
RTI Recording Service

User's Manual

Version 7.3.0

Contents

1 Copyrights and Notices 2

2 Introduction 4
2.1 Introduction . 4
2.2 The Basics . 4
2.3 Paths Mentioned in Documentation . 5

3 Installation 7

4 Recording Service 8
4.1 Usage . 8

4.1.1 Starting Recording Service . 8
4.1.2 Stopping Recording Service . 9
4.1.3 Recording Service Command-Line Parameters . 9
4.1.4 Controlling Recording Service’s Operation Mode 10

Controlling Buffer Size in Buffering Mode . 11
Configuring In-Memory Buffer Size . 11

4.2 Operating System Daemon . 12
4.3 Configuration . 12

4.3.1 Builtin Configuration of Recording Service . 12
4.3.2 XML Tags for Configuring Recording Service . 13
4.3.3 Recording Service Tag . 14

Example: Specify a Recording Service Configuration in XML 15
4.3.4 Administration . 17
4.3.5 Monitoring . 18
4.3.6 Storage . 18

SQLite . 20
Plugin . 25
Instance Indexing . 26

4.3.7 DomainParticipant . 26
4.3.8 Session . 28
4.3.9 Topic Group . 30
4.3.10 Topic . 31
4.3.11 Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 32

Example: Configuration to enable both FlatData and Zero Copy transfer over shared
memory . 32

4.3.12 Plugins . 33

i

4.3.13 Enabling Distributed Logger . 34
4.3.14 Support for Securıty Plugıns (RTI Security Plugins) 34

Example: Configuring a Recorder Instance using Security 34
Example: Configuring Recording Service to use a Certificate Revocation List (CRL) . 36
Example: Configuring Recording Service for Dynamic Certificate Renewal 39

4.3.15 Recording Service Builtin Configuration Details 41
4.4 Remote Administration . 42

4.4.1 Enabling Remote Administration . 43
4.4.2 Available Service Resources . 43

Example . 43
4.4.3 Remote API Overview . 44
4.4.4 Recording Service . 44
4.4.5 Storage . 46

4.5 Monitoring . 47
4.5.1 Overview . 47

Enabling Service Monitoring . 47
Monitoring Types . 48

4.5.2 Monitoring Metrics Reference . 49
Service . 49
Session . 51
TopicGroup . 52
Topic . 53

4.6 Tutorials . 54
4.6.1 Getting Started with Recording Service and Shapes Demo 54

Edit the Configuration . 55
Start Shapes Demo . 56
Start Recording Service . 58
View the Data in Sqlite3 . 58

4.6.2 Using Recording Service and Admin Console . 59
Configuration . 59
Start Recording Service . 59
Start Shapes Demo . 59
Viewing with Admin Console . 59
Administering with Admin Console . 61

4.6.3 Using Recording Service as a Library . 64
Include files . 64
Using the RecordingService class . 65

4.6.4 Plugging in Custom Storage . 66
Custom Storage API Overview . 66

4.6.5 Accessing JSON samples through SQL . 67
4.6.6 Controlling Recording Service Remotely from an Application 67
4.6.7 Listing the Timestamp Tags in a Recording . 68

4.7 Troubleshooting . 69
4.7.1 Verbosity . 69

5 Replay Service 70
5.1 Usage . 70

5.1.1 Starting Replay Service . 70

ii

5.1.2 Stopping Replay Service . 71
5.1.3 Replay Service Command-Line Parameters . 71
5.1.4 Replay Service Runtime Behavior . 72
5.1.5 Working With Large Data . 72
5.1.6 Choosing the Sample Order for Replaying Data . 73
5.1.7 Recreating the State of the World when Replaying (Replaying Instance History) . . . 73
5.1.8 Jumping in Time while Replaying . 75
5.1.9 Using Debug Mode while Replaying . 75

5.2 Operating System Daemon . 76
5.3 Configuration . 76

5.3.1 XML Tags for Configuring Replay Service . 76
5.3.2 Replay Service Tag . 77

Example: Specify a Replay Service Configuration in XML 81
5.3.3 Administration . 82
5.3.4 Monitoring . 83
5.3.5 Storage . 83

SQLite . 84
Plugin . 85

5.3.6 Legacy . 86
5.3.7 Domain Mapping . 86
5.3.8 DomainParticipant . 87
5.3.9 Playback . 89

Debug mode . 91
5.3.10 Data Selection . 92
5.3.11 Time Range . 92
5.3.12 Session . 93
5.3.13 Topic Group . 95
5.3.14 Topic . 96
5.3.15 Plugins . 97
5.3.16 Support for Securıty Plugıns . 98

Example: Configuring a Replay Instance using Security 98
Example: Configuring Replay Service to use a Certificate Revocation List (CRL) . . . 100
Example: Configuring Replay Service for Dynamic Certificate Renewal 102

5.4 Remote Administration . 105
5.4.1 Enabling Remote Administration . 105
5.4.2 Available Service Resources . 105
5.4.3 Remote API Overview . 106
5.4.4 Replay Service . 106

5.5 Monitoring . 114
5.5.1 Overview . 114

Enabling Service Monitoring . 114
Monitoring Types . 114

5.5.2 Monitoring Metrics Reference . 115
Service . 115
Session . 118
TopicGroup . 119
Topic . 120

5.6 Tutorials . 121

iii

5.6.1 Example: Getting Started with Replay and Shapes Demo 121
Start Shapes Demo and Subscribe to Squares . 121
Start Replay Service . 121

5.6.2 Example: Replaying Data at a Different Rate . 121
Edit the Replay Configuration . 121
Start Shapes Demo . 123
Start Replay Service . 123

5.6.3 Example: Plugging in Custom Storage . 123
Custom Storage API Overview . 123

5.6.4 Using Timestamp Tags with Replay Service . 124
5.6.5 Jump in time in Replay Service . 125
5.6.6 Using Debug mode in Replay Service . 126
5.6.7 Instance History replay . 128

5.7 Troubleshooting . 130
5.7.1 No Input File . 130
5.7.2 Table Not Found Errors . 130
5.7.3 Receiving the data twice . 131

6 Converter 132
6.1 Usage . 132

6.1.1 Starting Converter . 132
6.1.2 Converter Command-Line Parameters . 133
6.1.3 Working With Large Data . 133

6.2 Converter Configuration . 134
6.2.1 How to Load the XML Configuration . 134
6.2.2 XML Syntax and Validation . 135
6.2.3 Builtin Configuration of Converter . 136
6.2.4 XML Tags for Configuring Converter . 136
6.2.5 Converter Tag . 137

Example: Specify a Configuration in XML . 138
6.2.6 Input Storage . 140
6.2.7 Output Storage . 140
6.2.8 SQLite . 141
6.2.9 CSV . 142
6.2.10 Fileset . 143
6.2.11 Rollover . 145
6.2.12 Legacy . 145
6.2.13 Domain Mapping . 146
6.2.14 Plugin . 146
6.2.15 Data Selection . 147
6.2.16 Time Range . 147
6.2.17 DomainParticipant . 148
6.2.18 Session . 148
6.2.19 Topic Group . 149
6.2.20 Topic . 150
6.2.21 Converter’s Builtin Configuration Details . 151

6.3 Tutorials . 152
6.3.1 Using Timestamp Tags with Converter . 152

iv

6.4 Troubleshooting . 153
6.4.1 Table Not Found Errors . 153

7 XML Converter 154
7.1 Running the XML converter . 154
7.2 XMLConverter Command-Line Parameters . 154

8 Storage Utility Plugins 155
8.1 Storage Utility Plugins . 155

8.1.1 CSV . 155
Mapping a data sample into columns . 156

8.2 Tutorials . 159
8.2.1 Using the CSV storage utility plugin with Converter 159

Setup . 159
Execution . 159

9 Indexing Application 161
9.1 Indexing Instances . 161
9.2 Indexing SQLite Tables . 161
9.3 Running the Indexer . 162
9.4 Indexer Command-Line Parameters . 162

10 Software Development Kit 163

11 Common Infrastructure 164
11.1 Configuring RTI Services . 164

11.1.1 How to Load and Select an XML Configuration 164
Loading from Files . 164
Loading from In-Memory Strings . 165
Selecting which Configuration to Run . 166
Default Files . 167
XML Syntax and Validation . 168
Listing Available Configurations . 169
Configuration Variables . 170

11.1.2 How to Load Default QoS Profiles . 171
11.1.3 How to Set Logging Properties . 171

Command-Line Options . 172
Library API . 172
XML Configuration . 172

11.1.4 How to Run as an Operating System Daemon . 173
Linux and macOS Systems . 173
Windows Systems . 174

11.1.5 How to use a License File with RTI Services . 175
11.1.6 Key Terms . 175

11.2 Application Resource Model . 176
11.2.1 Example: Simple Resource Model of a Connext Application 176
11.2.2 Resource Identifiers . 177

Escaped Identifiers . 178

v

Example: Resource Identifiers of a Generic Connext Application 178
Example: Resource Identifiers Generated from XML Entity Model 179

11.3 Remote Administration Platform . 179
11.3.1 Remote Interface . 180

Standard Methods . 181
Custom Methods . 181

11.3.2 Communication . 182
Reply Sequence . 184
Example: Controlling services remotely from a Connext Application 184

11.3.3 Common Operations . 184
Create Resource . 185
Get Resource . 185
Update Resource . 186
Set Resource State . 187
Get Resource State . 188
Delete Resource . 188

11.4 Monitoring Distribution Platform . 189
11.4.1 Distribution Topic Definition . 189

Example: Monitoring of Generic Application . 191
11.4.2 DDS Entities . 193
11.4.3 Monitoring Metrics Publication . 193

Configuration Distribution Topic . 193
Event Distribution Topic . 193
Periodic Distribution Topic . 194

11.4.4 Monitoring Metrics Reference . 194
Statistic Variable . 194
Host Metrics . 195
Process Metrics . 196
Base Entity Resource Metrics . 197
Network Performance Metrics . 198
Thread Metrics . 198

11.5 Plugin Management . 199
11.5.1 Shared Library . 200

Configuration . 200
11.5.2 Library API . 202

12 Release Notes 203
12.1 Supported Platforms . 203
12.2 Compatibility . 203
12.3 What’s New in 7.3.0 LTS . 203

12.3.1 Support for RTI FlatData and Zero Copy transfer over shared memory with discov-
ered types . 203

12.4 What’s Fixed in 7.3.0 LTS . 204
12.4.1 Data Corruption . 204

[Critical] Recording Service stored wrong XCDR version into SQLite databases * . . 204
12.5 Previous Releases . 204

12.5.1 What’s New in 7.2.0 . 204
Recordings converted to CSV can include the Source timestamp 205

vi

Support for dynamic certificate renewal . 205
Support for dynamic certificate revocation . 205
Third-party software changes . 206

12.5.2 What’s New in 7.1.0 . 206
Third-Party Software Upgrades . 206

12.5.3 What’s Fixed in 7.1.0 . 206
[Critical] Recording Service reported an exception when recording or replaying type

registered as a union . 206
[Critical] Recording Service Crashed if -maxObjectsPerThread set too small 207
Fixes Related to Vulnerabilities . 207
Fixes Related to Usability . 208

12.5.4 What’s New in 7.0.0 . 208
Ability to replay data in reverse order . 208
New tags to replay data with original sample info . 209
Ability to store DomainParticipant partitions . 209
Third-party software upgrades . 209

12.5.5 What’s Fixed in 7.0.0 . 209
[Minor] Schema files not compliant with DDS-XML specification 209

12.6 Known Issues . 210
12.6.1 Recording Service may Fail when Current Working Directory in c:\Program Files . . 210
12.6.2 Some tags in the XML configuration must be grouped in a strict order 210

Index 211

vii

RTI Recording Service Documentation, Version 7.3.0

Welcome to RTI® Recording Service, an RTI Connext application that records and replays DDS Topics and
discovery data.

Contents 1

Chapter 1

Copyrights and Notices

© 2011-2024 Real-Time Innovations, Inc. All rights reserved. April 2024

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase, “Your
Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations,
Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publicationmay be reproduced, stored in a retrieval system, or transmitted in any form (including
electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time Innova-
tions, Inc. The software described in this document is furnished solely under and subject to RTI’s standard
terms and conditions available at https://www.rti.com/terms and in accordance with your License Acknowl-
edgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to the extent otherwise
accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party license
terms and conditions, including open source license terms and conditions. Copies of applicable third-party
licenses and notices are located at community.rti.com/documentation. IT IS YOUR RESPONSIBILITY TO
ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES WITH THE CORRESPOND-
ING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

2

https://www.rti.com/terms
https://community.rti.com/documentation

RTI Recording Service Documentation, Version 7.3.0

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations, Inc.
Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding mainte-
nance and support of RTI’s software.

Deprecatedmeans that the item is still supported in the release, but will be removed in a future release. Removed
means that the item is discontinued or no longer supported. By specifying that an item is deprecated in a release,
RTI hereby provides customer notice that RTI reserves the right after one year from the date of such release and,
with or without further notice, to immediately terminate maintenance (including without limitation, providing
updates and upgrades) for the item, and no longer support the item, in a future release.

Technical Support Real-Time Innovations, Inc. 232 E. Java Drive Sunnyvale, CA 94089 Phone: (408)
990-7444 Email: support@rti.com Website: https://support.rti.com/

3

mailto:support@rti.com
https://support.rti.com/

Chapter 2

Introduction

2.1 Introduction

RTI Recording Service includes the following tools:

• Recording Service, an RTI Connext DDS application that records Topics and discovery data. Recording
Service records updates to data along with a timestamp, so you can view or replay updates to data in your
system as they occur over time. Recorded data is stored in SQLite® files by default. Recording Service
also has an API to record to a custom data store.

• Replay Service, an application that can play back data recorded by Recording Service. Replay Service also
has an API to allow plugging in custom storage.

• Converter, an application that converts binary (serialized) recorded data to deserialized data that can be
viewed and queried. The most efficient way to record data is in serialized form. Converter allows data to
be recorded efficiently, then post-processed into a queryable form. Converter also provides APIs to plug
in custom storage.

2.2 The Basics

Recording Service is used when you need to record updates to system data over a period of time, and to access
that data by time. One example of when you might use the Recording Service: if you are testing your system,
you can use Recording Service to record all DDS data updates that occur during a particular test run. Then you
can use a database tool or Replay Service to view what happened at specific times during your test.

Recording Service’s builtin database is a SQLite file. Recording Service can store data in the SQLite database
in two formats:

• CDR serialized format: This is the format in which data is sent over the network, so it is the most efficient
way to store data. It is binary, so it is not queryable.

• JSON format: To store data this way, Recording Service must convert between the network format and
the JSON format. This is queryable, but comes at a performance cost.

4

RTI Recording Service Documentation, Version 7.3.0

Recording Service also provides an API that allows you to implement your own storage backend. You will
receive the data in serialized format, then use Connext DDS dynamic-data APIs to deserialize the data.

Figure 2.1: Recording Service receives DDS samples over the network and records them to storage, based on
their timestamps

Replay Service works with data recorded by Recording Service. It uses the timestamps of the recorded data to
replay the data back into a DDS system at the original offsets between recorded timestamps. Replay Service also
offers an API to retrieve your data from the storage of your choice to be replayed.

Figure 2.2: Replay Service retrieves stored data samples from storage and replays it over DDS, maintaining the
original timing of the data

Converter is a tool that can convert between the data formats used by Recording Service. Currently, the only
builtin formats supported by Recording Service are the CDR and JSON formats described above, within a
SQLite database. Converter allows you to record data in the efficient CDR format and later convert to a
queryable JSON format.

2.3 Paths Mentioned in Documentation

This documentation refers to:

• <NDDSHOME> This refers to the installation directory for Connext DDS.

The default installation paths are:

– macOS® systems: /Applications/rti_connext_dds-version

– Linux® systems, non-root user: /home/your user name/
rti_connext_dds-version

2.3. Paths Mentioned in Documentation 5

RTI Recording Service Documentation, Version 7.3.0

Figure 2.3: Converter takes serialized (binary) data and converts it to deserialized JSON data

– Linux systems, root user: /opt/rti_connext_dds-version

– Windows® systems, user without Administrator privileges: <your home directory>\
rti_connext_dds-version

– Windows systems, user with Administrator privileges: C:\Program Files\
rti_connext_dds-version

You may also see $NDDSHOME or %NDDSHOME%, which refers to an environment variable set to the
installation path.

Whenever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users: When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quo-
tation marks. For example: “C:\Program Files\rti_connext_dds-version\bin\
rticlouddiscoveryservice.bat”

Or if you have defined the NDDSHOME environment variable: "%NDDSHOME%\bin\
rticlouddiscoveryservice.bat"

• <path to examples> By default, examples are copied into your home directory the first time you
run RTI Launcher or any script in <NDDSHOME>/bin. This document refers to the location of the
copied examples as <path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:

– macOS systems: /Users/your user name/rti_workspace/version/examples

– Linux systems: /home/your user name/rti_workspace/version/examples

– Windows systems: your Windows documents folder\rti_workspace\
version\examples. Where 'your Windows documents folder' depends on your
version of Windows. For example, on Windows 10 systems, the folder is C:\Users\your
user name\Documents.

2.3. Paths Mentioned in Documentation 6

Chapter 3

Installation

RTI Recording Service comes pre-installed as part of RTI Connext DDS. Contact support@rti.com for informa-
tion on how to obtain a package for your platform.

7

mailto:support@rti.com

Chapter 4

Recording Service

4.1 Usage

This section explains how to run Recording Service from a command line. In particular, it describes:

• How to Start Recording Service (Section 4.1.1)

• How to Stop Recording Service (Section 4.1.2)

• Recording Service command-line parameters (Section 4.1.3)

Recording Service can also be deployed as a native library linked into your application on select architectures.
For details on using Recording Service as a library, see Section 4.6.3.

4.1.1 Starting Recording Service

Recording Service runs as a separate application. The script to run the executable is in <NDDSHOME>/bin.
(See Section 2.3 for the path to NDDSHOME.)

To start Recording Service with a default configuration, enter:

rtirecordingservice

This command will run Recording Service indefinitely until you stop it.

You can run Recording Service using the command-line parameters defined below.

Recording Service is pre-loaded with a builtin configuration that has default settings. See Section 4.3.15.

Note: To run Recording Service on a target system (not your host development platform), you must first select
the target architecture. To do so, either:

• Set the environment variable CONNEXTDDS_ARCH to the name of the target architecture. (Do this for
each command shell you will be using.)

8

RTI Recording Service Documentation, Version 7.3.0

• Or set the variable connextdds_architecture in the file rticommon_config.[sh/bat]
to the name of the target architecture. (The file is resource/scripts/rticommon_config.
sh on Linux or macOS systems, resource/scripts/rticommon_config.bat on Windows
systems.) If the CONNEXTDDS_ARCH environment variable is set, the architecture in this file will be
ignored.

4.1.2 Stopping Recording Service

To stop Recording Service, press Ctrl-c. Recording Service will perform a clean shutdown.

4.1.3 Recording Service Command-Line Parameters

The following table describes all the command-line parameters available in Recording Service. To list the
available parameters, run rtirecordingservice -help.

All command-line parameters are optional; if specified, they override the values of any corresponding set-
tings in the loaded XML configuration. See Section 4.3.2 for the XML elements that can be overridden with
command-line parameters.

Table 4.1: Recording Service Command-Line Parameters
Parameter Description
-appName <string> Application name used to identify this execution for remote ad-

ministration and to name the Connext DDS participant.
-cfgFile <string> Semicolon-separated list of configuration file paths. Default: un-

specified
-cfgName Configuration name used to find a <recording_service>

matching tag in the configuration file.
-domainIdBase <int> This value is added to the domain IDs in the

<domain_participant> tag in the configuration file.
For example, if you set -domainIdBase to 50 and use domain IDs
0 and 1 in the configuration file, then Recording Service will use
domains 50 and 51 for recording (though the recorded data will
appear as though it was recorded in domains 0 and 1). Default: 0

-D<name>=<value> Defines a variable that can be used as an alternate replace-
ment for XML environment variables, specified in the form
$(VAR_NAME). Note that definitions in the environment take
precedence over these definitions.

-help Shows this help.
-heapSnapshotDir Output directory where the heap monitoring snapshots are

dumped. The filename format is: RTI_heap_<appName>_<pro-
cessId>_<index>.log

-heapSnapshotPeriod <sec> Period at which heap monitoring snapshots are dumped. Enables
heap monitoring if > 0. Default: 0 (disabled)

continues on next page

4.1. Usage 9

RTI Recording Service Documentation, Version 7.3.0

Table 4.1 – continued from previous page
Parameter Description
-logFormat <format> A mask to configure the format of the log messages for both

Recording Service and Connext DDS:
• DEFAULT - Print message, method name, log level, activ-
ity context, and logging category

• TIMESTAMPED - Print message, method name, log level,
activity context, logging category, and timestamp

• MINIMAL - Print only message number and message lo-
cation

• MAXIMAL - Print all available fields
Default: DEFAULT

-maxObjectsPerThread <int> Maximum number of thread-specific objects that can be cre-
ated. Default: Same as the Connext DDS default for max_ob-
jects_per_thread

-remoteAdministrationDomainId
<int>

Enables remote administration and sets the domain ID for com-
munication. Default: Remote administration is not enabled.

-remoteMonitoringDomainId <int> Enables remote monitoring and sets the domain ID for status pub-
lication. Default: Remote monitoring is not enabled.

-verbosity <ser-
vice_level>[:<dds_level>]

Controls what type of messages are logged. <service_level> is the
verbosity level for the service logs and <dds_level> is the verbosity
level for the DDS logs. Both can take any of the following values:

• SILENT
• ERROR
• WARN
• LOCAL
• REMOTE
• ALL

Default: ERROR:ERROR
-version Prints the program version and exits.

4.1.4 Controlling Recording Service’s Operation Mode

Recording Service can operate in different modes, regarding when data are written into disk.

In standard operation mode, Recording Service will store samples as they arrive. This is a purely reactive model.
This mode is the default mode and is the best mode for scalability. To further improve performance and
scalability, standard operation mode can be used in combination with the <thread_pool> settings for Sessions
(see Section 4.3.8 for more information). These settings allow you to control the number of worker threads
that process the data events, as well as the thread priorities, mask, etc.

In flush mode, you can define a flush period (see Section 4.3.6 for more information on how to enable it). When
a flush period is defined, Recording Service will operate in a periodic fashion. This means that user-data samples
will be written to disk only every time the flush period elapses.

The third operation mode is called buffering mode. This mode is controlled by setting the <enable_buffer-
ing_mode> in the storage configuration of the service (see Section 4.3.6). Unlike the other modes above, when

4.1. Usage 10

RTI Recording Service Documentation, Version 7.3.0

operating in buffering mode, Recording Service will not do any writing to disk automatically. Instead, it will
buffer samples in memory and wait for remote administration flush() commands to actually write them to disk.

Controlling Buffer Size in Buffering Mode

As mentioned above, there is an operation mode in Recording Service called buffering mode. This mode will
not perform any automatic writing of samples to disk. Instead, this mode will wait for the reception of remote
flush() commands that you send on demand.

Note: Recording Service will still write DDS discovery information automatically, even if buffering mode is
enabled. This is done to ensure compatibility with Replay Service and Converter, by making sure no discovery
samples are missing in the database files. Replay Service and Converter rely on this information to be able to
function properly.

In between reception of flush commands, Recording Service will buffer samples in RAM memory, using the
sample caches in its DataReaders. This buffering can lead to situations of unlimited memory growth. To avoid
this problem, there are two options:

• Issue remote flush commands at a rate that allows Recorder’s writing to disk to keep up with the sample
read rate. This rate is complex to calculate in many scenarios; if you find that you are sending flushing
commands periodically, then it’s better to just use the <flush_period> setting and operate in periodic
mode.

• Limit the size of the DataReader caches. This will allow the caches to work as a configurable, finite
circular buffer with a fixed, immutable, oldest-first replacement policy. The following section explains
the QoS properties used to control the DataReader’s cache.

Configuring In-Memory Buffer Size

The most important policy to work with is the History QoS policy. There are optional settings that can help
improve the performance or that can affect the History QoS. Assuming that the intent is to configure Recording
Service to keep a buffer of size N, the following table shows the DataReader QoS settings that should be used
or are desirable (defined as optional):

Table 4.2: Recording Service Buffer Size Control
QoS Policy Value
History.kind KEEP_LAST
History.depth N
(Optional) ResourceLimits.max_samples N
(Optional) ResourceLimits.
max_instances

N

(Optional) ResourceLimits.
max_samples_per_instance

N

(Optional) ResourceLimits.
initial_samples

N

(Optional) ResourceLimits.
initial_instances

N

4.1. Usage 11

RTI Recording Service Documentation, Version 7.3.0

Setting initial samples and instances is optional but recommended for performance because setting these prop-
erties will force the DataReader queue to start with a size of N samples directly, avoiding memory allocations
during Recording Service’s operation.

Another important setting to take into account is ReaderResourceLimits.
max_samples_per_read. This setting defines the maximum number of samples that a single read
or take operation can return in one go. This setting will interact with the size of the buffer when a flush remote
command is issued. When this setting is smaller than the buffer’s size, N, then Recording Service will need to
generate several writing events, until N is reached or until there are no more samples to read.

See the following sections in the RTI Connext DDS Core Libraries User’s Manual for more information on
these settings:

• History QoS Policy

• Resource Limits QoS Policy

• Reader Resource Limits QoS Policy

4.2 Operating System Daemon

See generic instructions in How to Run as an Operating System Daemon.

4.3 Configuration

This section provides a reference for the XML elements that comprise a Recording Service configuration. For
details on how to provide XML configurations to Recording Service. refer to Configuring RTI Services. This
chapter describes how to compose an XML configuration.

Note: Recording Service makes use of XSD files to validate the XML configuration files used to configure
Recording Service. Due to the restrictions imposed by XSD schemas for XML 1.0, some of the tags used in the
configuration must be grouped in order. This behavior is intended; Recording Service validates the XML files
before parsing them to catch as many parsing errors as possible beforehand.

4.3.1 Builtin Configuration of Recording Service

Recording Service is pre-configured with a builtin configuration. See Section 4.3.15 for more details.

4.2. Operating System Daemon 12

RTI Recording Service Documentation, Version 7.3.0

4.3.2 XML Tags for Configuring Recording Service

This section describes the XML tags you can use in a Recording Service configuration file. The following
diagram and table describe the top-level tags allowed within the root <dds> tag.

Figure 4.1: Top-level Tags in Recording Service’s Configuration File

Table 4.3: Top-level Tags in Recording Service’s Configuration File
Tags within
<dds>

Description Multi-
plicity

<qos_library> Specifies a QoS library and profiles. The contents of this tag are specified in
the samemanner as for the Connext DDS QoS profile file—see Configuring
QoS with XML in the RTI Connext DDS Core Libraries User’s Manual.

0..*

<types> Defines types that can be used by Recording Service. This is needed if data
types are not available through discovery, or when using a transformation.
The type description is done using the Connext DDS XML format for type
definitions. See Creating User Data Types with Extensible Markup Lan-
guage (XML), in the RTI Connext DDS Core Libraries User’s Manual.

0..*

continues on next page

4.3. Configuration 13

RTI Recording Service Documentation, Version 7.3.0

Table 4.3 – continued from previous page
Tags within
<dds>

Description Multi-
plicity

<plugin_library> Contains a list of libraries that can be used to:
• Plug in custom storage, such as custom databases. For more infor-
mation, see Section 4.6.4.

• Transform data after it is received from Connext DDS and before it is
stored. Formore on using transformations, seeData Transformation,
in the RTI Routing Service User’s Manual.
See Section 4.3.12

0..*

<recording_ser-
vice>

Required. Specifies a Recording Service configuration. See Section 4.3.3.
Attributes

• name: Uniquely identifies a service configuration. Required.
Example

<recording_service name="RecordAll">
<!-- your service settings ... -->

</recording_service>

1..*

4.3.3 Recording Service Tag

A configuration file must have at least one <recording_service> tag. This tag is used to configure an
execution of Recording Service.

A configuration file may contain multiple <recording_service> tags. When you start Recording Service,
you can use the -cfgName command-line parameter to specify which <recording_service> tag to use
to configure the service. This means one file can be used to configure multiple Recording Service executions.

The following diagram and Table 4.4 describe the tags allowed within a <recording_service> tag.

Table 4.4: Recording Service Tags in Recording Service’s Configu-
ration File

Tags within
<recording_ser-
vice>

Description Multi-
plicity

<administration> Enables remote administration.
When administration is enabled, monitoring is also enabled by default. If
no domain ID is specified for monitoring, Recording Service will use the
same domain as administration by default. See Section 4.3.4.

0..1

<monitoring> Enables monitoring for the recording service, including statistics. See Sec-
tion 4.3.5.

0..1

<storage> Describes how the data will be stored. If this is not specified, data will be
stored in a SQLite file using the default name “rti_recorder_default.db”.
See Section 4.3.6.

0..1

continues on next page

4.3. Configuration 14

RTI Recording Service Documentation, Version 7.3.0

Table 4.4 – continued from previous page
Tags within
<recording_ser-
vice>

Description Multi-
plicity

<domain_partici-
pant>

Required. Specifies a DomainParticipant to use to record data.
Attributes

• name: Uniquely defines a DomainParticipant. Required.
Example

<domain_participant name="Participant3">
<domain_id>3</domain_id>
<!-- Participant QoS -->

</domain_participant>

See Section 4.3.7.

1..*

<session> Required. Active component of Recording Service for recording data.
Contains one or more threads that can be used for recording.
Attributes

• name: Uniquely defines a recording session. Required.
• default_participant_ref: Specifies a default Do-
mainParticipant to be used by children of this recording ses-
sion. Children can override this by specifying their own par-
ticipant.

Example

<session name="Session" default_participant_ref=
→˓"Participant3">

<!-- ... topics / groups of topics to␣
→˓record -->
</session>

See Section 4.3.8.

1..*

Example: Specify a Recording Service Configuration in XML

<dds>
<recording_service name="MyRecorderService">

<!-- ... Required entities -->
</recording_service>

</dds>

Starting a Recording Service instance with the following command will use the <recording_service>
tag with the name “MyRecorderService”:

$NDDSHOME/bin/rtirecordingservice -cfgFile file.xml -cfgName MyRecorderService

4.3. Configuration 15

RTI Recording Service Documentation, Version 7.3.0

Figure 4.2: Tags used to configure a Recording Service instance

4.3. Configuration 16

RTI Recording Service Documentation, Version 7.3.0

4.3.4 Administration

The<administration> tag allows you to enable and configure remote administration ofRecording Service,
including stopping, starting, and pausing recording.

See Section 4.4 for details on using remote administration.

Table 4.5: Administration Tags in Recording Service’s Configura-
tion File

Tags within <ad-
ministration>

Description Multi-
plicity

<domain_id> Domain ID used for remote administration. Also used for monitoring by
default.

0..1

<domain_partici-
pant_qos>

QoS used by the administration DomainParticipant. If the tag is not de-
fined, Connext DDS defaults will be used.

0..1

<publisher_qos> QoS used by the administration Publisher. If the tag is not defined, Connext
DDS defaults will be used.

0..1

<subscriber_qos> QoS used by the administration Subscriber. If the tag is not defined, Con-
next DDS defaults will be used.

0..1

<datawriter_qos> QoS used by administration DataWriter(s). If the tag is not defined, Con-
next DDS defaults will be used, with the following changes:

• history.kind = DDS_KEEP_ALL_HISTORY_QOS
• resource_limits.max_samples = 32

0..1

<datareader_qos> Quality of Service (QoS) used by administration DataReader(s). If the tag
is not defined, the Connext DDS defaults will be used, with the following
changes:

• reliability.kind = DDS_RELIABLE_RELIABILITY_QOS (this
value cannot be changed)

• history.kind = DDS_KEEP_ALL_HISTORY_QOS
• resource_limits.max_samples = 32

0..1

<distributed_log-
ger>

When you enableDistributed Logger, Recording Service will publish its Log
messages to Connext DDS. See Section 4.3.13.

0..1

The contents of the tags for configuring QoS are specified in the same manner as for the Connext DDS QoS
profile file. See Configuring QoS with XML, in the RTI Connext DDS Core Libraries User’s Manual.

4.3. Configuration 17

RTI Recording Service Documentation, Version 7.3.0

4.3.5 Monitoring

The <monitoring> tag allows you to enable and configure remote monitoring of Recording Service. See
Section 4.5.

Table 4.6: Monitoring Tags in Recording Service’s Configuration
File

Tags within
<monitoring>

Description Multi-
plicity

<enabled> Whether to enable monitoring of the service.
Default: Disabled, unless administration is enabled.

0..1

<domain_id> Domain ID used for monitoring.
Default: The domain ID specified for monitoring.

0..1

<datawriter_qos> QoS used by monitoring DataWriter(s) 0..1
<publisher_qos> QoS used by monitoring Publisher(s) 0..1
<domain_partici-
pant_qos>

QoS used by monitoring DomainParticipant 0..1

<statistics_sam-
pling_period>

How frequently to sample the service’s statistics, using the tags <sec> or
<nanosec>. For example, <sec>1</sec> samples the service’s statistics
every second.
Default: 1 second.

0..1

<status_publica-
tion_period>

How frequently to publish the service status, using the tags <sec> or
<nanosec>. For example, <sec>1</sec> publishes the service’s status ev-
ery second.
Default: 5 seconds

0..1

The contents of the tags for configuring QoS are specified in the same manner as for the Connext DDS QoS
profile file. See Configuring QoS with XML, in the RTI Connext DDS Core Libraries User’s Manual.

4.3.6 Storage

The <storage> tag allows you to configure the storage to which data will be written. You can choose between
using the builtin SQLite storage or implementing your own storage plugin. You can also specify the flush period
of the service, defined as the time interval between consecutive writings of samples to disk. Within <storage>,
Recording Service can also be set in buffering mode. This mode disables all automatic storage to disk and just
writes the data to disk upon reception of a remote flush() command.

4.3. Configuration 18

RTI Recording Service Documentation, Version 7.3.0

Table 4.7: Storage Tags in Recording Service’s Configuration File
Tags within
<storage>

Description Multi-
plicity

<sqlite> Enables storing data in a SQLite database file. See Section 4.3.6. 0..1
<plugin> Enables storing data in an external library that you specify.

Attributes
• plugin_name: Name of the plug-in that creates a storage plugin
object. This name shall refer to a registered storage plug-in. See
Section 11.5 for details on how the options of how to register plug-
ins).

See Section 4.3.6 for more about using this tag.
See Section 4.6.4 for a tutorial on plugging in custom storage.

0..1

<flush_period> Defined as a duration (seconds and nanoseconds), <flush_period> repre-
sents the rate at which user-data samples will be written to disk. When this
tag is present, Recording Service will work in a purely periodic fashion. If
no remote flush() command is received, data will be written to disk only
when this period elapses.
This tag cannot be used at the same time as the <enable_buffering_mode>
tag.
Default: no default. If not set, Recording Service will work in a purely
reactive way.

0..1

<enable_buffer-
ing_mode>

When set to true, Recording Service will run in buffering mode. This mode
is a listening-only mode and will not output data to disk automatically. In-
stead, Recording Service will wait continously for remote flush() commands
to trigger the storage to disk (see Section 4.4.5 for more information about
the remote flush command).
Recording Servicewill buffer samples using the caches in theDataReaders it
creates, so it is important that the size of the caches is controlled somemory
doesn’t grow indefinitely. The size can be controlled by controlling the
size of the queue (see Section 4.1.4) or by ensuring that the rate at which
flush remote commands are sent matches the sample rate. The general
recommendation is to define a buffer size for all Topics and Topic Groups
in the configuration.
This tag cannot be used at the same time as the <flush_period> tag.
This feature requires remote administration to be enabled. If remote ad-
ministration isn’t enabled in the configuration,Recording Servicewill enable
it automatically.
Default: false (service will start in normal operation mode).

0..1

<instance_index-
ing>

When this setting is enabled, Recording Service will keep an internal in-
dex about instances and their values. It will also store this instance to disk
once Recording Service shuts down. This can affect the recording perfor-
mance. However, Replay Service startup time will be improved when the
Instance History Replay setting is enabled (see Section 5.3.9). If this set-
ting is not enabled, Replay will build the indexes while starting up, delaying
the startup process. Indexing can also be done offline, see Section 9. See
Section 4.3.6 for more details on instance indexing configuration.

0..1

4.3. Configuration 19

RTI Recording Service Documentation, Version 7.3.0

SQLite

The <sqlite> tag allows you to specify the name and file extension of a SQLite file in which to write data.
It also allows you to choose the storage format in which to store the data. The default format, XCDR_AUTO,
records data without deserializing it from the network format, so it is the most efficient way to store data;
however, it is a binary format that cannot be queried without using Converter to convert it to a readable
JSON_SQLITE format. The JSON_SQLITE format is slower to record, because it requires deserializing the
data, but it can be queried using SQLite tools.

Table 4.8: SQLite Tags in Recording Service’s Configuration File
Tags within
<sqlite>

Description Multi-
plicity

<fileset> Set of files to write to, and parameters for creating files and directories in
that set.
See Section 4.3.6.

0..1

<file> File to write to.
Default: rti_recorder_default

0..1

<file_suffix> Allows you to add a suffix to the end of a filename. 0..1
<overwrite_pol-
icy_kind>

Whether Recording Service is allowed to overwrite files. The options are
OVERWRITE or DO_NOT_TOUCH. When DO_NOT_TOUCH is se-
lected, Recording Service cannot overwrite an existing file, even if the
rollover functionality is enabled.
Default: OVERWRITE

0..1

<storage_format> Specifies what format the data is stored in.
The options are:

• XCDR_AUTO: This is the binary format used by Connext DDS
when sending data over the network. This has the highest perfor-
mance for recording, but can only be viewed by using Converter to
convert the data to a readable format, or by usingReplay to replay the
data. This will internally store data in XCDR or XCDR2 depending
on the format received.

• JSON_SQLITE: This format can be queried, but recording in this
format has lower performance because data must be deserialized be-
fore it can be stored.

• XCDR: The format to use when communicating with Connext DDS
before 6.0.0.

• XCDR2: More efficient than XCDR, used by Connext DDS 6.0.0
and later.

Default: XCDR_AUTO

0..1

continues on next page

4.3. Configuration 20

RTI Recording Service Documentation, Version 7.3.0

Table 4.8 – continued from previous page
Tags within
<sqlite>

Description Multi-
plicity

<sql_initializa-
tion_string>

Specifies a SQLite SQL expression to use when establishing sqlite connec-
tions using this plugin. This can be used to change the pragmas used by
SQLite, or to do other database operations.
Note: when using Recording Service and another application (either Replay
Service or another SQLite application) at the same time to access the same
database files, we recommend using SQLite’s WAL (write-ahead logging)
mode. This can be done by addingPRAGMA JOURNAL_MODE = WAL;
to this configuration setting. More information about SQLite’s WALmode
can be found here.
This scenario is not fully supported. Please be aware that the WAL file
will grow without bounds during the replay operation. This implies that
the database file will not be updated with the WAL contents until all the
Replay instances finish executing.
Default: PRAGMA SYNCHRONOUS = OFF; PRAGMA JOUR-
NAL_MODE = MEMORY;

0..1

Fileset

The <fileset> tag allows you to specify a set of files for Recording Service to write to. This lets you specify
behaviors such as “create a new directory with each run of Recording Service based on the timestamp when the
tool was started” or “create a new file every time Recording Service is started, incrementing an integer in the
filename.”

The <fileset> tag is also where the rollover behavior is specified.

Table 4.9: Fileset Tags in Recording Service’s Configuration File
Tags within <file-
set>

Description Multi-
plicity

<workspace_dir> Base directory where the database files for an instance of Recording Service
(including discovery and user data files) will be stored. Depending on the
value of the <execution_dir_expression> tag, this will either contain a set
of files or a set of directories.
Default: The current working directory.

0..1

continues on next page

4.3. Configuration 21

http://www.sqlite.org/wal.html

RTI Recording Service Documentation, Version 7.3.0

Table 4.9 – continued from previous page
Tags within <file-
set>

Description Multi-
plicity

<execu-
tion_dir_ex-
pression>

WhenRecording Service starts, it will use this expression to create the direc-
tory where output files will be stored. Every time Recording Service starts,
it will evaluate this expression to decide on its output directory. Stopping
and restarting remotely will cause Recording Service to re-evaluate this ex-
pression and possibly change its output directory.
This execution directory is a parameterisable expression. In it, it accepts
text and any combination of the following:

• Autonumeric. Format: %auto:M-N%. This parameter describes
an integer that auto-increments every time Recording Service starts.
The numeric sequence is restarted when Recording Service is man-
ually shut down and restarted. M must be lower than N; together
they define a numeric range, both inclusive. N can be omitted
(%auto:M%), resulting in an unlimited sequence of numbers starting
at M.
Example:

<execution_dir_expression>
test_run_%auto:0-3%

</execution_dir_expression>

This example will create directories named test_run_0, test_run_1,
test_run_2, and test_run_3.

• Timestamp. Format: %ts%. This parameter will take the current
timestamp in the system (the time represented as number of seconds
since Epoch).

• Time. Format: %T%. Current time expressed in ISO 8601 time
format (THHMMSS). Example: T145502 This parameter uses the
strftime() parameter %T.

• Short date. Format: %F%. Short date in YYYY-MM-DD format.
Example: 2001-08-23. This parameter uses the strftime() parame-
ter %F.

• Date and time. Format: %c%. Date and time representation,
locale-dependent. This parameter is based on the strftime() param-
eter %c but we use the time expressed in ISO 8601 format (THH-
MMSS). Example: Thu Aug 23 T145502 2001

Note: Using parameters, Recording Service will check if the possible exe-
cution directories exist before overwriting any directory. If the execution
directories exist, Recording Service’s behavior will be affected by the value
of the <overwrite_policy_kind> tag. If <overwrite_policy_kind> is set to
OVERWRITE, Recording Service will overwrite the first directory. Other-
wise, Recording Service will not delete any of the old directories and will
just exit.
Using no parameters will yield the same execution directory every time the
service is started. In this case, if the directory already contains database
files, they may be overwritten (see the <overwrite> tag).
Default: %ts% (current timestamp number since Epoch).

0..1

continues on next page

4.3. Configuration 22

RTI Recording Service Documentation, Version 7.3.0

Table 4.9 – continued from previous page
Tags within <file-
set>

Description Multi-
plicity

<filename_expres-
sion>

Once Recording Service knows the exact directory in which to put the
database files, it will use this parameter to determine the name(s) of the
user data file(s) to be created. Right before the recording starts and every
time Recording Service has to change its current file to a new one, it will
use this parameterisable expression to generate the next file’s name. This
setting accepts text and any combination of the following parameters:

• Autonumeric. Format: %auto:M-N%. This parameter describes
an integer that auto-increments every time Recording Service is
started. However, the numeric sequence is restarted with every ex-
ecution of the Recording Service application. M must be lower than
N; together M and N define a numeric range, both inclusive. N may
be omitted (%auto:M%), resulting in an unlimited sequence of num-
bers starting at M.
Example:

<filename_expression>
test_files_%auto:0-2%.db

</filename_expression>

This will create files named test_files_0.db, test_files_1.db, and
test_files_2.db. When a rollover event occurs, Recording Service will
either create one of these files, or overwrite the next file in the se-
quence. When Recording Service is restarted, this will start over with
overwriting test_files_0.db.

• Timestamp. Format: %ts%. This parameter will take the current
timestamp in the system (the time represented as number of seconds
since Epoch).

• Time. Format: %T%. Current time expressed in ISO 8601 time
format (THHMMSS). Example: T145502. This parameter uses the
strftime() parameter %T.

• Short date. Format: %F%. Short date in YYYY-MM-DD format.
Example: 2001-08-23. This parameter uses the strftime() parame-
ter %F. Note: This parameter will not vary in 24 hours, so use with
caution in combinationwith the rollover time limit feature (time limit
should be greater than 1 day; otherwise, you may overwrite the same
file continously).

• Date and time. Format: %c%. Date and time representation,
locale-dependent. This parameter is based on the strftime() param-
eter %c but we use the time expressed in ISO 8601 format (THH-
MMSS). Example: Thu Aug 23 T145502 2001

Note: Using no parameters will yield the same file name every time.
Therefore, if a file rollover command is received or scheduled, Recording
Service will be stopped (no more data can be stored without overwriting
the current, and only, file). Default: rti_recorder_default_%auto:0%.db
(auto-numeric starting at zero, unlimited).

0..1

continues on next page

4.3. Configuration 23

RTI Recording Service Documentation, Version 7.3.0

Table 4.9 – continued from previous page
Tags within <file-
set>

Description Multi-
plicity

<rollover> Configuration for rolling over the file after a size or time limit is reached.
See Section 4.3.6.

0..1

Rollover

Rollover enables Recording Service to overwrite the oldest data file created by the current execution of the
service when the last file in the set has reached a maximum size, or when a time limit is reached.

Note: In this release, rollover is only supported when the <filename_expression> tag specifies an auto-numeric
filename. (See example below.)

<recording_service name="RolloverExample">
<storage>

<sqlite>
<storage_format>JSON_SQLITE</storage_format>
<fileset>

<workspace_dir>cdr_recording</workspace_dir>
<execution_dir_expression></execution_dir_expression>
<!-- Files will be numbered 0-9. -->
<filename_expression>file_rollover_%auto:0-9%.db</filename_

→˓expression>
<rollover>

<enabled>true</enabled>
<!-- Rollovers have been enabled, but the first one won't␣

→˓happen -->
<!-- until the local time passes 11:30. After that, they␣

→˓will -->
<!-- happen when one of two conditions is met first: -->
<time_limit start_time="11:30:00">

<!-- (1) When five seconds pass since the latest␣
→˓rollover -->

<seconds>5</seconds>
</time_limit>
<!-- (2) When the current recording file size reaches␣

→˓256KB -->
<file_size_limit unit="KILOBYTES">256</file_size_limit>

</rollover>
</fileset>

</sqlite>
</storage>

</recording_service>

4.3. Configuration 24

RTI Recording Service Documentation, Version 7.3.0

Table 4.10: Rollover Tags in Recording Service’s Configuration File
Tags within
<rollover>

Description Multi-
plicity

<enabled> Whether Recording Service will roll over files when a limit is reached. De-
fault: False.

0..1

<file_size_limit> The maximum allowed size for a file in a set. Note that setting this to a very
low value (e.g., 1 KB) may yield unexpected behavior, because SQLite will
take up more than that for even the simplest file. Note: The unit refers
to the decimal prefix and not the binary prefix of the number, meaning 1
MEGABYTES = 1000 KB (and not 1024 KB). This is usually the standard
way to refer to storage size.
Attributes:

• unit: (Optional) The unit in which the size is expressed. The
following values are allowed (Default: KILOBYTES):
– BYTES
– KILOBYTES
– MEGABYTES
– GIGABYTES

0..1

<time_limit> The maximum amount of time Recording Service can record to a file in a
set. Specified with tags <days>, <hours>, <minutes>, <seconds>.
Attributes:

• start_time: The time to do the first rollover. After that, rollover
will be done when the time_limit or file_size_limit is reached.

0..1

Plugin

Table 4.11: Storage plugin Tag in the Configuration File
Tags within <plu-
gin>

Description Multi-
plicity

<property> Name/value pairs of properties to pass to a storage plugin.
Example:

<property>
<value>

<element>
<name>Name</name>
<value>Value</value>

</element>
</value>

</property>

0 or 1

4.3. Configuration 25

RTI Recording Service Documentation, Version 7.3.0

Instance Indexing

Table 4.12: Instance Indexing Tag in the Configuration File
Tags within
<instance_in-
dexing>

Description Multi-
plicity

<enabled> Set this to true to enable instance indexing. It’s recommended to enable
instance indexing only when Replay Service is going to use Instance History
Replay mode. You can also perform instance indexing offline, see Section
9. Default: false.

0 or 1

<timestamps> The type of timestamp (reception, source or both) to use when building
the instance history index. The options are:

• RECEPTION: Create the index based on the time the DDS sample
was received by the DataReader.

• SOURCE: Create the index based on the time the DDS sample was
written by the DataWriter.

• BOTH: Create the index based on both the source timestamp and the
reception timestamp.

Default: RECEPTION.

0 or 1

4.3.7 DomainParticipant

Table 4.13: DomainParticipant Tags in Recording Service’s Config-
uration File

Tags within
<domain_partici-
pant>

Description Multi-
plicity

<domain_id> Required. DDS domain ID used for recording. 1
<domain_partici-
pant_qos>

QoS used by this DomainParticipant. See Configuring QoS with XML, in
the RTI Connext DDS Core Libraries User’s Manual.

0..1

continues on next page

4.3. Configuration 26

RTI Recording Service Documentation, Version 7.3.0

Table 4.13 – continued from previous page
Tags within
<domain_partici-
pant>

Description Multi-
plicity

<memory_man-
agement>

Configures certain aspects of how Connext DDS allocates internal memory.
The configuration is per DomainParticipant and therefore affects all the
contained DDS entities.
Example:

<memory_management>
<sample_buffer_min_size>

1024
</sample_buffer_min_size>
<sample_buffer_trim_to_size>

true
</sample_buffer_trim_to_size>

</memory_management>

Tags within this tag:
• <sample_buffer_min_size>: For all DataWriters and
DataReaders, the way Connext DDS allocates memory for
samples is as follows: Connext DDS pre-allocates space for
samples up to size X in the DataWriter and DataReader
queues. If a sample has an actual size greater than X, the
memory is allocated dynamically for that sample. The default
size is 64KB. This is the maximum amount of pre-allocated
memory. Dynamic memory allocation may occur when
necessary if samples require a bigger size.

• <sample_buffer_trim_to_size>: If set to true, after allocating
dynamic memory for very large samples, that memory will be
released when possible. If false, that memory will not be re-
leased but kept for future samples if needed. The default is
false.

This feature is useful when a data type has a very high maximum size (e.g.,
megabytes) but most of the samples sent are much smaller than the max-
imum possible size (e.g., kilobytes). In this case, the memory footprint is
reduced dramatically, while still correctly handling the rare cases in which
very large samples are published.

0..1

continues on next page

4.3. Configuration 27

RTI Recording Service Documentation, Version 7.3.0

Table 4.13 – continued from previous page
Tags within
<domain_partici-
pant>

Description Multi-
plicity

<register_type> Registers a type name and associates it with a type representation. When
you define a type in the configuration file, you have to register the type in
order to use it in a <topic>.
Attributes:

• name: Name that the data type is registered with if no <reg-
istered_name> is specified. The same data type may be regis-
tered with different names. Required.

• type_ref: Definition of this data type. It must refer to one
of the defined types in the <types> section by specifying the
fully qualified name.

Tags within this tag:
• <registered_name>: Name the data type is registered with.
The same data type may be registered with different names.
Not required.

0..*

4.3.8 Session

The <session> tag configures the threads that will be used to record data. You also specify the Topics and
groups of Topics to record inside the <session> tag.

Table 4.14: Session Tags in Recording Service’s Configuration File
Tags within
<session>

Description Multi-
plicity

<subscriber_qos> Specifies the QoS of DDS subscribers that will be used by the contained
<topic> and <topic_group>. See Configuring QoS with XML, in
the RTI Connext DDS Core Libraries User’s Manual.

0..1

continues on next page

4.3. Configuration 28

RTI Recording Service Documentation, Version 7.3.0

Table 4.14 – continued from previous page
Tags within
<session>

Description Multi-
plicity

<thread_pool> Defines the number of threads used by this session to process Topics and
Topic Groups and allows you to set the mask, priority, and stack size of
each thread.
This setting can improve the reactiveness and scalability of the running
Recording Service when there are multiple Topics and Topic Groups asso-
ciated with the same session.

Example:

<thread_pool>
<mask>MASK_DEFAULT</mask>
<priority>THREAD_PRIORITY_DEFAULT</

→˓priority>
<stack_size>

THREAD_STACK_SIZE_DEFAULT
</stack_size>

</thread_pool>

Default values:
• size: 1
• mask: MASK_DEFAULT
• priority: THREAD_PRIORITY_DEFAULT
• stack_size: THREAD_STACK_SIZE_DE-
FAULT

0..1

<topic> Specifies an individual Topic to record.
Attributes:

• name: The name of the Topic to record. This name is also
used when monitoring and administering each Topic.

• participant_ref: A DomainParticipant to use when recording
this Topic. If the parent <session> specifies a default_par-
ticipant_ref, this attribute is optional.

See Section 4.3.10.

0..*

<topic_group> Specifies a group of Topics to record.
Attributes:

• name: The name of the Topic group. This name is also used
when monitoring and administering each Topic group.

• participant_ref: Specifies a DomainParticipant to use when
recording this topic group. If the parent <session> speci-
fies a default_participant_ref, this attribute is optional.

See Section 4.3.9.

0..*

4.3. Configuration 29

RTI Recording Service Documentation, Version 7.3.0

4.3.9 Topic Group

You can record a group of Topics, using regular expressions to describe which Topics to record.

Table 4.15: Topic Group Tags in Recording Service’s Configuration
File

Tags within
<topic_group>

Description Multi-
plicity

<al-
low_topic_name_fil-
ter>

A regular expression (fnmatch) describing which Topics are allowed to be
recorded. You may use a comma-separated list to specify more than one
filter.
Example:

<topic_group name="RecordAll">
<allow_topic_name_filter>CONTROL_*,DATA_*</

→˓allow_topic_name_filter>
</topic_group>

0..1

<deny_topic_name_fil-
ter>

A regular expression (fnmatch) describing which Topics are not allowed to
be recorded. This tag is applied after the allow_topic_name_fil-
ter tag. You may use a comma-separated list to specify more than one
filter.

0..1

<al-
low_type_name_fil-
ter>

A regular expression (fnmatch) describing the names of data types that are
allowed to be recorded. You may use a comma-separated list to specify
more than one filter.

0..1

<deny_type_name_fil-
ter>

A regular expression (fnmatch) describing the names of data types that
are not allowed to be recorded. This tag is applied after the al-
low_type_name_filter tag. You may use a comma-separated list
to specify more than one filter.

0..1

<datareader_qos> The DataReader’s QoS to use when recording data. 0..1
<content_filter> A ContentFilteredTopic to use when recording data. See ContentFiltered-

Topics, in the RTI Connext DDS Core Libraries User’s Manual.
This allows you to record data samples only if their contents pass a filter
that you specify in your configuration. The filter looks like a SQLWHERE
clause. Note that XML reserved characters must be converted to their
escape values; for example, > and < (greater than and less than signs) must
be converted to < and > as shown in the example below.
Example:

<topic_group name="RecordAll">
<content_filter>

<!-- Data will only be recorded when x␣
→˓is greater than

100 -->
<expression>x > 100</expression>

</content_filter>
</topic_group>

0..1

4.3. Configuration 30

RTI Recording Service Documentation, Version 7.3.0

4.3.10 Topic

The <topic> tag specifies an individual Topic to record.

Table 4.16: Topic Tags in Recording Service’s Configuration File
Tags within
<topic>

Description Multi-
plicity

<topic_name> The name of the DDS topic to be recorded. If this tag is not present, the
name attribute of the <topic> will be used.
Note: we recommend using this tag to define the topic name. There may
be characters that cause the XML validation to fail if they are part of the
topic name attribute. Also, the ‘/’ character and ‘::’ separator may cause
Recorder to fail when found in the topic name attribute.

0..1

<regis-
tered_type_name>

Required. The name of the data type that will be recorded for this topic. 1

<transformation> The transformation library to be applied to this Topic’s data when record-
ing. This is a user library that can modify the data after it is received by
Connext DDS and before it is stored in the database. Transformations im-
plement APIs identical to Routing Service’s transformations.
For more on using transformations, see these sections in the RTI Routing
Service User’s Manual:

• Data Transformation
• Tutorials

Attributes:
• plugin_name: The name of the plugin to load, qualified by the
plugin library name.

Example:

<dds>
<plugin_library name="RecordTransformations

→˓">
<transformation_plugin name=

→˓"ModifyTestID">
<create_function>ModifyTestID_create

→˓</create_function>
<dll>modify_test_id_library</dll>

</transformation_plugin>
</plugin_library>
<!-- ... -->
<recording_service>

<!-- ... -->
<topic name="TestTopic">

<transformation plugin_name=
→˓"RecordTransformations::ModifyTestID" />

</topic>
</recording_service>

</dds>

0..1

<datareader_qos> The DataReader QoS to use when recording this data. 0..1
continues on next page

4.3. Configuration 31

RTI Recording Service Documentation, Version 7.3.0

Table 4.16 – continued from previous page
Tags within
<topic>

Description Multi-
plicity

<content_filter> A ContentFilteredTopic to use when recording data. See ContentFiltered-
Topics, in the RTI Connext DDS Core Libraries User’s Manual.
Example of how to set a content filter expression:

<topic_group name="RecordAll">
<content_filter>

<!-- Data will only be recorded when x␣
→˓is greater than

100 -->
<expression>x > 100</expression>

</content_filter>
</topic_group>

0..1

4.3.11 Support for RTI FlatData and Zero Copy Transfer Over Shared Memory

Recording Service supports communication with applications that use RTI FlatData™ and Zero Copy transfer
over shared memory. You can configure Recording Service to enable these capabilities for data reception, while
actively recording.

Warning: Recording Service cannot replay data recorded with RTI FlatData™ and Zero Copy. For further
information about this constraint, see the Support for RTI FlatData and Zero Copy Transfer Over Shared
Memory section in the RTI Routing Service User’s Manual.

Recording Service can work with RTI FlatData and Zero Copy transfer over shared memory for discovered
types and types declared in the XML configuration. If the types are declared in XML, they must be properly
annotated and then registered in each DomainParticipant. You can use each of these features separately or
together.

For further information about these features, see Sending Large Data in the RTI Connext Core Libraries User’s
Manual.

Example: Configuration to enable both FlatData and Zero Copy transfer over shared mem-
ory

<dds>
<types>

<struct name="Point"
transferMode="shmem_ref"
languageBinding="flat_data"
extensibility= "final">

<member name="x" type="long"/>
<member name="y" type="long"/>

</struct>

(continues on next page)

4.3. Configuration 32

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
</types>

<qos_library name="MyQosLib">
<qos_profile name="ShmemOnly">

<domain_participant_qos>
<discovery>

<initial_peers>
<element>shmem://</element>

</initial_peers>
</discovery>
<transport_builtin>

<mask>SHMEM</mask>
</transport_builtin>

</domain_participant_qos>
</qos_profile>

</qos_library>

<recording_service name="FlatDataWithZeroCopy">

<domain_participant name="RecordDomain">
<domain_id>0</domain_id>
<domain_participant_qos base_name="MyQosLib::ShmemOnly"/>
<register_type name="Point" type_ref="Point"/>

</domain_participant>

<session default_participant_ref="RecordDomain">
<topic name="PointTopic">

<registered_type_name>Point</registered_type_name>
</topic>

</session>
</recording_service>

</dds>

4.3.12 Plugins

All the pluggable components specific to Recording Service are configured within the <plugin_library>
tag. Table 4.17 describes the available tags.

Plug-ins are categorized and configured based on the source language. Recording Service supports C/C++
plug-ins.

Table 4.17: Configuration tags for plug-in libraries
Tags within <plugin_li-
brary>

Description Multi-
plicity

<storage_plugin> Specifies a C/C++ Storage plug-in. See Table 11.18 and Section
4.3.6.

0..*

continues on next page

4.3. Configuration 33

RTI Recording Service Documentation, Version 7.3.0

Table 4.17 – continued from previous page
Tags within <plugin_li-
brary>

Description Multi-
plicity

<transformation_plugin> Specifies a C/C++Transformation plug-in. See Table 11.18 and
Section 4.3.10.

0..*

4.3.13 Enabling Distributed Logger

Distributed Logger is included in Connext, but it is not supported on all platforms; see the RTI Connext Core
Libraries Platform Notes to see which platforms support Distributed Logger.

When you enable Distributed Logger, the Service will publish its log messages to Connext DDS. Then you can
use RTI Admin Console to visualize the log message data. Since the data is provided in a topic, you can also
use rtiddsspy or even write your own visualization tool.

To enable Distributed Logger, use the tag <distributed_logger> within <adminstration>. For
example:

<recording_service name="RecordAll">
<administration>

...
<distributed_logger>

<enabled>true</enabled>
</distributed_logger>

</administration>
...

</recording_service>

For more details, see Enabling Distributed Logger in RTI Services, in the RTI Connext DDS Core Libraries
User’s Manual.

4.3.14 Support for Securıty Plugıns (RTI Security Plugins)

Recording Service supports configuring and using Securıty Plugıns. To configure Recording Service securely,
you need to configure the appropriate QoS settings in the XML configuration. For more information, see the
RTI Security Plugins User’s Manual.

Example: Configuring a Recorder Instance using Security

The following example in XML demonstrates how to configure Recording Service to load and use the Securıty
Plugıns. The example assumes a path where the user has created the necessary security artifacts (such as
permissions files, certificates, and certificate authorities). This path is represented by the SECURITY_ARTI-
FACTS_PATH environment variable.

Note: The SECURITY_ARTIFACTS_PATH environment variable must include the file: prefix to make
sure paths are properly loaded by the Securıty Plugıns.

4.3. Configuration 34

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/

RTI Recording Service Documentation, Version 7.3.0

<dds>
<qos_library name="SecureQosLibrary">

<qos_profile name="SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.load_plugin</name>
<value>com.rti.serv.secure</value>

</element>
<element>

<name>com.rti.serv.secure.library</name>
<value>nddssecurity</value>

</element>
<element>

<name>com.rti.serv.secure.create_function</name>
<value>RTI_Security_PluginSuite_create</value>

</element>
<element>

<name>dds.sec.auth.identity_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RecordingServiceCert.pem</value>
</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RecordingServiceKey.pem</value>
</element>
<element>

<name>dds.sec.access.permissions_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.access.governance</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓Governance.p7s</value>
</element>
<element>

<name>dds.sec.access.permissions</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓PermissionsA.p7s</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>

(continues on next page)

4.3. Configuration 35

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
</qos_library>

...

<recording_service name="SecuredRecorderService">
<!-- Top-level storage settings -->
<storage>

<sqlite>
<file>rti_recorder_secure</file>
<file_suffix>dat</file_suffix>
<storage_format>XCDR_AUTO</storage_format>

</sqlite>
</storage>

<!-- Top-level domain settings -->
<domain_participant name="Participant0">

<!-- Domain Participant in Domain 0 is secured -->
<domain_id>0</domain_id>

<domain_participant_qos base_name=
→˓"SecureQosLibrary::SecureParticipantQos" />

</participant>
</domain_participant>

<session name="DefaultSession">
<topic_group name="RecordAll" participant_ref="Participant0">

<allow_topic_name_filter>*</allow_topic_name_filter>
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</topic_group>
</session>

</recording_service>

</dds>

The above XML example configures a Topic Group that records all data (except RTI topics) from a secured
DomainParticipant. The security settings are encapsulated in a QoS Profile called SecureParticipantQos. When
secured data reaches the secured endpoint, the Recording Service instance performs all security operations that
will be incorporated in the cleartext sample moving into storage. In the current version of the default storage
plugins, storage is unsecure.

Example: Configuring Recording Service to use a Certificate Revocation List (CRL)

Recording Service can remove a DomainParticipant from the system when its certificate has been revoked.
Use Securıty Plugıns to specify a CRL (certificate revocation list) file to track via the authentication.
crl property; when the files_poll_interval property is configured in Securıty Plugıns, Recording
Service can banish revoked participants by checking the CRL file periodically. For more information, see Prop-
erties for Configuring Authentication in the RTI Security Plugins User’s Manual. The following example XML
configuration file uses a CRL file to enable Recording Service to remove participants with revoked certificates.

4.3. Configuration 36

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#properties-for-configuring-authentication
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#properties-for-configuring-authentication

RTI Recording Service Documentation, Version 7.3.0

<dds>
<qos_library name="SecureQosLibrary">

<qos_profile name="SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.load_plugin</name>
<value>com.rti.serv.secure</value>

</element>
<element>

<name>com.rti.serv.secure.library</name>
<value>nddssecurity</value>

</element>
<element>

<name>com.rti.serv.secure.create_function</name>
<value>RTI_Security_PluginSuite_create</value>

</element>
<element>

<name>dds.sec.auth.identity_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RecordingServiceCert.pem</value>
</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RecordingServiceKey.pem</value>
</element>
<element>

<name>dds.sec.access.permissions_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.access.governance</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓Governance.p7s</value>
</element>
<element>

<name>dds.sec.access.permissions</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓PermissionsA.p7s</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>

(continues on next page)

4.3. Configuration 37

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
<qos_profile name="SecureParticipantQosWithCrl" base_name=

→˓"SecureQosLibrary::SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.secure.authentication.crl</

→˓name>
<value>$(SECURITY_ARTIFACTS_PATH)/

→˓RecordingServiceRevoked.crl</value>
</element>
<element>

<name>com.rti.serv.secure.files_poll_interval</
→˓name>

<value>1</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>

</qos_library>

...

<recording_service name="SecuredRecorderServiceWithCrl">
<!-- Top-level storage settings -->
<storage>

<sqlite>
<file>rti_recorder_secure</file>
<file_suffix>dat</file_suffix>
<storage_format>XCDR_AUTO</storage_format>

</sqlite>
</storage>

<!-- Top-level domain settings -->
<domain_participant name="Participant0">

<!-- Domain Participant in Domain 0 is secured and tracks a CRL␣
→˓file -->

<domain_id>0</domain_id>
<domain_participant_qos base_name=

→˓"SecureQosLibrary::SecureParticipantQosWithCrl" />
</participant>

</domain_participant>

<session name="DefaultSession">
<topic_group name="RecordAll" participant_ref="Participant0">

<allow_topic_name_filter>*</allow_topic_name_filter>
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</topic_group>
</session>

</recording_service>

(continues on next page)

4.3. Configuration 38

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
</dds>

The above configuration in Recording Service reads the CRL file $SECURITY_ARTIFACTS_PATH/
RecordingServiceRevoked.crl. In addition, the files_poll_interval element instructs the
service to track the file for changes so that participants can be removed dynamically. In this example, the
polling of the file happens every 1s.

Note: If the poll period is zero, Recording Service will not track the file continuously.

Example: Configuring Recording Service for Dynamic Certificate Renewal

Recording Service can dynamically renew its certificate if it was revoked or it expired. Use Securıty Plugıns to
specify a periodic check of the certificate file; when the files_poll_interval property is configured in
Securıty Plugıns, Recording Service reloads the certificate if the certificate file changes. For more information,
see Properties for Configuring Authentication in the RTI Security Plugins User’s Manual.

The following example XML configuration file defines a 1s period for checking the certificate file for changes.

<dds>
<qos_library name="SecureQosLibrary">

<qos_profile name="SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.load_plugin</name>
<value>com.rti.serv.secure</value>

</element>
<element>

<name>com.rti.serv.secure.library</name>
<value>nddssecurity</value>

</element>
<element>

<name>com.rti.serv.secure.create_function</name>
<value>RTI_Security_PluginSuite_create</value>

</element>
<element>

<name>dds.sec.auth.identity_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RecordingServiceCert.pem</value>
</element>
<element>

<name>dds.sec.auth.private_key</name>

(continues on next page)

4.3. Configuration 39

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#properties-for-configuring-authentication

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RecordingServiceKey.pem</value>
</element>
<element>

<name>dds.sec.access.permissions_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.access.governance</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓Governance.p7s</value>
</element>
<element>

<name>dds.sec.access.permissions</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓PermissionsA.p7s</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>
<qos_profile name="SecureParticipantQosDynamicCert" base_name=

→˓"SecureQosLibrary::SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.secure.files_poll_interval</

→˓name>
<value>1</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>
</qos_library>

...

<recording_service name="SecuredRecorderServiceDynamicCert">
<!-- Top-level storage settings -->
<storage>

<sqlite>
<file>rti_recorder_secure</file>
<file_suffix>dat</file_suffix>
<storage_format>XCDR_AUTO</storage_format>

</sqlite>
</storage>

<!-- Top-level domain settings -->
<domain_participant name="Participant0">

(continues on next page)

4.3. Configuration 40

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
<!-- Domain Participant in Domain 0 is secured and tracks a CRL␣

→˓file -->
<domain_id>0</domain_id>

<domain_participant_qos base_name=
→˓"SecureQosLibrary::SecureParticipantQosDynamicCert" />

</participant>
</domain_participant>

<session name="DefaultSession">
<topic_group name="RecordAll" participant_ref="Participant0">

<allow_topic_name_filter>*</allow_topic_name_filter>
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</topic_group>
</session>

</recording_service>

</dds>

The above configuration in Recording Service checks the DomainPartici-
pant certificate file $SECURITY_ARTIFACTS_PATH/ecdsa01/identities/
ecdsa01RecordingServiceCert.pem for changes every 1s.

Note: If the poll period is zero, Recording Service will not track the file continuously.

4.3.15 Recording Service Builtin Configuration Details

The Recording Service builtin configuration specifies:

• Recording all non-RTI Topics

• In domain 0

• Into a SQLite file named rti_recorder_default.db

• In the efficient XCDR format

<?xml version="1.0" encoding="UTF-8"?>

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../schema/rti_recording_service.xsd">

<!-- Qos Library -->
<qos_library name="QosLib">

<qos_profile name="ReliableQos" >
<datareader_qos>

<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>

</reliability>
<history>

(continues on next page)

4.3. Configuration 41

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
</datareader_qos>

</qos_profile>
</qos_library>

<recording_service name="RecorderService">
<!-- Top-level storage settings -->
<storage>

<sqlite>
<file>rti_recorder_default</file>
<file_suffix>dat</file_suffix>
<storage_format>XCDR_AUTO</storage_format>

</sqlite>
</storage>

<!-- Top-level domain settings -->
<domain_participant name="Participant0">

<domain_id>0</domain_id>
</domain_participant>

<session name="DefaultSession">
<topic_group name="RecordAll" participant_ref="Participant0">

<allow_topic_name_filter>*</allow_topic_name_filter>
<deny_topic_name_filter>rti/*</deny_topic_name_filter>
<datareader_qos base_name="QosLib::ReliableQos" />

</topic_group>
</session>

</recording_service>

</dds>

4.4 Remote Administration

A control client (such as RTI Admin Console) can use this interface to remotely control Recording Service.

Note: Recording Service remote administration is based on the RTI Remote Administration Platform described
in Section 11.3. Please refer to that manual for a detailed discussion on the workings of remote administration
in Recording Service.

Below you will find an API reference for all the supported operations.

4.4. Remote Administration 42

RTI Recording Service Documentation, Version 7.3.0

4.4.1 Enabling Remote Administration

By default, remote administration is disabled in Recording Service.

To enable remote administration you can use the <administration> XML tag (see Section 4.3.4) or
the -remoteAdministrationDomainId command-line parameter (see Section 4.1.3). Both of these
methods enable remote administration and set the domain ID for remote communication.

4.4.2 Available Service Resources

Table 4.18 lists the public resources specific to Recording Service. Each resource identifier is expressed as a
hierarchical sequence of identifiers, including parent and target resources. (See Section 11.2.2 for details.)

In the table below, the elements (rs), and (st) refer to the name of an entity of the corresponding class as
specified in the configuration in the name attribute. For example, in the following configuration:

<recording_service name="MyRecorder">...</recording_service>

The resource identifier is:

/recording_services/MyRecorder

In the table below, the resource identifier is written as /recording_services/(rs), where (rs) is the service name.
(st) is the storage name, and so on. This nomenclature is used in the table to give you an idea of the structure of
the resource identifiers. For actual (example) resource identifier names, see the example section that follows.

Table 4.18: Resources and Their Identifiers in Recording Service
Resource Resource Identifier
Recording Service /recording_services/(rs)
Storage /recording_services/(rs)/storage/(st)

Example

This example shows you how to address a resource of each possible resource class in Recording Service.

Recording Service

Entity with name “MyRecorder”:

<recording_service name="MyRecorder">...</recording_service>

Resource identifier:

/recording_services/MyRecorder

4.4. Remote Administration 43

RTI Recording Service Documentation, Version 7.3.0

Storage

Entity with name “sqlite” (implicit name of the builtin storage):

<recording_service name="MyRecorder">
<sqlite>...</sqlite>

</recording_service>

Resource identifier:

/recording_services/MyRecorder/storage/sqlite

4.4.3 Remote API Overview

Table 4.19: Remote Interface Overview
Re-
source

Operation Description

Record-
ingSer-
vice

DELETE /recording_services/(rs) Shuts down a running Recording
Service instance.

Record-
ingSer-
vice

UPDATE /recording_services/(rs):flush Flushes all buffered data in mem-
ory into disk.

UPDATE /recording_services/(rs)/state Sets a Recording Service state.
builtin
SQLite
Storage

UPDATE /recording_services/(rs)/storage/sqlite:rollover Continues the current recording in
a new file (also known as a “shard”
or file segment). Note: Only valid
for builtin SQLite plugin.

UPDATE /recording_services/(rs)/storage/sqlite:tag_times-
tamp

Associates a symbolic name with
the current time (with an optional
offset) in the recording. Note:
Only valid for builtin SQLite plu-
gin.

4.4.4 Recording Service

DELETE /recording_services/(rs)

Operation shutdown

This operation will cause Recording Service to shutdown.

UPDATE /recording_services/(rs):flush

Operation flush

This operationwill cause Recording Service to flush contents of all topics and topic groups into permanent
storage. This operation can be used with any of Recording Service’s modes of operation, but is crucial

4.4. Remote Administration 44

RTI Recording Service Documentation, Version 7.3.0

when running in buffering mode, because it’s the only way to flush buffered samples into permanent
storage.

This operation will store a total of N samples into storage, N being the depth of the History QoS policy.
If there are fewer samples in the buffer, this operation will store all of them.

This operation will affect the whole service, meaning that all Topics and Topic Groups will be affected
by it.

Request Field Value
action UPDATE
resource_identi-
fier

/recording_services/MyRecorder:flush

Request body

• Empty.

UPDATE /recording_services/(rs)/state

Operation set_state

Sets the state of a Recording Service object. The action is parametrized on octet_body, which could have
the following values:

See Set Resource State (Section 11.3.3).

Valid requested states:

• STARTED

• STOPPED

• PAUSED

• RUNNING

• Example

To pause an instance of Recording Service with the name “MyRecorder”:

Request Field Value
action UPDATE
resource_iden-
tifier

/recording_services/MyRecorder/state

octet_body

to_cdr_
→˓buffer(RTI::Service::EntityStateKind::PAUSED)

4.4. Remote Administration 45

RTI Recording Service Documentation, Version 7.3.0

4.4.5 Storage

UPDATE /recording_services/(rs)/storage/sqlite:rollover

Operation rollover

If the storage plugin being used is the builtin SQLite plugin, this operation will cause the recording to
switch to a new file segment (also known as a “shard”) in the fileset.

Request Field Value
action UPDATE
resource_identi-
fier

/recording_services/MyRecorder/storage/sqlite:rollover

Request body

• Empty.

UPDATE /recording_services/(rs)/storage/sqlite:tag_timestamp

Operation tag_timestamp

If the storage plugin being used is the builtin SQLite plugin, this operation will introduce a new entry in
the symbolic timestamps table, using the tag name, textual description, and offset time specified in the
arguments to the operation (CDR-serialized in the octet-body with the RTI::RecordingService::DataTag-
Params data type).

• Example

To tag a moment with the name “/example/test1/tag1”, representing a moment that is 123
milliseconds in the past:

4.4. Remote Administration 46

RTI Recording Service Documentation, Version 7.3.0

Request Field Value
action UPDATE
resource_iden-
tifier

/recording_services/MyRecorder/storage/sqlite:tag_times-
tamp

octet_body

std::string tag_name_1("/example/test1/
→˓tag1");
std::string tag_description_1("start of␣
→˓test");
RTI::RecordingService::DataTagParams␣
→˓data_tag_arguments;
data_tag_arguments.tag_name(tag_name_1);
data_tag_arguments.tag_description(tag_
→˓description_1);
data_tag_arguments.timestamp_offset(-
→˓123);
std::vector<char> data_tag_arguments_
→˓buffer;

dds::topic::topic_type_support
→˓<RTI::RecordingService::DataTagParams>

::to_cdr_buffer(
data_tag_arguments_buffer,
data_tag_arguments);

4.5 Monitoring

This section provides documentation on Recording Service remote monitoring.

Note: Recording Service monitoring is based on the Monitoring Distribution Platform described in Section
11.4. We recommend that you read Section 11.4 before using Recording Service monitoring.

4.5.1 Overview

Enabling Service Monitoring

By default, monitoring is disabled in Recording Service. To enable monitoring you can use the
<monitoring> tag (see Section 4.3.3) or the -remoteMonitoringDomainId command-line param-
eter, which enables remote monitoring and sets the domain ID for data publication (see Section 4.1.3).

4.5. Monitoring 47

RTI Recording Service Documentation, Version 7.3.0

Monitoring Types

The available Keyed Resource classes and their types that can be present in the distribution monitoring topics
are listed in Table 4.20. The complete type relationship is shown in Figure 4.3.

Table 4.20: Recording Service Keyed Resources
Keyed Resource
Class

Config Event Periodic

Service ServiceConfig ServiceEvent ServicePeriodic

Session SessionConfig SessionEvent SessionPeriodic

TopicGroup TopicGroupCon-
fig

TopicGroupEvent TopicGroupPeri-
odic

Topic TopicConfig TopicEvent TopicPeriodic

Figure 4.3: Keyed Resource Types for Recording Service monitoring

All the type definitions for Recording Service monitoring information are in [NDDSHOME]/
resource/idl/ServiceCommon.idl and [NDDSHOME]/resource/idl/
RecordingServiceMonitoring.idl.

Recording Service creates a DataWriter for each distribution Topic. All DataWriters are created from a single
Publisher, which is created from a dedicated DomainParticipant. See Section 4.3.3 for details on configuring
the QoS for these entities.

4.5. Monitoring 48

RTI Recording Service Documentation, Version 7.3.0

4.5.2 Monitoring Metrics Reference

This section provides a reference to all the monitoring metrics Recording Service distributes, organized by
service resource class.

Service

Listing 4.1: Recording Service Types

@mutable @nested
struct SqliteDatabaseConfig {

Service::FilePath db_directory;
@optional Service::FilePath execution_directory_expression;
@optional Service::FilePath user_data_file_expression;

};
@mutable @nested
struct SqliteDatabaseEvent {

@optional Service::FilePath current_db_directory;
@optional Service::FilePath current_file;
@optional int32 rollover_count;

};
@mutable @nested
struct SqliteDatabasePeriodic {

@optional Service::FilePath current_file;
@optional uint64 current_file_size;
// These fields are no longer supported and carry no␣

→˓information.
// Kept only to support older version.
@deprecated int32 current_timestamp_sec;
@deprecated uint32 current_timestamp_nanosec;

};

@mutable @nested
struct ParticipantInfo {

Service::BoundedString name;
};

@mutable @nested
struct ServiceConfig : Service::Monitoring::EntityConfig {

Service::BoundedString application_name;
Service::Monitoring::ResourceGuid application_guid;
@optional Service::Monitoring::HostConfig host;
@optional Service::Monitoring::ProcessConfig process;
@optional SqliteDatabaseConfig builtin_sqlite;
@optional sequence<ParticipantInfo> participants;

};
@mutable @nested
struct ServiceEvent : Service::Monitoring::EntityEvent {

//to avoid unused variable warnings
@optional SqliteDatabaseEvent builtin_sqlite;

};

(continues on next page)

4.5. Monitoring 49

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
@mutable @nested
struct ServicePeriodic {

@optional Service::Monitoring::HostPeriodic host;
@optional Service::Monitoring::ProcessPeriodic process;
int64 current_timestamp_nanos;
@optional SqliteDatabasePeriodic builtin_sqlite;

};

Table 4.21: ServiceConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 11.14.

application_name Name of the Recording Service instance. The application name is provided
through:

• appName command-line option when run as executable.
• ServiceProperty::application_name field when run as a li-
brary.

application_guid GUID of the Recording Service instance. Unique across all service instances.
host See Table 11.10.
process See Table 11.12.
builtin_sqlite See Table 4.22
participants Sequence of ParticipantInfo objects, one for eachDomainParticipant in-

side the Recording Service. See Table 4.23.

Table 4.22: SqliteDatabaseConfig
Field Name Description
db_directory Path to the base directory where the database files will live. This is the prefix

directory, and still the execution directory expression below will be appended to
it to determine the final directory.

execution_directory_ex-
pression

The expression used to generate the directory where the database files live. Note:
this value is not set when running Replay Service. See Section 4.3.6

user_data_file_expres-
sion

The expression used to generate the names of the database files. Note: this value
is not set when running Replay Service. See Section 4.3.6

Table 4.23: ParticipantInfo
Field Name Description
name Name of the DomainParticipant instance, as specified in the name attribute of

the corresponding configuration tag.

4.5. Monitoring 50

RTI Recording Service Documentation, Version 7.3.0

Table 4.24: ServiceEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 11.15.

builtin_sqlite See Table 4.25

Table 4.25: SqliteDatabaseEvent
Field Name Description
current_db_directory Path to the current directory where files are being stored to. This is the actual

final directory once the base directory and any execution directory expressions
have been applied.

current_file Path to the current file where data is being stored to. Note: this value is not set
when running Replay Service.

rollover_count The total number of file rollover events that have happened to thismoment. Note:
this value is not set when running Replay Service.

Table 4.26: ServicePeriodic
Field Name Description
host See Table 11.11.
process See Table 11.13.
current_times-
tamp_nanos

Time in nanoseconds Recording Service has been running.

builtin_sqlite See Table 4.27

Table 4.27: SqliteDatabasePeriodic
Field Name Description
current_file_size The size in bytes of the current file where data is being stored. Note: this value

is not set when running Replay Service.

Session

Listing 4.2: Session Types

@mutable @nested
struct SessionConfig : Service::Monitoring::EntityConfig {

Service::BoundedString default_participant_name;
};
@mutable @nested
struct SessionEvent : Service::Monitoring::EntityEvent {

//to avoid unused variable warnings
int32 _dummy;

(continues on next page)

4.5. Monitoring 51

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
};
@mutable @nested
struct SessionPeriodic {

@optional Service::Monitoring::NetworkPerformance network_
→˓performance;

@optional @optional Service::Monitoring::ThreadPoolPeriodic␣
→˓thread_pool;

};

Table 4.28: SessionConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 11.14.

default_partici-
pant_name

The name of the default participant configuration.

Table 4.29: SessionEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 11.15.

Table 4.30: SessionPeriodic
Field Name Description
network_performance Provides network performance metric as an aggregation of the same metric

across the contained Topics and TopicGroups. See Section 11.4.4.

TopicGroup

Listing 4.3: TopicGroup Types

@mutable @nested
struct TopicGroupConfig : Service::Monitoring::EntityConfig {

Service::BoundedString participant_name;
};
@mutable @nested
struct TopicGroupEvent : Service::Monitoring::EntityEvent {

//to avoid unused variable warnings
int32 _dummy;

};
@mutable @nested
struct TopicGroupPeriodic {

(continues on next page)

4.5. Monitoring 52

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
@optional Service::Monitoring::NetworkPerformance network_

→˓performance;
int64 topic_count;

};

Table 4.31: TopicGroupConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 11.14.

participant_name Name of the DomainParticipant from which the Topic is created.

Table 4.32: TopicGroupEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 11.15.

Table 4.33: TopicGroupPeriodic
Field Name Description
network_performance Provides network performance metric as an aggregation of the same metric

across the contained Topics. See Section 11.4.4.
topic_count Current number of Topics created from this TopicGroup.

Topic

Listing 4.4: Topic Types

@mutable @nested
struct TopicConfig : Service::Monitoring::EntityConfig {

Service::BoundedString topic_name;
Service::BoundedString registered_type_name;
Service::BoundedString participant_name;
Service::Monitoring::ResourceGuid topic_group;

};
@mutable @nested
struct TopicEvent : Service::Monitoring::EntityEvent {

//to avoid unused variable warnings
int32 _dummy;

};
@mutable @nested
struct TopicPeriodic {

@optional Service::Monitoring::NetworkPerformance network_

(continues on next page)

4.5. Monitoring 53

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
→˓performance;

@optional Service::Monitoring::CountStatus matched_status;
};

Table 4.34: TopicConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 11.14.

topic_name Topic name as specified in the configuration.
registered_type_name Topic registered type name as specified in the configuration.
paritcipant_name Name of the DomainParticipant from which the Topic is created.
topic_group GUID of the TopicGroup from which this Topic was created. This field is set to

zero for standalone Topics.

Table 4.35: TopicEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 11.15.

Table 4.36: TopicPeriodic
Field Name Description
network_performance Provides network performance metric as an aggregation of the same metric

across the contained Topics. See Section 11.4.4.
matched_status Provides information about the matched endpoints associated with this Topic.

4.6 Tutorials

4.6.1 Getting Started with Recording Service and Shapes Demo

In this tutorial, you will edit a Recording Service configuration file to record only specific topics. Then you will
start the Shapes Demo application and publish multiple topics. You will then inspect the database to see that
only the specified topics were recorded.

4.6. Tutorials 54

RTI Recording Service Documentation, Version 7.3.0

Edit the Configuration

The first time you run any RTI tools, an rti_workspace directory is created in your home directory. (See
Section 2.3 for the path to your workspace).

Inside the workspace, you will find a directory called user_config/recording_service.
Open the USER_RECORDING_SERVICE.xml file in an editor. Notice that there are two
<recording_service> tags in this file, one named UserRecorderService and one named User-
RecorderServiceJson. The UserRecorderServiceJson configuration is shown below.

<recording_service name="UserRecorderServiceJson">
<!-- Top-level storage settings -->
<storage>

<sqlite>
<storage_format>JSON_SQLITE</storage_format>
<fileset>

<workspace_dir></workspace_dir>
<execution_dir_expression>json_recording</execution_dir_

→˓expression>
<filename_expression>rti_recorder_default_json.db</filename_

→˓expression>
</fileset>

</sqlite>
</storage>

<!-- Top-level domain settings -->
<domain_participant name="Participant0">

<domain_id>0</domain_id>
</domain_participant>

<session name="DefaultSession">
<topic_group name="RecordAll" participant_ref="Participant0">

<allow_topic_name_filter>*</allow_topic_name_filter>
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</topic_group>
</session>

</recording_service>

This configuration is recording all topics in domain 0 into a database file named
rti_recorder_default_json.db. It is recording in deserialized (JSON_SQLITE) mode. In
the configuration, change the value in <allow_topic_name_filter> from * to Square. Now it will
record only the Square topic.

<recording_service name="UserRecorderServiceJson">
<!-- Top-level storage settings -->
<storage>

<sqlite>
<storage_format>JSON_SQLITE</storage_format>
<fileset>

<workspace_dir></workspace_dir>
<execution_dir_expression>json_recording</execution_dir_

→˓expression>

(continues on next page)

4.6. Tutorials 55

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
<filename_expression>rti_recorder_default_json.db</filename_

→˓expression>
</fileset>

</sqlite>
</storage>

<!-- Top-level domain settings -->
<domain_participant name="Participant0">

<domain_id>0</domain_id>
</domain_participant>

<session name="DefaultSession">
<topic_group name="RecordAll" participant_ref="Participant0">

<allow_topic_name_filter>Square</allow_topic_name_filter>
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</topic_group>
</session>

</recording_service>

Start Shapes Demo

Use Launcher to start Shapes Demo.

Figure 4.4: Open Shapes Demo from Launcher

In Shapes Demo, start two publishers: one Square publisher and one Circle publisher.

4.6. Tutorials 56

RTI Recording Service Documentation, Version 7.3.0

Figure 4.5: Create a new publisher in Shapes Demo

4.6. Tutorials 57

RTI Recording Service Documentation, Version 7.3.0

Start Recording Service

StartRecording Servicewith theUserRecorderServiceJson configuration andwith verbosity level 3 by entering
the following in a command shell:

cd <RTI_WORKSPACE>/user_config/recording_service
<NDDSHOME>/bin/rtirecordingservice -cfgName UserRecorderServiceJson -
→˓verbosity 3

See Section 2.3 for the path to your workspace and NDDSHOME.

You should see output indicating that the Square topic is being recorded:

[/recording_services/UserRecorderServiceJson/domain_participants/
→˓Participant0|STREAM_DISCOVERED name=Square|../../sessions/DefaultSession/
→˓topics/RecordAll@Square|CREATE]
[/recording_services/UserRecorderServiceJson/domain_participants/
→˓Participant0|STREAM_DISCOVERED name=Square|../../sessions/DefaultSession/
→˓topics/RecordAll@Square|ENABLE]
RTI Recording Service started
[/recording_services/UserRecorderServiceJson/sessions/DefaultSession/topics/
→˓RecordAll@Square|START]
[/recording_services/UserRecorderServiceJson/sessions/DefaultSession/topics/
→˓RecordAll@Square|RUN]

View the Data in Sqlite3

First, download the sqlite3 command-line browser from the SQLite download page. (If you are using a Linux
or macOS system, you may already have this installed.)

Then open a command prompt and run the application:

sqlite3 json_recording/rti_recorder_default_json.db

Type the command .tables and you should see recorded data for topic Square:

sqlite> .tables
Square@0

Then you can view your recorded Square data by typing:

sqlite> select rti_json_sample from "Square@0";

{"color":"ORANGE","x":120,"y":195,"shapesize":30,"fillKind":"SOLID_FILL",
→˓"angle":0}
{"color":"ORANGE","x":120,"y":197,"shapesize":30,"fillKind":"SOLID_FILL",
→˓"angle":0}
{"color":"ORANGE","x":120,"y":199,"shapesize":30,"fillKind":"SOLID_FILL",
→˓"angle":0}
{"color":"ORANGE","x":120,"y":201,"shapesize":30,"fillKind":"SOLID_FILL",
→˓"angle":0}

4.6. Tutorials 58

https://sqlite.org/download.html

RTI Recording Service Documentation, Version 7.3.0

4.6.2 Using Recording Service and Admin Console

You can use RTI Admin Console to monitor, pause and resume Recording Service.

Configuration

To use Recording Service with Admin Console, make sure that administration is enabled in the configuration.
For example:

<recording_service name="AdminExample">
<administration>

<domain_id>0</domain_id>
</administration>
...

</recording_service>

Note that enabling administration will also enable monitoring in the same domain by default. Admin Console
cannot control the Recording Service instance unless monitoring is enabled.

Start Recording Service

Admin Console cannot start a new instance of Recording Service. It can only monitor and administer a instance
of Recording Service that is already running.

To begin, start Recording Service with administration enabled:

<NDDSHOME>/bin/rtirecordingservice -cfgName AdminExample

Start Shapes Demo

Start Shapes Demo and publish Squares and Circles as described in Section 4.6.1.

Viewing with Admin Console

Use Launcher to start Admin Console (from the Tools tab).

You will see the Recording Service appear in Admin Console’s Physical View and Processes View. Click on
the Recording Service in either view and a Recording Service tab will appear.

The first tab, RTI Recording Service Entities, shows your Recording Service, the session(s) it is running, the
topics and topic groups it is configured to record, and which topics are being recorded.

Note that topics that are being recorded as part of a topic_group will appear side-by-side with topics that were
configured individually. You can tell they are part of a topic_group because the name of the topic_group will
appear along with the topic, such as RecordAll@Square.

The second tab, RTI Recording Service Configuration, displays the configuration that was used to configure
the running Recording Service instance.

4.6. Tutorials 59

RTI Recording Service Documentation, Version 7.3.0

Figure 4.6: Open Admin Console from Launcher

Figure 4.7: View the Recording Service information in Admin Console

4.6. Tutorials 60

RTI Recording Service Documentation, Version 7.3.0

Figure 4.8: View the Recording Service Configuration tab in Admin Console

The third tab, Graphical view, displays the system in a graph. This allows you to visualize the entire system.
You can see the DDS Entities that were discovered by Admin Console, including how they are connected and
their matching endpoints.

The fourth tab, DDS Entities, displays the DDS entities that have been created by the Recording Service. If
you click on individual DataReaders, you can view their QoS in the DDS QoS view.

The fifth tab, RTI Recording Service Information, shows details about the recording, such as:

• The Connext DDS version number

• The name of the database file it is recording (if you are using the builtin SQLite storage)

• The current size of the database file you are recording (if you are using the builtin SQLite storage)

The final tab, Resource Charts, allows you to monitor Recording Service’s CPU and memory usage.

Administering with Admin Console

Recording Service allows the following commands:

• Pause: This pauses all the topics in a running service.

• Resume: This restarts the sessions and topics in a Recording Service application.

• Shut down: This shuts down the Recording Service application. To restart the application, you must
re-run from Launcher or the command line.

4.6. Tutorials 61

RTI Recording Service Documentation, Version 7.3.0

Figure 4.9: View the Graphical View tab in Admin Console

Figure 4.10: View the DDS Entities tab in Admin Console

4.6. Tutorials 62

RTI Recording Service Documentation, Version 7.3.0

Figure 4.11: View the Recording Service Information tab in Admin Console

Figure 4.12: View the Resource Charts tab in Admin Console

4.6. Tutorials 63

RTI Recording Service Documentation, Version 7.3.0

Figure 4.13: Pause the Recording Service in Admin Console

4.6.3 Using Recording Service as a Library

It is possible to use Recording Service as a library in your application. All the necessary tools are in-
cluded in the library rtirecordingservice (librtirecordingservice.so on Linux systems,
librtirecordingservice.dylib on macOS systems, and rtirecordingservice.dll on
Windows systems). The library can be used in any of the modes provided by Recording Service: recording
data, replaying data or converting data. For more information, see: Recording Service C++ API.

A simple C++ example of how to link the Recording Service library into your application is available here:
RTI Community Recording Service examples: Service as a Library.

Include files

When using Recording Service as a library, you should include the following header in your application code:

#include <rti/recording/RecordingService.hpp>

4.6. Tutorials 64

https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/service_as_lib/c%2B%2B11

RTI Recording Service Documentation, Version 7.3.0

Using the RecordingService class

The main class used to instantiate Recording Service as a library is called RecordingService. To instanti-
ate it, you need to define the properties to be used by the service for its configuration. The class used to define
these properties is called ServiceProperty. Among the parameters that can be set to control the service’s
execution, you can find:

• Application role: record, replay or convert.

• Configuration control: configuration file as well as configuration name (service name).

• Remote administration control: flag to enable or disable it as well as the domain ID to use.

• Monitoring control: flag to enable or disable it as well as the domain ID to use.

• DDS Domain ID control: the domain ID base parameter allows the user to apply an offset to the domain
IDs specified in the XML configuration to be loaded.

• XML control: whether to load the default Connext XML files or not or whether to enforce XSD validation
of the supplied configuration file.

The following code snippet shows how to launch a Recording Service instance in record mode. This
instance will use an XML configuration called MyRecorderConfig that can be found in file
my_recording_service.xml. Administration and monitoring will be enabled and attached to domain
ID 5. By using the domain ID base as well, all the domain IDs specified in the aforementioned XML configu-
ration will be offset by 6.

using namespace rti::recording;

// ...

ServiceProperty service_property;
service_property.application_role(ApplicationRoleKind::RECORD_APPLICATION).

enable_administration(true).
administration_domain_id(5).
enable_monitoring(true).
monitoring_domain_id(5).
domain_id_base(6).
cfg_file("my_recording_service.xml").
service_name("MyRecorderConfig");

RecordingService recorder(service_property);
recorder.start();

// ...

// When it's time to stop the Recording Service instance, call the method
// below. The ``stop()`` method will also be called automatically by the
// RecordingService class destructor, so it will be called when the
// instance goes out of scope.
recorder.stop();

4.6. Tutorials 65

RTI Recording Service Documentation, Version 7.3.0

4.6.4 Plugging in Custom Storage

To configure a custom storage library, you must add the <plugin_library> tag inside the <dds> tag.
This allows you to define one or more storage libraries that can be used to plug in custom storage.

In addition, you must associate the storage library with your Recording Service instance by specifying the plugin
and its name in the <storage> tag.

You can pass custom properties to your plugin inside the <plugin> tag.

There are full examples written in C and C++ about plugging in custom storage in Recording Service, in: RTI
Community Recording Service examples: C storage plugin and RTI Community Recording Service examples:
C++ storage plugin.

Custom Storage API Overview

To store data, you must implement the following APIs:

• RecordingServiceStorageWriter create function: A creation function for the StorageWriter structure or
class. This allocates a StorageWriter object, which is used to allocate StorageStreamWriters.

• StorageWriter:

– A function for creating StorageStreamWriters for user-data topics when Recording Service
notifies the plugin about a new stream. The user-data streams represent samples as Dynamic
Data objects.

– Three functions for creating StorageStreamWriters for the builtin discovery topics:
DCPSParticipant, DCPSPublication and DCPSSubscription. These topics
are represented by their specific types (e.g., DDS_ParticipantBuiltinTopicData
type for DCPSParticipant). These functions are not required, thus when one of them is
not implemented, no samples will be stored for that builtin topic.

– A function for deleting user-data StorageStreamWriters. Recording Service expects this func-
tion to be able to work with streams writers created for user-data samples only.

– Three functions to delete the StorageStreamWriters representing theDDS builtin topics. These
functions are not required, but if the creation function was defined for a topic, the deletion
function must also be defined.

– A function for deleting the StorageWriter instance.

• StorageStreamWriter:

– A function for storing data associated with a stream. For the stored data to be compatible with
Replay Service, the reception timestamp of every sample should be stored with the data. It is
also recommended that the valid data flag is recorded. For Replay Service to be able to replay
instance states, it’s also necessary for Recording Service to store the instance state and instance
handle fields.

– There are three specific classes for the three different builtin discovery topics: Stor-
ageParticipantWriter, StoragePublicationWriter and StorageSub-

4.6. Tutorials 66

https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/pluggable_storage/c
https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/pluggable_storage/c
https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/pluggable_storage/c%2B%2B11
https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/pluggable_storage/c%2B%2B11

RTI Recording Service Documentation, Version 7.3.0

scriptionWriter. Each of them includes a store() function that is strongly typed
to the topic’s type.

The C++ APIs provide a mechanism to have strongly typed StorageStreamWriter classes. There are
four specific builtin StorageStreamWriter definitions to work with the different types of streams:

• A definition based on dds::core::xtypes::DynamicData, which should be used to store sam-
ples for user-data topics.

• A definition based on dds::topic::ParticipantBuiltinTopicData, which can be used to
store samples of the builtin DDS discovery stream DCPSParticipant.

• A definition based on dds::topic::PublicationBuiltinTopicData, which can be used to
store samples of the builtin DDS discovery stream DCPSPublication.

• A definition based on dds::topic::SubscriptionBuiltinTopicData, which can be used
to store samples of the builtin DDS discovery stream DCPSSubscription.

More detailed API documentation is here:

• Recording Service C API documentation

• Recording Service C++ API documentation

4.6.5 Accessing JSON samples through SQL

When using the builtin SQLite JSON storage format, data samples are stored in the column called
rti_json_sample using SQLite’s JSON extensions. The sample can thus be accessed using these ex-
tensions, namely, the json_extract() function.

As an example, suppose we have the following IDL type:

struct BasicStruct {
double member1;
string member2;

};

We could access the sample’s data with a SQL query like this:

SELECT json_extract(rti_json_sample, '$.member2') FROM [MyTableName]
WHERE json_extract(rti_json_sample, '$.member1') > 2.0

4.6.6 Controlling Recording Service Remotely from an Application

Apart from the ability to use Admin Console to control a Recording Service instance, it is possible to con-
trol it using an application that issues command requests programmatically, using the Remote Administration
Platform.

There is a C++ example in the RTI Community that provides an application that can produce command re-
quests for Recording Service (or in general, for any RTI service that uses the common Remote Administration
Platform): RTI Community Examples: C++ Service Administration.

4.6. Tutorials 67

http://www.sqlite.org/json1.html
https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/service_admin/c%2B%2B11

RTI Recording Service Documentation, Version 7.3.0

4.6.7 Listing the Timestamp Tags in a Recording

If you are using the builtin SQLite plugin in Recording Service, and remote administration is enabled, then
the remote administration exposes a command that allows you to tag timestamps with a symbolic name and
description. These timestamp tags allow you to associate points in time in the recording with external events.
The tags can be used later with Replay Service or Converter in place of timestamps to select what data to replay
or convert.

The use case for timestamp tags is that they allow you to record, in a human-readable way, the time at which
interesting events occur in your business processes along with the database that Recording Service is recording
into. Later you can use these markers to replay data from (or up to) that point, instead of expressing start and
end times in a numeric way.

For example, suppose you use Recording Service to record data while you are doing some business process.
Then some event happens during the process that you want to somehow mark in the database. (Maybe this
event marks the time at which some device starts behaving strangely during a troubleshooting session). If you
create a custom GUI application that an operator can use, or any kind of application, you can use the timestamp
tagging command described in this section. Then when that application sends the command, Recording Service
will store in the database a record in which you can give the event a name and description. Later you can replay
the recorded data starting (or ending) at that named event.

Note that you can use a time offset when submitting the timestamp tagging command. This allows you to create
tags that refer to a time in the past or the future, relative to the time when you sent the tagging command.

Once you have a recorded database, you can list the timestamp tags that are in the recording. Use the command
rtirecordingservice_list_tags and point it to the directory that contains your recorded database
with the -d argument.

For example:

<NDDSHOME>/bin/rtirecordingservice_list_tags -d /database/directory/

This command will analyze the recording in /database/directory/ and list the details of any timestamp
tags in the recording, including the tag names, descriptions, and associated timestamps. For example:

tag_name timestamp_ms tag_description
-------------------------- ------------- ------------------------
/my_example/my_events/tag1 1546484663309 first tag description
/my_example/my_events/tag2 1546484703360 a second tag description

For information on using timestamp tags with Replay Service, see Section 5.6.4. They can also be used with
Converter, see Section 6.3.1.

A simple C++ example of how to use timestamp tags using remote administration is available here: RTI Com-
munity Examples: C++ Service Administration.

4.6. Tutorials 68

https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/service_admin/c%2B%2B11
https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/service_admin/c%2B%2B11

RTI Recording Service Documentation, Version 7.3.0

4.7 Troubleshooting

4.7.1 Verbosity

Increase the verbosity from the command line to view information about which Topics have been discovered.
For example, running with -verbosity 4 shows that Recording Service has discovered a Square Topic.

[/recording_services/RecorderService/domain_participants/Participant0|STREAM_
→˓DISCOVERED name=Triangle] type_name=ShapeType
[/recording_services/RecorderService/domain_participants/Participant0|STREAM_
→˓DISCOVERED name=Triangle|../../sessions/DefaultSession/topics/
→˓RecordAll@Triangle|CREATE]
[/recording_services/RecorderService/domain_participants/Participant0|STREAM_
→˓DISCOVERED name=Triangle|../../sessions/DefaultSession/topics/
→˓RecordAll@Triangle|ENABLE]
[/recording_services/RecorderService/sessions/DefaultSession/topics/
→˓RecordAll@Triangle|START]
[/recording_services/RecorderService/sessions/DefaultSession/topics/
→˓RecordAll@Triangle|RUN]

At verbosity level 4, it is also possible to see incompatible QoS.

[/recording_services/RecorderService/sessions/DefaultSession/topics/
→˓RecordAll@Triangle|START]
[/recording_services/RecorderService/sessions/DefaultSession/topics/
→˓RecordAll@Triangle|RUN]
PRESPsService_isRemoteWriterLocalReaderCompatible:incompatible ownership:␣
→˓writer 1 reader 0
[/routing_services/RecorderService/domain_routes/DomainRoute/sessions/
→˓DefaultSession/routes/RecordAll@Circle/inputs/DdsInput1] requested␣
→˓incompatible qos: policy id=6, name=Ownership

4.7. Troubleshooting 69

Chapter 5

Replay Service

5.1 Usage

This section explains how to run Replay Service from a command line. In particular, it describes:

• How to Start Replay Service (Section 5.1.1).

• How to Stop Replay Service (Section 5.1.2).

• Replay Service command-line parameters (Section 5.1.3).

5.1.1 Starting Replay Service

Replay Service runs as a separate application. The script to run the executable is in <NDDSHOME>/bin. (See
Section 2.3 for the path to NDDSHOME.)

rtireplayservice [options]

To start Replay Service with a default configuration, enter:

$NDDSHOME/bin/rtireplayservice

This command will run Replay Service indefinitely until you stop it.

Replay Service is pre-loaded with a built-in configuration that has default settings.

Note: To run Replay Service on a target system (not your host development platform), you must first select the
target architecture. To do so, either:

• Set the environment variable CONNEXTDDS_ARCH to the name of the target architecture. (Do this for
each command shell you will be using.)

• Or set the variable connextdds_architecture in the file rticommon_config.[sh/bat]
to the name of the target architecture. (The file is resource/scripts/rticommon_config.
sh on Linux or macOS systems, resource/scripts/rticommon_config.bat on Windows

70

RTI Recording Service Documentation, Version 7.3.0

systems.) If the CONNEXTDDS_ARCH environment variable is set, the architecture in this file will be
ignored.

5.1.2 Stopping Replay Service

To stop Replay Service, press Ctrl-c. Replay Service will perform a clean shutdown.

5.1.3 Replay Service Command-Line Parameters

The following table describes all the command-line parameters available in Replay Service. To list the available
parameters, run rtireplayservice -help.

All command-line parameters are optional; if specified, they override the values of any corresponding set-
tings in the loaded XML configuration. See Section 5.3.1 for the XML elements that can be overridden with
command-line parameters.

Table 5.1: Replay Service Command-Line Parameters
Parameter Description
-appName <string> Application name used to identify this execution for remote ad-

ministration, and to name the Connext DDS participant.
-cfgFile <string> Semicolon-separated list of configuration file paths. Default: Un-

specified
-cfgName Configuration name Used to find a <replay_service>

matching tag in the configuration file.
-debugMode Enables debug mode. Default: Debug mode is not enabled.
-reverseMode Enables reverse playback. Default: Reverse mode is not enabled.
-domainIdBase <int> This value is added to the domain IDs in the

<domain_participant> tag in the configuration file.
For example, if you set -domainIdBase to 50 and use domain
IDs 0 and 1 in the configuration file, Replay Service will read
domains 0 and 1 from the database, but will replay that data into
domains 50 and 51. Default: 0

-D<name>=<value> Defines a variable that can be used as an alternate replace-
ment for XML environment variables, specified in the form
$(VAR_NAME). Note that definitions in the environment take
precedence over these definitions.

-help Shows this help.
-heapSnapshotDir Output directory where the heap monitoring snapshots are

dumped. The filename format is: RTI_heap_<appName>_<pro-
cessId>_<index>.log

-heapSnapshotPeriod <sec> Period at which heap monitoring snapshots are dumped. Enables
heap monitoring if > 0. Default: 0 (disabled)

continues on next page

5.1. Usage 71

RTI Recording Service Documentation, Version 7.3.0

Table 5.1 – continued from previous page
Parameter Description
-logFormat <format> A mask to configure the format of the log messages for both Re-

play Service and Connext DDS.
• DEFAULT - Print message, method name, log level, activ-
ity context, and logging category

• TIMESTAMPED - Print message, method name, log level,
activity context, logging category, and timestamp

• MINIMAL - Print only message number and message lo-
cation

• MAXIMAL - Print all available fields
Default: DEFAULT

-maxObjectsPerThread <int> Maximum number of thread-specific objects that can be cre-
ated. Default: Same as the Connext DDS default for max_ob-
jects_per_thread

-remoteAdministrationDomainId
<int>

Enables remote administration and sets the domain ID for com-
munication. Default: Remote administration is not enabled.

-remoteMonitoringDomainId <int> Enables remote monitoring and sets the domain ID for status pub-
lication. Default: Remote monitoring is not enabled.

-verbosity <ser-
vice_level>[:<dds_level>]

Controls what type of messages are logged. <service_level> is the
verbosity level for the service logs and <dds_level> is the verbosity
level for the DDS logs. Both can take any of the following values:

• SILENT
• ERROR
• WARN
• LOCAL
• REMOTE
• ALL

Default: ERROR:ERROR
-version Prints the program version and exits.

5.1.4 Replay Service Runtime Behavior

Replay Service currently does not delete DataWriters, even if all original DataWriters were deleted in the
recorded database.

5.1.5 Working With Large Data

The built-in SQLite plugin implementation available in Replay Service is prepared to handle any type size and
storage format. In order to improve the fidelity of the samples published with respect to the timestamps of the
original samples in the database, Replay Service internally caches the next sample to be published, so that it can
be accessed more quickly when it’s time to publish. This behavior is particularly useful when replaying large
data.

However, when working with large data types and massive files (or filesets), Replay Service may take a while to
prepare SQL statements to work with the data, resulting in a delay in publishing the first samples for any large

5.1. Usage 72

RTI Recording Service Documentation, Version 7.3.0

data topics.

Because of this delay, it is recommended that you index the user data tables for those large topics before running
Replay Service on them. Indexing can massively improve Replay Service’s startup time for those topics. You
can create the indexes offline, after Recording Service has finished recording all the data. Index the tables on the
SampleInfo_reception_timestamp field. For example, imagine a table, VeryLargeTopic@0,
has been created by Recording Service; you can use the following index creation statement:

CREATE INDEX IF NOT EXISTS [VeryLargeTopic@0_idx_rt]
ON [VeryLargeTopic@0] (SampleInfo_reception_timestamp)

5.1.6 Choosing the Sample Order for Replaying Data

Replay Service has the capability to replay data ordered by reception timestamp or by source timestamp. Re-
ception timestamp represents a monotonic ascending time series and the source timestamp comes from every
recorded participant’s system clock, hence it can behave in non-monotonic fashion. The source timestamp can
differ between one record and another with the same information.

Furthermore, it is important to consider the DDS_DestinationOrderQosPolicy, which can create “eventual con-
sistency” between the different Recording Service instances. Formore details, please see DESTINATION_OR-
DER QosPolicy, in the RTI Connext DDS Core Libraries User’s Manual.

That being said, Replay Service’s built-in SQLite plugin implementation will sort the database by using the
chosen sample_order before it replays the data.

5.1.7 Recreating the State of the World when Replaying (Replaying Instance His-
tory)

Replay Service has the ability to replay what can be called the state of the world given a starting timestamp. The
state of the world is the latest value for every alive instance at a certain timestamp. That’s why we also refer to
this feature as Instance History Replay. When this feature is enabled, Replay Service will read the latest value
for every instance that was alive, and publish it with the first batch of samples to be published for a topic. Of
course this feature relates to keyed types and topics, for unkeyed types and topics it has no effect.

As an example, imagine a keyed topic T1 was recorded, and that there are three instances for the topic, define
by IDs 1, 2 and 3. The following table shows the instances and values recorded for it during a certain period of
time:

5.1. Usage 73

RTI Recording Service Documentation, Version 7.3.0

Time Instance ID Value
1 ID=1 100
2 ID=2 200
3 ID=3 300
4 ID=1 110
5 ID=3 310
6 ID=1 disposed
7 ID=2 210
8 ID=3 320
9 ID=1 120
10 ID=2 220

If the Instance History Replay feature is enabled, Replay Service will publish the instance values that compose
the state of the world at the start time provided by the user. For example, for start time T=4, Replay Service
will publish, ahead of any normal replay activity, samples {ID=1,100}, {ID=2,200} and {ID=3,300}.
It will then start publishing samples normally, {ID=1,110}, etc. If start time is T=7, then the state of the
world will be composed of two samples, because the sample with ID=1 was disposed at time T=6. Hence,
Replay Service will publish samples {ID=2,200} and {ID=3,310} as the state of the world. Of course, if
the start time is not provided (T=0) then there is no history to replay.

An important note about how the instance history is replayed is that it’s published in a burst. This means that
time separation between different values is not preserved. The goal of the feature is to publish a whole picture
for the topic before starting with normal, time-preserving replay.

This feature can be useful in situations where very large databases are being replayed partially (this is, with a
specific time range). When this is done, and this feature is not enabled, instances that were alive at the specified
start time are just not present in the replay. By enabling this feature, Replay Service will publish a value for
each instance that was alive at the start time provided, hence completing the whole picture for the topic before
normal replay activity starts.

Under the hood, this feature uses a custom instance history index that is created by Recording Service (although
the creation is disabled by default, as it can affect performance), or it can also be created offline. See Section
4.3.6 on how to enable this feature while recording, or Section 9 for how to index the database offline. If
the index was not created while recording, or offline ahead of replaying, then Replay Service will create the
index during startup, which can take some time in huge databases. So our general recommendation is to plan
ahead whether this feature is going to be used when replaying your data and either use online indexing with
Recording Service (by enabling the <instance_indexing tag) or save some time for the offline indexing
of the database. It’s interesting to note that indexing, even when done by Replay Service, will only happen once,
as it can be expected.

The searching for the instance history is quite optimized, but it takes some time. This delay can manifest during
Replay Service startup, but no more searching will be needed after that during normal replay of samples. If if
the looping feature is enabled, Replay Service will search for instance history again and re-publish it. This will
restore the original state of the world ahead of replaying samples of the next loop.

This feature is integrated with replaying by source timestamp and other features, like jumping between times-
tamps. Take into account that if instance indexing was done, for example, based only for reception timestamp,
but you want to Replay with instance history based on source timestamp, then Replay Service will proceed to
indexing the database by source timestamp, incurring in the indexing delay. So planning ahead of time what

5.1. Usage 74

RTI Recording Service Documentation, Version 7.3.0

sort of indexing and replay (source, timestamp) is going to be needed can also save time.

For more details on how to configure this feature, see Section 5.3.9.

5.1.8 Jumping in Time while Replaying

Replay Service has the capability of jumping in time. With this jump action, Replay Service will move the
current replay position forward or backward in time.

For example, suppose you have a recording and in the middle there are some important events. During the
replay, you can jump ahead to those events, skipping the unrelated events that came before.

When the jump in time is to the future, Replay Service will burst all the discovery samples between your
previous position and your new position. This discovery phase can take some time depending on the amount of
discovery between both positions. To improve the performance of the jump, you can enable Instance History
Replay to obtain the discovery state of the world and create all the new StreamReaders. For more information,
see Section 5.1.7.

In order to jump in time, you have to enable the remote administration. Remote administration exposes some
commands that allow you to perform this action. See Section 5.4.3 for details.

5.1.9 Using Debug Mode while Replaying

Replay Service has a secondary mode to start in a debug way. This mode will allow you to add breakpoints in
the replay. The replay will be paused once it hits a breakpoint and the user will have the capability to decide
the behavior of the replay.

For example, suppose you have a recording and in the middle there are some important events. During the
replay, you can replay that section of events adding breakpoints at the beginning and at the end of the replay
section. Once, the replay hits the end breakpoint you will be able to jump to the first breakpoint and reproduce
that important event again.

If the Debug mode feature is enabled, Replay Service will first hit an initial breakpoint, which is a permanent
breakpoint labeled “default_breakpoint”. This initial breakpoint is set to the start timestamp of the recorded
database.

In this mode, you can continue the replay until hit a breakpoint or continue the replay for a period of time and
then stop the replay without hitting a real breakpoint.

Under the hood, Replay Service will create a virtual breakpoint at the end of that period of time. The virtual
breakpoint will be removed internally after it was hit or we jump to another breakpoint. This period of time
can be a custom time set by the user or a fixed time that we call slice period. The slice period can be set inside
the XML configuration and it can’t be changed during the replay.

The debug mode use the remote administration system to receive the user’s order due to that you have to enable
the remote administration to control this mode. See Section 5.4.3 for details.

5.1. Usage 75

RTI Recording Service Documentation, Version 7.3.0

5.2 Operating System Daemon

See generic instructions in How to Run as an Operating System Daemon.

5.3 Configuration

This section provides a reference for the XML elements that comprises a Replay Service configuration. For
details on how to provide XML configurations to Replay Service. refer to Configuring RTI Services. This chapter
describes how to compose an XML configuration.

Note: Replay Service makes use of XSD files to validate the XML configuration files used to configure Replay
Service. Due to the restrictions imposed by XSD schemas for XML 1.0, some of the tags used in the configura-
tion must be grouped in order. This behavior is intended; Replay Service validates the XML files before parsing
them to catch as many parsing errors as possible beforehand.

5.3.1 XML Tags for Configuring Replay Service

This section describes the XML tags you can use in a Replay Service configuration file. Figure 5.1 and Table
5.2 describe the top-level tags allowed within the root <dds> tag.

Table 5.2: Top-Level Tags in Replay Service’s Configuration File
Tags within <dds> Description Multiplic-

ity
<qos_library> Specifies a QoS library and profiles. The contents of this tag are

specified in the same manner as for a Connext DDS QoS profile
file — see Configuring QoS with XML, in the RTI Connext DDS
Core Libraries User’s Manual.

0..*

<types> Defines types that can be used byReplay Service. This tag is needed
if data types are not available through discovery, or when using a
transformation. The type description is done using the Connext
DDS XML format for type definitions. See Creating User Data
Types with Extensible Markup Language (XML), in the RTI Con-
next DDS Core Libraries User’s Manual.

0..*

<plugin_library> Contains a list of libraries that can be used to:
• Plug in custom storage, such as custom databases. For more
information, see Section 5.6.3.

• Transform data after it is received from Connext DDS and
before it is placed in storage. For more information, see
Data Transformation, in the RTI Routing Service User’s
Manual..
See Section 4.3.12

0..*

continues on next page

5.2. Operating System Daemon 76

RTI Recording Service Documentation, Version 7.3.0

Table 5.2 – continued from previous page
Tags within <dds> Description Multiplic-

ity
<replay_service> Required. Specifies a Replay Service configuration. See Section

5.3.2.
Attributes

• name: uniquely identifies a service configuration. Re-
quired.

Example

<replay_service name="ReplayAll">
<!-- your service settings ... -->

</replay_service>

1..*

5.3.2 Replay Service Tag

A configuration file must have at least one <replay_service> tag. This tag is used to configure an execu-
tion of Replay Service.

A configuration file may contain multiple <replay_service> tags. When you start Replay Service, you can
specify which <replay_service> tag to use to configure the service using the -cfgName command-line
parameter. This means one file can be used to configure multiple Replay Service executions.

Figure 5.2 and Table 5.3 describe the tags allowed within a <replay_service> tag.

Table 5.3: Replay Service Tags in Replay Service’s Configuration
File

Tags within <re-
play_service>

Description Multiplic-
ity

<administration> Enables remote administration. When administration is enabled,
monitoring is also enabled by default. See Section 5.3.3.

0..1

<monitoring> Enables monitoring for Replay Service, including statistics. See
Section 5.3.4.

0..1

<storage> Describes how the data will be loaded from storage. See Section
5.3.5. If this is not specified, data will be loaded from the current
working directory.

0..1

<playback> Specifies the timing rules for how data is played back. See Section
5.3.9.

0..1

<data_selection> Enables selection of a subset of data to replay. Supports selecting
replay data by time (or tagged time). See Section 5.3.10.

0..1

continues on next page

5.3. Configuration 77

RTI Recording Service Documentation, Version 7.3.0

Table 5.3 – continued from previous page
Tags within <re-
play_service>

Description Multiplic-
ity

<domain_participant> Required. Specifies a DomainParticipant to use to replay data.
The domain ID specified for the DomainParticipant will be used
to determine which domains to select from the database and (com-
bined with the domainIdBase) which domains to replay the data
into. For example, if data was originally recorded in domains 0
and 1, and you want to replay in domains 50 and 51, you must:

• Specify <domain_participant> tags with
<domain_id> tags set to 0 and 1 in your configu-
ration file.

• Use -domainIdBase 50 to specify that the domain IDs
the data will actually be written into is offset by 50.

See Section 5.3.8.
Attributes:

• name: Uniquely defines a DomainParticipant. Re-
quired.

Example

<domain_participant name="Participant3">
<domain_id>3</domain_id>
<!-- Participant QoS -->

</domain_participant>

1..*

<session> Required. Active component of Replay Service for replaying data.
Contains one or more threads that can be used for replay. See
Section 5.3.12.
Attributes

• name: Uniquely defines a replay session. Required.
• default_participant_ref: Specifies a de-
fault DomainParticipant to be used by topics and topic
groups belonging to this replay session. Children can
override this by specifying their own participant.

Example

<session name="Session" default_
→˓participant_ref="Participant3">

<!-- ... topics / groups of topics␣
→˓to record -->
</session>

1..*

5.3. Configuration 78

RTI Recording Service Documentation, Version 7.3.0

Figure 5.1: Top-level Tags in the Replay Configuration File

5.3. Configuration 79

RTI Recording Service Documentation, Version 7.3.0

Figure 5.2: Tags used to configure a Replay Service instance

5.3. Configuration 80

RTI Recording Service Documentation, Version 7.3.0

Example: Specify a Replay Service Configuration in XML

<dds>
<replay_service name="MyReplayService">

<!-- ... Required entities -->
</replay_service>

</dds>

Starting a Replay Service with the following command will use the <replay_service> tag with the name
“MyReplayService”.

$NDDSHOME/bin/rtireplayservice -cfgFile file.xml -cfgName MyReplayService

Replay Service uses the Topic names and domain IDs specified in the configuration file to determine which data
to replay. To replay data into a different domain than the one it was recorded from, use the -domainIdBase
command-line parameter to change the output domain ID.

Figure 5.3: The domain ID specified inside a DomainParticipant, in combination with the Topic name, is
used to load data from recorded tables. In this case, the DomainParticipant’s domain ID is set to 3. The
topic_group specifies all topics.

Figure 5.4: To replay data in a different domain than where it was recorded, use the -domainIdBase
command-line parameter to specify a base ID for the replay domain. Here, by specifying a domainIdBase of
2, all Topics will be replayed in their original domain, plus 2.

5.3. Configuration 81

RTI Recording Service Documentation, Version 7.3.0

5.3.3 Administration

The <administration> tag allows you to enable and configure remote administration of Replay Service,
including stopping, starting, and pausing replay.

See Section 5.4 for details on using remote administration.

Table 5.4: Administration Tags in Replay Service’s Configuration
File

Tags within <adminis-
tration>

Description Multiplic-
ity

<domain_id> Domain ID used for remote administration. Also used for moni-
toring by default.

0..1

<domain_partici-
pant_qos>

QoS used by the administration DomainParticipant. If the tag is
not defined, Connext DDS defaults will be used.

0..1

<publisher_qos> QoS used by the administration Publisher. If the tag is not defined,
Connext DDS defaults will be used.

0..1

<subscriber_qos> QoS used by the administration Subscriber. If the tag is not de-
fined, Connext DDS defaults will be used.

0..1

<datawriter_qos> QoS used by administration DataWriter(s). If the tag is not de-
fined, Connext DDS defaults will be used, with the following
changes:

• history.kind = DDS_KEEP_ALL_HISTORY_QOS
• resource_limits.max_samples = 32

0..1

<datareader_qos> Quality of Service (QoS) used by administration DataReader(s).
If the tag is not defined, the Connext DDS defaults will be used,
with the following changes:

• reliability.kind = DDS_RELIABLE_RELIABILITY_QOS
(this value cannot be changed)

• history.kind = DDS_KEEP_ALL_HISTORY_QOS
• resource_limits.max_samples = 32

0..1

<distributed_logger> When you enable Distributed Logger, Replay Service will publish
its Log messages to Connext DDS. See Section 4.3.13.

0..1

The contents of the tags for configuring QoS are specified in the same manner as for the Connext DDS QoS
profile file. See Configuring QoS with XML, in the RTI Connext DDS Core Libraries User’s Manual.

5.3. Configuration 82

RTI Recording Service Documentation, Version 7.3.0

5.3.4 Monitoring

The <monitoring> tag allows you to enable and configure remote monitoring of Replay Service.

Table 5.5: Monitoring Tags in Replay Service’s Configuration File
Tags within <monitor-
ing>

Description Multiplic-
ity

<enabled> Whether to enable monitoring of the service.
Default: Disabled unless administration is enabled

0..1

<domain_id> Domain ID used for monitoring.
Default: Use the domain ID specified for monitoring

0..1

<datawriter_qos> QoS used by monitoring DataWriter(s) 0..1
<publisher_qos> QoS used by monitoring Publisher(s) 0..1
<domain_partici-
pant_qos>

QoS used by monitoring DomainParticipant 0..1

<statistics_sam-
pling_period>

How frequently to sample the service’s statistics, using the tags
<sec> or <nanosec>. For example, <sec>1</sec> samples the ser-
vice’s statistics every second.
Default: 1 second.

0..1

<status_publication_pe-
riod>

How frequently to publish the service status, using the tags <sec>
or <nanosec>. For example, <sec>1</sec> publishes the service’s
status every second.
Default: 5 seconds

0..1

The contents of the tags for configuring QoS are specified in the same manner as for the Connext DDS QoS
profile file. See Configuring QoS with XML, in the RTI Connext DDS Core Libraries User’s Manual.

5.3.5 Storage

The<storage> tag allows you to configure the storage fromwhich data will be read. You can choose between
using the builtin SQLite storage or implementing your own storage plugin.

Table 5.6: Storage Tags in Replay Service’s Configuration File
Tags within
<storage>

Description Multi-
plicity

<sqlite> Enables replaying data from an SQLite database file See Section 5.3.5. 0..1
<plugin> Enables storing data in an external library that you specify.

Attributes
• plugin_name: Name of the plugin that creates a storage plugin
object. This name shall refer to a registered storage plugin. See
Section 11.5 for details on how to register plugins).

See Section 5.3.5 for more about using this tag.
See Section 5.6.3 for a tutorial on plugging in custom storage.

0..1

5.3. Configuration 83

RTI Recording Service Documentation, Version 7.3.0

SQLite

The <sqlite> tag allows you to specify a SQLite formatted file to read data from for replay.

Table 5.7: SQLite Tags in Replay Service’s Configuration File
Tags within <sqlite> Description Multiplic-

ity
<storage_format> The storage format of the user data files found in the database di-

rectory. If not specified, XCDR_AUTO is assumed.
The options are:

• XCDR_AUTO: This is the binary format used by Connext
DDS when sending data over the network. This has the high-
est performance for recording, but can only be viewed by
using Converter to convert the data to a readable format, or
by using Replay to replay the data. This will internally store
data in XCDR orXCDR2 depending on the format received.

• JSON_SQLITE: This format can be queried, but recording
in this format has lower performance because data must be
deserialized before it can be stored.

• XCDR: The format to use when communicating with Con-
next DDS before 6.0.0.

• XCDR2: More efficient than XCDR, used by Connext DDS
6.0.0 and later.

Default: XCDR_AUTO.

0..1

<database_dir> The directory where to look for a recorded database. The direc-
tory must contain a valid metadata file, as well as a discovery file
and one or many user data files. This field is optional. When not
included, the current directory will be used.
Default: the current directory.

0..1

continues on next page

5.3. Configuration 84

RTI Recording Service Documentation, Version 7.3.0

Table 5.7 – continued from previous page
Tags within <sqlite> Description Multiplic-

ity
<sql_initializa-
tion_string>

Allows configuring an SQLite SQL expression to use when estab-
lishing SQLite connections using this plugin. You can add an index
to a table to speed up replay, but this must be done for each table
you want to index. Note that you can perform this step using an
SQLite client.
Example:

<sql_initialization_string>
CREATE INDEX IF NOT EXISTS pingtopic_

→˓0_by_rcp_timestamp
ON 'PingTopic@0' (SampleInfo_

→˓reception_timestamp);
</sql_initialization_string>

Note: when using Recorder and Replay at the same time for
the same DB file(s), or for that matter, any other SQLite appli-
cation accessing the data, we recommend using SQLite’s WAL
(write-ahead logging) mode. This can be done by adding PRAGMA
JOURNAL_MODE = WAL; to this configuration setting. More
information about SQLite’s WAL mode can be found here.
This scenario is not fully supported. Please be aware that theWAL
file will grow without bounds during the replay operation. This
implies that the database file will not be updated with the WAL
contents until all the Replay instances finish executing.
Default: PRAGMA SYNCHRONOUS = OFF; PRAGMA
JOURNAL_MODE = MEMORY;

0..1

Plugin

Table 5.8: Storage plugin Tag in the Configuration File
Tags within <plu-
gin>

Description Multi-
plicity

<property> Name/value pairs of properties to pass to a storage plugin.
Example:

<property>
<value>

<element>
<name>Name</name>
<value>Value</value>

</element>
</value>

</property>

0 or 1

5.3. Configuration 85

http://www.sqlite.org/wal.html

RTI Recording Service Documentation, Version 7.3.0

5.3.6 Legacy

Table 5.9: Legacy Tags in the Configuration File
Tags within <legacy> Description Multiplic-

ity
<file_path> Path to the legacy format recorded file. File set and version prop-

erties will be obtained automatically from the file itself.
0..1

<domain_mapping> This tag allows you to link legacy domain names with domain IDs.
See Section 5.3.7.

0..1

5.3.7 Domain Mapping

When converting a legacy database, the domain may not have been recorded. This tag provides a way to map
a table with a domain ID.

Later versions of the old Recorder database allowed you to use field filters. By default, the domain ID field was
not recorded (it was filtered out by default). Thus, there is no information available in these legacy databases
to relate the domain name used to record the data with a domain ID. This tag allows you to link legacy domain
names with domain IDs.

Table 5.10: Domain Mapping Tags in the Configuration File
Tags within <do-
main_mapping>

Description Multiplic-
ity

<domain_map> Required. A link between a recorded legacy domain name and a
domain ID.
Attributes:

• legacy_domain_name: Name of the recorded
domain name as specified in the old Recording Ser-
vice domain tag, for example: <domain name=”do-
main0”>.

• participant_ref: The name of a Do-
mainParticipant specified below using a
<domain_participant> tag. This Do-
mainParticipant will be used to replay data specified
by the legacy domain name.

1..*

5.3. Configuration 86

RTI Recording Service Documentation, Version 7.3.0

5.3.8 DomainParticipant

The <domain_participant> tag allows you to specify the DomainParticipants and domain IDs you want
to query from the database for replay. You can replay in the same domain you used to record, or you can use
the -domainIdBase command-line parameter to replay in a different domain.

The contents of the tags for configuring QoS are specified in the same manner as for the Connext DDS QoS
profile file. See Configuring QoS with XML, in the RTI Connext DDS Core Libraries User’s Manual.

Table 5.11: DomainParticipant Tags in Replay Service’s Configura-
tion File

Tags within <do-
main_participant>

Description Multiplic-
ity

<domain_id> The domain ID of tables loaded from the database. This is used (in
conjunction with the -domainIdBase command-line parame-
ter) to choose which domain to replay into.

1

<domain_partici-
pant_qos>

QoS used by this DomainParticipant. 0..1

continues on next page

5.3. Configuration 87

RTI Recording Service Documentation, Version 7.3.0

Table 5.11 – continued from previous page
Tags within <do-
main_participant>

Description Multiplic-
ity

<memory_manage-
ment>

Configures certain aspects of how Connext DDS allocates internal
memory. The configuration is per DomainParticipant and there-
fore affects all the contained DDS entities.
Example:

<memory_management>
<sample_buffer_min_size>

1024
</sample_buffer_min_size>
<sample_buffer_trim_to_size>

true
</sample_buffer_trim_to_size>

</memory_management>

This tag includes the following tags:
• <sample_buffer_min_size>: For all DataWriters and
DataReaders, the way Connext DDS allocates memory
for samples is as follows: Connext DDS pre-allocates
space for samples up to size X in the DataWriter and
DataReader queues. If a sample has an actual size
greater than X, the memory is allocated dynamically
for that sample. The default size is 64KB. This is
the maximum amount of pre-allocated memory. Dy-
namic memory allocation may occur when necessary
if samples require a bigger size.

• <sample_buffer_trim_to_size>: If set to true, after al-
locating dynamic memory for very large samples, that
memory will be released when possible. If false, that
memory will not be released but kept for future sam-
ples if needed. The default is false.

This feature is useful when a data type has a very high maxi-
mum size (e.g., megabytes) but most of the samples sent are much
smaller than the maximum possible size (e.g., kilobytes). In this
case, the memory footprint is reduced dramatically, while still cor-
rectly handling the rare cases in which very large samples are pub-
lished.

0..1

continues on next page

5.3. Configuration 88

RTI Recording Service Documentation, Version 7.3.0

Table 5.11 – continued from previous page
Tags within <do-
main_participant>

Description Multiplic-
ity

<register_type> Registers a type name and associates it with a type representation.
When you define a type in the configuration file, you have to reg-
ister the type in order to use it in a <topic>.
Attributes:

• name: Name that the data type is registered with if no
<registered_name> is specified. The same data type
may be registered with different names. Required.

• type_ref: Definition of this data type. It must refer
to one of the defined types in the <types> section by
specifying the fully qualified name.

Tags within this tag:
• <registered_name>: Name the data type is registered
with. The same data type may be registered with dif-
ferent names. Not required.

0..*

5.3.9 Playback

The <playback> tag allows you to specify the timing rules for how the data is played back, such as the time
on the local machine to start the replay, if it is not started immediately. Its tags must follow the same order in
which they appear in the following table.

Table 5.12: Playback Tags in Replay Service’s Configuration File
Tags within <play-
back>

Description Multiplic-
ity

<fidelity> Specifies the fidelity of the replayed data. Samples whose times-
tamp distance is less than the fidelity period may be published to-
gether in the same batch. For example, if your fidelity is 100 ms,
data stored in your database within a 100 ms time period may be
published together.
Tags within this tag:

• <sampling_period>: the duration (in seconds and
nanoseconds) that represents the maximum time pe-
riod during which samples with different timestamps
may be published together. Default: 1 ms

0..1

<rate> Specifies the rate to replay data, as a double. For example, to play
data at half speed, use 0.5. Default: 1 (normal speed)

0..1

continues on next page

5.3. Configuration 89

RTI Recording Service Documentation, Version 7.3.0

Table 5.12 – continued from previous page
Tags within <play-
back>

Description Multiplic-
ity

<enable_looping> Plays the data in a repeating loop, until Replay Service is stopped.
Note that this means that only a termination signal or a remote
shutdown command will make it stop replaying data. When no
time range data selection has been specified (see Section 5.3.10)
then Replay will replay the whole contents of the database file(s)
and when it’s time to loop, it will start from the very beginning
of the file or files. However, when a specific time range has been
specified for replay, the looping will respect the time range and
will restart at the specified start time and end at the specified end
time. Note: in our default SQLite implementation, Replay is able
to check if new data has been written by Recorder (or any appli-
cation) for every given stream being replayed, since the start of
the service. This feature is generally not supported when looping
without specifying a time range and may yield unexpected results.
Default: false.

0..1

<debug_mode> Enables debug mode for Replay Service’s playback feature. See
Section 5.3.9 for more information on the configuration tags avail-
able in this mode.

0..1

<reverse_mode> Plays the data in reverse, while maintaining the fidelity of the
recorded database. Replay Service will start its replay with the last
sample recorded and it will finish with the first sample recorded.
Replay Servicewill discover all the StreamReaders at the beginning
of the Replay in this mode. Note: Replay in reverse mode will not
replay stored dispose samples. Note: Instance History Replay is
not available when reverse mode is enabled. Default: false.

0..1

<sample_order> Specifies the timestamp kind to replay data. If not specified, RE-
CEPTION_TIMESTAMP is assumed.
The options are:

• RECEPTION_TIMESTAMP: Time stored when the DDS
sample was received by the DataReader. For more de-
tails, please see :link_connext_dds_pro_um_up_one: DES-
TINATION_ORDER QosPolicy, in the RTI Connext DDS
Core Libraries User’s Manual <#users_manual/DESTINA-
TION_ORDER_QosPolicy.htm>.

• SOURCE_TIMESTAMP: Time stored by the DataWriter
when the DDS sample was written.

Note: Formore information about source timestamp and reception
timestamp, please see Section 5.1.6.
Default: RECEPTION_TIMESTAMP.

0..1

continues on next page

5.3. Configuration 90

RTI Recording Service Documentation, Version 7.3.0

Table 5.12 – continued from previous page
Tags within <play-
back>

Description Multiplic-
ity

<start_replay_lo-
cal_time>

Selects the local time when Replay Service should start publishing
samples. Specified in hours, minutes, and seconds. Specifying
a full date is not currently supported, so if you specify a time that
happened in the past (which Replay Service interprets as in the past
today), replay will start immediately.
Example:

<start_replay_local_time>
<hour>14</hour>
<minute>30</minute>
<second>0</second>

</start_replay_local_time>

The example above indicates that Replay Service will will start the
replay at 14:30 pm.
Default: Replay will start immediately

0..1

<instance_history_re-
play>

Specifies whether Instance History Replay (state of the world pub-
lication) is enabled. See Section 5.1.7 for a description of the fea-
ture.
Tags within this tag:

• <enabled>: Whether to enable or disable the fea-
ture. When enabled, Replay Service will publish an
initial value (or more, depending on the depth setting)
for every alive instance before the specified start times-
tamp. After this startup publication, Replay Service
will start normal replay.
Default: false.

0..1

Debug mode

The <debug_mode> tag allows you to enable the debug mode, such as set the slice period and the initial list
of breakpoints.

Table 5.13: Debug Mode Tags in Replay Service’s Configuration
File

Tags within <de-
bug_mode>

Description Multiplic-
ity

<enabled> Enables debug mode. 0..1
<slice_period> Specifies the slice period of the replay. It will determine the replay

period when you use a next_slice or continue operation. After that
period of time Replay Service will pause the replay.
Default: 1 s

0..1

continues on next page

5.3. Configuration 91

RTI Recording Service Documentation, Version 7.3.0

Table 5.13 – continued from previous page
Tags within <de-
bug_mode>

Description Multiplic-
ity

<initial_breakpoints> Specifies an initial list of breakpoints. Those breakpoints will be
set once the replay start.
Tags within this tag:

• <element>: the timestamp (in nanoseconds) that will
have the breakpoint. You can assign a label to the
breakpoint as an identifier. Multiplicity: 1..*
Attributes:

– label: Breakpoint identifier.
Example:

<debug_mode>
<enabled>true</enabled>
<initial_breakpoints>

<element>
→˓1600635588280996383</element>

<element label=
→˓"MyBreakpoint">
→˓1600635598310952678</element>

</initial_breakpoints>
</debug_mode>

0..1

5.3.10 Data Selection

Selection of data to replay from the database. Currently only supports selection using a time range.

Table 5.14: Data Selection Tags in Replay Service’s Configuration
File

Tags within <data_se-
lection>

Description Multiplic-
ity

<time_range> Select data to replay from the database, based on start and end
times. See Section 5.3.11.

0..1

5.3.11 Time Range

The <time_range> tag allows you to specify the begin and end times of the data you want to replay. This
can be specified either as timestamps or as symbolic timestamps called “timestamp tags.” These tags may have
been added to the recording through remote administration, and can be viewed using the script rtirecord-
ingservice_list_tags (see Section 4.6.7).

5.3. Configuration 92

RTI Recording Service Documentation, Version 7.3.0

Table 5.15: Time Range Tags in Replay Service’s Configuration File
Tags within
<time_range>

Description Multiplic-
ity

<begin_time> Select data to replay from the database, with a timestamp begin-
ning at this time. Specify the time in seconds and nanoseconds.
Default: 0, start at beginning of the file.

0..1

<begin_tag> Can be used instead of begin_time. Select data to start replaying
from the database by specifying the string name of a timestamp
tag. Timestamp tags associate a timestamp with a name. Then
you can refer to a timestamp by that name. The timestamp must
have been tagged with that name during recording. See Section
4.6.6. Default: Start at beginning of the file.

0..1

<end_time> Select data to replay from the database, with a timestamp ending at
this time. Specify the time in seconds and nanoseconds. Default:
Stop at end of file.

0..1

<end_tag> Can be used instead of end_time. Select when to stop replaying
data by specifying the string name of a timestamp tag. Timestamp
tags associate a timestamp with a name. Then you can refer to a
timestamp by that name. The timestamp must have been tagged
with that name during recording. See Section 4.6.6. Default: Stop
at end of file.

0..1

5.3.12 Session

The <session> tag configures the threads that will be used to replay data. You also specify the Topics and
groups of Topics to replay inside the <session> tag.

Table 5.16: Session Tags in Replay Service’s Configuration File
Tagswithin <session> Description Multiplic-

ity
<publisher_qos> Specifies the QoS of the Publisher that will be used by the con-

tained <topic> and <topic_group>. For information on
configuring Pubscriber QoS with XML, see Configuring QoS with
XML, in the RTI Connext DDS Core Libraries User’s Manual.

0..1

continues on next page

5.3. Configuration 93

RTI Recording Service Documentation, Version 7.3.0

Table 5.16 – continued from previous page
Tagswithin <session> Description Multiplic-

ity
<thread_pool> Defines the number of threads used by this session to process Top-

ics and Topic Groups and sets the mask, priority, and stack size of
each thread.

Example:

<thread_pool>
<mask>MASK_DEFAULT</mask>
<priority>THREAD_PRIORITY_

→˓DEFAULT</priority>
<stack_size>

THREAD_STACK_SIZE_DEFAULT
</stack_size>

</thread_pool>

Default values:
• size: 1
• mask: MASK_DEFAULT
• priority: THREAD_PRIORITY_DE-
FAULT

• stack_size:
THREAD_STACK_SIZE_DEFAULT

0..1

<topic> Specifies an individual Topic to replay. See Section 5.3.14.
Attributes:

• name: The name of the Topic to replay. This name
is also used when monitoring and administering each
Topic.

• participant_ref: A DomainParticipant to use
when replaying this Topic. If the parent <session>
specifies adefault_participant_ref, this at-
tribute is optional.

0..*

<topic_group> Specifies a group of Topics to replay. See Section 5.3.13.
Attributes:

• name: The name of the topic group. This name is
used when monitoring and administering each topic
group.

• participant_ref: A DomainParticipant to use
when replaying this topic group. If the par-
ent <session> specifies a default_partici-
pant_ref, this attribute is optional.

0..*

5.3. Configuration 94

RTI Recording Service Documentation, Version 7.3.0

5.3.13 Topic Group

The <topic_group> tag allows you to replay a group of Topics, using regular expressions to describe which
Topics to replay.

Table 5.17: Topic Group Tags in Replay Service’s Configuration File
Tags within
<topic_group>

Description Multi-
plicity

<pub-
lish_with_origi-
nal_info>

Writes the data sample as if it came from its original writer. Setting this
option to true allows having redundant recording services and prevents the
applications from receiving duplicate samples. Default: false

0..1

<pub-
lish_with_origi-
nal_timestamp>

Indicates if the data samples are written with their original source times-
tamp. Default: false

0..1

<al-
low_topic_name_fil-
ter>

A regular expression (fnmatch) describing which Topics are allowed to be
replayed. You may use a comma-separated list to specify more than one
filter.
Example:

<topic_group name="ReplayAll">
<allow_topic_name_filter>CONTROL_*,DATA_*</

→˓allow_topic_name_filter>
</topic_group>

0..1

<deny_topic_name_fil-
ter>

A regular expression (fnmatch) describing which Topics are not allowed to
be replayed. This is applied after the allow_topic_name_filter.
You may use a comma-separated list to specify more than one filter.

0..1

<al-
low_type_name_fil-
ter>

A regular expression (fnmatch) describing the names of data types that are
allowed to be replayed. You may use a comma-separated list to specify
more than one filter.

0..1

<deny_type_name_fil-
ter>

A regular expression (fnmatch) describing the names of data types
that are not allowed to be replayed. This is applied after the al-
low_type_name_filter. You may use a comma-separated list to
specify more than one filter.

0..1

<on_delete_wait_for_ack_time-
out>

Specifies a period for which the StreamWriter will wait for acknowl-
edgment before its elimination. See Waiting for Acknowledgments in a
DataWriter, in the Connext DDS Core Libraries User’s Manual. Default:
0 (no wait for acknowledgment)
Example:

<on_delete_wait_for_ack_timeout>
<sec>1</sec>
<nanosec>0</nanosec>

</on_delete_wait_for_ack_timeout>

The example above indicates that StreamWriter will wait one second for
acknowledgment of the samples.

0..1

continues on next page

5.3. Configuration 95

RTI Recording Service Documentation, Version 7.3.0

Table 5.17 – continued from previous page
Tags within
<topic_group>

Description Multi-
plicity

<datawriter_qos> The DataWriter’s QoS to use when replaying this data. For information on
configuring QoS with XML, see Configuring QoS with XML, in the RTI
Connext DDS Core Libraries User’s Manual.

0..1

5.3.14 Topic

The <topic> tag specifies an individual Topic to replay.

Table 5.18: Topic Tags in Replay Service’s Configuration File
Tags within
<topic>

Description Multi-
plicity

<topic_name> The name of the DDS topic to be replayed. If this tag is not present, the
name attribute of the <topic> will be used.
Note: we recommend using this tag to define the topic name. There may
be characters that cause the XML validation to fail if they are part of the
topic name attribute. Also, the ‘/’ character and ‘::’ separator may cause
Replay to fail when found in the topic name attribute.

0..1

<regis-
tered_type_name>

The name of the data type that will be replayed for this topic. Required. 1

<pub-
lish_with_origi-
nal_info>

Writes the data sample as if it came from its original writer. Setting this
option to true allows having redundant recording services and prevents the
applications from receiving duplicate samples. Default: false

0..1

<pub-
lish_with_origi-
nal_timestamp>

Indicates if the data samples are written with their original source times-
tamp. Default: false

0..1

<on_delete_wait_for_ack_time-
out>

Specifies a period for which the StreamWriter will wait for acknowl-
edgment before its elimination. See Waiting for Acknowledgments in a
DataWriter, in the Connext DDS Core Libraries User’s Manual. Default:
0 (no wait for acknowledgment)
Example:

<on_delete_wait_for_ack_timeout>
<sec>1</sec>
<nanosec>0</nanosec>

</on_delete_wait_for_ack_timeout>

The example above indicates that StreamWriter will wait one second for
acknowledgment of the samples.

0..1

continues on next page

5.3. Configuration 96

RTI Recording Service Documentation, Version 7.3.0

Table 5.18 – continued from previous page
Tags within
<topic>

Description Multi-
plicity

<transformation> The transformation library to be applied to this Topic’s data when replay-
ing. This is a user library that can modify the data after it is received from
storage and before it is sent via Connext DDS.
Transformations implement APIs identical to Routing Service’s transfor-
mations. For more on using transformations, see these sections in the RTI
Routing Service User’s Manual:

• Data Transformation
• Tutorials

Attributes:
• plugin_name: The name of the plugin to load, qualified by
the plugin library name.

Example:

<dds>
<plugin_library name="ReplayTransformations

→˓">
<transformation_plugin name=

→˓"ModifyTestID">
<create_function>ModifyTestID_create

→˓</create_function>
<dll>modify_test_id_library</dll>

</transformation_plugin>
</plugin_library>
<!-- ... -->
<replay_service>

<!-- ... -->
<topic name="TestTopic">

<transformation plugin_name=
→˓"ReplayTransformations::ModifyTestID" />

</topic>
</replay_service>

</dds>

0..1

<datawriter_qos> The DataWriter QoS to use when replaying this data. For information on
configuring QoS with XML, see Configuring QoS with XML, in the RTI
Connext DDS Core Libraries User’s Manual.

0..1

5.3.15 Plugins

All the pluggable components specific to Recording Service are configured within the <plugin_library>
tag. Table 5.19 describes the available tags.

Plug-ins are categorized and configured based on the source language. Replay Service supports C/C++ plugins.

5.3. Configuration 97

RTI Recording Service Documentation, Version 7.3.0

Table 5.19: Configuration tags for plugin libraries
Tags within <plugin_li-
brary>

Description Multi-
plicity

<storage_plugin> Specifies a C/C++ Storage plugin. See Table 11.18 and Section
4.3.6.

0..*

<transformation_plugin> Specifies a C/C++ Transformation plugin. See Table 11.18 and
Section 4.3.10.

0..*

5.3.16 Support for Securıty Plugıns

Replay Service supports configuring and using Securıty Plugıns. To configure Replay Service securely, you
need to configure the appropriate QoS settings in the XML configuration. For more information, see the RTI
Security Plugins User’s Manual.

Example: Configuring a Replay Instance using Security

The following example in XML demonstrates how to configure Replay to load and use the Securıty Plugıns.
The example assumes a path where the user has created the necessary security artifacts (such as permissions
files, certificates, and certificate authorities). This path is represented by theSECURITY_ARTIFACTS_PATH
environment variable.

Note: The SECURITY_ARTIFACTS_PATH environment variable must include the file: prefix to make
sure paths are properly loaded by the Securıty Plugıns.

<dds>
<qos_library name="SecureQosLibrary">

<qos_profile name="SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.load_plugin</name>
<value>com.rti.serv.secure</value>

</element>
<element>

<name>com.rti.serv.secure.library</name>
<value>nddssecurity</value>

</element>
<element>

<name>com.rti.serv.secure.create_function</name>
<value>RTI_Security_PluginSuite_create</value>

</element>
<element>

<name>dds.sec.auth.identity_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>

(continues on next page)

5.3. Configuration 98

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
</element>
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01ReplayServiceCert.pem</value>
</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01ReplayServiceKey.pem</value>
</element>
<element>

<name>dds.sec.access.permissions_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.access.governance</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓Governance.p7s</value>
</element>
<element>

<name>dds.sec.access.permissions</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓PermissionsA.p7s</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>

</qos_library>

...

<replay_service name="SecuredReplayService">
<!-- Top-level storage settings -->
<storage>

<sqlite>
<storage_format>XCDR_AUTO</storage_format>
<database_dir>cdr_recording</database_dir>

</sqlite>
</storage>

<!-- Top-level domain settings -->
<domain_participant name="Participant0">

<!-- Domain Participant in Domain 0 is secured -->
<domain_id>0</domain_id>

<domain_participant_qos base_name=
→˓"SecureQosLibrary::SecureParticipantQos" />

</participant>
</domain_participant>

(continues on next page)

5.3. Configuration 99

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
<session name="DefaultSession">

<topic_group name="ReplayAll" participant_ref="Participant0">
<allow_topic_name_filter>*</allow_topic_name_filter>
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</topic_group>
</session>

</replay_service>

</dds>

The above XML example configures a Topic Group that replays all data (except RTI topics) from a secured
DomainParticipant. The security settings are encapsulated in a QoS Profile called SecureParticipantQos. In
the current version of the default storage plugins, storage is unsecure.

Example: Configuring Replay Service to use a Certificate Revocation List (CRL)

Replay Service can remove a DomainParticipant from the system when its certificate has been revoked. Use
Securıty Plugıns to specify a CRL (certificate revocation list) file to track via the authentication.crl
property; when the files_poll_interval property is configured in Securıty Plugıns, Replay Service
can banish revoked participants. For more information, see Properties for Configuring Authentication in the
RTI Security Plugins User’s Manual. The following example XML configuration file uses a CRL file to enable
Replay Service to remove participants with revoked certificates.

<dds>
<qos_library name="SecureQosLibrary">

<qos_profile name="SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.load_plugin</name>
<value>com.rti.serv.secure</value>

</element>
<element>

<name>com.rti.serv.secure.library</name>
<value>nddssecurity</value>

</element>
<element>

<name>com.rti.serv.secure.create_function</name>
<value>RTI_Security_PluginSuite_create</value>

</element>
<element>

<name>dds.sec.auth.identity_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

(continues on next page)

5.3. Configuration 100

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#properties-for-configuring-authentication

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
→˓identities/ecdsa01ReplayServiceCert.pem</value>

</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01ReplayServiceKey.pem</value>
</element>
<element>

<name>dds.sec.access.permissions_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.access.governance</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓Governance.p7s</value>
</element>
<element>

<name>dds.sec.access.permissions</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓PermissionsA.p7s</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>
<qos_profile name="SecureParticipantQosWithCrl" base_name=

→˓"SecureQosLibrary::SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.secure.authentication.crl</

→˓name>
<value>$(SECURITY_ARTIFACTS_PATH)/

→˓ReplayServiceRevoked.crl</value>
</element>
<element>

<name>com.rti.serv.secure.files_poll_interval</
→˓name>

<value>1</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>

</qos_library>

...

<replay_service name="SecuredReplayServiceWithCrl">
<!-- Top-level storage settings -->

(continues on next page)

5.3. Configuration 101

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
<storage>

<sqlite>
<storage_format>XCDR_AUTO</storage_format>
<database_dir>cdr_recording</database_dir>

</sqlite>
</storage>

<!-- Top-level domain settings -->
<domain_participant name="Participant0">

<!-- Domain Participant in Domain 0 is secured and tracks a CRL␣
→˓file -->

<domain_id>0</domain_id>
<domain_participant_qos base_name=

→˓"SecureQosLibrary::SecureParticipantQosWithCrl" />
</participant>

</domain_participant>

<session name="DefaultSession">
<topic_group name="ReplayAll" participant_ref="Participant0">

<allow_topic_name_filter>*</allow_topic_name_filter>
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</topic_group>
</session>

</replay_service>

</dds>

The above configuration in Replay Service reads the CRL file $SECURITY_ARTIFACTS_PATH/
ReplayServiceRevoked.crl. In addition, the files_poll_interval element instructs the ser-
vice to track the file for changes so that participants can be removed dynamically. In this example, the polling
of the file happens every 1s.

Note: If the poll period is zero, Replay Service will not track the file continuously.

Example: Configuring Replay Service for Dynamic Certificate Renewal

Replay Service can dynamically renew its certificate if it was revoked or it expired. Use Securıty Plugıns
to specify a periodic check of the certificate file; if the files_poll_interval property is configured
in Securıty Plugıns, Replay Service reloads the certificate if the file changes. For more information, see
Properties for Configuring Authentication in the RTI Security Plugins User’s Manual.

The following example XML configuration file defines a 1s period for checking the certificate file for changes.

<dds>
<qos_library name="SecureQosLibrary">

<qos_profile name="SecureParticipantQos">
<domain_participant_qos>

<property>

(continues on next page)

5.3. Configuration 102

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#properties-for-configuring-authentication

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
<value>

<element>
<name>com.rti.serv.load_plugin</name>
<value>com.rti.serv.secure</value>

</element>
<element>

<name>com.rti.serv.secure.library</name>
<value>nddssecurity</value>

</element>
<element>

<name>com.rti.serv.secure.create_function</name>
<value>RTI_Security_PluginSuite_create</value>

</element>
<element>

<name>dds.sec.auth.identity_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01ReplayServiceCert.pem</value>
</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01ReplayServiceKey.pem</value>
</element>
<element>

<name>dds.sec.access.permissions_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.access.governance</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓Governance.p7s</value>
</element>
<element>

<name>dds.sec.access.permissions</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓PermissionsA.p7s</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>
<qos_profile name="SecureParticipantQosDynamicCert" base_name=

→˓"SecureQosLibrary::SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

(continues on next page)

5.3. Configuration 103

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
<element>

<name>com.rti.serv.secure.files_poll_interval</
→˓name>

<value>1</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>

</qos_library>

...

<replay_service name="SecuredReplayServiceDynamicCert">
<!-- Top-level storage settings -->
<storage>

<sqlite>
<storage_format>XCDR_AUTO</storage_format>
<database_dir>cdr_recording</database_dir>

</sqlite>
</storage>

<!-- Top-level domain settings -->
<domain_participant name="Participant0">

<!-- Domain Participant in Domain 0 is secured and tracks a CRL␣
→˓file -->

<domain_id>0</domain_id>
<domain_participant_qos base_name=

→˓"SecureQosLibrary::SecureParticipantQosDynamicCert" />
</participant>

</domain_participant>

<session name="DefaultSession">
<topic_group name="ReplayAll" participant_ref="Participant0">

<allow_topic_name_filter>*</allow_topic_name_filter>
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</topic_group>
</session>

</replay_service>

</dds>

The above configuration in Replay Service checks the DomainParticipant certificate file
$SECURITY_ARTIFACTS_PATH/ecdsa01/identities/ecdsa01ReplayServiceCert.
pem for changes every 1s.

Note: If the poll period is zero, Replay Service will not track the file continuously.

5.3. Configuration 104

RTI Recording Service Documentation, Version 7.3.0

5.4 Remote Administration

This section provides documentation on Replay Service remote administration. A control client (such as RTI
Admin Console) can use this interface to remotely control a Replay Service.

Note: Replay Service remote administration is based on the RTI Remote Administration Platform described in
Section 11.3. Please refer to that manual for a detailed discussion on the workings of remote administration in
Replay Service.

Below you will find an API reference for all the supported operations.

5.4.1 Enabling Remote Administration

By default, remote administration is disabled in Replay Service.

To enable remote administration you can use the <administration> XML tag (see Section 5.3) or the
-remoteAdministrationDomainId command-line parameter (see Section 5.1). Both of these meth-
ods enable remote administration and set the domain ID for remote communication.

5.4.2 Available Service Resources

Table 5.20 lists the public resources specific to Replay Service. Each resource identifier is expressed as a
hierarchical sequence of identifiers, including parent and target resources. (See Section 11.2.2 for details.)

In the table below, the elements (rs), and (st) refer to the name of an entity of the corresponding class as
specified in the configuration in the name attribute. For example, in the following configuration:

<replay_service name="MyReplay">...</replay_service>

The resource identifier is:

/replay_service/MyReplay

In the table, the resource identifier is written as /replay_service/(rs), where (rs) is the service name. This
nomenclature is used in the table to give you an idea of the structure of the resource identifiers. For actual
(example) resource identifier names, see the example section that follows.

Table 5.20: Resources and Their Identifiers in Replay Service
Resource Resource Identifier
Replay Service /replay_service/(rs)

5.4. Remote Administration 105

RTI Recording Service Documentation, Version 7.3.0

5.4.3 Remote API Overview

Table 5.21: Remote Interface Overview
Re-
source

Operation Description

Replay-
Service

DELETE /replay_services/(rs) Shuts down a running Replay Ser-
vice

UPDATE /replay_services/(rs)/state Sets a Replay Service state
UPDATE /replay_services/(rs)/playback/rate Change the rate of the replay
UPDATE /replay_services/(rs)/playback/current_times-
tamp

Jump to a specific timestamp and
continue the replay

UPDATE /replay_services/(rs)/playback/current_tag Jump to a specific timestamp tag
and continue the replay

GET /replay_services/(rs)/playback/state Provide the current Replay Service
state. It will allow us to detect
when Replay Service hit a break-
point.

UPDATE /replay_services/(rs)/playback:add_breakpoint Add a new breakpoint
UPDATE /replay_services/(rs)/playback:remove_break-
point

Remove an existing breakpoint

UPDATE /replay_services/(rs)/playback:goto_breakpoint Jump to a specific breakpoint and
stop the replay

UPDATE /replay_services/(rs)/playback:next_breakpoint Jump to the next breakpoint and
stop the replay

UPDATE /replay_services/(rs)/playback:continue Continue the replay leaving the
current breakpoint

UPDATE /replay_services/(rs)/playback:next_slice Continue the replay for a slice of
period

5.4.4 Replay Service

DELETE /replay_services/(rs)

Operation shutdown

Causes Replay Service to shutdown.

UPDATE /replay_services/(rs)/state

Operation set_state

See Set Resource State (Section 11.3.3).

Valid requested states:

• STARTED

• STOPPED

• PAUSED

5.4. Remote Administration 106

RTI Recording Service Documentation, Version 7.3.0

• RUNNING

• Example

To pause a replay service with the name “MyReplay”:

Request Field Value
command_action UPDATE
resource_iden-
tifier

/replay_services/MyReplay/state

octet_body

to_cdr_
→˓buffer(RTI::Service::EntityStateKind::PAUSED)

UPDATE /replay_services/(rs)/playback/rate

Operation set_rate

This operation will cause Replay Service to change its rate.

Request body

• The new rate of the replay.

UPDATE /replay_services/(rs)/playback/current_timestamp

Operation current_timestamp

This operation will cause Replay Service to change its current timestamp, modifying the replay location
backward or forward in time.

It will affect the whole service, meaning that all StreamReaders will be affected by it.

• Example

To change the current timestamp in a replay service named “MyReplay”:

5.4. Remote Administration 107

RTI Recording Service Documentation, Version 7.3.0

Request Field Value
command_action UPDATE
resource_iden-
tifier

/replay_services/MyReplay/playback/current_timestamp

octet_body

RTI::RecordingService::TimestampHolder␣
→˓timestamp_holder;
timestamp_holder.timestamp_
→˓nanos(1600635588280996383);
std::vector<char> timestamp_holder_
→˓buffer;

dds::topic::topic_type_support
→˓<RTI::RecordingService::TimestampHolder>
→˓

::to_cdr_buffer(
timestamp_holder_buffer,
timestamp_holder);

UPDATE /replay_services/(rs)/playback/current_tag

Operation current_tag

This operation will cause Replay Service to change its current timestamp, modifying the replay location
backward or forward in time. The replay will jump to the timestamp of the selected timestamp tag.

It will affect the whole service, meaning that all StreamReaders will be affected by it.

Request body

• Tag name of a specific recorded timestamp tag.

GET /replay_services/(rs)/playback/state

Operation get_state

This operation will provide the current debug state of the Replay Service related to the debug mode. It
will allow you to detect when Replay Service stop in a breakpoint

Valid provided states:

• BREAKPOINT

• WORKING

Request body

• Empty.

Reply body

• octet_body: CDR representation of the DebugStatus.

UPDATE /replay_services/(rs)/playback:add_breakpoint

Operation add_breakpoint

5.4. Remote Administration 108

RTI Recording Service Documentation, Version 7.3.0

This operation will create a new breakpoint. Replay Service will only accept as proper breakpoint those
which timestamp is not out of the recorded timestamp period.

Also, we can use a recorded timestamp tag to create a breakpoint with it.

• Examples

To create a new breakpoint in a replay service named “MyReplay”:

Request Field Value
command_action UPDATE
resource_iden-
tifier

/replay_services/MyReplay/playback:add_breakpoint

octet_body

RTI::RecordingService::BreakpointParams␣
→˓breakpoint_arguments;
::dds::core::optional<std::string>␣
→˓optional_label_value("breakpoint_1");
breakpoint_arguments.label(optional_
→˓label_value);
breakpoint_arguments.value().timestamp_
→˓nanos(1600635588280996383);
dds::topic::topic_type_support
→˓<RTI::RecordingService::BreakpointParams>
→˓

::to_cdr_buffer(
reinterpret_cast

→˓<std::vector<char> &> (request.octet_
→˓body()),

breakpoint_arguments);

To create a new breakpoint using a timestamp tag:

5.4. Remote Administration 109

RTI Recording Service Documentation, Version 7.3.0

Request Field Value
command_action UPDATE
resource_iden-
tifier

/replay_services/MyReplay/playback:add_breakpoint

octet_body

RTI::RecordingService::BreakpointParams␣
→˓breakpoint_arguments;
::dds::core::optional<std::string>␣
→˓optional_label_value("breakpoint_tag");
breakpoint_arguments.label(optional_
→˓label_value);
breakpoint_arguments.value().tag_name(
→˓"example/tag1");
dds::topic::topic_type_support
→˓<RTI::RecordingService::BreakpointParams>
→˓

::to_cdr_buffer(
reinterpret_cast

→˓<std::vector<char> &> (request.octet_
→˓body()),

breakpoint_arguments);

UPDATE /replay_services/(rs)/playback:remove_breakpoint

Operation remove_breakpoint

This operation will remove an existing breakpoint for the replay. A breakpoint can be removed by label
or by timestamp.

In order to clean the complete list of breakpoints (except the default one) you can use the special character
“*” as label value.

If Replay Service is hitting the breakpoint to be removed, It won’t resume the replay.

• Examples

To remove the breakpoint with label “MyBreakpoint” in a replay service named “MyRe-
play”:

5.4. Remote Administration 110

RTI Recording Service Documentation, Version 7.3.0

Request Field Value
command_action UPDATE
resource_iden-
tifier

/replay_services/MyReplay/playback:remove_breakpoint

octet_body

RTI::RecordingService::BreakpointParams␣
→˓breakpoint_arguments;
::dds::core::optional<std::string>␣
→˓optional_label_value("MyBreakpoint");
breakpoint_arguments.label(optional_
→˓label_value);
breakpoint_arguments.value().timestamp_
→˓nanos(0);
dds::topic::topic_type_support
→˓<RTI::RecordingService::BreakpointParams>
→˓

::to_cdr_buffer(
reinterpret_cast

→˓<std::vector<char> &> (request.octet_
→˓body()),

breakpoint_arguments);

UPDATE /replay_services/(rs)/playback:goto_breakpoint

Operation goto_breakpoint

This operation will cause Replay Service to jump to a specific breakpoint. You can specifie the jumping
breakpoint by label or by timestamp.

It will affect the whole service, meaning that all StreamReaders will be affected by it.

-Example:

To jump to breakpoint with timestamp “1600635588280996383” in a replay service named
“MyReplay”:

5.4. Remote Administration 111

RTI Recording Service Documentation, Version 7.3.0

Request Field Value
command_action UPDATE
resource_identi-
fier

/replay_services/MyReplay/playback:goto_breakpoint

octet_body

RTI::RecordingService::BreakpointParams␣
→˓breakpoint_arguments;
breakpoint_arguments.value().timestamp_
→˓nanos(1600635588280996383);
dds::topic::topic_type_support
→˓<RTI::RecordingService::BreakpointParams>

::to_cdr_buffer(
reinterpret_cast

→˓<std::vector<char> &> (request.octet_
→˓body()),

breakpoint_arguments);

UPDATE /replay_services/(rs)/playback:next_breakpoint

Operation next_breakpoint

This operation will cause Replay Service to jump to the next breakpoint on the list. if Replay Service was
on the last breakpoint of the list It will throw an exception.

It will affect the whole service, meaning that all StreamReaders will be affected by it.

Request body

• Empty.

UPDATE /replay_services/(rs)/playback:continue

Operation continue

This operation will cause Replay Service to continue the replay after it hit a breakpoint. If you do not
add any CDR representation to the request, it will continue until it hits a new breakpoint or the replay
end. Otherwise, this operation will continue the replay for the period of time specified by you. Replay
Service has to be on BREAKPOINT state in order to make this action.

It will affect the whole service, meaning that all StreamReaders will be affected by it.

-Examples:

To continue the replay for 1 second in a replay service named “MyReplay”:

5.4. Remote Administration 112

RTI Recording Service Documentation, Version 7.3.0

Request Field Value
command_action UPDATE
resource_identi-
fier

/replay_services/MyReplay/playback:continue

octet_body

RTI::RecordingService::ContinueParams␣
→˓continue_arguments;
continue_arguments.value().
→˓offset(1000000000);
dds::topic::topic_type_support
→˓<RTI::RecordingService::ContinueParams>
::to_cdr_buffer(

reinterpret_cast<std::vector<char>␣
→˓&> (request.octet_body()),

continue_arguments);

To continue the replay for 2 slices periods in a replay service named “MyReplay”:

Request Field Value
command_action UPDATE
resource_identi-
fier

/replay_services/MyReplay/playback:continue

octet_body

RTI::RecordingService::ContinueParams␣
→˓continue_arguments;
continue_arguments.value().slices(2);
dds::topic::topic_type_support
→˓<RTI::RecordingService::ContinueParams>
::to_cdr_buffer(

reinterpret_cast<std::vector<char>␣
→˓&> (request.octet_body()),

continue_arguments);

UPDATE /replay_services/(rs)/playback:next_slice

Operation next_slice

This operation will cause Replay Service to resume the replay for the duration of a slice period. Replay
Service has to be on BREAKPOINT state in order to make this action.

It will affect the whole service, meaning that all StreamReaders will be affected by it.

Request body

• Empty.

5.4. Remote Administration 113

RTI Recording Service Documentation, Version 7.3.0

5.5 Monitoring

This section provides documentation on Recording Service remote monitoring.

Note: Recording Service monitoring is based on the Monitoring Distribution Platform described in Section
11.4. We recommend that you read Section 11.4 before using Recording Service monitoring.

5.5.1 Overview

Enabling Service Monitoring

By default, monitoring is disabled in Recording Service. To enable monitoring you can use the
<monitoring> tag (see Section 4.3.3) or the -remoteMonitoringDomainId command-line param-
eter, which enables remote monitoring and sets the domain ID for data publication (see Section 4.1.3).

Monitoring Types

The available Keyed Resource classes and their types that can be present in the distribution monitoring topics
are listed in Table 5.22. The complete type relationship is shown in Figure 5.5.

Table 5.22: Recording Service Keyed Resources
Keyed Resource
Class

Config Event Periodic

Service ServiceConfig ServiceEvent ServicePeriodic

Session SessionConfig SessionEvent SessionPeriodic

TopicGroup TopicGroupCon-
fig

TopicGroupEvent TopicGroupPeri-
odic

Topic TopicConfig TopicEvent TopicPeriodic

All the type definitions for Recording Service monitoring information are in [NDDSHOME]/
resource/idl/ServiceCommon.idl and [NDDSHOME]/resource/idl/
RecordingServiceMonitoring.idl.

Recording Service creates a DataWriter for each distribution Topic. All DataWriters are created from a single
Publisher, which is created from a dedicated DomainParticipant. See Section 4.3.3 for details on configuring
the QoS for these entities.

5.5. Monitoring 114

RTI Recording Service Documentation, Version 7.3.0

Figure 5.5: Keyed Resource Types for Recording Service monitoring

5.5.2 Monitoring Metrics Reference

This section provides a reference to all the monitoring metrics Recording Service distributes, organized by
service resource class.

Service

Listing 5.1: Recording Service Types

@mutable @nested
struct SqliteDatabaseConfig {

Service::FilePath db_directory;
@optional Service::FilePath execution_directory_expression;
@optional Service::FilePath user_data_file_expression;

};
@mutable @nested
struct SqliteDatabaseEvent {

@optional Service::FilePath current_db_directory;
@optional Service::FilePath current_file;
@optional int32 rollover_count;

};
@mutable @nested
struct SqliteDatabasePeriodic {

@optional Service::FilePath current_file;

(continues on next page)

5.5. Monitoring 115

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
@optional uint64 current_file_size;
// These fields are no longer supported and carry no␣

→˓information.
// Kept only to support older version.
@deprecated int32 current_timestamp_sec;
@deprecated uint32 current_timestamp_nanosec;

};

@mutable @nested
struct ParticipantInfo {

Service::BoundedString name;
};

@mutable @nested
struct ServiceConfig : Service::Monitoring::EntityConfig {

Service::BoundedString application_name;
Service::Monitoring::ResourceGuid application_guid;
@optional Service::Monitoring::HostConfig host;
@optional Service::Monitoring::ProcessConfig process;
@optional SqliteDatabaseConfig builtin_sqlite;
@optional sequence<ParticipantInfo> participants;

};
@mutable @nested
struct ServiceEvent : Service::Monitoring::EntityEvent {

//to avoid unused variable warnings
@optional SqliteDatabaseEvent builtin_sqlite;

};
@mutable @nested
struct ServicePeriodic {

@optional Service::Monitoring::HostPeriodic host;
@optional Service::Monitoring::ProcessPeriodic process;
int64 current_timestamp_nanos;
@optional SqliteDatabasePeriodic builtin_sqlite;

};

5.5. Monitoring 116

RTI Recording Service Documentation, Version 7.3.0

Table 5.23: ServiceConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 11.14.

application_name Name of the Recording Service instance. The application name is provided
through:

• appName command-line option when run as executable.
• ServiceProperty::application_name field when run as a li-
brary.

application_guid GUID of the Recording Service instance. Unique across all service instances.
host See Table 11.10.
process See Table 11.12.
builtin_sqlite See Table 5.24
participants Sequence of ParticipantInfo objects, one for eachDomainParticipant in-

side the Recording Service. See Table 5.25.

Table 5.24: SqliteDatabaseConfig
Field Name Description
db_directory Path to the base directory where the database files live.
execution_directory_ex-
pression

This value is not set when running Replay Service. See Section 4.3.6

user_data_file_expres-
sion

This value is not set when running Replay Service.

Table 5.25: ParticipantInfo
Field Name Description
name Name of the DomainParticipant instance, as specified in the name attribute of

the corresponding configuration tag.

Table 5.26: ServiceEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 11.15.

builtin_sqlite See Table 5.27

Table 5.27: SqliteDatabaseEvent
Field Name Description
current_db_directory Path to the current directory where files are being replayed from.
current_file This value is not set when running Replay Service.
rollover_count This value is not set when running Replay Service.

5.5. Monitoring 117

RTI Recording Service Documentation, Version 7.3.0

Table 5.28: ServicePeriodic
Field Name Description
host See Table 11.11.
process See Table 11.13.
current_times-
tamp_nanos

Timestamp in nanoseconds at which data is being replayed, relative to recorded
time.

builtin_sqlite See Table 5.29

Table 5.29: SqliteDatabasePeriodic
Field Name Description
current_file_size This value is not set when running Replay Service.

Session

Listing 5.2: Session Types

@mutable @nested
struct SessionConfig : Service::Monitoring::EntityConfig {

Service::BoundedString default_participant_name;
};
@mutable @nested
struct SessionEvent : Service::Monitoring::EntityEvent {

//to avoid unused variable warnings
int32 _dummy;

};
@mutable @nested
struct SessionPeriodic {

@optional Service::Monitoring::NetworkPerformance network_
→˓performance;

@optional @optional Service::Monitoring::ThreadPoolPeriodic␣
→˓thread_pool;

};

Table 5.30: SessionConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 11.14.

default_partici-
pant_name

The name of the default participant configuration.

5.5. Monitoring 118

RTI Recording Service Documentation, Version 7.3.0

Table 5.31: SessionEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 11.15.

Table 5.32: SessionPeriodic
Field Name Description
network_performance Provides network performance metric as an aggregation of the same metric

across the contained Topics and TopicGroups. See Section 11.4.4.

TopicGroup

Listing 5.3: TopicGroup Types

@mutable @nested
struct TopicGroupConfig : Service::Monitoring::EntityConfig {

Service::BoundedString participant_name;
};
@mutable @nested
struct TopicGroupEvent : Service::Monitoring::EntityEvent {

//to avoid unused variable warnings
int32 _dummy;

};
@mutable @nested
struct TopicGroupPeriodic {

@optional Service::Monitoring::NetworkPerformance network_
→˓performance;

int64 topic_count;
};

Table 5.33: TopicGroupConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 11.14.

participant_name Name of the DomainParticipant from which the Topic is created.

Table 5.34: TopicGroupEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 11.15.

5.5. Monitoring 119

RTI Recording Service Documentation, Version 7.3.0

Table 5.35: TopicGroupPeriodic
Field Name Description
network_performance Provides network performance metric as an aggregation of the same metric

across the contained Topics. See Section 11.4.4.
topic_count Current number of Topics created from this TopicGroup.

Topic

Listing 5.4: Topic Types

@mutable @nested
struct TopicConfig : Service::Monitoring::EntityConfig {

Service::BoundedString topic_name;
Service::BoundedString registered_type_name;
Service::BoundedString participant_name;
Service::Monitoring::ResourceGuid topic_group;

};
@mutable @nested
struct TopicEvent : Service::Monitoring::EntityEvent {

//to avoid unused variable warnings
int32 _dummy;

};
@mutable @nested
struct TopicPeriodic {

@optional Service::Monitoring::NetworkPerformance network_
→˓performance;

@optional Service::Monitoring::CountStatus matched_status;
};

Table 5.36: TopicConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 11.14.

topic_name Topic name as specified in the configuration.
registered_type_name Topic registered type name as specified in the configuration.
paritcipant_name Name of the DomainParticipant from which the Topic is created.
topic_group GUID of the TopicGroup from which this Topic was created. This field is set to

zero for standalone Topics.

Table 5.37: TopicEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 11.15.

5.5. Monitoring 120

RTI Recording Service Documentation, Version 7.3.0

Table 5.38: TopicPeriodic
Field Name Description
network_performance Provides network performance metric as an aggregation of the same metric

across the contained Topics. See Section 11.4.4.
matched_status Provides information about the matched endpoints associated with this Topic.

5.6 Tutorials

5.6.1 Example: Getting Started with Replay and Shapes Demo

Start by recording Square data, as described in Section 4.6.1.

Start Shapes Demo and Subscribe to Squares

If you have any Shapes Demo windows publishing data, delete them.

Start Shapes Demo from Launcher and create a Square subscriber as described in Section 4.6.1.

Start Replay Service

Start Replay Service:

<NDDSHOME>/bin/rtireplayservice -cfgName UserReplayServiceJson -verbosity 3

You should see Square data replayed in Shapes Demo.

5.6.2 Example: Replaying Data at a Different Rate

To replay data at a faster or slower rate than it was recorded, you can edit the configuration file to specify a
playback rate.

Start by recording Square data as described in Section 4.6.1.

Edit the Replay Configuration

In your <RTI_WORKSPACE>/user_config/recording_service directory, edit the
USER_REPLAY_SERVICE.xml file. Add a playback rate, as seen in the following XML:

<?xml version="1.0" encoding="UTF-8"?>

<!-- All of our files start with a dds tag -->
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../../resource/schema/rti_replay_service.xsd">

(continues on next page)

5.6. Tutorials 121

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)

<replay_service name="UserReplayServiceJson">
<!-- This will look for files in the directory 'json_recording' in the

current working directory. This is integrated with the Recording
Service configuration 'UserRecorderServiceJson' in the file
USER_RECORDING_SERVICE.xml -->

<storage>
<sqlite>

<storage_format>JSON_SQLITE</storage_format>
<database_dir>json_recording</database_dir>

</sqlite>
</storage>

<!-- Optionally select the begin and end times for the data to be
replayed -->

<!--data_selection>
<time_range>

<begin_time>
<sec>0</sec>
<nanosec>0</nanosec>

</begin_time>
</time_range>

</data_selection-->

<!-- Specify playback behavior, including what local time to start -->
<playback>

<rate>2</rate>
</playback>

<domain_participant name="DefaultParticipant">
<domain_id>0</domain_id>

</domain_participant>

<session name="DefaultSession"
default_participant_ref="DefaultParticipant">

<!-- Topics to replay in this session -->
<topic_group name="DefaultTopicGroup">

<!-- Topics to replay -->
<allow_topic_name_filter>*</allow_topic_name_filter>
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</topic_group>
</session>

</replay_service>
</dds>

5.6. Tutorials 122

RTI Recording Service Documentation, Version 7.3.0

Start Shapes Demo

Use Launcher to start Shapes Demo, then create a Square subscriber.

Start Replay Service

Start Replay Service:

<NDDSHOME>/bin/rtireplayservice -cfgName UserReplayService -verbosity 3

You should see Square data replayed in Shapes Demo twice as fast as it was originally recorded.

5.6.3 Example: Plugging in Custom Storage

If you created a storage plugin to record data into your own custom storage, you can also create a plugin to
replay from that same storage.

There are full examples written in C and C++ about plugging in custom storage in Recording Service, in the RTI
Community Recording Service examples: C storage plugin and RTI Community Recording Service examples:
C++ storage plugin.

Custom Storage API Overview

To retrieve data for replay, you must implement the following APIs:

• A create storage reader API:

– This is used to create a StorageReader object.

– This API is a C function. In C++, you can use macros to declare and define the C function for
your class. For example:

∗ RTI_RECORDING_STORAGE_READER_CREATE_DECL(FileStor-
ageReader)

∗ RTI_RECORDING_STORAGE_READER_CREATE_DEF(FileStor-
ageReader)

– The StorageReader is used to create and delete StorageStreamInfoReaders and StorageStream-
Readers.

• StorageReader:

– A create stream info reader API, where you create a stream reader that provides information
about what streams (topics) are in your storage.

– A delete stream info reader API, where you delete a stream info reader

– A create stream reader API, where you create a stream reader

– A delete stream reader API, where you delete a stream reader

5.6. Tutorials 123

https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/pluggable_storage/c
https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/pluggable_storage/c
https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/pluggable_storage/c%2B%2B11
https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/pluggable_storage/c%2B%2B11

RTI Recording Service Documentation, Version 7.3.0

• StorageStreamInfoReader:

– Read: AnAPI to retrieve discovery data from the storage. It uses a selector object to determine
the kind of samples (not read or any kind) to be returned, as well as the time range. The
samples should be returned in increasing time-stamp order.

– Return loan: An API that notifies the plugin that it can release resources associated with the
data passed to the read API

– Get service start time: An API to query the recorded time from which to start replaying

– Get service stop time: An API to query the recorded time at which to stop replaying

– Finished: An API to tell Replay Service and Converter that there are no more stream infos to
read.

– Reset: An API called by the Replay Service to tell the plug-in to reset its state because it is
looping. After this method is called, the stream reader should be ready to start reading data
from the beginning of the stream, again.

• StorageStreamReader

– Read: An API to retreive data from storage. It uses a selector object to determine the kind of
samples (not read or any kind) to be returned, as well as the time range. The samples should
be returned in increasing timestamp order.

– Return loan: An API that notifies the plugin that it can release resources associated with the
data passed to the take API

– Finished: An API that notifies the plugin that there is no more data in this data stream

The APIs provide a mechanism to have strongly typed StorageStreamReader classes. A builtin one is provided,
based on dds::core::xtypes::DynamicData.

More detailed API documentation is in:

• Recording Service C API documentation

• Recording Service C++ API documentation

5.6.4 Using Timestamp Tags with Replay Service

If your recording was originally made with the builtin SQLite storage plugin, and you used the tag_times-
tamp remote command to tag certain events, then your recording contains timestamp tags: symbolic timestamp
names you can use in place of timestamps expressed in units of time. For more information on timestamp tags,
see Section 4.6.6.

You can list the timestamp tags that are in your recorded database by using the rtirecordingser-
vice_list_tags script. Use the -d argument to point to the directory that contains your recorded
database, as follows:

<NDDSHOME>/bin/rtirecordingservice_list_tags -d /database/directory/

This command will analyze the recording in /database/directory/ and list the details of any timestamp
tags in the recording, including the tag names, descriptions, and associated timestamps.

5.6. Tutorials 124

RTI Recording Service Documentation, Version 7.3.0

You can use the tag_name of the timestamp tags you find in a recording when you are creating an XML
configuration file for Replay Service by using the <data_selection> tag.

For example, if after running rtirecordingservice_list_tags, you see output such as:

tag_name timestamp_ms tag_description
-------------------------- ------------- ------------------------
/my_example/my_events/tag1 1546484663309 first tag description
/my_example/my_events/tag2 1546484703360 a second tag description

Then you can have a <data_selection> tag in your XML for Replay Service, after the <storage> tag,
that looks like the following:

<data_selection>
<time_range>

<begin_tag>/my_example/my_events/tag1</begin_tag>
<end_tag>/my_example/my_events/tag2</end_tag>

</time_range>
</data_selection>

Replay Service will replay data between those tags. Note that when expressing a <time_range> tag, you can
mix and match timestamps and timestamp tags. For example, you can use a <begin_tag> (by referring to
a tag_name) to express the time when replay should begin, and an <end_tag> with an end time timestamp
(expressed in time units) to express when replay should end. If you do not provide one of the bounds, then the
start of recording is the default begin bound and the end of recording is the default end bound.

5.6.5 Jump in time in Replay Service

This section shows a possible scenario where the jump in time operation can be useful. This scenario will be
based on the following recorded database:

sqlite3 json_recording/rti_recorder_default_json.db
sqlite> select ROWID, SampleInfo_reception_timestamp, rti_json_sample from
→˓"Square@0";

1|1600635598310952678|{"color":"ORANGE","x":120,"y":195,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}
2|1600635598460562312|{"color":"ORANGE","x":121,"y":197,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}
3|1600635599612452987|{"color":"ORANGE","x":122,"y":199,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}
4|1600635601310952678|{"color":"ORANGE","x":123,"y":201,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}
....
1000|1600637901310952678|{"color":"ORANGE","x":129,"y":199,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}

In order to reproduce this scenario, see Section 4.6.1.

Suppose you want to replay for some seconds, then you want to replay again samples 4 to 10, because they
contain important events and continue the replay until the end. To do this, you need to use the jump in time
operation to change the replay position, like this.

5.6. Tutorials 125

RTI Recording Service Documentation, Version 7.3.0

CommandRequest request;

// Fill the request
request.action(CommandActionKind::UPDATE_ACTION);
request.application_name(service_property.application_name());
request.resource_identifier("/playback/current_timestamp");

// Set TimestampHolder
RTI::RecordingService::TimestampHolder timestamp_arguments;
timestamp_arguments.timestamp_nanos(1600635601310952678);

// Seralization of the TimestampHolder
dds::topic::topic_type_support<RTI::RecordingService::TimestampHolder>

::to_cdr_buffer(
reinterpret_cast<std::vector<char> &> (request.octet_body()),
timestamp_arguments);

// Send command
command_requester->send_request(request);

Once Replay Service has jumped to sample 4, it will replay those important samples again.

A simple C++ example of how to use the remote administration API is available here: RTI Community Record-
ing Service examples: Service Administration. If you want to reproduce this scenario using this example you
can run the following command:

./Requester UPDATE /replay_services/remote_admin/playback/current_timestamp --
→˓current-timestamp 1600635601310952678

5.6.6 Using Debug mode in Replay Service

In this section you can see a possible scenario where the debug mode can be useful. This scenario will be based
on the following recorded database:

sqlite3 json_recording/rti_recorder_default_json.db
sqlite> select ROWID, SampleInfo_reception_timestamp, rti_json_sample from
→˓"Square@0";

1|1600635598310952678|{"color":"ORANGE","x":120,"y":195,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}
2|1600635598460562312|{"color":"ORANGE","x":121,"y":197,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}
3|1600635599612452987|{"color":"ORANGE","x":122,"y":199,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}
4|1600635601310952678|{"color":"ORANGE","x":123,"y":201,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}
....
100|1600637398330952678|{"color":"ORANGE","x":126,"y":199,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}
101|1600637498460562312|{"color":"ORANGE","x":127,"y":199,"shapesize":30,

(continues on next page)

5.6. Tutorials 126

https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/service_admin/c%2B%2B11
https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/service_admin/c%2B%2B11

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
→˓"fillKind":"SOLID_FILL","angle":0}
102|1600637799612452987|{"color":"ORANGE","x":128,"y":199,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}
103|1600637901310952678|{"color":"ORANGE","x":129,"y":199,"shapesize":30,
→˓"fillKind":"SOLID_FILL","angle":0}

In order to reproduce this scenario, see Section 4.6.1.

Suppose you want to replay samples 1-4, then you want to skip samples 5-99 and continue the replay at sample
100. To do this, you need to add some breakpoints to stop Replay Service before it replays specific samples. So
you need to add two breakpoints: one after the 4th sample and another before the 100th sample.

To add those breakpoints you can use the <initial_breakpoint> tags. For example:

<debug_mode>
<enabled>true</enabled>
<initial_breakpoints>

<element label="breakpoint_afterSample4">1600635601320000000</element>
<element label="breakpoint_beforeSample100">1600637398330000000</

→˓element>
</initial_breakpoints>

</debug_mode>

Also, you can add those breakpoints by code using the remote administration system. See Section 5.4.3 for
more details about the different debug mode operations.

Once the replay starts, it will hit the default breakpoint. This breakpoint is always added by Replay Service at
the start timestamp of the replay.

To start the replay, we should execute the operation “continue” using remote administration. Replay Service will
publish the first 4 samples, then it will stop when it hits breakpoint_afterSample4. You can run the operation
“continue” like this:

CommandRequest request;

// Fill the request
request.action(CommandActionKind::UPDATE_ACTION);
request.application_name(service_property.application_name());
request.resource_identifier("/playback:continue");

// Send command
command_requester->send_request(request);

Once it hits this breakpoint, we don’t want to replay the 5th sample. Instead, we want to jump to the breakpoint
“breakpoint_beforeSample100”, which is just before sample 100. To do this, we have to execute the operation
“goto_breakpoint” like this:

CommandRequest request;

// Fill the request
request.action(CommandActionKind::UPDATE_ACTION);

(continues on next page)

5.6. Tutorials 127

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
request.application_name(service_property.application_name());
request.resource_identifier("/playback:goto_breakpoint");

// Set BreakpointParams
RTI::RecordingService::BreakpointParams breakpoint_arguments;
breakpoint_arguments.value().labels("breakpoint_beforeSample100");

// Seralization of the BreakpointParams
dds::topic::topic_type_support<RTI::RecordingService::BreakpointParams>

::to_cdr_buffer(
reinterpret_cast<std::vector<char> &> (request.octet_body()),
breakpoint_arguments);

// Send command
command_requester->send_request(request);

Once Replay Service has jumped to “breakpoint_beforeSample100”, we need to execute the “continue” oper-
ation to resume replaying from sample 100 until the end.

A simple C++ example of how to use the remote administration API is available here: RTI Community Record-
ing Service examples: Service Administration. If you want to reproduce this scenario using this example you
can run the following command:

./Requester UPDATE /replay_services/remote_admin/playback:continue

./Requester UPDATE /replay_services/remote_admin/playback:goto_breakpoint --
→˓goto-breakpoint "breakpoint_beforeSample100"
./Requester UPDATE /replay_services/remote_admin/playback:continue

5.6.7 Instance History replay

In this section, you will see instance history replay in action. For this scenario, we will need to record a database
with a keyed type with only one instance. To do that, we will create an example from the following IDL:

struct Hello {
long id; //@key
long sample_number;

};

In order to generate the example, you need to run rtiddsgen like this:

>$NDDSHOME/bin/rtiddsgen -language C++11 -example <ARCH> Hello.idl

After generating the code, we need to make a small change in Hello_publisher.cxx, so that it only creates an
instance. To do that, set data.id to 0, instead of to sample_written.

// Instance history example: Set data.id to 0.
data.id(0);
for (unsigned int samples_written = 0;

!application::shutdown_requested && samples_written < sample_count;

(continues on next page)

5.6. Tutorials 128

https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/service_admin/c%2B%2B11
https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples//recording_service/service_admin/c%2B%2B11

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
samples_written++) {

// Modify the data to be written here
// Instance history example: Remove this data.id set line.
// data.id(static_cast<int32_t>(samples_written));

....

To record the scenario, we need to enable Instance indexing. Please see Section 4.3.6 for more information.

Once we have the recorded database, we can move to the replay side. We will base the scenario on the following
recorded database:

sqlite3 json_recording/rti_recorder_default.db
sqlite> select ROWID, SampleInfo_reception_timestamp from "Example Hello@0";

1|1600635598310952678
2|1600635598460562312
3|1600635599612452987
4|1600635601310952678
....
10|1600636398330952678

We need to make some changes in the replay configuration to start at sample 4 and to enable instance history
replay. To do that, add the following tags:

<data_selection>
<time_range>

<begin_time>
<sec>1600635600</sec>
<nanosec>310952678</nanosec>

</begin_time>
</time_range>

</data_selection>

<playback>
<instance_history_replay>

<enabled>true</enabled>
</instance_history_replay>

</playback>

Also, the DataReader and the Replay Service DataWriter need to have their Durability QoS set to TRAN-
SIENT_LOCAL in order to receive the historical sample. Please see Configuring QoS with XML, in the RTI
Connext DDS Core Libraries User’s Manual for more information.

Once everything was set, we can run the replay scenario. The expected output is:

> ./objs/<ARCH>/Hello_subscriber
[id: 0, sample_number: 3]
[id: 0, sample_number: 4]
[id: 0, sample_number: 5]
[id: 0, sample_number: 6]
.....
[id: 0, sample_number: 10]

5.6. Tutorials 129

RTI Recording Service Documentation, Version 7.3.0

Notice that you also received sample 3, which was before the start timestamp. This sample was received as
part of the state of the world. If we have more than one instance, we will receive one sample per instance (if
they have a valid state on that start timestamp).

5.7 Troubleshooting

5.7.1 No Input File

If Replay Service is started but there is no file for it to read from, it will print error messages like the ones below
and then exit. It is looking for a database located in a cdr_recording directory inside your current working
directory. You can fix this by creating a configuration file that specifies the correct location of your database
to replay, or by changing directories to a location that contains your cdr_recording directory that contains a
recording.

[/replay_services/default|START] create_connection:caught exception from:
set_properties:!No valid metadata file found in directory: cdr_recording

[/replay_services/default|START] ROUTERConnection_
→˓enable:(adapter=StorageAdapterPlugin, retcode=0: set_properties:!No valid␣
→˓metadata file found in directory: cdr_recording
)
[/replay_services/default|START] ROUTERDomainRoute_start:!enable Connection
[/replay_services/default|START] ROUTERService_startDomainRoute:!start domain␣
→˓route
[/replay_services/default|START] ROUTERService_createDomainRoute:!start␣
→˓domain route
[/replay_services/default|START] ROUTERService_start:!create domain route
[/replay_services/default|START] RTI_RoutingService_start:!start routing␣
→˓service
main:!!start RoutingService error

5.7.2 Table Not Found Errors

When recording a database with Recording Service, there may be topics that have no associated table,
because they were discovered but were filtered out by using the <allow_topic_name_filter> or
<deny_topic_name_filter> tags in Topic Group or by defining Topics (that target specific topic
names). While the topic will be present in the DCPSPublication table in the discovery file, it won’t have
a corresponding table in the user-data files.

If the same topics are not filtered in Replay Service (by using the same <allow_topic_name_filter>
or <deny_topic_name_filter> tags, or Topics), then when Replay Service starts it will discover the
topics without a table because they are available in the discovery information. When Replay Service attempts
to create a stream reader for these topic(s), a failure message will be printed:

ROUTERConnection_createStreamReaderAdapter:(adapter=StorageAdapterPlugin,␣
→˓retcode=0: Function returned NULL)
ROUTERStreamReader_enable:!create stream reader adapter
ROUTERTopicRoute_enableInput:!enable stream reader

(continues on next page)

5.7. Troubleshooting 130

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
ROUTERTopicRoute_processEvent:!enable route input
ROUTERTopicRoute_onConditionTriggered:!process event
create_stream_reader_fwd:SQLiteStorageStreamReader:!Table not found in␣
→˓database files: TopicNotRecorded@0

These messages are harmless, they are just informing you that a table could not be found for the topic (in the
example above, TopicNotRecorded).

To get rid of the messages, use the same Topic Group filter expressions or Topics used in Recording Service.

5.7.3 Receiving the data twice

When a Subscriber uses a different typename than the current typename recorded, Replay Service will create
two sessions for the same topic.

Since TypeObject is being used, discovery completes correctly, even though there are two different type names.

The behavior in this scenario is that the data for that topic will be received twice. To prevent this, make sure
the Subscriber uses the same typename that was used in the recording.

5.7. Troubleshooting 131

Chapter 6

Converter

6.1 Usage

This section explains how to run Converter from a command line. In particular, it describes:

• How to Start Converter (Section 6.1.1).

• Converter command-line parameters (Section 6.1.2).

6.1.1 Starting Converter

Converter runs as a separate application. The script to run the executable is in <NDDSHOME>/bin. (See
Section 2.3 for the path to NDDSHOME.)

rticonverter [options]

To start Converter with a default configuration, enter:

$NDDSHOME/bin/rticonverter

Converter is pre-loaded with a builtin configuration that has default settings. See Section 6.2.21.

Note: To run Converter on a target system (not your host development platform), you must first select the
target architecture. To do so, either:

• Set the environment variable CONNEXTDDS_ARCH to the name of the target architecture. (Do this for
each command shell you will be using.)

• Or set the variable connextdds_architecture in the file rticommon_config.[sh/bat]
to the name of the target architecture. (The file is resource/scripts/rticommon_config.
sh on Linux or macOS systems, resource/scripts/rticommon_config.bat on Windows
systems.) If the CONNEXTDDS_ARCH environment variable is set, the architecture in this file will be
ignored.

132

RTI Recording Service Documentation, Version 7.3.0

6.1.2 Converter Command-Line Parameters

The following table describes all the command-line parameters available in Converter. To list the available
parameters, run rticonverter -help.

All command-line parameters are optional; if specified, they override the values of any corresponding set-
tings in the loaded XML configuration. See Section 6.2.4 for the XML elements that can be overridden with
command-line parameters.

Table 6.1: Converter Command-Line Parameters
Parameter Description
-cfgFile <string> Semicolon-separated list of configuration file paths. Default: Un-

specified
-cfgName Configuration name. This name is used to find a matching

<converter> tag in the configuration file.
-D<name>=<value> Defines a variable that can be used as an alternate replace-

ment for XML environment variables, specified in the form
$(VAR_NAME). Note that definitions in the environment take
precedence over these definitions.

-help Shows this help.
-verbosity <ser-
vice_level>[:<dds_level>]

Controls what type of messages are logged. <service_level> is the
verbosity level for the service logs and <dds_level> is the verbosity
level for the DDS logs. Both can take any of the following values:

• SILENT
• ERROR
• WARN
• LOCAL
• REMOTE
• ALL

Default: ERROR:ERROR
-version Prints the program version and exits.

6.1.3 Working With Large Data

The built-in SQLite plugin implementation available inConverter is prepared to handle any type size and storage
format. However, when working with large data types and massive files (or filesets), Converter may take a while
to prepare SQL statements to work with the data, resulting in a delay when starting the conversion process.

Because of this delay, it is recommended that you index the user data tables for those large topics before
running Converter on them. Indexing can massively improve Converter’s startup time for those topics. You can
create the indexes offline, after Recording Service has finished recording all the data. Index the tables on the
SampleInfo_reception_timestamp field. For example, imagine a table, VeryLargeTopic@0,
has been created by Recording Service; you can use the following index creation statement:

CREATE INDEX IF NOT EXISTS [VeryLargeTopic@0_idx_rt]
ON [VeryLargeTopic@0] (SampleInfo_reception_timestamp)

6.1. Usage 133

RTI Recording Service Documentation, Version 7.3.0

6.2 Converter Configuration

When you start Converter, you can specify a configuration file in XML format. In this file, you can specify the
properties that control the behavior of the service. This section describes how to write a configuration file.

Note: Converter makes use of XSD files to validate the XML configuration files used to configure Converter.
Due to the restrictions imposed by XSD schemas for XML 1.0, some of the tags used in the configuration must
be grouped in order. This behavior is intended; Converter validates the XML files before parsing them to catch
as many parsing errors as possible beforehand.

6.2.1 How to Load the XML Configuration

Converter loads its XML configuration from multiple locations. Here are the various sources of configuration
files, listed in load order:

1. [working directory]/USER_CONVERTER.xml This file is loaded automatically if it exists.

2. [NDDSHOME]/resource/xml/RTI_CONVERTER.xml This file is loaded automatically if it ex-
ists.

3. One or more files (semicolon-separated) specified using the command-line parameter -cfgFile.

Note: [working directory] indicates the path to the current working directory from which you run
Converter.

[NDDSHOME] indicates the path to your Connext DDS installation. See Section 2.3.

You may use a combination of the above sources and load multiple configuration files.

Here is an example configuration file. You will learn the meaning of each line as you read the rest of this
section.

<?xml version="1.0" encoding="UTF-8"?>

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../../resource/schema/rti_converter.xsd">

<!-- Available types -->
<types />

<!-- A definition of a Converter instance to run -->
<converter name="defaultToJson">

<!-- Input storage settings -->
<input_storage>

<sqlite>
<storage_format>XCDR_AUTO</storage_format>
<database_dir>cdr_recording</database_dir>

</sqlite>
(continues on next page)

6.2. Converter Configuration 134

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
</input_storage>

<!-- Output storage settings -->
<output_storage>

<sqlite>
<storage_format>JSON_SQLITE</storage_format>
<fileset>

<workspace_dir>converted</workspace_dir>
<filename_expression>rti_recorder_default.converted.db</

→˓filename_expression>
</fileset>

</sqlite>
</output_storage>

<!-- Domain selection: assume 0 by default.
Converter is not a DDS application, so this won't create a
DDS Domain Participant, but allows you to select which domains
to convert -->

<domain_participant name="Domain0">
<domain_id>0</domain_id>

</domain_participant>

<session name="DefaultSession"
default_participant_ref="Domain0">

<!-- Topics to convert in this session -->
<topic_group name="DefaultTopicGroup">

<!-- Rules describing the topics to convert -->
<allow_topic_name_filter>*</allow_topic_name_filter>
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</topic_group>
</session>

</converter>
</dds>

6.2.2 XML Syntax and Validation

The XML representation of DDS-related resources must follow these syntax rules:

• It shall be a well-formed XML document according to the criteria defined in clause 2.1 of the Extensible
Markup Language standard.

• It shall use UTF-8 character encoding for XML elements and values.

• It shall use <dds> as the root tag of every document.

To validate the loaded configuration, Converter relies on an XSD file that describes the format of the XML
content. We recommend including a reference to this document in the XML file that contains the service’s
configuration; this document provides helpful features in code editors such as Visual Studio®, Eclipse®, and
NetBeans®, including validation and auto-completion while you are editing the XML file.

6.2. Converter Configuration 135

https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/

RTI Recording Service Documentation, Version 7.3.0

The XSD definitions of the XML elements are in $NDDSHOME/resources/schema/
rti_converter.xsd.

To include a reference to the XSD document in your XML file, use the attribute xsi:noNames-
paceSchemaLocation in the <dds> tag. For example:

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"␣
→˓xsi:noNamespaceSchemaLocation="../schema/rti_converter.xsd">

<!-- ... -->
</dds>

6.2.3 Builtin Configuration of Converter

Converter comes pre-configured with a configuration that converts a file called rti_recorder_default.db from
XCDR format to a file called rti_recorder_default_converted.db in JSON_SQLITE format. See Section 6.2.21
for details.

6.2.4 XML Tags for Configuring Converter

This section describes the XML tags you can use in a Converter configuration file. Figure 6.1 and Table 6.2
describe the top-level tags allowed within the root <dds> tag.

Figure 6.1: Top-level Tags in the Converter Configuration File

6.2. Converter Configuration 136

RTI Recording Service Documentation, Version 7.3.0

Table 6.2: Top-Level Tags in Converter’s Configuration file
Tags within
<dds>

Description Multi-
plicity

<types> Defines types that can be used by Converter. This tag is needed if data
types are not available in the discovery table. The type description is done
using the Connext DDS XML format for type definitions. See Creating
User Data Types with Extensible Markup Language (XML), in the RTI
Connext DDS Core Libraries User’s Manual.

0..*

<plugin_library> Contains a list of storage libraries that you may have implemented to sup-
port custom databases. For more information, see Section 4.3.12 and Sec-
tion 5.3.15.

0..*

<converter> Required. Specifies a Converter configuration.
Attributes

• name: uniquely identifies a Converter configuration. Re-
quired.

Example

<converter name="ConvertAll">
</converter>

See Section 6.2.5.

1..*

6.2.5 Converter Tag

A configuration file must have at least one <converter> tag. This tag is used to configure an execution of
Converter.

A configuration file may contain multiple <converter> tags. When you start Converter, you can specify
which <converter> tag to use to configure the service using the -cfgName command-line parameter.
This means one file can be used to configure multiple Converter executions.

Figure 6.2 and Table 6.3 describe the tags allowed within a <converter> tag.

Table 6.3: Converter Tags in Converter’s Configuration File
Tags within <con-
verter>

Description Multiplic-
ity

<input_storage> Describes the storage that Converter will read as input. Converter
expects the storage to be in CDR (binary) format.
If storage is not specified, data will be stored in a SQLite file using
a default name.
See Section 6.2.6.

0..1

<output_storage> Describes the storage that Converter will write as output. This out-
put will be in JSON format.
If this storage is not specified, data will be stored in a SQLite file
using a default name.
See Section 6.2.7.

0..1

continues on next page

6.2. Converter Configuration 137

RTI Recording Service Documentation, Version 7.3.0

Table 6.3 – continued from previous page
Tags within <con-
verter>

Description Multiplic-
ity

<data_selection> Enables selection of a subset of data to convert. Supports selecting
data for conversion by time (or tagged time). See Section 6.2.15.

0..1

<session> Allows you to create one or more sessions in which to convert data,
which gives you the option of specifying multiple threads for con-
version. See Section 6.2.18.
Attributes:

• name: Uniquely defines a session. Required.
• default_participant_ref: Refers to a do-
main_participant tag, that specifies the domain
ID to use from the database when converting this
Topic. Children can override this by specifying their
own participant.

0..*

<domain_participant> Required. Describes the domains Converter will select for con-
version. Converter is not a DDS application so this definition will
not create a DDS Domain Participant, it just works as a domain ID
selection utility. Note: the domain ID has to correspond to one of
the domain IDs defined in the Recorder configuration. See Section
6.2.17.
Attributes:

• name: Uniquely defines a DomainParticipant. Re-
quired.

1..*

Example: Specify a Configuration in XML

<dds>
<converter name="ConvertToJSON">

<!-- ... Required entities -->
</converter>

</dds>

Starting Converter with the following command will use the <converter> tag with the name “ConvertToJ-
SON”.

$NDDSHOME/bin/rticonverter -cfgFile file.xml -cfgName ConvertToJSON

6.2. Converter Configuration 138

RTI Recording Service Documentation, Version 7.3.0

Figure 6.2: Converter Tags in the Converter Configuration File

6.2. Converter Configuration 139

RTI Recording Service Documentation, Version 7.3.0

6.2.6 Input Storage

The <input_storage> tag allows you to configure the storage from which data will be read. You can
choose between using the builtin SQLite storage or implementing your own storage plugin.

Table 6.4: Input Storage Tags in Converter’s Configuration File
Tags within <in-
put_storage>

Description Multi-
plicity

<sqlite> Enables converting data from an SQLite database file. See Section 6.2.8. 0..1
<legacy> Enables converting data from a legacy version of Recording Service to a

database usable by this version. See Section 6.2.12.
0..1

<plugin> Enables converting data from storage using an external library that you
specify. See Section 6.2.14.

0..1

<max_sam-
ples_per_read>

Specifies the maximum number of samples to be returned by the read()
operation.
When the recorded tables contain huge amounts of samples, this setting
can help improve the responsiveness of Converter, because the tool won’t -
for each table - attempt to get all samples at once.
If not specified, the default value is 1024 samples.
A negative value means an unlimited number of samples.

0..1

6.2.7 Output Storage

The <output_storage> tag allows you to configure the storage into which converted data will be written.
You can choose between using the builtin SQLite storage, CSV storage utility plugin or implementing your
own storage plugin.

Table 6.5: Output Storage Tags in Converter’s Configuration File
Tags within <out-
put_storage>

Description Multi-
plicity

<sqlite> Enables writing converted data into an SQLite database file. See Section
6.2.8.

0..1

<csv> Enables writing converted data with CSV format into a text file. See Sec-
tion 6.2.9.

0..1

<plugin> Enables writing converted data into storage of your choosing, using a plugin
library that you specify. See Section 6.2.14.

0..1

6.2. Converter Configuration 140

RTI Recording Service Documentation, Version 7.3.0

6.2.8 SQLite

The <sqlite> tag allows you to specify the name and file extension of a SQLite file to read data from, or
write data to. Currently, the only storage format supported for input is CDR, and the only format supported
for output is JSON.

Table 6.6: SQLite Tags in Converter’s Configuration File
Tags within <sqlite> Description Multi-

plicity
<fileset> (output only) Set of files to write to, and parameters for creating files and

directories in that set. Used when creating more than one output
file. See Section 6.2.10.

0..1

<file> (output only) Name of file to write converted database file(s) to. Used when
creating only a single output file.
Default: rti_recorder_default_converted

0..1

<file_suffix> (output only) Suffix of the output file. Used when creating only a single output
file.
Default: dat

0..1

<database_dir> (input only) Directory containing file(s) to convert.
Default: Current working directory.

0..1

<storage_format> Specifies what format the data is stored in. The options are:
• [Input Default] XCDR_AUTO: This is the binary format
used by Connext DDS when sending data over the net-
work. This has the highest performance for recording,
but can only be viewed by using Converter to convert the
data to a readable format, or by using Replay to replay the
data. This will internally store data in XCDR or XCDR2
depending on the format received.

• JSON_SQLITE: This format can be queried, but record-
ing in this format has lower performance because data
must be deserialized before it can be stored.

• XCDR: The format to use when communicating with
Connext DDS before 6.0.0.

• XCDR2: More efficient than XCDR, used by Connext
DDS 6.0.0 and later.

0..1

<overwrite_policy_kind> Defines what to do when database files are already present in the
current Converter execution directory.
There are two options:

• OVERWRITE: delete old files and replace them
with newly created ones.

• DO_NOT_TOUCH: do not delete any old files and
just exit.

Default: OVERWRITE

0..1

continues on next page

6.2. Converter Configuration 141

RTI Recording Service Documentation, Version 7.3.0

Table 6.6 – continued from previous page
Tags within <sqlite> Description Multi-

plicity
<sql_initialization_string> Configures a SQL expression to use when establishing SQLite

connections using this plugin. You can use this to add an index
to a table to speed up replay, but this must be done for each
table you want to index.
Example:

<sql_initialization_string>
DROP INDEX IF EXISTS pingtopic_0_by_

→˓src_timestamp;
CREATE INDEX pingtopic_0_by_src_

→˓timestamp ON 'PingTopic@0'␣
→˓(SampleInfo_source_timestamp);
</sql_initialization_string>

Default: PRAGMA SYNCHRONOUS = OFF; PRAGMA
JOURNAL_MODE = MEMORY;

0..1

6.2.9 CSV

The CSV storage utility plugin allows you to specify where to output the converted files, if you want to merge
them and what the basename prefix should be, among other things. The table below describes the various
configuration tags.

Table 6.7: CSV storage utility tags in Converter’s Configuration File
Tags within <file-
set>

Description Multi-
plicity

<workspace_dir> Absolute or relative path to where generated file(s) are placed.
Default: . (working directory)

0..1

<file_basename> Prefix for the name of the generated file(s). The file gener-
ated for each topic has the following name: [file_base-
name]-[TOPIC_NAME].csv
If <merge_files> is set to true, then the final file name is equal to
[file_basename].csv.
Default: csv_converted

0..1

<merge_files> Specifies whether the generated files shall be consolidated into a single file.
Default: false

0..1

<default_mem-
ber_value>

Sets the value used for data members that are not present or empty.
Default: nil

0..1

<enum_as_string> Indicates whether values for enumeration members are printed as their cor-
responding label string or as an integer.
Default: true

0..1

<in-
clude_source_times-
tamp>

Indicates whether the source timestamp shall be included in the output file.
Default: false

0..1

6.2. Converter Configuration 142

RTI Recording Service Documentation, Version 7.3.0

To learn more about the CSV storage utility plugin see Section 8.1.1.

6.2.10 Fileset

The <fileset> tag allows you to specify a set of files for Converter to write to.

The behavior allowed by Converter is more limited than the behavior allowed by Recording Service.

Table 6.8: Fileset Tags in Converter’s Configuration File
Tags within <file-
set>

Description Multi-
plicity

<workspace_dir> Required. Base directory where Converter should output files. Must be
different from the input database_dir directory.
Default: The current working directory

1

continues on next page

6.2. Converter Configuration 143

RTI Recording Service Documentation, Version 7.3.0

Table 6.8 – continued from previous page
Tags within <file-
set>

Description Multi-
plicity

<filename_expres-
sion>

Required. The file name Converter will use for the generated user data
file(s). This expression in combination with the rollover configuration will
determine how many (and the names of) files Converter will output. This
setting accepts text and any combination of the following parameters in it:

• Autonumeric. Format: %auto:M%. This parameter describes
an integer that auto-increments every time Converter has a rollover
event due to time or file size.
Example:

<filename_expression>
test_files_%auto:0%.db

</filename_expression>

This will create a series of files starting with test_files_0.db, and
incrementing each time Converter rolls over (due to the file size or
time limits being reached).

• Timestamp. Format: %ts%. This parameter will take the current
timestamp in the system (the time represented as number of seconds
since Epoch).

• Time. Format: %T%. Current time expressed in ISO 8601 time
format (THHMMSS). Example: T145502. This parameter uses the
strftime() parameter %T.

• Short date. Format: %F%. Short date in YYYY-MM-DD format.
Example: 2001-08-23. This parameter uses the strftime() parame-
ter %F. Note: this parameter will not vary in 24 hours, so use with
caution in combinationwith the rollover time limit feature (time limit
should be greater than 1 day; otherwise, you may overwrite the same
file continously).

• Date and time. Format: %c%. Date and time representation,
locale-dependent. This parameter is based on the strftime() param-
eter %c but we use the time expressed in ISO 8601 format (THH-
MMSS). Example: Thu Aug 23 T145502 2001

Default: rti_recorder_default_%auto:0%.db (auto-numeric starting at
zero, unlimited)

1

<rollover> Configuration for rolling over the file after a size limit is reached. See
Section 6.2.11.

0..1

6.2. Converter Configuration 144

RTI Recording Service Documentation, Version 7.3.0

6.2.11 Rollover

Rollover enables Converter to write to the next file in a set when a limit is reached. Converter’s rollover func-
tionality is decoupled from the files that are input, so many files may be merged into one, or one file may be
split into many depending on Converter’s rollover configuration. Currently Converter supports rolling over by
size.

Table 6.9: Rollover in Converter’s Configuration File
Tags within <rollover> Description Multiplic-

ity
<file_size_limit> Themaximum allowed size for a file in a set. Units can be specified

as an attribute.
Attributes:

• unit: (Optional) The unit in which the size is ex-
pressed. The following values are allowed (Default:
KILOBYTES):
– BYTES
– KILOBYTES
– MEGABYTES
– GIGABYTES

Example:

<file_size_limit unit="KILOBYTES">500
</file_size_limit>

0..1

6.2.12 Legacy

This tag configures how legacy databases are converted to the newer format. (Note: You can continue to use
the older format with Replay, by specifying “legacy” storage in Replay’s configuration.)

Table 6.10: Legacy in the Configuration File
Tags within <legacy> Description Multiplic-

ity
<file_path> The path to a legacy file to be converted. File set and version prop-

erties will be obtained automatically from the file itself.
0..1

<domain_mapping> This tag allows you to link legacy domain names with domain IDs.
See Section 6.2.13.

0..1

6.2. Converter Configuration 145

RTI Recording Service Documentation, Version 7.3.0

6.2.13 Domain Mapping

When converting a legacy database, the domain may not have been recorded. This tag provides a way to map
a table with a domain ID.

Later versions of the old Recorder database allowed you to use field filters. By default, the domain ID field was
not recorded (it was filtered out by default). Thus, there is no information available in these legacy databases
to relate the domain name used to record the data with a domain ID. This tag allows you to link legacy domain
names with domain IDs.

Table 6.11: Domain Mapping in the Configuration File
Tags within <do-
main_mapping>

Description Multiplic-
ity

<domain_map> Required. A link between a recorded legacy domain name and a
domain ID.
Attributes:

• legacy_domain_name: The recorded domain
name specified in the old Recording Service domain
tag, for example: <domain name=”domain0”>.

• domain_id: The domain ID you want to associate
with the legacy domain name.

1..*

6.2.14 Plugin

This tag enables you to convert data using an external library that you specify.

Table 6.12: Storage plugin Tag in the Configuration File
Tags within <plu-
gin>

Description Multi-
plicity

<property> Name/value pairs of properties to pass to a storage plugin.
Example:

<property>
<value>

<element>
<name>Name</name>
<value>Value</value>

</element>
</value>

</property>

0 or 1

6.2. Converter Configuration 146

RTI Recording Service Documentation, Version 7.3.0

6.2.15 Data Selection

This tag selects what data to convert from the database, based on a time range.

Table 6.13: Data Selection Tags in Converter’s Configuration File
Tags within <data_se-
lection>

Description Multiplic-
ity

<time_range> Select data to convert from the database, based on start and end
times. See Section 6.2.16.

0..1

6.2.16 Time Range

The <time_range> tag allows you to specify the begin and end times of the data you want to convert.
This can be specified either as timestamps or as symbolic timestamps called “timestamp tags.” Tags may have
been added to the recording through remote administration, and can be viewed using the script rtirecord-
ingservice_list_tags (see Section 4.6.7).

Table 6.14: Time Range Tags in Converter’s Configuration File
Tags within
<time_range>

Description Multiplic-
ity

<begin_time> Select data to convert from the database, with a timestamp begin-
ning at this time. Specify the time in seconds and nanoseconds.
Default: 0, start at beginning of the file.

0..1

<begin_tag> Can be used instead of begin_time. Select data to start converting
from the database by specifying the string name of a timestamp
tag. Timestamp tags associate a timestamp with a name. Then
you can refer to a timestamp by that name. The timestamp must
have been tagged with that name during recording. See Section
4.6.6. Default: Start at beginning of the file.

0..1

<end_time> Select data to convert from the database, with a timestamp ending
at this time. Specify the time in seconds and nanoseconds. Default:
End at end of file.

0..1

<end_tag> Can be used instead of end_time. Select when to stop converting
data by specifying the string name of a timestamp tag. Timestamp
tags associate a timestamp with a name. Then you can refer to a
timestamp by that name. The timestamp must have been tagged
with that name during recording. See Section 4.6.6. Default: Stop
at end of file.

0..1

6.2. Converter Configuration 147

RTI Recording Service Documentation, Version 7.3.0

6.2.17 DomainParticipant

The <domain_participant> tag allows you to specify the domain IDs you want to convert from the
database. Specify a name for the DomainParticipant, and the domain_id you want to convert. Associate the
DomainParticipant name with a session, topic or topic_group that you want to convert, to convert data within
a domain.

This does not create a DDS DomainParticipant.

Table 6.15: DomainParticipant Tags in Converter’s Configuration
File

Tags within <do-
main_participant>

Description Multiplic-
ity

<domain_id> The domain ID of tables loaded from the database. This is used to
determine which domain IDs to convert.

1

<register_type> Registers a type name and associates it with a type representation.
When you define a type in the configuration file, you have to reg-
ister the type in order to use it in a <topic>.
Attributes:

• name: Name that the data type is registered with if no
<registered_name> is specified. The same data type
may be registered with different names. Required.

• type_ref: Definition of this data type. It must refer
to one of the defined types in the <types> section by
specifying the fully qualified name.

Tags within this tag:
• <registered_name>: Name the data type is registered
with. The same data type may be registered with dif-
ferent names. Not required.

0..*

6.2.18 Session

The <session> tag configures the threads that will be used to convert data. You also specify the Topics and
groups of Topics to convert inside the <session> tag.

Table 6.16: Session Tags in Converter’s Configuration File
Tagswithin <session> Description Multiplic-

ity
<thread_pool> Specifies the number of threads used by this session, and the set-

tings used when creating them.
0..1

continues on next page

6.2. Converter Configuration 148

RTI Recording Service Documentation, Version 7.3.0

Table 6.16 – continued from previous page
Tagswithin <session> Description Multiplic-

ity
<topic> Specifies an individual Topic to convert. See Section 6.2.20.

Attributes:
• name: The name of the Topic to convert.
• participant_ref: Refers to a domain_par-
ticipant tag, that specifies the domain ID to use
from the database when converting this Topic. If
the parent <session> specifies a default_par-
ticipant_ref, this attribute is optional.

0..*

<topic_group> Specifies a group of Topics to convert. See Section 6.2.19.
Attributes:

• name: The name of the topic group.
• participant_ref: Refers to a domain_par-
ticipant tag, that specifies the domain ID to use
from the database when converting this Topic. If
the parent <session> specifies a default_par-
ticipant_ref, this attribute is optional.

0..*

6.2.19 Topic Group

The <topic_group> tag allows you to convert a group of Topics, using regular expressions to describe
which Topics to convert.

Table 6.17: Topic Group Tags in Converter’s Configuration File
Tags within
<topic_group>

Description Multi-
plicity

<al-
low_topic_name_fil-
ter>

A regular expression (fnmatch) describing which Topics should be con-
verted. You may use a comma-separated list to specify more than one
filter.
Example:

<topic_group name="ConvertAll">
<allow_topic_name_filter>CONTROL_*,DATA_*</

→˓allow_topic_name_filter>
</topic_group>

0..1

<deny_topic_name_fil-
ter>

A regular expression (FNMATCH) describing which Topics should not be
converted. This is applied after the allow_topic_name_filter.
You may use a comma-separated list to specify more than one filter.

0..1

6.2. Converter Configuration 149

RTI Recording Service Documentation, Version 7.3.0

6.2.20 Topic

The <topic> tag specifies an individual Topic to convert.

Table 6.18: Topic Tags in Converter’s Configuration File
Tags within
<topic>

Description Multi-
plicity

<topic_name> The name of the DDS topic to be converted. If this tag is not present, the
name attribute of the <topic> will be used.
Note: we recommend using this tag to define the topic name. There may
be characters that cause the XML validation to fail if they are part of the
topic name attribute. Also, the ‘/’ character and ‘::’ separator may cause
Converter to fail when found in the topic name attribute.

0..1

<regis-
tered_type_name>

The name of the data type that will be converted for this topic. Required. 1

<transformation> The transformation library to be applied to this Topic’s data when convert-
ing. This is a user library that can modify the data after it is received from
input storage and before it is sent to output storage.
Transformations implement APIs identical to Routing Service’s transfor-
mations. For more on using transformations, see these sections in the RTI
Routing Service User’s Manual:

• Data Transformation
• Tutorials

Attributes:
• plugin_name: The name of the plugin to load, qualified by
the plugin library name.

Example:

<dds>
<plugin_library name=

→˓"ConverterTransformations">
<transformation_plugin name=

→˓"ModifyTestID">
<create_function>ModifyTestID_create

→˓</create_function>
<dll>modify_test_id_library</dll>

</transformation_plugin>
</plugin_library>
<!-- ... -->
<converter>

<!-- ... -->
<topic name="TestTopic">

<transformation plugin_name=
→˓"ConverterTransformations::ModifyTestID" />

</topic>
</converter>

</dds>

0..1

6.2. Converter Configuration 150

RTI Recording Service Documentation, Version 7.3.0

6.2.21 Converter’s Builtin Configuration Details

Converter comes with a builtin configuration, which selects the name of an input file to convert from and an
output file to convert to. The ‘defaultToJson’ configuration specifies JSON SQLite format by default as the
output format, with ‘rti_recorder_default.db’ as the input file and ‘rti_recorder_default_converted.db’ as the
output file. It expects to find the file(s) to convert in a directory called ‘cdr_recording’. This is the default
directory when recording in XCDR format in the default Recorder configuration.

<?xml version="1.0" encoding="UTF-8"?>

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://community.rti.com/schema/6.0.0/rti_

→˓converter.xsd">

<!-- Available types -->
<types />

<!-- A definition of a Converter instance to run -->
<converter name="defaultToJson">

<!-- Input storage settings -->
<input_storage>

<sqlite>
<storage_format>XCDR_AUTO</storage_format>
<database_dir>cdr_recording</database_dir>

</sqlite>
</input_storage>

<!-- Output storage settings -->
<output_storage>

<sqlite>
<storage_format>JSON_SQLITE</storage_format>
<fileset>

<workspace_dir>converted</workspace_dir>
<filename_expression>rti_recorder_default_converted.db</

→˓filename_expression>
</fileset>

</sqlite>
</output_storage>

<!-- Domain selection: assume 0 by default -->
<domain_participant name="Domain0">

<domain_id>0</domain_id>
</domain_participant>

</converter>
</dds>

6.2. Converter Configuration 151

RTI Recording Service Documentation, Version 7.3.0

6.3 Tutorials

6.3.1 Using Timestamp Tags with Converter

If your recording was originally made with the builtin SQLite storage plugin, and you used the tag_timestamp
remote command to tag certain events, then your recording contains timestamp tags: symbolic timestamp
names you can use in place of timestamps expressed in units of time. For more information on timestamp tags,
see Section 4.6.6.

You can list the timestamp tags that are in your recorded database by using the rtirecordingser-
vice_list_tags script. Use the -d argument to point to the directory that contains your recorded
database, as follows:

<NDDSHOME>/bin/rtirecordingservice_list_tags -d /database/directory/

This command will analyze the recording in /database/directory/ and list the details of the timestamp tags in
the recording, including the tag names, their descriptions, and associated timestamps.

You can use the tag_name of the tags you find in a recording when you are creating an XML configuration file
for Converter by using a <data_selection> tag.

For example, if after running rtirecordingservice_list_tags, you see output such as:

tag_name timestamp_ms tag_description
-------------------------- ------------- ------------------------
/my_example/my_events/tag1 1546484663309 first tag description
/my_example/my_events/tag2 1546484703360 a second tag description

Then you can have a <data_selection> tag in your XML forConverter, after the <output_storage>
tag, that looks like the following:

<data_selection>
<time_range>

<begin_tag>/my_example/my_events/tag1</begin_tag>
<end_tag>/my_example/my_events/tag2</end_tag>

</time_range>
</data_selection>

Converter will convert data between those tags. Note that when expressing a <time_range> tag, you can
mix and match timestamps and tags. For example, you can use a <begin_tag> (by referring to a tag_name)
to express the time when conversion should begin, and use an <end_tag> with an end_time timestamp
(expressed in time units) to specify when conversion should end. If you do not provide one of the bounds, the
start of recording is the default begin bound, and the end of recording is the default end bound.

6.3. Tutorials 152

RTI Recording Service Documentation, Version 7.3.0

6.4 Troubleshooting

6.4.1 Table Not Found Errors

When recording a database with Recording Service, there may be topics that have no associated table,
because they were discovered but were filtered out by using the <allow_topic_name_filter> or
<deny_topic_name_filter> tags in Topic Group or by defining Topics (that target specific topic
names). While the topic will be present in the DCPSPublication table in the discovery file, it won’t have
a corresponding table in the user-data files.

If the same topics are not filtered in Converter (by using the same <allow_topic_name_filter> or
<deny_topic_name_filter> tags, or Topics), then when Converter starts it will discover the topics
without a table because they are available in the discovery information. When Converter attempts to create a
stream reader for these topic(s), a failure message will be printed:

ROUTERConnection_createStreamReaderAdapter:(adapter=StorageAdapterPlugin,␣
→˓retcode=0: Function returned NULL)
ROUTERStreamReader_enable:!create stream reader adapter
ROUTERTopicRoute_enableInput:!enable stream reader
ROUTERTopicRoute_processEvent:!enable route input
ROUTERTopicRoute_onConditionTriggered:!process event
create_stream_reader_fwd:SQLiteStorageStreamReader:!Table not found in␣
→˓database files: TopicNotRecorded@0

These messages are harmless, they are just informing you that a table could not be found for the topic (in the
example above, TopicNotRecorded).

To get rid of the messages, use the same Topic Group filter expressions or Topics used in Recording Service.

6.4. Troubleshooting 153

Chapter 7

XML Converter

Recording Service includes an application to convert a legacy XML configuration to the current XML con-
figuration format when possible. It can convert a recording XML configuration, as well as a replay XML
configuration.

7.1 Running the XML converter

XML Converter runs as a separate application. The script to run the executable is in <NDDSHOME>/bin. (See
Section 2.3 for the path to NDDSHOME.)

rtixmlconverter record|replay [options]

If you are using features that are not available in Recording Service, you will see warnings such as:

Warning: Recording Service does not currently support 'verbosity' in
XML. However, you can specify -verbosity at the command-line.

7.2 XMLConverter Command-Line Parameters

The following table describes all the command-line parameters available for the XML Converter. To list the
available parameters, run rtixmlconverter -help.

Table 7.1: XML Converter Application Command-Line Parameters
Parameter Description
record|replay Required. Which application’s configuration file to convert.
-cfgFile Required. The legacy configuration file to be converted.
-cfgFileOut Required. The name of the generated configuration file.
-help Shows help for the command.
-version Prints the program version and exits.

154

Chapter 8

Storage Utility Plugins

This module contains information about the various Recording Service Storage Plugins that are shipped in a
separate library called rtistorageutils. This library is meant to be an extension of the capabilities
supported by RTI Recording Service out-of-the-box. It is located under <NDDSHOME>/lib like other RTI
Connext® libraries.

In this release, there is one plugin for CSV format. Other plugins may be added in future releases.

Note: The different executables shipped with Recording Service will perform run-time loading for rtis-
torageutils if you use one of these Storage Utility Plugins in your XML configuration. Thus make sure
that <NDDSHOME>/lib/<architecture> is included in your system’s library search path. See Section
8.2.1.

8.1 Storage Utility Plugins

8.1.1 CSV

This is a type of output storage plugin that stores the data provided to it in Comma-Separated Value (CSV)
format. It is meant to be used with Converter to perform conversion of a recorded database into CSV output
files. Typically it helps solve use cases like offline analysis or incident investigation. For more information about
the configuration tags, see Section 6.2.9.

By default, the plug-in generates a separate csv file for each recorded Topic. The content and format of each
file is as follows:

155

RTI Recording Service Documentation, Version 7.3.0

Table 8.1: CSV file format
Row 1: Topic En-
try

Topic name:
<Name>

Row 2: Type
Header

timestamp member1 member2 … memberN

Row 3: Data val-
ues

Reception timestamp of
the sample (in nanosec-
onds)

Value for
member1

Value for
member2

… Value for
memberN

The filename matches the topic name, with a .csv extension. All the files are placed in a directory that can
be specified in the plug-in configuration.

Note: If the topic name contains characters that cannot appear in the file name because they are reserved by
the underlying operating system, these characters will be replaced by the token #.

Mapping a data sample into columns

General case

As shown in the table above, a data sample is represented in a single row comprised of multiple columns. Each
cell holds only a value for a final or leaf member in a complex data type. That is, for a member whose type is
a Simple type (integer, char, short), enumeration, or String.

Each data value in a cell corresponds to a member whose name is in the type header. Given a complex data
type, the name for a member is constructed as follows:

.<parent_member1>.<parent_member2>...<parent_memberN>.<final_member>

where <parent_member> is the name of the parent complex member that contains the subsequent member.

If either <parent_member> or <final_member> is a Collection type (array or sequence), the member
name is suffixed with [<index>], and a column for each possible element in the Collection is created.

For example, consider the following type described in IDL:

struct NestedStruct {
long m_long;

};

struct TopLevelStruct {
String m_string;
long m_array[2];
NestedStruct m_complex;
NestedStruct m_complex_array[2];

};

The resulting type header row will look like this:

8.1. Storage Utility Plugins 156

RTI Recording Service Documentation, Version 7.3.0

.m_string .m_ar-
ray[0]

.m_ar-
ray[1]

.m_com-
plex.a_long

.m_complex_ar-
ray[0].a_long

.m_complex_ar-
ray[1].a_long

Note: Considerations about collection types: Due to the column consistency required by the CSV format,
mapping a collection type requires us to generate as many columns as the number of elements that can
be present in the collection, even if for a given data sample only a few of them are present (such as for a
Sequence type). If the recorded type has collections with large sizes, the generated file may hit the column
limit of some CSV processors.

Sequences

Mapping a Sequence type is based on the mapping of a Collection type explained above, plus an additional
column to indicate the length of the sequence. That is:

.<seq_member.length>.<seq_member[0]>...<seq_member[N-1]>

where the column <seq_member.length> indicates how many elements are set in the sequence (the num-
ber of columns with non-null values) and N is the maximum length of the sequence.

For example, consider the following type described in IDL:

struct StructType {
sequence<long, 4> m_seq;

};

The resulting type header row will look like this:

.m_seq.length .m_seq[0] .m_seq[1] .m_seq[2] .m_seq[3]

Unions

The mapping of a Union type is similar to a Struct type except that a discriminator column with name
disc is placed before all the members.

For example, consider the following type described in IDL:

union UnionType switch (long) {
case 0:
long case1;

case 1:
StructType case2;

default:
long case_default;

(continues on next page)

8.1. Storage Utility Plugins 157

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
};

struct StructType {
UnionType m_union;

};

The resulting type header row will look like this:

.m_union.disc .m_union.case1 .m_union.case2 .m_union.default

Data Values

For a given data sample, the value for each member is placed under the corresponding column represented
as a String, which applies to all primitive types. For primitive types, the output text will correspond to
the standard conventions for the type (e.g., decimal point for floating point numbers, single quotes around a
character, etc.). By default, enumerations are printed with their corresponding text label. This behavior for
enums is configurable.

There may not be values for every column in a sample. This may occur for the following situations:

• A Sequence member that does not contain all the possible elements.

• A Union member, which can only set a member at a time.

• An optional member, which may or may not be set.

By default, the value of an empty member is represented as nil.

For example, consider the following type described in IDL:

struct StructType {
sequence<long, 2> m_sequence;
@optional String m_optional;

};

And two samples with the following values (represented in JSON):

{
"m_sequence": [1, 2],
"m_optional": "hello"

}

{
"m_sequence": [1],
"m_optional":

}

The resulting type header row and the two data value rows will look like this:

8.1. Storage Utility Plugins 158

RTI Recording Service Documentation, Version 7.3.0

.m_sequence.length .m_sequence[0] .m_sequence[1] .m_optional
2 1 2 hello
1 1 nil nil

8.2 Tutorials

8.2.1 Using the CSV storage utility plugin with Converter

If you have a recorded database in any of the binary CDR serialized formats, it is pretty difficult to analyze
the recorded data without replaying it. While there is an option to convert the recorded database to JSON (see
Section 6.2.21), you can also convert it to CSV format.

The Converter can convert an XCDR database to CSV format using a default configuration called sqlite-
ToCsv.

Setup

We need to make sure rtistorageutils can be loaded dynamically by rticonverter, set the library
search path variable as follows:

Linux

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH;<NDDSHOME>/lib/<architecture>

macOS

export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH;<NDDSHOME>/lib/<architecture>

Windows

set PATH=%PATH%;<NDDSHOME>\lib\<architecture>

Note: <NDDSHOME> is described in section Section 2.3.

Execution

To demonstrate the functionality we first need to record some data. Run Shapes Demo with the default configu-
ration and publish some Triangles and Circles (using Shapes Demo is described in Section 4.6.1). Once Shapes
Demo has started, run Recording Service as follows:

<NDDSHOME>/bin/rtirecordingservice

8.2. Tutorials 159

RTI Recording Service Documentation, Version 7.3.0

The default configuration should record data in a directory called cdr_recording.

Now run Converter to perform the conversion of the previously generated database into a single text file in CSV
format:

<NDDSHOME>/bin/rticonverter -cfgName sqliteToCsv

If you need to customize the behavior of this configuration, you can do so by adding user variables to the
command, as shown:

<NDDSHOME>/bin/rticonverter -cfgName sqliteToCsv -DCSV_WORKSPACE_DIR=my_
→˓custom_dir

-DCSV_MERGE_FILES=false -DINPUT_DIR=my_cdr_recording_dir

Wait until conversion of the entire input database is performed and rticonverter exits automatically.
Upon successful conversion, you will find a folder in the current directory with the name csv_output. That
folder will contain a file called csv_converted.csv containing topic data for the Triangles and Circles
published earlier by the Shapes Demo and recorded by rtirecordingservice. This can be verified by
opening the file using an editor of your choice.

8.2. Tutorials 160

Chapter 9

Indexing Application

Recording Service includes a command-line utility for indexing the database files.

There are two types of indexing: instance indexing and SQLite table indexing.

9.1 Indexing Instances

Instance indexing is used by Replay Service for the Instance History Replay (state of the world publication)
feature (see Section 5.1.7 for more information). Replay Service will perform the indexing if the index is not
present. While this may be acceptable in some cases, it can take a long time if the database is large. This
command-line option offers offline indexing, which can be done before running Replay Service. Recall that
Recording Service also offers a way to index instances while recording (see Section 4.3.6 for more information).

9.2 Indexing SQLite Tables

Table indexing improves the performance of Replay Service and Converter when accessing databases recorded
with the builtin SQLite plugin. In this case, the indexer will go over all files and all available tables and create
two SQLite indexes: one on the reception timestamp column, and another on the source timestamp column.

For a given table named T1, the indexer will create an index called T1_rt_idx based on the Sample-
Info_reception_timestamp column, and another index called T1_st_idx based on the Sample-
Info_source_timestamp.

When dealing with very large databases, having indexes on the timestamp column(s) can be extremely important
because it can significantly improve performance.

161

RTI Recording Service Documentation, Version 7.3.0

9.3 Running the Indexer

The Indexer runs as a separate application. The script to run the executable is in <NDDSHOME>/bin. (See
Section 2.3 for the path to NDDSHOME.)

rtirecordingindexer [options]

9.4 Indexer Command-Line Parameters

The following table describes all the command-line parameters available for the Indexer. To list the available
parameters, run rtirecordingindexer -help.

Table 9.1: Indexer Application Command-Line Parameters
Parameter Description
instances|tables Required. Specifies the mode the command should work in. De-

fault: instances
-dbDirectory Required. The directory containing the SQLite database to be

indexed.
-help Shows help for the command.
-verbosity <ser-
vice_level>[:<dds_level>]

Controls what type of messages are logged. <service_level> is the
verbosity level for the service logs and <dds_level> is the verbosity
level for the DDS logs. Both can take any of the following values:

• SILENT
• ERROR
• WARN
• LOCAL
• REMOTE
• ALL

Default: ERROR:ERROR
-version Prints the program version and exits.

9.4. Indexer Command-Line Parameters 162

Chapter 10

Software Development Kit

You can extend the out-of-the-box behavior of Recording Service through its Software Development Kit (SDK).
The SDK provides a set of public interfaces that allow you to control Recording Service execution as well as
extend its capabilities.

The SDK is divided into the following modules:

• RTI Recording Service Library API: This module offers a set of APIs that allow you to instantiate Record-
ing Service instances in your application. This allows you to run Recording Service as a library.

• RTI Recording Service Storage API: Storage is a pluggable component that allows Recording Service to
write and read data from custom storage. This module offers a set of pluggable APIs to develop custom
StorageWriter and StorageReader, which you can use through shared libraries or through the Library
API. By default, Recording Service is distributed with a builtin SQLite® storage plugin that is part of the
service library.

• RTI Recording Service Transformation API: Transformations are data-oriented pluggable components
that allow you to perform conversions of the representation and content of the data that goes through
Recording Service. This module offers a set of pluggable APIs to develop a custom Transformations,
which you can use through shared libraries or through the Library API.

Table 10.1 shows which modules are available for each API, along with links to the API documentation.

Table 10.1: API Documentation for the SDK
Language API Available Modules
RTI Recording Service C API

• Storage
• Transformation (see RTI Routing Service C
API)

RTI Recording Service C++ API
• Library
• Storage
• Transformation (see RTI Routing Service
C++ API)

163

Chapter 11

Common Infrastructure

11.1 Configuring RTI Services

RTI Services are configured using XML and offer multiple ways to load the configurations. The loading al-
ternatives are in general standard across all RTI Services. This section covers how you can provide XML
configurations to RTI Services, as well as specific behaviors on how the XML is parsed, validated, and inter-
preted.

11.1.1 How to Load and Select an XML Configuration

To run an RTI Service with a specific configuration you need to provide two pieces:

• XML content with one or more configurations This is the actual XML code that contains the
service-specific configurations. We refer to this as the input XML document. There are two different
input sources: File system or in-memory strings.

• Configuration name The name of the actual service configuration to be run. Each RTI Service defines
a top-level element that shall contain a name attribute that uniquely identifies it.

Loading from Files

RTI Services can receive a list of file paths separated by semicolons (;):

filepath_1;filepath_2; ... filepath_N

File paths can be relative or absolute and files are loaded in order from left to right. How you provide the file
path list depends on whether you run the service from the shipped executable or embed it into your application
using the Library API1.

Shipped Executable

Use the -cfgFile option.

1 Library API may not be available for certain RTI Services.

164

RTI Recording Service Documentation, Version 7.3.0

Warning: On some operating systems, ; is interpreted as a command separator, so you will need to
escape the path list with double quotes ".

For example on Linux systems:

RTI Routing Service

$NDDSHOME/bin/rtiroutingservice -cfgFile "file.xml;/home/file2.xml"

RTI Recording Service

$NDDSHOME/bin/rtirecordingservice -cfgFile "file.xml;/home/file2.xml"

RTI Cloud Discovery Service

$NDDSHOME/bin/rticlouddiscoveryservice -cfgFile "file.xml;/home/file2.xml"

where [NDDSHOME] indicates the path to your Connext installation.

Library API

Set the ServiceProperty::cfg_file member.

For example in C++:

ServiceProperty property;
property.cfg_file("file.xml;/home/file2.xml");
...
Service service(property);

Loading from In-Memory Strings

If you are embedding RTI Services into your application using the Library API, the input XML document
can be also be provided through a string array object. You can do so by setting the ServiceProp-
erty::cfg_strings member.

For example in C++:

std::vector<std::string> xml_strings;
xml_strings.resize(2);
/* This sample demonstrates using Routing Service */
xml_strings[0] = "<dds><routing_service name=\"MyService\">";
xml_strings[1] = "</routing_service></dds>";
property.cfg_strings(xml_strings);
...
Service service(property);

11.1. Configuring RTI Services 165

RTI Recording Service Documentation, Version 7.3.0

Selecting which Configuration to Run

As stated earlier, the input XML document may contain one or more service configurations. You will need to
select which specific configuration to run by providing its configuration name.

How you provide the configuration name depends on whether you run the service from the shipped executable
or by embedding it into your application using the Library API.

For example, consider the following input XML document in a file named MyService.xml that contains
two configurations.

RTI Routing Service

<dds>
<routing_service name="Service1"> ... </routing_service>

<routing_service name="Service2"> ... </routing_service>
</dds>

RTI Recording Service

<dds>
<recording_service name="Service1"> ... </recording_service>

<recording_service name="Service2"> ... </recording_service>
</dds>

RTI Cloud Discovery Service

<dds>
<cloud_discovery_service name="Service1"> ... </cloud_discovery_service>

<cloud_discovery_service name="Service2"> ... </cloud_discovery_service>
</dds>

You can run the configuration for Service1 as follows:

Shipped Executable

Use the -cfgName option.

For example, on Linux systems:

RTI Routing Service

$NDDSHOME/bin/rtiroutingservice -cfgFile MyService.xml -cfgName Service1

RTI Recording Service

$NDDSHOME/bin/rtirecordingservice -cfgFile MyService.xml -cfgName Service1

RTI Cloud Discovery Service

11.1. Configuring RTI Services 166

RTI Recording Service Documentation, Version 7.3.0

$NDDSHOME/bin/rticlouddiscoveryservice -cfgFile MyService.xml -cfgName␣
→˓Service1

Library API

Set the ServiceProperty::cfg_name member.

For example in C++:

ServiceProperty property;
property.cfg_file("MyService.xml");
property.cfg_name("Service1");
...
Service service(property);

Default Files

In addition to manually providing input XML files, RTI Services also attempt to automatically load a set of files
from predefined locations:

Table 11.1: RTI Services Default Files
File Allowed Content
[working directory]/USER_[SERVICE].xml

• Service-specific elements
• QoS profiles
• Types

[NDDSHOME]/resource/xml/RTI_[SERVICE].
xml • Service-specific elements

• QoS profiles
• Types

[working directory]/USER_QOS_PRORFILES.
xml • QoS profiles

• Types

where [SERVICE] refers to the concrete product name in uppercase. For example:

• ROUTING_SERVICE for RTI Routing Service

• RECORDING_SERVICE for RTI Recording Service

• CLOUD_DISCOVERY_SERVICE for RTI Cloud Discovery Service

These files are loaded only if present.

You can disable the loading of default files by using the proper option:

Shipped Executable

11.1. Configuring RTI Services 167

RTI Recording Service Documentation, Version 7.3.0

Use the -skipDefaultFiles option.

Library API

Set the ServiceProperty::skip_default_files member to true.

XML Syntax and Validation

The XML representation of DDS-related resources must follow these syntax rules:

• It shall be a well-formed XML document according to the criteria defined in clause 2.1 of the Extensible
Markup Language standard.

• It shall use UTF-8 character encoding for XML elements and values.

• It shall use <dds> as the root tag of every document.

To validate the loaded configuration, each RTI Service relies on an XSD document that describes the format of
the XML content. The validation of the input XML document occurs after all the files and strings have been
parsed. If the validation fails, the RTI Service will fail to load the XML and log an error. For example here is
an error in the case of RTI Cloud Discovery Service:

NDDSHOME/bin/rticlouddiscoveryservice
[/cloud_discovery_services/default|CREATE] line 26: Element 'invalid_example_
→˓tag': This element is not expected.
[/cloud_discovery_services/default|CREATE] CDSService_loadConfiguration:!
→˓validate configuration
[/cloud_discovery_services/default|CREATE] CDSService_initialize:!load␣
→˓configuration
[/cloud_discovery_services/default|CREATE] CDSService_new:!init service
main:!create service

You can disable the XSD validation process by using the proper option:

Shipped Executable

Use the -ignoreXsdValidation option.

Library API

Set the ServiceProperty::enforce_xsd_validation member to false.

We recommend including a reference to this document in the XML file that contains the service’s configuration;
this provides helpful features in code editors such as Visual Studio®, Eclipse®, and NetBeans®, including
validation and auto-completion while you are editing the XML file.

The XSD for the RTI Service configuration elements is in [NDDSHOME]/resource/schema/
rti_[service_name].xsd, where [service_name] refers to product name in lower snake case.
For example:

• routing_service for RTI Routing Service

• recording_service for RTI Recording Service

• cloud_discovery_service for RTI Cloud Discovery Service

11.1. Configuring RTI Services 168

https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/

RTI Recording Service Documentation, Version 7.3.0

To include a reference to the XSD document in your XML file, use the attribute xsi:noNames-
paceSchemaLocation in the <dds> tag. For example:

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="[NDDSHOME]/resource/schema/rti_routing_
→˓service.xsd">

<!-- ... -->
</dds>

Warning: The product XSD file provided under [NDDSHOME]/resource/schema is to assist you
in the process of creating an XML configuration document. RTI Services have the XSD builtin in memory,
so making modifications to the reference XSD will not have an impact on the validation process.

Listing Available Configurations

The shipped executables of some RTI Services provide an option to list all the available configurations in the
specified input XML document. You can run the service with the -listConfig option to list the available
configurations and exit. For example, on Linux systems:

RTI Routing Service

rtiroutingservice -listConfig
Available configurations:
- default:([NDDSHOME]/resource/xml/RTI_ROUTING_SERVICE.xml)

Routes all topics from domain 0 to domain 1
- defaultBothWays:([NDDSHOME]/resource/xml/RTI_ROUTING_SERVICE.xml)

Routes all topics from domain 0 to domain 1 and the other way around
- defaultReliable:([NDDSHOME]/resource/xml/RTI_ROUTING_SERVICE.xml)

Routes all topics from domain 0 to domain 1 using reliable communication

RTI Cloud Discovery Service

rticlouddiscoveryservice -listConfig
Available configurations:
- rti.cds.builtin.config.default:(builtin string)

Empty configuration. Assumes default values.
- rti.cds.builtin.config.default_wan:(builtin string)

Enables Real-Time WAN Transport.
XML variables:

- RTI_CDS_PORT: CDS public and host port number
- RTI_CDS_PUBLIC_ADDR: CDS WAN public address

Each listed configuration indicates the input source (file path or string) and the content of the
<documentation> tag if present. This operation lists all the configurations detected from the specified
input XML document from all the locations and files.

11.1. Configuring RTI Services 169

RTI Recording Service Documentation, Version 7.3.0

Configuration Variables

The builtin XML parser of the RTI Service offers a special mechanism to reuse and customize content at
runtime through the concept of Configuration variables.

A configuration variable is an RTI-specific construct that you can use in the input XML documents to set
placeholders for content that will be expanded at parsing time. A variable is specified as follows:

$(VAR_NAME)

where VAR_NAME is the name that identifies the variable. You can use configuration variables in your XML
content as an attribute value and element text.

<element attribute="$(VAR_ATTR)">my expanded $(VAR_TEXT)</element>

The possible ways a variable can be expanded are listed below in precedence order:

1. Process environment.

export VAR_NAME=my_value

2. Using a specific option when running the service.

Shipped Executable

Use the -DVAR_NAME=VALUE option

$<rtiservicename> ... -DVAR_NAME=my_value

where <rtiservicename> is one of rtiroutingservice, rtirecordingservice or
rticlouddiscoveryservice.

Library API

Set the ServiceProperty::user_environment member

ServiceProperty property;
property.user_environment()["VAR_NAME"] = "var_value";
...

3. <configuration_variables> section, which represents an unbounded list of variable
name-value value pairs.

<configuration_variables>
<value>

<element>
<name>VAR_NAME</name>
<value>var_value</value>

</element>
...

</value>
</configuration_variables>

11.1. Configuring RTI Services 170

RTI Recording Service Documentation, Version 7.3.0

All three of these mechanisms can be used in combination or separately. For the above example, you could
expand one variable using the process environment and another variable using the command-line option. The
following command:

export VAR_ATTR=expanded_attr
<rtiservicename> ... -DVAR_TEXT=expanded_text

where <rtiservicename> is one of rtiroutingservice, rtirecordingservice or rti-
clouddiscoveryservice, will result in the following actual parsed XML with the expanded variables:

<element attribute="expanded_attr">my expanded expanded_text</element>

If the RTI Service cannot expand a variable, it will load the XML document and log an error indicating which
variable could not be expanded. Here is an example for RTI Routing Service:

[/routing_services/default|CREATE] RTIXMLUTILSVariableExpansor_
→˓expandString:variable with name=ADMIN_DOMAIN_ID not defined
[/routing_services/default|CREATE] RTIXMLUTILSVariableExpansor_visit:!parse␣
→˓at line=19 for tag=domain_id: expand environment variable in element text
[/routing_services/default|CREATE] ROUTERXmlVariableExpansor_visit:!parse at␣
→˓line=19 for tag=domain_id
...

11.1.2 How to Load Default QoS Profiles

Generally, loading a default QoS profile follows the same mechanism as Connext applications. The details on
how to specify default QoS profiles in XML is explained in the section Overwriting Default QoS in the RTI
Connext Core Libraries User’s Manual.

In short, you will need to mark a profile as the default using the is_default_qos attribute. For RTI Ser-
vices, you will need to do this as part of the default file USER_QOS_PROFILES.xml (seeDefault Files). This
requirement is necessary since the default QoS profiles are parsed by the underlying DomainParticipantFactory
and not the service itself.

Warning: Marking as default a QoS profile defined in a different file than USER_QOS_PROFILES.xml
will have no effect.

11.1.3 How to Set Logging Properties

You can configure different aspects of the logging infrastructure that is part of RTI Services and Connext. This
section describes different ways to set these logging properties.

11.1. Configuring RTI Services 171

RTI Recording Service Documentation, Version 7.3.0

Command-Line Options

The shipped executable for an RTI Service typically offers some out-of-the-box options to configure logging.
Typically, you will find these options:

• -verbosity sets the verbosity level for the messages generated by the service and Connext.

• -logFormat configures the format of the log messages, such as whether they contain timestamps,
thread IDs, etc.

• -logFile redirects the logging to a specified text file.

You can refer to the Usage section of each individual product user’s manual for further details.

Library API

To configure the service-level verbosity, use the Logger singleton class part of the Library API. For example,
the following sets WARNING level for the service logs in RTI Routing Service. For other services change the
preceding rti::routing prefix to match the RTI Service you are working with.

rti::routing::Logger::instance().service_verbosity(
rti::config::Verbosity::WARNING);

To configure the Connext-level verbosity (for logs generated by the DDS libraries), you can use the Connext
configuration logger API. For example, the following sets WARNING level for the Connext logs:

rti::config::Logger::instance().verbosity(
rti::config::Verbosity::WARNING);

For the remaining overall logging properties, such as the log format, output file, and so on, you can also use the
Connext configuration logger API. For example, to redirect the logging to an output file:

rti::config::Logger::instance().output_file(my_service_logs.txt);

XML Configuration

As an alternative to the previous two methods, you can configure some logging properties through the Log-
gingQosPolicy which can be specified in XML. For more information, see the LOGGING QosPolicy
(DDS Extension) in the RTI Connext Core Libraries User’s Manual.

The Logging QoS is configured within the <participant_factory_qos> that is part of a QoS profile.
Since multiple profiles can be present in the loaded XML document, to tell Connext which one to use, you will
need to mark the profile as the default using the is_default_qos attribute, or for the DomainParticipant-
Factory, the is_default_participant_factory_profile attribute.

See How to Load Default QoS Profiles for details on how to load default QoS profiles with RTI Services.
For example, you can set different properties for the logger by placing the XML code seen below in the
USER_QOS_PROFILES.xml default file:

11.1. Configuring RTI Services 172

RTI Recording Service Documentation, Version 7.3.0

<dds>
<qos_library name="DefaultLibrary">

<qos_profile name="DefaultProfile" is_default_participant_factory_
→˓profile ="true">

<participant_factory_qos>
<logging>

<!-- this element affects Connext logs only -->
<verbosity>ALL</verbosity>
<!-- for all Connext and Service logs -->
<category>ENTITIES</category>
<print_format>MAXIMAL</print_format>
<output_file>LoggerOutput1.txt</output_file>

</logging>
</participant_factory_qos>

</qos_profile>
</qos_library>

</dds>

See also:

Configuring Connext Logging
Describes the types of logging messages and how to use the logger to enable them.

Identifying Threads used by Connext DDS
Describes the logging messages that provide thread-context information.

11.1.4 How to Run as an Operating System Daemon

Certain Operating Systems offer the capability to run processes in the background and non-interactively. On
Linux or macOS systems, this is referred to as daemon processes. On Windows systems, this is referred to as
a service.

How to run a process as a daemon depends on the OS and in some cases there are multiple options. This section
describes the most common way to run an RTI Service as a daemon of the main OS.

Linux and macOS Systems

The simplest and more portable way requires you to use the Library API to create your own executable that
instantiates the RTI Service and sets the running process as a daemon using the daemon()API. For example,
for RTI Routing Service:

#include <stdlib.h>
#include "rti/routing/Service.hpp"

int main(int argc, char **argv)
{

using namespace rti::routing;

if (daemon(0,0)) {
Logger::instance().error("Failed to create daemon process\n");

(continues on next page)

11.1. Configuring RTI Services 173

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
return -1;

}

// parse arguments and configure ServiceProperty
ServiceProperty property;
property.cfg_file(argv[1]);
...
Service service(property);

service.start();
}

The above code generates an executable that runs the process as a daemon with zero-value arguments, indicating
that the working directory is / and the standard output is redirected to /dev/null. You can find more
information about the daemon() in the user man pages.

Note that if you link the application dynamically, you will need to guarantee that the dependency libraries are
available as part of the library path. An alternative is to link the applications statically.

Windows Systems

To run a process as aWindows Service we recommend using the third party tool Non-Sucking ServiceManager
(NSSM). This tool allows you to run an existing executable as a service, while adjusting environment variables
and command-line arguments.

Hence you can use NSSM to run the shipped executable of an RTI Service. For example, for Routing Service
you can run:

nssm install myRouterService <rtiroutingservice> "-cfgName default"

The above command will install a service named myRouterService on your Windows system that runs
Routing Service with the default configuration. Then you can manage the service with the nssm GUI utility
itself or the Windows Services Control Manager (select Control Panel -> Administrative Services -> Services).

The example above causes the service to use the executable directory as the working directory and relies on the
default configuration file in [NDDSHOME]/resource/xml. You can specify a different working directory
as well as different command-line arguments as follows:

nssm set myRouterService AppDirectory <my_working_dir>
nssm set myRouterService AppParameters "-cfgFile my_router.xml -cfgName␣
→˓MyRoute"

Alternatively, you can use the Library API to embed the RTI Service into your own executable and imple-
ment the Windows Library APIs to run the executable as a Windows Service. (see How to: Create Windows
Services).

Here are some things to consider when running an RTI Service as a Windows Service:

• All AppParameters arguments must be enclosed in quotation marks.

• If you specify -cfgFile in the Start Parameters field, you must use the full path to the file.

11.1. Configuring RTI Services 174

https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://nssm.cc/description
https://nssm.cc/description
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/how-to-create-windows-services
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/how-to-create-windows-services

RTI Recording Service Documentation, Version 7.3.0

• Some versions of Windows do not allow Windows Services to communicate with other services/appli-
cations using shared memory. In such case, you will need to disable the shared memory transport in all
DomainParticipants created by the RTI Service.

• In some scenarios, you may need to add a multicast address to your discovery peers or simply use RTI
Cloud Discovery Service.

11.1.5 How to use a License File with RTI Services

If your RTI Connext distribution requires a license file, you will receive one from RTI via email. To install the
license file, follow the instructions in Installing RTI Connext DDS, in the RTI Connext DDS Installation Guide.
Alternatively, you can provide the RTI Service with the path to your license file using either the -license-
File command-line argument or the license_file_name field in the Service Property of the Library
API.

Note: Some RTI Services do not require a license file.

Check the command line arguments list for the RTI Service to see if a -licenseFile argument exists. If
it doesn’t, you can use the RTI Service without a license file.

Each time your RTI Service starts, it looks for the license file in the following locations, in order, until it finds
a valid license:

1. The file specified in the environment variable RTI_LICENSE_FILE, which you may set to point to
the full path of the license file, including the filename. For example, on Linux:

export RTI_LICENSE_FILE=/home/username/my_rti_license.dat

2. The file rti_license.dat in the current working directory.

3. The file rti_license.dat in the directory specified by the environment variable NDDSHOME.

11.1.6 Key Terms

XML document
The input XML contained within the <dds> root, which contains one or more configurations for an RTI
Service.

Configuration name
Unique identification of a service top-level configuration element. Provided with the name attribute.

Configuration variable
An RTI-specific construct to be used in XML to define content that can be expanded at runtime.

Shipped executable
An RTI-provided command-line executable that runs an RTI Service.

Library API
Public API that allows you to embed an RTI Service into your custom application.

11.1. Configuring RTI Services 175

RTI Recording Service Documentation, Version 7.3.0

11.2 Application Resource Model

RTI Services are described through a hierarchical application resource model. In this model, an application is
composed of a set of Resources, each representing a particular component within the application. Resources
have a parent-child relationship. Figure 11.1 shows a general view of this concept.

Figure 11.1: Application modeled as a set of related Resources

Each application specifies its resource model by indicating the available resources and their relationship. A Re-
source is determined by its class and a concrete object instance. It can belong to one of the following categories:

• Simple–Represents a single object.

• Collection–Represents a set of objects of the same class.

A Resource may be composed of one or more Resources. In this relationship, the parent Resource is composed
of one ore more child Resources.

11.2.1 Example: Simple Resource Model of a Connext Application

Figure 11.2 depicts a UML class diagram to provide a generic resource model for Connext applications.

In this diagram, the composition relationship is used to denote the parents and children in the hierarchy. The
direct relationship denotes a dependency between resources that is not parent-child.

11.2. Application Resource Model 176

RTI Recording Service Documentation, Version 7.3.0

Figure 11.2: Connext DDS application resource model

11.2.2 Resource Identifiers

A resource identifier is a string of characters that uniquely address a concrete resource object within an applica-
tion. It is expressed as a hierarchical sequence of identifiers separated by /, including all the parent resources
and the target resource itself:

/𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑1/𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑2.../𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑𝑁

where each individual identifier references a concrete resource object by its name. The object name is either:

a) Fixed and specified by the resource model of the parent Resource class.

b) Given by the user of the application. This is the case where the parent resource is a collection in which
the user can insert objects, providing a name for each of them.

The individual identifier can refer to one of the two kinds of resources, simple and collection resources. For
example:

/collection_id1/resource_id1/resource_id2

If the identifier refers to a collection resource, the following child identifier must refer to a simple resource.
Both simple and collection resources can be parents (or children). In the previous example, resource_id1 is a
simple resource child of collection_id1; it is also the parent of resource_id2.

The hierarchy of identifiers is known as the full resource identifier path, where each resource on the left repre-
sents a parent resource. The full resource identifier path is composed of collection and simple resources. Each
child resource identifier is known as the relative resource to the parent.

The resource identifier format follows these conventions:

• The first character is /, which represents the root resource and parent of all the available resources across
the applications.

11.2. Application Resource Model 177

RTI Recording Service Documentation, Version 7.3.0

• A collection identifier is defined in lower snake_case, and it is always specified by the resource class.

• A simple resource identifier is defined in camelCase (lower and upper) and may be specified by both
the resource class or the user.

Escaped Identifiers

An identifier can be escaped by enclosing it within double quotes ("). For example:

/”escaped_identifier”

An escaped identifier is interpreted as a whole and indivisible unit. Escaping a resource identifier is useful; it
is also required when the identifier contains the resource separator / or the custom method separator :.

For example, the following full resource path:

/resource_1/"escaped/resource_2"

is composed of two relative resources, resource_id1and escaped/resource2. The use of the double quotes to
escape the identifier indicates that the enclosing string shall be interpreted as a single identifier, and therefore
Routing Service ignores the resource separator. If the identifier was not escaped, then Routing Service would
interpret the resource path as two separate relative resources.

Any time an RTI Service sees a resource separator character (/) or the custom method separator : in an
entity name (such as in the attribute name), it automatically escapes the name when it constructs the resource
identifier. For example:

<service name="A/B">

<service name="A:B">

becomes

/routing_service/"A/B"

/routing_service/"A:B"

in the resource identifier.

Example: Resource Identifiers of a Generic Connext Application

Consider the Connext application resource model in Example: Simple Resource Model of a Connext Application.
The following resource identifier addresses a concrete DomainParticipant named “MyParticipant” in a given
application:

/domain_participants/MyParticipant

In this case, “domain_participants” is the identifier of a collection resource that represents a set of DomainPar-
ticipants in the application and its value is fixed and specified by the application. In contrast, “MyParticipant”

11.2. Application Resource Model 178

RTI Recording Service Documentation, Version 7.3.0

is the identifier of a simple resource that represents a particular DomainParticipant and its value is given by the
user of the application at DomainParticipant creation time.

The following resource identifier addresses the implicit Publisher of a concrete DomainParticipant in a given
application:

/domain_participants/MyParticipant/implicit_publisher

where “implicit_publisher” is the identifier of a simple resource that represents the always-present implicit
Publisher and its value is fixed and specified by the DomainParticipant resource class.

Example: Resource Identifiers Generated from XML Entity Model

Consider the following XML configuration that models a generic RTI Service:

<service name="MyService">
<entity_class1 name="MyEntity1"> ... </entity_class1>
<entity_class1 name="Domain/MyEntity2"> ... </entity_class1>

</service>

The resulting generated resource identifiers will look as follows:

/service/MyService/entity_class1/MyEntity1
/service/MyService/entity_class1/"Domain/MyEntity2"

11.3 Remote Administration Platform

This section describes details of the RTI Remote Administration Platform, which represents the foundation of
the remote access capabilities available in RTI Routing Service, RTI Recording Service, RTI Queuing Service, RTI
Cloud Discovery Service and RTI Observability Collector. The RTI Remote Administration Platform provides a
common infrastructure that unifies and consolidates the remote interface to all RTI Services.

Note: Remote administration of RTI Services requires an understanding of the application resource model.
We recommend that you read Application Resource Model (Application Resource Model) before continuing with
this section.

The RTI Remote Administration Platform addresses two areas:

• Resource Interface: How to perform operations on a set of resource objects that are available as part
of the public interface of the remote service.

• Communication: How the remote service receives and sends information.

The combination of these two areas provides the general view of the RTI Remote Administration Platform,
as shown in Figure 11.3. The RTI Remote Administration Platform is defined as a request/reply architecture.
In this architecture, the service is modeled as a set of resources upon which the requester client can perform
operations. Resources represent objects that have both state and behavior.

11.3. Remote Administration Platform 179

RTI Recording Service Documentation, Version 7.3.0

Figure 11.3: General View of the RTI Remote Administration Platform Architecture

Clients issue requests indicating the desired operation and receive replies from the service with the result of the
requests. If multiple clients issue multiple requests to one or more services, the client will receive only replies
to its own requests.

11.3.1 Remote Interface

Services offer their available functionality through their set of resources. The RTI Remote Administration Plat-
form defines a Representational State Transfer (REST)-like interface to address service resources and perform
operations on them. A resource operation is determined by a REST request and the associated result by a REST
reply.

11.3. Remote Administration Platform 180

RTI Recording Service Documentation, Version 7.3.0

Table 11.2: REST Interface
Element Description
REST Request

[method] + [resource_identifier] + [body]
• method: Specifies the action to be performed on a service resource.
There is only a small subset of methods, known as standard methods
(see Standard Methods).

• resource_identifier: Addresses a concrete service resource.
Each concrete service has its own set of resources (see Resource Identi-
fiers).

• body: Optional request data that contains necessary information to
complete the operation.

REST Reply
[return code] + [body]

• return code: Integer indicating the result of the operation.
• body: Optional reply data that contains information associated with the
processing of the request.

Standard Methods

The RTI Remote Administration Platform defines the methods listed in Table 11.3.

Table 11.3: Standard Methods
Method URI Request Body Reply Body
CREATE Parent collection

resource identifier
Resource representation N/A

GET Resource identifier N/A Resource representation
UPDATE Resource identifier Resource representation N/A
DELETE Resource identifier Undefined N/A

Custom Methods

There are certain cases in which an operation on a service resource cannot be mapped intuitively to a standard
method and resource identifier. Custom methods address this limitation.

A custom method can be specified as part of the resource identifier, after the resource path, separated by a :.

UPDATE + [resource_identifier] : [custom_verb]

It is up to each service implementation to define which custom methods are available and on what resources
they apply. Custom methods follow these conventions:

• They are invoked through the UPDATE standard method.

11.3. Remote Administration Platform 181

RTI Recording Service Documentation, Version 7.3.0

• They are named using lower snake_case.

• They may use the request body and reply body if necessary.

Example: Database Rollover

This example shows the REST request to perform a file rollover operation on a file-based database:

UPDATE /databases/MyDatabase:rollover

11.3.2 Communication

The information exchange between client and server is based on the DDS request-reply pattern, as shown in
Figure 11.4. The client maps to a Requester, whereas the server maps to a Replier.

Figure 11.4: Communication in RTI Remote Administration Platform is Based on DDS Request-Reply

The communication is performed over a single request-reply channel, composed of two topics:

• Command Request Topic: Topic through which the client sends the requests to the server.

• Command Reply Topic: Topic through which the server sends the replies to the received requests.

The definition of these topics is shown in Table 11.4:

Table 11.4: Remote Administration Topics
Topic Name Top-level Type Name
CommandRequestTopic rti/service/admin/command_re-

quest
rti::service::ad-
min::CommandRequest

CommandReplyTopic rti/service/admin/command_re-
ply

rti::service::ad-
min::CommandReply

11.3. Remote Administration Platform 182

RTI Recording Service Documentation, Version 7.3.0

The definition for each Topic type is described below.

Listing 11.1: CommandRequest Type

@appendable
struct CommandRequest {

@key int32 instance_id;
@optional string<BOUNDED_STRING_LENGTH_MAX> application_name;
CommandActionKind action;
ResourceIdentifier resource_identifier;
StringBody string_body;
OctetBody octet_body;

};

Table 11.5: CommandRequest
Field Name Description
instance_id Associates a request with a given instance in the CommandRequestTopic.

This can be used if your requester application model wants to leverage outstanding
requests. In general, this member is always set to zero, so all requests belong to the
same CommandRequestTopic instance.

applica-
tion_name

Optional member that indicates the target service instance where the request is sent.
If NULL, the request will be sent to all services.

action Indicates the resource operation.
re-
source_iden-
tifier

Addresses a service resource.

string_body Contains content represented as a string.
octet_body Contains content represented as binary.

Listing 11.2: CommandReply Type

@appendable
struct CommandReply {

CommandReplyRetcode retcode;
int32 native_retcode;
StringBody string_body;
OctetBody octet_body;

};

Table 11.6: CommandReply
Field Name Description
retcode Indicates the result of the operation.
native_retcode Provides extra information about the result of the operation.
string_body Return value of the operation, represented as a string.
octet_body Return value of the operation, represented as binary.

11.3. Remote Administration Platform 183

RTI Recording Service Documentation, Version 7.3.0

The type definitions for both the CommandRequestTopic and CommandReplyTopic are in the file
[NDDSHOME]/resource/idl/ServiceAdmin.idl.

The definition of the request and reply topics is independent of any specific service implementation. In fact,
the topic names are fixed, unique, and shared across all services that rely on the RTI Remote Administration
Platform. Clients can target specific services through two mechanisms:

• Specifying a concrete service instance by providing its application name. The application name is a
service attribute and can be set at service creation time.

• Specifying the configuration name loaded by the target services. The target service configuration shall
be present in the service resource part of the resource_identifier.

Reply Sequence

Usually a request is expected to generate a single reply. Sometimes, however, a request may trigger the gener-
ation of multiple replies, all associated with the same request.

The RTI Remote Administration Platform communication architecture allows services to respond to certain
requests with a reply sequence. All the samples in a reply sequence use the the metadata SampleFlagBits
to indicate whether it belongs to a reply sequence and whether there are more replies pending.

The SampleFlagBitsmay contain different flags that indicate the status of the reply procedure. For a given
reply sequence, the associated sample flags for each reply may contain:

• SEQUENTIAL_REPLY: If present, this indicates that the sample is the first reply of a reply sequence
and there are more on the way.

• FINAL_REPLY: If present, this indicates that the sample is the last one belonging to a reply sequence.
This flag is valid only if the SEQUENTIAL_REPLY is also set.

For more on SampleFlagBits, see documentation on the DDS_SampleInfo structure in the Connext DDS API
Reference HTML documentation.

Example: Controlling services remotely from a Connext Application

The Connext GitHub examples repository includes an example that shows how to build and run a requester
application that can send commands to a running RTI Routing Service instance.

11.3.3 Common Operations

The set of services that use the RTI Remote Administration Platform to implement remote administration also
share a base remote interface that consolidates and unifies the semantics and behavior of certain common
operations.

Services containing resources that implement the common operations conform to the base remote interface,
making sure that signatures, semantics, behavior, and conditions are respected.

The following sections describe each of these common operations.

11.3. Remote Administration Platform 184

https://github.com/rticommunity/rticonnextdds-examples/tree/master/examples/routing_service

RTI Recording Service Documentation, Version 7.3.0

Create Resource

CREATE [resource_identifier]

Creates a resource object from its configuration in XML representation.

This operation creates a resource object and its contained entities. The created object becomes a child
of the parent specified in the resource_identifier.

After successful creation, the resource object is fully addressable for additional remote access, and the
associated object configuration is inserted into the currently loaded full XML configuration.

Request body

• string_body: XML representation of the resource object provided as file:// or str://.

• Example str:// request body:

str://"<my_resource name="NewResourceObject">
...

</my_resource>"

• Example file:// request body:

file:///home/rti/config/service_my_resource.xml

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• The specified configuration is schematically invalid.

• There was an error creating the resource object.

Get Resource

GET [resource_identifier]

Returns an equivalent XML string that represents the current state of the resource object configuration,
including any updates performed during its lifecycle.

Request body

• Empty.

Reply body

• string_body: XML representation of the resource object.

• Example reply body:

11.3. Remote Administration Platform 185

RTI Recording Service Documentation, Version 7.3.0

<my_resource name="MyObject">
...

</my_resource>

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

Update Resource

UPDATE [resource_identifier]

Updates the specified resource object from its configuration in XML representation.

This operation modifies the properties of the resource object, including the associated configuration.
Only the mutable properties of the resource class can be updated while the object is enabled. To update
immutable properties, the resource object must be disabled first.

Note: Properties of a child resource cannot be updated as part of a parent resource. Instead, child
resources must be addressed and updated independently.

Implementations may validate the received configuration against a scheme (DTD or XSD) that defines
the valid set of accepted parameters (for example, only mutable elements).

The update content should only include only the properties to be updated or changed. You are not
required to provide the full representation of the object being updated.

For example, consider the XML full representation of an object as follows:

<my_resource>
<nested_resource_A>initial_A</nested_resource_A>
<nested_resource_B>initial_B</nested_resource_B>
<nested_resource_C>initial_C</nested_resource_C>
...

</my_resource>

The update should only contain the content for the properties you want to modify. For example, the
following will only update nested_resource_B to a new value, leaving the other nested resources
unchanged:

<my_resource>
<nested_resource_B>updated_B</nested_resource_B>
...

</my_resource>

Request body

• string_body: XML representation of the resource object provided as file:// or str://.

• Example str:// request body:

11.3. Remote Administration Platform 186

RTI Recording Service Documentation, Version 7.3.0

str://"<my_resource name="MyResourceObject">
...

</my_resource>"

• Example file:// request body:

file:///home/rti/config/service_update_my_resource.xml

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• The specified configuration is schematically invalid.

• The specified configuration contains changes in immutable properties.

• There was an error updating the resource object.

Set Resource State

UPDATE [resource_identifier]/state

Sends a state change request to the specified resource object.

This operation attempts to change the state of the specified resource object and propagates the request
to the resource object’s contained entities.

The target state must be one of the resource class’s valid accepted states.

Request body

• octet_body: CDR representation of an entity state.

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• The target request is invalid.

• The resource object reported an error while performing the state transition.

11.3. Remote Administration Platform 187

RTI Recording Service Documentation, Version 7.3.0

Get Resource State

GET [resource_identifier]/state

Gets the current state of the specified resource object.

This operation attempts to fetch the state of the specified resource object.

The target’s state is returned as a part of the reply.

Request body

• Empty

Reply body

• octet_body: CDR representation of an entity’s current state.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• The target request is invalid.

• The resource object reported an error while fetching its current state.

Delete Resource

DELETE [resource_identifier]

Deletes the specified resource object.

This operation deletes a resource object and its contained entities. The deleted object is removed from
its parent resource object.

The associated object configuration is removed from the currently loaded full XML configuration.

After a successful deletion, the resource object is no longer addressable for additional remote access.

Request body

• Empty.

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• There was an error deleting the resource object.

11.3. Remote Administration Platform 188

RTI Recording Service Documentation, Version 7.3.0

11.4 Monitoring Distribution Platform

Monitoring refers to the distribution of health status information metrics from instrumented RTI Services.
This section describes the architecture of the monitoring capability supported in RTI Routing Service and RTI
Recording Service. You will learn what type of information these application can provide and how to access it.

RTI Services provide monitoring information through a Distribution Topic, which is a DDS Topic responsible
for distributing information with certain characteristics about the service resources. An RTI Service provides
monitoring information through the following three distribution topics:

• ConfigDistributionTopic: Distributes metrics related to the description and configuration of a Resource.
This information may be immutable or change rarely.

• EventDistributionTopic: Distributes metrics related to Resource status notifications of asynchronous na-
ture. This information is provided asynchronously when Resources change after the occurrence of an
event.

• PeriodicDistributionTopic: Distribute metrics related to periodic, sampling-based updates of a Resource.
Information is provided periodically at a configurable publication period.

These three Topics are shared across all services for the distribution of the monitoring information. Table 11.7
provides a summary of these topics.

Table 11.7: Monitoring Distribution Topics
Topic Name Top-level Type Name
ConfigDistributionTopic rti/service/monitoring/config rti::service::monitoring::Con-

fig
EventDistributionTopic rti/service/monitoring/event rti::service::monitor-

ing::Event
PeriodicDistributionTopic rti/service/monitoring/periodic rti::service::monitoring::Peri-

odic

Figure 11.5 shows the mapping of the monitoring information into the distribution Topics. A distribution Topic
is keyed on service resources categorized as keyed Resources. These are resources whose related monitoring
information is provided as an instance on the distribution Topic.

11.4.1 Distribution Topic Definition

All distribution Topics have a common type structure that is composed of two parts: a base type that identifies
a resource object and a resource-specific type that contains actual status monitoring information.

The definition of a distribution Topic is shown in Figure 11.6.

11.4. Monitoring Distribution Platform 189

RTI Recording Service Documentation, Version 7.3.0

Figure 11.5: Monitoring Distribution Topics of RTI Services

Figure 11.6: Monitoring Distribution Topic Definition

11.4. Monitoring Distribution Platform 190

RTI Recording Service Documentation, Version 7.3.0

Keyed Resource Base Type Fields

This is the base type of all distribution Topics and consists of two fields:

• object_guid: Key field. It represents a 16-byte sequence that uniquely identifies a Keyed Resource
across all the available services in the monitoring domain. Hence, the associated instance handle key
hash will be the same for all distribution Topics, allowing easy correlation of a resource. It will also
facilitate, as we will discuss later, easy instance data manipulation in a DataReader.

• parent_guid: It contains the object GUID of the parent resource. This field will be set to all zeros
if the object is a top-level resource thus with no parent.

This base type, KeyedResource, is defined in [NDDSHOME]/resource/idl/ServiceCommon.
idl.

Resource-Specific Type Fields

This is the type that conveys monitoring information for a concrete resource object. Since a distribution Topic
is responsible for providing information about different resource classes, the resource-specific type consists of
a single field that is a Union of all the possible representations for the keyed resources that provide that on
the topic.

As expected, there must be consistency between the two parts of the distribution topic type. That is, a sample
for a concrete resource object must contain the resource-specific union discriminator corresponding to the
resource object’s class.

Example: Monitoring of Generic Application

Assume a generic application that provides monitoring information about the modes of transports Car, Boat
and Plane. Each mode is mapped to a keyed resource, each with a custom type that contains metrics specific
to each class.

The monitoring distribution Topic top-level type, TransportModeDistribution, would be defined as
follows, using IDL v4 notation:

#include "ServiceCommon.idl"

@nested
struct CarType {

float speed;
String color;
String plate_number;

};

@nested
struct BoatType {

float knots;
float latitude;
float longitude;

};

(continues on next page)

11.4. Monitoring Distribution Platform 191

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)

@nested
struct PlaneType {

float ground_speed;
int32 air_track;

};

enum TransportModeKind {
CAR_TRANSPORT_MODE,
BOAT_TRANSPORT_MODE,
PLANE_TRANSPORT_MODE

};

@nested
union TransportModeUnion switch (TransportModeKind) {

case CAR_TRANSPORT_MODE:
CarType car;

case BOAT_TRANSPORT_MODE:
BoatType boat;

case PLANE_TRANSPORT_MODE:
PlaneType plane;

}

struct TransportModeDistribution : KeyedResource {
TransportModeUnion value;

};

Assume now that in the monitoring domain there are three resource objects, one for each resource class: a Car
object ‘CarA’, a Boat object ‘Boat1’, and a Plane object ‘PlaneX’. They all have unique resource GUIDs and
each object represents an instance in the distribution Topic. The table shows the example of potential sample
values:

Table 11.8: Samples in TransportModeDistribution Topic
CarA Boat1 PlaneX

object_guid 0x0C 0xAB 0xf2
parent_guid 0x00 0x00 0x00
value discrimi-
nator

CAR_TRANS-
PORT_MODE

BOAT_TRANS-
PORT_MODE

PLANE_TRANS-
PORT_MODE

11.4. Monitoring Distribution Platform 192

RTI Recording Service Documentation, Version 7.3.0

11.4.2 DDS Entities

RTI Services allow you to distribute monitoring information in any domain. For that, they create the following
DDS entities:

• A DomainParticipant on the monitoring domain.

• A single Publisher for all DataWriters.

• A DataWriter for each distribution Topic.

A service will create these entities with default QoS or otherwise the corresponding service user’s manual
will specify the actual values. Services allow you to customize the QoS of the DDS entities, typically in the
service monitoring configuration under the <monitoring> tag. You will need to refer to each service’s user’s
manual.

11.4.3 Monitoring Metrics Publication

How services publish monitoring samples depends on the distribution Topic.

Configuration Distribution Topic

There are two events that cause the publication of samples in this topic:

• As soon as a Resource object is created. This event generates the first sample in the Topic for the resource
object just created. Since these first samples are published as resources are created, it is guaranteed to
be in hierarchical order; that is, the sample for a parent Resource is published before its children. When
Resources are created depends on the service. Typically, Resources are created on service startup. Other
cases include manual creation (e.g., through remote administration) or external event-driven creation
(e.g., discovery of matching streams, in the case of AutoRoute in Routing Service).

• On Resource object update. This event occurs when the properties of the object change due to a set or
update operation (e.g., through remote administration).

Event Distribution Topic

Services publish samples in this Topic in reaction to an internal event, such as a Resource state change. Which
events and their associated information and when they occur is highly dependent on concrete service imple-
mentations.

11.4. Monitoring Distribution Platform 193

RTI Recording Service Documentation, Version 7.3.0

Periodic Distribution Topic

Samples in this Topic are published periodically, according to a fixed configurable period. The metrics provided
in this Topic are generated in two different ways:

• As a snapshot of the current value, taken at the publication time (e.g., current number of matching
DataReaders). This represents a simple case and the metric is typically represented with an adequate
primitive member.

• As a statistic variable generated from a set of discreet measurements, obtained periodically. This rep-
resents a continous flow of metrics, represented with the StatisticVariable type (see Statistic
Variable).

There are two activities involved in the generation of the statistic variables: Calculation and Publication. All
the configuration elements for these activities are available under the <monitoring> tag.

Calculation

The instrumented service periodically performs measurements on the metric. This activity is also known as
sampling (don’t confuse with data samples). The frequency of the measurements can be configured with the
tag <statistics_sampling_period>. As a general recommendation, the sampling period should be
a few times smaller than the publication period. A small sampling period provides more accurate statistics
generation at the expense of increasing memory and CPU consumption.

Publication

The service periodically publishes a data sample containing a snapshot of the statistics gen-
erated during the calculation phase. The publication period can be configured with the tag
<status_publication_period>.The value of a statistic variable corresponds to the time win-
dow of a publication period.

11.4.4 Monitoring Metrics Reference

This section describes the types used as common metrics across services. All the type definitions listed here
are in [NDDSHOME]/resource/idl/ServiceCommon.idl.

Statistic Variable

Listing 11.3: Statistics

@appendable @nested
struct StatisticMetrics {

uint64 period_ms;
int64 count;
float mean;

(continues on next page)

11.4. Monitoring Distribution Platform 194

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
float minimum;
float maximum;
float std_dev;

};

@appendable @nested
struct StatisticVariable {

StatisticMetrics publication_period_metrics;
};

Table 11.9: StatisticMetrics
Field Name Description
period_ms Period in milliseconds at which the metrics are published.
count Sum of all the measurement values obtained during the publication period.
mean Arithmetic mean of all the measurement values during publication period. For aggre-

gated metrics, this value is the mean of all the aggregated metrics means.
min Minimum of all the measurement values during publication period. For aggregated

metrics, this value is the minimum of all the aggregated metrics minimums.
max Maximum of all the measurement values during publication period. For aggregated

metrics, this value is the maximum of all the aggregated metrics minimums.
std_dev Standard deviation of all the measurement values during publication period. For ag-

gregated metrics, this value is the standard deviation of all the aggregated metrics
minimums.

Host Metrics

Listing 11.4: Host Types

@appendable @nested
struct HostPeriodic {

@optional StatisticVariable cpu_usage_percentage;
@optional StatisticVariable free_memory_kb;
@optional StatisticVariable free_swap_memory_kb;
int32 uptime_sec;

};

@appendable @nested
struct HostConfig {

BoundedString name;
uint32 id;
int64 total_memory_kb;
int64 total_swap_memory_kb;
BoundedString target;

};

11.4. Monitoring Distribution Platform 195

RTI Recording Service Documentation, Version 7.3.0

Table 11.10: HostConfig
Field Name Description
name Name of the host where the service is running.
id ID of the host where the service is running.
total_memory_kb Total memory in KiloBytes of the host where the service is running. Availability of

this value is platform dependent.
total_swap_mem-
ory_kb

Total swap memory in KiloBytes of the host where the service is running. Availability
of this value is platform dependent.

Table 11.11: HostPeriodic
Field Name Description
cpu_usage_per-
centage

Statistic variable that provides the global percentage of CPU usage on the host where
the service is running. Availability of this value is platform dependent.

free_memory_kb Statistic variable that provides the amount of free memory in KiloBytes of the host
where the service is running. Availability of this value is platform dependent.

free_wap_mem-
ory_kb

Statistic variable that provides the amount of free swap memory in KiloBytes of the
host where the service is running. Availability of this value is platform dependent.

uptime_sec Time in seconds elapsed since the host on which the running service started. Avail-
ability of this value is platform dependent.

Process Metrics

Listing 11.5: Process Types

@appendable @nested
struct ProcessConfig {

uint64 id;
};
@mutable @nested
struct ProcessPeriodic {

@optional StatisticVariable cpu_usage_percentage;
@optional StatisticVariable physical_memory_kb;
@optional StatisticVariable total_memory_kb;
int32 uptime_sec;

};

Table 11.12: ProcessConfig
Field Name Description
id Identifies the process where the service is running. The meaning of this value is plat-

form dependent.

11.4. Monitoring Distribution Platform 196

RTI Recording Service Documentation, Version 7.3.0

Table 11.13: ProcessPeriodic
Field Name Description
cpu_usage_per-
centage

Statistic variable that provides the percentage of CPU usage of the process where the
service is running. The field count of the variable contains the total CPU time in
ms that the process spent during the publication period. Availability of this value is
platform dependent.

physical_mem-
ory_kb

Statistic variable that provides the physical memory utilization in KiloBytes of the
process where the service is running. Availability of this value is platform dependent.

total_memory_kb Statistic variable that provides the virtual memory utilization in KiloBytes of the pro-
cess where the service is running. Availability of this value is platform dependent.

uptime_sec Time in seconds elapsed since the running service process started. Availability of this
value is platform dependent.

Base Entity Resource Metrics

Listing 11.6: Base Entity Types

@mutable @nested
struct EntityConfig {

ResourceId resource_id;
XmlString configuration;

};
@mutable @nested
struct EntityEvent{

EntityStateKind state;
};

Table 11.14: EntityConfig
Field Name Description
resource_id String representation of the resource identifier associated with the entity resource.
configuration String representation of the XML configuration of the entity resource. The XML

contains only children elements that are not entity resources.

Table 11.15: EntityEvent
Field Name Description
state State of the resource entity expressed as an enumeration of type EntityS-

tateKind.

11.4. Monitoring Distribution Platform 197

RTI Recording Service Documentation, Version 7.3.0

Network Performance Metrics

Listing 11.7: Network Performance Type

@appendable @nested
struct NetworkPerformance {

@optional StatisticVariable samples_per_sec;
@optional StatisticVariable bytes_per_sec;
@optional StatisticVariable latency_millisec;

};

Table 11.16: NetworkPerformance
Field Name Description
samples_per_sec Statistic variable that provides information about the number of samples processed

(received or sent) per second.
bytes_per_sec Statistic variable that provides information about the number of bytes processed (re-

ceived or sent) per second.
latency_millisec Statistic variable that provides information about the latency in milliseconds for the

data processed. The latency in a refers to the total time elapsed during the associated
processing of the data, which depends on the type of application.

Thread Metrics

Listing 11.8: Thread Metrics Type

@mutable @nested
struct ThreadPeriodic {

uint64 id;
@optional StatisticVariable cpu_usage_percentage;

};

@mutable @nested
struct ThreadPoolPeriodic {

@optional sequence<Service::Monitoring::ThreadPeriodic>␣
→˓threads;

};

Table 11.17: ThreadPeriodic
Field Name Description
id OS-assigned thread identifier
cpu_usage_per-
centage

Statistic variable that provides the percentage of CPU usage of the thread belonging to
the process where the service is running. The field count of the variable contains the
total CPU time in ms that the thread spent during the publication period. Availability
of this value is platform dependent.

11.4. Monitoring Distribution Platform 198

RTI Recording Service Documentation, Version 7.3.0

11.5 Plugin Management

Some RTI Services allow for custom behavior through the use of pluggable components or plugins . The type
of plugins is described in Software Development Kit. A plugin is represented as a top-level service-owned
object whose main role is a factory of other pluggable components, which are responsible for providing the
user-defined behavior.

Figure 11.7 shows that for each class of pluggable components there is a top-level object with the suffix Plu-
gin. This is the object that the Service obtains at the moment of loading the plugin. Multiple Plugin objects
can be registered from the same class, each uniquely identified by its registered name.

Figure 11.7: Plugin object management

Figure 11.7 also shows that there are two mechanisms through which a Service obtains a plugin object: a shared
library or the Library API. Both mechanisms are complementary and are described with more detail in the
next sections.

11.5. Plugin Management 199

RTI Recording Service Documentation, Version 7.3.0

11.5.1 Shared Library

A plugin object is instantiated through a create function, which is included and addressable as part of a shared
library. This function is also known as the entry point and each RTI Service defines the signature for each
plugin class. This method requires specifying the path to the shared library and the name of the entry point (see
Configuration). The Service loads the library the first time an instance of the plugin is needed (lazy initialization)
and looks up the specified entry point symbol in the loaded library. The Service will always delete the plugin
on Service stop.

This is the only method suitable when an RTI Service is deployed through an already linked executable, such
as the shipped command-line executable (Usage).

The plugin lifecycle is as follows:

1. After start, the Service creates a plugin object for each registered plugin in the configuration. The plugin
object is instantiated through the shared library entry point, specified in the configuration.

2. The Service calls operations on the plugin objects as needed and keeps them alive while the Service
remains started.

3. During stop, the Service deletes each plugin object by calling the class abstract deleter.

Configuration

An RTI Service configures the pluggable components within the <plugin_library> tag. RTI Services
that support plugins will define a set of tags within in the form:

• <[class]_plugin> for C/C++ plugins

• <java_[class]_plugin> for Java plugins

where [class] refers to the name of the plugin class. For example, in Routing Service an available tag is
<adapter_plugin>.

The definition of these tags is the same regardless of the plugin class and is described in the tables below.

Table 11.18 and Table 11.19 describe the configuration of each different plugin language.

11.5. Plugin Management 200

RTI Recording Service Documentation, Version 7.3.0

Table 11.18: Configuration tags for C/C++ plugins.
Tags within <[class]_plu-
gin>

Description Multi-
plicity

<dll> Shared library containing the implementation of the adapter
plugin. This tag may specify the exact path (absolute or rela-
tive) of the file (for example, lib/libmyplugin.so) or a general
name (no file extension).
If no extension is provided, the path will be completed based on
the running platform. For example, assuming a value for this tag
of dir/myplugin:

• Linux/macOS systems (or similar): dir/libmyplugin.so
• Windows systems: dir/myplugin.dll

If the library specified in this tag cannot be loaded (because the
environment library path is not pointing to the path where the
library is located), Routing Service will look for the library in
the following locations, in this order:

• [plugin_search_path]: Provided as part of the service
parameters (see Usage)

• [executable_dir]: Directory where the executable lives

1

<create_function> Entry point. This tag must contain the name of the function
used to create the plugin instance. The function symbol must
be present in the shared library specified in <dll>

1

<property> A sequence of name-value string pairs that allow you to config-
ure the plugin instance.
Example:

<property>
<value>

<element>
<name>myplugin.user_name</

→˓name>
<value>myusername</value>

</element>
</value>

</property>

0..1

Table 11.19: Configuration tags for Java plugins
Tags within
<java_[class]_plugin>

Description Multi-
plicity

<class_name> Name of the class that implements the plugin.
For example: com.myplugins.CustomPlugin
The classpath required to run the Java plugin must be part of
the RTI Service JVM configuration. See the <jvm> tag within
the specific service configuration for additional information on
JVM creation and configuration.

1

continues on next page

11.5. Plugin Management 201

RTI Recording Service Documentation, Version 7.3.0

Table 11.19 – continued from previous page
Tags within
<java_[class]_plugin>

Description Multi-
plicity

<property> A sequence of name-value string pairs that allow you to config-
ure the plugin instance.
Example:

<property>
<value>

<element>
<name>myplugin.user_name</

→˓name>
<value>myusername</value>

</element>
</value>

</property>

0..1

11.5.2 Library API

The user provides the plugin object via the Library API, through one of the available at-
tach_[class]_plugin() operations. Upon successful return of the operation, the Service takes owner-
ship of the plugin object and will delete it on Service stop.

The plugin lifecycle is as follows:

1. The user instantiates plugin objects and provides them to the Service through the at-
tach_[class]_plugin() operation. This is allowed only before the Service starts.

2. After start, the Service becomes the owner of the registered plugin objects, calls operations on the plugin
objects as needed, and keeps them alive while the Service remains started.

3. On stop, the Service deletes each registered plugin object by calling the class abstract deleter.

11.5. Plugin Management 202

Chapter 12

Release Notes

12.1 Supported Platforms

See Supported Platforms, in the RTI Connext Core Libraries Release Notes.

Recording Service can also be deployed as a C library linked into your application.

12.2 Compatibility

For backward compatibility information between the current and previous releases of Recording Service, please
see the Migration Guide on the RTI Community portal.

12.3 What’s New in 7.3.0 LTS

Connext 7.3.0 LTS is a long-term support release that is built upon and combines all of the features in releases
7.0.0, 7.1.0, and 7.2.0 (see Previous Releases). See the Connext Releases page on the RTI website for more
information on RTI’s software release model.

12.3.1 Support for RTI FlatData and Zero Copy transfer over shared memory with
discovered types

Previously, enabling Recording Service to function with RTI FlatData language binding and Zero Copy transfer
over shared memory required manual type definition in the XML configuration, including proper annotations.
Also, the type had to be registered manually in each DomainParticipant.

Recording Service can now use FlatData and Zero Copy without manual configuration, even if the types are
dynamically discovered. Therefore, there’s no need to know the types in advance.

For more information, see Support for RTI FlatData and Zero Copy Transfer Over Shared Memory.

203

https://community.rti.com/Documentation/
https://www.rti.com/products/connext-releases

RTI Recording Service Documentation, Version 7.3.0

12.4 What’s Fixed in 7.3.0 LTS

This section describes bugs fixed in Recording Service 7.3.0 LTS. These are fixes applied since 7.2.0.

For information on what was fixed in releases 7.0.0, 7.1.0, and 7.2.0, which are also part of 7.3.0 LTS, see
Previous Releases.

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

12.4.1 Data Corruption

[Critical] Recording Service stored wrong XCDR version into SQLite databases *

When Recording Service and Converter stored output data into SQLite in XCDR format, the stored format
could be erroneous when the data representation of the samples coming from the DataWriters differed from
the XCDR format storage selected when using the <sqlite><storage_format> property in the XML
configuration.

[RTI Issue ID RECORD-1430]

* This bug does not affect you if you are upgrading from 6.1.x or earlier.

12.5 Previous Releases

12.5.1 What’s New in 7.2.0

Monitoring Library 2.0 can be enabled in Recording Service so that all DDS entities created by this service will
provide monitoring data to Observability Framework.

To enable Monitoring Library 2.0 in Recording Service, add the XML code snippet shown below to an XML
QoS profile, then run Recording Service from the folder containing the profile. Add the snippet to any of the
following XML files:

• NDDS_QOS_PROFILES.xml, located in the Connext installation directory at <NDDSHOME>/
resource/xml/

• USER_QOS_PROFILES.xml, located in theWeb Integration Service working directory

• Any XML file included in the NDDS_QOS_PROFILES environment variable

<?xml version="1.0"?>
<dds>

<qos_library name="MonitoringEnabledLibrary">
<qos_profile name="MonitoringEnabledProfile" is_default_participant_

→˓factory_profile="true">
<participant_factory_qos>

<monitoring>
<enable>true</enable>

(continues on next page)

12.4. What’s Fixed in 7.3.0 LTS 204

RTI Recording Service Documentation, Version 7.3.0

(continued from previous page)
</monitoring>

</participant_factory_qos>
</qos_profile>

</qos_library>
</dds>

For more information, see How to Load XML-Specified QoS Settings in the Core Libraries User’s Manual.

Recordings converted to CSV can include the Source timestamp

Converter Service can now show the Source timestamp, in addition to the Reception timestamp, when convert-
ing a recorded database into CSV. To do so, set the new <include_source_timestamp> tag to true;
this tag is false by default.

Support for dynamic certificate renewal

A running Recording or Replay Service instance can use the new authentication.
identity_certificate_file_poll_period.millisec property in Securıty Plugıns
to renew its identity certificate without the need to restart the service. The authentication.
identity_certificate_file_poll_period.millisec property must have a value greater
than zero for the participant to periodically poll its identity certificate file for changes. (In release 7.3, the
authentication.identity_certificate_file_poll_period.millisec property is
replaced by a new files_poll_interval property.)

For more information, see the sections on how to support Securıty Plugıns in Recorder and in Replay. Also
see Advanced Authentication Concepts in the RTI Security Plugins User’s Manual.

Support for dynamic certificate revocation

A running Recording Service instance (Recorder or Replay) can use the authentication.crl and
the new authentication.crl_file_poll_period.millisec properties in Securıty Plug-
ıns to specify certificate revocations without the need to restart the service. The authentication.
crl_file_poll_period.millisec property must have a value greater than zero for the partici-
pant to periodically poll the provided CRL file for changes. (In release 7.3, the authentication.
crl_file_poll_period.millisec property is replaced by a new files_poll_interval prop-
erty.)

For more information, see the sections on how to support Securıty Plugıns in Recorder and in Replay. Also
see Advanced Authentication Concepts in the RTI Security Plugins User’s Manual.

12.5. Previous Releases 205

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#advanced-authentication-concepts
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#advanced-authentication-concepts

RTI Recording Service Documentation, Version 7.3.0

Third-party software changes

The following third-party software used by Recording Service have been upgraded:

Table 12.1: Third-Party Software Changes
Third-Party Software Previous Version Current Version
libxml2 2.9.4 2.11.4
libxslt 1.1.35 1.1.38

For information on third-party software used by Connext products, see the “3rdPartySoftware” documents in
your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_3rdparty.

12.5.2 What’s New in 7.1.0

Third-Party Software Upgrades

The following third-party software used by Recording Service has been upgraded:

Table 12.2: Third-Party Software Changes
Third-Party Software Previous Version Current Version
SQLite® 3.39.0 3.39.4

For information on third-party software used by Connext products, see the “3rdPartySoftware” documents in
your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_3rdparty.

12.5.3 What’s Fixed in 7.1.0

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue with an available workaround. [Trivial]: Small issue, such as a typo in a log.

[Critical] Recording Service reported an exception when recording or replaying type reg-
istered as a union

Publishing a union type instead of a structure type caused Recording Service to report an exception. This was
a regression from the previous release, where union was a valid type for Recording Service. This problem has
been resolved.

[RTI Issue ID RECORD-1339]

12.5. Previous Releases 206

RTI Recording Service Documentation, Version 7.3.0

[Critical] Recording Service Crashed if -maxObjectsPerThread set too small

Recording Service crashed if the command-line option -maxObjectsPerThread had a value less than
1024. This issue, which also affected Routing Service, has been resolved. Now instead of crashing, the service
will log the following warning and the default value will be used.

Max objects per thread can't be lower than 1024. Setting MaxObjectsPerThread␣
→˓to 1024.

[RTI Issue ID ROUTING-1024]

Fixes Related to Vulnerabilities

[Critical] Recording Service crashed when loading a malicious XML configuration file

Due to a vulnerability in SQLite, the XML configuration tag sql_initialization_string was used by Recording
Servicewithout proper input validation. This issue could causeRecording Service to crash during service startup.

This vulnerability was fixed by upgrading SQLite to version 3.39.4. See What’s New in 7.1.0 for additional
information.

User Impact without Security

An improper validation of array index in Recording Service could have resulted in the following:

• Recording Service crashed.

• Exploitable by loading a malicious XML configuration file.

• CVSS v3.1 Score: 3.3 LOW

• CVSS v3.1 Vector: AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L

User Impact with Security

Same as User Impact without Security.

[RTI Issue ID RECORD-1374]

12.5. Previous Releases 207

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L

RTI Recording Service Documentation, Version 7.3.0

Fixes Related to Usability

[Major] The Instance History Replay feature did not publish all relevant samples

Before starting normal replay, the Instance History Replay feature did not publish the full state of the world for
keyed topics. An issue storing the instance history index prevented Replay Service from finding all the samples
to include in the state-of-the-world dataset. This issue has been resolved.

[RTI Issue ID RECORD-1370]

[Trivial] Unexpected ERROR prefix in Converter Service standard logs

An unexpected “ERROR” prefix appeared in the Converter Service logs. For example:

ERROR Stream [Square]: total samples written = 536
ERROR Stream [Circle]: total samples written = 473
ERROR Stream [Triangle]: total samples written = 408

This issue has been resolved. The logs now display as follows:

Stream [Square]: total samples written = 536
Stream [Circle]: total samples written = 473
Stream [Triangle]: total samples written = 408

[RTI Issue ID RECORD-1363]

12.5.4 What’s New in 7.0.0

Ability to replay data in reverse order

Replay Service can now be started in reverse mode, while maintaining the fidelity of the recorded database.

To enable reverse mode, use the command-line option -reverseMode or the <reverse_mode> tag, like
this:

<playback>
<reverse_mode>true</reverse_mode>

</playback>

See Playback for more information on the tag and see Replay Service Command-Line Parameters.

12.5. Previous Releases 208

RTI Recording Service Documentation, Version 7.3.0

New tags to replay data with original sample info

Replay Service has two new tags, which replay data with the original sample info. The new tags are:

• <publish_with_original_info>: Replays data with the original virtual GUID and virtual sequence number.

• <publish_with_original_timestamp>: Replays data with the original source timestamp.

See Topic Group.

Ability to store DomainParticipant partitions

Recording Service has the capacity to store the information about DomainParticipant partitions.

Third-party software upgrades

The following third-party software used by Recording Service has been upgraded:

Table 12.3: Third-Party Software Changes
Third-Party Software Previous Version Current Version
libxml2 2.9.12 2.9.14
libxslt 1.1.34 1.1.35
SQLite® 3.37.2 3.39.0

For information on third-party software used by Connext products, see the “3rdPartySoftware”
documents in your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/
release_notes_3rdparty.

12.5.5 What’s Fixed in 7.0.0

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue with an available workaround. [Trivial]: Small issue, such as a typo in a log.

[Minor] Schema files not compliant with DDS-XML specification

The schema file rti_service_common_definitions.xsd, and its included files, have been changed
as follows to make them compliant with the DDS-XML specification (https://www.omg.org/spec/DDS-XML/
1.0/PDF):

• <participant_qos> has been renamed to <domain_participant_qos>.

The old tag is still accepted by the Connext XML parser and the XSD schema to maintain backward compati-
bility.

[RTI Issue ID RECORD-1242]

12.5. Previous Releases 209

https://www.omg.org/spec/DDS-XML/1.0/PDF
https://www.omg.org/spec/DDS-XML/1.0/PDF

RTI Recording Service Documentation, Version 7.3.0

12.6 Known Issues

Note: For an updated list of critical known issues, see the Critical Issues List on the RTI Customer Portal at
https://support.rti.com/.

12.6.1 Recording Service may Fail when Current Working Directory in c:\Program
Files

Recording Servicewill try to write to its database in the current working directory. If it does not have permissions
to write there, it will fail with a confusing error:

[/recording_services/RecorderService|START|/storage|CREATE]
create_connection:!SQLite - failed to open database file; sqlite
returned error: out of memory

[SQLite return code = 7]
[File = metadata]

This happensmost commonly when running the application fromwithinc:\\Program Files onWindows
systems. You can work around this by running Recording Service from a command prompt in a directory where
you have write permissions.

12.6.2 Some tags in the XML configuration must be grouped in a strict order

The XML validator tools Recording Service uses to validate XML configuration files adhere to the XML 1.0
specification, which doesn’t offer a way of defining collections of unordered tags that are both bounded and
unbounded in occurrences.

This limitation is no longer present in XML 1.1. However, there are no C or C++ validators compliant with
the XML 1.1 specification at the time of writing.

[RTI Issue ID CORE-14178]

12.6. Known Issues 210

https://support.rti.com/

Index

C
Configuration name, 175
Configuration variable, 175

L
Library API, 175

S
Shipped executable, 175

X
XML document, 175

211

	1 Copyrights and Notices
	2 Introduction
	2.1 Introduction
	2.2 The Basics
	2.3 Paths Mentioned in Documentation

	3 Installation
	4 Recording Service
	4.1 Usage
	4.1.1 Starting Recording Service
	4.1.2 Stopping Recording Service
	4.1.3 Recording Service Command-Line Parameters
	4.1.4 Controlling Recording Service’s Operation Mode
	Controlling Buffer Size in Buffering Mode
	Configuring In-Memory Buffer Size

	4.2 Operating System Daemon
	4.3 Configuration
	4.3.1 Builtin Configuration of Recording Service
	4.3.2 XML Tags for Configuring Recording Service
	4.3.3 Recording Service Tag
	Example: Specify a Recording Service Configuration in XML

	4.3.4 Administration
	4.3.5 Monitoring
	4.3.6 Storage
	SQLite
	Fileset
	Rollover

	Plugin
	Instance Indexing

	4.3.7 DomainParticipant
	4.3.8 Session
	4.3.9 Topic Group
	4.3.10 Topic
	4.3.11 Support for RTI FlatData and Zero Copy Transfer Over Shared Memory
	Example: Configuration to enable both FlatData and Zero Copy transfer over shared memory

	4.3.12 Plugins
	4.3.13 Enabling Distributed Logger
	4.3.14 Support for Security Plugins (RTI Security Plugins)
	Example: Configuring a Recorder Instance using Security
	Example: Configuring Recording Service to use a Certificate Revocation List (CRL)
	Example: Configuring Recording Service for Dynamic Certificate Renewal

	4.3.15 Recording Service Builtin Configuration Details

	4.4 Remote Administration
	4.4.1 Enabling Remote Administration
	4.4.2 Available Service Resources
	Example

	4.4.3 Remote API Overview
	4.4.4 Recording Service
	4.4.5 Storage

	4.5 Monitoring
	4.5.1 Overview
	Enabling Service Monitoring
	Monitoring Types

	4.5.2 Monitoring Metrics Reference
	Service
	Session
	TopicGroup
	Topic

	4.6 Tutorials
	4.6.1 Getting Started with Recording Service and Shapes Demo
	Edit the Configuration
	Start Shapes Demo
	Start Recording Service
	View the Data in Sqlite3

	4.6.2 Using Recording Service and Admin Console
	Configuration
	Start Recording Service
	Start Shapes Demo
	Viewing with Admin Console
	Administering with Admin Console

	4.6.3 Using Recording Service as a Library
	Include files
	Using the RecordingService class

	4.6.4 Plugging in Custom Storage
	Custom Storage API Overview

	4.6.5 Accessing JSON samples through SQL
	4.6.6 Controlling Recording Service Remotely from an Application
	4.6.7 Listing the Timestamp Tags in a Recording

	4.7 Troubleshooting
	4.7.1 Verbosity

	5 Replay Service
	5.1 Usage
	5.1.1 Starting Replay Service
	5.1.2 Stopping Replay Service
	5.1.3 Replay Service Command-Line Parameters
	5.1.4 Replay Service Runtime Behavior
	5.1.5 Working With Large Data
	5.1.6 Choosing the Sample Order for Replaying Data
	5.1.7 Recreating the State of the World when Replaying (Replaying Instance History)
	5.1.8 Jumping in Time while Replaying
	5.1.9 Using Debug Mode while Replaying

	5.2 Operating System Daemon
	5.3 Configuration
	5.3.1 XML Tags for Configuring Replay Service
	5.3.2 Replay Service Tag
	Example: Specify a Replay Service Configuration in XML

	5.3.3 Administration
	5.3.4 Monitoring
	5.3.5 Storage
	SQLite
	Plugin

	5.3.6 Legacy
	5.3.7 Domain Mapping
	5.3.8 DomainParticipant
	5.3.9 Playback
	Debug mode

	5.3.10 Data Selection
	5.3.11 Time Range
	5.3.12 Session
	5.3.13 Topic Group
	5.3.14 Topic
	5.3.15 Plugins
	5.3.16 Support for Security Plugins
	Example: Configuring a Replay Instance using Security
	Example: Configuring Replay Service to use a Certificate Revocation List (CRL)
	Example: Configuring Replay Service for Dynamic Certificate Renewal

	5.4 Remote Administration
	5.4.1 Enabling Remote Administration
	5.4.2 Available Service Resources
	5.4.3 Remote API Overview
	5.4.4 Replay Service

	5.5 Monitoring
	5.5.1 Overview
	Enabling Service Monitoring
	Monitoring Types

	5.5.2 Monitoring Metrics Reference
	Service
	Session
	TopicGroup
	Topic

	5.6 Tutorials
	5.6.1 Example: Getting Started with Replay and Shapes Demo
	Start Shapes Demo and Subscribe to Squares
	Start Replay Service

	5.6.2 Example: Replaying Data at a Different Rate
	Edit the Replay Configuration
	Start Shapes Demo
	Start Replay Service

	5.6.3 Example: Plugging in Custom Storage
	Custom Storage API Overview

	5.6.4 Using Timestamp Tags with Replay Service
	5.6.5 Jump in time in Replay Service
	5.6.6 Using Debug mode in Replay Service
	5.6.7 Instance History replay

	5.7 Troubleshooting
	5.7.1 No Input File
	5.7.2 Table Not Found Errors
	5.7.3 Receiving the data twice

	6 Converter
	6.1 Usage
	6.1.1 Starting Converter
	6.1.2 Converter Command-Line Parameters
	6.1.3 Working With Large Data

	6.2 Converter Configuration
	6.2.1 How to Load the XML Configuration
	6.2.2 XML Syntax and Validation
	6.2.3 Builtin Configuration of Converter
	6.2.4 XML Tags for Configuring Converter
	6.2.5 Converter Tag
	Example: Specify a Configuration in XML

	6.2.6 Input Storage
	6.2.7 Output Storage
	6.2.8 SQLite
	6.2.9 CSV
	6.2.10 Fileset
	6.2.11 Rollover
	6.2.12 Legacy
	6.2.13 Domain Mapping
	6.2.14 Plugin
	6.2.15 Data Selection
	6.2.16 Time Range
	6.2.17 DomainParticipant
	6.2.18 Session
	6.2.19 Topic Group
	6.2.20 Topic
	6.2.21 Converter’s Builtin Configuration Details

	6.3 Tutorials
	6.3.1 Using Timestamp Tags with Converter

	6.4 Troubleshooting
	6.4.1 Table Not Found Errors

	7 XML Converter
	7.1 Running the XML converter
	7.2 XMLConverter Command-Line Parameters

	8 Storage Utility Plugins
	8.1 Storage Utility Plugins
	8.1.1 CSV
	Mapping a data sample into columns
	General case
	Sequences
	Unions
	Data Values

	8.2 Tutorials
	8.2.1 Using the CSV storage utility plugin with Converter
	Setup
	Execution

	9 Indexing Application
	9.1 Indexing Instances
	9.2 Indexing SQLite Tables
	9.3 Running the Indexer
	9.4 Indexer Command-Line Parameters

	10 Software Development Kit
	11 Common Infrastructure
	11.1 Configuring RTI Services
	11.1.1 How to Load and Select an XML Configuration
	Loading from Files
	Loading from In-Memory Strings
	Selecting which Configuration to Run
	Default Files
	XML Syntax and Validation
	Listing Available Configurations
	Configuration Variables

	11.1.2 How to Load Default QoS Profiles
	11.1.3 How to Set Logging Properties
	Command-Line Options
	Library API
	XML Configuration

	11.1.4 How to Run as an Operating System Daemon
	Linux and macOS Systems
	Windows Systems

	11.1.5 How to use a License File with RTI Services
	11.1.6 Key Terms

	11.2 Application Resource Model
	11.2.1 Example: Simple Resource Model of a Connext Application
	11.2.2 Resource Identifiers
	Escaped Identifiers
	Example: Resource Identifiers of a Generic Connext Application
	Example: Resource Identifiers Generated from XML Entity Model

	11.3 Remote Administration Platform
	11.3.1 Remote Interface
	Standard Methods
	Custom Methods
	Example: Database Rollover

	11.3.2 Communication
	Reply Sequence
	Example: Controlling services remotely from a Connext Application

	11.3.3 Common Operations
	Create Resource
	Get Resource
	Update Resource
	Set Resource State
	Get Resource State
	Delete Resource

	11.4 Monitoring Distribution Platform
	11.4.1 Distribution Topic Definition
	Example: Monitoring of Generic Application

	11.4.2 DDS Entities
	11.4.3 Monitoring Metrics Publication
	Configuration Distribution Topic
	Event Distribution Topic
	Periodic Distribution Topic
	Calculation
	Publication

	11.4.4 Monitoring Metrics Reference
	Statistic Variable
	Host Metrics
	Process Metrics
	Base Entity Resource Metrics
	Network Performance Metrics
	Thread Metrics

	11.5 Plugin Management
	11.5.1 Shared Library
	Configuration

	11.5.2 Library API

	12 Release Notes
	12.1 Supported Platforms
	12.2 Compatibility
	12.3 What’s New in 7.3.0 LTS
	12.3.1 Support for RTI FlatData and Zero Copy transfer over shared memory with discovered types

	12.4 What’s Fixed in 7.3.0 LTS
	12.4.1 Data Corruption
	[Critical] Recording Service stored wrong XCDR version into SQLite databases *

	12.5 Previous Releases
	12.5.1 What’s New in 7.2.0
	Recordings converted to CSV can include the Source timestamp
	Support for dynamic certificate renewal
	Support for dynamic certificate revocation
	Third-party software changes

	12.5.2 What’s New in 7.1.0
	Third-Party Software Upgrades

	12.5.3 What’s Fixed in 7.1.0
	[Critical] Recording Service reported an exception when recording or replaying type registered as a union
	[Critical] Recording Service Crashed if -maxObjectsPerThread set too small
	Fixes Related to Vulnerabilities
	[Critical] Recording Service crashed when loading a malicious XML configuration file
	User Impact without Security
	User Impact with Security

	Fixes Related to Usability
	[Major] The Instance History Replay feature did not publish all relevant samples
	[Trivial] Unexpected ERROR prefix in Converter Service standard logs

	12.5.4 What’s New in 7.0.0
	Ability to replay data in reverse order
	New tags to replay data with original sample info
	Ability to store DomainParticipant partitions
	Third-party software upgrades

	12.5.5 What’s Fixed in 7.0.0
	[Minor] Schema files not compliant with DDS-XML specification

	12.6 Known Issues
	12.6.1 Recording Service may Fail when Current Working Directory in c:\Program Files
	12.6.2 Some tags in the XML configuration must be grouped in a strict order

	Index

