Monitoring Library when creating and deleting end-
points

Each time a DataWriter or DataReader is created in an application that has RTI Monitoring Library enabled, a
new instance is created in the DataWriters of the library. Since, by default, the maximum number of instances
the DataWriter can handle is unlimited, and the instances of already deleted endpoints were not cleaned up
automatically, unbounded memory growth was possible in the library’s DataWriters when constantly creating
and deleting endpoints in an application that had Monitoring Library enabled.

This problem has been fixed by setting the writer_data_lifecycle::autopurge_disposed_instances_delay
QoS to DDS_DURATION_ZERO by default in the DataWriters for the Monitoring Library. That way,
disposed instances will be instantly cleared.

[RTI Issue ID MONITOR-244]

7.6. What’s Fixed in 7.0.0 135

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Minor] Unexpected behavior when two threads crashed at the same time on Windows
systems

When two threads crashed at the same time on Windows systems, Connext may have concurrently called the
function SymInitialize() from DbgHelp from two crashing threads.

SymInitialize() is not thread safe, so the application may have run into unexpected behavior or memory cor-
ruption under this scenario.

This has been resolved, Connext no longer calls SymInitialize() from a crashing thread. Instead, SymInitial-
ize() is now called during DomainParticipantFactory initialization.

[RTI Issue ID CORE-10066]

[Minor] DataReaders setting reader_qos.protocol.expects_inline_qos to TRUE incorrectly
matched with DataWriters

Connext DataWriters matched DataReaders that set reader_qos.protocol.expects_inline_qos to TRUE. This
behavior was incorrect because Connext DataWriters do not support sending inline QoS, and they were not
honoring the DataReaders’ requests.

This issue has been fixed. The behavior has changed so that DataWriters will not match DataReaders that
request inline QoS (i.e., that set reader_qos.protocol.expects_inline_qos to TRUE).

[RTI Issue ID CORE-10501]

[Minor] Writer using durable writer history may not have blocked after send window filled
up when disable positive ACKs was enabled

In previous releases, a reliable DataWriter configuring a finite send window size may not have blocked when
the send window filled up if all these conditions were met:

• DataWriter was configured to use durable writer history.

• DataWriter was configured to use disable positive ACKs.

• DataWriter was configured with writer_qos.reliability.acknowledgment_kind set to AUTO or EX-
PLICIT, or writer_qos.availability.enable_required_subscriptions was set to TRUE.

Because of this issue, the reliability protocol for the DataWriter may have been less efficient. This problem has
been resolved.

[RTI Issue ID CORE-12225]

7.6. What’s Fixed in 7.0.0 136

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

[Trivial] Error messages displayed that should not have been, when printing DataRead-
erQoS objects

When printing DataReaderQoS objects, and the contained DDSOwnershipQosPolicy or DDS_TransportMul-
ticastQosPolicy policies were printed, some error messages were displayed that should not have been. These
error messages could have been safely ignored by an application. These error messages are no longer printed.

[RTI Issue ID CORE-12462]

[Trivial] Unnecessary sockets created during initialization of library

The initialization of the Connext libraries always created a socket to obtain the IP address of the first valid
interface of the machine. This IP address is used to generate identifiers when DDS_DomainParticipan-
tQos::wire_protocol::rtps_auto_id_kind is DDS_RTPS_AUTO_ID_FROM_IP, which is not the default
value. Therefore, the creation of this socket was unnecessary in most cases. This problem has been solved, and
now the socket is only created when it is needed.

[RTI Issue ID CORE-12587]

[Trivial] Malformed IDL printed if multiple labels used for default case of a union

The IDL produced by the C API’s DDS_TypeCode_print_IDL() function (or the equivalent in other APIs)
may have been malformed if multiple labels were assigned to the default case of a union. All of the labels were
printed as “default: “, instead of their true value. This problem has been resolved.

[RTI Issue ID CORE-12624]

7.6. What’s Fixed in 7.0.0 137

Chapter 8

Known Issues

Note: For an updated list of critical known issues, see the Critical Issues List on the RTI Customer Portal at
https://support.rti.com.

This section includes:

8.1 Known Issues with Discovery (SPDP2)

The following known issues apply to the Simple Participant Discovery Protocol 2.0, which is an alternative
version of the Simple Participant Discovery Protocol, designed for decreased bandwidth usage and improved
reliability. See Simple Participant Discovery 2.0, in the RTI Connext Core Libraries User’s Manual for more
information.

8.1.1 Features under future consideration for SPDP2

Note: RTI does not guarantee the following features for any release or timeline. If any of these enhancements
is of interest to you, please provide that feedback through your account team.

The following features, which are not currently supported, are being considered for SPDP2 in future releases:

• Use of SPDP2 with custom security plugins (for example, those implemented with the Securıty Plugıns
SDK (RTI Security Plugins SDK)), the Lightweight Builtin Security Plugins, or Builtin Security Plugins’s
HMAC-Only mode. Only the Builtin Security Plugins are supported in combination with SPDP2.

• SPDP and SPDP2 compatibility mode. The compatibility mode will allow some DomainParticipants to
simultaneously communicate with DomainParticipants that are using SPDP and SPDP2. DomainPartic-
ipants that are using the compatibility mode will be able to communicate with DomainParticipants that
are using SPDP and other DomainParticipants that are using SPDP2. For now, you can use RTI Routing
Service to achieve this communication; see this Knowledge Base article on the RTI Community Forum.

138

https://support.rti.com
https://community.rti.com/kb/enabling-communication-between-spdp-and-spdp2-participants-routing-service

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

• Improved configuration update behavior. Currently, when aDomainParticipant changes its configuration
(partition, locators, etc.), it sends out:

– If SPDP is enabled: a single Data(p) to all peers (matched or potential).

– If SPDP2 is enabled: a single reliable message to matched peers, a single bootstrap message to
unmatched initial peers. RTI will add an option to send multiple Data(p)s/bootstrap messages,
since these messages are sent best-effort and can get lost, delaying configuration change updates in
remote participants until the next periodic message.

[RTI Issue IDs CORE-12929, CORE-13884, and CORE-12930]

8.1.2 Participants using SPDP2 and allow_unauthenticated_participants fail to
communicate if only one participant fails authentication

DomainParticipants using SPDP2 with allow_unauthenticated_participants set to TRUE fail to communi-
cate if both participants are using security and only one participant fails authentication.

[RTI Issue ID SEC-2348]

8.2 Known Issues with Serialization and Deserialization

8.2.1 Some parameters cannot be received multiple times within same SPDP sam-
ple

The OMG Real-Time Publish-Subscribe (RTPS) specification, version 2.5 allows in general that “The Param-
eterList may contain multiple Parameters with the same value for the parameterId.” RTI Connext, however,
does not support receiving the following parameterId values multiple times within the same Simple Participant
Discovery Protocol (SPDP) discovery sample:

• PID_USER_DATA

• PID_PROPERTY_LIST

• PID_ENTITY_NAME

• PID_ROLE_NAME

• PID_PARTITION

• PID_DOMAIN_TAG

• PID_IDENTITY_TOKEN

• PID_PERMISSIONS_TOKEN

• PID_TRANSPORT_INFO_LIST

[RTI Issue ID CORE-13680]

8.2. Known Issues with Serialization and Deserialization 139

https://www.omg.org/spec/DDSI-RTPS/2.5/

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

8.2.2 Connext not compliant with Extended CDR encoding version 2 for types con-
taining arrays and sequences of non-primitive types

By default, Connext is not compliant with Extended CDR encoding version 2 for types containing arrays and
sequences of non-primitive types. To configure Connext to be compliant, you have a few options, described in
Extended CDR (encoding version 2), in the Extensible Types Guide.

8.3 Known Issues with Usability

8.3.1 Cannot open USER_QOS_PROFILES.xml in rti_workspace/examples from Vi-
sual Studio

When trying to open the USER_QOS_PROFILES.xml file from the resource folder of one of the provided
examples, you may see the following error:

Could not find file : C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\
→˓connext_dds\c\<example>\win32\USER_QOS_PROFILES.xml

The problem is that the Visual Studio project is looking for the file in a wrong location (win32 folder).

You can open the file manually from here:

C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\connext_dds\c\<example>
→˓\USER_QOS_PROFILES.xml

This issue does not affect the functionality of the example.

[RTI Issue ID CODEGENII-743]

8.3.2 DataWriter’s Listener callback on_application_acknowledgment() not trig-
gered by late-joining DataReaders

The DataWriter’s listener callback on_application_acknowledgment() may not be triggered by late-joining
DataReaders for a sample after the sample has been application-level acknowledged by all live DataReaders
(no late-joiners).

If your application requires acknowledgment of message receipt by late-joiners, use the Request/Reply com-
munication pattern with an Acknowledgment type (see the chapter “Introduction to the Request-Reply Com-
munication Pattern,” in the Core Libraries User’s Manual).

[RTI Issue ID CORE-5181]

8.3. Known Issues with Usability 140

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

8.3.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communi-
cation failure when writing small samples

If you inherit from either the BuiltinQosLibExp::Generic.StrictReliable.HighThroughput or the Built-
inQosLibExp::Generic.AutoTuning built-in QoS profiles, your DataWriters and DataReaders will fail to
communicate if you are writing small samples.

In Connext 5.1.0, if you wrote samples that were smaller than 384 bytes, you would run into this problem. In
version 5.2.0 onward, you might experience this problem when writing samples that are smaller than 120 bytes.

This communication failure is due to an interaction between the batching QoS settings in the Generic.High-
Throughput profile and the DataReader’s max_samples resource limit, set in the BuiltinQosLib-
Exp::Generic.StrictReliable profile. The size of the batches that the DataWriter writes are limited to
30,720 bytes (see max_data_bytes). This means that if you are writing samples that are smaller than
30,720/max_samples bytes, each batch will have more than max_samples samples in it. The DataReader
cannot handle a batch with more than max_samples samples and the batch will be dropped.

There are a number of ways to fix this problem, the most straightforward of which is to overwrite the
DataReader’s max_samples resource limit. In your own QoS profile, use a higher value that accommodates
the number of samples that will be sent in each batch. (Simply divide 30,720 by the size of your samples).

[RTI Issue ID CORE-6411]

8.3.4 Memory leak if Foo:initialize() called twice

Calling Foo:initialize() more than once will cause a memory leak.

[RTI Issue ID CORE-7678]

8.3.5 Wrong error code after timeout on write() from Asynchronous Publisher

When using an asynchronous publisher, if write() times out, it will mistakenly return DDS_RETCODE_ER-
ROR instead of the correct code, DDS_RETCODE_TIMEOUT.

[RTI Issue ID CORE-2016, Bug # 11362]

8.3.6 Type Consistency enforcement disabled for structs with more than 10000
members

TypeObjects cannot be created from structs with more than 10000 members. Applications that publish or
subscribe to such types may see errors like the following:

RTICdrStream_serializeNonPrimitiveSequence:sequence length (10005) exceeds␣
→˓maximum (10000)
RTICdrTypeObjectTypeLibraryElement_getTypeId:serialization error: Type
RTICdrTypeObject_fillType:!get TypeId
RTICdrTypeObject_assertTypeFromTypeCode:!create Structure Type
RTICdrTypeObject_createFromTypeCode:!create TypeObject

8.3. Known Issues with Usability 141

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

When the TypeObject can’t be serialized, the type compatibility check between a reader and a writer falls back
to exact type-name matching.

See the section “Verifying Type Consistency: Type Assignability” in the RTI Connext Core Libraries Extensible
Types Guide for more information.

[RTI Issue ID CORE-8158]

8.3.7 Escaping special characters in regular/filter expressions not supported in
some cases

Escaping special characters is not supported in expressions when using the following features:

• Partitions

• MultiChannel

Every occurrence of a backslash (\) will be considered its own character and not a way to escape the character
that follows. For example: A\? does not match A? because the first expression is considered an expression
with three characters.

[RTI Issue ID CORE-11858]

8.4 Known Issues with Code Generation

8.4.1 Examples and generated code for Visual Studio 2017 and later may not com-
pile (Error MSB8036)

The examples provided with Connext and the code generated for Visual Studio 2017 and later will not compile
out of the box if theWindows SDK version installed is not a specific number like 10.0.15063.0. If that happens,
you will see the compilation error MSB8036. To compile these projects, select an installed version ofWindows
SDK from the Project menu -> Retarget solution.

Another option is to set the enviroment variable RTI_VS_WINDOWS_TARGET_PLATFORM_VERSION
to the SDK version number. For example, set RTI_VS_WINDOWS_TARGET_PLATFORM_VERSION to
10.0.16299.0. (Note: the environment variable will not work if you have already retargeted the project via the
Project menu.)

For further details, see the Windows chapter of the Core Libraries Platform Notes.

[RTI Issue ID CODEGENII-800]

8.4. Known Issues with Code Generation 142

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

8.5 Known Issues with Instance Lifecycle

8.5.1 RECOVER_INSTANCE_STATE_CONSISTENCY setting not fully supported
by RTI Infrastructure Services

The RECOVER_INSTANCE_STATE_CONSISTENCY option in the instance_state_consistency_kind
field, in the RELIABILITY QoS policy, is not fully supported by the RTI Infrastructure Services products.

RTI Routing Service inputs cannot route instance state transitions from NOT_ALIVE_NO_WRITERS to
ALIVE after regaining liveliness with a DataWriter. However, a Routing Service output DataWriter can be
configured to use the RECOVER_INSTANCE_STATE_CONSISTENCY setting and respond to matching
DataReaders if they request instance state updates after a reconnection.

Persistence Service, Queuing Service, Recording Service, and Replay Service do not support being configured with
the RECOVER_INSTANCE_STATE_CONSISTENCY setting, since they do not support storing or publish-
ing ALIVE instance state transitions with no associated data.

[RTI Issue ID CORE-13337]

8.5.2 Persistence Service DataReaders ignore serialized key propagated with dis-
pose updates

Persistence Service DataReaders ignore the serialized key propagated with dispose updates. Persistence
Service DataWriters cannot propagate the serialized key with dispose, and therefore ignore the serial-
ize_key_with_dispose setting on the DataWriter QoS.

[RTI Issue ID PERSISTENCE-221]

8.5.3 instance_state_consistency_kind QoS cannot be modified before containing
entity is enabled

The instance_state_consistency_kind field in the RELIABILITY QoS policy cannot be modified once the
containing DDS entity is created, even if the containing entity is created disabled. Trying to modify the QoS
setting in this case will result in the set_qos operation returning DDS_RETCODE_IMMUTABLE_POLICY
and an error message being logged.

[RTI Issue ID CORE-13349]

8.6 Known Issues with Reliability

8.6.1 DataReaders with different reliability kinds under Subscriber with
GROUP_PRESENTATION_QOS may cause communication failure

Creating a Subscriber withPresentationQosPolicy.access_scopeGROUP_PRESENTATION_QOS and then
creating DataReaders with different ReliabilityQosPolicy.kind values creates the potential for situations in
which those DataReaders will not receive any data.

8.5. Known Issues with Instance Lifecycle 143

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

One such situation is when the DataReaders are discovered as late-joiners. In this case, samples are never de-
livered to the DataReaders. A workaround for this issue is to set the AvailabilityQosPolicy.max_data_avail-
abilty_waiting_time to a finite value for each DataReader.

[RTI Issue ID CORE-7284]

8.7 Known Issues with Content Filters and Query Conditions

8.7.1 Writer-side filtering may cause missed deadline

If you are using a ContentFilteredTopic and you set the Deadline QosPolicy, the deadline may be missed due
to filtering by a DataWriter.

[RTI Issue ID CORE-1634, Bug # 10765]

8.7.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated cor-
rectly

The filter_sample_* statistics in the DDS_DataWriterProtocolStatus are not updated correctly. The values
that you get after calling the following APIs may be smaller than the actual values:

• DDS_DataWriter::get_datawriter_protocol_status

• DDS_DataWriter::get_matched_subscription_datawriter_protocol_status

• DDS_DataWriter::get_matched_subscription_datawriter_protocol_status_by_locator

[RTI Issue ID CORE-5157]

8.8 Known Issues with TopicQueries

8.8.1 TopicQueries not supported with DataWriters configured to use batching or
Durable Writer History

Getting TopicQuery data from a DataWriter configured to use batching or Durable Writer History is not sup-
ported.

[RTI Issue IDs CORE-7405, CORE-7406]

8.7. Known Issues with Content Filters and Query Conditions 144

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

8.9 Known Issues with Transports

8.9.1 AppAckmessages cannot be greater than underlying transport message size

A DataReader with acknowledgment_kind (in the ReliabilityQosPolicy) set to DDS_APPLICA-
TION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_EXPLICIT_ACKNOWLEDG-
MENT_MODE cannot send AppAck messages greater than the underlying transport message size.

If a DataReader tries to send an AppAck message greater than the transport message size, Connext will print
the following error message:

COMMENDFacade_sendAppAck:!add APP_ACK to MIG
COMMENDSrReaderService_sendAppAck:!send APP_ACK
PRESPsService_onReaderAppAckSendEvent:!send acknowledgment

To recover from the above error, the DataReader must acknowledge samples until the size of the AppAck
message goes below the transport message size threshold.

Why does an AppAckmessage increase its size? An AppAckmessage contains a list of sequence number inter-
vals where each interval represents a set of consecutive sequence numbers that have been already acknowledged.
As long as samples are acknowledged in order, the AppAck message will always have a single interval. How-
ever, when samples are acknowledged out of order, the number of intervals and the size of the AppAck will
increase.

For more information, see the “Application Acknowledgment” section in the Core Libraries User’s Manual.

[RTI Issue ID CORE-5329]

8.9.2 DataReader cannot persist AppAck messages greater than 32767 bytes

A DataReader using durable reader state, whose acknowledgment_kind (in the ReliabilityQosPolicy)
is set to DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_EX-
PLICIT_ACKNOWLEDGMENT_MODE, cannot persist an AppAck message greater than 32767 bytes.

To recover from the previous error, the DataReader must acknowledge samples until the size of the AppAck
message goes below the transport message size threshold.

For more information, see the section “Durable Reader State,” in the Core Libraries User’s Manual.

[RTI Issue ID CORE-5360]

8.9.3 Discovery with Connext Micro fails when shared memory transport enabled

Given a Connext application with the shared memory transport enabled, a Connext Micro 2.4.x application will
fail to discover it. This is due to a bug in Connext Micro that prevents a received participant discovery message
from being correctly processed. This bug will be fixed in a future release of Connext Micro. As a workaround,
you can disable the shared memory transport in the Connext application and use UDPv4 instead.

[RTI Issue ID EDDY-1615]

8.9. Known Issues with Transports 145

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

8.9.4 Communication may not be reestablished in some IP mobility scenarios

If you have two Connext applications in different nodes and they change their IP address at the same time, they
may not reestablish communication. This situation may happen in the following scenario:

• The applications see each other only from one single network.

• The IP address change happens at the same time in the network interface cards (NICs) that are in the
network that is in common for both applications.

• The IP address change on one of the nodes happens before the arrival of the DDS discovery message
propagating the address change from the other side.

[RTI Issue ID CORE-8260]

8.9.5 Corrupted samples may be forwarded through Routing Service when using
Zero-Copy transfer over shared memory

When using Zero Copy transfer over shared memory together with RTI Routing Service, Routing Service avoids
an additional copy of the data by passing a reference to the sample from the input to the output of a route. If the
sample is reused and rewritten by the original applicationDataWriter during the time between when the sample
was received on the route input and copied into the route output buffer, the forwarded sample will contain the
updated, and now invalid, values for the original sample.

This situation can be avoided in a few different ways, with various tradeoffs.

Use automatic application acknowledgment

Using automatic application acknowledgment (acknowledgment_mode = APPLICATION_AUTO_AC-
KNOWLEDGMENT in the Reliability QoS Policy) between the Routing Service input DataReader and its
matching DataWriters will avoid the issue.

When using Zero Copy transfer over shared memory, DataWriters must loan samples using the get_loan API.
Only samples that have been fully acknowledged will be returned by the get_loan API. This means that if
automatic application acknowledgment is turned on, that only samples that the Routing Service has already
copied and written to the route output will be available for reuse by the original DataWriter, because Routing
Service does not return the loan on a sample until after it is forwarded to the route outputs.

The drawback to this approach is that it requires RELIABLE Reliability. In addition, application-level ac-
knowledgments are not supported in Connext Micro, so this approach will not work if Connext Micro is the
source of the Zero Copy samples.

8.9. Known Issues with Transports 146

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

Ensure that the number of available samples accounts for Routing Service processing time

Regardless of whether you are using Routing Service, it is important when using Zero Copy transfer over shared
memory to size your resources so that your application can continue to write at the desired rate while the receiv-
ing applications receive and process the samples. If you are using Routing Service and cannot, or do not wish
to, use automatic application acknowledgments, you must take into account the amount of time it will take to
receive and forward a sample when setting writer_loaned_sample_allocation in the DATA_WRITER_RE-
SOURCE_LIMITS QoS Policy and managing the samples in your application.

[RTI Issue ID CORE-10050]

8.9.6 Network Capture does not support frames larger than 65535 bytes

Network capture does not support frames larger than 65535 bytes. This limitation affects the TCP transport
protocol if the message_size_max property is set to a value larger than the default one.

[RTI Issue ID CORE-11083]

8.9.7 Shared memory transport in QNX 7.0 and earlier can result in priority inver-
sion

When using QNX 7.0 and earlier with Connext, the shared memory transport uses a kind of mutex that does not
support priority inheritance. For this reason, using the shared memory transport in QNX can result in priority
inversion. Starting with QNX 7.1, priority inheritance is applied to the mutex for the shared memory transport,
as described in the fix for [Minor] QNX applications using shared-memory transport may have led to thread
priority inversion issues.

[RTI Issue ID CORE-13745]

8.9.8 Ungracefully terminated QNX processes using SHMEM transport prevents
startup of new processes due to unclosed POSIX semaphores (QNX 7.0 and
earlier)

If a QNX 7.0 or earlier application using the shared-memory transport was ungracefully shut down, crashed, or
otherwise had an abnormal termination while holding a POSIX semaphore used by the transport (for example,
while sending data through the shared-memory transport), Connext applications launched after that point on
the same domain may wait forever for that semaphore to be released.

Workaround for QNX 7.0 and earlier: to enable new applications to start, RTI recommends stopping all appli-
cations, then cleaning up the Inter-Process Communication (IPC) resources before starting new applications.

This problem is resolved for QNX 7.1, as described in the fix for [Critical] Ungracefully terminated QNX
processes using SHMEM transport prevented startup of new processes due to unclosed POSIX semaphores.

[RTI Issue ID CORE-9434]

8.9. Known Issues with Transports 147

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

8.10 Known Issues with FlatData

8.10.1 FlatData language bindings do not support automatic initialization of arrays
of primitive values to non-zero default values

RTI FlatData™ language bindings do not support the automatic initialization of arrays of primitive values to
non-zero default values, unless the primitive is an enumeration. It is possible to declare an alias to a primitive
member with a default value using the @default annotation, and then to declare an array of that alias. For
example:

@default(10)
typedef int32 myLongAlias;

struct MyType {
myLongAlias myLongArray[25];

};

The default values of each member of the array in this case should be 10, but in FlatData they will all be set to
0.

[RTI Issue ID CORE-9986]

8.10.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined be-
havior

The function rti::flat::plain_cast is allowed on FlatData samples containing int64_t members, but those mem-
bers are not guaranteed to have an 8-byte alignment (a 4-byte alignment is guaranteed). Memory checkers such
as Valgrind may report errors when accessing such members from the pointer returned by plain_cast.

[RTI Issue ID CORE-10092]

8.11 Known Issues with Coherent Sets

8.11.1 Some coherent sets may be lost or reported as incomplete with batching
configurations

If Connext 6.1.0 receives coherent sets from Connext 6.0.0 or lower using batching, coherent sets that are
fully received and complete may be lost or marked as incomplete. (If the QoS subscriber_qos.presen-
tation.drop_incomplete_coherent_set is set to FALSE, then the samples marked as incomplete won’t be
dropped.)

[RTI Issue ID CORE-9691]

8.10. Known Issues with FlatData 148

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

8.11.2 Copy of SampleInfo::coherent_set_info field is not supported

SampleInfo::coherent_set_info is not available when using take/read operations that do not loan the samples.
The SampleInfo::coherent_set_info is always set to NULL when you call the take/read operations that do not
loan the samples. To get the coherent_set_info value, make sure you use the read/take operations that loan
the data.

In addition, the copy constructor and assignment operator in the Traditional C++ and Modern C++ APIs do
not copy the SampleInfo::coherent_set_info field. It is always set to NULL. It is your responsibility to make
the copy and handle memory allocation and deletion for this field.

[RTI Issue ID CORE-11215]

8.11.3 Other known issues with coherent sets

Coherent sets are not propagated through RTI Routing Service [RTI Issue ID ROUTING-657].

Group coherent sets are not persisted by RTI Persistence Service [RTI Issue ID PERSISTENCE-191].

Group coherent sets cannot be stored or replayed with RTI Recording Service [RTI Issue ID RECORD-1083].

8.12 Known Issues with Dynamic Data

8.12.1 Conversion of data by member-access primitives limited when converting
to types that are not supported on all platforms

The conversion of data by member-access primitives (get_X() operations) is limited when converting to
types that are not supported on all platforms. This limitation applies when converting to a 64-bit int64 type
(get_longlong() and get_ulonglong() operations) and a 128-bit long double type (get_longdouble()). These
methods will always work for data members that are actually of the correct type, but will only support conver-
sion from values that are stored as smaller types on a subset of platforms. Conversion to 64-bit int64s from a
32-bit or smaller integer type is supported on all Windows and Linux architectures, and any additional 64-bit
architectures. Conversion to 128-bit long doubles from a float or double is not supported.

[RTI Issue ID CORE-2986]

8.12.2 Types that contain bit fields not supported

Types that contain bit fields are not supported by DynamicData. Therefore, when rtiddsspy discovers any type
that contains a bit field, rtiddsspy will print this message:

DDS_DynamicDataTypeSupport_initialize:type not supported (bitfield member)

[RTI Issue ID CORE-2977]

8.12. Known Issues with Dynamic Data 149

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

8.12.3 Long double not supported for DynamicData in Java API

The Java API does not have DynamicData APIs to handle long double fields. That is, get_longdouble and
set_longdouble don’t exist. As a result, it’s not possible to work with long double fields of DynamicData
samples in the Java API.

[RTI Issue ID CORE-14091]

8.12.4 Limitation for C# recursive types

Recursive types (types whose definition contains themselves at any level) are supported in the C# API. How-
ever, there is one limitation. The DynamicType property of the type support generated for a recursive IDL
type (such as FooTypeSupport.Instance.DynamicType) is not available. Trying to access it will
fail with NotSupportedException. This property is only needed for applications that inspect the type
dynamically or create DynamicData objects. If that is required, you can define the type in XML and load it
with QosProvider.GetType or in code using the DynamicTypeFactory.

[RTI Issue ID CORE-14407]

8.13 Known Issues with Logging

8.13.1 Possible crash when closing a logger device while it is used

Due to a concurrency issue in the Connext logging infrastructure, there is a small possibility of a crash in an
application when a logger device is closed at the same time it is being used for logging a message.

[RTI Issue ID CORE-10546]

8.14 Known Issues with RTI Monitoring Library

The following known issues occur in RTI Monitoring Library, not in RTI Monitoring Library 2.0.

8.14.1 Problems with NDDS_Transport_Support_set_builtin_transport_property()
if Participant Sends Monitoring Data

If a Connext application uses the NDDS_Transport_Support_set_builtin_transport_property() API (in-
stead of the PropertyQosPolicy) to set built-in transport properties, it will not work withMonitoring Library if
the user participant is used for sending all the monitoring data (the default settings). As a workaround, you can
configure Monitoring Library to use another participant to publish monitoring data (using the property name
rti.monitor.config.new_participant_domain_id in the PropertyQosPolicy).

[RTI Issue ID MONITOR-222]

8.13. Known Issues with Logging 150

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

8.14.2 Participant’s CPU and memory statistics are per application

The CPU and memory usage statistics published in the DomainParticipant entity statistics topic are per appli-
cation instead of per DomainParticipant.

[RTI Issue ID CORE-7972]

8.14.3 ResourceLimit channel_seq_max_length must not be changed

The default value ofDDS_DomainParticipantResourceLimitsQosPolicy::channel_seq_max_length can’t
be modified if a DomainParticipant is being monitored. If this QoS value is modified from its default value of
32, Monitoring library will fail.

[RTI Issue ID MONITOR-220]

8.15 Other Known Issues

8.15.1 Possible Valgrind still-reachable leaks when loading dynamic libraries

If you load any dynamic libraries, you may see “still reachable” memory leaks in “dlopen” and “dlclose”. These
leaks are a result of a bug in Valgrind (https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352).

This issue affects the Core Libraries, Securıty Plugıns, and TLS Support.

[RTI Issue IDs CORE-9941, SEC-1026, and COREPLG-510]

8.15.2 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) not
supported

Unions with a 64-bit integer discriminator type containing discriminator values that cannot fit in a 32-bit value
are not supported when using the following language bindings:

• C

• Traditional C++

• Modern C++

• C#

• Java

• Python

• DynamicData (regardless of the language)

They are also not supported with ContentFilteredTopics, regardless of the language binding.

Using label values greater than 32-bit may lead to receiving samples with invalid content or to filtering samples
incorrectly.

[RTI Issue ID CORE-11437]

8.15. Other Known Issues 151

https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352

RTI ConnextDDS Core Libraries Release Notes, Version 7.3.0

8.15.3 Creating multiple DataReaders for the same Topic under the same Sub-
scriber configured with Group Ordered Access is not supported

Creating multiple DataReaders for the same Topic under the same Subscriber configured with Presentation-
QosPolicy access_scope = GROUP and ordered_access = TRUE is not supported. If you try to create a
second reader in this situation, it will fail to be created and this error will be printed:

ERROR [0x0101E967,0x5C3A43B1,0x99D71EB7:0x80000309{Entity=Su,Domain=0}|CREATE␣
→˓DR WITH TOPIC FooTopic|LC:Discovery]PRESPsService_createLocalEndpoint:NOT␣
→˓SUPPORTED | Creating more than one reader for the same topic within a␣
→˓single subscriber using GROUP presentation and ordered_access=true.

Instead, in this situation, you will need to use only one DataReader, or you will need to create a new Subscriber
and DataReader in the same DomainParticipant.

[RTI Issue ID CORE-12448]

8.15.4 With DISALLOW_TYPE_COERCION and Types containing unbounded
members, other vendor DataWriters/DataReaders will not match Connext
DataWriters/DataReaders

When reader_qos.type_consistency.kind is set to DISALLOW_TYPE_COERCION, a Connext
DataReader/DataWriter for a type containing unbounded collection members will not match with a
DataReader/DataWriter from another vendor.

A possible workaround is to use ALLOW_TYPE_COERCION or disable type validation by not sending Type-
Object information.

[RTI Issue ID CORE-14367]

8.15. Other Known Issues 152

Chapter 9

Experimental Features

This software may contain experimental features. These are used to evaluate potential new features and obtain
customer feedback. They are not guaranteed to be consistent or supported and they should not be used in
production.

In the API Reference HTML documentation, experimental APIs are marked with <<experimental>>.

Experimental features are also clearly noted as such in the User’s Manual or Getting Started Guide for the
component in which they are included.

Disclaimers:

• Experimental features may be only available in a subset of the supported languages and for a subset of
the supported platforms.

• Experimental features may change in the future.

• Experimental features may or may not appear in future product releases.

• Experimental features should not be used in production.

Please submit your comments and suggestions about experimental features to support@rti.com or via the RTI
Customer Portal (https://support.rti.com/).

153

https://support.rti.com/

	1 Copyrights and Notices
	2 Introduction
	2.1 Additional Documentation

	3 System Requirements
	3.1 Supported Platforms
	3.1.1 RTI Architecture Names
	3.1.2 RTI Infrastructure Services
	3.1.3 RTI Tools
	3.1.4 RTI Security Extensions and Security Plugins SDK
	3.1.5 RTI Connext Add-ons
	3.1.6 Other Connext Professional Features
	3.1.7 Footnotes

	3.2 Requirements when Using Microsoft Visual Studio
	3.3 Disk and Memory Usage

	4 Compatibility
	4.1 Wire Protocol Compatibility
	4.2 Code and Configuration Compatibility
	4.3 Extensible Types Compatibility

	5 What’s New in 7.3.0 LTS
	5.1 Sending and Receiving Data
	5.1.1 Type evolution now allowed with Zero Copy transfer over shared memory when using FlatData types
	5.1.2 Simpler DataReader and DataWriter constructors (Python, Modern C++ APIs)
	5.1.3 Topic constructors now receive std::string_view arguments
	5.1.4 Directly get duration in nanoseconds, instead of calculating it, using new to_nanosec function in Duration class
	5.1.5 JSON now a fully supported data format, enabling easier integration of Connext with other technologies

	5.2 Performance
	5.2.1 Skip deserialization in DynamicData for efficient data handling, using new property
	5.2.2 Compression level applied to built-in Instance State Consistency DataWriter reduced, speeding up response time and reducing CPU usage
	5.2.3 Performance improvement for durable writer history and Persistence Service with high late-joiner activity
	5.2.4 Performance improvement in large systems using SHMEM transport
	5.2.5 More efficient use of network and CPU resources, through support for multiple instances of a UDPv4/UDPv6 transport in a single DomainParticipant

	5.3 Debugging and Logging
	5.3.1 Set exactly the metrics you want to collect for Observability Framework, using new setting in MONITORING QoS policy
	5.3.2 Better understand port collision warnings through improved logging
	5.3.3 New log message warning if sample’s serialized size exceeds MTU and risks not being sent
	5.3.4 Overly long activity context section of log message now truncated instead of generating additional log messages
	5.3.5 Set finer-grained time values for logging properties that take a duration
	5.3.6 Log messages for use by Logger Device contain further useful information: timestamp, source (facility), and message ID
	5.3.7 New logging APIs provide ability to emit custom log messages in Connext applications
	5.3.8 New log warnings when SPDP and SPDP2 participants cannot communicate

	5.4 DDS Ping and DDS Spy
	5.4.1 New option in DDS Ping and DDS Spy to configure Builtin Discovery Plugins
	5.4.2 New option in DDS Ping and DDS Spy to configure participant partitions

	5.5 Miscellaneous
	5.5.1 Python API supports latest version, Python 3.12
	5.5.2 Determine a dynamic type’s minimum serialized sample size using new cdr_serialized_sample_min_size
	5.5.3 Validate a license using a shared library call
	5.5.4 Micro Compatibility Builtin Profile updated to not send serialized types
	5.5.5 EXCLUSIVE_AREA QoS Policy no longer supported; documentation removed

	5.6 Third-Party Software Changes

	6 What’s Fixed in 7.3.0 LTS
	6.1 Discovery
	6.1.1 [Critical] SPDP2 participants with RTPS peers and participant_liveliness_assert_period less than participant_announcement_period may have crashed upon deletion *
	6.1.2 [Major] Rediscovery failed if participant with SPDP2 lost liveliness before receiving remote participant’s configuration message *
	6.1.3 [Major] Participants with SPDP2 failed to discover new participant that was using the same unicast locator as a previously discovered (and not removed) participant *

	6.2 Serialization and Deserialization
	6.2.1 [Critical] Endpoint creation failed for types with large maximum serialized size

	6.3 Usability
	6.3.1 [Major] Incorrect, too-restrictive maximum string size enforced on certain XML fields
	6.3.2 [Major] rtipkginstaller error in Windows when user name had space *

	6.4 Transports
	6.4.1 [Critical] High CPU and several warnings in some cases when using MultiChannel or TransportUnicast QoS
	6.4.2 [Critical] Participant may have received RTPS traffic over SHMEM transport not intended for participant
	6.4.3 [Critical] Undefined behavior of shared memory transport if shared mutex or semaphores removed externally
	6.4.4 [Minor] DLL leak when using UDP/TCP transports

	6.5 Reliability Protocol and Wire Representation
	6.5.1 [Critical] Writer-side filtered samples not marked as acknowledged when application acknowledgement was used

	6.6 Debuggability
	6.6.1 [Major] Thread names longer than 15 characters on QNX platforms caused errors in API calls
	6.6.2 [Major] Wrong information in shared memory ‘send’ error log message
	6.6.3 [Minor] take_discovery_snapshot APIs incorrectly always printed keyed_type as false *

	6.7 Content Filters and Query Conditions
	6.7.1 [Critical] Error message printed for each filtered sample when using writer-side filtering, FlatData, and Zero Copy over shared memory *

	6.8 TopicQueries
	6.8.1 [Critical] Communication could stop when using bounded max_samples and TopicQueries
	6.8.2 [Major] max_samples resource limit not honored in some cases when using an unkeyed topic and TopicQueries

	6.9 Logging
	6.9.1 [Major] Modern C++ Distributed Logger Options header incorrectly included generated header file *
	6.9.2 [Major] Misleading log message when sending specific number of bytes through socket *
	6.9.3 [Major] Missing logging on the standard output for Windows GUI applications
	6.9.4 [Minor] Incorrect error message when setting inconsistent ReaderDataLifeCycleQosPolicy values
	6.9.5 [Minor] Log messages truncated below maximum size of 1024 bytes *
	6.9.6 [Trivial] Error message that was printed when failing to allocate the writer buffer pool was wrong *
	6.9.7 [Trivial] Missing space between Activity Context and message text if Logging Category was printed *

	6.10 Dynamic Data
	6.10.1 [Major] DynamicData equals operation returned incorrect results for sequences of different lengths

	6.11 APIs (C or Traditional C++)
	6.11.1 [Critical] Traditional C++ get_participants() API returned invalid pointer if Monitoring Library 2.0 was enabled
	6.11.2 [Major] Potential error when waiting for samples in C API

	6.12 APIs (Modern C++ API)
	6.12.1 [Major] Potential crash when mixing the C and Modern C++ APIs in the same executable
	6.12.2 [Major] DataReader created with builtin topic not automatically destroyed *
	6.12.3 [Major] Possible link error when building a Windows DLL *
	6.12.4 [Minor] Conversion of invalid Time to integer units caused unexpected behavior

	6.13 APIs (Java)
	6.13.1 [Major] DynamicData API now supports setting and getting wchar fields
	6.13.2 [Major] Possible data serialization error for keyed DataReaders using XCDR2 format
	6.13.3 [Minor] “data_to_string” of DynamicDataTypeSupport failed with exception

	6.14 APIs (Python)
	6.14.1 [Critical] Potential deadlock in applications that call certain APIs and use Entity Listeners
	6.14.2 [Minor] Possible memory leak in DynamicData.loan_value
	6.14.3 [Minor] Converting a SampleInfo object to string failed when source_timestamp was invalid
	6.14.4 [Minor] Some functions didn’t allow keyword arguments

	6.15 APIs (Multiple Languages)
	6.15.1 [Major] Using a Listener and a Waitset in the same application may have resulted in the Waitset waking up unexpectedly
	6.15.2 [Major] Sentinel constant for “invalid” Time contained unexpected value *
	6.15.3 [Minor] IDL printing of Enum TypeCodes was not standards-compliant
	6.15.4 [Minor] Extensibility of unions defined within modules incorrectly printed as IDL *
	6.15.5 [Minor] Incorrect output when printing a union with an enum discriminator as IDL
	6.15.6 [Trivial] First enum label not printed

	6.16 XML Configuration
	6.16.1 [Critical] Potential segmentation fault when using XML application creation if the names of <domain_participant_library> and <domain_library> were the same
	6.16.2 [Major] Micro Compatibility Builtin Profiles updated UDPv4 message_size_max so that samples larger than 8192 were not silently dropped by Micro applications
	6.16.3 [Minor] XML parser did not parse scientific notation

	6.17 Instances
	6.17.1 [Critical] Two log messages used memory after it was freed *
	6.17.2 [Major] Instance state consistency may not have worked for DataReaders using multiple data representations *
	6.17.3 [Major] Indeterminate instance state in systems with multiple DataWriters *

	6.18 Crashes
	6.18.1 [Critical] Crash when deserializing PID_TYPE_OBJECT_LB with class ID of RTI_OSAPI_COMPRESSION_CLASS_ID_NONE
	6.18.2 [Critical] Potential crash while calling DynamicData APIs when running out of system memory
	6.18.3 [Critical] Potential crash when calling DDS_TypeCodeFactory_create_value_tc_ex with a NULL ex parameter
	6.18.4 [Critical] Crash when calling DDS_DataWriter_set_qos with a NULL qos parameter
	6.18.5 [Critical] Crash when performing an illegal call to DDS_DataWriter_get_qos
	6.18.6 [Critical] Crash if SPDP2 participant received unexpected field in participant discovery message *
	6.18.7 [Critical] Crash during DomainParticipant initialization if failure to get local address mapping when using UDPV4_WAN transport
	6.18.8 [Critical] Crash when converting a DynamicData object to a CDR buffer
	6.18.9 [Critical] Potential crash if allocation of RTI Monitoring Library’s publish thread failed
	6.18.10 [Critical] Segmentation fault upon destruction of DDSGuardCondition or DDSWaitset
	6.18.11 [Critical] Crash if participant received endpoint discovery sample and was not able to allocate memory to process it
	6.18.12 [Critical] Possible exception after using a Condition object if it was not explicitly disposed
	6.18.13 [Critical] Potential crash or errors when using SHMEM transport in QNX *
	6.18.14 [Critical] Crash if participant failed to allocate memory for endpoint discovery type plugins
	6.18.15 [Critical] Modern C++ Distributed Logger may hang or crash upon instance finalization *
	6.18.16 [Critical] Invalid multicast locator could cause precondition error or segmentation violation
	6.18.17 [Critical] Crash during DomainParticipant enable operation when running out of system memory
	6.18.18 [Critical] Segmentation fault when a reader was deleted while a remote writer cleanup event was scheduled *
	6.18.19 [Critical] Race condition between the creation of a Replier and the call to its Listener
	6.18.20 [Critical] Undefined behavior when Requesters or Repliers for same service name were concurrently created and deleted
	6.18.21 [Critical] Hang led to crash if Monitoring Library 2.0 was enabled then right away disabled *
	6.18.22 [Critical] Possible crash when creation of TCP Transport failed
	6.18.23 [Critical] Possible crash upon destruction of TCP transport if it was created programmatically and it logged messages

	6.19 Hangs
	6.19.1 [Critical] Undefined behavior when using SHMEM transport in Linux, macOS, QNX, INTEGRITY, and LynxOS
	6.19.2 [Major] Possible deadlock related to failures in DNS Tracker
	6.19.3 [Critical] Segmentation fault or hang when using SHMEM transport on VxWorks 6 or higher platforms

	6.20 Memory Leaks/Growth
	6.20.1 [Critical] Memory leak in best-effort writers when switching from more than one unicast locator to a multicast locator
	6.20.2 [Critical] Concurrency problem in Asynchronous WaitSet’s global instance initialization led to memory and TSS key leaks in multi-threading scenarios
	6.20.3 [Critical] Memory leak when creating a QueryCondition with Parameters
	6.20.4 [Critical] Memory leak when using NetworkCaptureParams
	6.20.5 [Critical] Memory Leak in Java API when printing QoS objects
	6.20.6 [Critical] Asynchronous WaitSet global instance’s thread-specific storage key leaked
	6.20.7 [Major] Memory leak when using XML-Based Application Creation and DynamicData
	6.20.8 [Minor] Memory leak when finalizing DomainParticipantFactory for first time
	6.20.9 [Minor] DomainParticipantFactory was leaked when factory finalization failed
	6.20.10 [Minor] Potential Memory leak upon ContentFilteredTopic creation failure
	6.20.11 [Critical] ODBC DataWriters may have leaked instances when they were replaced if writer-side filtering was used

	6.21 Data Corruption
	6.21.1 [Critical] Undefined behavior using XCDR2 with keyed topic types with key union members
	6.21.2 [Critical] Stack overflow if value of “rti.monitor.config.publish_thread_options” property had 512 or more characters
	6.21.3 [Critical] Failure to send serialized key with dispose when using dds.data_writer.history.memory_manager.fast_pool.pool_buffer_max_size property
	6.21.4 [Critical] Error uncompressing samples when using batching and setting serialize_key_with_dispose to TRUE
	6.21.5 [Critical] SampleInfo’s flag and related_original_publication_virtual_guid may have had invalid information for unkeyed Topics
	6.21.6 [Critical] DataReader on a Topic using an appendable type may have received samples with incorrect value

	6.22 OMG Specification Compliance
	6.22.1 [Critical] Extensible types did not include padding size in length value of each element of RTPS parameter list
	6.22.2 [Critical] Problems exchanging data with other vendors for types containing unbounded members
	6.22.3 [Critical] Non-primitive sequences and arrays serialized incorrectly with XCDR2_DATA_REPRESENTATION when using dds.type_plugin.dheader_in_non_primitive_collections
	6.22.4 [Critical] DataReader on a Topic using an appendable type may have received samples with incorrect value
	6.22.5 [Major] FlatData did not support XCDR2-compliant serialization

	6.23 Entities
	6.23.1 [Critical] FlatData language binding allowed you to specify XCDR data representation

	6.24 Interoperability
	6.24.1 [Minor] JRE version check prevented desktop Java tools from opening

	6.25 Other
	6.25.1 [Critical] Potential bus error when calling print and to_string APIs in TypeCode *
	6.25.2 [Critical] Restarted keyed DataReaders using durable reader state and destination order by source timestamp may have received old samples
	6.25.3 [Critical] Reliable DataReader may have stopped receiving samples from DataWriter using durable writer history and DDS fragmentation
	6.25.4 [Critical] Support for systems running beyond 2038 when using a database and logging
	6.25.5 [Major] Durable writer history failed to restore data in buildable sources
	6.25.6 [Minor] Discovery plugins libraries did not close if creation of plugin failed
	6.25.7 [Trivial] Strings with default size (255) may have printed as unbounded when printing TypeCodes as IDL
	6.25.8 [Trivial] Alias’s annotations may not have printed out correctly

	7 Previous Releases
	7.1 What’s New in 7.2.0
	7.2 What’s Fixed in 7.2.0
	7.2.1 Discovery
	[Critical] SPDP2 participants may not have completed discovery if IP mobility event occurred during discovery *
	[Critical] Crash if initial_peers sequence contained a NULL string
	[Critical] Unbounded memory growth when creating/deleting DomainParticipants *
	[Major] Failure to deserialize participant discovery information incorrectly allowed discovery to complete

	7.2.2 Serialization and Deserialization
	[Critical] Unbounded memory growth when deserializing SPDP discovery sample
	[Critical] Potential unexpected behavior or crash when deserializing SPDP discovery sample
	[Trivial] Wrong error message when deserializing PropertyQos property value and exceeding property_string_max_length resource limit

	7.2.3 Debuggability
	[Major] DataWriter instance statistics were not updated in all cases
	[Trivial] Instance State Consistency QoS was commented out when printed out as XML from code *

	7.2.4 Transports
	[Critical] Ungracefully terminated QNX processes using SHMEM transport prevented startup of new processes due to unclosed POSIX semaphores
	[Critical] Stalled communication when using shared-memory transport
	[Major] Connext started before Windows completed duplicate address detection on network interfaces
	[Minor] QNX applications using shared-memory transport may have led to thread priority inversion issues
	[Minor] Overflow in default TransportMulticastMappingQosPolicy procedure

	7.2.5 Reliability Protocol and Wire Representation
	[Critical] Samples lost by reliable reader acknowledging samples it did not receive after remote writer update
	[Critical] Sample loss when using asynchronous publisher due to missing GAP
	[Major] Inconsistent RTPS protocol versions broadcasted by Connext

	7.2.6 Content Filters and Query Conditions
	[Critical] Instance handling on a DataReader and filtering operations in ContentFilteredTopics, QueryCondition, TopicQueries, and Multi-Channel DataWriters may have failed

	7.2.7 Dynamic Data
	[Major] Problems with int8/uint8 support

	7.2.8 Performance and Scalability
	[Major] Performance issues when using FlatData with payload encryption or compression
	[Major] Transport utilization metrics overflowed in applications with high throughput *
	[Minor] Performance degradation when using FlatData with ContentFilteredTopics

	7.2.9 APIs (C or Traditional C++)
	[Critical] Some DDS_TypeCode operations may have crashed when invalid arguments were used
	[Critical] Several C API DDS_GUID functions did not account for NULL parameters correctly

	7.2.10 APIs (Modern C++ API)
	[Critical] Unexpected rti.connextdds.PreconditionNotMetError when setting optional string members in QoS policies
	[Critical] Move constructors for some of the built-in topic-types were incorrectly implemented
	[Critical] Manually closing some built-in readers could lead to a crash
	[Critical] Incorrect implementation of DynamicDataMemberInfo constructor and assignment may have led to undefined behavior
	[Major] int8_t, uint64_t, int64_t not supported as primitive types in Dynamic Type API
	[Major] Policy getter for rti::core::policy::Monitoring previously missing *

	7.2.11 APIs (Java)
	[Critical] Possible memory leak in DynamicData copy constructor
	[Major] Some ReliabilityQos methods did not consider the instance state consistency QoS *

	7.2.12 APIs (Python)
	[Major] Access to collection elements in some DynamicData accessors was not zero-based

	7.2.13 APIs (Multiple Languages)
	[Major] Looking up a DataReader using the wrong class in Modern C++ or Python did not raise clear exception *
	[Minor] Alias type not obtainable using a QosProvider

	7.2.14 XML Configuration
	[Major] Creating Topic-specific entities from a <qos_profile> using QoS profile inheritance and/or composition returned incorrect values
	[Major] Using languageBinding attribute on union types in XML caused parsing error
	[Minor] configuration_variables tag was not effective
	[Minor] Incorrect parsing of data_representation attribute in XML type definitions

	7.2.15 Instances
	[Major] Instance purging based on source timestamp did not work *
	[Minor] Instances transitioned due to instance state consistency did not respect propagate_dispose_of_unregistered_instances *

	7.2.16 Crashes
	[Critical] Race condition when using multiple threads to enable same DomainParticipant
	[Critical] Possible crash gathering periodic metrics for a resource that was being added or deleted at the same time *
	[Critical] Potential crash when configuring logging verbosity to NDDS_CONFIG_LOG_VERBOSITY_STATUS_LOCAL or higher
	[Critical] Malloc called when handling SIGSEGV
	[Critical] Calling delete_contained_entities APIs could cause a crash in the thread that collects periodic metrics *
	[Critical] Application could crash when disabling and re-enabling Monitoring Library 2.0 due to internal error *
	[Critical] Low-memory conditions could lead to crash on several platforms if allocation of high resolution clock failed

	7.2.17 Entities
	[Critical] Application may have hung when deleting a monitored DDS entity *
	[Major] Monitoring Library 2.0 incorrectly collected both enabled and disabled DDS Entities *
	[Major] Monitoring Library 2.0 did not assert disabled DDS Entities when the Entities were enabled *

	7.2.18 Interoperability
	[Critical] Possible incomplete endpoint discovery when communicating with other DDS vendors

	7.2.19 Vulnerabilities
	[Critical] Out-of-bounds read while deserializing malformed partition parameters from malicious RTPS message *
	User Impact without Security
	User Impact with Security

	[Critical] Out-of-bounds read while deserializing malformed IPv6 locator from malicious RTPS message
	User Impact without Security
	User Impact with Security

	[Critical] Remote modification of DomainParticipant names in unsecure system
	User Impact without Security
	User Impact with Security

	7.2.20 Other
	[Critical] Possible hang in application if something failed while adding a new observable resource *
	[Critical] Application may have hung when event and event snapshot were published simultaneously for same observable resource *
	[Critical] Unable to start Launcher, Admin Console, Code Generator, and Monitor in Windows when the RTI Workspace contained white spaces *
	[Critical] Deadlock issue resolved when disabling Monitoring Library 2.0 during command processing *
	[Major] Native Android applications were not shipped
	[Major] References to missing header file in Connext Professional source bundle
	[Major] Access to an internal field of observable resources was not thread safe *
	[Minor] Running rtisetenv_<arch>.bat caused issues in PATH environment *
	[Minor] Error creating a DataWriter using durable writer history if setting property dds.data_writer.history.odbc_plugin.builtin.sample_cache_max_size to -1
	[Trivial] Connext did not print array dimensions for aliases that were arrays

	7.3 What’s New in 7.1.0
	7.4 What’s Fixed in 7.1.0
	7.4.1 Fixes Related to Discovery
	[Critical] Unbounded memory growth when using domain tags or DomainParticipant partitions
	[Critical] Most up-to-date participant configuration may not have been received by other participants and may have led to discovery not completing
	[Major] Error deleting remote endpoints with specific GUID prefixes using debug libraries
	[Major] Participant failed to assert remote participant if usability of shared memory transport changed *
	[Major] Unexpected warning during discovery when multicast disabled
	[Minor] Potential memory leak when creation of any of the built-in discovery plugins failed
	[Minor] Unexpected, invalid locator propagated within builtin topics

	7.4.2 Fixes Related to Serialization and Deserialization
	[Critical] Unexpected union value when receiving a discriminator that does not select any union member on DataReader’s type
	[Critical] Serialization of samples failed or produced a segmentation fault for types with max serialized size larger than 2GB
	[Critical] Potential sample corruption when deserializing a malformed RTPS message
	[Critical] Unbounded memory growth when deserializing a malformed RTPS message

	7.4.3 Fixes Related to Debuggability
	[Critical] Hang/crash when invoking a DataReader/DataWriter discovery snapshot within a callback function *
	[Major] Unexpected fatal error when number of instances reached the limit *
	[Trivial] Memory leak if network capture initialization failed
	[Trivial] Unexpected log messages at warning verbosity

	7.4.4 Fixes Related to Transports
	[Critical] Possible data loss after a Connext application lost its multicast interfaces or gained its first multicast interface
	[Major] DomainParticipant with non-default metatraffic_transport_priority QoS did not complete discovery
	[Major] TCP Transport did not run with Windows debug libraries when socket_monitoring_kind was set to IOCP *
	[Minor] dds.transport.minimum_compatibility_version property did not properly adjust locator format

	7.4.5 Fixes Related to Reliability Protocol and Wire Representation
	[Critical] Samples not delivered to Required Subscription DataReaders when DataWriter used durable writer history and DataReaders disabled positive ACKs
	[Critical] DataReader may not have received samples that were sent as gapped samples to another DataReader over multicast
	[Critical] Unexpected precondition error with debug libraries on a reliable DataWriter while sending a GAP
	[Minor] DDS fragmentation may have led to more fragments than expected for a sample *

	7.4.6 Fixes Related to Content Filters and Query Conditions
	[Critical] Unexpected “RTIXCdrSampleInterpreter_initializeSampleWInstruction” error log messages when using QueryConditions, ContentFilteredTopics, TopicQueries, or Multi-Channel

	7.4.7 Fixes Related to Dynamic Data
	[Major] DynamicData DataWriters incorrectly serialized optional empty sequences as null

	7.4.8 Fixes Related to APIs
	[Minor] DynamicData method to get member type missing in Modern C++ and C# APIs
	Fixes Related to Modern C++ API
	[Major] banish and subject_name APIs were unresolved in Modern C++ Windows dynamic libraries *
	[Major] Unnecessary small memory allocation in some operations, including read/take
	[Major] close() operation of a ContentFilteredTopic created from XML didn’t work

	Fixes Related to C# API
	[Critical] Exception when disposing a DomainParticipant or when entities were not properly disposed
	[Major] Windows library dependency missing from .NET API NuGet packages *

	Fixes Related to Java API
	[Critical] Java API leaked some objects in certain DomainParticipantFactory operations
	[Major] get_typecode method of a DomainParticipant in Java API failed when the type contained a wstring element

	Fixes Related to Python API
	[Critical] Possible deadlock between creation of a dds.Topic and a listener callback
	[Major] DynamicData accessor for an enum member in a base type failed (Python API)
	[Major] Possible incorrect default values when receiving extensible data
	[Major] Some APIs where missing, incorrectly named, or have been deleted
	Removed types, methods, and fields:
	Renamed types, methods and fields:
	Newly added missing types, methods, and fields:
	Other

	[Major] Listeners may not have been called in some situations

	7.4.9 Fixes Related to XML Configuration
	[Critical] Memory leak after an error parsing XML file with <include> tag
	[Minor] Failed to parse XML configuration file containing type member with useVector attribute
	[Minor] XML composition overwrote system information properties with defaults instead of correct values

	7.4.10 Fixes Related to Request-Reply and RPC
	[Critical] Exceptions sending result of remote operation may have crashed server application
	[Critical] RPC: deadlock when Server::close() was called before Server::run()
	[Critical] Possible unbounded memory growth when creating many Requesters
	[Critical] Memory leak in Java Request-Reply API
	[Critical] Possible data race using Sample and WriteSample classes (Traditional C++ API only)
	[Major] RPC interface evolution did not work

	7.4.11 Fixes Related to Shipped Examples
	[Minor] Hello World TCP example always linked TCP Transport library dynamically

	7.4.12 Fixes Related to Vulnerabilities
	[Critical] Arbitrary read access while parsing malicious RTPS message *
	User Impact without Security
	User Impact with Security

	[Critical] Out-of-bounds read while parsing malicious RTPS message
	User Impact without Security
	User Impact with Security

	[Critical] Out-of-bounds write while parsing malicious RTPS message
	User Impact without Security
	User Impact with Security

	[Critical] Buffer overflow in shared memory if memory was tampered
	User Impact without Security
	User Impact with Security

	[Critical] Out-of-bounds read while uncompressing malformed data from malicious RTPS message
	User Impact without Security
	User Impact with Security

	7.4.13 Fixes Related to Crashes
	[Critical] Rare segmentation fault when deleting DomainParticipant or Publisher containing DataWriters using durable writer history
	[Critical] Segmentation fault when creation of DomainParticipant failed due to lack of resources
	[Critical] Potential hang upon SIGSEGV signal from a Connext application
	[Critical] Creating DynamicDataTypePlugin with TypeCode from discovery and using content filtering caused segmentation fault
	[Critical] Application crash when calling DDS_DataReader_take_discovery_snapshot on a DataReader with a ContentFilteredTopic *
	[Critical] Crash with NULL listeners and non-none status masks in C applications that mixed types with and without Zero Copy
	[Critical] Memory was read after it was freed by deleting a Topic with local logging level enabled
	[Critical] Possible segmentation fault when disabling loopback interface
	[Critical] Segmentation fault could occur if creation of DataReader failed
	[Critical] Potential crash when DomainParticipant deleted after creating DataWriter with automatic liveliness kind
	[Critical] Possible crash on TCP transport when large number of file descriptors were open
	[Critical] Application using Monitoring Libraries may have produced segmentation fault during DataReader creation
	[Critical] Possible segmentation fault when using Monitoring Library

	7.4.14 Other Fixes
	[Critical] Broken communication when DataWriter with transport priority discovered DataReader with multicast receive address
	[Critical] Potential hang upon SIGSEGV signal from a Connext application
	[Critical] Samples could be lost using group order access or collaborative DataWriters
	[Critical] Release 6.1.2 was not FACE compliant
	[Critical] Using dh_param_files leaked memory
	[Critical] Segmentation fault when mixing build types in applications linked against libraries in “Find Package” Cmake script
	[Major] Error sending batch when batch size exceeded transport MTU
	[Major] No more than 100 asynchronous publisher threads could be created
	[Major] Unexpected precondition error while creating a DomainParticipant with debugging libraries using fast database cleanup period
	[Major] In FindPackage script, low_bandwidth_edisc imported target library was missing
	[Minor] Potential memory leak when creation of any of the built-in discovery plugins failed
	[Minor] Problems visualizing participants using Generic.MinimalMemoryFootprint profile with Admin Console
	[Minor] Failure to load a string-based private key leaked memory
	[Minor] CONNEXTDDS_ARCH environment variable in FindPackage script was not picked up correctly
	[Trivial] Incorrect “Supported platforms” documentation section for FindRTIConnextDDS.cmake

	7.5 What’s New in 7.0.0
	7.6 What’s Fixed in 7.0.0
	7.6.1 Fixes Related to Callbacks and Waitsets
	[Critical] Unsafe combinations of masks and Listeners may have led to segmentation fault
	[Critical] Failure calling DDS_Subscriber::get_datareaders in DDS_SubscriberListener::on_data_on_readers callback implementation
	[Critical] Using certain callbacks at DomainParticipant or Publisher level may have led to segmentation fault
	[Major] DDS_SubscriberListener::on_data_on_readers on a participant or subscriber not called when Listener installed after the entity is enabled
	[Major] Unable to assign callback function for on_sample_removed event using Modern C++ API

	7.6.2 Fixes Related to Discovery
	[Critical] Unexpected memory growth when DataReader could not be matched with DataWriter due to unexpected error condition
	[Critical] Possible crash upon discovery of applications with unreachable locators
	[Critical] Communication problems with applications using shared memory on INTEGRITY systems
	[Critical] Unbounded memory growth in Spy when discovering multiple endpoints with the same Topics and types
	[Major] Types containing Typedefs were sent without the typedefs in discovery when using DynamicData
	[Major] Unnecessary discovery traffic related to IP mobility events on interfaces irrelevant to the transport

	7.6.3 Fixes Related to Transports
	[Critical] Communication problems with applications using shared memory on INTEGRITY systems
	[Critical] Race condition could cause unbounded memory growth in TCP Transport Plugin

	7.6.4 Fixes Related to Filtering and TopicQuery
	[Critical] Connext application using filtering feature may have crashed after running out of memory
	[Critical] Creation of a ContentFilteredTopic or reception of TopicQuery samples may have taken long time for complex types
	[Critical] rti::topic::find_registered_content_filters led to infinite recursion
	[Critical] Incorrect results for Unions when using DynamicData or Content Filters
	[Major] Unnecessary repair traffic for DataWriters using TopicQueries and asynchronous publishing
	[Major] Continuous creation of TopicQueries may have led to unnecessary memory fragmentation in OS memory allocator
	[Major] Samples may have been unnecessarily filtered by Connext DataReader when DataWriter was from different DDS vendor
	[Minor] Unnecessary sample filtering on a DataReader for samples already filtered by a DataWriter

	7.6.5 Fixes Related to Group Presentation
	[Critical] Application may not have received samples of coherent set when using GROUP access scope and TRANSIENT_LOCAL durability
	[Critical] Segmentation fault when using GROUP_PRESENTATION_QOS or HIGHEST_OFFERED_PRESENTATION_QOS and setting filter_redundant_samples to FALSE on DataReader
	[Major] Application may stop receiving samples from DataReaders using GROUP_PRESENTATION_QOS

	7.6.6 Fixes Related to XML Configuration
	[Major] Parsing error loading XML configuration file containing a const whose expression refers to an enumerator
	[Major] Parsing error loading an XML configuration file with enum type containing enumerator whose value was an expression
	[Major] Parsing error loading an XML configuration file with an enum type containing an enumerator whose value was an expression referring to another enumerator
	[Minor] Discrepancy between range defined by schema and that defined by API
	[Minor] Parsing error loading XML configuration file with enum type containing enumerator whose value was an expression referring to a const
	[Minor] Type limits not checked for some attributes of XML types definition
	[Trivial] Removed some elements in the XSD that were not supported internally but could be defined in XML
	[Trivial] Builtin Discovery Plugins was not treated as a mask by the XSD file

	7.6.7 Fixes Related to Vulnerabilities
	Fixes related to Connext
	Fixes related to third-party dependencies
	[Critical] Potential crash or leak of sensitive information in Core Libraries XML parser due to vulnerabilities in Expat
	[Critical] Potential memory corruption when using Zlib compression due to vulnerability in Zlib

	7.6.8 Fixes Related to APIs
	[Major] Copy of SampleInfo::coherent_set_info field was not supported
	[Major] Corruption of LoanedDynamicData object when moved in some situations (Modern C++ API only)
	[Major] Calling DynamicData::set_complex_member with an aliased type failed
	[Major] Possible wrong results when adding Time or Duration objects that used very large numbers
	[Major] Java API did not support RtpsReliableReaderProtocol_t.receive_window_size
	[Minor] Input parameters to Property and DataTag helper functions do not have “const”
	[Minor] Standard 64-bit integer types are now supported (Modern C++ API)
	[Minor] Assigning DataWriter and DataReaderQos from a TopicQos caused a build error
	[Minor] In XML-based applications, generated IDL types did not take precedence over XML DynamicTypes (C# API)
	[Minor] Namespaces ignored when a type was explicitly registered in C# for XML-based applications

	7.6.9 Fixes Related to Crashes
	[Critical] DataReader C++ application crashed if it received tampered sample with unsupported encapsulation ID
	[Critical] Segmentation fault after calling DomainParticipant::register_durable_subscription with a group containing a long role_name
	[Critical] Segmentation fault when application using MultiChannel ran out of memory
	[Critical] Application crashed when capturing traffic for a DomainParticipant created before enabling network capture
	[Critical] Possible crash when writing a sample
	[Critical] Potential crash during type registration if system ran out of memory
	[Critical] Segmentation fault after calling DomainParticipant::delete_durable_subscription with a group containing a long role_name
	[Critical] Potential crash or memory corruption if user application using thread-specific storage
	[Minor] Simultaneous deletion of an entity by multiple threads caused a crash when using Java

	7.6.10 Other Fixes
	[Critical] Serialization/deserialization of non-primitive sequences and arrays for XCDR2_DATA_REPRESENTATION did not follow Extensible Types specification
	[Critical] Possible hang when using best-effort writers and asynchronous publishing
	[Critical] Runtime error when using debug libraries for QNX x86 platform
	[Critical] Pushed samples may not have been received by reliable DataReader when DataWriter published Type that supports Zero Copy transfer over shared memory
	[Critical] Potential truncation of application-level acknowledgment response data
	[Critical] Potential Valgrind invalid read when logging a message or enabling heap monitoring
	[Major] Various issues with RtpsReliableWriterProtocol_t::nack_suppression_duration
	[Major] Possible error message printed during Entity disposal
	[Major] Source IP on Spy was not correct when DataWriters with same Topic were on different machines
	[Minor] Unbounded memory growth in Monitoring Library when creating and deleting endpoints
	[Minor] Unexpected behavior when two threads crashed at the same time on Windows systems
	[Minor] DataReaders setting reader_qos.protocol.expects_inline_qos to TRUE incorrectly matched with DataWriters
	[Minor] Writer using durable writer history may not have blocked after send window filled up when disable positive ACKs was enabled
	[Trivial] Error messages displayed that should not have been, when printing DataReaderQoS objects
	[Trivial] Unnecessary sockets created during initialization of library
	[Trivial] Malformed IDL printed if multiple labels used for default case of a union

	8 Known Issues
	8.1 Known Issues with Discovery (SPDP2)
	8.1.1 Features under future consideration for SPDP2
	8.1.2 Participants using SPDP2 and allow_unauthenticated_participants fail to communicate if only one participant fails authentication

	8.2 Known Issues with Serialization and Deserialization
	8.2.1 Some parameters cannot be received multiple times within same SPDP sample
	8.2.2 Connext not compliant with Extended CDR encoding version 2 for types containing arrays and sequences of non-primitive types

	8.3 Known Issues with Usability
	8.3.1 Cannot open USER_QOS_PROFILES.xml in rti_workspace/examples from Visual Studio
	8.3.2 DataWriter’s Listener callback on_application_acknowledgment() not triggered by late-joining DataReaders
	8.3.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communication failure when writing small samples
	8.3.4 Memory leak if Foo:initialize() called twice
	8.3.5 Wrong error code after timeout on write() from Asynchronous Publisher
	8.3.6 Type Consistency enforcement disabled for structs with more than 10000 members
	8.3.7 Escaping special characters in regular/filter expressions not supported in some cases

	8.4 Known Issues with Code Generation
	8.4.1 Examples and generated code for Visual Studio 2017 and later may not compile (Error MSB8036)

	8.5 Known Issues with Instance Lifecycle
	8.5.1 RECOVER_INSTANCE_STATE_CONSISTENCY setting not fully supported by RTI Infrastructure Services
	8.5.2 Persistence Service DataReaders ignore serialized key propagated with dispose updates
	8.5.3 instance_state_consistency_kind QoS cannot be modified before containing entity is enabled

	8.6 Known Issues with Reliability
	8.6.1 DataReaders with different reliability kinds under Subscriber with GROUP_PRESENTATION_QOS may cause communication failure

	8.7 Known Issues with Content Filters and Query Conditions
	8.7.1 Writer-side filtering may cause missed deadline
	8.7.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated correctly

	8.8 Known Issues with TopicQueries
	8.8.1 TopicQueries not supported with DataWriters configured to use batching or Durable Writer History

	8.9 Known Issues with Transports
	8.9.1 AppAck messages cannot be greater than underlying transport message size
	8.9.2 DataReader cannot persist AppAck messages greater than 32767 bytes
	8.9.3 Discovery with Connext Micro fails when shared memory transport enabled
	8.9.4 Communication may not be reestablished in some IP mobility scenarios
	8.9.5 Corrupted samples may be forwarded through Routing Service when using Zero-Copy transfer over shared memory
	Use automatic application acknowledgment
	Ensure that the number of available samples accounts for Routing Service processing time

	8.9.6 Network Capture does not support frames larger than 65535 bytes
	8.9.7 Shared memory transport in QNX 7.0 and earlier can result in priority inversion
	8.9.8 Ungracefully terminated QNX processes using SHMEM transport prevents startup of new processes due to unclosed POSIX semaphores (QNX 7.0 and earlier)

	8.10 Known Issues with FlatData
	8.10.1 FlatData language bindings do not support automatic initialization of arrays of primitive values to non-zero default values
	8.10.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined behavior

	8.11 Known Issues with Coherent Sets
	8.11.1 Some coherent sets may be lost or reported as incomplete with batching configurations
	8.11.2 Copy of SampleInfo::coherent_set_info field is not supported
	8.11.3 Other known issues with coherent sets

	8.12 Known Issues with Dynamic Data
	8.12.1 Conversion of data by member-access primitives limited when converting to types that are not supported on all platforms
	8.12.2 Types that contain bit fields not supported
	8.12.3 Long double not supported for DynamicData in Java API
	8.12.4 Limitation for C# recursive types

	8.13 Known Issues with Logging
	8.13.1 Possible crash when closing a logger device while it is used

	8.14 Known Issues with RTI Monitoring Library
	8.14.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Participant Sends Monitoring Data
	8.14.2 Participant’s CPU and memory statistics are per application
	8.14.3 ResourceLimit channel_seq_max_length must not be changed

	8.15 Other Known Issues
	8.15.1 Possible Valgrind still-reachable leaks when loading dynamic libraries
	8.15.2 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) not supported
	8.15.3 Creating multiple DataReaders for the same Topic under the same Subscriber configured with Group Ordered Access is not supported
	8.15.4 With DISALLOW_TYPE_COERCION and Types containing unbounded members, other vendor DataWriters/DataReaders will not match Connext DataWriters/DataReaders

	9 Experimental Features

