
RTI Persistence Service Release Notes

Version 7.3.0

Contents

1 Copyrights and Notices 1

2 Supported Platforms 3

3 Compatibility 4

4 What’s New in 7.3.0 LTS 5
4.1 Performance improvement for durable writer history and Persistence Service with high

late-joiner activity . 5
4.2 Ability to filter by related source GUID using new <propagate_related_source_guid> tag . . . 5

5 What’s Fixed in 7.3.0 LTS 6
5.1 Crashes . 6

5.1.1 [Critical] Persistence Service could potentially crash if a Durable Subscription name
was longer than 512 characters . 6

5.1.2 [Critical] Crash in Persistence Service when using ContentFilteredTopics and sharing
type codes for discovery . 6

5.2 Memory Leaks/Growth . 6
5.2.1 [Major] Persistence Service could leak a file handle on Windows when purging sam-

ple logs upon startup . 6
5.3 Other . 7

5.3.1 [Critical] Configuring persistence group’s DataWriter QoS to use compression and
XCDR2 encapsulation caused samples to not be received from Persistence Service . 7

5.3.2 [Critical] <content_filter> tag caused segmentation fault in Persistence Service if fil-
ter expression was invalid . 8

5.3.3 [Critical] DataReader stopped receiving samples from Persistence Service
DataWriter that uses DDS fragmentation when Persistence Service ran in PERSIS-
TENT mode . 8

5.3.4 [Critical] Error when receiving compressed batch samples 8
5.3.5 [Minor] <configuration_variables> tag not supported in Persistence Service 9
5.3.6 [Minor] Memory Leak when parsing environment variable in XML that does not exist 9

6 Previous Releases 10
6.1 What’s New in 7.2.0 . 10

6.1.1 Persistence Service compatible with Monitoring Library 2.0 10
6.1.2 Support for dynamic certificate revocation and renewal without needing to restart

Persistence Service . 11

i

6.1.3 New Library API functions in C allow get/set QoS operations on internal Domain-
Participants . 11

6.1.4 New Library API functions in C allow get/set QoS operations on internal Pub-
lisher/Subscriber entities . 11

6.1.5 Persistence Service now allows you to set rtps_app_id, giving you greater control over
value of DomainParticipant’s GUID prefix . 12

6.2 What’s Fixed in 7.2.0 . 12
6.2.1 [Critical] Segmentation fault issue with Persistence Service and Distributed Logger . 12
6.2.2 [Major] Error creating a persistence group DataWriter when setting

dds.data_writer.history.odbc_plugin.builtin.sample_cache_max_size to -1 13
6.2.3 [Minor] <reader_checkpoint_frequency> may not have been applied correctly 13

6.3 What’s New in 7.1.0 . 13
6.3.1 Persistence Service support as a library for all supported architectures 13
6.3.2 Removed ability to share a database connection in Persistence Service and durable

writer history . 14
6.3.3 Third-party software upgrade . 14

6.4 What’s Fixed in 7.1.0 . 14
6.4.1 [Major] Persistence Service stored/forwarded samples multiple times when there

were two or more equivalent versions of a type for a Topic 14
6.4.2 [Major] Unexpected fatal error when number of instances reached the limit * 15
6.4.3 [Minor] Persistence Service XSD schema was broken * 15
6.4.4 Fixes related to vulnerabilities . 15

[Critical] Potential arbitrary SQL query execution when enabling database locking . . 15
6.5 What’s New in 7.0.0 . 16

6.5.1 Support for external databases is discontinued . 16
6.5.2 Default journal_mode and synchronization changed toWAL and NORMAL, respec-

tively . 16
6.5.3 Third-party software upgrade . 17

6.6 What’s Fixed in 7.0.0 . 17
6.6.1 [Critical] Fatal error when persisting unkeyed Topics upon restore or IP mobility event 17
6.6.2 [Major] Samples published out of order from same virtual GUID were dropped . . . 18
6.6.3 [Minor] Schema files not compliant with DDS-XML specification 18

7 Known Issues 19
7.1 Coherent Changes not Propagated as Coherent Set . 19
7.2 TopicQueries not Supported in PERSISTENT Mode . 19
7.3 <comm_ports> not Supported when Using Real-Time WAN Transport 19
7.4 Persistence Service DataReaders Ignore Serialized Key Propagated with Dispose Updates . . 20
7.5 Synchronizing Data Samples between Persistence Service Instances Can Consume Significant

Bandwidth . 20
7.6 Some tags in the XML configuration must be grouped in a strict order 20

8 Available Documentation 21

ii

Chapter 1 Copyrights and Notices

© 2012-2024 Real-Time Innovations, Inc. All rights reserved. Apr 04, 2024

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase, “Your
Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations,
Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publicationmay be reproduced, stored in a retrieval system, or transmitted in any form (including
electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time Innova-
tions, Inc. The software described in this document is furnished solely under and subject to RTI’s standard
terms and conditions available at https://www.rti.com/terms and in accordance with your License Acknowl-
edgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to the extent otherwise
accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party license
terms and conditions, including open source license terms and conditions. Copies of applicable third-party
licenses and notices are located at community.rti.com/documentation. IT IS YOUR RESPONSIBILITY TO
ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES WITH THE CORRESPOND-
ING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations, Inc.
Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding mainte-
nance and support of RTI’s software.

Deprecatedmeans that the item is still supported in the release, but will be removed in a future release. Removed
means that the item is discontinued or no longer supported. By specifying that an item is deprecated in a release,

1

https://www.rti.com/terms
https://community.rti.com/documentation

RTI Persistence Service Release Notes, Version 7.3.0

RTI hereby provides customer notice that RTI reserves the right after one year from the date of such release and,
with or without further notice, to immediately terminate maintenance (including without limitation, providing
updates and upgrades) for the item, and no longer support the item, in a future release.

Technical Support Real-Time Innovations, Inc. 232 E. Java Drive Sunnyvale, CA 94089 Phone: (408)
990-7444 Email: support@rti.com Website: https://support.rti.com/

2

mailto:support@rti.com
https://support.rti.com/

Chapter 2 Supported Platforms

RTI® Persistence Service is included with RTI Connext. If you choose to use it, it must be installed on top of
Connext with the same version number.

See Supported Platforms, in the RTI Connext Core Libraries Release Notes.

RTI tests Persistence Service with a file-system only, using PERSISTENT mode.

3

Chapter 3 Compatibility

Note: For backward-compatibility information between this and previous releases, see the Migration Guide
on the RTI Community Portal (https://community.rti.com/documentation).

4

https://community.rti.com/documentation

Chapter 4 What’s New in 7.3.0 LTS

This section describes new features in Connext 7.3.0 LTS, compared to 7.2.0. For information on new features
in releases 7.0.0, 7.1.0, and 7.2.0, which are all also part of 7.3.0 LTS, see Previous Releases.

4.1 Performance improvement for durable writer history and Persis-
tence Service with high late-joiner activity

You may have experienced performance degradation while using durable writer history and Persistence
Service, particularly in scenarios with high late-joiner activity. This problem was due to the durable
DataWriter not caching repair samples in the durable writer history, leading to excessive database queries
from the different late-joiners. Connext now caches repair samples if the cache has sufficient ca-
pacity (writer_qos.resource_limits.max_samples is less than or equal to writer_qos.
durability.storage_settings.writer_instance_cache_allocation.max_count).

4.2 Ability to filter by related source GUID using new <propagate_re-
lated_source_guid> tag

This release introduces a new tag called <propagate_related_source_guid> under <persistence_group> that
allows propagating and storing the related source GUID associated with the incoming samples to Persistence
Service. Propagating the related source GUID makes it possible for a DataReader receiving samples from
Persistence Service to create a ContentFilteredTopic on this field.

See Creating Persistence Groups for information on the new tag. See SQL Filter Expression Notation for
information on filtering metadata.

5

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/Creating_Persistence_Groups.htm
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/SQL_Filter_Expression_Notation.htm

Chapter 5 What’s Fixed in 7.3.0 LTS

5.1 Crashes

5.1.1 [Critical] Persistence Service could potentially crash if a Durable Subscrip-
tion name was longer than 512 characters

Persistence Service could potentially crash if a Durable Subscription name was longer than 512 characters. This
was due to the absence of bounds checking when performing an internal copy operation.

[RTI Issue ID PERSISTENCE-337]

5.1.2 [Critical] Crash in PersistenceServicewhen usingContentFilteredTopics and
sharing type codes for discovery

Persistence Service could crash if the configuration used ContentFilteredTopics and type information was shared
through discovery via Type Codes.

[RTI Issue ID PERSISTENCE-332]

5.2 Memory Leaks/Growth

5.2.1 [Major] Persistence Service could leak a file handle on Windows when purg-
ing sample logs upon startup

Persistence Service had a resource leak on Windows where a file handle wasn’t closed when purging the sample
logs (see Sample Logging Tags in the RTI Connext Core Libraries User’s Manual) for a Persistence Group upon
startup. Sample log files from a previous execution are typically purged when starting the Persistence Service.

[RTI Issue ID PERSISTENCE-336]

6

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/users_manual/users_manual/Scenario__Slow_Consumer.htm#persistenceadvancedconfiguration_3933927085_374565

RTI Persistence Service Release Notes, Version 7.3.0

5.3 Other

5.3.1 [Critical] Configuring persistence group’s DataWriter QoS to use compres-
sion and XCDR2 encapsulation caused samples to not be received from Per-
sistence Service

QoS of a persistence group did not work. For example:

<persistence_group name="HelloWorldGroup">
<filter>*</filter>
<datawriter_qos>

<representation>
<value>

<element>XCDR2_DATA_REPRESENTATION</element>
</value>
<compression_settings>

<compression_ids>LZ4</compression_ids>
</compression_settings>

</representation>
</datawriter_qos>

</persistence_group>

Using the above configuration could have caused DataReaders to not receive samples from the DataWriter
associated with the persistence group.

For DataReaders using a ContentFilteredTopic, you may have seen the following error in Persistence Service:

DDS_SqlFilter_evaluateOnSerialized:deserialization error: sample"

For DataReaders not using a ContentFilteredTopic, you may have seen the following deserialization error in
your applications:

PRESCstReaderCollator_storeSampleData:deserialize sample error in topic
→˓'MyTopic' with type 'MyType'

For a Routing Service DataReader receiving samples from Persistence Service, youmight have seen the following
error:

DDS_DynamicData2_from_cdr_buffer:deserialization error: sample

[RTI Issue ID PERSISTENCE-318]

5.3. Other 7

RTI Persistence Service Release Notes, Version 7.3.0

5.3.2 [Critical] <content_filter> tag caused segmentation fault in Persistence Ser-
vice if filter expression was invalid

Using the <content_filter> tag in Persistence Service, which applies Content Filters on the incoming
DataWriter samples, crashed if the filter expression was invalid. The expression could have been invalid if:

1. The published topic’s samples didn’t contain the fields specified in the value of <content_filter>.

2. The filter expression specified in the <content_filter> was syntactically incorrect based on the
Queries and Filters Syntax section in the API Reference.

[RTI Issue ID PERSISTENCE-281]

5.3.3 [Critical] DataReader stopped receiving samples from Persistence Service
DataWriter that uses DDS fragmentation when Persistence Service ran in
PERSISTENT mode

A DataReader may have stopped receiving samples from a Persistence Service DataWriter configured to use
DDS fragmentation (asynchronous publishing with samples that exceed the minimum mesage_size_max
across all installed transports) when Persistence Service ran in PERSISTENT mode (the DataWriter stores
the samples on disk). The issue occurred when a sample fragment was lost, which is more likely to occur in
lossy networks.

[RTI Issue ID PERSISTENCE-323]

5.3.4 [Critical] Error when receiving compressed batch samples

Persistence Service failed to deserialize compressed batch samples. You would have seen errors like these:

[0x01013446,0xCA403602,0xE81D6C90:0x80000107{E=DR,
I=24}|RECEIVE FROM 0x01019DBE,0xD54C0C6F,0x1A7264AB:0x80000002]
PRESCstReaderCollator_storeSampleData:!update stream off-
set [0x01013446,0xCA403602,0xE81D6C90:0x80000107{E=DR,
I=24}|RECEIVE FROM 0x01019DBE,0xD54C0C6F,0x1A7264AB:0x80000002]
PRESCstReaderCollator_storeSampleToEntry:!store sample
data [0x01013446,0xCA403602,0xE81D6C90:0x80000107{E=DR,
I=24}|RECEIVE FROM 0x01019DBE,0xD54C0C6F,0x1A7264AB:0x80000002]
PRESCstReaderCollator_newData:!get entries [0x01013446,0xCA403602,
0xE81D6C90:0x80000107{E=DR,I=24}|RECEIVE FROM 0x01019DBE,0xD54C0C6F,
0x1A7264AB:0x80000002] PRESCstReaderCollator_storeSampleData:!update
stream offset [0x01013446,0xCA403602,0xE81D6C90:0x80000107{E=DR,
I=24}|RECEIVE FROM 0x01019DBE,0xD54C0C6F,0x1A7264AB:0x80000002]
PRESCstReaderCollator_storeSampleToEntry:!store sample
data [0x01013446,0xCA403602,0xE81D6C90:0x80000107{E=DR,
I=24}|RECEIVE FROM 0x01019DBE,0xD54C0C6F,0x1A7264AB:0x80000002]
PRESCstReaderCollator_newData:!get entries

[RTI Issue ID PERSISTENCE-321]

5.3. Other 8

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/api/connext_dds/api_cpp2/group__DDSQueryAndFilterSyntaxModule.html

RTI Persistence Service Release Notes, Version 7.3.0

5.3.5 [Minor] <configuration_variables> tag not supported in Persistence Service

The<configuration_variables> tag was visible and accepted by thePersistence Service .xsd file, but it
had no effect: the parsing of an XML file with this tag to set the value of XML-defined environment variables
failed. This problem has been corrected. Now, the <configuration_variables> tag can be used
to define default values for XML-defined environment variables, which will take effect if those environment
variables are not set on the terminal.

For example:

<dds>
<configuration_variables>

<value>
<element>

<name>STORAGE_LOCATION</name>
<value>/tmp/persistence_service_storage</value>

</element>
</value>

</configuration_variables>
<persistence_service name="defaultDisk">

<persistent_storage>
<filesystem>

<directory>$(STORAGE_LOCATION)</directory>
</filesystem>

</persistent_storage>
<participant name="defaultParticipant">

<persistence_group name="persistAll">
<filter>*</filter>
<single_publisher>true</single_publisher>
<single_subscriber>true</single_subscriber>
<datawriter_qos base_name="SystemPersistenceQosLib::QosProfile

→˓"/>
<datareader_qos base_name="SystemPersistenceQosLib::QosProfile

→˓"/>
</persistence_group>

</participant>
</persistence_service>

</dds>

[RTI Issue ID PERSISTENCE-306]

5.3.6 [Minor] Memory Leak when parsing environment variable in XML that does
not exist

When parsing an environment variable in XML, if the environment variable does not exist, Connext logs an
error and terminates parsing of the XML containing the error. The code handling this error condition did
not properly free memory allocated during the parsing of the XML up to the point of the error, resulting in a
memory leak.

[RTI Issue ID PERSISTENCE-309]

5.3. Other 9

Chapter 6 Previous Releases

6.1 What’s New in 7.2.0

6.1.1 Persistence Service compatible with Monitoring Library 2.0

RTI Monitoring Library 2.0 can now be enabled in Persistence Service so that all DDS entities created by this
service will provide monitoring data to RTI Observability Framework.

To enable Monitoring Library 2.0 in Persistence Service, add the XML code snippet shown below to an XML
QoS profile, then run Persistence Service from the folder containing the profile. Add the snippet to any of the
following XML files:

• NDDS_QOS_PROFILES.xml, located in the Persistence Service working directory

• USER_QOS_PROFILES.xml, located in the Persistence Service working directory

• Any XML file included in the NDDS_QOS_PROFILES environment variable

<?xml version="1.0"?>
<dds>

<qos_library name="MonitoringEnabledLibrary">
<qos_profile name="MonitoringEnabledProfile"

is_default_participant_factory_profile="true">
<participant_factory_qos>

<monitoring>
<enable>true</enable>

</monitoring>
</participant_factory_qos>

</qos_profile>
</qos_library>

</dds>

See also:

• How to Load XML-Specified QoS Settings, in the RTI Connext Core Libraries User’s Manual

10

RTI Persistence Service Release Notes, Version 7.3.0

• Monitoring Library 2.0

6.1.2 Support for dynamic certificate revocation and renewal without needing to
restart Persistence Service

A running Persistence Service instance can use the new authentication.crl_file_poll_period.
millisec and authentication.identity_certificate_file_poll_period.
millisec properties in the Securıty Plugıns (RTI Security Plugins) to specify certificate revocations
and renewals without the need to restart the service. (In release 7.3, these two properties are replaced by a
single property, files_poll_interval.) These properties must have a value greater than zero for the
participant to periodically poll the provided security-related files for changes.

For more information, see Advanced Authentication Concepts in the RTI Security Plugins User’s Manual.

6.1.3 New Library API functions in C allow get/set QoS operations on internal Do-
mainParticipants

Persistence Service supports a new set of Library API functions in C that allow updating the QoS valuesDomain-
Participants use to receive and publish data for the Persistence Groups contained in participants (<participant>
is the corresponding tag in the XML configuration). These new APIs can provide additional flexibility in use
cases that require changing a DomainParticipant QoS. For example, you could use them to update:

• QoS properties

• Transport configuration

• Participant partitions

In addition, you can use these APIs to change the configuration of the two DomainParticipants associated with
a <participant> tag in XML separately. This option was not possible using XML.

The new Library API names are:

• RTI_PersistenceService_get_participant_qos

• RTI_PersistenceService_set_participant_qos

For more details, see the Persistence Service API Reference.

6.1.4 New Library API functions in C allow get/set QoS operations on internal Pub-
lisher/Subscriber entities

Persistence Service supports a new set of Library API functions in C that allow updating the QoS values of the
Publisher/Subscriber entities belonging to Persistence Groups (<persistence_group> is the corresponding tag in
the XML configuration). These new APIs can provide additional flexibility in use cases that require changing
the Publisher/Subscriber QoS. For example, you could use them to update:

• QoS properties

• Endpoint partitions

6.1. What’s New in 7.2.0 11

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/addon_products/observability/Connext_Observability_Framework_UsersManual.pdf#library.html
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#advanced-authentication-concepts

RTI Persistence Service Release Notes, Version 7.3.0

The new Library API names are:

• RTI_PersistenceService_get_publisher_qos

• RTI_PersistenceService_set_publisher_qos

• RTI_PersistenceService_get_subscriber_qos

• RTI_PersistenceService_set_subscriber_qos

For more details, see the Persistence Service API Reference.

6.1.5 Persistence Service now allows you to set rtps_app_id, giving you greater
control over value of DomainParticipant’s GUID prefix

Persistence Service now allows you to set the value for rtps_app_id in a DomainParticipant’sWIRE PRO-
TOCOL QoS policy. In previous releases, if you tried to set this value, Persistence Service would log an excep-
tion and override the value with DDS_RTPS_AUTO_ID.

This new capability allows you to have greater control over the value of a DomainParticipant’s GUID prefix.
It can especially be helpful if you want to use your own rtps_app_id to identify the DomainParticipants
created by an instance of Persistence Service by looking at the GUID prefix encapsulated as part of the RTPS
wire packet’s header. For example, a layer 7 load balancer could make routing decisions based on the value of
the rtps_app_id of the DomainParticipant’s GUID prefixes.

Note that Persistence Service still ensures that the GUID prefixes for all its DomainParticipants are unique, even
if they share the same rtps_app_id, by automatically generating the rtps_instance_id, which is the
last part of the GUID prefix. This last part is not user-configurable.

6.2 What’s Fixed in 7.2.0

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

6.2.1 [Critical] Segmentation fault issue with Persistence Service and Distributed
Logger

Previous releases encountered a segmentation fault when using the Persistence Service library. This issue oc-
curred when attempting to use the Distributed Logger after deleting an RTI_PersistenceService ob-
ject. The problem occurred because the call to the RTI_PersistenceService_delete operation was
deleting the Distributed Logger instance.

This problem is now fixed. If the user application creates the Distributed Logger instance instead of relying on
its creation through the <distributed_logger> XML tag by Persistence Service, the deletion of the Persistence
Service instance will no longer attempt to delete it.

[RTI Issue ID PERSISTENCE-297]

6.2. What’s Fixed in 7.2.0 12

RTI Persistence Service Release Notes, Version 7.3.0

6.2.2 [Major] Error creating a persistence group DataWriter when setting
dds.data_writer.history.odbc_plugin.builtin.sample_cache_max_size to -1

Creating a persistence group DataWriter could fail with the following error if the property dds.
data_writer.history.odbc_plugin.builtin.sample_cache_max_size was set to -1 in
the <datawriter_qos>:

"!allocate sample buffer pool"

Even if the DataWriter creation did not fail, the value of dds.data_writer.history.
odbc_plugin.builtin.sample_cache_max_size would be incorrectly applied. In-
stead, it would be set to dds.data_writer.history.odbc_plugin.builtin.
instance_cache_max_size for keyed topics and 1 for unkeyed topics.

This problem has been resolved.

[RTI Issue ID PERSISTENCE-296]

6.2.3 [Minor] <reader_checkpoint_frequency>may not have been applied correctly

There was an issue applying the configuration parameter <reader_checkpoint_frequency> when the value was
different than 1. The desired frequency for storing the PRSTDataReader state might not have been accu-
rately applied, resulting in a delayed storage process. This problem has been resolved.

[RTI Issue ID PERSISTENCE-307]

6.3 What’s New in 7.1.0

6.3.1 Persistence Service support as a library for all supported architectures

This release adds support for Persistence Service Library API (static and dynamic), as an alternative to the
standalone executable available in previous releases. Now you can run a Persistence Service instance within
your application by linking with the new library and using the C API offered by the library on all supported
architectures. Previously this support was available only for INTEGRITY® systems.

For additional information on the Persistence Service Library API, see the Persistence Service API Reference.

For an example of how to use Persistence Service as a library, see the rticonnextdds-examples section onGitHub.

6.3. What’s New in 7.1.0 13

https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//persistence_service/library_api

RTI Persistence Service Release Notes, Version 7.3.0

6.3.2 Removed ability to share a database connection in Persistence Service and
durable writer history

This release removes the ability to share a database connection in RTI Persistence Service (which is done by
setting the tag <share_database_connection> to true for a <persistence_group>). It also removes the ability to
share a database connection when using durable writer history and setting the property dds.data_writer.
history.odbc_plugin.builtin.shared to 1.

Note that sharing a database connection was only allowed for external databases, and support for external
databases was removed in 7.0.0.

6.3.3 Third-party software upgrade

The following third-party software used by Persistence Service has been upgraded:

Third-Party Software Previous Version Current Version
SQLite® 3.39.0 3.39.4

For information on third-party software used by Connext products, see the “3rdPartySoftware” documents in
your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_3rdparty.

6.4 What’s Fixed in 7.1.0

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

6.4.1 [Major] Persistence Service stored/forwarded samples multiple times when
there were two or more equivalent versions of a type for a Topic

Persistence Service stored and forwarded incoming samples multiple times when there were two or more equiv-
alent versions of a type for a given Topic in the system.

Two types are equivalent when they only differ on typedef. For example, MyType andMyType2 are equivalent
in this IDL snippet:

struct MyType {
long m1;

};

typedef long MyLong;

struct MyType2 {
MyLong m1;

};

6.4. What’s Fixed in 7.1.0 14

RTI Persistence Service Release Notes, Version 7.3.0

This problem has been fixed.

[RTI Issue ID PERSISTENCE-269]

6.4.2 [Major] Unexpected fatal error when number of instances reached the limit *

In 7.0.0, an unexpected fatal error could be logged when the following occurred:

• Persistence Service was running in PERSISTENT mode.

• The number of instances reached the max_instances limit set in one of the Persistence Service
DataWriters’ RESOURCE_LIMITS QoS.

• Connext could not find an instance to delete (such as an unregistered one), to replace with the new
instance. So the new instance could not be added.

This log message is expected, but it is not a fatal error, so its verbosity has been updated to WARNING, as
follows:

WriterHistoryOdbcPlugin_createResources:FIND FAILURE | Instance for␣
→˓replacement

WriterHistoryOdbcPlugin_createResources:FIND FAILURE | Instance for␣
→˓replacement
WriterHistoryOdbcPlugin_addInstance:OUT OF RESOURCES | Exceeded the number of␣
→˓instances. Current registered instances (128), maximum number of instances␣
→˓(128)(writer_qos.resource_limits.max_instances)

[RTI Issue ID CORE-13496]

6.4.3 [Minor] Persistence Service XSD schema was broken *

In release 7.0.0, the Persistence Service XSD schema was broken due to an additional closing tag. This was a
regression that only affected the 7.0.0 release. This issue has been fixed.

[RTI Issue ID PERSISTENCE-276]

6.4.4 Fixes related to vulnerabilities

[Critical] Potential arbitrary SQL query execution when enabling database locking

There was the potential for arbitrary SQL query execution in Persistence Service running with database locking
enabled (which is not the default setting). This issue has been fixed.

6.4. What’s Fixed in 7.1.0 15

RTI Persistence Service Release Notes, Version 7.3.0

User Impact without Security

A SQL Injection vulnerability in Persistence Service could have resulted in the following:

• Arbitrary SQL query execution.

• Exploitable from the same host Persistence Service is running.

• Potential impact on integrity and confidentiality of Persistence Service.

• CVSS Base Score: 7.1 HIGH

• CVSS v3.1 Vector: AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N

User Impact with Security

Same impact as described for “User Impact without Security” above.

[RTI Issue ID PERSISTENCE-272]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

6.5 What’s New in 7.0.0

6.5.1 Support for external databases is discontinued

External databases are no longer supported by Persistence Service.

The Release Notes for 6.1.1 included a deprecation notice, in keeping with the Real-Time Innovations, Inc.
Maintenance Policy #4220.

6.5.2 Default journal_mode and synchronization changed to WAL and NORMAL,
respectively

In this release, the default values for the following configuration parameters have changed:

• <journal_mode> has changed from DELETE to WAL

• <synchronization> has changed from OFF to NORMAL

This change provides the best out-of-the-box performance without sacrificing database integrity in the event
of a crash or power failure.

6.5. What’s New in 7.0.0 16

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N

RTI Persistence Service Release Notes, Version 7.3.0

6.5.3 Third-party software upgrade

The following third-party software used by Persistence Service has been upgraded:

Third-Party Software Previous Version Current Version
SQLite® 3.37.2 3.39.0

For information on third-party software used by Connext products, see the “3rdPartySoftware” documents in
your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_3rdparty.

6.6 What’s Fixed in 7.0.0

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

6.6.1 [Critical] Fatal error when persisting unkeyed Topics upon restore or IP mo-
bility event

Persistence Service generated the following fatal error and shut down when persisting unkeyed Topics if all of
the following conditions were met:

• <use_durability_service> was set to true in the <persistence_group> OR
<writer_qos>/<writer_data_lifecycle>/<autopurge_disposed_instances_delay> was set to zero in
the <persistence_group>

• <writer_in_memory_state> was set to false in the <persistence_group>.

• There was an IP mobility event (for instance, an interface went down) OR Persistence Service was started
with the -restore command-line option set to true.

The error backtrace was as follows:

#4 WriterHistoryOdbcPlugin_logAndCheckODBCError ??:? [0x31590B]
#5 WriterHistoryOdbcPlugin_handleODBCError ??:? [0x315CE5]
#6 WriterHistoryOdbcPlugin_beginDisposedInstanceIteration ??:? [0x34B202]

This problem has been resolved.

[RTI Issue ID PERSISTENCE-255]

6.6. What’s Fixed in 7.0.0 17

RTI Persistence Service Release Notes, Version 7.3.0

6.6.2 [Major] Samples published out of order from same virtual GUIDwere dropped

If Persistence Service received samples for a given virtual GUIDwith sequence numbers out of order, Persistence
Service dropped samples with sequence numbers lower than the highest received sequence number. This issue
has been resolved.

[RTI Issue ID PERSISTENCE-250]

6.6.3 [Minor] Schema files not compliant with DDS-XML specification

The following change has been made to the schema file rti_persistence_service.xsd, and
its included files, to make them compliant with the DDS-XML specification (https://www.omg.org/spec/
DDS-XML/1.0/PDF):

• Renamed <participant_qos> to <domain_participant_qos>

The old tag is still accepted by the Connext XML parser and the XSD schema to maintain backward compati-
bility.

[RTI Issue ID PERSISTENCE-213]

6.6. What’s Fixed in 7.0.0 18

https://www.omg.org/spec/DDS-XML/1.0/PDF
https://www.omg.org/spec/DDS-XML/1.0/PDF

Chapter 7 Known Issues

Note: For an updated list of critical known issues, see the Critical Issues List on the RTI Customer Portal at
https://support.rti.com.

7.1 Coherent Changes not Propagated as Coherent Set

Persistence Service will propagate the samples inside a coherent change. However, it will propagate these sam-
ples individually, not as a coherent set.

7.2 TopicQueries not Supported in PERSISTENT Mode

Getting TopicQuery data from a Persistence Service instance configured to store data on disk is not currently
supported.

Note: Getting TopicQuery data from a Persistence Service instance running in TRANSIENT (storing data in
memory) mode is supported.

[RTI Issue ID PERSISTENCE-143]

7.3 <comm_ports> not Supported when Using Real-Time WAN
Transport

Persistence Service can use the RTI Real-Time WAN Transport. However, the port configuration using
<comm_ports> or the property dds.transport.UDPv4_WAN.builtin.comm_ports is not cur-
rently supported by Persistence Service.

[RTI Issue ID PERSISTENCE-206]

19

https://support.rti.com

RTI Persistence Service Release Notes, Version 7.3.0

7.4 Persistence Service DataReaders Ignore Serialized Key Propa-
gated with Dispose Updates

Persistence Service DataReaders ignore the serialized key propagated with dispose updates. Persistence Ser-
vice DataWriters cannot propagate the serialized key with dispose, and therefore ignore the serial-
ize_key_with_dispose setting on the DataWriter QoS.

[RTI Issue ID PERSISTENCE-221]

7.5 Synchronizing Data Samples between Persistence Service In-
stances Can Consume Significant Bandwidth

Synchronizing data samples between Persistence Service instances (using <synchronize_data>1</
synchronize_data>; see Synchronizing of Persistence Service Instances in the Core Libraries User’s
Manual) consumes a significant amount of bandwidth. This is because a Persistence Service instance does
not keep track of which other Persistence Service instances have already received the data, causing unnecessary
traffic.

For example:

1. Start Persistence Service 1 (PS1) with synchronization enabled.

2. Publish samples to PS1.

3. Start PS2 with synchronization enabled.

4. PS1 will send samples to PS2 since synchronization is enabled on both.

5. PS2 will also send samples back to PS1 because it doesn’t know PS1 already received the samples.
Each data sample will be sent N * (N - 1) times on the network for data synchronization to fully complete.

[RTI Issue ID PERSISTENCE-266]

7.6 Some tags in the XML configuration must be grouped in a strict
order

The XML validator tools Persistence Service uses to validate XML configuration files adhere to the XML 1.0
specification, which doesn’t offer a way of defining collections of unordered tags that are both bounded and
unbounded in occurrences.

This limitation is no longer present in XML 1.1. However, there are no C or C++ validators compliant with
the XML 1.1 specification at the time of writing.

[RTI Issue ID CORE-14178]

7.4. Persistence Service DataReaders Ignore Serialized Key Propagated with Dispose
Updates

20

Chapter 8 Available Documentation

The following documentation is provided with the Persistence Service distribution. (The paths show where the
files are located after Persistence Service has been installed in <NDDSHOME>):

• General information, configuration, use cases, and execution of Persistence
Service can be found in the RTI Connext Core Libraries User’s Manual
(<NDDSHOME>/doc/manuals/connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf).

• By default, Persistence Service example code is copied here:

– macOS systems: /Users/<your user name>/rti_workspace/version/examples/persistence_ser-
vice/<language>/hello_world_persistence

– Linux systems: /home/<your user name>/rti_workspace/version/examples/persistence_ser-
vice/<language>/hello_world_persistence

– Windows systems: <your home directory>rti_workspaceversionexamplespersistence_ser-
vice<language>/hello_world_persistence

• Overview of persistence and durability features: Open<NDDSHOME>/README.html, choose your
desired API (C, C++, or Java), then select Modules, RTI Connext API Reference, Durability and
Persistence.

21

	1 Copyrights and Notices
	2 Supported Platforms
	3 Compatibility
	4 What’s New in 7.3.0 LTS
	4.1 Performance improvement for durable writer history and Persistence Service with high late-joiner activity
	4.2 Ability to filter by related source GUID using new <propagate_related_source_guid> tag

	5 What’s Fixed in 7.3.0 LTS
	5.1 Crashes
	5.1.1 [Critical] Persistence Service could potentially crash if a Durable Subscription name was longer than 512 characters
	5.1.2 [Critical] Crash in Persistence Service when using ContentFilteredTopics and sharing type codes for discovery

	5.2 Memory Leaks/Growth
	5.2.1 [Major] Persistence Service could leak a file handle on Windows when purging sample logs upon startup

	5.3 Other
	5.3.1 [Critical] Configuring persistence group’s DataWriter QoS to use compression and XCDR2 encapsulation caused samples to not be received from Persistence Service
	5.3.2 [Critical] <content_filter> tag caused segmentation fault in Persistence Service if filter expression was invalid
	5.3.3 [Critical] DataReader stopped receiving samples from Persistence Service DataWriter that uses DDS fragmentation when Persistence Service ran in PERSISTENT mode
	5.3.4 [Critical] Error when receiving compressed batch samples
	5.3.5 [Minor] <configuration_variables> tag not supported in Persistence Service
	5.3.6 [Minor] Memory Leak when parsing environment variable in XML that does not exist

	6 Previous Releases
	6.1 What’s New in 7.2.0
	6.1.1 Persistence Service compatible with Monitoring Library 2.0
	6.1.2 Support for dynamic certificate revocation and renewal without needing to restart Persistence Service
	6.1.3 New Library API functions in C allow get/set QoS operations on internal DomainParticipants
	6.1.4 New Library API functions in C allow get/set QoS operations on internal Publisher/Subscriber entities
	6.1.5 Persistence Service now allows you to set rtps_app_id, giving you greater control over value of DomainParticipant’s GUID prefix

	6.2 What’s Fixed in 7.2.0
	6.2.1 [Critical] Segmentation fault issue with Persistence Service and Distributed Logger
	6.2.2 [Major] Error creating a persistence group DataWriter when setting dds.data_writer.history.odbc_plugin.builtin.sample_cache_max_size to -1
	6.2.3 [Minor] <reader_checkpoint_frequency> may not have been applied correctly

	6.3 What’s New in 7.1.0
	6.3.1 Persistence Service support as a library for all supported architectures
	6.3.2 Removed ability to share a database connection in Persistence Service and durable writer history
	6.3.3 Third-party software upgrade

	6.4 What’s Fixed in 7.1.0
	6.4.1 [Major] Persistence Service stored/forwarded samples multiple times when there were two or more equivalent versions of a type for a Topic
	6.4.2 [Major] Unexpected fatal error when number of instances reached the limit *
	6.4.3 [Minor] Persistence Service XSD schema was broken *
	6.4.4 Fixes related to vulnerabilities
	[Critical] Potential arbitrary SQL query execution when enabling database locking
	User Impact without Security
	User Impact with Security

	6.5 What’s New in 7.0.0
	6.5.1 Support for external databases is discontinued
	6.5.2 Default journal_mode and synchronization changed to WAL and NORMAL, respectively
	6.5.3 Third-party software upgrade

	6.6 What’s Fixed in 7.0.0
	6.6.1 [Critical] Fatal error when persisting unkeyed Topics upon restore or IP mobility event
	6.6.2 [Major] Samples published out of order from same virtual GUID were dropped
	6.6.3 [Minor] Schema files not compliant with DDS-XML specification

	7 Known Issues
	7.1 Coherent Changes not Propagated as Coherent Set
	7.2 TopicQueries not Supported in PERSISTENT Mode
	7.3 <comm_ports> not Supported when Using Real-Time WAN Transport
	7.4 Persistence Service DataReaders Ignore Serialized Key Propagated with Dispose Updates
	7.5 Synchronizing Data Samples between Persistence Service Instances Can Consume Significant Bandwidth
	7.6 Some tags in the XML configuration must be grouped in a strict order

	8 Available Documentation

