
RTI Routing Service

User's Manual

Version 7.3.0

Contents

1 Copyrights and Notices 1

2 Introduction 3
2.1 How To Read This Manual . 4
2.2 Paths Mentioned in Documentation . 4
2.3 Files Mentioned in Documentation . 6

3 Routing Data: Connecting and Scaling Systems 7
3.1 Routing a Topic between two different domains . 8

3.1.1 Define the service configuration element . 8
3.1.2 Specify which domains to join . 9
3.1.3 Define a processing context . 10
3.1.4 Define the data flow . 10

3.2 Routing a group of Topics . 12
3.3 Using custom QoS Profiles . 14

3.3.1 Defining a QoS Library . 15
3.3.2 Specifying QoS for DDS entities . 16
3.3.3 Applying topic filters to DDS Inputs and Outputs 17

3.4 Traversing Wide Area Networks . 18
3.4.1 Define a QoS profile that configures the RTI TCP transport 20
3.4.2 Specify the domains to join and which transport to use 22
3.4.3 Specify the Topics to be routed . 23

3.5 Key Terms . 24

4 Controlling Data: Processing Data Streams 26
4.1 DynamicData as a Data Representation Model . 27
4.2 Aggregating Data From Different Topics . 28

4.2.1 Develop a Custom Processor . 29
4.2.2 Create a Shared Library . 30
4.2.3 Define a Configuration with the Aggregating TopicRoute 30

Configure a plugin library . 30
Configure a Routing Service with the custom routing paths 31

4.3 Splitting Data From a single Topic . 32
4.3.1 Custom Processor implementation . 33
4.3.2 Define a Configuration with the Splitting TopicRoute 33

4.4 Periodic and Delayed Action . 34
4.5 Simple data transformation: introduction to Transformation 34

i

4.5.1 Transformations vs Processors . 35
4.6 What stream processing patterns can I perform? . 36
4.7 Key Terms . 36

5 Data Integration: Combining Different Data Domains 38
5.1 Unified Data Representation . 40
5.2 Integrating a File-Based Domain . 40

5.2.1 Develop a Custom Adapter . 41
Implement a StreamReader for Reading Data . 42
Implement a StreamWriter for Writing Data . 44

5.2.2 Create a Shared Library . 45
5.2.3 Define a Configuration that Integrates DDS with the File Adapter 46

Configure a Plugin Library . 46
Define a Connection Linked to the Adapter . 47
Define the Data Flows that Read and Write from Your Adapter 47

5.3 Discovery Capabilities . 51
5.3.1 Discovery in a File-Based Domain . 52

5.4 Key Terms . 53

6 Remote Administration 54
6.1 Overview . 54

6.1.1 Enabling Remote Administration . 54
6.1.2 Available Service Resources . 54

Example . 55
6.1.3 Resource Object Representations . 58

6.2 API Reference . 59
6.2.1 Remote API Overview . 59
6.2.2 Service . 61
6.2.3 DomainRoute . 65
6.2.4 Connection . 66
6.2.5 Session . 68
6.2.6 AutoRoute . 71
6.2.7 Route . 73
6.2.8 Input/Output . 74

6.3 Example: Configuration Reference . 76
6.4 The Remote Administration Shell . 78

6.4.1 Remote Shell Commands . 78
6.4.2 Command: add_peer . 79
6.4.3 Command: create . 79
6.4.4 Command: delete . 80
6.4.5 Command: disable . 80
6.4.6 Command: enable . 81
6.4.7 Command: get . 81
6.4.8 Command: load . 81
6.4.9 Command: pause . 82
6.4.10 Command: resume . 82
6.4.11 Command: save . 82
6.4.12 Command: shutdown . 82

ii

6.4.13 Command: unload . 83
6.4.14 Command: update . 83

7 Monitoring 86
7.1 Overview . 86

7.1.1 Enabling Service Monitoring . 86
7.1.2 Monitoring Types . 86

7.2 Monitoring Metrics Reference . 88
7.2.1 Service . 88
7.2.2 DomainRoute . 89
7.2.3 Session . 91
7.2.4 AutoRoute . 92
7.2.5 Route . 94
7.2.6 Input/Output . 95

8 Usage 98
8.1 Command-Line Executable . 98

8.1.1 Starting Routing Service . 98
8.1.2 Stopping Routing Service . 99
8.1.3 Routing Service Command-Line Parameters . 99

8.2 Routing Service Library . 101
8.2.1 Example . 102

8.3 Operating System Daemon . 103

9 Configuration 104
9.1 Configuring Routing Service . 104
9.2 XML Tags for Configuring RTI Routing Service . 104

9.2.1 Routing Service Tag . 105
Example: Specifying a configuration in XML . 107

9.2.2 Administration . 108
9.2.3 Monitoring . 111

Monitoring Configuration Inheritance . 113
9.2.4 Domain Route . 114

Example: Mapping between Two DDS Domains . 118
Example: Mapping between a DDS Domain and raw Sockets 118

9.2.5 Session . 118
9.2.6 Route . 121
9.2.7 Input/Output . 125

Creation Modes . 128
Specifying Types . 129
Data Transformation . 131

9.2.8 Auto Route . 132
9.2.9 Plugins . 138

9.3 Enabling Distributed Logger . 139
9.4 Support for Extensible Types . 140

9.4.1 Example: Samples Published by Two Writers of Type A and B, Respectively 140
9.5 Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 141

iii

9.5.1 Example: Configuration to enable both FlatData and Zero Copy transfer over shared
memory . 141

9.5.2 Support for Securıty Plugıns (RTI Security Plugins) 143
9.5.3 Example: Configuring a Routing Service Instance using Security 143
9.5.4 Example: Configuring Routing Service to use a Certificate Revocation List (CRL) . . 145
9.5.5 Example: Configuring Routing Service for Dynamic Certificate Renewal 147

9.6 Support for Application Acknowledgment . 150

10 Software Development Kit 151

11 Core Concepts 153
11.1 Resource Model . 153

11.1.1 Directory . 155
11.1.2 Service . 155

Plugin Interaction . 155
Service States . 156

11.1.3 DomainRoute . 157
DomainRoute States . 157

11.1.4 Connection . 158
Plugin Interaction . 158
Connection States . 159
Type Registration . 160

11.1.5 Session . 160
Plugin Interaction . 161
Session States . 161

11.1.6 Route . 163
Plugin Interaction . 163
Route States . 163

11.1.7 AutoRoute . 167
AutoRoute States . 168

11.1.8 Input . 168
Plugin Interaction . 169
Input States . 169

11.1.9 Output . 170
Plugin Interaction . 171
Output States . 171

11.2 Builtin plugins . 173
11.2.1 DDS Adapter . 173

DDS AdapterPlugin . 176
DDS Connection . 176
DDS Session . 176
DDS StreamReader . 177
DDS StreamWriter . 177

11.2.2 Forwarding Processor . 178

12 Advanced Use Cases 179
12.1 Propagating Content Filters . 179

12.1.1 Enabling Filter Propagation . 179

iv

12.1.2 Filter Propagation Behavior . 181
12.1.3 Filter Propagation Events . 182
12.1.4 Restrictions . 182

12.2 Topic Query Support . 182
12.2.1 Dispatch Mode . 183
12.2.2 Propagation Mode . 183
12.2.3 Restrictions . 186

13 Common Infrastructure 187
13.1 Configuring RTI Services . 187

13.1.1 How to Load and Select an XML Configuration 187
Loading from Files . 187
Loading from In-Memory Strings . 188
Selecting which Configuration to Run . 189
Default Files . 190
XML Syntax and Validation . 191
Listing Available Configurations . 192
Configuration Variables . 193

13.1.2 How to Load Default QoS Profiles . 194
13.1.3 How to Set Logging Properties . 194

Command-Line Options . 195
Library API . 195
XML Configuration . 195

13.1.4 How to Run as an Operating System Daemon . 196
Linux and macOS Systems . 196
Windows Systems . 197

13.1.5 How to use a License File with RTI Services . 198
13.1.6 Key Terms . 198

13.2 Application Resource Model . 199
13.2.1 Example: Simple Resource Model of a Connext Application 199
13.2.2 Resource Identifiers . 200

Escaped Identifiers . 201
Example: Resource Identifiers of a Generic Connext Application 201
Example: Resource Identifiers Generated from XML Entity Model 202

13.3 Remote Administration Platform . 202
13.3.1 Remote Interface . 203

Standard Methods . 204
Custom Methods . 204

13.3.2 Communication . 205
Reply Sequence . 207
Example: Controlling services remotely from a Connext Application 207

13.3.3 Common Operations . 207
Create Resource . 208
Get Resource . 208
Update Resource . 209
Set Resource State . 210
Get Resource State . 211
Delete Resource . 211

v

13.4 Monitoring Distribution Platform . 212
13.4.1 Distribution Topic Definition . 212

Example: Monitoring of Generic Application . 214
13.4.2 DDS Entities . 216
13.4.3 Monitoring Metrics Publication . 216

Configuration Distribution Topic . 216
Event Distribution Topic . 216
Periodic Distribution Topic . 217

13.4.4 Monitoring Metrics Reference . 217
Statistic Variable . 217
Host Metrics . 218
Process Metrics . 219
Base Entity Resource Metrics . 220
Network Performance Metrics . 221
Thread Metrics . 221

13.5 Plugin Management . 222
13.5.1 Shared Library . 223

Configuration . 223
13.5.2 Library API . 225

14 Tutorials 226
14.1 Starting Shapes Demo . 227
14.2 Example: Routing a single specific Topic . 227
14.3 Example: Routing All Data from One Domain to Another 229
14.4 Example: Changing Data to a Different Topic of Same Type 230
14.5 Example: Changing Some Values in Data . 231
14.6 Example: Transforming the Data’s Type and Topic with an Assignment Transformation . . . 232
14.7 Example: Transforming the Data with a Custom Transformation 232
14.8 Example: Using Remote Administration . 234
14.9 Example: Monitoring . 237
14.10 Example: WAN Connectivity using the TCP transport . 239

14.10.1 Important Considerations . 246
14.11 Example: Using a File Adapter . 246
14.12 Example: Using a Shapes Processor . 247

15 Release Notes 248
15.1 Supported Platforms . 248
15.2 Compatibility . 248
15.3 What’s New in 7.3.0 LTS . 249

15.3.1 Routes that cross two instances of Routing Service now work by default 249
15.3.2 Support for RTI FlatData and Zero Copy Transfer Over Shared Memory with Dis-

covered Types . 249
15.3.3 C++ API class rti::apputils::LogConfig deprecated 249

15.4 What’s Fixed in 7.3.0 LTS . 249
15.5 Crashes . 250

15.5.1 [Critical] Segmentation fault when shutting down a Routing Service using
<reuse_monitoring_participant> tag . 250

vi

15.5.2 [Critical] Routing Service could crash when an Auto-topic Route’s or Input’s content
filter expression was updated remotely . 250

15.5.3 [Critical] Possible race condition and crash in Routing Service when accessing the
XML DOM . 250

15.5.4 [Critical] Segmentation fault when using Routing Service and Distributed Logger . . 251
15.6 Data Corruption . 251

15.6.1 [Critical] Routing Service did not flag incompatible types when using XML types in
the configuration . 251

15.6.2 [Critical] Routing Service failed to forward samples or published samples with wrong
data representation . 252

15.6.3 [Major] Assignment Transformation did not work with derived types 252
15.7 Other . 252

15.7.1 [Critical] Routing Service became non-responsive 252
15.7.2 [Critical] Concurrent access to XML DOM from Routing Service Library APIs may

have caused corruption or invalid results . 253
15.7.3 [Critical] Samples not received from Routing Service when route’s output configured

to use compression and XCDR2 encapsulation . 253
15.7.4 [Major] Routing Service Shell did not print complete product version 254
15.7.5 [Major] Routing Service Socket Adapter example did not properly resolve hostname 254
15.7.6 [Minor] <configuration_variables> ignored when used in <types> and <qos_library> 254

15.8 Previous Releases . 255
15.8.1 What’s New in 7.2.0 . 255

Support for dynamic certificate renewal . 255
Support for dynamic certificate revocation . 256
Support for Monitoring Library 2.0 . 256
Third-party software changes . 257

15.8.2 What’s Fixed in 7.2.0 . 257
[Critical] Possible race condition when propagating content filters 257
[Major] Entity Listener API sometimes fired the STARTED event twice 257
[Major] Overflows caused issues in period calculations 257

15.8.3 What’s New in 7.1.0 . 258
15.8.4 What’s Fixed in 7.1.0 . 258

[Critical] Routing Service Crashed if -maxObjectsPerThread Set Too Small 258
15.8.5 What’s New in 7.0.0 . 258

Third-party software changes . 258
15.8.6 What’s Fixed in 7.0.0 . 259

[Critical] Routing Service stream query propagation did not work when using more
than one session . 259

[Major] Samples published out of order from the same virtual GUID were dropped . . 259
[Minor] Schema files not compliant with DDS-XML specification 259
[Trivial] Fourth digit of product version not logged by Routing Service at startup . . . 259

15.9 Known Issues . 260
15.9.1 Attempting to route builtin Security Logging topic causes Routing Service crash . . . 260
15.9.2 Some tags in the XML configuration must be grouped in a strict order 260
15.9.3 Routing Service Adapters built using Java fail on Windows machines when using

OpenJDK . 260

Index 261

vii

Chapter 1

Copyrights and Notices

© 2010-2024 Real-Time Innovations, Inc. All rights reserved. April 2024

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase, “Your
Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations,
Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publicationmay be reproduced, stored in a retrieval system, or transmitted in any form (including
electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-Time Innova-
tions, Inc. The software described in this document is furnished solely under and subject to RTI’s standard
terms and conditions available at https://www.rti.com/terms and in accordance with your License Acknowl-
edgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to the extent otherwise
accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party license
terms and conditions, including open source license terms and conditions. Copies of applicable third-party
licenses and notices are located at community.rti.com/documentation. IT IS YOUR RESPONSIBILITY TO
ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES WITH THE CORRESPOND-
ING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

1

https://www.rti.com/terms
https://community.rti.com/documentation

RTI Routing Service User's Manual, Version 7.3.0

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations, Inc.
Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding mainte-
nance and support of RTI’s software.

Deprecatedmeans that the item is still supported in the release, but will be removed in a future release. Removed
means that the item is discontinued or no longer supported. By specifying that an item is deprecated in a release,
RTI hereby provides customer notice that RTI reserves the right after one year from the date of such release and,
with or without further notice, to immediately terminate maintenance (including without limitation, providing
updates and upgrades) for the item, and no longer support the item, in a future release.

Technical Support Real-Time Innovations, Inc. 232 E. Java Drive Sunnyvale, CA 94089 Phone: (408)
990-7444 Email: support@rti.com Website: https://support.rti.com/

2

mailto:support@rti.com
https://support.rti.com/

Chapter 2

Introduction

RTI® Routing Service, is an out-of-the-box solution that allows developers to rapidly scale and integrate
real-time systems that are disparate or geographically dispersed. It scales RTI Connext® applications across
domains, LANs and WANs, including firewall and NAT traversal.

It also supports DDS-to-DDS bridging by allowing you to make transformations in the data along the way. This
allows unmodified DDS applications to communicate even if they were developed using incompatible interface
definitions. This is often the case when integrating new and legacy applications or independently developed
systems. Using RTI Routing Service Adapter SDK, you can extend Routing Service to interface with non-DDS
systems using off-the-shelf or custom-developed adapters.

Traditionally, Connext applications can only communicate with applications in the same domain. With Routing
Service, you can send and receive data across domains. You can even transform and filter the data along the
way! Not only can you change the actual data values, you can change the data’s type. So the sending and
receiving applications don’t even need to use the same data structure. You can also control which data is sent
by using allow and deny lists.

Figure 2.1: Routing Service Overview

Simply set up Routing Service to pass data from one domain to another and specify any desired data filtering
and transformations. No changes are required in the Connext applications.

Key benefits of Routing Service:

• It can significantly reduce the time and effort spent integrating and scaling Connext applications across
Wide Area Networks and Systems-of-Systems.

• With Routing Service, you can build modular systems out of existing systems. Data can be contained

3

RTI Routing Service User's Manual, Version 7.3.0

in private domains within subsystems and you can designate that only certain “global topics” can be
seen across domains. The same mechanism controls the scope of discovery. Both application-level and
discovery traffic can be scoped, facilitating scalable designs.

• Routing Service provides secure deployment across multiple sites. You can partition networks and protect
them with firewalls and NATS and precisely control the flow of data between the network segments.

• It allows you to manage the evolution of your data model at the subsystem level. You can use Routing
Service to transform data on the fly, changing topic names, type definitions, QoS, etc., seamlessly bridging
different generations of topic definitions.

• Routing Service provides features for development, integration and testing. Multiple sites can each locally
test and integrate their core application, expose selected topics of data, and accept data from remote sites
to test integration connectivity, topic compatibility and specific use-cases.

• It connects remotely to live, deployed systems so you can perform live data analytics, fault condition
analysis, and data verification.

• RTI Routing Service Adapter SDK allows you to quickly build and deploy bridges to integrate DDS and
non-DDS systems. This can be done in a fraction of the time required to develop completely custom
solutions. Bridges automatically inherit advanced DDS capabilities, including automatic discovery of
applications; data transformation and filtering; data lifecycle management and support across operating
systems; programming languages and network transports.

2.1 How To Read This Manual

The content of this manual assumes you are familiar with Connext concepts. While you can read any section
independently, if you are new to Routing Service we recommend starting with the Tutorials to get an overview
of what this application can do.

Then read the Core Concepts for deeper knowledge of Routing Service specific concepts. You can then refer to
the Configuration to start defining and customizing your Routing Service.

You can read any of the other sections as you see fit based on what your application or system needs are.

2.2 Paths Mentioned in Documentation

This documentation refers to:

• <NDDSHOME> This refers to the installation directory for Connext.

The default installation paths are:

– macOS® systems: /Applications/rti_connext_dds-version

– Linux® systems, non-root user: /home/your user name/
rti_connext_dds-version

– Linux systems, root user: /opt/rti_connext_dds-version

2.1. How To Read This Manual 4

RTI Routing Service User's Manual, Version 7.3.0

Figure 2.2: Quickly build and deploy bridges between natively incompatible protocols and technologies using
Connext

2.2. Paths Mentioned in Documentation 5

RTI Routing Service User's Manual, Version 7.3.0

– Windows® systems, user without Administrator privileges: <your home directory>\
rti_connext_dds-version

– Windows systems, user with Administrator privileges: C:\Program Files\
rti_connext_dds-version

You may also see $NDDSHOME or %NDDSHOME%, which refers to an environment variable set to the
installation path.

Whenever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users: When using a command prompt to enter a command that includes the
path C:\Program Files (or any directory name that has a space), enclose the path in quo-
tation marks. For example: “C:\Program Files\rti_connext_dds-version\bin\
rticlouddiscoveryservice.bat”

Or if you have defined the NDDSHOME environment variable: "%NDDSHOME%\bin\
rticlouddiscoveryservice.bat"

• <path to examples> By default, examples are copied into your home directory the first time you
run RTI Launcher or any script in <NDDSHOME>/bin. This document refers to the location of the
copied examples as <path to examples>.

Wherever you see <path to examples>, replace it with the appropriate path.

Default path to the examples:

– macOS systems: /Users/your user name/rti_workspace/version/examples

– Linux systems: /home/your user name/rti_workspace/version/examples

– Windows systems: your Windows documents folder\rti_workspace\
version\examples. Where 'your Windows documents folder' depends on your
version of Windows. For example, on Windows 10 systems, the folder is C:\Users\your
user name\Documents.

2.3 Files Mentioned in Documentation

Table 2.1: Files mentioned in the documentation
File Description
ServiceCommon.idl in
<NDDSHOME>/resource/idl/Ser-
viceCommon.idl

Definitions of infrastructure types.

ServiceAdmin.idl in
<NDDSHOME>/resource/idl/Ser-
viceAdmin.idl

Definition of remote administration types.

RoutingServiceMonitor-
ing.idl in <NDDSHOME>/re-
source/idl/RoutingServiceMonitor-
ing.idl

Definition of monitoring types specific to Routing Service.

2.3. Files Mentioned in Documentation 6

Chapter 3

Routing Data: Connecting and Scaling
Systems

This chapter is devoted to present the most elemental function of Routing Service: routing data across multiple
DDS domains. Routing data refers to the process of propagating the Topic user data from one domain to
another, allowing systems to interconnect and scale.

Figure 3.1 shows the most basic view of the Routing Servicemodel. You can think of it as a black box composed
of multiple Input DataReaders and Output DataWriters, each associated with a specific Topic. Data flows from
the input DataReaders to the output DataWriters. The input DataReaders receive data from the publication
side, whereas the output DataWriters send data to the subscription side.

Figure 3.1: Basic model of Routing Service

The Routing Service engine takes the data from an input DataReader and passes it along to a specific output
DataWriter, as if there was a link connecting input and output. This activity is known as the forwarding process.
Routing Service allows configuring this forwarding process.

The following sections will guide you through all the Routing Service entities involved in the forwarding process
and how they are configured.

Note: All the following sections assume you are already familiar with basic DDS concepts. Additionally you
should be familiar with the RTI Shapes Demo tool. Refer to Tutorials if you need more information.

7

RTI Routing Service User's Manual, Version 7.3.0

3.1 Routing a Topic between two different domains

The most basic use case of Routing Service is about forwarding the data for a specific Topic from one domain
to another. This process is known as routing a Topic. Figure 3.2 illustrates this concept.

Figure 3.2: Basic Topic routing among domains for a Topic with name Squares

The samples for the Topic named Square in domain 0 are forwarded to the same Topic but in domain 1. You
will first run Example: Routing a single specific Topic in your machine to see the functionality in action. Then
we will break down all the parts related to Routing Service.

Let’s review step-by-step each element that appears in the Routing Service XML configuration, understanding
its purpose and what each of its entities is modeling.

3.1.1 Define the service configuration element

The first step is to define the top-level element for the Routing Service configuration:

<routing_service name="SquareRouter">
...

</routing_service>

This element defines a configuration profile for Routing Service. It must appear within the tag <dds>–the root
tag for all the elements related to Connext–. The configuration shall contain a name attribute that uniquely
identifies the service, and determines the service configuration name. You can define multiple service configu-
rations in one XML file, and select one to instantiate a Routing Service by providing the configurations name
with the -cfgName option (or ServiceProperty::cfg_name member when using the Library API).

As we’ll see further below, the name attribute is an important concept since it establishes the configuration
name of a Routing Service entity. This name can be used from other elements in the configuration to refer to a
specific entity.

See also:

Usage
How to run Routing Service using the shipped executable or embedding it into your application with the
Library API.

Routing Service Tag
Reference for the XML configuration of the service element.

3.1. Routing a Topic between two different domains 8

RTI Routing Service User's Manual, Version 7.3.0

3.1.2 Specify which domains to join

Within the top-level Routing Service configuration we need to specify which domains Routing Service will be
joining. The specification of the domains occurs within theDomainRoute, which represents amapping between
multiple DDS domains through a collection of DomainParticipants.

In our example, we are joining domains 0 and 1 and we relay on the default participant QoS settings, so the
XML looks as follows:

<domain_route name="DomainRoute">

<participant name="domain0">
<domain_id>0</domain_id>

</participant>

<participant name="domain1">
<domain_id>1</domain_id>

</participant>

...
</domain_route>

You can specify as many DomainParticipants as needed. An important aspect to pay attention is the configu-
ration name assigned to each participant. This name is what uniquely identifies a domain and is referenced
later by Inputs and Outputs to indicate the DomainParticipant from which the DataReader and DataWriter are
created, respectively.

Note: The value specified with <domain_id>> in the XML participant configuration can be offset with the
-domainIdBase command-line option. The participant will be created with domain ID = <domain_id>
+ -domainIdBase.

In addition, the name attribute of the participant configuration is used to form the name assigned to the actual
DomainParticipant by setting the EntityName QoS.

See also:

Table 9.8 in Domain Route
How Routing Service constructs the name assigned to the DomainParticipant.

Figure 3.3 shows the DomainRoute resource model, denoting the association with the service and participant
entities.

Figure 3.3: DomainRoute resource model

3.1. Routing a Topic between two different domains 9

RTI Routing Service User's Manual, Version 7.3.0

3.1.3 Define a processing context

One of the main aspects that contributes to the high performance of Routing Service is the ability to parallelize
the processing of the data streams. You can create threading contexts to execute of all the activities related to
the processing of the data streams. A threading context involves one or more threads–a thread pool–, and is
specified by the Session entity.

In our example we define a single Session to take care of processing the data for the singleTopic that is forwarded:

<session name="Session">

...
</session>

The Session must appear inside the DomainRoute and you can specify as many Sessions as you want. In our
configuration we rely on the default values, which define a single-threaded context. You could specify a thread
pool if, for example, you wanted to parallelize the forwarding of multiple Topics.

Figure 3.4 shows the Session resource model.

Figure 3.4: Session resource model

See also:

Session configuration in Session
Reference for the XML configuration of the Session element.

3.1.4 Define the data flow

The last step consists of defining the flow of data streams. For the Topic routing use case, we need to indicate
that the data from a Topic in the publication side shall be routed to the same topic in the subscription
side. The TopicRoute is the entity that allows you to define these data flows for the forwarded data.

A TopicRoute is a data processing unit composed of the DDS Inputs and Outputs that receive and send the data,
respectively. Hence a TopicRoute effectively represents the establishment of a route that data streams follow.
Data from the publication side is forwarded to the subscription side.

In our example we just define a TopicRoute with a single Input–containing a DataReader– and a single Out-
put–containing DataWriter–.

<topic_route name="RouteSquare">
<input participant="domain0">

<topic_name>Square</topic_name>

(continues on next page)

3.1. Routing a Topic between two different domains 10

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<registered_type_name>ShapeType</registered_type_name>

</input>
<output participant="domain1">

<topic_name>Square</topic_name>
<registered_type_name>ShapeType</registered_type_name>

</output>
</topic_route>

Notice how the Input and Output are attached to a concrete DomainParticipant using the the participant
attribute. The value of this attribute is the name of one the participant configurations defined in the parent
DomainRoute. This is how you indicate to which domain the Input and Output are connected to–or from which
DomainParticipant the DataReader and DataWriter are created, respectively–.

In our example, the Input is attached to the participant configuration with name domain0 for domain 0,
whereas the Output is attached to domain1 for domain 1.

Additionally, for each Input and Output we need to specify at least two elements:

• Name of their associated Topic. This indicates the name of the topic for which the DataReader and
DataWriter are created. In this example, both entities are created from the Square topic.

• Registered name of the type associated with the Topic. This is the name used to identify the type of
the user-data samples that are read and written by the input DataReader and output DataWriter. Routing
Service needs to obtain the information prior to create the DataReader and DataWriter. There are two
provide the type information:

– Manually by defining the type in XML

– Through discovery from any of the DomainParticipant within the parent DomainRoute.
This is the mechanism our example relies to get the type and in this case the type is
identified by the registered name ShapeType (you can find the the definition of this
type in [NDDSHOME]/resource/idl/ShapeType.idl)

You can learn more about type registration and how to configure it in Specifying Types.

For this case of routing a Topic, both the input and output topic its associated type are the same. This is
often the situation when you want to simply route data across domains for system integration and scalability.
Nevertheless, Routing Service is flexible to allow using different topics and types. In that case you will need to
plug custom code to perform the routing. Controlling Data: Processing Data Streams addresses this use case.

Figure 3.5 shows the TopicRoute resource model.

See also:

TopicRoute configuration in Route
Reference for the XML configuration of the TopicRoute element.

3.1. Routing a Topic between two different domains 11

RTI Routing Service User's Manual, Version 7.3.0

Figure 3.5: TopicRoute resource model

3.2 Routing a group of Topics

In section Routing a Topic between two different domains we learned how to route a specific Topic. We showed
how to create a dedicated TopicRoute to forward the data for a concrete Topic. You can replicate this process
for each Topic you want to route.

However, this process may become repetitive and in some cases avoidable. When such is the case, you can use
the AutoTopicRoute to automate the routing for a group of Topics. An AutoTopicRoute allows you to specify
a set of potential TopicRoutes that Routing Service will create on-demand upon dynamic discovery of the Topic
to be routed.

Figure 3.6 shows the concept of the AutoTopicRoute. An AutoTopicRoute specifies a regular expression that is
applied upon the discovery of any new Topic. The AutoTopicRoute creates a new TopicRoute for each newly
discovered Topic whose name matches with the AutoTopicRoute’s expression.

An AutoTopicRoute allows defining a set of potential TopicRoutes that have a single Input and a single Output,
both tied to their corresponding domain. A regular expression can be specified separately for publication and
subscription Topics. Hence, when the AutoTopicRoute matches either with a publication or subscription Topic,
it will create a TopicRoute to route the matched Topic.

Let’s first run Example: Routing All Data from One Domain to Another to see this functionality. This ex-
ample shows how to configure a Routing Service to route all the Topics from domain 0 to domain 1 using an
AutoTopicRoute. To accomplish that, we have defined the AutoTopicRoute as follows:

<auto_topic_route name="RouteAll">
<publish_with_original_info>true</publish_with_original_info>
<input participant="domain1">

<allow_topic_name_filter>*</allow_topic_name_filter>
(continues on next page)

3.2. Routing a group of Topics 12

RTI Routing Service User's Manual, Version 7.3.0

Figure 3.6: AutoTopicRoute concept

(continued from previous page)
<allow_registered_type_name_filter>*</allow_registered_type_name_

→˓filter>
<!--

Exclude RTI monitoring, administration and logging
topics. They all start with 'rti/'

-->
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</input>
<output participant="domain2">

<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*</allow_registered_type_name_

→˓filter>
<!--

Exclude RTI monitoring, administration and logging
topics. They all start with 'rti/'

-->
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</output>
</auto_topic_route>

The configuration of the AutoTopicRoute is such that matches the name and registered type name of every Topic
on either domain1 or domain2, except the Topics whose name starts with rti/.

An AutoTopicRoute allows you to specify two sets of regular expressions for both the input and output of the
potential TopicRoutes:

• allow_topic_name_filter and allow_registered_type_name_filter specify the

3.2. Routing a group of Topics 13

RTI Routing Service User's Manual, Version 7.3.0

set of Topic names and types that are accepted for the dynamic creation of TopicRoutes. If both ex-
pressions evaluate as true, a new TopicRoute will be created, unless one of the deny filter evaluates as
true.

• deny_topic_name_filter and deny_registered_type_name_filter specify the set
of Topic names and types for which the creation of TopicRoutes is denied. If any of the expressions
evaluate as true, the creation of the TopicRoute will be rejected. These expressions are evaluated after
the allow filters, and only if these evaluated as true.

The configuration for the input and output of the AutoTopicRoute can contain a DataReader and DataWriter
QoS respectively. You can leverage the concept of QoS topic filters to use a different QoS profile based on
the name of the matched Topic (See Applying topic filters to DDS Inputs and Outputs).

You can also observe from the example that the AutoTopicRoute is defined under a Session. This means that all
the created TopicRoutes will run under that context. Figure 3.7 shows the AutoTopicRoute resource model.

Figure 3.7: AutoTopicRoute resource model

See also:

TopicRoute configuration in Auto Route
Reference for the XML configuration of the AutoTopicRoute element.

3.3 Using custom QoS Profiles

In the previous sections, we showed scenarios in which all the DDS entities of Routing Service are created
with default QoS. That is, all the QoS policies are set with the initial default values as specified in the Connext
documentation (see QoS Reference Guide).

For the majority of the cases though, you may want to specify your custom QoS values for the DDS entities of
Routing Service. You can easily do that in XML by defining your QoS Profiles and inherit from them when
specifying the configuration of QoS for each DDS entity.

Let’s take a look to each step individually.

3.3. Using custom QoS Profiles 14

RTI Routing Service User's Manual, Version 7.3.0

3.3.1 Defining a QoS Library

You can define XML QoS profiles for Routing Service the same way you can do it for a regular Connext appli-
cation. You can define QoS libraries containing profiles directly under the <dds> root element. For example:

<dds>
<qos_library name="MyQosLibrary">

<qos_profile name="MyQoSProfile">
<domain_participant_qos>

...
</domain_participant_qos>

<subscriber_qos>
...

</subscriber_qos>

<publisher_qos>
...

</publisher_qos>

<datareader_qos>
...

</datareader_qos>

<datawriter_qos>
...

</datawriter_qos>
</qos_profile>

</qos_library>
</dds>

As we will see shortly in the next step, within the Routing Service configuration you can reference these profiles
in order to configure the corresponding underlying DDS entities.

You can define as many QoS libraries as you want, each with multiple profiles. Additionally, the definition of
QoS libraries can appear either in the same file that contains the Routing Service configuration or in a separate
one. For information on how to configure QoS in XML, see Configuring QoS with XML in the RTI Connext
User’s Manual.

See also:

Loading XML configurations in Configuring RTI Services
How lo load XML configurations in Routing Service.

3.3. Using custom QoS Profiles 15

RTI Routing Service User's Manual, Version 7.3.0

3.3.2 Specifying QoS for DDS entities

You can configure the QoS for each DDS entity that Routing Service creates. To accomplish this, each Routing
Service entity that creates an underlying DDS entity provides a corresponding tag to specify its QoS.

For example, to configure the QoS for the DomainParticipants of a DomainRoute, you can specify a
<domain_participant_qos> tag as follows:

<domain_route name="DomainRoute">

<participant name="domain0">
<domain_participant_qos base_name="MyQosLibrary::MyQosProfile">

<!-- You can override inline any value -->
...

</domain_participant_qos>
...

</participant>

...

The QoS tag can have a base_name attribute to inherit from any available QoS profile, including builtin QoS
profiles. Additionally, inline values for QoS policies can be specified in order to override default values or set
by the base profile.

Table 3.1 shows the a list of Routing Service entities and the DDS entities they create, along with the tags that
configure them.

Table 3.1: Configuration of the Routing Service’s underlying DDS
entities.

Routing Service
Entity

DDS Entity QoS tag

DomainRoute DomainParticipant <domain_participant_qos>
Example:

<domain_route>
<participant>

<domain_participant_qos␣
→˓base_name="...">

Session Publisher <publisher_qos>
Example:

<session>
<publisher_qos base_name="...">

Subscriber <subscriber_qos>
Example:

<session>
<subscriber_qos base_name="...

→˓">

continues on next page

3.3. Using custom QoS Profiles 16

RTI Routing Service User's Manual, Version 7.3.0

Table 3.1 – continued from previous page
Routing Service
Entity

DDS Entity QoS tag

TopicRoute’s Input
or AutoTopi-
cRoute’s Input

DataReader <datareader_qos>
Example:

<topic_route>
<input>

<datareader_qos base_name=
→˓"...">

TopicRoute’s
Output or Au-
toTopicRoute’s
Output

DataWriter <datawriter_qos>
Example:

<topic_route>
<output>

<datawriter_qos base_name=
→˓"...">

3.3.3 Applying topic filters to DDS Inputs and Outputs

You can leverage the concept of topic filters to select a QoS for a DDS Input ’s DataReader and Output ’s
DataWriter. You simply need to define a QoS profile containing top-level QoS with a topic filter each, and
then inherit from this profile when you specify the QoS for the input DataReader and output DataWriter.
Routing Service will select the appropriate QoS when it creates the DataReader and DataWriter based on the
name of their associated Topic.

For example, consider a system where there are three types of Topic categories: user data, monitoring, and
administration. Each category has different QoS requirements. You could define a QoS Profile that contains
three different DataReader QoS configurations, one for each category:

<qos_library name="MyQosLibrary">
<qos_profile name="MyQoSProfileWithFilters">

<datareader_qos topic_filter="UserData_*"> ... </datareader_qos>

<datareader_qos topic_filter="Monitoring_*"> ... </datareader_qos>

<datareader_qos topic_filter="Admin_*"> ... </datareader_qos>

<!-- Same idea for the datawriter_qos -->
...

</qos_profile>
</qos_library>

Then you can define an AutoTopicRoute to route all the Topics in the system by simply indicating that the input
DataReader shall be created using with the QoS obtained from our profile:

<auto_topic_route name="RouteAll">
<input participant="domain0">

<datareader_qos base_name="MyQosLibrary::MyQoSProfileWithFilters">
(continues on next page)

3.3. Using custom QoS Profiles 17

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
</input>
<output participant="domain1">

<datawriter_qos base_name="MyQosLibrary::MyQoSProfileWithFilters">
</output>

</auto_topic_route>

When the AutoTopicRoute creates a TopicRoute for a matching publication or subscription Topic, the QoS for
the TopicRoute’s input and output is resolved by matching the topic filter against the Topic name.

The topic filter is applied at the time the AutoTopicRoute matches with a publication or subscription Topic, so
the right topic name can be used to match against the topic filter. The selected QoS will be used to create the
input DataReader and output DataWriter of the generated TopicRoute.

3.4 Traversing Wide Area Networks

In the previous sections we learned to how to route Topics between domains, understanding the steps required
to join the domains, and defining the TopicRoutes or AutoTopicRoutes to route the data. In this section, we will
focus on routing data between domains separated geographically.

Many systems today have the need to communicate over Wide Area Networks (WAN). This may be the case to
connect systems separated geographically. More importantly, it may be the case to provide system connectivity
to and within the cloud. Access to data centers is often common when there’s a requirement for data analytics.

You can use Routing Service to provide WAN connectivity between sub-systems composed of multiple appli-
cations communicating over a Local Area Network (LAN). This architecture allows you to scale the global
system efficiently creating multiple databus layers dispersed over the WAN. Figure 3.8 shows this use case.

Figure 3.8: WAN traversal with Routing Service.

Routing Service can act as an entiry/exit gateway to provide connectivity to a WAN or cloud-based data center.
The applications running in a LAN only need to know how to reach their gateway Routing Service. Only the
gateway services need to know to contact each other, and they shall be publicly accessible through the
WAN. This model simplifies the network configuration under presence of NATs/Firewalls, since they just need
to be configured to forward the traffic only between the gateway Routing Service.

You can benefit from this architecture by configuring Routing Service to use a WAN-enabled Transport to
provide communication outside of the private LAN or shared memory network. Figure 3.9 illustrates this
setup.

3.4. Traversing Wide Area Networks 18

RTI Routing Service User's Manual, Version 7.3.0

Figure 3.9: Routing Service as WAN/Cloud gateway

3.4. Traversing Wide Area Networks 19

RTI Routing Service User's Manual, Version 7.3.0

Wewill demonstrate how this is possible through the Example: WAN Connectivity using the TCP transport. This
example will help you understand how Routing Service can route Topics between two geographically separated
DDS domains comprised of a set of Connext applications connected in a LAN. The example scenario is shown
in Figure 3.10.

Figure 3.10: Example using the TCP transport to traverse WAN

First run the example to see the communication flowing between the RoutingServices. You can run all the steps
in the same machine for a quicker setup. Let’s go through the steps to configure the gateway Routing Service.

Note: For better understanding of this section, we recommend you get familiar with the RTI TCP Transport.

3.4.1 Define a QoS profile that configures the RTI TCP transport

The configuration of the transport is done through the Property QoS for the DomainParticipant. It requires
specifying a set of properties to load the transport library (if it’s an external transport plugin) and specific
values to configure its behavior. To avoid repeating the same configuration for each participant in Routing
Service, we define a base profile with all the common properties:

<qos_library name="QosLib">
<qos_profile name="TcpWanProfile">

<!--
We define here the common properties to configure the␣

→˓TCP transport,
which includes mostly the loading of the transport␣

→˓implementation library.
Specific values for public address and port are set␣

→˓appropriate on each
Routing Service.

-->
<domain_participant_qos>

<transport_builtin>
<mask>MASK_NONE</mask>

</transport_builtin>
<property>

(continues on next page)

3.4. Traversing Wide Area Networks 20

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<value>

<element>
<name>dds.transport.load_plugins</name>
<value>dds.transport.TCPv4.tcp1</value>

</element>
<element>

<name>dds.transport.TCPv4.tcp1.library</name>
<value>nddstransporttcp</value>

</element>
<element>

<name>dds.transport.TCPv4.tcp1.create_
→˓function</name>

<value>NDDS_Transport_TCPv4_create</value>
</element>
<element>

<name>dds.transport.TCPv4.tcp1.parent.classid
→˓</name>

<value>NDDS_TRANSPORT_CLASSID_TCPV4_WAN</
→˓value>

</element>
<element>

<name>dds.transport.TCPv4.tcp1.public_address
→˓</name>

<value>$(PUBLIC_ADDRESS)</value>
</element>
<element>

<name>dds.transport.TCPv4.tcp1.server_bind_
→˓port</name>

<value>$(BIND_PORT)</value>
</element>
<element>

<name>dds.transport.TCPv4.tcp1.disable_nagle
→˓</name>

<value>1</value>
</element>

</value>
</property>
<discovery>

<initial_peers>
<element>$(REMOTE_RS_PEER)</element>

</initial_peers>
</discovery>

</domain_participant_qos>
</qos_profile>

</qos_library>

In addition to the transport configuration, the profile also sets the value for the initial peers required for the
DomainParticipant of the Routing Service to reach the peer remote gateway.

For the definition of this profile, we’re leveraging the XML configuration variables to reduce even more code
duplication. Namely, we define the following variables that are set accordingly when running each Routing
Service:

3.4. Traversing Wide Area Networks 21

RTI Routing Service User's Manual, Version 7.3.0

• PUBLIC_ADDRESS: the public IP address and public port where the Routing Service is reachable.

• BIND_PORT: the host port that the TCP connection of the Routing Service is bound to. This value is
important to create a port forwarding rule between public port and host port in the NAT configuration.

• REMOTE_RS_PEER: shall contain the discovery peer of the remote Routing Service to communicate
over the WAN. In this example, the remote peer is the public address and public port of the Routing
Service gateway for the remote site. This value is used as the initial peers of the DomainParticipant that
provides WAN connectivity. See discovery peer configuration for details on setting discovery peers.

See also:

Transport Plugins
Documentation for the Connext Transport Plugin conncept.

RTI TCP Transport properties
Available configuration properties for the RTI TCP Transport.

3.4.2 Specify the domains to join and which transport to use

This is the key step that makes possible to forward data from a DDS application in a LAN to the WAN. The
main idea is to define two different DomainParticipants to provide access to the different networks. Figure 3.11
shows the entity model of the DomainRoute with its two DomainParticipants, each using a different underlying
transport to communicate with different networks.

Figure 3.11: Configuration of the DomainRoute to forward data over the WAN

The DomainLAN DomainParticipant is configured to join domain 0 and use the default UDPv4 LAN and
shared memory transports to communicate with the applications on the site A LAN. Alternatively, The Do-
mainWAN DomainParticipant is configured to join domain 1 and use the RTI TCP Transport to communicate
over the WAN. DomainWAN is the gateway DomainParticipant that communicates with the remote Routing
Service gateway at a different location.

The definition of these participants appear in a DomainRoute as follows:

3.4. Traversing Wide Area Networks 22

RTI Routing Service User's Manual, Version 7.3.0

<domain_route name="DR_UDPLAN_TCPWAN">
<!--

With default participant QoS, which uses UDP LAN and Shared␣
→˓memory

as trasnports
-->
<participant name="DomainLAN">

<domain_id>0</domain_id>
</participant>

<participant name="DomainWAN">
<domain_id>1</domain_id>
<!--

With participant QoS configured to use the TCP transport.
→˓ Requires

setting the variableS PUBLIC_ADDRESS AND BIND_PORT to␣
→˓the actual

values used in to route the traffic to this RS.
-->
<domain_participant_qos base_name="QosLib::TcpWanProfile"/>

</participant>
</domain_route>

You can observe how the DomainWAN participant is configured with a QoS that inherits from the
QosLib::TcpWanProfile, which configures the RTI TCP transport, in addition to other discovery set-
tings. The QoS for this participant provides two additional transport properties to configure the TCP server
public address and bind port.

3.4.3 Specify the Topics to be routed

In this example we want to route all the topics between the LAN domains, and we want the communication to be
bidirectional. We’ll do this by defining twoAutoTopicRoutes to forward any Topic for a different communication
direction each. We’ll place both under a single Session configured with default settings:

<session name="Session">
<auto_topic_route name="FromLANtoWAN">

<input participant="DomainLAN">
<deny_topic_name_filter>rti/*</deny_topic_name_filter>

</input>
<output participant="DomainWAN">

<deny_topic_name_filter>rti/*</deny_topic_name_filter>
</output>

</auto_topic_route>

<auto_topic_route name="FromWANtoLAN">
<input participant="DomainWAN">

<deny_topic_name_filter>rti/*</deny_topic_name_filter>
</input>
<output participant="DomainLAN">

<deny_topic_name_filter>rti/*</deny_topic_name_filter>

(continues on next page)

3.4. Traversing Wide Area Networks 23

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
</output>

</auto_topic_route>
</session>

AutoTopicRoute FromLANtoWAN is configured to forward any Topic coming from the LAN domain to the
WAN domain. FromWANtoLAN AutoTopicRoute is configured to forward any Topic coming from the WAN
domain–which connects to the remote LAN Domain–to the local LAN domain.

Figure 3.12: Definition of AutoTopicRoute to forward topics bidirectionally

Figure 3.12 illustrates the definition of the AutoTopicRoutes to forward all topics between the LAN and WAN
domains. Each AutoTopicRoute is configured with both input and output filters to match any Topic. The differ-
ence between the AutoTopicRoutes is simply the domain assigned to the Input and Output–the DomainPartici-
pant from which the input DataReader and output DataWriter will be created–.

3.5 Key Terms

Forwarding Process
The action of routing data from input to output.

Entity Configuration Name
Name assigned to uniquely identify an entity. Specified by the attribute name.

Publication Side
Side of the communication from where Routing Service inputs receive data.

Subscription Side
Side of the communication t0 where Routing Service outputs write data.

Resource model
A model to represent Routing Service entities viewed as resources and their relationships.

3.5. Key Terms 24

RTI Routing Service User's Manual, Version 7.3.0

DomainRoute
A collection of DomainParticipants.

Session
The threading context where the forwarding process takes place.

TopicRoute
Processing unit for data streams. Composed of multiple Inputs and Outputs.

AutoTopicRoute
Factory of TopicRoutes based on topic name regular expression matching.

Input
Entity that reads data from a specific domain. For DDS domains, it contains an underlying DataReader.

Output
Entity that that writes to a specific domain.For DDS domains, it contains an underlying DataWriter.

Transport
Internal component of aDomainParticipant that provides connectivity to a concrete network technology.

Discovery Peer
A DDS address that identifies a remote application.

3.5. Key Terms 25

Chapter 4

Controlling Data: Processing Data Streams

In chapter Routing Data: Connecting and Scaling Systems we presented how Routing Service can easily connect
and scale systems. In order to do so, data is forwarded among systems, thus generating data streams flowing
from one system to another. The forwarding process is a basic operation that consists of propagating data
streams from the input to the output.

Figure 4.1: Basic forwarding of an input data stream

Figure 4.1 illustrates the forwarding process of Topic data. At the publication side, there are N DataWriters
each producing samples for Topic A. The Routing Service has a TopicRoute with a single input DataReader
and a single output DataWriter. At the subscription side there are M DataReaders all receiving samples from
topic Topic A'. All the samples the user DataWriters produce in the publication side are received by the
input DataReader, which are then forwarded through the output DataWriter to all the user DataReaders in
the subscription side. You can observe that the TopicRoute has a component the performs the forwarding
logic that involves reading from the input DataReader and writing to the output DataReader.

The forwarding logic in the TopicRoute may be limiting when system connectivity demands other requirements
beyond basic data forwarding. You can anticipate the simple read-and-write logic may be inadequate in Topi-
cRoutes that define multiple INPUTs| and Outputs and the types of the associated Topics are different. These
cases require the use of a custom logic to process the data streams, and this is the task of the Processor. Figure
4.2 shows the concept.

A Processor is a pluggable component that allows you control the forwarding process of a TopicRoute. You
can create your own Processor implementations based on the needs of your system integration, defining your
own data flows, and processing the data streams at your convenience.

26

RTI Routing Service User's Manual, Version 7.3.0

Figure 4.2: Processor concept

A Processor receives notifications from the TopicRoute about relevant events such as the availability of Inputs
and Outputs, state of the TopicRoute, or arrival of data. Then a Processor can react to any of these events and
perform whichever necessary actions. The basic forward logic presented above is actually a builtin Processor
implementation and that is set as the default in all the TopicRoutes.

The following sections will guide you through the process of creating your own Processor, how to configure it
and install it in Routing Service. We will show you this functionality with examples of Aggregation and Splitting
patterns.

Note: All the following sections require you to be familiar with the routing concepts explained in section
Routing Data: Connecting and Scaling Systems. Also this section requires software programming knowledge in
C/C++, understanding of CMake, and shared library management.

See also:

Forwarding Processor
Details on the default forwarding Processor of the TopicRoutes.

4.1 DynamicData as a Data Representation Model

The nature of the architecture of Routing Service makes it possible to work with data streams of different types.
This demands a strategy for dealing with all the possible times both a compilation and runtime. This is provided
through DynamicData.

DynamicData a generic container that holds data for any type by keeping a custom and flexible internal repre-
sentation of the data. DynamicData is a feature specific from Connext and is part of the core libraries. Figure
4.3 shows the concept of DynamicData.

DynamicData is a container-like structure that holds data of any type. The description of how that type looks
like is given by the TypeCode, a structure that allows representing any type. Using the TypeCode information, a
DynamicData object can then contain data for the associated type and behave as if it was an actual structure of
such type. The DynamicData class has a rich interface to access the data members and manipulate its content.

The Processor API makes the inputs and outputs to interface with DynamicData. Hence the inputs will return

4.1. DynamicData as a Data Representation Model 27

RTI Routing Service User's Manual, Version 7.3.0

Figure 4.3: DynamicData concept

a list of DynamicData samples when reading, while the outputs expect a DynamicData object on the write
operation. This common representation model has two benefits:

• It allows implementations to work without knowing before hand the types. This is very convenient for
general purpose processors, such as data member mappers.

• It allows implementations to work independently from the the data domain where the data streams flow.
This is particularly important when a different data other than DDS is used through a custom Adapter
(Data Integration: Combining Different Data Domains).

See also:

Objects of Dynamically Defined Types.
Section in RTI Connext User’s manual about DynamicData and TypeCode.

DynamicData C++ API reference
Online API documentation for the DynamicData class.

4.2 Aggregating Data From Different Topics

A very common scenario involves defining routing paths to combine data from two or more input Topics into a
single output Topic. This pattern is known as Topic aggregation. You can leverage the Processor component to
perform the custom Topic aggregation that best suits the needs of your system.

An example of Topic aggregation is shown in Figure 4.4. There are two input Topics, Square and Circle,
and a single output Topic, Triangle. All Topics have the same type ShapeType. The goal is to produce
output samples by combining data samples from the two inputs.

Let’s review all the tasks you need to do to create a custom Processor using the Example: Using a Shapes
Processor . You can run it first to see it in action but you can also run one step at a time as we explain each.

4.2. Aggregating Data From Different Topics 28

RTI Routing Service User's Manual, Version 7.3.0

Figure 4.4: Aggregation example of two Topics

4.2.1 Develop a Custom Processor

Once you know the stream processing pattern you want perform, including what your data inputs and outputs
are, you can then write the custom code of the Processor. A custom processor must implement the inter-
face rti::routing::Processor, which defines the abstract operations that the TopicRoute calls upon
occurrence of certain events.

In our example, we create a ShapesAggregator class to be our Processor implementation:

class ShapesAggregator : public rti::routing::processor::NoOpProcessor {

void on_data_available(rti::routing::processor::Route &);

void on_output_enabled(
rti::routing::processor::Route &route,
rti::routing::processor::Output &output);

...
}

Note how the processor class inherits from NoOpProcessor. This class inherits from rti::rout-
ing::processor::Processor and implements all its virtual methods as no-op. This is a convenience
that allows us to implement only the methods for the notification of interest. In this example:

• on_output_enabled: Notifies that an output has been enabled and it is available to write. In our
example, we create a buffer of the output type (ShapeType) that will hold the aggregated content of
the input samples.

• on_data_available: Indicates that at least one input has data available to read. In our example,
this is where the aggregation logic takes place and it will simply generate aggregated output samples
that contain the same values as the Square samples, except for the field y, which is obtained from the
Circle.

See also:

Processor C++ API reference

Route States
Different states of a TopicRoute and which Processor notifications are triggered under each of them.

4.2. Aggregating Data From Different Topics 29

RTI Routing Service User's Manual, Version 7.3.0

4.2.2 Create a Shared Library

Once the Processor implementation is finished we need to compile it and generate a shared library that Routing
Service can load. In this example we use CMake as the build system to create the shared library. We specify
the generation of a library with name shapesaggregator:

...

add_library(shapesprocessor
"${CMAKE_CURRENT_SOURCE_DIR}/ShapesProcessor.cxx")

...

The generated library contains the compiled code of our implementation, contained in a single file
ShapesAggregator.cxx. A key aspect of the generated library is that it must export an external function
that instantiates the ShapesAggregator, and it’s the function that Routing Service will call to instantiate
the Processor. This external symbol is denoted entry point and you can declare it as follows:

RTI_PROCESSOR_PLUGIN_CREATE_FUNCTION_DECL(ShapesAggregatorPlugin);

The macro declares an external exported function with the following signature:

struct RTI_RoutingServiceProcessorPlugin*
ShapesAggregatorPlugin_create_processor_plugin(

const struct RTI_RoutingServiceProperties *,
RTI_RoutingServiceEnvironment *);

which is the signature Routing Service requires and will assume for the entry point to create a custom Processor.
Note that the implementation of this function requires using the macro RTI_PROCESSOR_PLUGIN_CRE-
ATE_FUNCTION_DEF in the source file.

4.2.3 Define a Configuration with the Aggregating TopicRoute

This is a similar process than the one we explained in section Routing a Topic between two different domains.
There are two main differences that are particular to the use with a processor.

Configure a plugin library

Within the root element of the XML configuration, you can define a plugin library element that contains the
description of all the plugins that can be loaded by Routing Service. In our case, we define a plugin library with
a single entry for our aggregation processor plugin:

<plugin_library name="ShapesPluginLib">
<processor_plugin name="ShapesProcessor">

<dll>shapesaggregator</dll>
<create_function>

ShapesAggregatorPlugin_create_processor_plugin
</create_function>

(continues on next page)

4.2. Aggregating Data From Different Topics 30

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
</processor_plugin>

</plugin_library>

The values specified for the name attributes can be set at your convenience and they shall uniquely identify a
plugin instance. We will use these names later within the TopicRoute to refer to this plugin. For the definition
of our processor plugin we have specified two elements:

• dll: The name of the shared library as we specified in the build step. We just provide the library name
so Routing Service will try to load it from the working directory, or assume that the library path is set
accordingly.

• <create_function>: Name of the entry point (external function) that creates the plugin object,
exactly as we defined in code with the RTI_PROCESSOR_PLUGIN_CREATE_FUNCTION_DECL
macro.

Once we have the plugin defined in the library, we can move to the next step and define the TopicRoute with
the desired routing paths and our Processor in it.

Warning: When a name is specified in the <dll> element, Routing Service will automatically append a d
suffix when running the debug version of Routing Service.

See also:

Plugins
Documentation about the <plugin_library> element.

Plugin Management
For in-depth understanding of plugins.

Configure a Routing Service with the custom routing paths

In this example we need to define a TopicRoute that contains the two Inputs to receive the data streams from the
Square and Circle Topics, and the single output to write the single data stream to the Triangle Topic.
The key element in our TopicRoute is the specification of a custom Processor, to indicate that the TopicRoute
should use an instance of our plugin to process the route’s events and data:

<topic_route name="SquaresAndCirclestoTriangles">
<processor plugin_name="ShapesPluginLib::ShapesAggregator">

...
</processor>
<input name="Square" participant="domain0">

<topic_name>Square</topic_name>
<registered_type_name>ShapeType</registered_type_name>
<datareader_qos base_name="RsShapesQosLib::RsShapesQosProfile"/>

</input>
<input name="Circle" participant="domain0">

<topic_name>Circle</topic_name>
<registered_type_name>ShapeType</registered_type_name>

(continues on next page)

4.2. Aggregating Data From Different Topics 31

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<datareader_qos base_name="RsShapesQosLib::RsShapesQosProfile"/>

</input>
<output name="Triangle" participant="domain1">

<topic_name>Triangle</topic_name>
<registered_type_name>ShapeType</registered_type_name>

</output>
</topic_route>

There are three important aspects in this TopicRoute configuration:

• The custom Processor is specified with the <processor> tag. The plugin_name attribute must
contain the qualified name of an existing processor plugin within a plugin library. The qualified name
is built using the values from the name attributes of the plugin library and plugin element. Although
our example does not make use of it, you could provide run-time configuration properties to our plugin
through an optional <property> tag. This element represents a set of name-value string pairs that are
passed to the create_processor call of the plugin.

• Input and Output elements have all a name attribute. This is the configuration name for these elements
can be used within the Processor to look up and individual Input or Output by its name, such as we do in
our example. Also notice how the names match the Topic names for which they are associated. Because
we are not specifying <topic_name> element, Routing Service uses the Input and Output names as
Topic names. In our example this makes it convenient to identify 1:1 inputs and outputs with their topics.

• The input DataReaders are configured with a QoS that sets a KEEP_LAST history of just one sample.
This allows our processor to just read and aggregate the latest available sample from each input.

4.3 Splitting Data From a single Topic

Another common pattern consists of defining routing paths to divide or split data from a input Topic into several
output Topics. This mechanism represents the reverse equivalent to aggregation and is known as Topic splitting.
You can leverage the Processor component to perform theTopic splitting that best suits the needs of your system.

An example of Topic splitting is shown in Figure 4.5. There is a single input Topic, Squares, and two output
Topics, Circles and Triangles. All Topics have the same type ShapeType. The goal is to produce
output samples by splitting the content of data samples from the input.

Figure 4.5: Splitting example of a Topic

The steps required to create a custom splitting Processor are the same as described in the previous section
Aggregating Data From Different Topics. For this example we focus only in the aspects that are different.

4.3. Splitting Data From a single Topic 32

RTI Routing Service User's Manual, Version 7.3.0

4.3.1 Custom Processor implementation

In this example, we create a ShapesSplitter class to be our Processor implementation. Similar to
ShapesAggregator, this class reacts only to two event notifications:

• on_input_enabled: Creates a sample buffer that will be used to contain the split content from the
inputs. Because all the inputs and outputs have the same type (ShapeType), we can obtain use the
input type to create the output sample.

• on_data_available: This is where the splitting logic takes place and it will simply generate split
output samples that contain the same values as the Square samples for all fields except x and y, which
are set as follows:

– Circle output: the x field has the same value than the input Square and sets y to zero.

– Triangle output: the y field has the same value than the input Square and sets x to zero.

4.3.2 Define a Configuration with the Splitting TopicRoute

In this example we need to define a TopicRoute that contains the single Input to receive the data streams from
the Square Topic, and the two Outputs to write the data streams fro the Circle and Triangle Topics.
The TopicRoute specifies a custom processor to be created from our plugin library, and it’s configured to create
the SplitterProcessor

<topic_route name="SquaresToCirclesAndTriangles">
<processor plugin_name="ShapesPluginLib::ShapesSplitter"/>
<input name="Square" participant="domain0">

<registered_type_name>ShapeType</registered_type_name>
</input>
<output name="Circle" participant="domain1">

<registered_type_name>ShapeType</registered_type_name>
</output>
<output name="Triangle" participant="domain1">

<registered_type_name>ShapeType</registered_type_name>
</output>

</topic_route>

In this TopicRoute configuration, the input DataReader and output DataWriters are create with default QoS.
This is an important difference with regards to the configuration of aggregation example. The splitting pattern
in this case is simpler since there’s a single input and each received sample can hence be split individually.

Note that the splitting pattern can include multiple inputs if needed, and generate output samples based on
more complex algorithms in which different content from different inputs is spread across the outputs.

4.3. Splitting Data From a single Topic 33

RTI Routing Service User's Manual, Version 7.3.0

4.4 Periodic and Delayed Action

Processors can react to certain events affecting TopicRoutes. One special event that requires attention is the
periodic event. In addition to events of asynchronous nature such as data available or route running, aTopicRoute
can be configured to also provide notifications occurring at a specified periodic rate.

Example below shows the XML that enables the periodic event notification at a rate of one second:

<topic_route>
<periodic_action>

<sec>1</sec>
<nanosec>0</nanosec>

</periodic_action>

...
</topic_route>

If a TopicRoute enables the periodic event, then your Processor can implement the on_periodic_action
notification and perform any operation of interest, including reading and writing data. For details on the XML
configuration for periodic action and TopicRoutes in general, see Section 9.2.6.

Note that eachTopicRoute can specify a different period, allowing you to have different event timing for different
routing paths. Similarly, the event period that can be modified at runtime through the Route::set_period
operation that is available as part of the Processor API.

The configuration above will generate periodic action events in addition to data available events
coming from the inputs. You could disable the notification of data available using the tag
<enable_data_on_inputs>, causing the TopicRoute to be periodic-based only.

4.5 Simple data transformation: introduction to Transformation

There are cases involving basic manipulation of data streams that can be performed independently in a
per-sample basis. That is, for a given input sample (or set of them) there’s a transformed output sample (or set
of them). For this particular use case, Routing Service defines the concept of Transformation, shown in Figure
4.6.

Figure 4.6: Transformation concept

4.4. Periodic and Delayed Action 34

RTI Routing Service User's Manual, Version 7.3.0

A Transformation is a pluggable component that receives an input data stream of type Tin and produces an
output data stream of type Tout. The relation between the number of input samples and output samples can
also be different.

This component can be installed in two different entities in Routing Service. A Transformation can appear to
process the data stream after is produced by an Input DataReader and/or to process a data stream before is
passed to an Output DataWriter. Figure 4.7 shows the complete model and context of this component.

Figure 4.7: Transformation model and context

You can observe that a each Input and Output can contain a transformation. On the input side, the Transfor-
mation is applied to the data stream generated by the input DataReader and the result is fed to the Processor.
Alternatively, on the output side the Transformation is applied to the data stream produced by the Processor
and the result is passed to the output DataWriter.

When transformations are used it’s a requirement that the type of the samples provided by the inputDataReader
is the same type Tin expected by the input Transformation. Similarly, the type Toutof the samples produced by
the output Transformation must be the same than the type of the samples expected by the output DataWriter.
As in with a Processor, a Transformation is expected to work with DynamicData (DynamicData as a Data
Representation Model).

You can run Example: Transforming the Data with a Custom Transformation to see how a transformation can be
used. In this example, the transformation implementation receives and generates samples of type ShapeType.
The output samples are equal to the input samples except for the field x, which is adjusted to produce only two
possible constant values.

4.5.1 Transformations vs Processors

A Transformation is fundamentally different than a Processor. Moreover, they complement each other. A
Transformation can be seen a very simplified version of a Processor that has a single input and a single output
and in which the input data stream is processed as it is read.

In general you will find yourself implementing a Processor to perform the data stream processing required by
your system. Nevertheless there are cases where a Transformation is more suitable for certain patterns such as
format conversion, content reduction, or normalization (seeWhat stream processing patterns can I perform?).

4.5. Simple data transformation: introduction to Transformation 35

RTI Routing Service User's Manual, Version 7.3.0

4.6 What stream processing patterns can I perform?

With Routing Service you have the ability to define routing paths with multiple inputs and outputs, and provide
custom processing logic for the data streams of those paths. This provides a great degree of flexibility that
allows to perform pretty much any processing pattern.

In addition to the presented patterns of aggregation, splitting, and periodic action, there are other well-known
patterns:

• Data format conversion: this is the case where the input samples are represented in one format and
are converted to produce output samples of a different format. For example, input samples could be
represented as a byte array and converted to a JSON string.

• Content Enrichment: an output sample is the result of amplifying or adding content to an input sam-
ple. For example, output samples can be enhanced to contain additional fields that represents result of
computations performed on input sample fields (e.g., statistic metrics).

• Content Reduction: an output sample is the result of attenuating or removing content from an input
sample. For example, output samples can have some fields removed that are not relevant to the final
destination, to improve bandwidth usage.

• Normalizer: output samples are semantically equivalent to the input samples except the values are ad-
justed or normalized according to a specific convention. For example, input samples may contain a field
indicating the temperature in Fahrenheit and the output samples provide the same temperature in Celsius.

• Event-based or Triggered Forwarding: output samples are generated based on the reception and
content of concrete input samples in which some of them act as events indicating which, how, and when
data is forwarded.

4.7 Key Terms

Data Stream
The collection of samples received by a TopicRoute’s Input or written to a TopicRoute’s Output.

DynamicData
A general purpose structure that contains data of any type.

Processor
Pluggable component to control the forwarding process of a TopicRoute

Shared Library or Module
An output artifact that contains the implementation of pluggable components that Routing Service can
load at run-time.

Entry Point
External symbol in a shared library that Routing Service calls to instantiate a custom plugin instance.

Stream Processing Patterns
Processing algorithms applied to the data streams of a TopicRoute.

Periodic action
TopicRoute event notification occurring at a configurable period.

4.6. What stream processing patterns can I perform? 36

RTI Routing Service User's Manual, Version 7.3.0

Transformation
Pluggable component perform modifications of a forwarded data stream.

4.7. Key Terms 37

Chapter 5

Data Integration: Combining Different Data
Domains

In chapters Routing Data: Connecting and Scaling Systems and Controlling Data: Processing Data Streams
we showed how Routing Service is a powerful solution to scale and aggregate DDS systems. You can define
data flows between publication and subscription Topics, and also perform stream processing using a custom
Processor.

Up to this point we have shown these capabilities only in the presence of DDS data sources and destinations.
However, Routing Service can provide the same capabilities for any other data technology and protocol through
the concept of an Adapter, which makes Routing Service a suitable framework for data integration.

Figure 5.1: Data Integration in Routing Service

38

RTI Routing Service User's Manual, Version 7.3.0

An Adapter is a pluggable component that allows you to access any data domain pertaining to any technology.
Adapters provide a connection point to data domains so the information can flow back and forth to Routing
Service. The main Adapter interfaces are:

• Plugin: Entry point to the custom implementation. It consists of a creation method that Routing Service
can call to instantiate the Adapter implementation. (see Plugin Management).

• Connection: Entity responsible for accessing a concrete data domain. (see Connection). For example, a
socket connection, database connection, or DomainParticipant. The Connection is the factory of Stream-
Reader and StreamWriter.

• StreamReader: Entity responsible for reading data streams from a concrete data domain and with a single
Input.

• StreamWriter: Entity responsible for writing data streams to a concrete data domain and associated with
a single Output.

Figure 5.2 illustrates the concept of the Adapter and how it fits within the Routing Service entity model.

Figure 5.2: Adapter concept

Routing Service relies on concrete Adapter implementations to read and write data streams as part of the config-
ured data flows. Similar to the TopicRoute object presented in Routing a Topic between two different domains, a
Route represents a generalization of a TopicRoute whose Inputs and Outputs can interact with any data domain.

Each Input and Output are attached to a Connection, which through the underlying Adapter connection entity
creates appropriate StreamReaders and StreamWriters, respectively. These StreamReaders and StreamWriters
provide read and write access to data streams, respectively.

Note: All the following sections require you to be familiar with the routing concepts explained inRouting Data:
Connecting and Scaling Systems. We also recommended becoming familiar with Controlling Data: Processing
Data Streams. This section requires software programming knowledge in C/C++, understanding of CMake,
and shared library management.

39

RTI Routing Service User's Manual, Version 7.3.0

5.1 Unified Data Representation

Routing Service architecture allows all the data-related components such as Adapter, Processor, and Transfor-
mation to interoperate and coexist without knowing details of each other. Routing Service achieves this by
defining a unified data representation that all components are required to use.

The unified data representation model is provided by DynamicData, a concept presented in DynamicData as a
Data Representation Model. Routing Service imposes DynamicData as the data interface for all the components
that have to deal with data streams. This contract for the unified data representation is the key element that
enables data integration in Routing Service. Therefore, the main responsibility of an Adapter implementation is
to provide a translation between the domain-specific data representation to DynamicData and vice versa.

Figure 5.3: Unified Data Representation Model

In Figure 5.3, you can see all the data-related components interacting with each other independently of the
domain-specific format of the data. All the data streams that flow across different components are presented as
streams of DynamicData objects.

The following sections will guide you through an example that implements an Adapter that manipulates data
from a file system. We will cover each step necessary to implement a custom Adapter and explain the purpose
of each entity.

5.2 Integrating a File-Based Domain

This section will guide you through an example of how to implement a custom Adapter to integrate with a
non-DDS technology. The example shows how to feed data stored in a set of CSV files back and forth between
a DDS domain. The file integration example is shown in Figure 5.4.

The example requires the implementation of a custom File Adapter, which provides the ability to read and write
from a set files and convert their content into a stream of DynamicData samples.

5.1. Unified Data Representation 40

RTI Routing Service User's Manual, Version 7.3.0

Figure 5.4: Example of data integration with a simple CSV file adapter

Let’s review all the tasks you need to do to create a custom Adapter using the Example: Using a File Adapter.
You can run it first to see it in action, but you can also run one step at a time. We explain each method.

5.2.1 Develop a Custom Adapter

As mentioned earlier, there are three main Adapter interfaces that must be implemented in order to provide
access to, read, andwrite in a data domain. Themost important step in designing a customAdapter is to properly
define the mapping between the adapter interfaces and specific entities or agents involved in the adapted data
domain.

For this example, the mapping is very simple and consists of the following:

• FileConnection A simple factory class for FileStreamReader and FileStreamWriter.

• FileStreamReader Reads data from a single file and converts it to DynamicData.

• FileStreamWriterWrites data to a single file after being converted.

Both the FileStreamReader and FileStreamWriter process files in a custom and consistent CSV
format. For simplicity, they also expect and understand the ShapeType only.

To better understand how these implementations work, we will split the focus into two separate concepts:
reading and writing.

5.2. Integrating a File-Based Domain 41

RTI Routing Service User's Manual, Version 7.3.0

Implement a StreamReader for Reading Data

Reading from a data domain is the responsibility of the StreamReader. If you need to provide read access from
your integrated data domain, you will need to implement this part of the Adapter, although it’s optional.

Figure 5.5: Routing from the file adapter to DDS

StreamReader Creation

Creating StreamReaders is the responsibility of the Connection. Hence the Adapter connection interface has an
abstract method to implement the creation of a StreamReader. In this method you will find, among others, two
important parameters:

• Information about the Stream for which the StreamReader is created. This parameter has type
rti::routing::StreamInfo and contains:

– Stream name: This is the name provided as part of the Input configuration in the
<stream_name> tag.

– Type information: The registered name and TypeCode of the type of the input data stream. This
information is encapsulated in a TypeInfo structure that contains:

∗ type_name` is the registered type name, as specified in the Input configuration in the
<registered_type_name> tag.

∗ type_representation is the type definition as TypeCode, obtained either from XML
or from Stream discovery. You can learn more details about type registration in Specifying
Types.

• A StreamReaderListener object to provide asynchronous notifications about data available to
read. This is an object provided by the Routing Service engine and the implementation can use it to signal
the availability of input stream data and generate an event that’s notified to the owner Route.

5.2. Integrating a File-Based Domain 42

RTI Routing Service User's Manual, Version 7.3.0

Read Operation

FileStreamReader inherits from the rti::routing::adapter::DynamicDataStream-
Reader interface, which has different abstract method overload to read data. Which read operation version is
called depends on the behavior of the Processor set in the parent Route. The default forwarding Processor
only calls the basic take() and is the one our example implements.

When implementing a StreamReader, there are two main tasks that require special attention:

• Providing an input stream of loaned DynamicData samples: All of the abstract read operations
have two output parameters that shall hold the returned samples: list of user-data objects, and a list
for info-data objects.

The FileStreamReader::take() implementation reads one CSV text line at a time, parses each
member, and converts it to a DynamicData object. In this case, the take operation can only read
one sample at a time, and a heap-allocated DynamicData is provided as part of the output sam-
ple list. Note that FileStreamReader::return_loan() frees this heap-allocated object. The
return_loan() operation is called automatically by the processor implementation when the sample
loan from the take operation is no longer needed.

Note that the take operation may also return a list of info-objects. These objects are meant to pro-
vide metadata associated with the user-data objects, such as reception timestamps or sequence numbers
(which metadata is available depends on the data domain being adapted). Our example does not provide
any metadata and hence the list is returned empty.

• Notifying Routing Service about available data: This is an important yet subtle step involved in the data
processing pipeline. If you look at the Connection::create_stream_reader operation you
will notice that one of the input parameters is an object of rti::routing::adapter::Stream-
ReaderListener. This object is provided by the Routing Service engine and you can use it to indicate
to Routing Service about the existence of data available from the StreamReader. When StreamRead-
erListener::on_data_available is called, it will trigger the generation of a DATA_ON_IN-
PUTS event that will be dispatched to the Processor installed in the parent Route.

In our example implementation, the FileStreamReader spawns a thread that reads a text line from
the file and notifies the StreamReaderListener right after, repeating this sequence in a loop until
the whole file is read. Note that if we didn’t notify the StreamReaderListener, then the only way
for Routing Service to read data would be through a periodic event (see Periodic and Delayed Action).

Read vs. Take

In the StreamReader you will find that there are always two parallel operations with the same signature but
different names: one called read() and one called take(). Their behavior should be the same except for
one main difference: take() will return samples from a StreamReader only once, while read() allows the
same samples to be returned more than once.

In the DDS world, this is similar to the read and take operations of a DataReader. While the behavior is the
same in both of them, the take operation will remove the samples from the DataReader’s cache (freeing space
and preventing them from being read again), while the read will leave the cache intact, simply marking the
samples with READ status.

5.2. Integrating a File-Based Domain 43

RTI Routing Service User's Manual, Version 7.3.0

Implement a StreamWriter for Writing Data

StreamWriter Creation

Creating StreamWriters is responsibility of of the Connection. Hence the Adapter connection interface has an
abstract method to implement the creation of a StreamWriter. In this method you will find, among others,
an important parameter that identifies the Stream for which the StreamReader is created. This parameter has
type rti::routing::StreamInfo and its content and purpose are the same as explained in the reading
section above.

Write Implementation

Writing to a data domain is the responsibility of the StreamWriter. In our example, FileStreamWriter
inherits from the rti::routing::adapter::DynamicDataStreamWriter interface, which has
abstract methods to write data. Similar to the reading part, the write operation is called by the installed Processor
of the parent Route. The default Processor calls the write operation, passing the same samples read from the
Inputs belonging to the same parent Route.

Figure 5.6: Routing from DDS to the file adapter

The abstract write operation receives two input parameters: a list of user-data DynamicData objects, and a
list of info-data objects of type SampleInfo. The info-data list may be empty if no such information is
available, though if it’s not, then it has the same size as the user-data objects (a 1:1 mapping between user-data
and info-data objects).

Our FileStreamWrite::write() implementation is as simple as iterating over the list of user-data
objects and storing each of them in a file as a separate CSV text line. However, our example does not use the
info-data list, though it could have used it to store, for example, the timestamps of the samples.

Note: Implementing either the StreamReader and StreamWriter is optional. You can implement only the side
that you need, that is, reading or writing.

See also:

Adapter C++ API reference

5.2. Integrating a File-Based Domain 44

RTI Routing Service User's Manual, Version 7.3.0

Processor Events
Overview for the Processor API.

Forwarding Processor
Details on the default forwarding Processor of the TopicRoutes.

5.2.2 Create a Shared Library

Once the Adapter implementation is finished, we need to create a shared library that Routing Service can load.
In this example we use CMake as the build system to create the shared library. We specify the generation of a
library named fileadapter:

...

add_library(
fileadapter

"${CMAKE_CURRENT_SOURCE_DIR}/FileAdapter.cxx"
"${CMAKE_CURRENT_SOURCE_DIR}/FileConnection.cxx"
"${CMAKE_CURRENT_SOURCE_DIR}/FileInputDiscoveryStreamReader.cxx"
"${CMAKE_CURRENT_SOURCE_DIR}/FileStreamReader.cxx"
"${CMAKE_CURRENT_SOURCE_DIR}/FileStreamWriter.cxx"

)

...

The generated library contains the compiled code of our implementation, contained in multiple .cxx
files. A key aspect of the generated library is that it must export an external function that instantiates the
FileAdapter, and it is the function that Routing Service will call to instantiate the Adapter. This external
symbol is denoted entry point and you can declare it as follows:

RTI_ADAPTER_PLUGIN_CREATE_FUNCTION_DECL(FileAdapter);

The macro declares an external exported function with the following signature:

struct RTI_RoutingServicAdapterPlugin*
FileAdapter_create_adapter_plugin(

const struct RTI_RoutingServiceProperties *,
RTI_RoutingServiceEnvironment *);

which is the signature Routing Service requires and will assume for the entry point to create a custom Adapter.
Note that the implementation of this function requires using the macro RTI_ADAPTER_PLUGIN_CRE-
ATE_FUNCTION_DEF in the source file.

5.2. Integrating a File-Based Domain 45

RTI Routing Service User's Manual, Version 7.3.0

5.2.3 Define a Configuration that Integrates DDS with the File Adapter

This is similar to the process explained in Routing a Topic between two different domains, except that we will
use a Connection from the file adapter and only one DomainParticipant.

The example configuration file contains three different configurations that perform the integration in multiple
combinations: file to DDS, DDS to file, and file to file. Note that all combinations could fit in a single Routing
Service configuration, but we chose this model to better explain the adapter capabilities.

Below are the steps you need to follow.

Configure a Plugin Library

Within the root element of the XML configuration, you can define a plugin library element that contains the
description of all the plugins that can be loaded by Routing Service. In our case, we define a plugin library with
a single entry for our File Adapter plugin:

<plugin_library name="AdapterLib">
<processor_plugin name="FileAdapter">

<dll>fileadapter</dll>
<create_function>

FileAdapter_create_adapter_plugin
</create_function>

</processor_plugin>
</plugin_library>

The values specified for the name attributes can be set at your convenience and they shall uniquely identify a
plugin instance. We will use these names later within the Connection to refer to this plugin. For the definition
of our ADAPTER plugin, we have specified two elements:

• dll is the name of the shared library we specified in the build step. We just provide the library name
so Routing Service will try to load it from the working directory, or assume that the library path is set
accordingly.

• <create_function> is the name of the entry point (external function) that creates the plugin ob-
ject, exactly as we defined in code with the RTI_ADAPTER_PLUGIN_CREATE_FUNCTION_DECL
macro.

Once we have the plugin defined in the library, we can move to the next step and define a Connection to the
data domain of this plugin and the Route for the data flows for reading and writing.

Warning: When a name is specified in the <dll> element, Routing Service will automatically append a d
suffix when running the debug version of Routing Service.

See also:

Plugins
Documentation about the <plugin_library> element.

5.2. Integrating a File-Based Domain 46

RTI Routing Service User's Manual, Version 7.3.0

Plugin Management
For in-depth understanding of plugins.

Define a Connection Linked to the Adapter

As mentioned before, the Connection is the entity that enables access to a specific domain. To do so, the
connection configuration shall refer to the Adapter plugin from which the underlying domain connection shall
be created.

In this example, the connection configuration is defined as follows:

<connection name="FileConnection" plugin_name="AdapterLib::FileAdapter">
<registered_type name="ShapeType" type_name="ShapeType"/>

</connection>

There are three key elements that shall be set in a Connection configuration:

• name is the attribute that represents the name of the Connection entity. You can choose any name you
like that helps you identify the data domain. This name will be used later by the Input andOutput configu-
rations to indicate from which Connection their underlying StreamReader and StreamWriter, respectively,
are created. In our case, we named it FileConnection.

• plugin_name is the attribute that must refer to the Adapter plugin from which the adapter connection
is created. The value of this attribute must be the fully qualified name of the adapter plugin within the
plugin library. The fully qualified name of the plugin is built using the values from the name attributes
of the plugin library and plugin element. In our case, the fully qualified name of the file adapter plugin
is given by AdapterLib::FileAdapter.

• register_type is an element tag that refers to a type definition (TypeCode) described in XML.
This element has two attributes: name to uniquely identify and register a type, and type_ref to point
to an existing type in XML providing its fully qualified name. This element can optionally appear as
many times as needed. You will need to use this element if your adapter does not support discovery and
Routing Service cannot provide it through means of others adapters.

Our file adapter example is quite basic. It only works with the ShapeType and it requires the definition
to be available in XML (you can find it under the <types> section).

Define the Data Flows that Read and Write from Your Adapter

Once a Connection to the adapted data domain is available, we need to define the Routes (or AutoRoutes) that
will indicate how data streams flow from inputs to outputs. Inputs and Outputs are ultimately the entities that
hold StreamReaders and StreamWriters that perform the reading and writing.

The file adapter example maps a separate CSV file for each stream. This allows us to nicely perform a 1:1
mapping between a DDS Topic and a file stream. In general, the expectation is that data that is read from
an input’s StreamReader shall originate from a single input stream. Likewise, the data written to an output’s
StreamWriter shall be sent to a single stream.

As mentioned at the beginning, this example provides three different Routing Service configurations, each with
a single Route that defines the data flow for a specific combination. We will review each separately.

5.2. Integrating a File-Based Domain 47

RTI Routing Service User's Manual, Version 7.3.0

Routing from a File Stream to a DDS Topic

For this case we define a Route with:

• An input attached to the file adapter (<input>). This requires setting the following elements:

– connection is the attribute that specifies from which Connection the underlying StreamReader
is created. This attribute shall refer to the name of the Connection configuration exactly as it was
set in its name attribute.

– <stream_name> is the stream name associated with this input. The impact of this value is
specific to each Adapter implementation.

– <registered_type_name> indicates the associated type to the input stream. This ultimately
translates into finding a TypeCode that matches this name and providing it on the StreamReader
creation as part of the StreamInfo. In our case, this name matches the value in the name
attribute of the <register_type> element in the connection configuration, so the type is the
one defined in XML.

– <property> is the adapter-specific configuration in the form of name-value pairs. This content
is passed directly as a set of name-value string pairs on the creation of the StreamReader. Our file
StreamReader receives the name of the CSV file from where data is read and a period at which the
file is read.

• An output attached to the built-in DDS adapter (<dds_output>). This requires setting the following
elements:

– participant is the attribute that specifies from which DomainParticipant the underlying
StreamWriter is created. This attribute shall refer to the name of the DomainParticipant configu-
ration exactly as it was set in its name attribute.

– <topic_name> is the name of the Topic the underlying DataWriter writes to.

– <registered_type_name> indicates the type associated with the Topic. This has the same
behavior as for the input.

The XML is shown below.

<route>
<input connection="FileConnection">

<creation_mode>ON_DOMAIN_MATCH</creation_mode>
<stream_name>$(SHAPE_TOPIC)</stream_name>
<registered_type_name>ShapeType</registered_type_name>
<property>

<value>
<element>

<name>example.adapter.input_file</name>
<value>Input_$(SHAPE_TOPIC).csv</value>

</element>
<element>

<name>example.adapter.sample_period_sec</name>
<value>1</value>

</element>
</value>

(continues on next page)

5.2. Integrating a File-Based Domain 48

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
</property>

</input>
<dds_output participant="DDSConnection">

<creation_mode>ON_ROUTE_MATCH</creation_mode>
<registered_type_name>ShapeType</registered_type_name>
<topic_name>$(SHAPE_TOPIC)</topic_name>

</dds_output>
</route>

Routing from a DDS Topic to a File Stream

For this case we define a Route with:

• An input attached to the built-in DDS adapter (<dds_input>). This requires setting the following
elements:

– participant is the attribute that specifies from which DomainParticipant the underlying
StreamReader is created. This attribute shall refer to the name of the DomainParticipant con-
figuration exactly as it was set in its name attribute.

– <topic_name> is the name of the Topic the underlying DataReader reads data from.

– <registered_type_name> indicates the type associated with the Topic. This has the same
behavior as for the input.

• An output attached to the file adapter (<output>). This requires setting the following elements:

– connection is the attribute that specifies from which Connection the underlying StreamWriter
is created. This attribute shall refer to the name of the Connection configuration exactly as it was
set in its name attribute.

– <stream_name> is the stream name associated with this output. The impact of this value is
specific to each Adapter implementation.

– <registered_type_name>: indicates the associated type to the output stream. This ul-
timately translates into finding a TypeCode that matches this name and providing it on the
StreamWriter creation as part of the StreamInfo. In our case, this name matches the value
in the name attribute of the <register_type> element in the connection configuration, so
the type is the one defined in XML.

– <property> is the adapter-specific configuration in the form of name-value pairs. This content
is passed directly as a set of name-value string pairs on the creation of the StreamWriter. Our file
StreamWriter receives the name of the CSV file where data is written.

The XML is shown below.

<route>
<dds_input participant="DDSConnection">

<creation_mode>ON_ROUTE_MATCH</creation_mode>
<registered_type_name>ShapeType</registered_type_name>
<topic_name>$(SHAPE_TOPIC)</topic_name>

(continues on next page)

5.2. Integrating a File-Based Domain 49

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
</dds_input>
<output connection="FileConnection">

<creation_mode>ON_ROUTE_MATCH</creation_mode>
<registered_type_name>ShapeType</registered_type_name>
<stream_name>$(SHAPE_TOPIC)</stream_name>
<property>

<value>
<element>

<name>example.adapter.output_file</name>
<value>Output_$(SHAPE_TOPIC).csv</value>

</element>
</value>

</property>
</output>

</route>

Routing from a File Stream to Another File Stream

This scenario represents a case where both the input and output are attached to the file Adapter. Hence, the
routing path of this configuration generates a flow from file to file. This scenario demonstrates the flexibility
and abstraction of Routing Service working agnostically with data domains.

For this case, the Route configuration is defined with the same input configuration from Routing from a File
Stream to a DDS Topic and the same output configuration from Routing from a DDS Topic to a File Stream.

The XML is shown below.

<route>
<input connection="FileConnection">

<creation_mode>ON_DOMAIN_MATCH</creation_mode>
<stream_name>$(SHAPE_TOPIC)</stream_name>
<registered_type_name>ShapeType</registered_type_name>
<property>

<value>
<element>

<name>example.adapter.input_file</name>
<value>Input_$(SHAPE_TOPIC).csv</value>

</element>
<element>

<name>example.adapter.sample_period_sec</name>
<value>1</value>

</element>
</value>

</property>
</input>
<output connection="FileConnection">

<creation_mode>ON_ROUTE_MATCH</creation_mode>
<registered_type_name>ShapeType</registered_type_name>
<stream_name>$(SHAPE_TOPIC)</stream_name>
<property>

(continues on next page)

5.2. Integrating a File-Based Domain 50

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<value>

<element>
<name>example.adapter.output_file</name>
<value>Output_$(SHAPE_TOPIC).csv</value>

</element>
</value>

</property>
</output>

</route>

Note: In all configurations, the Stream and Topic names are set using the XML variable SHAPES_TOPIC.
Its purpose is to allow reusing the same configuration providing the actual desired name at runtime. Another
alternative is to use an AutoRoute instead (see Routing a group of Topics).

5.3 Discovery Capabilities

Besides allowing integration with application or user data, the Adapter interface also provides data stream
discovery capabilities.

Data communication frameworks may offer the ability to detect at runtime which streams of user-data infor-
mation are available and which endpoints (producers and consumers) are involved in the communication. Such
is the case with DDS for example, which has a builtin discovery protocol to detect and notify applications of
the presence of Topics.

Discovery is very useful because it eliminates deployment configuration complexity and allows dynamic sys-
tems where endpoints come and go to function autonomously. Routing Service can interoperate with discovery
streams from any data domain through the Adapter by defining the concept of Stream discovery.

Stream discovery refers to the ability to detect the presence of streams of information that carry user data.
User-data streams are categorized as:

• publication or input streams: These are data streams that originate from producer endpoints and from
which Routing Service receives data using StreamReaders. An input stream is read-only.

• subscription or output streams: These are data streams that originate from the consumer endpoints and to
which Routing Service sends data using StreamWriters. An output stream is write-only.

Routing Service uses stream discovery for two main activities:

• Detecting the generation or disposal of streams that trigger the filter matching with AutoRoutes (see
Routing a group of Topics) and the creation of StreamReaders and StreamWriters based on the input and
output creation modes (see Creation Modes).

• Receiving information about the type of the samples carried on the user-data streams. Routing Service
needs to obtain the Stream type information (TypeCode) beforehand in order to create the StreamRead-
ers and StreamWriters. Stream discovery provides a channel for the reception of types.

5.3. Discovery Capabilities 51

RTI Routing Service User's Manual, Version 7.3.0

Figure 5.7: Integration with discovery capabilities of data domains

The discovery information in Routing Service is represented in a unified way by defining a common type to
describe Stream information: StreamInfo. Key information that a StreamInfo object provides:

• Stream name: A unique identifier of a stream within a particular data domain connection (e.g., a Topic
name in a DDS domain).

• Alive or dispose: Whether or not the stream has any alive endpoints associated with it.

• TypeInfo: Contains the unique identifier for the registration name of the type, as well as the type de-
scription as a TypeCode.

Routing Service receives StreamInfo objects through the Discovery StreamReader interfaces from the Adapter.
Namely, there are two discovery StreamReaders to read StreamInfo samples, one for each input and output
stream.

Implementation of discovery in the Adapter is optional. The Connection is responsible for the provision of the
Discovery StreamReaders and its interface has two abstract methods to retrieve them.

Routing Service calls these operations upon enabling the parent DataReader (typically at startup) and will use
the returned StreamReaders (if any) to obtain the StreamInfo objects from them. Routing Service has a dedicated
discovery thread to call the read and return loan operations from all discovery StreamReaders.

The next section shows an example of how to provide discovery information using the file Adapter.

5.3.1 Discovery in a File-Based Domain

When working with files on a file system, there are many ways in which discovery information can be useful.
One of them is to provide notification about the creation and removal of files. Our file adapter example shows
a basic way to recreate this.

The file adapter example implements only the input stream Discovery StreamReader. It provides information
about which files are available to read and when the user StreamReaders are done reading them.

5.3. Discovery Capabilities 52

RTI Routing Service User's Manual, Version 7.3.0

The class FileInputDiscoveryStreamReader inherits from the abstract class rti::rout-
ing::adapter::DiscoveryStreamReader and represents the implementation of the StreamReader
that provides discovery information about input streams.

The implementation of this class is similar to the user-data StreamReader. You will find that the abstract take
operation is implemented by returning a list of rti::routing::StreamInfo objects. The implemen-
tation also uses an rti::routing::adapter::StreamReaderListener object to notify Routing
Service about discovery information that is available to read.

The file FileInputDiscoveryStreamReader has two ways to generate StreamInfo objects:

• On class instantiation, which in this case occurs when Routing Service calls the FileConnec-
tion::get_input_stream_discovery_reader. The constructors checks for the existence
of CSV files containing the user data in hard-coded locations.

• When user StreamReaders obtain an end-of-file token, they call FileInputDiscoveryStream-
Reader::dispose, whichwill generate aStreamInfo objectmarked as disposed for each finished
file.

The file adapter has basic code to illustrate how to implement the discovery functionality. More useful behavior
could include providing continuous notifications about new files (hence new streams) to be read. It could also
implement the output Discovery StreamReader by also detecting when a file is placed in a directory as a signal
to write data obtained from a peer input stream.

5.4 Key Terms

Data Integration
The process of combining data from multiple and different sources for analysis, processing, or system
integration purposes.

Adapter
Pluggable component that allows access to a custom data domain.

Info Object
A structure that contains metadata associated with the user-data object. In DDS, this is defined as Sam-
pleInfo.

Sample
A structure composed of a data object and its associated info object.

Loaned samples
A list of samples returned by a StreamReader for which a return loan operation is perform.

Stream Discovery
A mechanism through which Routing Service detects the presence of user-data streams.

StreamInfo
A common data structure to represent discovery information across all data domains.

5.4. Key Terms 53

Chapter 6

Remote Administration

This section provides documentation on Routing Service remote administration.

Note: Routing Service remote administration is based on the RTI Remote Administration Platform described
in Remote Administration Platform. We recommend that you read that section before using Routing Service
remote administration.

Below you will find an API reference for all the supported operations.

6.1 Overview

6.1.1 Enabling Remote Administration

By default, remote administration is disabled in Routing Service. To enable remote administration, you can use
the <administration> tag (see Routing Service Tag) or the -remoteAdministrationDomainId
command-line parameter, which enables remote administration and sets the domain ID for remote communi-
cation (see Command-Line Executable).

6.1.2 Available Service Resources

Table 6.1 lists the public resources specific to Routing Service. Each resource identifier is expressed as a hier-
archical sequence of identifiers, including parent and target resources. (See Resource Identifiers for details.)

In the table below, the elements (rs), (dr), (c), (s), (ar), (r), (i), and (o) refer to the name of an
entity of the corresponding class as specified in the configuration in the name attribute. For example, in the
following configuration:

<routing_service name="MyRouter">...</routing_service>

The resource identifier is:

54

RTI Routing Service User's Manual, Version 7.3.0

/routing_services/MyRouter

In the table, the resource identifier is written as /routing_services/(rs), where (rs) is the Routing Service name,
(dr) is the Domain Route name, and so on. This nomenclature is used in the table to give you an idea of the
structure of the resource identifiers. For actual (example) resource identifier names, see the example section
that follows.

Table 6.1: Resources and Their Identifiers in Routing Service
Resource Resource Identifier
Service /routing_services/(rs)
DomainRoute /routing_services/(rs)/domain_routes/(dr)
Connection or Par-
ticipant

/routing_services/(rs)/domain_routes/(dr)/connections/(c)

Session /routing_services/(rs)/domain_routes/(dr)/sessions/(s)
AutoRoute or Auto-
TopicRoute

/routing_services/(rs)/domain_routes/(dr)/sessions/(s)/auto_routes/(ar)

Route or Topi-
cRoute

/routing_services/(rs)/domain_routes/(dr)/sessions/(s)/routes/(r)

Route Input or
DDS Input

/routing_services/(rs)/domain_routes/(dr)/sessions/(s)/routes/(r)/inputs/(i)

Route Output or
DDS Output

/routing_services/(rs)/domain_routes/(dr)/sssions/(s)/routes/(r)/outputs/(i)

Example

This example shows you how to address a resource of each possible resource class in Routing Service, using the
example configuration in Example: Configuration Reference as a reference. (For a complete reference of the
available configuration tags used in Routing Service, see XML Tags for Configuring RTI Routing Service.)

Service

Entity with name “MyRouter”:

<routing_service name="MyRouter">...</routing_service>

Resource identifier:

/routing_services/MyRouter

DomainRoute

Entity with name “MyDomainRoute” in parent “MyRouter”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">...</domain_route>

</routing_service>

Resource identifier:

6.1. Overview 55

RTI Routing Service User's Manual, Version 7.3.0

/routing_services/MyRouter/domain_routes/MyDomainRoute

Participant

Entity with name “MyParticipant” in parent “MyDomainRoute”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<participant name="Session">...</participant>
</domain_route>

</routing_service>

Resource identifier:

/routing_services/MyRouter/domain_routes/MyDomainRoute/connections/
→˓MyParticipant

Session

Entity with name “MySession” in parent “MyDomainRoute”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<session name="MySession">...</session>
</domain_route>

</routing_service>

Resource identifier:

/routing_services/MyRouter/domain_routes/MyDomainRoute/sessions/
→˓MySession

AutoRoute

Entity with name “MyAutoTopicRoute” in parent “MySession”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<session name="MySession">
<auto_topic_route name="MyAutoTopicRoute">...</auto_

→˓topic_route>
</session>

</domain_route>
</routing_service>

Resource identifier (all on one line):

/routing_services/MyRouter/domain_routes/MyDomainRoute/sessions/
→˓MySession/
routes/MyTopicRoute

Route

Entity with name “MyTopicRoute” in parent “MySession”:

6.1. Overview 56

RTI Routing Service User's Manual, Version 7.3.0

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<session name="MySession">
<topic_route name="MyTopicRoute">...</topic_route>

</session>
</domain_route>

</routing_service>

Resource identifier (all on one line):

/routing_services/MyRouter/domain_routes/MyDomainRoute/sessions/
→˓MySession/
routes/MyTopicRoute

Input

Entity with name “MyInput” in parent “MyTopicRoute”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<session name="MySession">
<topic_route name="MyTopicRoute">

<input name="MyInput">...</input>
</topic_route>

</session>
</domain_route>

</routing_service>

Resource identifier (all on one line):

/routing_services/MyRouter/domain_routes/MyDomainRoute/sessions/
→˓MySession/
routes/MyRoute/inputs/MyInput

Output

Entity with name “MyOutput” in parent “MyTopicRoute”:

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<session name="MySession">
<topic_route name="MyTopicRoute">

<output name="MyOutput">...</output>
</topic_route>

</session>
</domain_route>

</routing_service>

Resource identifier (all on one line):

/routing_services/MyRouter/domain_routes/MyDomainRoute/sessions/
→˓MySession/
routes/MyRoute/outputs/MyOutput

6.1. Overview 57

RTI Routing Service User's Manual, Version 7.3.0

6.1.3 Resource Object Representations

Table 6.2: Resource Representations in Routing Service

Resource Representation Format (all element type definitions are from the file
rti_routing_service.xsd)

ddsObjectRepresentation
<xs:element name="dds"

type="ddsRouter"/>

routerObjectRepresentation
<xs:element name="routing_service"

type="routingService"/>

domainRouteObjectRepresentation
<xs:element name="domain_route"

type="domainRoute"/>

connectionObjectRepresentation
<xs:element name="connection"

type="domainRouteConnection"/>

participantObjectRepresentation
<xs:element name="participant"

type="domainRouteParticipant"/>

sessionObjectRepresentation
<xs:element name="session"

type="routerSession"/>

autoRouteObjectRepresentation
<xs:element name="auto_route"

type="autoRoute"/>

autoTopicRouteObjectRepresentation
<xs:element name="auto_topic_route"

type="autoTopicRoute"/>

routeObjectRepresentation
<xs:element name="route"

type="route"/>

topicRouteObjectRepresentation
<xs:element name="topic_route"

type="topicRoute"/>

inputObjectRepresentation
<xs:element name="input"

type="routeStreamPort"/>

continues on next page

6.1. Overview 58

RTI Routing Service User's Manual, Version 7.3.0

Table 6.2 – continued from previous page
Resource Representation Format (all element type definitions are from the file

rti_routing_service.xsd)
outputObjectRepresentation

<xs:element name="output"
type="routeStreamPort"/>

ddsInputObjectRepresentation
<xs:element name="input"

type="topicRouteInput"/>

<xs:element name="dds_input"
type="topicRouteInput"/>

ddsOutputObjectRepresentation
<xs:element name="output"

type="topicRouteOutput"/>

<xs:element name="dds_output"
type="topicRouteOutput"/>

6.2 API Reference

This section documents each remote operation, organized by service resource class.

6.2.1 Remote API Overview

Note: To improve readability, <SERVICE> is sometimes used in place of the service resource portion of
the resource identifier (e.g., /routing_services/(rs) or /routing_services/MyService). It does not represent valid
syntax.

Table 6.3: Remote Interface Overview
Resource Operation Description
Service CREATE /routing_services/(rs)/domain_route Creates a new DomainRoute.

CREATE /routing_services/(rs)/config Loads a full service configura-
tion.

GET /routing_services/(rs) Returns the Service configura-
tion.

UPDATE /routing_services/(rs) Updates a Service object.
UPDATE /routing_services/(rs)/state Sets a Service state.
UPDATE /routing_services/(rs):save Saves the Service loaded con-

figuration.
continues on next page

6.2. API Reference 59

RTI Routing Service User's Manual, Version 7.3.0

Table 6.3 – continued from previous page
Resource Operation Description

DELETE /routing_services/(rs)/domain_routes/(dr) Deletes a DomainRoute ob-
ject.

DELETE /routing_services/(rs)/config Deletes the Service configura-
tion.

DELETE /routing_services/(rs) Shuts down the running Ser-
vice.

DomainRoute CREATE /routing_services/(rs)/do-
main_route/(dr)/sessions

Creates a new Session.

UPDATE /routing_services/(rs)/domain_route/(dr) Updates a DomainRoute.
UPDATE /routing_services/(rs)/do-
main_route/(dr)/state

Sets a DomainRoute state.

DELETE /routing_services/(rs)/do-
main_route/(dr)/sessions/(s)

Deletes a Session.

Connection UPDATE <SERVICE>/domain_route/connec-
tions(c):add_peer

Adds a list of peers in a Con-
nection (a Participant in DDS
adapter).

UPDATE <SERVICE>/domain_route/(dr)/connec-
tions(c)

Updates a Connection.

DELETE <SERVICE>/domain_route/(dr)/connec-
tions(c):remove_peer

Removes a list of peers in a
Connection (a Participant in
DDS adapter).

Session CREATE <SERVICE>/domain_route/(dr)/ses-
sions/(s)/auto_routes

Creates a new AutoRoute.

CREATE <SERVICE>/domain_route/(dr)/ses-
sions/(s)/routes

Creates a new Route.

UPDATE <SERVICE>/domain_route/(dr)/sessions(s) Updates a Session.
UPDATE <SERVICE>/domain_route/(dr)/ses-
sions(s)/state

Sets a Session state.

DELETE <SERVICE>/domain_route/(dr)/ses-
sions/(s)/auto_routes/(ar)

Deletes an AutoRoute.

DELETE <SERVICE>/domain_route/(dr)/ses-
sions/(s)/routes/(r)

Deletes a Route.

AutoRoute or Auto-
TopicRoute

UPDATE <SERVICE>/domain_route/(dr)/ses-
sions/(s)/auto_routes(ar)

Updates an AutoRoute.

UPDATE <SERVICE>/domain_route/(dr)/ses-
sions/(s)/auto_routes(ar)/state

Sets an AutoRoute state.

Route or Topi-
cRoute

UPDATE <SERVICE>/domain_route/(dr)/ses-
sions/(s)/routes(r)

Updates a Route.

UPDATE <SERVICE>/domain_route/(dr)/ses-
sions/(s)/routes(r)/state

Sets a Route state.

Input UPDATE <SERVICE>/domain_route/(dr)/ses-
sions/(s)/routes(r)/inputs/(i)

Updates an Input (Connext
and non-Connext).

Output UPDATE <SERVICE>/domain_route/(dr)/ses-
sions/(s)/routes(r)/outputs/(o)

Updates an Output (Connext
and non-Connext).

6.2. API Reference 60

RTI Routing Service User's Manual, Version 7.3.0

6.2.2 Service

CREATE /routing_services/(rs)/domain_routes

Operation create_domain_route

Creates a DomainRoute object from its domainRouteObjectRepresentation (see Table 6.2).

See Create Resource (Create Resource).

Example
Create a DomainRoute with name “NewDomainRoute” under Service “MyRouter”, with its config-
uration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes

string_body

str\://\"<domain_route name=\"NewDomainRoute\
→˓">

...
</domain_route>"

The newly created object has the resource identifier:

/routing_services/MyRouter/domain_routes/NewDomainRoute

CREATE /routing_services/(rs)/config

Operation load

Loads a new configuration for the service from its ddsObjectRepresentation (see Table 6.2).

If the Service is already loaded, this operation will unload it first.

The provided configuration must contain a valid Service configuration with the same name that the initial
configuration used when the service was first instantiated.

If the operation fails, the service will remain in an unloaded state.

Request body

• string_body: a valid Service XML configuration document provided as file:// or str:/
/.

Reply body

• Empty.

Example
Load a new configuration in Service “MyRouter”.

6.2. API Reference 61

RTI Routing Service User's Manual, Version 7.3.0

Request Field Value
action CREATE
resource_identi-
fier

/routing_services/MyRouter/config

string_body

str://"<dds>
...
<qos_library name="QosLibrary">

...
</qos_library>

...
<routing_service name="MyRouter">

...
</routing_service>

</dds>"

GET /routing_services/(rs)

Operation: get

Returns a snapshot of the currently loaded full XML configuration as ddsObjectRepresentation (see Table
6.2).

See Get Resource (Get Resource).

Example reply body:

<routing_service name="MyRouter>
<administration>...</administration>
...

</routing_service>

UPDATE /routing_services/(rs)

Operation: update

Updates the specified Service object.

See Update Resource (Update Resource).

The expected XML configuration is a subset of routerObjectRepresentation and only contains the prop-
erties that are mutable and whose values have changed.

Example
Update a Service with the name “MyRouter”.

6.2. API Reference 62

RTI Routing Service User's Manual, Version 7.3.0

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter

string_body

str://\"<routing_service>
<save_path>./service_snapshot.xml</save_

→˓path>
</routing_service>"

UPDATE /routing_services/(rs)/state

Operation: set_state

Sets the state of a Service object.

See Set Resource State (Set Resource State).

Valid requested states:

• ENABLED

• DISABLED

• PAUSED

• RUNNING

Example
Enable a Service with the name “MyRouter”.

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/state

octet_body

to_cdr_
→˓buffer(RTI::Service::EntityStateKind::ENABLED)

UPDATE /routing_services/(rs):save

Operation: save

Dumps the currently loaded XML configuration into a file.

The output file is specified by the save_path configuration tag. The save operation will fail if the
save_path has not been configured.

Request body

6.2. API Reference 63

RTI Routing Service User's Manual, Version 7.3.0

• Empty.

Reply body

• Empty.

DELETE /routing_services/(rs)/domain_routes/(dr)

Operation delete_domain_route

Deletes the specified DomainRoute.

See Delete Resource (Delete Resource).

DELETE /routing_services/(rs)/config

Operation unload

Unloads the current configuration of the service. If the Service is enabled, this operation will disable it
first. Upon a successful request, the service will remain in an unloaded state and no other operations can
be made until a configuration is loaded.

Request body

• Empty.

Reply body

• Empty.

DELETE /routing_services/(rs)

Operation shutdown

Initiates the shutdown sequence on the process where the Service object runs.

• If Service runs as a process executed by the shipped executable in the RTI Connext installation, the
process will exit upon receipt of the command.

• If Service is instantiated as a library in your application, the service instance will notify the installed
remote shutdown hook.

In both cases, right before executing the shutdown sequence, Service will send a reply indicating the result
of the operation. Note that if the operation returns successfully, the reply may be lost and never received
by remote clients, since all the contained entities are deleted, including the RTI Remote Administration
Platform entities.

This operation can be invoked at any time during the lifecycle of the service.

Request body

• Empty.

Reply body

• Empty.

6.2. API Reference 64

RTI Routing Service User's Manual, Version 7.3.0

6.2.3 DomainRoute

CREATE /routing_services/(rs)/domain_routes/(dr)/sessions

Operation: create_session

Creates a Session object from its sessionObjectRepresentation (see Table 6.2).

See Create Resource (Create Resource).

Example
Create a Session with the name “NewSession” under the DomainRoute “MyDomainRoute”, with
its configuration provided as a str:// scheme.

Request Field Value
action CREATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomain-
Route/sessions

string_body

str://"<session name="NewSession">
...
</session>"

The newly created object has the resource identifier:

<SERVICE>/domain_routes/NewDomainRoute/sessions/NewSession

UPDATE /routing_services/(rs)/domain_routes/(dr)

Operation: update

Updates the specified DomainRoute object.

See Update Resource (Update Resource).

The expected XML configuration is a subset of domainRouteObjectRepresentation and only contains the
properties that are mutable and whose values have changed.

Example
Update a DomainRoute with the name “MyDomainRoute” under the Service “MyRouter”, with its
configuration provided as a str:// scheme.

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute

string_body

str://"<domain_route>
...
</domain_route>"

6.2. API Reference 65

RTI Routing Service User's Manual, Version 7.3.0

UPDATE /routing_services/(rs)/domain_routes/(dr)/state

Operation: set_state

Sets the state of a DomainRoute object.

See Set Resource State (Set Resource State).

Valid requested states:

• ENABLED

• DISABLED

Example
Enable a DomainRoute with the name “MyDomainRoute” under the Service “MyRouter”.

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routers/MyDomain-
Route/state

octet_body

to_cdr_
→˓buffer(RTI::Service::EntityStateKind::ENABLED)

DELETE /routing_services/(rs)/domain_routes/(dr)/sessions/(s)

Operation delete_session

Deletes the specified Session.

See Delete Resource (Delete Resource).

Request body

• Empty.

Reply body

• Empty.

6.2.4 Connection

UPDATE \<SERVICE\>/domain_routes/(dr)/connections/(c):add_peer

Operation add_peer

Adds a list of peers to the specified Connection.

The Connection implementation shall refer to a <participant> object.

Request body

6.2. API Reference 66

RTI Routing Service User's Manual, Version 7.3.0

• string_body: A comma-separated list of peer descriptors, as described in peer descriptor
format.

• Example peer descriptor list:

updv4://10.2.0.1,udpv4://239.255.0.1

Reply body

• Empty.

UPDATE \<SERVICE\>/domain_routes/(dr)/connections/(c)

Operation: update

Updates the specified Connection object.

See Update Resource (Update Resource).

The expected XML configuration is a subset of participantObjectRepresentation or connectionObjectRep-
resentation and only contains the properties that are mutable and whose value is changed.

Example
Update a Connection with the name “MyParticipant” under the DomainRoute “MyDomainRoute”,
with its configuration provided as a str:// scheme.

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute/
connections/MyParticipant

string_body

str://"<participant>
<domain_participant_qos>

<property>
<value>

<element>
<name>property_name</name>
<value>property_new_value

→˓</value>
</element>

</value>
</property>

</domain_participant_qos>
</participant>"

Example
Update a Connection with the name “MyConnection” under the DomainRoute “MyDomainRoute”,
with its configuration provided as a str:// scheme.

6.2. API Reference 67

RTI Routing Service User's Manual, Version 7.3.0

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute/
connections/MyConnection

string_body

str://"<connection>
<property>

<value>
<element>

<name>property_name</name>
<value>property_new_value</

→˓value>
</element>

</value>
</property>

</connection>

DELETE \<SERVICE\>/domain_routes/(dr)/connections/(c):remove_peer

Operation remove_peer

Removes a list of peers from the specified Connection.

The Connection implementation shall refer to a <participant> object.

Request body

• string_body: A comma-separated list of peer descriptors, as described in peer descriptor
format.

• Example peer descriptor list:

updv4://10.2.0.1,udpv4://239.255.0.1

Reply body

• Empty.

6.2.5 Session

CREATE \<SERVICE\>/domain_routes/(dr)/sessions/(s)/auto_routes

Operation: create_auto_route

Creates an AutoRoute or AutoTopicRoute object from its autoRouteObjectRepresentation or autoTopi-
cRouteObjectRepresentation (see Table 6.2).

See Create Resource (Create Resource).

Example
Create an AutoRoute with the name “NewAutoRoute” under the Session “MySession”, with its
configuration provided as a str:// scheme.

6.2. API Reference 68

RTI Routing Service User's Manual, Version 7.3.0

Request Field Value
action CREATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute/
sessions/MySession/auto_routes

string_body

str://"<auto_route name="NewAutoRoute">
...
</auto_route>"

The newly created object has the resource identifier:

/routing_services/MyRouter/domain_routes/MyDomainRoute/ sessions/MySes-
sion/auto_routes/NewAutoRoute

CREATE \<SERVICE\>/domain_routes/(dr)/sessions/(s)/routes

Operation: create_route

Creates a Route or TopicRoute object from its routeObjectRepresentation or topicRouteObjectRepresenta-
tion (see Table 6.2).

See Create Resource (Create Resource).

Example
Create a Route with the name “NewRoute” under the Session “MySession”, with its configuration
provided as a str:// scheme.

Request Field Value
action CREATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute/
sessions/MySession/routes

string_body

str://"<route name="NewRoute">
...
</route>"

The newly created object has the resource identifier:

/routing_services/MyRouter/domain_routes/MyDomainRoute/ sessions/MySes-
sion/routes/NewRoute

6.2. API Reference 69

RTI Routing Service User's Manual, Version 7.3.0

UPDATE \<SERVICE\>/domain_routes/(dr)/sessions/(s)

Operation: update

Updates the specified Session object.

See Update Resource (Update Resource).

The expected XML configuration is a subset of sessionObjectRepresentation and only contains the prop-
erties that are mutable and whose values have changed.

Example
Update a Session with the name “MySession” under the DomainRoute “MyDomainRoute”, with its
configuration provided as a str:// scheme.

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute/
sessions/MySession

string_body

str://"<session>
<publisher_qos>

<partition>
<name>

<element>MyNewPartition</
→˓element>

</name>
</partition>

</publisher_qos>
</session>"

UPDATE \<SERVICE\>/domain_routes/(dr)/sessions/(s)/state

Operation: set_state

Sets the state of a Session object.

See Set Resource State (Set Resource State).

Valid requested states:

• ENABLED

• DISABLED

Example
Enable a Session with the name “MySession” under the DomainRoute “MyDomainRoute”.

6.2. API Reference 70

RTI Routing Service User's Manual, Version 7.3.0

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routers/MyDomainRoute/
sessions/MySession/state

octet_body

to_cdr_
→˓buffer(RTI::Service::EntityStateKind::ENABLED)

DELETE \<SERVICE\>/domain_routes/(dr)/sessions/(s)/auto_routes/(ar)

Operation delete_auto_route

Deletes the specified AutoRoute.

See Delete Resource (Delete Resource).

DELETE \<SERVICE\>/domain_routes/(dr)/sessions/(s)/routes/(r)

Operation delete_route

Deletes the specified Route.

See Delete Resource (Delete Resource).

6.2.6 AutoRoute

UPDATE \<SERVICE\>/domain_routes/(dr)/sessions/(s)/auto_routes/(ar)

Operation: update

Updates the specified AutoRoute or AutoTopicRoute object.

See Update Resource (Update Resource).

The expected XML configuration is a subset of autoRouteObjectRepresentation or autoTopicRouteObjec-
tRepresentation and only contains the properties that are mutable and whose value is changed.

Note that AutoRoute or AutoTopicRoute don’t have any children resources. All the properties defined for
the XML representation can be used for the update operation. Also the Route or TopicRoute created as
part of an AutoRoute or AutoTopicRoute can be updated independently.

Example
Update an AutoRoute with the name “MyAutoRoute” under the Session “MySession”, with its con-
figuration provided as a str:// scheme.

6.2. API Reference 71

RTI Routing Service User's Manual, Version 7.3.0

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute/
sessions/MySession/auto_routes/MyAutoRoute

string_body

str://"<auto_route>
<dds_input>

<datareader_qos>
<period>

<sec>1</sec>
<nanosec>0</nanosec>

</period>
</datareader_qos>

</dds_input>
</auto_route>"

UPDATE \<SERVICE\>/domain_routes/(dr)/sessions/(s)/auto_routes/(ar)/
state

Operation: set_state

Sets the state of an AutoRoute object.

See Set Resource State (Set Resource State).

Valid requested states:

• ENABLED

• DISABLED

• RUNNING

• PAUSED

Example
Pause an AutoRoute with the name “MyAutoRoute” under the Session “MySession”.

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routers/MyDomainRoute/
sessions/MySession/auto_routes/MyAutoRoutestate

octet_body

to_cdr_
→˓buffer(RTI::Service::EntityStateKind::PAUSED)

6.2. API Reference 72

RTI Routing Service User's Manual, Version 7.3.0

6.2.7 Route

UPDATE \<SERVICE\>/domain_routes/(dr)/sessions/(s)/routes/(r)

Operation: update

See Update Resource (Update Resource).

The expected XML configuration is a subset of routeObjectRepresentation or topicRouteObjectRepresen-
tation and only contains the properties that are mutable and whose value is changed.

Example
Update a Route with the name “MyRoute” under the Session “MySession”, with its configuration
provided as a str:// scheme.

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute/
sessions/MySession/routes/MyRoute

string_body

str://"<route>
<processor>

<property>
<value>

<element>
<name>property_name</name>
<value>property_new_value

→˓</value>
</element>

</value>
</property>

</processor>
</route>"

UPDATE \<SERVICE\>/domain_routes/(dr)/sessions/(s)/routes/(r)/state

Operation: set_state

Sets the state of a Route object.

See Set Resource State (Set Resource State).

Valid requested states:

• ENABLED

• DISABLED

• RUNNING

• PAUSED

6.2. API Reference 73

RTI Routing Service User's Manual, Version 7.3.0

Example
Pause a Route with the name “MyRoute” under the Session “MySession”.

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routers/MyDomainRoute/
sessions/MySession/routes/MyRoutestate

octet_body

to_cdr_
→˓buffer(RTI::Service::EntityStateKind::PAUSED)

6.2.8 Input/Output

UPDATE \<SERVICE\>/domain_routes/(dr)/sessions/(s)/routes/(r)/inputs(i)

Operation: update

See Update Resource (Update Resource).

The expected XML configuration is a subset of routeInputObjectRepresentation or topicRouteInputObjec-
tRepresentation and only contains the properties that are mutable and whose value is changed.

Example
Update Input with the name “MyInput” under the TopicRoute “MyRoute”, with its configuration
provided as a str:// scheme.

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute/
sessions/MySession/routes/MyRoute/inputs/MyInput

string_body

str://"<input>
<datareader_qos>

<period>
<sec>1</sec>
<nanosec>0</nanosec>

</period>
</datareader_qos>

</input>"

Example
Update Input with the name “MyInput” under theRoute “MyRoute”, with its configuration provided
as a str:// scheme.

6.2. API Reference 74

RTI Routing Service User's Manual, Version 7.3.0

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute/
sessions/MySession/routes/MyRoute/inputs/MyInput

string_body

str://"<input>
<property>

<value>
<element>

<name>property_name</name>
<value>property_new_value</

→˓value>
</element>

</value>
</property>

</input>"

UPDATE \<SERVICE\>/domain_routes/(dr)/sessions/(s)/routes/(r)/
outputs(i)

Operation: update

See Update Resource (Update Resource).

The expected XML configuration is a subset of routeOutputObjectRepresentation or topicRouteOutputO-
bjectRepresentation and only contains the properties that are mutable and whose value is changed.

Example
Update Output with the name “MyOutput” under the TopicRoute “MyRoute”, with its configuration
provided as a str:// scheme.

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute/
sessions/MySession/routes/MyRoute/inputs/MyInput

string_body

str://"<output>
<datawriter_qos>

<period>
<sec>1</sec>
<nanosec>0</nanosec>

</period>
</datawriter_qos>

</output>"

Example
Update Output with the name “MyOutput” under the Route “MyRoute”, with its configuration
provided as a str:// scheme.

6.2. API Reference 75

RTI Routing Service User's Manual, Version 7.3.0

Request Field Value
action UPDATE
resource_identi-
fier

/routing_services/MyRouter/domain_routes/MyDomainRoute/
sessions/MySession/routes/MyRoute/outputs/MyOutput

string_body

str://"<output>
<property>

<value>
<element>

<name>property_name</name>
<value>property_new_value</

→˓value>
</element>

</value>
</output>

</input>"

6.3 Example: Configuration Reference

This configuration example shows how individual commands would apply to a valid Routing Service configura-
tion.

<?xml version="1.0"?>
<dds>

<routing_service name="MyRouter">
<domain_route name="MyDomainRoute">

<participant name="MyParticipant">
<domain_id>0</domain_id>

</participant>
<connection name="MyConnection">
</connection>
... <!-- other connections/participants -->

<session name="MySession">
<auto_route name="MyAutoRoute">
<publish_with_original_timestamp>true</publish_with_original_

→˓timestamp>
...
<input name="MyInput">

...
<property>

...
</property>

</input>
<output name="MyOutput">

...

(continues on next page)

6.3. Example: Configuration Reference 76

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<property>

...
</property>

</output>
</auto_route>
<auto_topic_route name="MyAutoTopicRoute">

<publish_with_original_info>true</publish_with_original_
→˓info>

...
<input name="MyInput">

...
<datareader_qos>

...
</datareader_qos>

</input>
<output name="MyOutput">

...
<datawriter_qos>

...
</datawriter_qos>

</output>
</auto_topic_route>
... <!-- other auto (Topic) routes -->
<route name="MyRoute">

<input name="MyInput">
...
<property>

...
</property>

</input>
... <!-- other inputs -->
<output name="MyOutput">

...
<property>

...
</property>

</output>
... <!-- other outputs -->

</route>
... <!-- other (Topic) routes -->
<topic_route name="MyTopicRoute">

...
<input name="MyInput">

...
<datareader_qos>

...
</datareader_qos>

</input>
... <!-- other inputs -->
<output name="MyOutput">

...
<datawriter_qos>

(continues on next page)

6.3. Example: Configuration Reference 77

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
...

</datawriter_qos>
</output>
... <!-- other outputs -->

</topic_route>
</session>
... <!-- other sessions -->

</domain_route>
... <!-- other domain routes -->

</routing_service>
</dds>

6.4 The Remote Administration Shell

Any Connext application can be implemented to send remote administration commands and receive the corre-
sponding responses. A shell application that sends/receives these commands is provided with Routing Service.

The script for the shell application is in <NDDSHOME>/bin/rtirssh.

Entering rtirssh -help will show you the command-line options:

RTI Routing Service Shell
Usage: rtirssh [options]...
Options:
-domainId <integer> Domain ID for the remote configuration
-timeout <seconds> Max time to wait for a remote response
-cmdFile <file> Run commands in this file
-help Displays this information

6.4.1 Remote Shell Commands

This section describes the remote commands using the shell interface. The available remote commands are:

6.4. The Remote Administration Shell 78

RTI Routing Service User's Manual, Version 7.3.0

Command Parameters
add_peer <target_routing_service> <domain_route_name>

p1|p2 <peer_list>

create <target_routing_service> do-
main_route|session|topic_route|auto_route
[<parent_entity_name>] <xml_url> [remote|lo-
cal]

delete <target_routing_service> [<entity_name>]

disable <target_routing_service> [<entity_name>]

enable <target_routing_service> [<entity_name>]

get <target_routing_service>

load <target_routing_service> <cfg_name><xml_url>
[remote|local]

pause <target_routing_service> [<entity_name>]

resume <target_routing_service> [<entity_name>]

save <target_routing_service>

shutdown <target_routing_service>

unload <target_routing_service>

update <target_routing_service> [<entity_name>]
[<xml_url>|<assignment_expr>] [remote|local]

6.4.2 Command: add_peer

add_peer <target_routing_service> <domain_route_name> p1|p2 <peer_list>

The add_peer command passes the peer_list to the underlying DomainParticipant’s add_peer()
function. It is only valid for DomainParticipants in a Domain Route. Parameter <domain_route_name>
is like <entity_name>, but must be a Domain Route entity. Parameter p1|p2 specifies if the DomainPar-
ticipant associated with <participant_1> or <participant_2> configuration is selected. Parameter
<peer_list> is a comma-separated list of peers.

6.4.3 Command: create

create <target_routing_service> domain_route|session|topic_route|auto_route
[<parent_entity_name>] <xml_url> [remote|local]

The create command is similar to update, but the configuration is applied to a newly created entity instead of
an existing one. The second parameter (domain_route|session|topic_route|auto_route)
is the kind of entity to be created. If the kind is a domain_route, there will be no parent. For the other
kinds (session, topic_route, or auto_route), a <parent_entity_name> must be specified.
Parameters <xml_url> and [remote|local] are the same as those used in update, except that only
XML snippets matching the entity kind are allowed. A full file (starting with <dds>…) is not valid.

For example (this would be entered as a single command, with no line-breaks):

6.4. The Remote Administration Shell 79

RTI Routing Service User's Manual, Version 7.3.0

create example topic_route DomainRoute::Session
str://"<topic_route name="TrianglesToTriangles">
<input participant="1"><registered_type_name>ShapeType
</registered_type_name><topic_name>Triangle</topic_name></input>
<output><registered_type_name>ShapeType</registered_type_name>
<topic_name>Triangle</topic_name></output></topic_route>"

6.4.4 Command: delete

delete <target_routing_service> [<entity_name>]

You can invoke the delete command on Domain Routes, Routes and Auto Routes. It acts like the disable
command, but also purges the configuration data for the target entity.

For example:

delete example DomainRoute::Session::CirclesToCircles

A deleted entity cannot be re-enabled, but a new one can be created. `

6.4.5 Command: disable

disable <target_routing_service> [<entity_name>]

The disable command disables a Routing Service entity by destroying its sub-entities and corresponding DDS
objects:

• Routing service: When a Routing Service is disabled, all of its Domain Routes are destroyed. You do not
need to specify the entity_name to disable a Routing Service.

• Domain Route: When a Domain Route is disabled, all its Routes, Topic Routes, Auto Routes, and Auto
Topic Routes are destroyed, as well as both Connections (DomainParticipants for DDS). All the session
threads are stopped and their corresponding adapter sessions (Publisher and Subscriber for DDS) are also
deleted.

• Route, Topic Route, Auto Route and Auto Topic Route: When a Route, Topic Route, Auto Route, or
Auto Topic Route is disabled, its StreamReaders and StreamWriters are destroyed, so data will no longer
be routed.

6.4. The Remote Administration Shell 80

RTI Routing Service User's Manual, Version 7.3.0

6.4.6 Command: enable

enable <target_routing_service> [<entity_name>]

The enable command enables an entity that has been disabled or marked as ‘enabled=false’ in the configuration
file.

This command can be used to enable the following entities:

• Routing service: When a Routing Service is enabled, it uses the currently loaded configuration and starts.
You don’t need to specify the entity_name to enable a Routing Service.

• Domain Route: When a Domain Route is enabled, it creates the Participants, Routes, Topic Routes,
Auto Routes, and Auto Topic Routes that it contains. The Routes, Topic Routes, Auto Routes, and Auto
Topic Routes will be created enabled or disabled depending on their current configuration. Enabling a
Domain Route is required to start routing data from the input domain to the output domain.

• Route, Topic Route, Auto Route, and Auto Topic Route: Enabling a Route, Topic Route, Auto Route
or Auto Topic Route is a necessary condition to start routing data between input and output streams.
However, data routing will not start until the StreamWriter and StreamReader associated with a Route
are created (see Creation Modes for additional information).

6.4.7 Command: get

get <target_routing_service>

The get command retrieves the current configuration.

The retrieved configuration, provided in an XML string format, is functionally equivalent to the loaded XML
file, plus any updates (either from an update command or other remote commands that change the configuration,
such as add_peer). However, the retrieved configuration may not be textually equivalent. For example, the
retrieved configuration may explicitly contain default values that were not in the initial XML.

6.4.8 Command: load

load <target_routing_service> <cfg_name> <xml_url> [remote|local]

The load command loads specific XML configuration code. The target_routing_service must be
disabled. For more information, see How to Load the XML Configuration here.

The XML code received must represent a valid Routing Service configuration file. The name of the
<routing_service> tag to load is identified with <cfg_name>.

6.4. The Remote Administration Shell 81

RTI Routing Service User's Manual, Version 7.3.0

6.4.9 Command: pause

pause <target_routing_service> <entity_name>

When the pause command is called for a Route, the session thread containing this Route will stop reading data
from the Route’s StreamReader.

For Routing Service, Domain Routes, Auto Routes, and Auto Topic Routes, the execution of this command will
pause the contained Topic Routes and Routes.

6.4.10 Command: resume

resume <target_routing_service> <entity_name>

When the resume command is called for a Route, the session thread containing this Route will continue reading
data from the Route’s StreamReader.

For Routing Service, Domain Routes, Auto Routes and Auto Topic Routes, the execution of this command will
resume the contained Topic Routes and Routes.

6.4.11 Command: save

save <target_routing_service>

This command writes the current configuration to a file. The file itself is specified with <save_path> (see
tag within the Administration Tag table). If <save_path> has not been specified, the save command will
fail. If the file specified by <save_path> already exists, the file will be overwritten.

The saved configuration is functionally equivalent to the loaded XML file plus any updates (either from an
update command or other remote commands that change the configuration, such as add_peer). However
it may not be textually equivalent. For example, the saved XML configuration may explicitly contain default
values that were not in the initial XML.

Note: If the <autosave_on_update> tag (see tag within the Administration Tag table) is set to TRUE,
this will automatically trigger a save command when configuration updates are received.

6.4.12 Command: shutdown

shutdown <target_routing_service>

The shutdown command initiates the shutdown sequence on the process where thetarget_routing_ser-
vice runs. The result of the remote shutdown command depends on how Routing Service is instantiated:

• If Routing Service runs as a process executed by the shipped executable in your RTI Connext installation,
the process will exit upon command reception.

6.4. The Remote Administration Shell 82

RTI Routing Service User's Manual, Version 7.3.0

• If Routing Service is instantiated as a library in your application, the service instance will notify the
installed remote shutdown hook. In this case, the application creating the Routing Service instance is
responsible to handle the shutdown sequence. If the shutdown hook is not set, the command request will
fail with a response indicating an error.

On a successful shutdown request, Routing Service will send a reply with RTI_ROUTING_SERVICE_COM-
MAND_RESPONSE_OK, or RTI_ROUTING_SERVICE_COMMAND_RESPONSE_ERROR and an error
message indicating the problem.

This command will take effect regardless of the target_routing_service’s enabled state.

6.4.13 Command: unload

unload <target_routing_service>

The unload command unloads the current configuration that the target_routing_service is using, so you can
change it with a subsequent load command.

The target_routing_service must be disabled for this command to succeed.

6.4.14 Command: update

update <target_routing_service> [<entity_name>] [<xml_url>|<assignment_expr>␣
→˓[remote|local]

The update command changes the configuration of a specific entity. The following table shows the parameters
that can be changed for each entity:

6.4. The Remote Administration Shell 83

RTI Routing Service User's Manual, Version 7.3.0

Entity Mutable (can be changed at any time) Immutable (can only be changed when
disabled)

Routing Ser-
vice • <monitoring><enabled>

• <monitor-
ing><status_publication_period>

• <entity_monitor-
ing><enabled>

• <entity_monitor-
ing><status_publication_period>

• <administra-
tion><save_path>

• <administra-
tion><autosave_on_update>

• <monitor-
ing><statistics_sampling_period>

• <monitor-
ing><historical_statistics>

• <monitoring><domain_id>
• <entity_monitor-
ing><statistics_sampling_period>

• <entity_monitor-
ing><historical_statistics>

• <administration>

Domain Route
• <connection>: Mutable
properties in <property>
(adapter-specific)

• <participant>: Mu-
table QoS policies in
<domain_participant_qos>

• <entity_monitor-
ing><enabled>

• <entity_monitor-
ing><status_publication_period>

• <connection>: Immutable
properties in <property>
(adapter-specific)

• <domain_partic-
ipant_qos>: Im-
mutable QoS policies in
<domain_participant_qos>

• <entity_monitor-
ing><statistics_sampling_period>

• <entity_monitor-
ing><historical_statistics>

Session
• (Non-DDS) Mutable properties in
<property> (adapter-specific)

• (DDS) Mutable QoS policies
in <publisher_qos> and
<subscriber_qos>

• <entity_monitor-
ing><enabled>

• <entity_monitor-
ing><status_publication_period>

• (Non-DDS) Immutable properties in
<property> (adapter-specific)

• (DDS) Immutable QoS policies
in <publisher_qos> and
<subscriber_qos>

• <entity_monitor-
ing><statistics_sampling_period>

• <entity_monitor-
ing><historical_statistics>

Route
• Mutable properties in
<property> (adapter-specific)

• Mutable properties in
<transformation><property>
(transformation-specific)

• Immutable properties in
<property> (adapter-specific)

• Immutable properties in
<transformation><property>
(transformation-specific)

Auto Route
• Mutable properties in
<property> (adapter-specific)

• Immutable properties in
<property> (adapter-specific)

Topic Route
• Mutable QoS policies in
<datawriter_qos> and
<datareader_qos>

• Mutable properties in
<transformation><property>
(transformation-specific)

• <route_types>
• <propagate_dispose>
• <propagate_unregister>
• <publish_with_origi-
nal_info>

• <content_fil-
ter><parameter>

• <entity_monitor-
ing><enabled>

• <entity_monitor-
ing><status_publication_period>

• Immutable properties in
<datawriter_qos> and
<datareader_qos>

• <creation_mode>
• <content_filter>/
<expression>

• <entity_monitor-
ing><statistics_sampling_period>

• <entity_monitor-
ing><historical_statistics>

Auto Topic
Route • Mutable QoS policies in

<datawriter_qos> and
<datareader_qos>

• Mutable properties in
<transformation><property>
(transformation-specific)

• <propagate_dispose>
• <propagate_unregister>
• <publish_with_origi-
nal_info>

• <content_fil-
ter><parameter>

• <entity_monitor-
ing><enabled>

• <entity_monitor-
ing><status_publication_period>

• Immutable properties in
<datawriter_qos> and
<datareader_qos>

• <creation_mode>
• <content_filter>/
<expression>

• <creation_mode>
• <allow_topic_name_fil-
ter>

• <allow_regis-
tered_type_name_filter>

• <deny_topic_name_fil-
ter>

• <deny_regis-
tered_type_name_filter>

• <content_fil-
ter><expression>

• <entity_monitor-
ing><statistics_sampling_period>

• <entity_monitor-
ing><historical_statistics>

6.4. The Remote Administration Shell 84

RTI Routing Service User's Manual, Version 7.3.0

If you try to change an immutable parameter in an entity that is enabled, you will receive an error message. To
change an immutable parameter, you must disable the Routing Service entity, change the parameter, and then
enable the Routing Service entity again.

You can send an XML snippet (or an assignment expression) that only contains the values you want to change
for that entity, or you can send a whole well-formed configuration file:

• If you send an XML snippet (or an assignment expression), only the changes you specify will take effect.
For example, suppose you send this command:

update ShapeRouter DomainRoute1::Session1::SquareToCircles
str://"<topic_route><input><datareader_qos><deadline><period>
<sec>1</sec></period></deadline></datareader_qos></input>
</topic_route>"

or

update ShapeRouter DomainRoute1::Session1::SquareToCircles
topic_route.input.datareader_qos.deadline.period.sec = 1

The Topic Route DomainRoute1::Session1::SquareToCircles will only change the pe-
riod value in the Deadline QoS for that particular DataReader.

Now suppose that later on you send this command:

update ShapeRouter DomainRoute1::Session1::SquareToCircles
str://"<topic_route><input><datareader_qos><property>
<value><element><name>MyProp</name><value>MyValueRemote</value>
</element></value></property><datareader_qos></input>
</topic_route>"

This would only change the Property QoS; the Deadline QoS would keep the setting from the prior
command. In both cases, an update command can only reconfigure one entity at a time and Routing
Service will ignore all contained entities. For example, a command to update a session will not modify
the configuration of its contained Routes. If you need to reconfigure several entities at the same time,
consider using the load command.

• If you send a well-formed configuration file (starting with <dds><routing_service>), the prop-
erties in the Route (QoS values in the Topic Route) will be completely replaced with the properties (QoS
values) defined in the XML code. If a QoS value for a Topic Route is not defined in the XML code,
Routing Service will use the Connext default.

6.4. The Remote Administration Shell 85

Chapter 7

Monitoring

This section provides documentation on Routing Service remote monitoring.

Note: Routing Service monitoring is based on the Monitoring Distribution Platform described in Monitoring
Distribution Platform. We recommend that you read Monitoring Distribution Platform before using Routing
Service monitoring.

7.1 Overview

7.1.1 Enabling Service Monitoring

By default, monitoring is disabled in Routing Service. To enable monitoring you can use the <monitoring>
tag (see Routing Service Tag) or the -remoteMonitoringDomainId command-line parameter, which
enables remote monitoring and sets the domain ID for data publication (see Command-Line Executable).

7.1.2 Monitoring Types

The available Keyed Resource classes and their types that can be present in the distribution monitoring topics
are listed in Table 7.1. The complete type relationship is shown in Figure 7.1.

Table 7.1: Routing Service Keyed Resources

Keyed Resource
Class

Config Event Periodic

Service ServiceConfig ServiceEvent ServicePeriodic

DomainRoute DomainRouteCon-
fig

Domain-
RouteEvent

DomainRoutePe-
riodic

Session SessionConfig SessionEvent SessionPeriodic

continues on next page

86

RTI Routing Service User's Manual, Version 7.3.0

Table 7.1 – continued from previous page
Keyed Resource
Class

Config Event Periodic

AutoRoute/AutoTopi-
cRoute

AutoRouteConfig AutoRouteEvent AutoRoutePeri-
odic

Route/TopicRoute RouteConfig RouteEvent RoutePeriodic

Input InputConfig InputEvent InputPeriodic

Output OutputConfig OutputEvent OutputPeriodic

Figure 7.1: Keyed Resource Types for Routing Service monitoring

All the type definitions for Routing Service monitoring information are in [NDDSHOME]/resource/idl/
ServiceCommon.idl and [NDDSHOME]/resource/idl/RoutingServiceMonitoring.
idl.

Routing Service creates aDataWriter for each distribution Topic. AllDataWriters are created from a single Pub-
lisher, which is created from a dedicated DomainParticipant. See Routing Service Tag for details on configuring
the QoS for these entities.

7.1. Overview 87

RTI Routing Service User's Manual, Version 7.3.0

7.2 Monitoring Metrics Reference

This section provides a reference to all the monitoring metrics Routing Service distributes, organized by service
resource class.

7.2.1 Service

Listing 7.1: Routing Service Types

@mutable @nested
struct ServiceConfig : Service::Monitoring::EntityConfig {

BoundedString application_name;
Service::Monitoring::ResourceGuid application_guid;
@optional Service::Monitoring::HostConfig host;
@optional Service::Monitoring::ProcessConfig process;

};

@mutable @nested
struct ServiceEvent : Service::Monitoring::EntityEvent {
};

@mutable @nested
struct ServicePeriodic {

@optional Service::Monitoring::HostPeriodic host;
@optional Service::Monitoring::ProcessPeriodic process;

};

Table 7.2: ServiceConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 13.14.

application_name Name of theRouting Service instance. The application name is provided through:
• appName command-line option when run as executable.
• ServiceProperty::application_name field when run as a li-
brary.

application_guid GUID of the Routing Service instance. Unique across all service instances.
host See Table 13.10.
process See Table 13.12.

Table 7.3: ServiceEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 13.15.

7.2. Monitoring Metrics Reference 88

RTI Routing Service User's Manual, Version 7.3.0

Table 7.4: ServicePeriodic
Field Name Description
host See Table 13.11.
process See Table 13.13.

7.2.2 DomainRoute

Listing 7.2: DomainRoute Types

@mutable @nested
struct ConnectionConfigInfo {

BoundedString name;
AdapterClassKind class;
BoundedString plugin_name;
XmlString configuration;

};
@mutable @nested
struct ConnectionEventInfo {

BoundedString name;
@optional Service::BuiltinTopicKey participant_key;

};

@mutable @nested
struct DomainRouteConfig : Service::Monitoring::EntityConfig {

@optional sequence<ConnectionConfigInfo> connections;
};

@mutable @nested
struct DomainRouteEvent : Service::Monitoring::EntityEvent {

@optional sequence<ConnectionEventInfo> connections;
};

@mutable @nested
struct DomainRoutePeriodic {

@optional Service::Monitoring::StatisticVariable in_samples_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable in_bytes_per_
→˓sec;

@optional Service::Monitoring::StatisticVariable out_samples_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable out_bytes_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable latency_
→˓millisec;

};

7.2. Monitoring Metrics Reference 89

RTI Routing Service User's Manual, Version 7.3.0

Table 7.5: DomainRouteConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 13.14.

connections Sequence of ConnectionInfo objects, one for each Connection inside the
DomainRoute. See Table 7.6.

Table 7.6: ConnectionInfo
Field Name Description
name Name of the Connection instance, as specified in the name attribute of the cor-

responding configuration tag.
class Indicates the adapter class as AdapterClassKind:

• DDS_ADAPTER_CLASS: The Connection object is a DDS adapter con-
nection, hence it corresponds to a <participant> element.

• GENERIC_ADAPTER_CLASS: The Connection object is a custom,
generic adapter connection, hence it corresponds to a <connection>
element.

plugin_name Name of the adapter plugin as specified in the plugin_name attribute of the
corresponding configuraiton tag. For the DDS adapter, this field has the constant
value of rti.routingservice.adapters.dds.

configuration String representation of the XML configuration of the object.

Table 7.7: DomainRouteEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 13.15.

Table 7.8: DomainRoutePeriodic
Field Name Description
in_samples_per_sec Statistic variable that provides information about the input samples per second

as an aggregation of the same metric across the contained Sessions.
in_bytes_per_sec Statistic variable that provides information about the input bytes per second as

an aggregation of the same metric across the contained Sessions.
output_sam-
ples_per_sec

Statistic variable that provides information about the output samples per second
as an aggregation of the same metric across the contained Sessions.

output_bytes_per_sec Statistic variable that provides information about the output bytes per second as
an aggregation of the same metric across the contained Sessions.

latency_millisec Statistic variable that provides information about the latency in milliseconds as
an aggregation of the same metric across the contained Sessions.

7.2. Monitoring Metrics Reference 90

RTI Routing Service User's Manual, Version 7.3.0

7.2.3 Session

Listing 7.3: Session Types

@mutable @nested
struct SessionConfig : Service::Monitoring::EntityConfig {
};

@mutable @nested
struct SessionEvent : Service::Monitoring::EntityEvent {
};

@mutable @nested
struct SessionPeriodic {

@optional Service::Monitoring::StatisticVariable in_samples_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable in_bytes_per_
→˓sec;

@optional Service::Monitoring::StatisticVariable out_samples_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable out_bytes_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable latency_
→˓millisec;

@optional Service::Monitoring::ThreadPoolPeriodic thread_pool;
};

Table 7.9: SessionConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 13.14.

Table 7.10: SessionEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 13.15.

7.2. Monitoring Metrics Reference 91

RTI Routing Service User's Manual, Version 7.3.0

Table 7.11: SessionPeriodic
Field Name Description
in_samples_per_sec Statistic variable that provides information about the input samples per second

as an aggregation of the same metric across the contained Routes/TopicRoutes.
in_bytes_per_sec Statistic variable that provides information about the input bytes per second as

an aggregation of the same metric across the contained Routes/TopicRoutes.
output_sam-
ples_per_sec

Statistic variable that provides information about the output samples per second
as an aggregation of the same metric across the contained Routes/TopicRoutes.

output_bytes_per_sec Statistic variable that provides information about the output bytes per second as
an aggregation of the same metric across the contained Routes/TopicRoutes.

latency_millisec Statistic variable that provides information about the latency in milliseconds as
an aggregation of the same metric across the contained Routes/TopicRoutes.

thread_pool Sequence of ThreadPeriodic objects, one for each thread of the Session’s
thread pool. See Table 13.17.

7.2.4 AutoRoute

Listing 7.4: AutoRoute/AutoTopicRoute Types

@mutable @nested
struct AutoRouteStreamPortInfo {

XmlString configuration;
};

@mutable @nested
struct AutoRouteConfig : Service::Monitoring::EntityConfig {

@optional AutoRouteStreamPortInfo input;
@optional AutoRouteStreamPortInfo output;

};

@mutable @nested
struct AutoRouteEvent : Service::Monitoring::EntityEvent {
};

@mutable @nested
struct AutoRoutePeriodic {

@optional Service::Monitoring::StatisticVariable in_samples_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable in_bytes_per_
→˓sec;

@optional Service::Monitoring::StatisticVariable out_samples_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable out_bytes_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable latency_
→˓millisec;

int64 route_count;
};

(continues on next page)

7.2. Monitoring Metrics Reference 92

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)

Table 7.12: AutoRouteConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 13.14.

input See Table 7.13.
output See Table 7.13.

Table 7.13: AutoRouteStreamPortInfo
Field Name Description
configuration String representation of the XML configuration of the object.

Table 7.14: AutoRouteEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 13.15.

Table 7.15: AutoRoutePeriodic
Field Name Description
in_samples_per_sec Statistic variable that provides information about the input samples per second as

an aggregation of the same metric across all current Routes/TopicRoutes created
from this AutoRoute/AutoTopicRoute.

in_bytes_per_sec Statistic variable that provides information about the input bytes per second as
an aggregation of the same metric across all current Routes/TopicRoutes created
from this AutoRoute/AutoTopicRoute.

output_sam-
ples_per_sec

Statistic variable that provides information about the output samples per sec-
ond as an aggregation of the same metric across all current Routes/TopicRoutes
created from this AutoRoute/AutoTopicRoute.

output_bytes_per_sec Statistic variable that provides information about the output bytes per second as
an aggregation of the same metric across all current Routes/TopicRoutes created
from this AutoRoute/AutoTopicRoute.

latency_millisec Statistic variable that provides information about the latency in milliseconds as
an aggregation of the same metric across all current Routes/TopicRoutes created
from this AutoRoute/AutoTopicRoute.

route_count Current number of Routes/TopicRoutes created from this Au-
toRoute/AutoTopicRoute.

7.2. Monitoring Metrics Reference 93

RTI Routing Service User's Manual, Version 7.3.0

7.2.5 Route

Listing 7.5: Route/TopicRoute Types

@mutable @nested
struct RouteConfig : Service::Monitoring::EntityConfig {

@optional Service::Monitoring::ResourceGuid auto_route_guid;
};

@mutable @nested
struct RouteEvent : Service::Monitoring::EntityEvent {
};

@mutable @nested
struct RoutePeriodic {

@optional Service::Monitoring::StatisticVariable in_samples_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable in_bytes_per_
→˓sec;

@optional Service::Monitoring::StatisticVariable out_samples_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable out_bytes_
→˓per_sec;

@optional Service::Monitoring::StatisticVariable latency_
→˓millisec;

};

Table 7.16: RouteConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 13.14.

auto_route_guid GUID of the AutoRoute/AutoTopicRoute from which this Route/TopicRoute was
created. This field is set to zero for standalone routes.

Table 7.17: RouteEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 13.15.

7.2. Monitoring Metrics Reference 94

RTI Routing Service User's Manual, Version 7.3.0

Table 7.18: RoutePeriodic
Field Name Description
in_samples_per_sec Statistic variable that provides information about the input samples per second

as an aggregation of the same metric across its contained Inputs.
in_bytes_per_sec Statistic variable that provides information about the input bytes per second as

an aggregation of the same metric across its contained Inputs.
output_sam-
ples_per_sec

Statistic variable that provides information about the output samples per second
as an aggregation of the same metric across its contained Outputs.

output_bytes_per_sec Statistic variable that provides information about the output bytes per second as
an aggregation of the same metric across its contained Outputs.

latency_millisec Statistic variable that provides information about the latency in milliseconds for
the route. The latency in a route refers to the total time elapsed during the for-
warding of a sample, which includes reading, processing, and writing.

route_count Current number of Routes/TopicRoutes created from this Au-
toRoute/AutoTopicRoute.

7.2.6 Input/Output

Listing 7.6: Input/Output Types

@mutable @nested
struct TransformationInfo {

BoundedString plugin_name;
XmlString configuration;

};

@mutable @nested
struct StreamPortConfig : Service::Monitoring::EntityConfig {

BoundedString stream_name;
BoundedString registered_type_name;
BoundedString connection_name;
@optional TransformationInfo transformation;

};

@mutable @nested
struct StreamPortEvent : Service::Monitoring::EntityEvent{

@optional Service::BuiltinTopicKey endpoint_key;
};

@mutable @nested
struct StreamPortPeriodic {

@optional Service::Monitoring::StatisticVariable samples_per_
→˓sec;

@optional Service::Monitoring::StatisticVariable bytes_per_
→˓sec;

};

/*

(continues on next page)

7.2. Monitoring Metrics Reference 95

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
* Input
*/

@mutable @nested
struct InputConfig : StreamPortConfig {
};

@mutable @nested
struct InputEvent: StreamPortEvent {
};

@mutable @nested
struct InputPeriodic : StreamPortPeriodic {
};

/*
* Output
*/

@mutable @nested
struct OutputConfig : StreamPortConfig {
};

@mutable @nested
struct OutputEvent: StreamPortEvent {
};

@mutable @nested
struct OutputPeriodic : StreamPortPeriodic {
};

Table 7.19: InputConfig and OutputConfig
Field Name Description
Inherited fields from
EntityConfig

See Table 13.14.

stream_name Input/output stream name as specified in the configuration. For DDS In-
puts/Outputs, this value matches the underlying Topic name.

registered_type_name Input/Output registered type name. This is the name used to register the type of
the input/output stream.

connection_name Name of the Connection from which the Input/Output is created. The value of
this field can be used to determine the adapter plugin (DDS or generic) from
which the underlying StreamReader/StreamWriter are created.

transformation Optional field. If present, it provides information about the installed Transfor-
mation. See Table 7.20. For Inputs, this field will never be present.

7.2. Monitoring Metrics Reference 96

RTI Routing Service User's Manual, Version 7.3.0

Table 7.20: TransformationInfo
Field Name Description
plugin_name Name of the adapter plugin as specified in the plugin_name attribute of the

corresponding configuration tag.
configuration String representation of the XML configuration of the object.

Table 7.21: InputEvent and OutputEvent
Field Name Description
Inherited fields from
EntityEvent

See Table 13.15.

Table 7.22: InputPeriodic and OutputPeriodic
Field Name Description
samples_per_sec Statistic variable that provides information about the samples per second pro-

vided by this input/output:
• If the resource is Input, this field provides the value of the samples returned
by the underlying StreamReader::read() operation.

• If the resource is Output, this field provides the value of the samples pro-
vided to the underlying StreamWriter::write() operation.

bytes_per_sec1 Statistic variable that provides information about the bytes per second provided
by this input/output. The bytes refer only to the serialized samples, excluding
protocol headers (RTPS, UDP, etc).

1 The throughput measured in bytes can only be computed if the samples are DynamicData samples. If not, only the throughput,
measured in samples per second, is available. This statement applies to all the statistic variables described in this chapter that measure
throughput in bytes per second.

7.2. Monitoring Metrics Reference 97

Chapter 8

Usage

This chapter explains how to run Routing Service either from the distributed command-line executable or from
a library.

8.1 Command-Line Executable

Routing Service runs as a separate application. The script to run the executable is in <NDDSHOME>/bin.

rtiroutingservice [options]

In this section we will see:

• How to Start Routing Service (Starting Routing Service).

• How to Stop Routing Service (Stopping Routing Service).

• Routing Service Command-line Parameters (Routing Service Command-Line Parameters).

8.1.1 Starting Routing Service

To start Routing Service with a default configuration, enter:

Linux/macOS

$ NDDSHOME/bin/rtiroutingservice

Windows

> %NDDSHOME%\bin\rtiroutingservice

This command will run Routing Service indefinitely until you stop it. See Stopping Routing Service.

Table 8.1 describes the command-line parameters.

98

RTI Routing Service User's Manual, Version 7.3.0

Note: To run Routing Service on a target system (not your host development platform), you must first select
the target architecture. To do so, either:

• Set the environment variable CONNEXTDDS_ARCH to the name of the target architecture. (Do this for
each command shell you will be using.)

• Or set the variable connextdds_architecture in the file rticommon_config.[sh/bat]
to the name of the target architecture. (The file is resource/scripts/rticommon_config.
sh on Linux or macOS systems, resource/scripts/rticommon_config.bat on Windows
systems.) If the CONNEXTDDS_ARCH environment variable is set, the architecture in this file will be
ignored.

8.1.2 Stopping Routing Service

To stop Routing Service, press Ctrl-c. Routing Service will perform a clean shutdown.

8.1.3 Routing Service Command-Line Parameters

The following table describes all the command-line parameters available in Routing Service. To list the available
commands, run rtiroutingservice -h.

Table 8.1: Routing Service Command-Line Parameters
Parameter Description
-appName <string> Assigns a name to the execution of the Routing Service. Remote

commands and status information will refer to the instances using
this name. In addition, the names of DomainParticipants created
by the service will be based on this name. Default: empty string
(uses configuration name).

-cfgFile <string> Semicolon-separated list of configuration file paths. Default: un-
specified

-cfgName <string> Specifies the name of the Routing Service configuration to be
loaded. It must match a <routing_service> tag in the con-
figuration file. Default: rti.routingservice.builtin.config.default.

-convertLegacyXml <string> Converts the legacy XML specified with -cfgFile and pro-
duces the result in the specified output path. If no output path is
provided, the converted file will be in the same path than -cfgFile
with the suffix converted.

-domainIdBase <int> Sets the base domain ID. This value is added to the domain IDs
for all the DataReader’s DomainParticipants in the configuration
file. For example, if you set -domainIdBase to 50 and use domain
IDs 0 and 1 in the configuration file, then the Routing Service will
use domains 50 and 51. Default: 0

continues on next page

8.1. Command-Line Executable 99

RTI Routing Service User's Manual, Version 7.3.0

Table 8.1 – continued from previous page
Parameter Description
-D<name>=<value> Defines a variable that can be used as an alternate replace-

ment for XML environment variables, specified in the form
$(VAR_NAME). Note that definitions in the environment take
precedence over these definitions.

-heapSnapshotDir <dir> Specifies the output directory where the heap monitoring snap-
shots are dumped. The filename format is RTI_heap_<app-
Name>_<processId>_<index>. Used only if heap monitoring is
enabled. Default: current working directory

-heapSnapshotPeriod <sec> Specifies the period at which heap monitoring snapshots are
dumped. For example, Routing Service will generate a heap snap-
shot every <sec>. Enables heap monitoring if > 0. Default: 0
(disabled)

-help Prints this help and exits.
-identifyExecution Appends the host name and process ID to the service name pro-

vided with the -appName option. This option helps ensure unique
names for remote administration and monitoring. For example:
MyRoutingService_myhost_20024 Default: false

-ignoreXsdValidation Loads the configuration even if the XSD validation fails.
-licenseFile <path> Specifies the path to the license file. See How to use a License File

with RTI Services.
-listConfig Prints the available configurations and exits.
-logFile <file> Redirects logging to the specified file.
-logFormat <string> A mask to configure the format of the log messages for both the

service and DDS.
• DEFAULT - Print message, method name, log level, activity
context, and logging category

• VERBOSE - Print DEFAULT information, plus the follow-
ing: module, thread ID, and message location (and spread
the message over two lines)

• TIMESTAMPED - Print VERBOSE information, times-
tamped

• MINIMAL - Print only message number and message loca-
tion

• MAXIMAL - Print all available fields

-maxObjectsPerThread <int> Maximum number of thread-specific objects that can be cre-
ated. Default: Same as the Connext DDS default for max_ob-
jects_per_thread

-noAutoEnable Starts Routing Service in a disabled state. Use this option if you
plan to enable the service remotely. Overrides: This option over-
rides the <routing_service> tag’s “enabled” attribute in the config-
uration file. Default: false

-pluginSearchPath <path> Specifies a directory where plug-in libraries are located.
Default: current working directory

continues on next page

8.1. Command-Line Executable 100

RTI Routing Service User's Manual, Version 7.3.0

Table 8.1 – continued from previous page
Parameter Description
-remoteAdministrationDomainId
<int>

Enables remote administration and sets the domain ID for re-
mote communication. Overrides: This option overrides the <ad-
ministration> tag’s “enabled” attribute and <administration>/<do-
main_id> in the configuration file. Default: unspecified

-remoteMonitoringDomainId <int> Enables remote monitoring and sets the domain ID for status pub-
lication. Overrides: This option overrides <monitoring>/<en-
abled> and <monitoring>/<domain_id> in the configuration file.
Default: unspecified

-skipDefaultFiles Skips attempting to load the default configuration files Default:
false

-stopAfter <int> Number of seconds the Routing Service runs before it stops. De-
fault: (infinite).

-verbosity <ser-
vice_level>[:<dds_level>]

Controls what type of messages are logged. <service_level> is the
verbosity level for the service logs and <dds_level> is the verbosity
level for the DDS logs. Both can take any of the following values:

• SILENT
• ERROR
• WARN
• LOCAL
• REMOTE
• ALL

Default: ERROR:ERROR
-version Prints the Routing Service version number and exits.

All the command-line parameters are optional; if specified, they override the values of their corresponding
settings in the loaded XML configuration. SeeConfiguration for the set of XML elements that can be overridden
with command-line parameters.

8.2 Routing Service Library

Routing Service can be deployed as a library linked into your application on selected architectures (see Release
Notes). This allows you to create, configure, and start Routing Service instances from your application.

To build your application, add the dependency with the Routing Service library under <NDDSHOME>/lib/
<ARCHITECTURE>, where <ARCHITECTURE> is a valid and installed target architecture.

8.2. Routing Service Library 101

RTI Routing Service User's Manual, Version 7.3.0

8.2.1 Example

C

struct RTI_RoutingServiceProperty property =
RTI_RoutingServiceProperty_INITIALIZER;

struct RTI_RoutingService * service = NULL;

/* initialize property */
property.cfg_file = "my_routing_service_cfg.xml";
property.service_name = "my_routing_service";
...

service = RTI_RoutingService_new(&property);
if(service == NULL) {

/* log error */
...

}

if(!RTI_RoutingService_start(service)) {
/* log error */
...

}

while(keep_running) {
sleep();
...

}
...

RTI_RoutingService_delete(service);

C++

using namespace rti::routing;

ServiceProperty property;
uint32_t running_seconds = 60;
property.cfg_file("my_routing_service_cfg.xml");
property.service_name("my_routing_service");
try {

Service service(property);
service.start();
// Wait for 'running_seconds' seconds
std::this_thread::sleep_for(std::chrono::seconds(running_seconds));

} catch (const std::exception &ex) {
/* log error */
...

}

8.2. Routing Service Library 102

RTI Routing Service User's Manual, Version 7.3.0

8.3 Operating System Daemon

See generic instructions in How to Run as an Operating System Daemon.

8.3. Operating System Daemon 103

Chapter 9

Configuration

9.1 Configuring Routing Service

This section provides a reference for the XML elements that conform a Routing Service configuration. For
details on how to provide XML configurations to Routing Service. refer to Configuring RTI Services. This
chapter describes how to compose an XML configuration.

Note: Routing Service makes use of XSD files to validate the XML configuration files used to configure
Routing Service. Due to the restrictions imposed by XSD schemas for XML 1.0, some of the tags used in the
configuration must be grouped in order. This behavior is intended; Routing Service validates the XML files
before parsing them to catch as many errors as possible beforehand.

9.2 XML Tags for Configuring RTI Routing Service

This section describes the XML tags you can use in a Routing Service configuration file. The following diagram
and Table 9.1 describe the top-level tags allowed within the root <dds> tag.

Warning: The tables in this section may not necessarily reflect the order the Routing ServiceXSD requires.
Use these tables as a documentation reference only.

Table 9.1: Top-Level Tags in the Configuration File
Tags within <dds> Description Multi-

plicity
<configuration_variables> Assigns default values to XML variables. See Configuration

Variables.
0..*

continues on next page

104

RTI Routing Service User's Manual, Version 7.3.0

Table 9.1 – continued from previous page
Tags within <dds> Description Multi-

plicity
<qos_library> Specifies a QoS library and profiles. The contents of this tag

are specified in the same manner as for a Connext application.
See Configuring QoS with XML, in the Connext DDS Core Li-
braries User’s Manual.

0..*

<types> Defines types that can be used by Routing Service. See Specify-
ing Types.

0..1

<plugin_library> Specifies a library of Routing Service plugins. Available plug-ins
are Adapters, Transformations and Processors. See Plugins.

0..*

<routing_service> Specifies a Routing Service configuration. See Routing Service
Tag.
Attributes

• name: Uniquely identifies a Routing Service config-
uration. Required.

• enabled: A boolean that indicates whether this
entity is auto-enabled when the service starts. If
set to false, the entity can be enabled after the
service starts through remote administration. Op-
tional. Default: true.

• group_name: A name that can be used to im-
plement a specific policy when the communica-
tion happens between Routing Service of the same
group. For example, in the builtin DDS adapter, a
DomainParticipant will ignore otherDomainPartic-
ipants in the same group, as a way to avoid circu-
lar communication. Optional. Default: RTI_Rout-
ingService_[Host Name]_ [Process ID]

Example

<routing_service name="ExampleService">
<!-- your service settings ... -->

</routing_service>

0..*

9.2.1 Routing Service Tag

The <routing_service> tag is used to configure an execution of Routing Service. Configurations may
contain multiple <routing_service> tags, so you will need to select which Service configuration to run
(for example with -cfgName command-line parameter).

Note that the <routing_service> tag is optional. This is allowed so that different aspects of the config-
urations can be separated in different parts. For example, you could have all the QoS profiles in one file, and
all the Service configurations in another.

Table 9.2 describes the tags allowed within a <routing_service> tag.

9.2. XML Tags for Configuring RTI Routing Service 105

RTI Routing Service User's Manual, Version 7.3.0

Figure 9.1: Top-level Tags in the Configuration File

Table 9.2: Routing Service Tag
Tags within <routing_ser-
vice>

Description Multi-
plicity

<annotation> Contains a <documentation> tag that can be used to provide a
configuration description.

0..1

<administration> Enables and configures remote administration. See Administra-
tion and Remote Administration.

0..1

<monitoring> Enables and configures general remote monitoring. General
monitoring settings are applicable to all the Routing Service en-
tities unless they are explicitly overridden. See Monitoring and
Monitoring.

0..1

<entity_monitoring> Enables and configures remote monitoring for the service entity.
See Monitoring Configuration Inheritance and Monitoring.

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 106

RTI Routing Service User's Manual, Version 7.3.0

Table 9.2 – continued from previous page
Tags within <routing_ser-
vice>

Description Multi-
plicity

<jvm> Configures the Java JVM used to load and run Java adapters.
For example:
Example

<jvm>
<class_path>

<element>SocketAdapter.jar</
→˓element>

</class_path>
<options>

<element>-Xms32m</element>
<element>-Xmx128m</element>

</options>
</jvm>

You can use the <options> tag to specify options for the
JVM, such as the initial and maximum Java heap sizes.

0..1

<domain_route> Defines a mapping between two or more data domains. See
Domain Route.
Attributes

• name: uniquely identifies a domain_route configu-
ration. Optional.

• enabled: A boolean that indicates whether this
entity is auto-enabled when the service starts. If
set to false, the entity can be enabled after the
service starts through remote administration. Op-
tional. Default: true.

0..*

Example: Specifying a configuration in XML

<dds>
<routing_service name="EmptyConfiguration"/>
<routing_service name="ShapesDemoConfiguration">
<!--...-->
</routing_service>

</dds>

Starting Routing Service with the following command will use the <routing_service> tag with the name
EmptyConfiguration.

$NDDSHOME/bin/rtiroutingservice \
-cfgFile file.xml -cfgName EmptyConfiguration

9.2. XML Tags for Configuring RTI Routing Service 107

RTI Routing Service User's Manual, Version 7.3.0

9.2.2 Administration

You can create a Connext application that can remotely control Routing Service. The <administration>
tag is used to enable remote administration and configure its behavior. By default, remote administration
is turned off in Routing Service for security reasons. A remote administration section is not required in the
configuration file.

When remote administration is enabled, Routing Service will create aDomainParticipant, Publisher, Subscriber,
DataWriter, and DataReader. These entities are used to receive commands and send responses. You can
configure these entities with QoS tags within the <administration> tag. The following table lists the tags
allowed within <administration> tag. Notice that the <domain_id> tag is required.

For more details, please see Remote Administration.

Note: The command-line options used to configure remote administration take precedence over the XML
configuration (see Usage).

Table 9.3: Administration Tag
Tags within <administra-
tion>

Description Multi-
plicity

<enabled> Enables/disables administration. Default: true 0..1
<domain_id> Specifies which domain ID Routing Service will use to enable

remote administration.
0..1

<distributed_logger> ConfiguresRTI Distributed Logger. When you enable it, Routing
Service will publish its log messages to Connext.
Example:

<administration>
...
<distributed_logger>

<enabled>true</enabled>
</distributed_logger>

</administration>

0..1

<domain_participant_qos> Configures the DomainParticipant QoS for remote administra-
tion. If the tag is not defined, Routing Service will use the Con-
next defaults.

0..1

<publisher_qos> Configures the Publisher QoS for remote administration. If the
tag is not defined, Routing Service will use the Connext defaults.

0..1

<subscriber_qos> Configures the Subscriber QoS for remote administration. If the
tag is not defined, Routing Service will use the Connext defaults.

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 108

RTI Routing Service User's Manual, Version 7.3.0

Table 9.3 – continued from previous page
Tags within <administra-
tion>

Description Multi-
plicity

<datareader_qos> Configures the DataReader QoS for remote administration. If
the tag is not defined, Routing Service will use the Connext de-
faults with the following changes:

• reliability.kind = DDS_RELIABLE_RELIABIL-
ITY_QOS (this value cannot be changed)

• history.kind = DDS_KEEP_ALL_HISTORY_QOS
• resource_limits.max_samples = 32

0..1

<datawriter_qos> Configures the DataWriter QoS for remote administration. If
the tag is not defined, Routing Service will use the Connext de-
faults with the following changes:

• history.kind = DDS_KEEP_ALL_HISTORY_QOS
• resource_limits.max_samples = 32

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 109

RTI Routing Service User's Manual, Version 7.3.0

Table 9.3 – continued from previous page
Tags within <administra-
tion>

Description Multi-
plicity

<memory_management> Configures certain aspects of how Connext allocates internal
memory. The configuration is perDomainParticipant and there-
fore affects all the contained DDS entities.
Example:

<memory_management>
<sample_buffer_min_size>

1024
</sample_buffer_min_size>
<sample_buffer_trim_to_size>

true
</sample_buffer_trim_to_size>

</memory_management>

This tag includes the following tags:
• sample_buffer_min_size: For all DataReaders
and DataWriters, the way Connext allocates mem-
ory for samples is as follows: Connext pre-allocates
space for samples up to size X in the DataReader
and DataWriter queues. If a sample has an actual
size greater than X, thememory is allocated dynam-
ically for that sample. The default size is 64KB.
This is the maximum amount of pre-allocated
memory. Dynamic memory allocation may occur
when necessary if samples require a bigger size.

• sample_buffer_trim_to_size: If set to true, af-
ter allocating dynamic memory for very large sam-
ples, that memory will be released when possible.
If false, that memory will not be released but kept
for future samples if needed. The default is false.

This feature is useful when a data type has a very highmaximum
size (e.g., megabytes) but most of the samples sent are much
smaller than the maximum possible size (e.g., kilobytes). In this
case, the memory footprint is reduced dramatically, while still
correctly handling the rare cases in which very large samples are
published.

0..1

<save_path> Specifies the file that will contain the saved configuration. A
<save_path> must be specified if you want to use the re-
mote save command (API Reference). If the specified file al-
ready exists, the file will be overwritten when save is executed.
Default: [CURRENT DIRECTORY].

0..1

<save_on_update> A boolean that, if true, automatically triggers a save command
when configuration updates are received. This value is sent as
part of themonitoring configuration data for theRouting Service.
Default: false.

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 110

RTI Routing Service User's Manual, Version 7.3.0

Table 9.3 – continued from previous page
Tags within <administra-
tion>

Description Multi-
plicity

<reuse_monitoring_partici-
pant>

Indicates whether theMonitoring participant is reused as the ad-
ministration participant. If this tag is set to true andMonitoring
is enabled, the tags domain_id and domain_partici-
pant_qos will be ignored if present. This tag has no effect
if Monitoring is disabled or if the service is started in unloaded
mode.
Default: false.

0..1

9.2.3 Monitoring

You can create a Connext application that can remotely monitor the status of Routing Service. To enable remote
monitoring and configure its behavior, use the <monitoring> and <entity_monitoring> tags.

By default, remote monitoring is turned off in Routing Service for security and performance reasons. A remote
monitoring section is not required in the configuration file.

When remote monitoring is enabled, Routing Service will create one DomainParticipant, one Publisher, five
DataWriters for data publication (one for each kind of entity), and five DataWriters for status publication
(one for each kind of entity). You can configure the QoS of these entities with the <monitoring>
tag defined under <routing_service>. The general remote monitoring parameters specified using
the <monitoring> tag in <routing_service> can be overwritten on a per entity basis using the
<entity_monitoring> tag.

For more details, please see Monitoring.

Note: The command-line options used to configure remote monitoring take precedence over the XML con-
figuration (See Usage).

Table 9.4: Monitoring Tag
Tags within <monitoring> Description Multi-

plicity
<enabled> Enables/disables general remote monitoring. Setting this value

to true enables monitoring in all the entities unless they ex-
plicitly disable it by setting this tag to false in their local
<entity_monitoring> tags.
Setting this tag to false disables monitoring in all the entities. In
this case, any monitoring configuration settings in the entities
are ignored. Default: true

0..1

<domain_id> Specifies which domain ID Routing Service will use to enable
remote monitoring.

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 111

RTI Routing Service User's Manual, Version 7.3.0

Table 9.4 – continued from previous page
Tags within <monitoring> Description Multi-

plicity
<ignore_initialization_fail-
ure>

Indicates whether a failure initializing the monitoring engine for
the service or any of the underlying entities is ignored.|br|
If false, a failure initializing monitoring will result in a failure
creating the service or the affected entities. Default: false

0..1

<domain_participant_qos> Configures the DomainParticipant QoS for remote monitoring.
If the tag is not defined, Routing Service will use the Connext
defaults, with the following change:

• resource_limits.type_code_max_serialized_length =
4096

0..1

<publisher_qos> Configures the Publisher QoS for remote monitoring. If the tag
is not defined, Routing Service will use the Connext defaults.

0..1

<datawriter_qos> Configures the DataWriter QoS for remote monitoring. If the
tag is not defined, Routing Service will use the Connext defaults
with the following change:

• durability.kind = DDS_TRANSIENT_LO-
CAL_DURABILITY_QOS

0..1

<statistics_sampling_period> Specifies the frequency, in seconds, at which status statistics are
gathered. Statistical variables such as latency are part of the
entity status.
Example:

<statistics_sampling_period>
<sec>1</sec>
<nanosec>0</nanosec>

</statistics_sampling_period>

The statistics period for a given entity should be smaller than
the publication period. The statistics sampling period defined
in <routing_service> is inherited by all the entities. An
entity can overwrite the period. Default: 1

0..1

<status_publication_period> Specifies the frequency, in seconds, at which the status of an
entity is published.
Example:

<status_publication_period>
<sec>5</sec>
<nanosec>0</nanosec>

</status_publication_period>

The statistics sampling period defined in
<routing_service> is inherited by all the entities.
An entity can overwrite the period. Default: 5

0..1

9.2. XML Tags for Configuring RTI Routing Service 112

RTI Routing Service User's Manual, Version 7.3.0

Monitoring Configuration Inheritance

The monitoring configuration defined in <routing_service> is inherited by all the entities defined inside
the tag.

An entity can overwrite three elements of the monitoring configuration:

• The status publication period

• The statistics sampling period

• The historical statistics windows

Each one of these three elements is inherited and can be overwritten independently using the
<entity_monitoring> tag.

Table 9.5: Entity Monitoring Tag
Tags within <entity_moni-
toring>

Description Multi-
plicity

<enabled> Enables/disables remote monitoring for a given entity. If gen-
eral monitoring is disabled, this value is ignored.
Default: true

0..1

<statistics_sampling_period> Specifies the frequency at which status statistics are gathered.
Statistical variables such as latency are part of the entity status.
Example:

<statistics_sampling_period>
<sec>1</sec>
<nanosec>0</nanosec>

</statistics_sampling_period>

The statistics period for a given entity should be smaller than
the publication period.
If this tag is not defined, historical statistics are inherited from
the general monitoring settings.
Default: 1 second.

0..1

<status_publication_period> Specifies the frequency at which the status of an entity is pub-
lished.
Example:

<status_publication_period>
<sec>5</sec>
<nanosec>0</nanosec>

</status_publication_period>

If this tag is not defined, historical statistics are inherited from
the general monitoring settings.
Default: 5 seconds.

0..1

9.2. XML Tags for Configuring RTI Routing Service 113

RTI Routing Service User's Manual, Version 7.3.0

Example: Overriding Publication Period

<routing_service name="MonitoringExample">
<monitoring>

<domain_id>55</domain_id>
<status_publication_period>

<sec>1</sec>
</status_publication_period>
<statistics_sampling_period>

<sec>1</sec>
<nanosec>0</nanosec>

</statistics_sampling_period>
</monitoring>
...
<domain_route>

<entity_monitoring>
<status_publication_period>

<sec>4</sec>
</status_publication_period>

</entity_monitoring>
...

</domain_route>
</routing_service>

9.2.4 Domain Route

A <domain_route> defines a mapping between different data domains. Data available in any of these data
domains can be routed to other data domains. For example, a DomainRoute could define a mapping among
multiple DDS domains, or between a DDS domain and a MQTT provider’s network. How this data is actually
read and written is defined in specific Routes.

A <domain_route> creates one or more Connections. Each Connection typically belongs to a different data
domain. The <connection> tag requires the specification of the attribute name, which will be used by the
Route to select input and output domains, and the plugin_name, which will be used to associate a Connection
with an adapter plugin defined within <plugin_library>.

Routing Service comes with a builtin implementation of a DDS adapter, which can be used by specifying the
<participant> tag. Each tag corresponds to exactly one DomainParticipant. A DomainRoute can include
both <connection> and <participant> tags to provide communication between DDS domains and
other data domains.

Table 9.6 describes the tags allowed within a <domain_route> tag.

Table 9.6: Domain Route Tag
Tags within <do-
main_route>

Description Multi-
plicity

<entity_monitoring> Enables and configures remote monitoring for the Domain-
Route. See Monitoring.

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 114

RTI Routing Service User's Manual, Version 7.3.0

Table 9.6 – continued from previous page
Tags within <do-
main_route>

Description Multi-
plicity

<connection> Applicable to non-DDS domains. Configures a custom,
adapter-based connection.
Attributes

• name: Uniquely identifies a service configuration.
Required.

• plugin_name: Name of the plug-in that cre-
ates an adapter object. This name shall re-
fer to an adapter plug-in registered either in a
<plugin_library> or with the service’s at-
tach_adapter_plugin() operation. Required.

See Table 9.7.

0..*

<participant> Applicable to DDS domains. Configures a DDS adapter Do-
mainParticipant. See Table 9.8.

0..*

<session> Defines a multi-threaded context in which data is routed accord-
ing to specified routes. See Session.
Attributes

• name: uniquely identifies the Session configuration.
Optional.

• enabled: A boolean that indicates whether this
entity is auto-enabled when the service starts. If
set to false, the entity can be enabled after the
service starts through remote administration. Op-
tional. Default: true.

0..*

Table 9.7: Connection Tag
Tags within <connection> Description Multi-

plicity
<property> A sequence of name-value string pairs that allows you to con-

figure the Connection instance.
Example:

<property>
<value>

<element>
<name>jms.connection.

→˓username</name>
<value>myusername</value>

</element>
</value>

</property>

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 115

RTI Routing Service User's Manual, Version 7.3.0

Table 9.7 – continued from previous page
Tags within <connection> Description Multi-

plicity
<register_type> Registers a type name and associates it with a type representa-

tion. When you define a type in the configuration file, you have
to register the type in order to use it in Routes. See Route.

0..*

Table 9.8: Participant Tag
Tags within <participant> Description Multi-

plicity
<domain_id> Sets the domain ID associated with theDomainParticipant. De-

fault: 0
0..1

<domain_participant_qos> Sets the participant QoS. The contents of this tag are specified in
the same manner as a Connext QoS profile. If not specified, the
DDS defaults are used, except for the participant name which
takes the following value:

“RTI Routing Service: <app name>.<domain
route name>#<participant name>”

where: - app name: The application name of the running
Routing Service - domain route route: the configuration
name of the parent DomainRoute - participant name:
the configuration name of the DomainParticipant
For example:

“RTI Routing Service: MyService.MyDomain-
Route#domain1”

Note: Changing the default participant name may prevent
Routing Service from being detected by Admin Console.

You can use a <domain_participant_qos> tag inside a
<qos_library>/<qos_profile> previously defined in
your configuration file by referring to it, and also override any
value:
Example:

<domain_participant_qos base_name=
→˓"MyLibrary::MyProfile">

<discovery>
<initial_peers>

<element>udpv4://192.168.1.12
→˓</element>

<element>shmem://</element>
</initial_peers>

</discovery>
</domain_participant_qos>

See Configuring QoS with XML, in the Connext DDS Core Li-
braries User’s Manual.

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 116

RTI Routing Service User's Manual, Version 7.3.0

Table 9.8 – continued from previous page
Tags within <participant> Description Multi-

plicity
<memory_management> Configures certain aspects of how Connext allocates internal

memory. The configuration is perDomainParticipant and there-
fore affects all the contained DDS entities.
Example:

<memory_management>
<sample_buffer_min_size>

1024
</sample_buffer_min_size>
<sample_buffer_trim_to_size>

true
</sample_buffer_trim_to_size>

</memory_management>

This tag includes the following tags:
• sample_buffer_min_size: For all DataReaders
and DataWriters, the way Connext allocates mem-
ory for samples is as follows: Connext pre-allocates
space for samples up to size X in the DataReader
and DataWriter queues. If a sample has an actual
size greater than X, thememory is allocated dynam-
ically for that sample. The default size is 64KB.
This is the maximum amount of pre-allocated
memory. Dynamic memory allocation may occur
when necessary if samples require a bigger size.

• sample_buffer_trim_to_size: If set to true, af-
ter allocating dynamic memory for very large sam-
ples, that memory will be released when possible.
If false, that memory will not be released but kept
for future samples if needed. The default is false.

This feature is useful when a data type has a very highmaximum
size (e.g., megabytes) but most of the samples sent are much
smaller than the maximum possible size (e.g., kilobytes). In this
case, the memory footprint is reduced dramatically, while still
correctly handling the rare cases in which very large samples are
published.

0..1

<register_type> Registers a type name and associates it with a type representa-
tion. When you define a type in the configuration file, you have
to register the type in order to use it in Routes. See Route.

0..*

9.2. XML Tags for Configuring RTI Routing Service 117

RTI Routing Service User's Manual, Version 7.3.0

Example: Mapping between Two DDS Domains

<domain_route name="DdsDomainRoute">
<participant name="domain54">

<domain_id>54</domain_id>
...

</participant>

<participant name="domain55">
<domain_id>55</domain_id>
...

</participant>

...
</domain_route>

Example: Mapping between a DDS Domain and raw Sockets

<domain_route name="DomainRoute">
<connection name="SocketAdapter">

...
</connection>

<participant name="domain55">
<domain_id>55</domain_id>
...

</participant>

...
</domain_route>

9.2.5 Session

A <session> tag defines a multi-threaded context for route processing, including data forwarding. The data
is routed according to specified Routes and AutoRoutes.

Each Session will have an associated thread pool to process Routes concurrently, preserving Route safety. Mul-
tiple Routes can be processed concurrently, but a single Route can be processed only by one thread at time. By
default, the session thread pool has a single thread, which serializes the processing of all the Routes.

Sessions that bridge domains will create a Publisher and a Subscriber from the DomainParticipants associated
with the domains. Table 9.9 lists the tags allowed within a <session> tag.

9.2. XML Tags for Configuring RTI Routing Service 118

RTI Routing Service User's Manual, Version 7.3.0

Table 9.9: Session Tag
Tags within <session> Description Multi-

plicity
<entity_monitoring> Enables and configures remote monitoring for the Session. See

Monitoring.
0..1

<thread_pool> Defines the number of threads to process Routes and sets the
mask, priority, and stack size of each thread.
Example:

<thread_pool>
<mask>MASK_DEFAULT</mask>
<priority>THREAD_PRIORITY_DEFAULT</

→˓priority>
<stack_size>

THREAD_STACK_SIZE_DEFAULT
</stack_size>

</thread_pool>

Default values:
• size: 1
• mask: MASK_DEFAULT
• priority: THREAD_PRIORITY_DEFAULT
• stack_size: THREAD_STACK_SIZE_DE-
FAULT

0..1

<periodic_action> Specifies a period at which Processors will receive notifications
of the periodic event. This setting represents a default value
for all the Routes in this | SESSION|. Default: INFINITE (no
periodic notification)
Example:

<periodic_action>
<sec>1</sec>
<nanosec>0</nanosec>

</periodic_action>

The example above indicates the installed Processor should be
notified every one second.

0..1

<property> A sequence of name-value string pairs that allows you to con-
figure the Session instance.
Example:

<property>
<value>

<element>
<name>com.rti.socket.timeout

→˓</name>
<value>1</value>

</element>
</value>

</property>

These properties are only used in non-DDS domains.

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 119

RTI Routing Service User's Manual, Version 7.3.0

Table 9.9 – continued from previous page
Tags within <session> Description Multi-

plicity
<subscriber_qos> Only applicable to Routes that are Connext Routes.

Sets the QoS associated with the session Subscribers. There
is one Subscriber per DomainParticipant. The contents of this
tag are specified in the same manner as a Connext QoS profile.
See Configuring QoS with XML, in the Connext DDS Core Li-
braries User’s Manual.
If the tag is not defined, Routing Service will use the Connext
defaults.

0..1

<publisher_qos> Only applicable to Routes that are Connext Routes.
Sets the QoS associated with the session Publishers. There is
one Publisher per DomainParticipant. The contents of this tag
are specified in the same manner as a Connext QoS profile. See
Configuring QoS with XML, in the Connext DDS Core Li-
braries User’s Manual.
If the tag is not defined, Routing Service will use the Connext
defaults.

0..*

<topic_route> or <route> Defines a mapping between multiple input and output streams.
Attributes

• name: uniquely identifies a TopicRoute or Route
configuration. Optional.

• enabled: A boolean that indicates whether this
entity is auto-enabled when the service starts. If
set to false, the entity can be enabled after the
service starts through remote administration. Op-
tional. Default: true.

See Route.

0..*

<auto_topic_route> or
<auto_route>

Defines a factory for Route based on type and stream filters. See
Auto Route.
Attributes

• name: uniquely identifies an AutoTopicRoute or
AutoRoute configuration. Optional.

• enabled: A boolean that indicates whether this
entity is auto-enabled when the service starts. If
set to false, the entity can be enabled after the
service starts through remote administration. Op-
tional. Default: true.

0..*

9.2. XML Tags for Configuring RTI Routing Service 120

RTI Routing Service User's Manual, Version 7.3.0

9.2.6 Route

A Route explicitly defines a mapping between one or more input data streams and one or more output data
streams. The input and output streams may belong to different data domains.

Route events are processed in the context of the thread belonging to the parent Session. Route event processing
includes, among others, calls to the StreamReader read and StreamWriter write operations.

Table 9.10 lists the tags allowed within a <route>. Table 9.11 lists the tags allowed within a
<topic_route>.

Table 9.10: Route Tag
Tags within <route> Description Multi-

plicity
<entity_monitoring> Enables and configures remote monitoring for the Route. See

Monitoring.
0..1

<route_types> Defines if the input connection will use types discovered in the
output connection and vice versa for the creation of StreamWrit-
ers and StreamReaders in theRoute. SeeDiscovering Types. De-
fault: true

0..1

<publish_with_origi-
nal_timestamp>

When this tag is true, the data samples read from the input
stream are written into the output stream with the same times-
tamp that was associated with them when they were made avail-
able in the input domain.
This option may not be applicable in some adapter implemen-
tations in which the concept of timestamp is unsupported. De-
fault: false

0..1

<periodic_action> Specifies a period at which the installed Processor will receive
notifications of the periodic event. The Sessionwill wake up and
notify the installed Processor every specified period. This tag
overrides the value set, if any, in the parent Session. Default:
INFINITE (no periodic notification)
Example:

<periodic_action>
<sec>1</sec>
<nanosec>0</nanosec>

</periodic_action>

The example above indicates the installed Processor should be
notified every one second.

0..1

<enable_data_on_inputs> Indicates whether this route enables the dispatch of
DATA_ON_INPUTS event. Default: True

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 121

RTI Routing Service User's Manual, Version 7.3.0

Table 9.10 – continued from previous page
Tags within <route> Description Multi-

plicity
<processor> Sets a custom Processor for handling the data forwarding pro-

cess. See Software Development Kit.
Attributes

• plugin_name: Name of the plug-in that cre-
ates a Processor object. This name shall re-
fer to a processor plug-in registered either in a
<plugin_library> or with the service at-
tach_processor() operation.

0..1

<dds_input> Only applicable to DDS inputs. Defines an input topic. See
Input/Output.
Attributes

• name: uniquely identifies an input configuration.
Optional.

0..*

<dds_output> Only applicable to DDS outputs. Defines an output topic. See
Input/Output.
Attributes

• name: uniquely identifies an output configuration.
Optional.

0..*

<input> Only applicable to non-DDS inputs. Defines an input stream.
See Input/Output.
Attributes

• name: uniquely identifies an input configuration.
Optional.

0..*

<output> Only applicable to non-DDS outputs. Defines an output stream.
See Input/Output.
Attributes

• name: uniquely identifies an output configuration.
Optional.

0..*

Table 9.11: Topic Route Tag
Tags within <topic_route> Description Multi-

plicity
<entity_monitoring> Enables and configures remote monitoring for the TopicRoute.

See Monitoring.
0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 122

RTI Routing Service User's Manual, Version 7.3.0

Table 9.11 – continued from previous page
Tags within <topic_route> Description Multi-

plicity
<route_types> Defines if the input connection will use types discovered in the

output connection and vice versa for the creation of DataRead-
ers and DataWriters in the Route. See Discovering Types.
Default: true

0..1

<publish_with_original_info> Writes the data sample as if they came from its original writer.
Setting this option to true allows having redundant routing ser-
vices and prevents the applications from receiving duplicate
samples. Default: false

0..1

<publish_with_origi-
nal_timestamp>

Indicates if the data samples are written with their original
source timestamp. Default: false

0..1

<propagate_dispose> Indicates whether or not disposed samples (NOT_ALIVE_DIS-
POSE) must be propagated by the TopicRoute. This action may
be overwritten by the execution of a transformation. Default:
true

0..1

<propagate_unregister> Indicates whether or not disposed samples
(NOT_ALIVE_NO_WRITERS) must be propagated by
the TopicRoute. This action may be overwritten by the
execution of a transformation. Default: true

0..1

<topic_query_proxy> Configures the forwarding of TopicQueries. See Topic Query
Support for detailed information on how Routing Service pro-
cesses TopicQueries.
The following tags are used to configure this tag:

• <enabled>: Whether topic query forwarding is enabled
or not. By default, it is disabled.

• <mode>: How the TopicRoute handles the TopicQueries
received from the user DataReaders on the subscription
side. There are two modes for handling topic queries:
DISPATCH and PROPAGATION. See Topic Query Sup-
port for details on each mode. Default: PROPAGATION.

The XML snippet below shows that topic query proxy is enabled
in propagation mode, which causes the creation of a TopicQuery
on the route’s input for each TopicQuery that an output’s match-
ing DataReader creates.
Example:

<topic_query_proxy>
<enabled>true</enabled>
<mode>PROPAGATION</mode>

</topic_query_proxy>

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 123

RTI Routing Service User's Manual, Version 7.3.0

Table 9.11 – continued from previous page
Tags within <topic_route> Description Multi-

plicity
<filter_propagation> Configures the propagation of content filters. Specifies whether

the feature is enabled and when events are processed (Propagat-
ing Content Filters).
Filter propagation events can be batched to reduce the traffic in
detriment of increasing the delay in propagating the composed
filter. Event batching can be configured with the following tags:

• <max_event_count>: Indicates the minimum number of
filter indication events required before propagating the
composed filter.

• <max_event_delay>: Indicates the minimum amount of
time to wait before propagating the composed filter.

The previous two tags can be set in combination. In this case,
the composed filter is propagated whenever one of these condi-
tions is met first.
The snippet below shows that filter propagation is enabled, and
a filter update is propagated on the StreamReader only after the
occurrence of every three filter events (see Propagating Content
Filters).
Example:

<filter_propagation>
<enabled>true</enabled>
<max_event_count>3</max_event_count>
<max_event_delay>

<sec>DURATION_INFINITE_SEC</sec>
<nanosec>DURATION_INFINITE_NSEC

→˓</nanosec>
</max_event_delay>

</filter_propagation>

0..1

<periodic_action> Specifies a period at which the installed Processor will receive
notifications of the periodic event. The Sessionwill wake up and
notify the installed Processor every specified period.|br| This tag
overrides the value set, if any, in the parent Session. Default:
INFINITE (no periodic notification)
Example:

<periodic_action>
<sec>1</sec>
<nanosec>0</nanosec>

</periodic_action>

The example above indicates the installed Processor should be
notified every one second.

0..1

<enable_data_on_inputs> Indicates whether this route enables the dispatch of
DATA_ON_INPUTS event. Default: True

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 124

RTI Routing Service User's Manual, Version 7.3.0

Table 9.11 – continued from previous page
Tags within <topic_route> Description Multi-

plicity
<processor> Sets a custom Processor for handling the data forwarding pro-

cess. See Software Development Kit.
Attributes

• plugin_name: Name of the plug-in that cre-
ates a Processor object. This name shall re-
fer to a processor plug-in registered either in a
<plugin_library> or with the service at-
tach_processor() operation.

0..1

<input> Defines an input topic. See Input/Output.
Attributes

• name: uniquely identifies an input configuration.
Optional.

0..*

<output> Defines an output topic. See Input/Output.
Attributes

• name: uniquely identifies an output configuration.
Optional.

0..*

9.2.7 Input/Output

Inputs and outputs in a Route or TopicRoute have an associated StreamReader and StreamWriter, respectively.
For DDS domains, the StreamReader will contain aDataReader and the StreamWriter will contain aDataWriter.
The DataReaders and DataWriters belong to the corresponding Session Subscriber and Publisher.

DDS inputs and outputs within a Route are defined using the <dds_input> and <dds_output> tags. In-
puts and outputs from other data domains are defined using the <input> and <output> tags. A TopicRoute
is a special kind of Route that allows defining mapping between DDS topics only.

Table 9.12: Route Input/Output Tags
Tags within <input> and
<output> of <route>

Description Multi-
plicity

<entity_monitoring> Enables and configures remote monitoring for the Input/Output.
See Monitoring.

0..1

<stream_name> Specifies the stream name. 1
<registered_type_name> Specifies the registered type name of the stream. 1
<creation_mode> Specifies when to create the StreamReader/StreamWriter. De-

fault: IMMEDIATE See Creation Modes.
0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 125

RTI Routing Service User's Manual, Version 7.3.0

Table 9.12 – continued from previous page
Tags within <input> and
<output> of <route>

Description Multi-
plicity

<on_delete_wait_for_ack_time-
out>

Specifies a period for which the StreamWriter will wait for
acknowledgment before its elimination. See Waiting for Ac-
knowledgments in a DataWriter, in the Connext DDS Core Li-
braries User’s Manual. Default: 0 (no wait for acknowledg-
ment)
Example:

<on_delete_wait_for_ack_timeout>
<sec>1</sec>
<nanosec>0</nanosec>

</on_delete_wait_for_ack_timeout>

The example above indicates that StreamWriter will wait one
second for acknowledgment of the samples.

0..1
(within
<dds_out-
put>
only)

<property> A sequence of name-value string pairs that allows you to con-
figure the StreamReader/StreamWriter.
Example:

<property>
<value>

<element>
<name>com.rti.socket.port</

→˓name>
<value>16556</value>

</element>
</value>

</property>

0..1

<transformation> Sets a data transformation to be applied for every data sample.
See Data Transformation.
Attributes

• plugin_name: Name of the plug-in that cre-
ates a Transformation object. This name shall re-
fer to a transformation plug-in registered either in
a <plugin_library> or with the service at-
tach_transformation() operation.

0..1

Table 9.13: TopicRoute Input/Output Tags
Tags within <input> and
<output> (in <topic_route>)
and <dds_input> and
<dds_output> (in <route>)

Description Multi-
plicity

<topic_name> Specifies the topic name. 1
<registered_type_name> Specifies the registered type name of the topic. 1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 126

RTI Routing Service User's Manual, Version 7.3.0

Table 9.13 – continued from previous page
Tags within <input> and
<output> (in <topic_route>)
and <dds_input> and
<dds_output> (in <route>)

Description Multi-
plicity

<creation_mode> Specifies when to create the StreamReader/StreamWriter. De-
fault: IMMEDIATE See Creation Modes.

0..1

<on_delete_wait_for_ack_time-
out>

Specifies a period for which the StreamWriter will wait for
acknowledgment before its elimination. See Waiting for Ac-
knowledgments in a DataWriter, in the Connext DDS Core Li-
braries User’s Manual. Default: 0 (no wait for acknowledg-
ment)
Example:

<on_delete_wait_for_ack_timeout>
<sec>1</sec>
<nanosec>0</nanosec>

</on_delete_wait_for_ack_timeout>

The example above indicates that StreamWriter will wait one
second for acknowledgment of the samples.

0..1
(within
<out-
put>
only)

<datareader_qos> or
<datawriter_qos>

Sets the DataReader or DataWriter QoS.
The contents of this tag are specified in the same manner as a
Connext QoS profile. See Configuring QoS with XML, in the
Connext DDS Core Libraries User’s Manual.
If the tag is not defined, Routing Service will use the Connext
defaults.

0..1

<content_filter> Defines a SQL content filter for the DataReader.
Example:

<content_filter>
<expression>x > 100 </expression>

</content_filter>

0..1
(within
<input>
only)

<transformation>` Sets a data transformation to be applied for every data sample.
See Data Transformation.
Attributes

• plugin_name: Name of the plug-in that cre-
ates a Transformation object. This name shall re-
fer to a transformation plug-in registered either in
a <plugin_library> or with the service at-
tach_transformation() operation.

0..1

9.2. XML Tags for Configuring RTI Routing Service 127

RTI Routing Service User's Manual, Version 7.3.0

Creation Modes

The way a Route creates its StreamReaders and StreamWriters and starts reading and writing data can be con-
figured.

The <creation_mode> tag in a Route’s <input> and <output> tags controls when StreamRead-
ers/StreamWriters are created.

Table 9.14: Route Creation Mode
<creation_mode> values Description
IMMEDIATE The StreamReader/StreamWriter is created as soon as possible;

that is, as soon as the types are available. Note that if the type
is defined in the configuration file, the creation will occur when
the service starts.

ON_DOMAIN_MATCH The StreamReader is not created until the associated connection
discovers a data Producer on the same stream. If the adapter
supports partition, the discovered Producer must also belong to
the same partition for a match to occur.
For example, a DDS input will not create a DataReader until a
DataWriter for the same topic and partition is discovered on the
same domain.
The StreamWriter is not created until the associated connection
discovers a data Consumer on the same stream. If the adapter
supports partition, the discovered Producer must also belong to
the same partition for a match to occur.
For example, a DDS output will not create a DataWriter until
a DataReader for the same topic and partition is discovered on
the same domain.

ON_ROUTE_MATCH The StreamReader/StreamWriter is not created until all its coun-
terparts in the Route are created.

ON_DO-
MAIN_AND_ROUTE_MATCH

Both conditions must be true.

ON_DOMAIN_OR_ROUTE_MATCH At least one of the conditions must be true.

The same rules also apply to the StreamReader/StreamWriter destruction. When the condition that triggered
the creation of that entity becomes false, the entity is destroyed. Note that IMMEDIATE will never become
false.

For example, if the creation mode of an <input> tag is ON_DOMAIN_MATCH, when all the matching
user DataWriters in the input domain are deleted, the input DataReader is deleted.

9.2. XML Tags for Configuring RTI Routing Service 128

RTI Routing Service User's Manual, Version 7.3.0

Example: Route Starts as Soon as a User DataWriter is Publishing on 1st Domain

<topic_route>
<input participant="domain1">

<creation_mode>ON_DOMAIN_MATCH</creation_mode>
...

</input>
<output participant="domain2">

<creation_mode>ON_ROUTE_MATCH</creation_mode>
...
</output>

</topic_route>

Example: Route Starts when Both User DataWriter Appears in 1st Domain and User
DataReader Appears in 2nd Domain

<topic_route>
<input participant="domain1">

<creation_mode>ON_DOMAIN_AND_ROUTE_MATCH</creation_mode>
...

</input>
<output participant="domain2">

<creation_mode>ON_DOMAIN_AND_ROUTE_MATCH</creation_mode>
...
</output>

</topic_route>

Specifying Types

The tag <registered_type_name> within the <input> and <output> tags contains the registered
type name of the stream. The actual definition of that type can be set in the configuration file or it can be
discovered by any of the DomainParticipants or Connections in a DomainRoute.

Defining Types in the Configuration File

To define and use a type in your XML configuration file:

• Define your type within the <types> tag. The type description is done using the Connext XML format
for type definitions. See Creating User Data Types with Extensible Markup Language (XML), in the
Connext DDS Core Libraries User’s Manual.

• Register it in the <connection>/<participant> where you will use it.

• Refer to it in the domain route(s) that will use it.

9.2. XML Tags for Configuring RTI Routing Service 129

RTI Routing Service User's Manual, Version 7.3.0

Example: Type Registration in XML

<dds>
...
<types>

<struct name="PointType">
...
</struct>

</types>
...
<routing_service name=”MyRoutingService”>

...
<domain_route>

<connection name="MyConnection">
...
<register_type name="Position" type_ref="PointType"/>

</connection>
<participant name="MyParticipant">

...
<register_type name="Position" type_ref="PointType"/>

</participant>
...
<session>

<topic_route>
<input participant="2">

<registered_type_name>Position</registered_type_name>
</input>
...

</topic_route>
</session>
...

</domain_route>
...

</routing_service>
...

</dds>

Discovering Types

If the registered type name is not defined in the configuration file, Routing Service has to discover its type
representation (e.g. typecode). An Input or an Output cannot be enabled if the type has not been registered yet
within the referenced Connection.

By default, the <route_types> tag is set to true. This means that for the creation of the StreamReader and
StreamWriter, the types discovered in either one of the input or output domains will be used. Setting this tag to
false explicitly will cause the creation of the StreamReader to be tied only to the discovery of types in the input
domain, and the creation of the StreamWriter to be tied only to the discovery of types in the output domain.

See Type Registration for more details about type registration.

9.2. XML Tags for Configuring RTI Routing Service 130

RTI Routing Service User's Manual, Version 7.3.0

Example: Route Creation with Type Obtained from Discovery

<dds>
...
<routing_service name=”MyRoutingService”>

...
<domain_route>

<participant name="MyParticipant"/>
...
<session>

<topic_route>
<input participant="domain1">

<registered_type_name>Position</registered_type_name>
</input>
...

</topic_route>
</session>
...

</domain_route>
...

</routing_service>
...

</dds>

Data Transformation

An Input and/or Output can transform the incoming data using a Transformation. To instantiate a Transforma-
tion:

1. Implement the transformation plugin API and register in a plug-in library, or attach it to a service instance
if you are using the Library API. See Software Development Kit.

2. Instantiate a Transformation object by specifying a <transformation> tag inside a <input>,
<output>`, <dds_input>` or <dds_output>.

Table 9.15 lists the tags allowed within a <transformation> tag.

9.2. XML Tags for Configuring RTI Routing Service 131

RTI Routing Service User's Manual, Version 7.3.0

Table 9.15: Transformation Tag
Tags within <transforma-
tion>

Description Multi-
plicity

<property> A sequence of name-value string pairs that allows you to con-
figure the custom Transformation plug-in object.
Example:

<property>
<value>

<element>
<name>X</name>
<value>Y</value>

</element>
<element>

<name>Y</name>
<value>X</value>

</element>
</value>

</property>

0..1

<output_type_name> Available only when the transformation is set in an <input>.
Specifies the registered type name of the output samples. If
not specified, this tag is set to the registered type name of the
first output that has no transformation.

0..1

<output_connection_name> Available only when the transformation is set in an <input>.
Name of the <connection>/<participant> from which the reg-
istered type must be obtained. If not specified, the type will be
obtained from the same connection of the parent Input or the
first connection that the type is available.

0..1

<input_type_name> Available only when the transformation is set in an <output>.
Specifies the registered type name of the input samples. If not
specified, this tag is set to the registered type name of the first
input that has no transformation.

0..1

<input_connection_name> Available only when the transformation is set in an <output>.
Name of the <connection>/<participant> from which the reg-
istered type must be obtained. If not specified, the type will be
obtained from the same connection of the parent Output or the
first connection that the type is available.

0..1

9.2.8 Auto Route

The tag <auto_route> defines a set of potential Routes, with single input and output, both with the same
registered type and stream name. A Route can eventually be instantiated when a new stream is discovered with
a type name and a stream name that match the filters in the AutoRoute. When this happens, a Route is created
with the configuration defined by the AutoRoute.

The generated Route has a name constructed as follows:

9.2. XML Tags for Configuring RTI Routing Service 132

RTI Routing Service User's Manual, Version 7.3.0

[auto_route_name]@[stream_name]

where [auto_route_name] represents the name of the AutoRoute and [stream_name] the name of
the matching stream.

DDS inputs and outputs within an AutoRoute are defined using the XML tags <dds_input> and
<dds_output>. Input and outputs from other data domains are defined using the tags <input> and
<output>.

An AutoTopicRoute is a special kind of AutoRoute that defines a mapping between two DDS domains.

See the following tables for more information on allowable tags:

• Table 9.16 lists the tags allowed within a <auto_route>.

• Table 9.17 lists the tags allowed within a <auto_topic_route>.

Table 9.16: AutoRoute Tag
Tags within <auto_route> Description Multi-

plicity
<entity_monitoring> Enables and configures remote monitoring for the AutoRoute.

See Monitoring.
0..1

<publish_with_origi-
nal_timestamp>

When this tag is true, the data samples read from the input
stream are written into the output stream with the same times-
tamp that was associated with them when they were made avail-
able in the input domain.
This option may not be applicable in some adapter implemen-
tations in which the concept of timestamp is unsupported. De-
fault: false

0..1

<periodic_action> Specifies a period at which the installed Processor will receive
notifications of the periodic event. The Sessionwill wake up and
notify the installed Processor every specified period.|br| This tag
overrides the value set, if any, in the parent Session. Default:
INFINITE (no periodic notification)
Example:

<periodic_action>
<sec>1</sec>
<nanosec>0</nanosec>

</periodic_action>

The example above indicates the installed Processor should be
notified every one second.

0..1

<enable_data_on_inputs> Indicates whether this route enables the dispatch of
DATA_ON_INPUTS event. Default: True

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 133

RTI Routing Service User's Manual, Version 7.3.0

Table 9.16 – continued from previous page
Tags within <auto_route> Description Multi-

plicity
<processor> Sets a custom Processor for handling the data forwarding pro-

cess. See Software Development Kit.
Attributes

• plugin_name: Name of the plug-in that cre-
ates a Processor object. This name shall re-
fer to a processor plug-in registered either in a
<plugin_library> or with the service at-
tach_processor() operation.

0..1

<dds_input> Only applicable to DDS inputs. Defines an input topic. 0..1
<dds_output> Only applicable to DDS outputs. Defines an output topic. 0..1
<input> Only applicable to non-DDS inputs. Defines an input stream. 0..1
<output> Only applicable to non-DDS outputs. Defines an output stream. 0..1

Table 9.17: AutoTopicRoute Tag
Tags within
<auto_topic_route>

Description Multi-
plicity

<entity_monitoring> Enables and configures remote monitoring for the AutoTopi-
cRoute. See Monitoring.

0..1

<publish_with_original_info> Writes the data sample as if they came from its original writer.
Setting this option to true allows having redundant routing ser-
vices and prevents the applications from receiving duplicate
samples. Default: false

0..1

<publish_with_origi-
nal_timestamp>

Indicates if the data samples are written with their original
source timestamp. Default: false

0..1

<propagate_dispose> Indicates whether or not disposed samples (NOT_ALIVE_DIS-
POSE) must be propagated by the TopicRoute. This action may
be overwritten by the execution of a transformation. Default:
true

0..1

<propagate_unregister> Indicates whether or not disposed samples
(NOT_ALIVE_NO_WRITERS) must be propagated by
the TopicRoute. This action may be overwritten by the
execution of a transformation. Default: true

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 134

RTI Routing Service User's Manual, Version 7.3.0

Table 9.17 – continued from previous page
Tags within
<auto_topic_route>

Description Multi-
plicity

<topic_query_proxy> Configures the forwarding of TopicQueries. See Topic Query
Support for detailed information on how Routing Service pro-
cesses TopicQueries.
The snippet below shows that topic query proxy is enabled in
propagationmode, which causes the creation of aTopicQuery on
the route’s input for each TopicQuery that an output’s matching
DataReader creates.
Example:

<topic_query_proxy>
<enabled>true</enabled>
<mode>PROPAGATION</mode>

</topic_query_proxy>

0..1

<filter_propagation> Configures the propagation of content filters. Specifies whether
the feature is enabled and when events are processed.
The snippet below shows that filter propagation is enabled, and
a filter update is propagated on the StreamReader only after the
occurrence of every three filter events (see Propagating Content
Filters).
Example:

<filter_propagation>
<enabled>true</enabled>
<max_event_count>3</max_event_count>
<max_event_delay>

<sec>DDS_DURATION_INFINITE_SEC</
→˓sec>

<nanosec>DDS_DURATION_INFINITE_
→˓NSEC</nanosec>

</max_event_delay>
</filter_propagation>

0..1

<periodic_action> Specifies a period at which the installed Processor will receive
notifications of the periodic event. The Sessionwill wake up and
notify the installed Processor every specified period.|br| This tag
overrides the value set, if any, in the parent Session. Default:
INFINITE (no periodic notification)
Example:

<periodic_action>
<sec>1</sec>
<nanosec>0</nanosec>

</periodic_action>

The example above indicates the installed Processor should be
notified every one second.

0..1

<enable_data_on_inputs> Indicates whether this route enables the dispatch of
DATA_ON_INPUTS event. Default: True

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 135

RTI Routing Service User's Manual, Version 7.3.0

Table 9.17 – continued from previous page
Tags within
<auto_topic_route>

Description Multi-
plicity

<processor> Sets a custom Processor for handling the data forwarding pro-
cess. See Software Development Kit.
Attributes

• plugin_name: Name of the plug-in that cre-
ates a Processor object. This name shall re-
fer to a processor plug-in registered either in a
<plugin_library> or with the service at-
tach_processor() operation.

0..1

<input> Defines an input topic. 0..1
<output> Defines an output topic. 0..1

Table 9.18: AutoRoute Input/Output Tags
Tags within <input> and
<output> of <auto_route>

Description Multi-
plicity

<entity_monitoring> Enables and configures remote monitoring for the Input/Output.
See Monitoring.

0..1

<allow_stream_name_filter> A stream name filter. You may use a comma-separated list to
specify more than one filter. Default: * (allow all)

0..1

<allow_regis-
tered_type_name_filter>

A registered type name filter. You may use a comma-separated
list to specify more than one filter. Default: * (allow all)

0..1

<deny_stream_name_filter> A stream name filter that should be denied (excluded). This is
applied after the <allow_stream_name_filter>. De-
fault: empty (not applied)

1

<deny_registered_type_fil-
ter>

A registered type name filter that should be
denied (excluded). This is applied after the
<allow_registered_type_name_filter>. De-
fault: empty (not applied)

0..1

<on_delete_wait_for_ack_time-
out>

Specifies a period for which the StreamWriter will wait for
acknowledgment before its elimination. See Waiting for Ac-
knowledgments in a DataWriter, in the Connext DDS Core Li-
braries User’s Manual. Default: 0 (no wait for acknowledg-
ment)
Example:

<on_delete_wait_for_ack_timeout>
<sec>1</sec>
<nanosec>0</nanosec>

</on_delete_wait_for_ack_timeout>

The example above indicates that StreamWriter will wait one
second for acknowledgment of the samples.

0..1
(within
<dds_out-
put>
only)

<creation_mode> Specifies when to create the StreamReader/StreamWriter. De-
fault: IMMEDIATE See Creation Modes.

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 136

RTI Routing Service User's Manual, Version 7.3.0

Table 9.18 – continued from previous page
Tags within <input> and
<output> of <auto_route>

Description Multi-
plicity

<property> A sequence of name-value string pairs that allows you to con-
figure the StreamReader/StreamWriter.
Example:

<property>
<value>

<element>
<name>com.rti.socket.port</

→˓name>
<value>16556</value>

</element>
</value>

</property>

0..1

Table 9.19: AutoTopicRoute Input/Output Tags
Tags within <input>
and <output> (in
<auto_topic_route>)
<dds_input> and
<dds_output> (in
<auto_route>)

Description Multi-
plicity

<entity_monitoring> Enables and configures remote monitoring for the Input/Output.
See Monitoring.

0..1

<allow_topic_name_filter> A Topic name filter. You may use a comma-separated list to
specify more than one filter. Default: * (allow all)

0..1

<allow_regis-
tered_type_name_filter>

A registered type name filter. You may use a comma-separated
list to specify more than one filter. Default: * (allow all)

0..1

<deny_topic_name_filter> A Topic name filter that should be denied (excluded). This is
applied after the <allow_stream_name_filter>. De-
fault: empty (not applied)

1

<deny_registered_type_fil-
ter>

A registered type name filter that should be
denied (excluded). This is applied after the
<allow_registered_type_name_filter>. De-
fault: empty (not applied)

0..1

continues on next page

9.2. XML Tags for Configuring RTI Routing Service 137

RTI Routing Service User's Manual, Version 7.3.0

Table 9.19 – continued from previous page
Tags within <input>
and <output> (in
<auto_topic_route>)
<dds_input> and
<dds_output> (in
<auto_route>)

Description Multi-
plicity

<on_delete_wait_for_ack_time-
out>

Specifies a period for which the StreamWriter will wait for
acknowledgment before its elimination. See Waiting for Ac-
knowledgments in a DataWriter, in the Connext DDS Core Li-
braries User’s Manual. Default: 0 (no wait for acknowledg-
ment)
Example:

<on_delete_wait_for_ack_timeout>
<sec>1</sec>
<nanosec>0</nanosec>

</on_delete_wait_for_ack_timeout>

The example above indicates that StreamWriter will wait one
second for acknowledgment of the samples.

0..1
(within
<out-
put>
only)

<creation_mode> Specifies when to create the StreamReader/StreamWriter. De-
fault: IMMEDIATE See Creation Modes.

0..1

<datareader_qos> or
<datawriter_qos>

Sets the DataReader or DataWriter QoS.
The contents of this tag are specified in the same manner as a
Connext QoS profile. See Configuring QoS with XML, in the
Connext DDS Core Libraries User’s Manual.
If the tag is not defined, Routing Service will use the Connext
defaults.

0..1

<content_filter> Defines a SQL content filter for the DataReader.
Example:

<content_filter>
<expression>

x > 100
</expression>

</content_filter>

0..1
(within
<input>
only)

9.2.9 Plugins

All the pluggable components specific to Routing Service are configured within the <plugin_library>
tag. Table 9.20 describes the available tags.

Plug-ins are categorized and configured based on the source language. Routing Service supports C/C++ and
Java plug-ins. See Software Development Kit for further information on developing Routing Service plug-ins.

9.2. XML Tags for Configuring RTI Routing Service 138

RTI Routing Service User's Manual, Version 7.3.0

Table 9.20: Configuration tags for plug-in libraries
Tags within <plugin_li-
brary>

Description Multi-
plicity

<adapter_plugin> Specifies a C/C++ Adapter plug-in. See Table 13.18.
Attributes

• name: uniquely identifies an Adapter plug-in
within a library. This name qualified with the li-
brary name represents the plug-in registered name
that is referred by <connection> tags. See Ta-
ble 9.6.

0..*

<java_adapter_plugin> Specifies a Java Adapter plug-in. See Table 13.19.
Attributes

(See <adapter_plugin>)

0..*

<transformation_plugin> Specifies a C/C++ Transformation plug-in. See Table 13.18.
Attributes

• name: uniquely identifies an Transformation
plug-in within a library. This name qualified with
the library name represents the plug-in registered
name that is referred by <transformation>
tags. See Route.

0..*

<processor_plugin> Specifies a C/C++ Processor plug-in. See Table 13.18.
Attributes

• name: uniquely identifies an Processor plug-in
within a library. This name qualified with the li-
brary name represents the plug-in registered name
that is referred by <processor> tags. See Route.

0..*

9.3 Enabling Distributed Logger

Routing Service provides integrated support for RTI Distributed Logger.

Distributed Logger is included in Connext but it is not supported on all platforms; see the RTI Connext Core
Libraries Platform Notes to see which platforms support Distributed Logger.

When you enable Distributed Logger, Routing Service will publish its log messages to Connext. Then you can
use RTI Admin Console to visualize the log message data. Since the data is provided in a topic, you can also
use rtiddsspy or even write your own visualization tool.

To enable Distributed Logger, use the tag <distributed_logger> within <adminstration>. For
example:

<routing_service name="default">
<administration>

(continues on next page)

9.3. Enabling Distributed Logger 139

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
...

<distributed_logger>
<enabled>true</enabled>

</distributed_logger>
</administration>
...

</routing_service>

For the list of elements that configureDistributed Logger see Administration. For more details aboutDistributed
Logger, see Enabling Distributed Logger in RTI Services, in the Connext DDS Core Libraries User’s Manual.

9.4 Support for Extensible Types

Routing Service includes partial support for the “Extensible and Dynamic Topic Types for DDS” specification
from the Object Management Group (OMG). This section assumes that you are familiar with Extensible Types
and you have read the Connext Extensible Types Guide.

• Inputs and Outputs can subscribe to and publish topics associated with final and appendable types.

• You can select the type version associated with a topic route by providing the type description in the
XML configuration file. The XML description supports structure inheritance. You can learn more about
structure inheritance in the Connext Extensible Types Guide.

• The TypeConsistencyEnforcementQosPolicy can be specified on a per-topic-route basis, in the same way
as other QoS policies.

• Within aDomainParticipant, a topic cannot be associated with more than one type version. This prevents
the same DomainParticipant from having two Route DataReader or DataWriter with different versions
of a type for the same Topic. To achieve this behavior, create two different DomainParticipant, each
associating the topic with a different type version.

The type declared in an Input is the version returned in the read operations within the installed Processor of the
parent Route, which then can be provided directly to the Outputs, as long as they have a compatible type (or a
Transformation that makes it compatible). An Input can subscribe to different-but-compatible types, but those
samples are translated to the actual type of the Input.

9.4.1 Example: Samples Published by Two Writers of Type A and B, Respectively

struct A {
long x;

};

struct B {
long x;
long y;

};

9.4. Support for Extensible Types 140

https://www.omg.org/spec/DDS-XTypes

RTI Routing Service User's Manual, Version 7.3.0

Table 9.21: Forwarded data when type in TopicRoute is not extended
Samples published
by two DataWriters
of types A and B,
respectively

Samples forwarded by a TopicRoute for type A
in both input and output

Samples received by
a B reader

A [x=1] A [x=1] B [x=1, y=0]
B [x=10, y=11] A [x=10] B [x=10, y=0]

Table 9.22: Forwarded data when type in TopicRoute is extended
Samples published
by two DataWriters
of types A and B,
respectively

Samples forwarded by a TopicRoute for type B
in both input and output

Samples received by
a B reader

A [x=1] B [x=1, y=0] B [x=1, y=0]
B [x=10, y=11] B [x=10, y=11] B [x=10, y=11]

9.5 Support for RTI FlatData and Zero Copy Transfer Over Shared
Memory

Routing Service supports communication with applications that use RTI FlatData™ and Zero Copy transfer
over shared memory, only on the subscription side.

Warning: On the publication side, Routing Service will ignore the type annotations for these capabilities
and will communicate through the regular serialization and deserialization paths.

Routing Service can work with RTI FlatData and Zero Copy transfer over shared memory for discovered types
and types declared in theXML configuration. If the types are declared inXML, theymust be properly annotated
and then registered in each DomainParticipant. You can use each of these features separately or together.

For further information about these features, see Sending Large Data in the Connext Core Libraries User’s
Manual.

9.5.1 Example: Configuration to enable both FlatData and Zero Copy transfer over
shared memory

<dds>
<types>

<struct name="Point"
transferMode="shmem_ref"
languageBinding="flat_data"
extensibility= "final">

(continues on next page)

9.5. Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 141

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<member name="x" type="long"/>
<member name="y" type="long"/>

</struct>
</types>

<qos_library name="MyQosLib">
<qos_profile name="ShmemOnly">

<domain_participant_qos>
<discovery>

<initial_peers>
<element>shmem://</element>

</initial_peers>
</discovery>
<transport_builtin>

<mask>SHMEM</mask>
</transport_builtin>

</domain_participant_qos>
</qos_profile>

</qos_library>

<routing_service name="FlatDataWithZeroCopy">

<domain_route>
<participant name="InputDomain">

<domain_id>0</domain_id>
<domain_participant_qos base_name="MyQosLib::ShmemOnly"/>
<register_type name="Point" type_ref="Point"/>

</participant>
<participant name="OutputDomain">

<domain_id>1</domain_id>
<register_type name="Point" type_ref="Point"/>

</participant>

<session>
<topic_route>

<input participant="InputDomain">
<topic_name>PointTopic</topic_name>
<registered_type_name>Point</registered_type_name>

</input>
<output participant="OutputDomain">

<topic_name>PointTopic</topic_name>
<!-- The output will ignore the FlataData and Zero␣

→˓Copy capabilities -->
<registered_type_name>Point</registered_type_name>

</output>
</topic_route>

</session>
</domain_route>

</routing_service>
</dds>

9.5. Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 142

RTI Routing Service User's Manual, Version 7.3.0

9.5.2 Support for Securıty Plugıns (RTI Security Plugins)

Routing Service supports configuring and using Securıty Plugıns. To configure Routing Service securely, you
need to configure the appropriate QoS settings in the XML configuration. For more information, see the RTI
Security Plugins User’s Manual.

9.5.3 Example: Configuring a Routing Service Instance using Security

The following example in XML demonstrates how to configure Routing Service to load and use the Securıty
Plugıns. The example assumes a path where the user has created the necessary security artifacts (such as
permissions files, certificates, and certificate authorities). This path is represented by the SECURITY_ARTI-
FACTS_PATH environment variable.

Note: The SECURITY_ARTIFACTS_PATH environment variable must include the file: prefix to make
sure paths are properly loaded by the Securıty Plugıns.

<dds>
<qos_library name="SecureQosLibrary">

<qos_profile name="SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.load_plugin</name>
<value>com.rti.serv.secure</value>

</element>
<element>

<name>com.rti.serv.secure.library</name>
<value>nddssecurity</value>

</element>
<element>

<name>com.rti.serv.secure.create_function</name>
<value>RTI_Security_PluginSuite_create</value>

</element>
<element>

<name>dds.sec.auth.identity_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RoutingServiceCert.pem</value>
</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RoutingServiceKey.pem</value>
</element>

(continues on next page)

9.5. Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 143

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<element>

<name>dds.sec.access.permissions_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.access.governance</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓Governance.p7s</value>
</element>
<element>

<name>dds.sec.access.permissions</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓PermissionsA.p7s</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>

</qos_library>

...

<routing_service name="SecureToUnsecureCommunication">
<domain_route name="DomainRoute1">

<participant name="1">
<domain_id>1</domain_id>
<!-- Domain Participant in Domain 1 is secured -->
<domain_participant_qos base_name=

→˓"SecureQosLibrary::SecureParticipantQos" />
</participant>
<participant name="2">

<domain_id>2</domain_id>
<!-- Domain Participant in Domain 2 is not secured -->
<domain_participant_qos base_name=

→˓"DefaultQosLibrary::DefaultQos" />
</participant>
<session name="S1">

<topic_route name="SecureToUnsecure">
<input participant="1">

<topic_name>Topic01_Secure</topic_name>
<registered_type_name>...</registered_type_name>
<datareader_qos base_name=

→˓"DefaultQosLibrary::DefaultQos"/>
</input>
<output>

<topic_name>Topic01_Unsecure</topic_name>
<registered_type_name>...</registered_type_name>
<datawriter_qos base_name=

→˓"DefaultQosLibrary::DefaultQos"/>
</output>

</topic_route>
(continues on next page)

9.5. Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 144

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
</session>

</domain_route>
</routing_service>

</dds>

The above XML example configures a Domain Route that moves data from a secured DomainParticipant into
an unsecure DomainParticipant. The security settings are encapsulated in a QoS Profile called SecurePartici-
pantQos. When secured data reaches the secured endpoint, the Routing Service instance performs all security
operations that will be incorporated in the cleartext sample moving into the other end of the Topic Route. The
data is then published into the unsecured domain.

9.5.4 Example: Configuring Routing Service to use a Certificate Revocation List
(CRL)

Routing Service can remove a DomainParticipant from the system when its certificate has been revoked. Use
Securıty Plugıns to specify a CRL (Certificate Revocation List) file to track via the authentication.
crl property; when the files_poll_interval property is configured in Securıty Plugıns, Routing
Service can banish revoked participants. For more information, see Properties for Configuring Authentication
in the RTI Security Plugins User’s Manual. The following example XML configuration file uses a CRL file to
enable Routing Service to remove participants with revoked certificates.

<dds>
<qos_library name="SecureQosLibrary">

<qos_profile name="SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.load_plugin</name>
<value>com.rti.serv.secure</value>

</element>
<element>

<name>com.rti.serv.secure.library</name>
<value>nddssecurity</value>

</element>
<element>

<name>com.rti.serv.secure.create_function</name>
<value>RTI_Security_PluginSuite_create</value>

</element>
<element>

<name>dds.sec.auth.identity_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RoutingServiceCert.pem</value>

(continues on next page)

9.5. Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 145

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#properties-for-configuring-authentication

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RoutingServiceKey.pem</value>
</element>
<element>

<name>dds.sec.access.permissions_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.access.governance</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓Governance.p7s</value>
</element>
<element>

<name>dds.sec.access.permissions</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓PermissionsA.p7s</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>
<qos_profile name="SecureParticipantQosWithCrl" base_name=

→˓"SecureQosLibrary::SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.secure.authentication.crl</

→˓name>
<value>$(SECURITY_ARTIFACTS_PATH)/

→˓RoutingServiceRevoked.crl</value>
</element>
<element>

<name>com.rti.serv.secure.files_poll_interval</
→˓name>

<value>1</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>

</qos_library>

...

<routing_service name="SecureToUnsecureCommunication">
<domain_route name="DomainRoute1">

<participant name="1">
(continues on next page)

9.5. Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 146

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<domain_id>1</domain_id>
<!-- Domain Participant in Domain 1 is secured -->
<domain_participant_qos base_name=

→˓"SecureQosLibrary::SecureParticipantQosWithCrl" />
</participant>
<participant name="2">

<domain_id>2</domain_id>
<!-- Domain Participant in Domain 2 is not secured -->
<domain_participant_qos base_name=

→˓"DefaultQosLibrary::DefaultQos" />
</participant>
<session name="S1">

<topic_route name="SecureToUnsecure">
<input participant="1">

<topic_name>Topic01_Secure</topic_name>
<registered_type_name>...</registered_type_name>
<datareader_qos base_name=

→˓"DefaultQosLibrary::DefaultQos"/>
</input>
<output>

<topic_name>Topic01_Unsecure</topic_name>
<registered_type_name>...</registered_type_name>
<datawriter_qos base_name=

→˓"DefaultQosLibrary::DefaultQos"/>
</output>

</topic_route>
</session>

</domain_route>
</routing_service>

</dds>

The above configuration in Routing Service reads the CRL file $SECURITY_ARTIFACTS_PATH/
RoutingServiceRevoked.crl. In addition, the files_poll_interval element instructs the ser-
vice to track the file for changes so that participants can be removed dynamically. The polling of the file happens
every 1s.

Note: If the poll period is zero, Routing Service will not track the file continuously.

9.5.5 Example: Configuring Routing Service for Dynamic Certificate Renewal

Routing Service can dynamically renew its certificate if it was revoked or it expired. Use Securıty Plugıns to
specify a periodic check of the certificate file; when this property is configured in Securıty Plugıns, Routing
Service reloads the certificate if the file changes. For more information, see the RTI Security Plugins User’s
Manual.

The following example XML configuration file defines a 1s period for checking the certificate file for changes.

9.5. Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 147

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/

RTI Routing Service User's Manual, Version 7.3.0

<dds>
<qos_library name="SecureQosLibrary">

<qos_profile name="SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.load_plugin</name>
<value>com.rti.serv.secure</value>

</element>
<element>

<name>com.rti.serv.secure.library</name>
<value>nddssecurity</value>

</element>
<element>

<name>com.rti.serv.secure.create_function</name>
<value>RTI_Security_PluginSuite_create</value>

</element>
<element>

<name>dds.sec.auth.identity_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.auth.identity_certificate</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RoutingServiceCert.pem</value>
</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/

→˓identities/ecdsa01RoutingServiceKey.pem</value>
</element>
<element>

<name>dds.sec.access.permissions_ca</name>
<value>$(SECURITY_ARTIFACTS_PATH)/ecdsa01/ca/

→˓ecdsa01RootCaCert.pem</value>
</element>
<element>

<name>dds.sec.access.governance</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓Governance.p7s</value>
</element>
<element>

<name>dds.sec.access.permissions</name>
<value>$(SECURITY_ARTIFACTS_PATH)/signed_

→˓PermissionsA.p7s</value>
</element>

</value>
</property>

</domain_participant_qos>
</qos_profile>

(continues on next page)

9.5. Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 148

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<qos_profile name="SecureParticipantQosDynamicCert" base_name=

→˓"SecureQosLibrary::SecureParticipantQos">
<domain_participant_qos>

<property>
<value>

<element>
<name>com.rti.serv.secure.files_poll_interval</

→˓name>
<value>1</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>
</qos_library>

...

<routing_service name="SecureToUnsecureCommunication">
<domain_route name="DomainRoute1">

<participant name="1">
<domain_id>1</domain_id>
<!-- Domain Participant in Domain 1 is secured -->
<domain_participant_qos base_name=

→˓"SecureQosLibrary::SecureParticipantQosDynamicCert" />
</participant>
<participant name="2">

<domain_id>2</domain_id>
<!-- Domain Participant in Domain 2 is not secured -->
<domain_participant_qos base_name=

→˓"DefaultQosLibrary::DefaultQos" />
</participant>
<session name="S1">

<topic_route name="SecureToUnsecure">
<input participant="1">

<topic_name>Topic01_Secure</topic_name>
<registered_type_name>...</registered_type_name>
<datareader_qos base_name=

→˓"DefaultQosLibrary::DefaultQos"/>
</input>
<output>

<topic_name>Topic01_Unsecure</topic_name>
<registered_type_name>...</registered_type_name>
<datawriter_qos base_name=

→˓"DefaultQosLibrary::DefaultQos"/>
</output>

</topic_route>
</session>

</domain_route>
</routing_service>

</dds>

9.5. Support for RTI FlatData and Zero Copy Transfer Over Shared Memory 149

RTI Routing Service User's Manual, Version 7.3.0

The above configuration in Routing Service periodically (every 1s) checks the DomainParticipant certificate file
$SECURITY_ARTIFACTS_PATH/ecdsa01/identities/ecdsa01RoutingServiceCert.
pem for changes.

Note: If the poll period is zero, Routing Service will not track the file continuously.

9.6 Support for Application Acknowledgment

Routing Service offers limited support for Application Acknowledgment. For information about acknowledging
DDS samples in Connext, see Application Acknowledgment in the RTI Connext Core Libraries User’s Manual.

On the input side of the Routes, Routing Service uses the default DDS_PROTOCOL_ACKNOWLEDG-
MENT_MODE, which is equivalent to using no application-level sample acknowledgment.

On the output side of the Routes, and only in the built-in DDS adapter, Routing Service includes a setting to
wait for acknowledgments until the output is finalized. When this option is enabled, Routing Service calls the
wait_for_acknowledgments()API on the DDS output’sDataWriter. The wait period can be specified
in the XML as follows:

...
<topic_route>

...
<output participant="domain1">

<topic_name>MyTopic</topic_name>
<registered_type_name>MyTopicType</registered_type_name>
<on_delete_wait_for_ack_timeout>

<sec>30</sec>
<nanosec>0</nanosec>

</on_delete_wait_for_ack_timeout>
<datawriter_qos>

<reliability>
<acknowledgment_kind>

APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE
</acknowledgment_kind>

</reliability>
</datawriter_qos>

</output>
</topic_route>

The above example waits 30 seconds for acknowledgements. See Input/Output for details on the
<on_delete_wait_for_ack_timeout> setting.

9.6. Support for Application Acknowledgment 150

Chapter 10

Software Development Kit

You can extend the out-of-the-box behavior of Routing Service through its Software Development Kit (SDK).
The SDK provides a set of public interfaces that allow you to control Routing Service execution as well as extend
its capabilities.

The SDK is divided in the following modules:

• RTI Routing Service Library API: This module offers a set of APIs that allow you to instantiate Routing
Service instances in your application. This allows you to run Routing Service as a library, as described in
Routing Service Library.

• RTI Routing Service Adapter API: Adapters are pluggable components that allow Routing Service to
consume and produce data for different data domains (e.g. Connext, MQTT, raw Socket, etc.). This
module offers a set of pluggable APIs to develop custom Adapters, which you can use through shared
libraries or through the Library API. By default, Routing Service is distributed with a builtin DDS adapter
that is part of the service library.

• RTI Routing Service Processor API: Processors are event-oriented pluggable components that allow you
to control the forwarding process that occurs within a Route. This module offers a set of pluggable APIs
to develop custom Processors, which you can use through shared libraries or through the Library API.

• RTI Routing Service Transformation API: Transformations are data-oriented pluggable components that
allow you to perform conversions of the representation and content of the data that goes through Routing
Service. This module offers a set of pluggable APIs to develop custom Transformations, which you can
use through shared libraries or through the Library API.

Table 10.1 shows which modules are available for each API, along with links to the API documentation.

151

RTI Routing Service User's Manual, Version 7.3.0

Table 10.1: API Documentation for the SDK
Language API Available Modules
RTI Routing Service C API

• Library
• Adapter
• Processor
• Transformation

RTI Routing Service C++ API
• Library
• Adapter
• Processor
• Transformation

RTI Routing Service Java API
• Library
• Adapter

152

Chapter 11

Core Concepts

This section aims to provide a deeper understanding of theRouting Service architecture and give you the required
insight to configure and use it effectively.

You will learn about:

• Application resource model: Gives you a full picture of all the elements that compose Routing Service,
including details about their relationships with the pluggable components and their lifecycle.

• Builtin plugins: Describes the builtin pluggable components that are part of the Routing Service module.

11.1 Resource Model

In this section you will learn the details of the Routing Service application resource model (see Application
Resource Model). It describes all the different resource classes, their functions and responsibilities, and their
relationships with other resources.

Figure 11.1 shows a high-level view of the main classes that comprise the application resource model.

There are two main logical planes, each addressing orthogonal sets of capabilities:

• Data Plane: Set of resources associated with data flow, both user data and metadata. A resource in
this plane is also known as an entity. The data provision and processing is performed using plugins (see
Software Development Kit for an overview of the list of available plugins).

• Control Plane: Set of resources associated with service monitoring and administration. These are the
resources in charge of providing monitoring information and run-time administration of the resources
from the data plane.

An alternative representation of the resource module is shown in Figure 11.2.

The next sections describe each entity with detail. The documentation for each entity will provide:

• A Description of the role and responsibility of the entity within Routing Service.

• The relationship, if any, with plugin components. This part will give you an understanding of howRouting
Service achieves custom behavior.

153

RTI Routing Service User's Manual, Version 7.3.0

Figure 11.1: Routing Service Application Resource Model

Figure 11.2: Routing Service Alternative representation of the Application Resource Model

11.1. Resource Model 154

RTI Routing Service User's Manual, Version 7.3.0

• A Description of the states an entity can go through.

The next sections describe Routing Service from a generic point of view, independently of the Adapter (or any
other type of plugin) that is used. To read more about how DDS is integrated with Routing Service, please see
the (DDS Adapter). It’s recommended though that you still review the general model for a solid understanding
of Routing Service.

11.1.1 Directory

Table 11.1 provides a resource directory with quick links to access different types of information for each
resource or entity.

Table 11.1: Resource Reference
Resource Configuration Administration Monitoring
Service Routing Service Tag Service Service
DomainRoute Domain Route DomainRoute DomainRoute
Connection Domain Route Connection DomainRoute
Session Session Session Session
Route Route Route Route
Input Input/Output Input/Output Input/Output
Output Input/Output Input/Output Input/Output

11.1.2 Service

The Service is the top-level resource. The Service is the entity that encapsulates all the resources needed for the
operation of both the control and data planes. Typically, a Service refers to an execution of Routing Service.

In the control plane, the Service is composed of the Monitoring and Administration resources, which are op-
tionally available sub-services. These components are described in Monitoring and Remote Administration,
respectively.

In the data plane, the Service is composed of a collection of user plugins instances and a collection of Domain-
Routes.

Plugin Interaction

The Service is responsible for loading and owning any of the plugins that you can provide through the Software
Development Kit (see Software Development Kit). Figure 11.3 shows the relationship between the Service and
the plugin objects.

See Plugin Management for more information about plugin management.

11.1. Resource Model 155

RTI Routing Service User's Manual, Version 7.3.0

Figure 11.3: Routing Service composed of different plugins

Service States

A Service can be in one of the states listed in Table 11.2.

Table 11.2: Service States
State Description Trigger Plugin callback
EN-
ABLED

A Service object has loaded the specified service con-
figuration. Monitoring and Administration services
are started if they are enabled in the configuration.

• User runs
the Routing
Service
application
either using
the pre-built
executable
or through
the Library
API (see
Usage).

• Remote
command

N/A

STARTEDA Service object has created all the underlying re-
sources, including creating and starting all the con-
tained DomainRoutes, as specified in the configu-
ration. Additionally, the service discovery thread
(SDT) is also started. The SDT sets the context to
read the data from the builtin input/output stream
discovery StreamReaders Plugin configurations are
validated but the libraries are loaded and instances
created lazily when they are first needed.

• User spawns
the entity

• Remote
command

N/A

continues on next page

11.1. Resource Model 156

RTI Routing Service User's Manual, Version 7.3.0

Table 11.2 – continued from previous page
State Description Trigger Plugin callback
STOPPEDA Service object has deleted all the resources cre-

ated during the start phase: the service discovery
thread and DomainRoutes are deleted. Additionally,
any plugin instances are deleted.

• User deletes
the entity

• Remote
command

• Adapter-
Plugin::
delete

• Proces-
sorPlu-
gin::
delete

• Trans-
forma-
tion-
Plugin::
delete

DIS-
ABLED

A Service object has deleted all the resources cre-
ated during the enable phase. Entering this state oc-
curs only temporarily while the Service object is be-
ing deleted.

• User shut-
downs the
entity

• Remote
command

N/A

11.1.3 DomainRoute

A DomainRoute defines a collection of independent data domains (such as DDS, MQTT, AMQP, etc.), each
modeled as a Connection. It’s also composed of a collection of Sessions.

DomainRoute States

A DomainRoute can be in one of the states listed in Table 11.3.

Table 11.3: DomainRoute states
State Description Trigger Plugin callback
EN-
ABLED

ADomainRoute object has created all the underlying
Connections and Sessions as indicated in the config-
uration.

• Service
starts (Ser-
vice States)

• Remote
command

N/A

continues on next page

11.1. Resource Model 157

RTI Routing Service User's Manual, Version 7.3.0

Table 11.3 – continued from previous page
State Description Trigger Plugin callback
STARTEDA DomainRoute object has enabled all the contained

Connections and started all the contained Sessions.
The DomainRoute is attached to the service discov-
ery thread and may start processing stream discovery
data.

• Service
starts (Ser-
vice States)

• Remote
command

N/A

STOPPEDA DomainRoute object has stopped all Sessions and
disabled all the Connections. The DomainRoute is
detached from the service discovery thread.

• Service
stops (Ser-
vice States)

• Remote
command

N/A

DIS-
ABLED

A DomainRoute object has deleted all the under-
lying Connections. Entering this state occurs only
temporarily while the DomainRoute object is being
deleted.

• Stop
DataReader

N/A

11.1.4 Connection

A Connection defines an access point to a specific data domain. The access to a data domain is provided through
an instance of an Adapter plugin, which is specified in the configuration (See Table 9.7 and Table 9.8). For
example, the associated Adapter plugin implementation could provide a connection to an HTTP Server through
an HTTP Client, or a logical connection to a DDS Domain through a DomainParticipant.

The Connection is also responsible for tracking all the stream information that is provided by the underlying
input and output stream discovery StreamReaders. The Connection gets notified about new or disposed streams
and propagates this information downstream to the Routes and AutoRoutes, which will process and generate
events accordingly.

Note: A DomainParticipant is a special type of Connection that represents an instance of a DdsConnec-
tion. For this case, special custom tags are available that facilitate configuring the DdsConnection.

Plugin Interaction

Figure 11.4 shows the relationship with the plugin objects. A Connection shall hold one, and only one,
adapter::Connection object.

11.1. Resource Model 158

RTI Routing Service User's Manual, Version 7.3.0

Figure 11.4: Relationship of plugins with a Connection

Connection States

A Connection can be in one of the states listed in Table 11.4.

Table 11.4: Connection states
State Description Trigger Plugin callback
EN-
ABLED

A Connection object has created the underlying
Adapter connection object. • Domain-

Route starts
(Domain-
Route States)

• Adapter-
Plugin::
new (only
once for
each plugin
class)

• Adapter-
Plugin::
cre-
ate_con-
nection

continues on next page

11.1. Resource Model 159

RTI Routing Service User's Manual, Version 7.3.0

Table 11.4 – continued from previous page
State Description Trigger Plugin callback
DIS-
ABLED

A Connection object has deleted theAdapter connec-
tion object it holds. • Domain-

Route stops
(Domain-
Route States)

Adapter-
Plugin::
delete_con-
nection

Type Registration

The Connection is the entity where type registration takes place. A Connection keeps a list of registered types,
where each entry in the list contains:

• type registered name: Unique name used to identify and register a concrete type within the Connection.

• type representation: In-memory structure that describes the type itself. The type representation is
adapter-dependent and Routing Service assumes TypeCode as default type representation for types.

A type is associated with a stream and its registration is required in order to create StreamReaders and
StreamWriters. A type can be registered in two ways:

• Through stream discovery information, provided by the builtin stream discovery StreamReaders. On
stream discovery, the associated information contains the registered name and the representation for a
type.

• Through XML Connection configuration (see Defining Types in the Configuration File). A type definition
is provided in XML and the Routing Service parser will generate a TypeCode from it. Connection
configuration can then reference this XML type definition to register it.

11.1.5 Session

A Session defines a collection of Routes and AutoRoutes. It also defines a multi-threaded safe context for Route
event processing.

Events from a Route are processed sequentially within the same Session. A Route event is processed by a single
thread at a time. That is, the same route cannot be processed concurrently. However, within a Session, different
Routes that can be processed concurrently, as many as the number of threads available within the Session.

Figure 11.5 shows the event processing mechanism. Consider a Session with a pool of N threads and composed
of P Routes.

• Session threads are idle waiting for Routes to become active. An active Route is one that has events
pending processing.

• Once an active Route is selected for processing, all the pending events at that time will be consumed
sequentially one after the other (see Route for information about route processing). To prevent starvation,
new events arriving will be deferred for the next selection cycle.

11.1. Resource Model 160

RTI Routing Service User's Manual, Version 7.3.0

Figure 11.5: Processing mechanism of Routes within a Session

• A Session selects Routes for processing in a round-robin fashion, following the same order as they are
defined in the Session configuration. At a maximum only N Routes can be processed concurrently. Re-
maining active Routes will wait until a thread becomes available.

Figure 11.5 shows a Session concurrently processing N active Routes. Other remaining P-N Routes, such as
RouteP, are active and waiting for a thread to become available; RouteP-1 is not active (no pending events).

Plugin Interaction

Figure 11.6 shows the relationship with the plugin objects. A Session shall hold one adapter::Session
object for each Connection in the parent DomainRoute.

Session States

A Session can be in one of the states listed in Table 11.5.

11.1. Resource Model 161

RTI Routing Service User's Manual, Version 7.3.0

Figure 11.6: Relationship of plugins with a Session

Table 11.5: Session states
State Description Trigger Plugin callback
EN-
ABLED

A Session object has created all the underlying
adapter::Session objects. It has also created
all the AutoRoutes and Routes that are defined in the
configuration.

• Domain-
Route starts
(Domain-
Route States)

• Remote
command

Connec-
tion::cre-
ate_session

STARTEDA Session object has started the thread pool, and en-
abled all the underlying AutoRoutes and Routes. In
this state, the Session is actively processing Route
events.

• Domain-
Route starts
(Domain-
Route States)

• Remote
command

N/A

STOPPEDA Session object has stopped the thread pool, and
disabled all the underlying AutoRoutes and Routes. • Domain-

Route stops
(Domain-
Route States)

• Remote
command

N/A

continues on next page

11.1. Resource Model 162

RTI Routing Service User's Manual, Version 7.3.0

Table 11.5 – continued from previous page
State Description Trigger Plugin callback
DIS-
ABLED

A Session object has deleted all the
adapter::Session objects it holds. • Domain-

Route stops
(Domain-
Route States)

• Remote
command

Connec-
tion::delete_ses-
sion

11.1.6 Route

A Route defines a processing unit for data streams. A Route is composed of N Inputs and M Outputs, each
referencing any of the Connections defined as part of the parent DomainRoute.

A Route generates certain events that are processed safely and serially within one of the threads from the parent
Session. Route events are processed through a pluggable Processor.

Note: A TopicRoute is a special type of Route. All its Inputs and Outputs are tied to the builtin DDS Adapter.
For this case, special and custom tags are available that facilitate configuring the TopicRoute.

Plugin Interaction

Figure 11.7 shows the relationship with the plugin objects. A Route shall hold one Processor object, which will
receive the notifications of the events affecting the owner Route.

For more information about the Processor behavior and Route events, see the main page of API documentation
(Software Development Kit).

Route States

A Route state machine is shown in Figure 11.8.

Table 11.6 shows all the states a Route can enter.

11.1. Resource Model 163

RTI Routing Service User's Manual, Version 7.3.0

Figure 11.7: Relationship of plugins with a Route

Figure 11.8: Route state machine

11.1. Resource Model 164

RTI Routing Service User's Manual, Version 7.3.0

Table 11.6: Route states
State Description Trigger Plugin callback
EN-
ABLED

A Route has created the underlying Processor. The
Route is attached to the parent Session and is receiv-
ing event notifications.

• Session
starts (Ses-
sion States)

• Remote
command

• Proces-
sorPlu-
gin::new
(only once
for each
plugin class)

• Proces-
sorPlu-
gin::
cre-
ate_pro-
cessor

DIS-
ABLED

A Route has deleted the underlying Processor. The
Route is detached from the parent Session so no
events are notified.

• Session
stops (Ses-
sion States)

• Remote
command

Processor-
Plugin::
delete_pro-
cessor

STARTEDA Route has enabled all its Inputs and Outputs.
• Session
starts (Ses-
sion States)

• Enable
Input (In-
put States)
or Output
(Output
States)

• Remote
command

Proces-
sor::on_route_event

continues on next page

11.1. Resource Model 165

RTI Routing Service User's Manual, Version 7.3.0

Table 11.6 – continued from previous page
State Description Trigger Plugin callback
STOPPEDA Route has disabled at least one of its Inputs and

Outputs. • Session
stops (Ses-
sion States)

• Disable
Input (In-
put States)
or Output
(Output
States)

• Remote
command

Proces-
sor::on_route_event

RUN-
NING

A Route is ready to process data stream related
events. These include:

• DATA_ON_INPUTS
• PERIODIC_ACTION

• Session
starts (Ses-
sion States)

• Enable
Input (In-
put States)
or Output
(Output
States)

• Remote
command

• Proces-
sor::on_route_event

• Stream-
Reader::read

• Stream-
Reader::re-
turn_loan

• Trans-
forma-
tion::trans-
form

• Trans-
forma-
tion::re-
turn_loan

•
StreamWriter::write

PAUSED A Route is temporarily suspending the processing of
data stream related events. • Session stops

• Disable
Input (In-
put States)
or Output
(Output
States)

• Remote
command

Processor::
on_route_event

11.1. Resource Model 166

RTI Routing Service User's Manual, Version 7.3.0

11.1.7 AutoRoute

An AutoRoute represents a factory of single-input single-output Routes. An AutoRoute creates Routes based on
a name filter criteria that matches the name or type of a stream.

An AutoRoute creates a Route per stream name:

[𝑆𝑚]

where Sm is the name for the stream m. The name of the type Tm, only plays a role while passing the filter
criteria and while creating the generated Route’s Input and Output.

This means a stream name that is shared by multiple type names won’t spawn a new Route from an AutoRoute
per type name. Rather it will reuse the first one generated for the shared stream name.

Note: It is not advised to have streams share the same name but have different type names when using an
AutoRoute. It can lead to a situation where the Input and Output discover streams with different type names,
leading to an incompatible Route creation - especially when dealing with the builtin DDS Adapter. In such a
situation it is better to bifurcate the streams based on their stream name.

In the case of the builtin DDS Adapter, if the two types under the same topic (stream) name are compatible as
per the rules of Extensible Types, only then will data be successfully routed by the common generated Route.

The generation of a Route occurs only on the event of a newly discovered stream. The resulting Route has a
single Input and a single Output, both for the same stream name and type.

The created Route executes within the context of the parent Session of the AutoRoute. Figure 11.9 illustrates
this relationship.

Figure 11.9: AutoRoute as a map of Routes keyed by stream name

The AutoRoute creates a Route only if it has not previously matched Sm. AutoRoutes never delete the created
Route, regardless of whether the matching streams are disposed or not.

11.1. Resource Model 167

RTI Routing Service User's Manual, Version 7.3.0

Note: An AutoTopicRoute is a special type of AutoRoute whose Inputs and Outputs are tied to the builtin DDS
Adapter. For this case, special and custom tags are available that facilitate configuring the AutoTopicRoute.

AutoRoute States

An AutoRoute can be in one of the states listed in Table 11.7.

Table 11.7: AutoRoute states
State Description Trigger Plugin callback
EN-
ABLED

AutoRoute object is read to start matching streams
and create Routes. Previously discovered streams are
matched retroactively.

• Session
starts (Ses-
sion States)

• Remote
command

N/A

STARTEDThis state is equivalent to the ENABLED state and
the transition is automatic upon enabling. This state
is added for consistency with the other entities.

• Enable Au-
toRoute

N/A

STOPPEDThis state is equivalent to the DISABLED state and
the transition is automatic upon disabling. This state
is added for consistency with the other entities.

• Disable Au-
toRoute

N/A

DIS-
ABLED

AutoRoute stops matching all newly discovered
streams. All the Routes created from this AutoRoute
are deleted.

• Session
stops (Ses-
sion States)

N/A

11.1.8 Input

An Input is responsible for obtaining data associated with a specific stream uniquely identified by its name
and type. An Input must reference an existing Connection within the parent DomainRoute. The referenced
Connection determines the data domain where the Input will obtain data.

An Input has scope only within the parent Route. It cannot be shared in other Routes. If another Route requires
accessing the same data stream, a new Input shall be defined within such Route.

11.1. Resource Model 168

RTI Routing Service User's Manual, Version 7.3.0

Plugin Interaction

Figure 11.10 shows the relationship with the plugin objects. An Input shall hold one, and only
one, adapter::StreamReader object. Optionally, an Input may hold one and only trans-
formation::Transformation instance, that is applied to the sample stream returned by the
adapter::StreamReader.

Figure 11.10: Relationship of plugins with an Input

The Input obtains data from a domain by calling the StreamReader::read operation. If a Transfor-
mation is present, the Transformation::transform operation is called right after reading from the
StreamReader. The Transformation::return_loan is called when the obtained loaned samples are
returned.

Input States

An Input can be in one of the states listed in Table 11.8.

11.1. Resource Model 169

RTI Routing Service User's Manual, Version 7.3.0

Table 11.8: Input states
State Description Trigger Plugin call-

back
EN-
ABLED

Input has created its underlying StreamReader
and it’s ready to read data.

The following two conditions
shall be met:

• Matching type is avail-
able

• Creation mode condi-
tion becomes true

• Con-
nec-
tion::
cre-
ate_stream_reader

• Pro-
ces-
sor::
on_route_event

STARTEDThis state is equivalent to the ENABLED state
and the transition is automatic upon enabling.
This state is added for consistency with the
other entities.

• Enable Input
N/A

STOPPEDThis state is equivalent to the DISABLED state
and the transition is automatic upon disabling.
This state is added for consistency with the
other entities.

• Disable Input
N/A

DIS-
ABLED

Input has deleted its underlying StreamReader
and can no longer read data.

Creation mode condition be-
comes false • Con-

nec-
tion::
delete_stream_reader

• Pro-
ces-
sor::
on_route_event

11.1.9 Output

An Output is responsible for writing data associated with a specific stream uniquely identified by its name
and type. An Output must reference an existing Connection within the parent DomainRoute. The referenced
Connection determines the data domain where the Output will provide data.

AnOutput has scope only within the parent Route. It cannot be shared in other Routes. If another Route requires
access to the same data stream, a new Output shall be defined within such Route.

11.1. Resource Model 170

RTI Routing Service User's Manual, Version 7.3.0

Plugin Interaction

Figure 11.11 shows the relationship with the plugin objects. An Output shall hold one, and only
one, adapter::StreamWriter object. Optionally, an Input may hold one and only transfor-
mation::Transformation instance, that is applied to a sample stream before is passed to the
adapter::StreamWriter.

Figure 11.11: Relationship of plugins with an Output

The Output provides the data to a domain by calling the StreamWriter::write operation. If a Trans-
formation is present, the Transformation::transform operation is called right before writing on the
StreamWriter, followed by a Transformation::return_loan right after.

Output States

An Output can be in one of the states listed in Table 11.9.

11.1. Resource Model 171

RTI Routing Service User's Manual, Version 7.3.0

Table 11.9: Output states
State Description Trigger Plugin call-

back
EN-
ABLED

Output has created its underlying StreamWriter
and it’s ready to write data.

The following two conditions
shall be met:

• Matching type is avail-
able

• Creation mode condi-
tion becomes true

• Con-
nec-
tion::
cre-
ate_stream_writer

• Pro-
ces-
sor::
on_route_event

•
Trans-
for-
ma-
tion-
Plu-
gin::new
(only
once
for
each
plugin
class)

•
Trans-
for-
ma-
tion-
Plu-
gin::cre-
ate_trans-
for-
ma-
tion

STARTEDThis state is equivalent to the ENABLED state
and the transition is automatic upon enabling.
This state is added for consistency with the
other entities.

• Enable Output
N/A

STOPPEDThis state is equivalent to the DISABLED state
and the transition is automatic upon disabling.
This state is added for consistency with the
other entities.

• Disable Output
N/A

continues on next page

11.1. Resource Model 172

RTI Routing Service User's Manual, Version 7.3.0

Table 11.9 – continued from previous page
State Description Trigger Plugin call-

back
DIS-
ABLED

Output has deleted its underlying StreamWriter
and can no longer write data.

Creation mode condition be-
comes false • Con-

nec-
tion::
delete_stream_writer

•
Trans-
for-
ma-
tion-
Plu-
gin::delete_trans-
for-
ma-
tion

• Pro-
ces-
sor::
on_route_event

11.2 Builtin plugins

Builtin plugins come pre-registered in memory within Routing Service. Any configurable aspects are available
through dedicated special tags for enhanced usability.

11.2.1 DDS Adapter

This is an Adapter implementation that provides access to DDS domains. Figure 11.12 shows the architecture
of the DDS Adapter.

Most of the use cases expect to have DDS as the main data domain in the user data plane. For this reason,
you will find that Routing Service specializes some entities so that they are directly associated with DDS. These
entities are:

• Participant

• AutoTopicRoute

• TopicRoute

• DdsInput

• DdsOutput

11.2. Builtin plugins 173

RTI Routing Service User's Manual, Version 7.3.0

Figure 11.12: DDS Adapter architecture

11.2. Builtin plugins 174

RTI Routing Service User's Manual, Version 7.3.0

These entities are equivalent to the generic entities shown in Figure 11.1 except that the Adapter entity they
enclose is created from the builtin DDS Adapter (DDS Adapter). Figure 11.13 shows the DDS specialization
of the generic resource model.

Figure 11.13: Routing Service DDS Application Resource Model

11.2. Builtin plugins 175

RTI Routing Service User's Manual, Version 7.3.0

DDS AdapterPlugin

The DdsAdapter is an implementation of the Adapter interface. It’s responsible for creating DDS Connec-
tions.

Table 11.10: DDS Adapter

Mapping Configuration Tag
It uses the DomainParticipantFactory to create the participants
needed by each DDS Connection

<participant_factory_qos>
(only in USER_QOS_PROFILES.
xml)

DDS Connection

The DdsConnection is an implementation of the Connections interface. It is responsible for joining to a
specific DDS Domain. It’s also the factory for creating DDS Sessions, StreamReaders and StreamWriters.

The DdsConnection relies on the DdsAdapter for creating DomainParticipants. This class creates the
Topics associated with the DataReaders and DataWriters it also creates.

Table 11.11: DDS Connection

Mapping Configuration Tag
Composed of only one DomainParticipant <domain_route>/

<participant> (see Table 9.8)

DDS Session

The DdsSession is an implementation of the Session interface. It’s responsible for creating Subscribers and
Publishers.

Table 11.12: DDS Session

Mapping Configuration Tag
Composed of only one Publisher and one Subscriber <session>/<subscriber_qos>

and <session>/
<publisher_qos> (see Table
9.9)

Note that, as explained in Plugin Interaction, a new DdsSession object is instantiated for each pair
<session> and <participant> element within the parent DomainRoute.

11.2. Builtin plugins 176

RTI Routing Service User's Manual, Version 7.3.0

DDS StreamReader

The DdsStreamReader is an implementation of the StreamReader interface. It’s responsible for reading
data from a Topic and providing it to the parent Route, which is in charge of processing it through the installed
Processor.

Table 11.13: DDS StreamReader

Mapping Configuration Tag
Composed of only one DataReader <route>/<dds_input> and

<topic_route>/<input> (see
Table 9.13)

The referenced DDS Connection and parent <session> determines from whichDomainParticipant and Sub-
scriber the DataReader is created.

The configuration of the Input owning the StreamReader indicates:

• The referenced DDS Connection that contains the DomainParticipant

• The parent<session>, which along with the referencedConnection, determines whichDdsSession
and hence Subscriber is used to create the DataReader.

• The name of the Topic in the domain of the DomainParticipant.

DDS StreamWriter

The DdsStreamWriter is an implementation of the StreamWriter interface. It’s responsible for writing
data to a Topic. The data is provided by the parent Route through the installed Processor.

Table 11.14: DDS StreamWriter

Mapping Configuration Tag
Composed of only one DataWriter <route>/<dds_output> and

<topic_route>/<output> (see
Table 9.13)

The referenced DDS Connection and parent <session> determines from whichDomainParticipant and Pub-
lisher the DataWriter is created.

The configuration of the Output owning the StreamWriter indicates:

• The referenced DDS Connection that contains the DomainParticipant

• The parent <session>, which along with the referenced Connection determines which DdsSession
and hence Publisher is used to create the DataWriter.

• The name of the Topic in the domain of the DomainParticipant.

11.2. Builtin plugins 177

RTI Routing Service User's Manual, Version 7.3.0

11.2.2 Forwarding Processor

This is a Processor implementation that forwards samples within aRoute. The plugin registered name is reserved
and has the value rti.routingservice.RoutingProcessor.

The functions of the builtin forwarding Processor are:

• Forwarding all the live data samples received from each Input to each Output.

• Proxying the TopicQueries received by the DdsStreamWriter, making sure all the TopicQuery data
samples received from each Input are sent to the correspondingOutputs and final destinationDataReaders.
(see Propagation Mode).

These functions are executed under the notification of the DATA_ON_INPUTS and PERODIC_ACTION
events. The builtin forwarding Processor is set by default in all AutoRoutes and Routes.

Note that if you install your own Processor implementation, you will override the functionality described above.
In this case, even if the dedicated configuration tags are specified (such as <topic_query_proxy>), they
will not have any effect.

11.2. Builtin plugins 178

Chapter 12

Advanced Use Cases

12.1 Propagating Content Filters

Routing Service can be configured to propagate the content filter information associated with user DataReaders
to the user DataWriters.

When this functionality is enabled, the user DataWriters receive information about the data sets subscribed to
by the user DataReaders. The DataWriters can use that information to do writer-side filtering1 and propagate
only the samples belonging to the subscribed data sets. This results in more efficient bandwidth usage as well
as in less CPU consumption in the Routing Service instances and user DataReaders.

Figure 12.1 shows a scenario where communication between DataWriters and DataReaders is relayed through
one or more Routing Services that do not propagate content filters. The user DataWriters will send on the wire
all the samples they publish, since they cannot make assumptions about what the user DataReaders want. This
default behavior incurs unnecessary bandwidth and CPU utilization since the filtering will occur on the DDS
DataWriter SWN.

Enabling filter propagation makes it possible to perform writer-side filtering from the user DataWriters, since
they receive a composed filter that represents the data set subscribed to by all the user DataReaders, as shown
in Figure 12.2.

12.1.1 Enabling Filter Propagation

Filter propagation is disabled by default in Routing Service. You can enable filter propagation with the
<filter_propagation> tag available under theTopicRoute configuration (seeRoute) andAutoTopicRoute
configuration (see Auto Route).

Note: When using filter propagation with no initial filter in Routing Service, historical data does not propagate.
To work around this issue, you can set up a 1 = 1 initial content filter. That filter should enable the Topic Route
or Auto Topic Route to work properly with historical data.

1 The ability to perform writer-side filtering is subject to some restrictions. For the sake of this discussion, we will assume that the
configuration of DataReaders, DataWriters, and Routing Services is such that writer-side filtering is allowed

179

RTI Routing Service User's Manual, Version 7.3.0

Figure 12.1: Without propagation, user DataWriters send all the samples; filtering occurs on the last route’s
StreamWriter

Figure 12.2: With propagation, userDataWriters receive a composed filter that allows writer-side filtering, thus
sending only the samples of interest to the DataReaders

12.1. Propagating Content Filters 180

RTI Routing Service User's Manual, Version 7.3.0

12.1.2 Filter Propagation Behavior

Without filter propagation, the only way to enforce writer-side filtering in a scenario involving one or more
Routing Services between the user DataWriters and user DataReaders is by statically configuring the content
filter individually for each DDS StreamReader. This method has two main disadvantages:

1. It requires knowing beforehand the data set subscribed to by the user DataReaders.

2. The filters in the StreamReaders are not automatically updated based on changes to the filters in the user
DataReaders. This may affect not only bandwidth utilization but also correctness. For example, a user
DataReader may not receive a sample because it has been filtered out by one of the StreamReaders.

Filter propagation can address the above issues by dynamically updating the StreamReaders filters. The com-
posed filter associated with a StreamReader in a Route is built by aggregating the filter information associated
with all DataReaders that match the Route’s StreamWriter, as shown in Figure 12.3.

Figure 12.3: Filter Propagation Through Routing Service

The composed filter (CF) is the union of the matching DataReaders filters; it allows passing any sample that
passes at least one of the DataReader filters.

𝐶𝐹 = 𝐹1 ∪ 𝐹2... ∪ 𝐹𝑁

For the SQL filter, the union operator is OR:

𝐶𝐹𝑆𝑄𝐿 = 𝐹𝑆𝑄𝐿1 ∪ 𝐹𝑆𝑄𝐿2... ∪ 𝐹𝑆𝑄𝐿𝑁

Filter propagation occurs within a Route as follows: the Route output StreamWriter gathers the filter information
coming from all of its matching DataReaders and provides the resulting composed filter to the Route input
StreamReader, whoseDataReader is responsible for sending this information to all of its matchingDataWriters.

12.1. Propagating Content Filters 181

RTI Routing Service User's Manual, Version 7.3.0

12.1.3 Filter Propagation Events

The following events will cause a StreamReader’s filter to be updated and propagated:

• Route StreamReader creation: The initial filter is set to the stop-band filter, which is a special kind of
filter that does not let any sample pass. This filter is propagated upon StreamReader creation and it will
remain unchanged until a matching DataReader to the Route StreamWriter is discovered.

• Discovery of a matching DataReader in a DataReader: The filter of the discovered DataReader will be
aggregated to the existing StreamReader’s filter, which will be propagated after being updated. If the
discovered DataReader does not have a filter (subscribes to all the samples) or it has a non-SQL filter,
the StreamReader’s filter is set to the all-pass filter (a special filter that lets all sample pass). The all-pass
filter will remain set until there are no matching DataReaders to the Route StreamWriter without a filter
or with a non-SQL filter.

• A matching DataReader changes its filter, either in the expression or in the parameters: The Stream-
Reader’s filter is updated to incorporate the latest changes and is propagated afterwards.

12.1.4 Restrictions

Filter propagation cannot be enabled when:

• Using Routes or AutoRoutes, since they are meant to work with other adapters different than the builtin
DDS one.

• A transformation is present in the TopicRoute’s output.

• Using remote administration, if the TopicRoute was enabled and started with filter propagation initially
disabled.

• If the StreamReader’s ContentFilter class is not the builtin SQL filter. Filter propagation is not currently
supported with other filter classes.

12.2 Topic Query Support

Routing Service is fully compatible with TopicQueries (see Topic Queries in the RTI Connext DDS Core Libraries
User’s Manual). You can enable this functionality in TopicRoutes and AutoTopicRoutes with two different query
modes:

• Dispatch mode: The TopicRoute’s DataWriter configured with TRANSIENT_LOCAL durability will
accept matching TopicQueries and dispatch them from its own sample cache.

• Propagation mode: TopicQueries are propagated from the user DataReaders to the user DataWriters.
These DataWriters will be the final endpoints that dispatch the propagated TopicQueries.

Routing Service allows propagating TopicQueries from DataReaders to DataWriters acting as a proxy of Topic-
Queries. Routing Service supports TopicQuery proxy in either of the above modes. It is not possible to enable
both modes within the same TopicRoute. However, you can create multiple TopicRoutes/AutoTopicRoutes with
different TopicQuery proxy modes.

12.2. Topic Query Support 182

RTI Routing Service User's Manual, Version 7.3.0

You can enable a TopicQuery proxy with the <topic_query_proxy> tag available under the TopicRoute
configuration (see Route) and AutoTopicRoute configuration (see Auto Route).

The following sections describe the Routing Service proxy modes. Figure 12.4 summarizes the symbols you
will see in the figures that illustrate the modes’ behaviors.

12.2.1 Dispatch Mode

Dispatch mode refers to enabling TopicQuery dispatch in a TRANSIENT_LOCAL TopicRoute’s DataWriter.
This is done by configuring its TopicQueryDispatchQosPolicy. It no different than enabling a TopicQuery for
a DataWriter in a user application.

Figure 12.5 shows a simple scenario. A TopicQuery (TQn) issued by a user DataReader (DRn) will be received
by the TopicRoute’s StreamWriter. The StreamWriter will process the TopicQuery and dispatch it, providing the
corresponding samples from the available history in the StreamWriter. As a result, the user DataReader will
receive live samples (SLive) and TopicQuery samples (STQ).

Dispatch mode can be useful when the user DataWriter on the publication side is part of an application with
low-resources requirements, such as low power consumption and small memory capacity. In this case, a Routing
Service instance connected to the application can cache a set of data published by the user DataWriter and
dispatch the TopicQueries issued by user DataReaders.

To enable TopicQuery proxy dispatch mode, use the following configuration tags within a Topi-
cRoute/AutoTopicRoute configuration:

<topic_query_proxy>
<mode>DISPATCH</mode>

</topic_query_proxy>

The above configuration will cause the Durability QoS setting for the TopicRoute’s output DataWriter to be
TRANSIENT_LOCAL and will enable TopicQuery dispatch. If you want to configure advanced dispatch fea-
tures, you can set other options in the TopicQueryDispatchQosPolicy within the corresponding DataWriter
QoS tag.

12.2.2 Propagation Mode

Propagation mode refers to having Routing Service act as a proxy of TopicQueries. The TopicRoutes propagate
the TopicQueries issued by the matching userDataReaders to the matching userDataWriters. Then the samples
generated for both the TopicQuery and live stream are 'propagated' to the original user DataReaders. Figure
12.6 shows a simple scenario.

The TopicRoute propagates the TopicQuery requests from user DataReaders on the subscription side to the user
DataWriters on the publication side. UserDataWriters eventually dispatch theTopicQuery requests and generate
samples for the TopicQuery stream. The samples for a specific TopicQuery are routed to the corresponding
original user DataReader that issued such TopicQuery.

For a given TopicRoute, the propagation of TopicQuery requests and samples for both the TopicQuery and live
stream occurs sequentially. The expected traffic pattern consists of TopicQuery requests, TopicQuery samples,
and live samples interleaved.

12.2. Topic Query Support 183

RTI Routing Service User's Manual, Version 7.3.0

Figure 12.4: Symbol Legend for Proxy Modes Figures

12.2. Topic Query Support 184

RTI Routing Service User's Manual, Version 7.3.0

Figure 12.5: TopicRoute Enabling TopicQuery Proxy in Dispatch Mode

Figure 12.6: TopicRoute Enabling TopicQuery Proxy in Propagation Mode

12.2. Topic Query Support 185

RTI Routing Service User's Manual, Version 7.3.0

TopicQuery propagation is also compatible with filter propagation (see Propagating Content Filters). You can
enable both at the same time and expect live samples to be filtered accordingly, and TopicQuery samples to be
unaffected by the filters.

To enable TopicQuery proxy dispatch mode, you can use the following configuration tags within a Topi-
cRoute/AutoTopicRoute configuration:

<topic_query_proxy>
<mode>PROPAGATION</mode>

</topic_query_proxy>

Note that the above configuration will cause the TopicRoute’s output DataWriter durability QoS setting to be
VOLATILE.

12.2.3 Restrictions

TopicQuery proxy in PROPAGATION mode cannot be enabled when:

• Using Routes or AutoRoutes, since they are meant to work with other adapters different than the builtin
DDS one.

• A transformation is present in the TopicRoute’s output.

• The TopicRoute has a custom processor.

12.2. Topic Query Support 186

Chapter 13

Common Infrastructure

13.1 Configuring RTI Services

RTI Services are configured using XML and offer multiple ways to load the configurations. The loading al-
ternatives are in general standard across all RTI Services. This section covers how you can provide XML
configurations to RTI Services, as well as specific behaviors on how the XML is parsed, validated, and inter-
preted.

13.1.1 How to Load and Select an XML Configuration

To run an RTI Service with a specific configuration you need to provide two pieces:

• XML content with one or more configurations This is the actual XML code that contains the
service-specific configurations. We refer to this as the input XML document. There are two different
input sources: File system or in-memory strings.

• Configuration name The name of the actual service configuration to be run. Each RTI Service defines
a top-level element that shall contain a name attribute that uniquely identifies it.

Loading from Files

RTI Services can receive a list of file paths separated by semicolons (;):

filepath_1;filepath_2; ... filepath_N

File paths can be relative or absolute and files are loaded in order from left to right. How you provide the file
path list depends on whether you run the service from the shipped executable or embed it into your application
using the Library API1.

Shipped Executable

Use the -cfgFile option.

1 Library API may not be available for certain RTI Services.

187

RTI Routing Service User's Manual, Version 7.3.0

Warning: On some operating systems, ; is interpreted as a command separator, so you will need to
escape the path list with double quotes ".

For example on Linux systems:

RTI Routing Service

$NDDSHOME/bin/rtiroutingservice -cfgFile "file.xml;/home/file2.xml"

RTI Recording Service

$NDDSHOME/bin/rtirecordingservice -cfgFile "file.xml;/home/file2.xml"

RTI Cloud Discovery Service

$NDDSHOME/bin/rticlouddiscoveryservice -cfgFile "file.xml;/home/file2.xml"

where [NDDSHOME] indicates the path to your Connext installation.

Library API

Set the ServiceProperty::cfg_file member.

For example in C++:

ServiceProperty property;
property.cfg_file("file.xml;/home/file2.xml");
...
Service service(property);

Loading from In-Memory Strings

If you are embedding RTI Services into your application using the Library API, the input XML document
can be also be provided through a string array object. You can do so by setting the ServiceProp-
erty::cfg_strings member.

For example in C++:

std::vector<std::string> xml_strings;
xml_strings.resize(2);
/* This sample demonstrates using Routing Service */
xml_strings[0] = "<dds><routing_service name=\"MyService\">";
xml_strings[1] = "</routing_service></dds>";
property.cfg_strings(xml_strings);
...
Service service(property);

13.1. Configuring RTI Services 188

RTI Routing Service User's Manual, Version 7.3.0

Selecting which Configuration to Run

As stated earlier, the input XML document may contain one or more service configurations. You will need to
select which specific configuration to run by providing its configuration name.

How you provide the configuration name depends on whether you run the service from the shipped executable
or by embedding it into your application using the Library API.

For example, consider the following input XML document in a file named MyService.xml that contains
two configurations.

RTI Routing Service

<dds>
<routing_service name="Service1"> ... </routing_service>

<routing_service name="Service2"> ... </routing_service>
</dds>

RTI Recording Service

<dds>
<recording_service name="Service1"> ... </recording_service>

<recording_service name="Service2"> ... </recording_service>
</dds>

RTI Cloud Discovery Service

<dds>
<cloud_discovery_service name="Service1"> ... </cloud_discovery_service>

<cloud_discovery_service name="Service2"> ... </cloud_discovery_service>
</dds>

You can run the configuration for Service1 as follows:

Shipped Executable

Use the -cfgName option.

For example, on Linux systems:

RTI Routing Service

$NDDSHOME/bin/rtiroutingservice -cfgFile MyService.xml -cfgName Service1

RTI Recording Service

$NDDSHOME/bin/rtirecordingservice -cfgFile MyService.xml -cfgName Service1

RTI Cloud Discovery Service

13.1. Configuring RTI Services 189

RTI Routing Service User's Manual, Version 7.3.0

$NDDSHOME/bin/rticlouddiscoveryservice -cfgFile MyService.xml -cfgName␣
→˓Service1

Library API

Set the ServiceProperty::cfg_name member.

For example in C++:

ServiceProperty property;
property.cfg_file("MyService.xml");
property.cfg_name("Service1");
...
Service service(property);

Default Files

In addition to manually providing input XML files, RTI Services also attempt to automatically load a set of files
from predefined locations:

Table 13.1: RTI Services Default Files
File Allowed Content
[working directory]/USER_[SERVICE].xml

• Service-specific elements
• QoS profiles
• Types

[NDDSHOME]/resource/xml/RTI_[SERVICE].
xml • Service-specific elements

• QoS profiles
• Types

[working directory]/USER_QOS_PRORFILES.
xml • QoS profiles

• Types

where [SERVICE] refers to the concrete product name in uppercase. For example:

• ROUTING_SERVICE for RTI Routing Service

• RECORDING_SERVICE for RTI Recording Service

• CLOUD_DISCOVERY_SERVICE for RTI Cloud Discovery Service

These files are loaded only if present.

You can disable the loading of default files by using the proper option:

Shipped Executable

13.1. Configuring RTI Services 190

RTI Routing Service User's Manual, Version 7.3.0

Use the -skipDefaultFiles option.

Library API

Set the ServiceProperty::skip_default_files member to true.

XML Syntax and Validation

The XML representation of DDS-related resources must follow these syntax rules:

• It shall be a well-formed XML document according to the criteria defined in clause 2.1 of the Extensible
Markup Language standard.

• It shall use UTF-8 character encoding for XML elements and values.

• It shall use <dds> as the root tag of every document.

To validate the loaded configuration, each RTI Service relies on an XSD document that describes the format of
the XML content. The validation of the input XML document occurs after all the files and strings have been
parsed. If the validation fails, the RTI Service will fail to load the XML and log an error. For example here is
an error in the case of RTI Cloud Discovery Service:

NDDSHOME/bin/rticlouddiscoveryservice
[/cloud_discovery_services/default|CREATE] line 26: Element 'invalid_example_
→˓tag': This element is not expected.
[/cloud_discovery_services/default|CREATE] CDSService_loadConfiguration:!
→˓validate configuration
[/cloud_discovery_services/default|CREATE] CDSService_initialize:!load␣
→˓configuration
[/cloud_discovery_services/default|CREATE] CDSService_new:!init service
main:!create service

You can disable the XSD validation process by using the proper option:

Shipped Executable

Use the -ignoreXsdValidation option.

Library API

Set the ServiceProperty::enforce_xsd_validation member to false.

We recommend including a reference to this document in the XML file that contains the service’s configuration;
this provides helpful features in code editors such as Visual Studio®, Eclipse®, and NetBeans®, including
validation and auto-completion while you are editing the XML file.

The XSD for the RTI Service configuration elements is in [NDDSHOME]/resource/schema/
rti_[service_name].xsd, where [service_name] refers to product name in lower snake case.
For example:

• routing_service for RTI Routing Service

• recording_service for RTI Recording Service

• cloud_discovery_service for RTI Cloud Discovery Service

13.1. Configuring RTI Services 191

https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/

RTI Routing Service User's Manual, Version 7.3.0

To include a reference to the XSD document in your XML file, use the attribute xsi:noNames-
paceSchemaLocation in the <dds> tag. For example:

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="[NDDSHOME]/resource/schema/rti_routing_
→˓service.xsd">

<!-- ... -->
</dds>

Warning: The product XSD file provided under [NDDSHOME]/resource/schema is to assist you
in the process of creating an XML configuration document. RTI Services have the XSD builtin in memory,
so making modifications to the reference XSD will not have an impact on the validation process.

Listing Available Configurations

The shipped executables of some RTI Services provide an option to list all the available configurations in the
specified input XML document. You can run the service with the -listConfig option to list the available
configurations and exit. For example, on Linux systems:

RTI Routing Service

rtiroutingservice -listConfig
Available configurations:
- default:([NDDSHOME]/resource/xml/RTI_ROUTING_SERVICE.xml)

Routes all topics from domain 0 to domain 1
- defaultBothWays:([NDDSHOME]/resource/xml/RTI_ROUTING_SERVICE.xml)

Routes all topics from domain 0 to domain 1 and the other way around
- defaultReliable:([NDDSHOME]/resource/xml/RTI_ROUTING_SERVICE.xml)

Routes all topics from domain 0 to domain 1 using reliable communication

RTI Cloud Discovery Service

rticlouddiscoveryservice -listConfig
Available configurations:
- rti.cds.builtin.config.default:(builtin string)

Empty configuration. Assumes default values.
- rti.cds.builtin.config.default_wan:(builtin string)

Enables Real-Time WAN Transport.
XML variables:

- RTI_CDS_PORT: CDS public and host port number
- RTI_CDS_PUBLIC_ADDR: CDS WAN public address

Each listed configuration indicates the input source (file path or string) and the content of the
<documentation> tag if present. This operation lists all the configurations detected from the specified
input XML document from all the locations and files.

13.1. Configuring RTI Services 192

RTI Routing Service User's Manual, Version 7.3.0

Configuration Variables

The builtin XML parser of the RTI Service offers a special mechanism to reuse and customize content at
runtime through the concept of Configuration variables.

A configuration variable is an RTI-specific construct that you can use in the input XML documents to set
placeholders for content that will be expanded at parsing time. A variable is specified as follows:

$(VAR_NAME)

where VAR_NAME is the name that identifies the variable. You can use configuration variables in your XML
content as an attribute value and element text.

<element attribute="$(VAR_ATTR)">my expanded $(VAR_TEXT)</element>

The possible ways a variable can be expanded are listed below in precedence order:

1. Process environment.

export VAR_NAME=my_value

2. Using a specific option when running the service.

Shipped Executable

Use the -DVAR_NAME=VALUE option

$<rtiservicename> ... -DVAR_NAME=my_value

where <rtiservicename> is one of rtiroutingservice, rtirecordingservice or
rticlouddiscoveryservice.

Library API

Set the ServiceProperty::user_environment member

ServiceProperty property;
property.user_environment()["VAR_NAME"] = "var_value";
...

3. <configuration_variables> section, which represents an unbounded list of variable
name-value value pairs.

<configuration_variables>
<value>

<element>
<name>VAR_NAME</name>
<value>var_value</value>

</element>
...

</value>
</configuration_variables>

13.1. Configuring RTI Services 193

RTI Routing Service User's Manual, Version 7.3.0

All three of these mechanisms can be used in combination or separately. For the above example, you could
expand one variable using the process environment and another variable using the command-line option. The
following command:

export VAR_ATTR=expanded_attr
<rtiservicename> ... -DVAR_TEXT=expanded_text

where <rtiservicename> is one of rtiroutingservice, rtirecordingservice or rti-
clouddiscoveryservice, will result in the following actual parsed XML with the expanded variables:

<element attribute="expanded_attr">my expanded expanded_text</element>

If the RTI Service cannot expand a variable, it will load the XML document and log an error indicating which
variable could not be expanded. Here is an example for RTI Routing Service:

[/routing_services/default|CREATE] RTIXMLUTILSVariableExpansor_
→˓expandString:variable with name=ADMIN_DOMAIN_ID not defined
[/routing_services/default|CREATE] RTIXMLUTILSVariableExpansor_visit:!parse␣
→˓at line=19 for tag=domain_id: expand environment variable in element text
[/routing_services/default|CREATE] ROUTERXmlVariableExpansor_visit:!parse at␣
→˓line=19 for tag=domain_id
...

13.1.2 How to Load Default QoS Profiles

Generally, loading a default QoS profile follows the same mechanism as Connext applications. The details on
how to specify default QoS profiles in XML is explained in the section Overwriting Default QoS in the RTI
Connext Core Libraries User’s Manual.

In short, you will need to mark a profile as the default using the is_default_qos attribute. For RTI Ser-
vices, you will need to do this as part of the default file USER_QOS_PROFILES.xml (seeDefault Files). This
requirement is necessary since the default QoS profiles are parsed by the underlying DomainParticipantFactory
and not the service itself.

Warning: Marking as default a QoS profile defined in a different file than USER_QOS_PROFILES.xml
will have no effect.

13.1.3 How to Set Logging Properties

You can configure different aspects of the logging infrastructure that is part of RTI Services and Connext. This
section describes different ways to set these logging properties.

13.1. Configuring RTI Services 194

RTI Routing Service User's Manual, Version 7.3.0

Command-Line Options

The shipped executable for an RTI Service typically offers some out-of-the-box options to configure logging.
Typically, you will find these options:

• -verbosity sets the verbosity level for the messages generated by the service and Connext.

• -logFormat configures the format of the log messages, such as whether they contain timestamps,
thread IDs, etc.

• -logFile redirects the logging to a specified text file.

You can refer to the Usage section of each individual product user’s manual for further details.

Library API

To configure the service-level verbosity, use the Logger singleton class part of the Library API. For example,
the following sets WARNING level for the service logs in RTI Routing Service. For other services change the
preceding rti::routing prefix to match the RTI Service you are working with.

rti::routing::Logger::instance().service_verbosity(
rti::config::Verbosity::WARNING);

To configure the Connext-level verbosity (for logs generated by the DDS libraries), you can use the Connext
configuration logger API. For example, the following sets WARNING level for the Connext logs:

rti::config::Logger::instance().verbosity(
rti::config::Verbosity::WARNING);

For the remaining overall logging properties, such as the log format, output file, and so on, you can also use the
Connext configuration logger API. For example, to redirect the logging to an output file:

rti::config::Logger::instance().output_file(my_service_logs.txt);

XML Configuration

As an alternative to the previous two methods, you can configure some logging properties through the Log-
gingQosPolicy which can be specified in XML. For more information, see the LOGGING QosPolicy
(DDS Extension) in the RTI Connext Core Libraries User’s Manual.

The Logging QoS is configured within the <participant_factory_qos> that is part of a QoS profile.
Since multiple profiles can be present in the loaded XML document, to tell Connext which one to use, you will
need to mark the profile as the default using the is_default_qos attribute, or for the DomainParticipant-
Factory, the is_default_participant_factory_profile attribute.

See How to Load Default QoS Profiles for details on how to load default QoS profiles with RTI Services.
For example, you can set different properties for the logger by placing the XML code seen below in the
USER_QOS_PROFILES.xml default file:

13.1. Configuring RTI Services 195

RTI Routing Service User's Manual, Version 7.3.0

<dds>
<qos_library name="DefaultLibrary">

<qos_profile name="DefaultProfile" is_default_participant_factory_
→˓profile ="true">

<participant_factory_qos>
<logging>

<!-- this element affects Connext logs only -->
<verbosity>ALL</verbosity>
<!-- for all Connext and Service logs -->
<category>ENTITIES</category>
<print_format>MAXIMAL</print_format>
<output_file>LoggerOutput1.txt</output_file>

</logging>
</participant_factory_qos>

</qos_profile>
</qos_library>

</dds>

See also:

Configuring Connext Logging
Describes the types of logging messages and how to use the logger to enable them.

Identifying Threads used by Connext DDS
Describes the logging messages that provide thread-context information.

13.1.4 How to Run as an Operating System Daemon

Certain Operating Systems offer the capability to run processes in the background and non-interactively. On
Linux or macOS systems, this is referred to as daemon processes. On Windows systems, this is referred to as
a service.

How to run a process as a daemon depends on the OS and in some cases there are multiple options. This section
describes the most common way to run an RTI Service as a daemon of the main OS.

Linux and macOS Systems

The simplest and more portable way requires you to use the Library API to create your own executable that
instantiates the RTI Service and sets the running process as a daemon using the daemon()API. For example,
for RTI Routing Service:

#include <stdlib.h>
#include "rti/routing/Service.hpp"

int main(int argc, char **argv)
{

using namespace rti::routing;

if (daemon(0,0)) {
Logger::instance().error("Failed to create daemon process\n");

(continues on next page)

13.1. Configuring RTI Services 196

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
return -1;

}

// parse arguments and configure ServiceProperty
ServiceProperty property;
property.cfg_file(argv[1]);
...
Service service(property);

service.start();
}

The above code generates an executable that runs the process as a daemon with zero-value arguments, indicating
that the working directory is / and the standard output is redirected to /dev/null. You can find more
information about the daemon() in the user man pages.

Note that if you link the application dynamically, you will need to guarantee that the dependency libraries are
available as part of the library path. An alternative is to link the applications statically.

Windows Systems

To run a process as aWindows Service we recommend using the third party tool Non-Sucking ServiceManager
(NSSM). This tool allows you to run an existing executable as a service, while adjusting environment variables
and command-line arguments.

Hence you can use NSSM to run the shipped executable of an RTI Service. For example, for Routing Service
you can run:

nssm install myRouterService <rtiroutingservice> "-cfgName default"

The above command will install a service named myRouterService on your Windows system that runs
Routing Service with the default configuration. Then you can manage the service with the nssm GUI utility
itself or the Windows Services Control Manager (select Control Panel -> Administrative Services -> Services).

The example above causes the service to use the executable directory as the working directory and relies on the
default configuration file in [NDDSHOME]/resource/xml. You can specify a different working directory
as well as different command-line arguments as follows:

nssm set myRouterService AppDirectory <my_working_dir>
nssm set myRouterService AppParameters "-cfgFile my_router.xml -cfgName␣
→˓MyRoute"

Alternatively, you can use the Library API to embed the RTI Service into your own executable and imple-
ment the Windows Library APIs to run the executable as a Windows Service. (see How to: Create Windows
Services).

Here are some things to consider when running an RTI Service as a Windows Service:

• All AppParameters arguments must be enclosed in quotation marks.

• If you specify -cfgFile in the Start Parameters field, you must use the full path to the file.

13.1. Configuring RTI Services 197

https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://nssm.cc/description
https://nssm.cc/description
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/how-to-create-windows-services
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/how-to-create-windows-services

RTI Routing Service User's Manual, Version 7.3.0

• Some versions of Windows do not allow Windows Services to communicate with other services/appli-
cations using shared memory. In such case, you will need to disable the shared memory transport in all
DomainParticipants created by the RTI Service.

• In some scenarios, you may need to add a multicast address to your discovery peers or simply use RTI
Cloud Discovery Service.

13.1.5 How to use a License File with RTI Services

If your RTI Connext distribution requires a license file, you will receive one from RTI via email. To install the
license file, follow the instructions in Installing RTI Connext DDS, in the RTI Connext DDS Installation Guide.
Alternatively, you can provide the RTI Service with the path to your license file using either the -license-
File command-line argument or the license_file_name field in the Service Property of the Library
API.

Note: Some RTI Services do not require a license file.

Check the command line arguments list for the RTI Service to see if a -licenseFile argument exists. If
it doesn’t, you can use the RTI Service without a license file.

Each time your RTI Service starts, it looks for the license file in the following locations, in order, until it finds
a valid license:

1. The file specified in the environment variable RTI_LICENSE_FILE, which you may set to point to
the full path of the license file, including the filename. For example, on Linux:

export RTI_LICENSE_FILE=/home/username/my_rti_license.dat

2. The file rti_license.dat in the current working directory.

3. The file rti_license.dat in the directory specified by the environment variable NDDSHOME.

13.1.6 Key Terms

XML document
The input XML contained within the <dds> root, which contains one or more configurations for an RTI
Service.

Configuration name
Unique identification of a service top-level configuration element. Provided with the name attribute.

Configuration variable
An RTI-specific construct to be used in XML to define content that can be expanded at runtime.

Shipped executable
An RTI-provided command-line executable that runs an RTI Service.

Library API
Public API that allows you to embed an RTI Service into your custom application.

13.1. Configuring RTI Services 198

RTI Routing Service User's Manual, Version 7.3.0

13.2 Application Resource Model

RTI Services are described through a hierarchical application resource model. In this model, an application is
composed of a set of Resources, each representing a particular component within the application. Resources
have a parent-child relationship. Figure 13.1 shows a general view of this concept.

Figure 13.1: Application modeled as a set of related Resources

Each application specifies its resource model by indicating the available resources and their relationship. A Re-
source is determined by its class and a concrete object instance. It can belong to one of the following categories:

• Simple–Represents a single object.

• Collection–Represents a set of objects of the same class.

A Resource may be composed of one or more Resources. In this relationship, the parent Resource is composed
of one ore more child Resources.

13.2.1 Example: Simple Resource Model of a Connext Application

Figure 13.2 depicts a UML class diagram to provide a generic resource model for Connext applications.

In this diagram, the composition relationship is used to denote the parents and children in the hierarchy. The
direct relationship denotes a dependency between resources that is not parent-child.

13.2. Application Resource Model 199

RTI Routing Service User's Manual, Version 7.3.0

Figure 13.2: Connext DDS application resource model

13.2.2 Resource Identifiers

A resource identifier is a string of characters that uniquely address a concrete resource object within an applica-
tion. It is expressed as a hierarchical sequence of identifiers separated by /, including all the parent resources
and the target resource itself:

/𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑1/𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑2.../𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑𝑁

where each individual identifier references a concrete resource object by its name. The object name is either:

a) Fixed and specified by the resource model of the parent Resource class.

b) Given by the user of the application. This is the case where the parent resource is a collection in which
the user can insert objects, providing a name for each of them.

The individual identifier can refer to one of the two kinds of resources, simple and collection resources. For
example:

/collection_id1/resource_id1/resource_id2

If the identifier refers to a collection resource, the following child identifier must refer to a simple resource.
Both simple and collection resources can be parents (or children). In the previous example, resource_id1 is a
simple resource child of collection_id1; it is also the parent of resource_id2.

The hierarchy of identifiers is known as the full resource identifier path, where each resource on the left repre-
sents a parent resource. The full resource identifier path is composed of collection and simple resources. Each
child resource identifier is known as the relative resource to the parent.

The resource identifier format follows these conventions:

• The first character is /, which represents the root resource and parent of all the available resources across
the applications.

13.2. Application Resource Model 200

RTI Routing Service User's Manual, Version 7.3.0

• A collection identifier is defined in lower snake_case, and it is always specified by the resource class.

• A simple resource identifier is defined in camelCase (lower and upper) and may be specified by both
the resource class or the user.

Escaped Identifiers

An identifier can be escaped by enclosing it within double quotes ("). For example:

/”escaped_identifier”

An escaped identifier is interpreted as a whole and indivisible unit. Escaping a resource identifier is useful; it
is also required when the identifier contains the resource separator / or the custom method separator :.

For example, the following full resource path:

/resource_1/"escaped/resource_2"

is composed of two relative resources, resource_id1and escaped/resource2. The use of the double quotes to
escape the identifier indicates that the enclosing string shall be interpreted as a single identifier, and therefore
Routing Service ignores the resource separator. If the identifier was not escaped, then Routing Service would
interpret the resource path as two separate relative resources.

Any time an RTI Service sees a resource separator character (/) or the custom method separator : in an
entity name (such as in the attribute name), it automatically escapes the name when it constructs the resource
identifier. For example:

<service name="A/B">

<service name="A:B">

becomes

/routing_service/"A/B"

/routing_service/"A:B"

in the resource identifier.

Example: Resource Identifiers of a Generic Connext Application

Consider the Connext application resource model in Example: Simple Resource Model of a Connext Application.
The following resource identifier addresses a concrete DomainParticipant named “MyParticipant” in a given
application:

/domain_participants/MyParticipant

In this case, “domain_participants” is the identifier of a collection resource that represents a set of DomainPar-
ticipants in the application and its value is fixed and specified by the application. In contrast, “MyParticipant”

13.2. Application Resource Model 201

RTI Routing Service User's Manual, Version 7.3.0

is the identifier of a simple resource that represents a particular DomainParticipant and its value is given by the
user of the application at DomainParticipant creation time.

The following resource identifier addresses the implicit Publisher of a concrete DomainParticipant in a given
application:

/domain_participants/MyParticipant/implicit_publisher

where “implicit_publisher” is the identifier of a simple resource that represents the always-present implicit
Publisher and its value is fixed and specified by the DomainParticipant resource class.

Example: Resource Identifiers Generated from XML Entity Model

Consider the following XML configuration that models a generic RTI Service:

<service name="MyService">
<entity_class1 name="MyEntity1"> ... </entity_class1>
<entity_class1 name="Domain/MyEntity2"> ... </entity_class1>

</service>

The resulting generated resource identifiers will look as follows:

/service/MyService/entity_class1/MyEntity1
/service/MyService/entity_class1/"Domain/MyEntity2"

13.3 Remote Administration Platform

This section describes details of the RTI Remote Administration Platform, which represents the foundation of
the remote access capabilities available in RTI Routing Service, RTI Recording Service, RTI Queuing Service, RTI
Cloud Discovery Service and RTI Observability Collector. The RTI Remote Administration Platform provides a
common infrastructure that unifies and consolidates the remote interface to all RTI Services.

Note: Remote administration of RTI Services requires an understanding of the application resource model.
We recommend that you read Application Resource Model (Application Resource Model) before continuing with
this section.

The RTI Remote Administration Platform addresses two areas:

• Resource Interface: How to perform operations on a set of resource objects that are available as part
of the public interface of the remote service.

• Communication: How the remote service receives and sends information.

The combination of these two areas provides the general view of the RTI Remote Administration Platform,
as shown in Figure 13.3. The RTI Remote Administration Platform is defined as a request/reply architecture.
In this architecture, the service is modeled as a set of resources upon which the requester client can perform
operations. Resources represent objects that have both state and behavior.

13.3. Remote Administration Platform 202

RTI Routing Service User's Manual, Version 7.3.0

Figure 13.3: General View of the RTI Remote Administration Platform Architecture

Clients issue requests indicating the desired operation and receive replies from the service with the result of the
requests. If multiple clients issue multiple requests to one or more services, the client will receive only replies
to its own requests.

13.3.1 Remote Interface

Services offer their available functionality through their set of resources. The RTI Remote Administration Plat-
form defines a Representational State Transfer (REST)-like interface to address service resources and perform
operations on them. A resource operation is determined by a REST request and the associated result by a REST
reply.

13.3. Remote Administration Platform 203

RTI Routing Service User's Manual, Version 7.3.0

Table 13.2: REST Interface
Element Description
REST Request

[method] + [resource_identifier] + [body]
• method: Specifies the action to be performed on a service resource.
There is only a small subset of methods, known as standard methods
(see Standard Methods).

• resource_identifier: Addresses a concrete service resource.
Each concrete service has its own set of resources (see Resource Identi-
fiers).

• body: Optional request data that contains necessary information to
complete the operation.

REST Reply
[return code] + [body]

• return code: Integer indicating the result of the operation.
• body: Optional reply data that contains information associated with the
processing of the request.

Standard Methods

The RTI Remote Administration Platform defines the methods listed in Table 13.3.

Table 13.3: Standard Methods
Method URI Request Body Reply Body
CREATE Parent collection

resource identifier
Resource representation N/A

GET Resource identifier N/A Resource representation
UPDATE Resource identifier Resource representation N/A
DELETE Resource identifier Undefined N/A

Custom Methods

There are certain cases in which an operation on a service resource cannot be mapped intuitively to a standard
method and resource identifier. Custom methods address this limitation.

A custom method can be specified as part of the resource identifier, after the resource path, separated by a :.

UPDATE + [resource_identifier] : [custom_verb]

It is up to each service implementation to define which custom methods are available and on what resources
they apply. Custom methods follow these conventions:

• They are invoked through the UPDATE standard method.

13.3. Remote Administration Platform 204

RTI Routing Service User's Manual, Version 7.3.0

• They are named using lower snake_case.

• They may use the request body and reply body if necessary.

Example: Database Rollover

This example shows the REST request to perform a file rollover operation on a file-based database:

UPDATE /databases/MyDatabase:rollover

13.3.2 Communication

The information exchange between client and server is based on the DDS request-reply pattern, as shown in
Figure 13.4. The client maps to a Requester, whereas the server maps to a Replier.

Figure 13.4: Communication in RTI Remote Administration Platform is Based on DDS Request-Reply

The communication is performed over a single request-reply channel, composed of two topics:

• Command Request Topic: Topic through which the client sends the requests to the server.

• Command Reply Topic: Topic through which the server sends the replies to the received requests.

The definition of these topics is shown in Table 13.4:

Table 13.4: Remote Administration Topics
Topic Name Top-level Type Name
CommandRequestTopic rti/service/admin/command_re-

quest
rti::service::ad-
min::CommandRequest

CommandReplyTopic rti/service/admin/command_re-
ply

rti::service::ad-
min::CommandReply

13.3. Remote Administration Platform 205

RTI Routing Service User's Manual, Version 7.3.0

The definition for each Topic type is described below.

Listing 13.1: CommandRequest Type

@appendable
struct CommandRequest {

@key int32 instance_id;
@optional string<BOUNDED_STRING_LENGTH_MAX> application_name;
CommandActionKind action;
ResourceIdentifier resource_identifier;
StringBody string_body;
OctetBody octet_body;

};

Table 13.5: CommandRequest
Field Name Description
instance_id Associates a request with a given instance in the CommandRequestTopic.

This can be used if your requester application model wants to leverage outstanding
requests. In general, this member is always set to zero, so all requests belong to the
same CommandRequestTopic instance.

applica-
tion_name

Optional member that indicates the target service instance where the request is sent.
If NULL, the request will be sent to all services.

action Indicates the resource operation.
re-
source_iden-
tifier

Addresses a service resource.

string_body Contains content represented as a string.
octet_body Contains content represented as binary.

Listing 13.2: CommandReply Type

@appendable
struct CommandReply {

CommandReplyRetcode retcode;
int32 native_retcode;
StringBody string_body;
OctetBody octet_body;

};

Table 13.6: CommandReply
Field Name Description
retcode Indicates the result of the operation.
native_retcode Provides extra information about the result of the operation.
string_body Return value of the operation, represented as a string.
octet_body Return value of the operation, represented as binary.

13.3. Remote Administration Platform 206

RTI Routing Service User's Manual, Version 7.3.0

The type definitions for both the CommandRequestTopic and CommandReplyTopic are in the file
[NDDSHOME]/resource/idl/ServiceAdmin.idl.

The definition of the request and reply topics is independent of any specific service implementation. In fact,
the topic names are fixed, unique, and shared across all services that rely on the RTI Remote Administration
Platform. Clients can target specific services through two mechanisms:

• Specifying a concrete service instance by providing its application name. The application name is a
service attribute and can be set at service creation time.

• Specifying the configuration name loaded by the target services. The target service configuration shall
be present in the service resource part of the resource_identifier.

Reply Sequence

Usually a request is expected to generate a single reply. Sometimes, however, a request may trigger the gener-
ation of multiple replies, all associated with the same request.

The RTI Remote Administration Platform communication architecture allows services to respond to certain
requests with a reply sequence. All the samples in a reply sequence use the the metadata SampleFlagBits
to indicate whether it belongs to a reply sequence and whether there are more replies pending.

The SampleFlagBitsmay contain different flags that indicate the status of the reply procedure. For a given
reply sequence, the associated sample flags for each reply may contain:

• SEQUENTIAL_REPLY: If present, this indicates that the sample is the first reply of a reply sequence
and there are more on the way.

• FINAL_REPLY: If present, this indicates that the sample is the last one belonging to a reply sequence.
This flag is valid only if the SEQUENTIAL_REPLY is also set.

For more on SampleFlagBits, see documentation on the DDS_SampleInfo structure in the Connext DDS API
Reference HTML documentation.

Example: Controlling services remotely from a Connext Application

The Connext GitHub examples repository includes an example that shows how to build and run a requester
application that can send commands to a running RTI Routing Service instance.

13.3.3 Common Operations

The set of services that use the RTI Remote Administration Platform to implement remote administration also
share a base remote interface that consolidates and unifies the semantics and behavior of certain common
operations.

Services containing resources that implement the common operations conform to the base remote interface,
making sure that signatures, semantics, behavior, and conditions are respected.

The following sections describe each of these common operations.

13.3. Remote Administration Platform 207

https://github.com/rticommunity/rticonnextdds-examples/tree/master/examples/routing_service

RTI Routing Service User's Manual, Version 7.3.0

Create Resource

CREATE [resource_identifier]

Creates a resource object from its configuration in XML representation.

This operation creates a resource object and its contained entities. The created object becomes a child
of the parent specified in the resource_identifier.

After successful creation, the resource object is fully addressable for additional remote access, and the
associated object configuration is inserted into the currently loaded full XML configuration.

Request body

• string_body: XML representation of the resource object provided as file:// or str://.

• Example str:// request body:

str://"<my_resource name="NewResourceObject">
...

</my_resource>"

• Example file:// request body:

file:///home/rti/config/service_my_resource.xml

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• The specified configuration is schematically invalid.

• There was an error creating the resource object.

Get Resource

GET [resource_identifier]

Returns an equivalent XML string that represents the current state of the resource object configuration,
including any updates performed during its lifecycle.

Request body

• Empty.

Reply body

• string_body: XML representation of the resource object.

• Example reply body:

13.3. Remote Administration Platform 208

RTI Routing Service User's Manual, Version 7.3.0

<my_resource name="MyObject">
...

</my_resource>

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

Update Resource

UPDATE [resource_identifier]

Updates the specified resource object from its configuration in XML representation.

This operation modifies the properties of the resource object, including the associated configuration.
Only the mutable properties of the resource class can be updated while the object is enabled. To update
immutable properties, the resource object must be disabled first.

Note: Properties of a child resource cannot be updated as part of a parent resource. Instead, child
resources must be addressed and updated independently.

Implementations may validate the received configuration against a scheme (DTD or XSD) that defines
the valid set of accepted parameters (for example, only mutable elements).

The update content should only include only the properties to be updated or changed. You are not
required to provide the full representation of the object being updated.

For example, consider the XML full representation of an object as follows:

<my_resource>
<nested_resource_A>initial_A</nested_resource_A>
<nested_resource_B>initial_B</nested_resource_B>
<nested_resource_C>initial_C</nested_resource_C>
...

</my_resource>

The update should only contain the content for the properties you want to modify. For example, the
following will only update nested_resource_B to a new value, leaving the other nested resources
unchanged:

<my_resource>
<nested_resource_B>updated_B</nested_resource_B>
...

</my_resource>

Request body

• string_body: XML representation of the resource object provided as file:// or str://.

• Example str:// request body:

13.3. Remote Administration Platform 209

RTI Routing Service User's Manual, Version 7.3.0

str://"<my_resource name="MyResourceObject">
...

</my_resource>"

• Example file:// request body:

file:///home/rti/config/service_update_my_resource.xml

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• The specified configuration is schematically invalid.

• The specified configuration contains changes in immutable properties.

• There was an error updating the resource object.

Set Resource State

UPDATE [resource_identifier]/state

Sends a state change request to the specified resource object.

This operation attempts to change the state of the specified resource object and propagates the request
to the resource object’s contained entities.

The target state must be one of the resource class’s valid accepted states.

Request body

• octet_body: CDR representation of an entity state.

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• The target request is invalid.

• The resource object reported an error while performing the state transition.

13.3. Remote Administration Platform 210

RTI Routing Service User's Manual, Version 7.3.0

Get Resource State

GET [resource_identifier]/state

Gets the current state of the specified resource object.

This operation attempts to fetch the state of the specified resource object.

The target’s state is returned as a part of the reply.

Request body

• Empty

Reply body

• octet_body: CDR representation of an entity’s current state.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• The target request is invalid.

• The resource object reported an error while fetching its current state.

Delete Resource

DELETE [resource_identifier]

Deletes the specified resource object.

This operation deletes a resource object and its contained entities. The deleted object is removed from
its parent resource object.

The associated object configuration is removed from the currently loaded full XML configuration.

After a successful deletion, the resource object is no longer addressable for additional remote access.

Request body

• Empty.

Reply body

• Empty.

Return codes

The operation may return a reply with error if:

• The specified resource identifier does not exist.

• There was an error deleting the resource object.

13.3. Remote Administration Platform 211

RTI Routing Service User's Manual, Version 7.3.0

13.4 Monitoring Distribution Platform

Monitoring refers to the distribution of health status information metrics from instrumented RTI Services.
This section describes the architecture of the monitoring capability supported in RTI Routing Service and RTI
Recording Service. You will learn what type of information these application can provide and how to access it.

RTI Services provide monitoring information through a Distribution Topic, which is a DDS Topic responsible
for distributing information with certain characteristics about the service resources. An RTI Service provides
monitoring information through the following three distribution topics:

• ConfigDistributionTopic: Distributes metrics related to the description and configuration of a Resource.
This information may be immutable or change rarely.

• EventDistributionTopic: Distributes metrics related to Resource status notifications of asynchronous na-
ture. This information is provided asynchronously when Resources change after the occurrence of an
event.

• PeriodicDistributionTopic: Distribute metrics related to periodic, sampling-based updates of a Resource.
Information is provided periodically at a configurable publication period.

These three Topics are shared across all services for the distribution of the monitoring information. Table 13.7
provides a summary of these topics.

Table 13.7: Monitoring Distribution Topics
Topic Name Top-level Type Name
ConfigDistributionTopic rti/service/monitoring/config rti::service::monitoring::Con-

fig
EventDistributionTopic rti/service/monitoring/event rti::service::monitor-

ing::Event
PeriodicDistributionTopic rti/service/monitoring/periodic rti::service::monitoring::Peri-

odic

Figure 13.5 shows the mapping of the monitoring information into the distribution Topics. A distribution Topic
is keyed on service resources categorized as keyed Resources. These are resources whose related monitoring
information is provided as an instance on the distribution Topic.

13.4.1 Distribution Topic Definition

All distribution Topics have a common type structure that is composed of two parts: a base type that identifies
a resource object and a resource-specific type that contains actual status monitoring information.

The definition of a distribution Topic is shown in Figure 13.6.

13.4. Monitoring Distribution Platform 212

RTI Routing Service User's Manual, Version 7.3.0

Figure 13.5: Monitoring Distribution Topics of RTI Services

Figure 13.6: Monitoring Distribution Topic Definition

13.4. Monitoring Distribution Platform 213

RTI Routing Service User's Manual, Version 7.3.0

Keyed Resource Base Type Fields

This is the base type of all distribution Topics and consists of two fields:

• object_guid: Key field. It represents a 16-byte sequence that uniquely identifies a Keyed Resource
across all the available services in the monitoring domain. Hence, the associated instance handle key
hash will be the same for all distribution Topics, allowing easy correlation of a resource. It will also
facilitate, as we will discuss later, easy instance data manipulation in a DataReader.

• parent_guid: It contains the object GUID of the parent resource. This field will be set to all zeros
if the object is a top-level resource thus with no parent.

This base type, KeyedResource, is defined in [NDDSHOME]/resource/idl/ServiceCommon.
idl.

Resource-Specific Type Fields

This is the type that conveys monitoring information for a concrete resource object. Since a distribution Topic
is responsible for providing information about different resource classes, the resource-specific type consists of
a single field that is a Union of all the possible representations for the keyed resources that provide that on
the topic.

As expected, there must be consistency between the two parts of the distribution topic type. That is, a sample
for a concrete resource object must contain the resource-specific union discriminator corresponding to the
resource object’s class.

Example: Monitoring of Generic Application

Assume a generic application that provides monitoring information about the modes of transports Car, Boat
and Plane. Each mode is mapped to a keyed resource, each with a custom type that contains metrics specific
to each class.

The monitoring distribution Topic top-level type, TransportModeDistribution, would be defined as
follows, using IDL v4 notation:

#include "ServiceCommon.idl"

@nested
struct CarType {

float speed;
String color;
String plate_number;

};

@nested
struct BoatType {

float knots;
float latitude;
float longitude;

};

(continues on next page)

13.4. Monitoring Distribution Platform 214

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)

@nested
struct PlaneType {

float ground_speed;
int32 air_track;

};

enum TransportModeKind {
CAR_TRANSPORT_MODE,
BOAT_TRANSPORT_MODE,
PLANE_TRANSPORT_MODE

};

@nested
union TransportModeUnion switch (TransportModeKind) {

case CAR_TRANSPORT_MODE:
CarType car;

case BOAT_TRANSPORT_MODE:
BoatType boat;

case PLANE_TRANSPORT_MODE:
PlaneType plane;

}

struct TransportModeDistribution : KeyedResource {
TransportModeUnion value;

};

Assume now that in the monitoring domain there are three resource objects, one for each resource class: a Car
object ‘CarA’, a Boat object ‘Boat1’, and a Plane object ‘PlaneX’. They all have unique resource GUIDs and
each object represents an instance in the distribution Topic. The table shows the example of potential sample
values:

Table 13.8: Samples in TransportModeDistribution Topic
CarA Boat1 PlaneX

object_guid 0x0C 0xAB 0xf2
parent_guid 0x00 0x00 0x00
value discrimi-
nator

CAR_TRANS-
PORT_MODE

BOAT_TRANS-
PORT_MODE

PLANE_TRANS-
PORT_MODE

13.4. Monitoring Distribution Platform 215

RTI Routing Service User's Manual, Version 7.3.0

13.4.2 DDS Entities

RTI Services allow you to distribute monitoring information in any domain. For that, they create the following
DDS entities:

• A DomainParticipant on the monitoring domain.

• A single Publisher for all DataWriters.

• A DataWriter for each distribution Topic.

A service will create these entities with default QoS or otherwise the corresponding service user’s manual
will specify the actual values. Services allow you to customize the QoS of the DDS entities, typically in the
service monitoring configuration under the <monitoring> tag. You will need to refer to each service’s user’s
manual.

13.4.3 Monitoring Metrics Publication

How services publish monitoring samples depends on the distribution Topic.

Configuration Distribution Topic

There are two events that cause the publication of samples in this topic:

• As soon as a Resource object is created. This event generates the first sample in the Topic for the resource
object just created. Since these first samples are published as resources are created, it is guaranteed to
be in hierarchical order; that is, the sample for a parent Resource is published before its children. When
Resources are created depends on the service. Typically, Resources are created on service startup. Other
cases include manual creation (e.g., through remote administration) or external event-driven creation
(e.g., discovery of matching streams, in the case of AutoRoute in Routing Service).

• On Resource object update. This event occurs when the properties of the object change due to a set or
update operation (e.g., through remote administration).

Event Distribution Topic

Services publish samples in this Topic in reaction to an internal event, such as a Resource state change. Which
events and their associated information and when they occur is highly dependent on concrete service imple-
mentations.

13.4. Monitoring Distribution Platform 216

RTI Routing Service User's Manual, Version 7.3.0

Periodic Distribution Topic

Samples in this Topic are published periodically, according to a fixed configurable period. The metrics provided
in this Topic are generated in two different ways:

• As a snapshot of the current value, taken at the publication time (e.g., current number of matching
DataReaders). This represents a simple case and the metric is typically represented with an adequate
primitive member.

• As a statistic variable generated from a set of discreet measurements, obtained periodically. This rep-
resents a continous flow of metrics, represented with the StatisticVariable type (see Statistic
Variable).

There are two activities involved in the generation of the statistic variables: Calculation and Publication. All
the configuration elements for these activities are available under the <monitoring> tag.

Calculation

The instrumented service periodically performs measurements on the metric. This activity is also known as
sampling (don’t confuse with data samples). The frequency of the measurements can be configured with the
tag <statistics_sampling_period>. As a general recommendation, the sampling period should be
a few times smaller than the publication period. A small sampling period provides more accurate statistics
generation at the expense of increasing memory and CPU consumption.

Publication

The service periodically publishes a data sample containing a snapshot of the statistics gen-
erated during the calculation phase. The publication period can be configured with the tag
<status_publication_period>.The value of a statistic variable corresponds to the time win-
dow of a publication period.

13.4.4 Monitoring Metrics Reference

This section describes the types used as common metrics across services. All the type definitions listed here
are in [NDDSHOME]/resource/idl/ServiceCommon.idl.

Statistic Variable

Listing 13.3: Statistics

@appendable @nested
struct StatisticMetrics {

uint64 period_ms;
int64 count;
float mean;

(continues on next page)

13.4. Monitoring Distribution Platform 217

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
float minimum;
float maximum;
float std_dev;

};

@appendable @nested
struct StatisticVariable {

StatisticMetrics publication_period_metrics;
};

Table 13.9: StatisticMetrics
Field Name Description
period_ms Period in milliseconds at which the metrics are published.
count Sum of all the measurement values obtained during the publication period.
mean Arithmetic mean of all the measurement values during publication period. For aggre-

gated metrics, this value is the mean of all the aggregated metrics means.
min Minimum of all the measurement values during publication period. For aggregated

metrics, this value is the minimum of all the aggregated metrics minimums.
max Maximum of all the measurement values during publication period. For aggregated

metrics, this value is the maximum of all the aggregated metrics minimums.
std_dev Standard deviation of all the measurement values during publication period. For ag-

gregated metrics, this value is the standard deviation of all the aggregated metrics
minimums.

Host Metrics

Listing 13.4: Host Types

@appendable @nested
struct HostPeriodic {

@optional StatisticVariable cpu_usage_percentage;
@optional StatisticVariable free_memory_kb;
@optional StatisticVariable free_swap_memory_kb;
int32 uptime_sec;

};

@appendable @nested
struct HostConfig {

BoundedString name;
uint32 id;
int64 total_memory_kb;
int64 total_swap_memory_kb;
BoundedString target;

};

13.4. Monitoring Distribution Platform 218

RTI Routing Service User's Manual, Version 7.3.0

Table 13.10: HostConfig
Field Name Description
name Name of the host where the service is running.
id ID of the host where the service is running.
total_memory_kb Total memory in KiloBytes of the host where the service is running. Availability of

this value is platform dependent.
total_swap_mem-
ory_kb

Total swap memory in KiloBytes of the host where the service is running. Availability
of this value is platform dependent.

Table 13.11: HostPeriodic
Field Name Description
cpu_usage_per-
centage

Statistic variable that provides the global percentage of CPU usage on the host where
the service is running. Availability of this value is platform dependent.

free_memory_kb Statistic variable that provides the amount of free memory in KiloBytes of the host
where the service is running. Availability of this value is platform dependent.

free_wap_mem-
ory_kb

Statistic variable that provides the amount of free swap memory in KiloBytes of the
host where the service is running. Availability of this value is platform dependent.

uptime_sec Time in seconds elapsed since the host on which the running service started. Avail-
ability of this value is platform dependent.

Process Metrics

Listing 13.5: Process Types

@appendable @nested
struct ProcessConfig {

uint64 id;
};
@mutable @nested
struct ProcessPeriodic {

@optional StatisticVariable cpu_usage_percentage;
@optional StatisticVariable physical_memory_kb;
@optional StatisticVariable total_memory_kb;
int32 uptime_sec;

};

Table 13.12: ProcessConfig
Field Name Description
id Identifies the process where the service is running. The meaning of this value is plat-

form dependent.

13.4. Monitoring Distribution Platform 219

RTI Routing Service User's Manual, Version 7.3.0

Table 13.13: ProcessPeriodic
Field Name Description
cpu_usage_per-
centage

Statistic variable that provides the percentage of CPU usage of the process where the
service is running. The field count of the variable contains the total CPU time in
ms that the process spent during the publication period. Availability of this value is
platform dependent.

physical_mem-
ory_kb

Statistic variable that provides the physical memory utilization in KiloBytes of the
process where the service is running. Availability of this value is platform dependent.

total_memory_kb Statistic variable that provides the virtual memory utilization in KiloBytes of the pro-
cess where the service is running. Availability of this value is platform dependent.

uptime_sec Time in seconds elapsed since the running service process started. Availability of this
value is platform dependent.

Base Entity Resource Metrics

Listing 13.6: Base Entity Types

@mutable @nested
struct EntityConfig {

ResourceId resource_id;
XmlString configuration;

};
@mutable @nested
struct EntityEvent{

EntityStateKind state;
};

Table 13.14: EntityConfig
Field Name Description
resource_id String representation of the resource identifier associated with the entity resource.
configuration String representation of the XML configuration of the entity resource. The XML

contains only children elements that are not entity resources.

Table 13.15: EntityEvent
Field Name Description
state State of the resource entity expressed as an enumeration of type EntityS-

tateKind.

13.4. Monitoring Distribution Platform 220

RTI Routing Service User's Manual, Version 7.3.0

Network Performance Metrics

Listing 13.7: Network Performance Type

@appendable @nested
struct NetworkPerformance {

@optional StatisticVariable samples_per_sec;
@optional StatisticVariable bytes_per_sec;
@optional StatisticVariable latency_millisec;

};

Table 13.16: NetworkPerformance
Field Name Description
samples_per_sec Statistic variable that provides information about the number of samples processed

(received or sent) per second.
bytes_per_sec Statistic variable that provides information about the number of bytes processed (re-

ceived or sent) per second.
latency_millisec Statistic variable that provides information about the latency in milliseconds for the

data processed. The latency in a refers to the total time elapsed during the associated
processing of the data, which depends on the type of application.

Thread Metrics

Listing 13.8: Thread Metrics Type

@mutable @nested
struct ThreadPeriodic {

uint64 id;
@optional StatisticVariable cpu_usage_percentage;

};

@mutable @nested
struct ThreadPoolPeriodic {

@optional sequence<Service::Monitoring::ThreadPeriodic>␣
→˓threads;

};

Table 13.17: ThreadPeriodic
Field Name Description
id OS-assigned thread identifier
cpu_usage_per-
centage

Statistic variable that provides the percentage of CPU usage of the thread belonging to
the process where the service is running. The field count of the variable contains the
total CPU time in ms that the thread spent during the publication period. Availability
of this value is platform dependent.

13.4. Monitoring Distribution Platform 221

RTI Routing Service User's Manual, Version 7.3.0

13.5 Plugin Management

Some RTI Services allow for custom behavior through the use of pluggable components or plugins . The type
of plugins is described in Software Development Kit. A plugin is represented as a top-level service-owned
object whose main role is a factory of other pluggable components, which are responsible for providing the
user-defined behavior.

Figure 13.7 shows that for each class of pluggable components there is a top-level object with the suffix Plu-
gin. This is the object that the Service obtains at the moment of loading the plugin. Multiple Plugin objects
can be registered from the same class, each uniquely identified by its registered name.

Figure 13.7: Plugin object management

Figure 13.7 also shows that there are two mechanisms through which a Service obtains a plugin object: a shared
library or the Library API. Both mechanisms are complementary and are described with more detail in the
next sections.

13.5. Plugin Management 222

RTI Routing Service User's Manual, Version 7.3.0

13.5.1 Shared Library

A plugin object is instantiated through a create function, which is included and addressable as part of a shared
library. This function is also known as the entry point and each RTI Service defines the signature for each
plugin class. This method requires specifying the path to the shared library and the name of the entry point (see
Configuration). The Service loads the library the first time an instance of the plugin is needed (lazy initialization)
and looks up the specified entry point symbol in the loaded library. The Service will always delete the plugin
on Service stop.

This is the only method suitable when an RTI Service is deployed through an already linked executable, such
as the shipped command-line executable (Command-Line Executable).

The plugin lifecycle is as follows:

1. After start, the Service creates a plugin object for each registered plugin in the configuration. The plugin
object is instantiated through the shared library entry point, specified in the configuration.

2. The Service calls operations on the plugin objects as needed and keeps them alive while the Service
remains started.

3. During stop, the Service deletes each plugin object by calling the class abstract deleter.

Configuration

An RTI Service configures the pluggable components within the <plugin_library> tag. RTI Services
that support plugins will define a set of tags within in the form:

• <[class]_plugin> for C/C++ plugins

• <java_[class]_plugin> for Java plugins

where [class] refers to the name of the plugin class. For example, in Routing Service an available tag is
<adapter_plugin>.

The definition of these tags is the same regardless of the plugin class and is described in the tables below.

Table 13.18 and Table 13.19 describe the configuration of each different plugin language.

13.5. Plugin Management 223

RTI Routing Service User's Manual, Version 7.3.0

Table 13.18: Configuration tags for C/C++ plugins.
Tags within <[class]_plu-
gin>

Description Multi-
plicity

<dll> Shared library containing the implementation of the adapter
plugin. This tag may specify the exact path (absolute or rela-
tive) of the file (for example, lib/libmyplugin.so) or a general
name (no file extension).
If no extension is provided, the path will be completed based on
the running platform. For example, assuming a value for this tag
of dir/myplugin:

• Linux/macOS systems (or similar): dir/libmyplugin.so
• Windows systems: dir/myplugin.dll

If the library specified in this tag cannot be loaded (because the
environment library path is not pointing to the path where the
library is located), Routing Service will look for the library in
the following locations, in this order:

• [plugin_search_path]: Provided as part of the service
parameters (see Usage)

• [executable_dir]: Directory where the executable lives

1

<create_function> Entry point. This tag must contain the name of the function
used to create the plugin instance. The function symbol must
be present in the shared library specified in <dll>

1

<property> A sequence of name-value string pairs that allow you to config-
ure the plugin instance.
Example:

<property>
<value>

<element>
<name>myplugin.user_name</

→˓name>
<value>myusername</value>

</element>
</value>

</property>

0..1

Table 13.19: Configuration tags for Java plugins
Tags within
<java_[class]_plugin>

Description Multi-
plicity

<class_name> Name of the class that implements the plugin.
For example: com.myplugins.CustomPlugin
The classpath required to run the Java plugin must be part of
the RTI Service JVM configuration. See the <jvm> tag within
the specific service configuration for additional information on
JVM creation and configuration.

1

continues on next page

13.5. Plugin Management 224

RTI Routing Service User's Manual, Version 7.3.0

Table 13.19 – continued from previous page
Tags within
<java_[class]_plugin>

Description Multi-
plicity

<property> A sequence of name-value string pairs that allow you to config-
ure the plugin instance.
Example:

<property>
<value>

<element>
<name>myplugin.user_name</

→˓name>
<value>myusername</value>

</element>
</value>

</property>

0..1

13.5.2 Library API

The user provides the plugin object via the Library API, through one of the available at-
tach_[class]_plugin() operations. Upon successful return of the operation, the Service takes owner-
ship of the plugin object and will delete it on Service stop.

The plugin lifecycle is as follows:

1. The user instantiates plugin objects and provides them to the Service through the at-
tach_[class]_plugin() operation. This is allowed only before the Service starts.

2. After start, the Service becomes the owner of the registered plugin objects, calls operations on the plugin
objects as needed, and keeps them alive while the Service remains started.

3. On stop, the Service deletes each registered plugin object by calling the class abstract deleter.

13.5. Plugin Management 225

Chapter 14

Tutorials

This chapter describes several examples, all of which use RTI Shapes Demo to publish and subscribe to topics
which are coloredmoving shapes. Shapes Demo is installed automatically withRTI Connext Professional. You’ll
find it in RTI Launcher’s Learn tab.

In each example, you can start all the applications on the same computer or on different computers in your
network.

Important Notes:

• Please review Paths Mentioned in Documentation to understand where to find the examples (referred to
as <path to examples>).

• The following instructions include commands that you will enter in a command shell. These instruc-
tions use forward slashes in directory paths, such as bin/rtiroutingservice. If you are using
a Windows platform, replace all forward slashes in such paths with backwards slashes, such as bin\
rtiroutingservice.

• If you run Shapes Demo and Routing Service on different machines and these machines do not commu-
nicate over multicast, you will have to set the environment variable NDDS_DISCOVERY_PEERS to
enable communication. For example, assume that you run Routing Service on Host 1 and Shapes Demo
on Host 2 and Host 3. In this case, the environment variable would be set as follows:

Host 1

Linux/macOS

$ export NDDS_DISCOVERY_PEERS=<host2>,<host3>

Windows

> set NDDS_DISCOVERY_PEERS=<host2>,<host3>

226

RTI Routing Service User's Manual, Version 7.3.0

Host 2

Linux/macOS

$ export NDDS_DISCOVERY_PEERS=<host1>

Windows

> set NDDS_DISCOVERY_PEERS=<host1>

Host 3

Linux/macOS

$ export NDDS_DISCOVERY_PEERS=<host1>

Windows

> set NDDS_DISCOVERY_PEERS=<host1>

14.1 Starting Shapes Demo

You can start Shapes Demo from the Learn tab in RTI Launcher.

Or from a command shell:

Linux/macOS

$ NDDSHOME/bin/rtishapesdemo

Windows

> %NDDSHOME%\bin\rtishapesdemo.bat

NDDSHOME is described in Paths Mentioned in Documentation.

14.2 Example: Routing a single specific Topic

This example routes the samples for the Topic Square from domain 0 to 1.

1. Start Shapes Demo on domain 0 and publish squares. We’ll call this the Publishing Demo.

2. Start another instance of Shapes Demo but this time on domain 1, and subscribe to squares. We’ll call
this the Subscribing Demo.

Notice that the Subscribing Demo does not receive any shapes since we haven’t started Routing Service
yet.

14.1. Starting Shapes Demo 227

RTI Routing Service User's Manual, Version 7.3.0

3. Create an XML file named rti_rs_example_square_topic.xml in your local directory with the following
contents:

<?xml version="1.0"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../../resource/schema/rti_
→˓routing_service.xsd">

<routing_service name="SquareRouter">
<domain_route name="DomainRoute">

<participant name="domain0">
<domain_id>0</domain_id>

</participant>
<participant name="domain1">

<domain_id>1</domain_id>
</participant>
<session name="Session">

<topic_route name="RouteSquare">
<input participant="domain0">
<topic_name>Square</topic_name>
<registered_type_name>ShapeType</registered_

→˓type_name>
</input>
<output participant="domain1">

<topic_name>Square</topic_name>
<registered_type_name>ShapeType</registered_

(continues on next page)

14.2. Example: Routing a single specific Topic 228

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
→˓type_name>

</output>
</topic_route>

</session>
</domain_route>

</routing_service>
</dds>

4. Run Routing Service by entering the following in a command shell:

$ cd <NDDSHOME>
$ bin/rtiroutingservice \

-cfgFile rti_rs_example_square_topic.xml \
-cfgName SquareRouter \
-verbosity LOCAL

Now you should see all the shapes in the Subscribing Demo.

5. Stop Routing Service by pressing Ctrl-c

14.3 Example: Routing All Data from One Domain to Another

This example uses the default configuration file1 for Routing Service, which routes all data published on domain
0 to subscribers on domain 1.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).

• Press Stop.

• Change the domain ID to 1.

• Press Start.

3. In the Publishing Demo, publish some Squares, Circles, and Triangles.

4. In the Subscribing Demo, subscribe to Squares, Circles, and Triangles.

Notice that the Subscribing Demo does not receive any shapes. Since we haven’t started Routing Service
yet, data from domain 0 isn’t routed to domain 1.

5. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice -cfgName default

Now you should see all the shapes in the Subscribing Demo.
1 <NDDSHOME>/resource/xml/RTI_ROUTING_SERVICE.xml

14.3. Example: Routing All Data from One Domain to Another 229

RTI Routing Service User's Manual, Version 7.3.0

6. Stop Routing Service by pressing Ctrl-c.

You should see that the Subscribing Demo stops receiving shapes.

Additionally, you can start Routing Service (Step 5) with the following parameters:

• -verbosity 3, to see messages from Routing Service including events that have triggered the creation of
routes.

• -domainIdBase X, to use domains X and X+1 instead of 0 and 1 (in this case, you need to change the
domain IDs used by Shapes Demo accordingly). This option adds X to the domain IDs in the configuration
file.

Note: -domainIdBase only affects the domain IDs of DomainRoute participants; it does not affect the
domain IDs of participants used for monitoring or administration.

14.4 Example: Changing Data to a Different Topic of Same Type

In this example, Routing Service receives samples of topic Square and republishes them as samples of topic
Circle.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).

• Press Stop.

• Change the domain ID to 1.

• Press Start.

3. In the Publishing Demo, publish some Squares, Circles, and Triangles.

4. In the Subscribing Demo, subscribe to Squares, Circles, and Triangles.

Notice that the subscriber does not receive any samples, because the publisher and subscriber are in
different domains.

5. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/topic_bridge.
→˓xml \
-cfgName example

Notice that the Subscribing Demo only receives Circles, which match the movement of the Squares being
published by the Publishing Demo. This is because the Squares are being republished as topic Circle.

6. Stop Routing Service by pressing Ctrl-c.

14.4. Example: Changing Data to a Different Topic of Same Type 230

RTI Routing Service User's Manual, Version 7.3.0

7. Try writing your own topic route that republishes triangles on Domain 0 to circles on Domain 1. Create
some Triangle publishers and a Circle subscriber in the respective Shapes Demo windows.

14.5 Example: Changing Some Values in Data

So far, we have learned how to route samples from one topic to another topic of the same data type. Now we
will use a Transformation to see how to change the value of some fields in the samples and republish them.

Note: Routing Service provides a transformation that is able to map fields of the input type to fields of the
output type using the property tag inside the transformation to provide this mapping. The <name> tag indicates
the name of the field in the output type; the <value> tag indicates the name of the field in the input type.
Use dot notation for nested fields (e.g., position.x).

Important: The assign transformation only supports the assignment of primitive fields (including strings) that
are not part of arrays or sequences. So, for example, x[0] is not supported.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).

• Press Stop.

• Change the domain ID to 1.

• Press Start.

3. In the Publishing Demo, publish some Squares.

4. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/topic_bridge_
→˓w_transf1.xml \
-cfgName example

5. In the Subscribing Demo, subscribe to Squares.

Notice that the (x,y) coordinates of the shapes are inverted form what appears in the Publish-
ing Demo.

6. Stop Routing Service by pressing Ctrl-c.

7. Try changing the transformation to assign the output shapesize to the input x.

14.5. Example: Changing Some Values in Data 231

RTI Routing Service User's Manual, Version 7.3.0

14.6 Example: Transforming the Data’s Type and Topic with an As-
signment Transformation

This example shows how to transform the data topic and type. We will use rtiddsspy to verify the result.
rtiddsspy is a utility provided with Connext; it monitors publications on any DDS domain.

Note: Routing Service provides a transformation that is able to map fields of the input type to fields of the
output type using the property tag inside the transformation to provide this mapping. The <name> tag indicates
the name of the field in the output type; the <value> tag indicates the name of the field in the input type.
Use dot notation for nested fields (e.g., position.x).

Important: The assign transformation only supports the assignment of primitive fields (including strings) that
are not part of arrays or sequences. So, for example, x[0] is not supported.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. In the Publishing Demo, publish some Squares.

3. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/topic_bridge_
→˓w_transf2.xml \
-cfgName example

4. We will use the rtiddsspy utility to verify the transformation of the data topic and type. Run these
commands:

cd <NDDSHOME>
bin/rtiddsspy -domainId 0 -printSample
bin/rtiddsspy -domainId 1 -printSample

You will notice that the publishing samples received by rtiddsspy for domain 0 are of type
ShapeType and topic Square. The subscribing samples received by rtiddsspy for domain 1
are of type Point and topic Position. Notice that the two data structures are different.

5. Stop Routing Service by pressing Ctrl-c.

14.7 Example: Transforming the Data with a Custom Transformation

Now we will use our own transformation between shapes. Routing Service allows you to install plug-ins that
implement the Transformation API to create custom transformations. To build a custom transformation, you
must have the Connext libraries installed.

Note: This example assumes your working directory is <path to examples>/routing_service/shapes/transfor-
mation/[make or windows]. If your working directory is different, you will need to modify the configuration

14.6. Example: Transforming the Data’s Type and Topic with an Assignment
Transformation

232

RTI Routing Service User's Manual, Version 7.3.0

topic_bridge_w_custom_transf.xml to update the paths.

1. Compile the transformation in <path to examples>/routing_service/shapes/transformation/[make or win-
dows]:

• On Linux/macOS systems:

– Set the environment variable NDDSHOME (see Paths Mentioned in Documentation). An easy
way to do this is to run rtisetenv: $ source <installdir>/resource/scripts/
rtisetenv_<architecture>.bash. (For more information about rtisetenv, see Set
Up Environment Variables (rtisetenv), in the RTI Connext DDS Getting Started Guide.)

– Enter:

cd <path to examples>/routing_service/shapes/transformation/
→˓make
make -f Makefile.<architecture>

• On Windows systems:

– Set the environment variable NDDSHOME (see Paths Mentioned in Documentation). An
easy way to do this is to run rtisetenv: > <installdir>\resource\scripts\
rtisetenv_<architecture>.bat. (For more information about rtisetenv, see Set
Up Environment Variables (rtisetenv), in the RTI Connext DDS Getting Started Guide.)

– Open the Visual Studio solution under <path to examples>\routing_service\shapes\transfor-
mation\windows.

– Select the Release DLL build mode and build the solution.

2. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

3. In the Publishing Demo, publish some Squares.

4. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/topic_bridge_
→˓w_custom_transf.xml \
-cfgName example

5. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).

• Press Stop.

• Change the domain ID to 1.

• Press Start.

6. In the Subscribing Demo, subscribe to Squares.

Notice that squares on domain 1 have only two possible values for x.

14.7. Example: Transforming the Data with a Custom Transformation 233

RTI Routing Service User's Manual, Version 7.3.0

7. Stop Routing Service by pressing Ctrl-c.

8. Change the fixed ‘x’ values for the Squares in the configuration file and restart Routing Service.

9. Stop Routing Service by pressing Ctrl-c.

10. Edit the source code (in shapestransf.c) to make the transformation multiply the value of the field by the
given integer constant instead of assigning the constant.

Hint: Look for the function ShapesTransformationPlugin_createOutputSam-
ple(), called from ShapesTransformation_transform() and use DDS_Dynamic-
Data_get_long() before DDS_DynamicData_set_long().

11. Recompile the transformation (the new shared library will be copied automatically) and run Routing
Service as before.

14.8 Example: Using Remote Administration

In this example, we will configure Routing Service remotely. We won’t see data being routed until we remotely
enable an AutoTopicRoute after the application is started. Then we will change a QoS value and see that it takes
effect on the fly.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. In the Publishing Demo, publish some Squares, Circles, and Triangles.

3. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/
→˓administration.xml \
-cfgName example -appName MyRoutingService

4. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).

• Press Stop.

• Change the domain ID to 1.

• Press Start.

5. In the Subscribing Demo, subscribe to Squares, Circles, and Triangles.

Notice that no data is routed to domain 1.

6. On a different or the same machine, start the Routing Service remote shell:

cd <NDDSHOME>
bin/rtirssh -domainId 0

14.8. Example: Using Remote Administration 234

RTI Routing Service User's Manual, Version 7.3.0

Note: We use domain 0 in the shell because Routing Service is configured in administra-
tion.xml to receive remote commands on that domain. You could have started Routing Service
with the -remoteAdministrationDomainId command-line option and then used domain X
for the shell.

7. In the shell, enter the following command:

enable MyRoutingService RemoteConfigExample::Session::Shapes

Notice that the shapes are now received on domain 1. The above command consists of two
parts: the name of the Routing Service, which you gave when you launched the application
with the option -appName, and the name of the entity you wanted to enable. That name is
formed by appending its parent entities’ names starting from the domain route as defined in
the configuration file administration.xml.

You could have run Routing Service without -appName. Then the name would be the one
provided with -cfgName (“example”). You could also have used -identifyExecution to gen-
erate the name based on the host and application ID. In this case, you would have used this
automatic name in the shell.

8. Examine the file <path to examples>/routing_service/shapes/time_filter_qos.xml on the Routing
Service machine. It contains an XML snippet that defines a QoS value for an auto topic route’s
DataReader. Execute the following command in the shell:

update MyRoutingService RemoteConfigExample::Session::Shapes \
<path to examples>/routing_service/shapes/time_filter_

→˓qos.xml

Notice that the receiving application only gets shapes every 2 seconds. The AutoTopicRoute
has been configured to read (and forward) samples with a minimum separation of 2 seconds.

Routing Service can be configured remotely using files located on the remote machine or the
shell machine. In the next step you will edit the configuration files on both machines. Then
you will see how to specify which of the two configuration files you want to use.

Note: If you are running the shell and Routing Service on the same machine, skip steps 9
and 10.

9. Edit the XML configuration files on both machines:

• In <path to examples>/routing_service/shapes/time_filter_qos.xml on the service machine,
change the minimum separation to 0 seconds.

• In <path to examples>/routing_service/shapes/time_filter_qos.xml on the shell machine,
change the minimum separation to 5 seconds.

10. Run the following commands in the shell:

• Enter the following command. Notice the use of remote at the end—this means you want to use the
XML file on the service machine (the remote machine, which is the default if nothing is specified).

14.8. Example: Using Remote Administration 235

RTI Routing Service User's Manual, Version 7.3.0

update MyRoutingService RemoteConfigExample::Session::Shapes \
<path to examples>/routing_service/shapes/time_filter_qos.xml␣

→˓remote

Note: The path to the XML file in this example is relative to the working directory from which
you run Routing Service.

Since no time filter applies, the shapes are received as they are published.

• Enter the following command. This time use local at the end—this means you want to use the
XML file on the shell machine (the local machine).

update MyRoutingService RemoteConfigExample::Session::Shapes \
<path to examples>/routing_service/shapes/time_filter_qos.xml␣

→˓local

Note: The path to the XML file in this example is relative to the working directory from which
you run the Routing Service shell.

You will see that now the shapes are only received every 5 seconds.

• Enter the following command. Once again, we use remote at the end to switch back to the XML
file on the remote machine.

update MyRoutingService RemoteConfigExample::Session::Shapes \
<path to examples>/routing_service/shapes/time_filter_qos.xml␣

→˓remote

Shapes are once again received as they are published

11. Disable the AutoTopicRoute again by entering:

disable MyRoutingService RemoteConfigExample::Session::Shapes

The shapes are no longer received on Domain 1.

Note: At this point, you could still update theAutoTopicRoute’s configuration. You could also
change immutable QoS values, since the DataWriter and DataReader haven’t been created
yet. These changes would take effect the next time you called enable.

12. Run these commands in the shell and see what happens after each one:

enable MyRoutingService␣
→˓RemoteConfigExample::Session::SquaresToCircles
disable MyRoutingService␣
→˓RemoteConfigExample::Session::SquaresToCircles

(continues on next page)

14.8. Example: Using Remote Administration 236

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
enable MyRoutingService␣
→˓RemoteConfigExample::Session::SquaresToTriangles

These commands change the output topic that is published after receiving the input Square
topic. As you can see, you can use the shell to switch TopicRoutes after Routing Service has
been started.

13. Perform a remote shutdown of the service. Run the following command:

shutdown MyRoutingService

You should receive a reply indicating that the shutdown sequence has been initiated. Verify
in the terminal in which Routing Service was running that the process is exiting or has already
exited.

14. Stop the shell by running this command in the shell:

exit

14.9 Example: Monitoring

You can publish status information with Routing Service. The monitoring configuration is quite flexible and
allows you to select the entities that you want to monitor and how often they should publish their status.

1. Start Shapes Demo. We’ll call this the Publishing Demo. It uses domain ID 0.

2. In the Publishing Demo, publish two Squares, two Circles and two Triangles.

3. Start a second copy of Shapes Demo. We’ll call this the Subscribing Demo. Then:

• Open its Configuration dialog (under Controls).

• Press Stop.

• Change the domain ID to 1.

• Press Start.

4. In the Subscribing Demo, subscribe to Squares, Circles, and Triangles.

At this point you will not see any shapes moving in the Subscribing Demo. It isn’t receiving
shapes from the Publishing Demo because they use different domain IDs.

5. Start Routing Service by entering the following in a command shell:

cd <NDDSHOME>
bin/rtiroutingservice
-cfgFile <path to examples>/routing_service/shapes/monitoring.
→˓xml \
-cfgName example -appName MyRoutingService

This configuration file routes Squares and Circles using two different TopicRoutes.

14.9. Example: Monitoring 237

RTI Routing Service User's Manual, Version 7.3.0

6. Now you can subscribe to the monitoring topics (seeMonitoring). You can do it in your own application,
or by using RTI Admin Console or rtiddsspy. Enter the following in a terminal:

cd <NDDSHOME>
bin/rtiddsspy -domainId 2 –printSample

Note: We use domain 2 because Routing Service is configured in monitoring.xml to pub-
lish status information on that domain. You could have started Routing Service with the
-remoteMonitoringDomainId X command-line option and then used domain X for rtid-
dsspy.

7. Depending on the publication period of the entity in the XML file we used, you will receive status samples
at different rates. In the output from rtiddsspy, check the statistics about the two topic routes we are using.

We will focus on the input samples per second. The number of samples per second in our case is
approximately 40 (on some systems likeWindows it can be approximately 32 because of timer resolution
within Shapes Demo). That value depends on the publication rate of Shapes Demo, which is configurable
with the option -pubInterval <milliseconds between writes>. The default wait between writes in
Shapes Demo is 50 ms, which results in a publication rate of approximately 20Hz (can be closer to 16Hz
on Windows systems).

8. Create two additional Square publishers in the Publishing Demo (domain 0).

9. Check rtiddsspy again for new status information.

In the TopicRoute for Squares, we are receiving double the amount of data.

10. Look at the status of the DataReader in the output from rtiddsspy.

It contains an aggregation of the two contained TopicRoutes, giving us a mean of approximately 120
samples per second (approximately 96 on Windows).

11. We can update the monitoring configuration at runtime using the remote administration feature.

On a different or the same machine, start the Routing Service remote shell:

cd <NDDSHOME>
bin/rtirssh -domainId 0

Note: We use domain 0 in the shell because Routing Service is configured in administra-
tion.xml to receive remote commands on that domain. You could have started Routing Service
with the -remoteAdministrationDomainId command-line option and then used domain X
for the shell.

12. We are receiving the status of the TopicRoute Circles every five seconds. To receive it more often, use
the following command:

update MyRoutingService DomainRoute::Session::Circles \
topic_route.entity_monitoring.status_publication_period.

→˓sec=2

14.9. Example: Monitoring 238

RTI Routing Service User's Manual, Version 7.3.0

Note that this change just increases the status publication rate, but does not change the statistics sampling
period.

13. In some cases, you might want to know only about one specific TopicRoute. If you only want to know
about the topic route Circles but not Squares, you can disable monitoring for Squares:

update MyRoutingService DomainRoute::Session::Squares \
topic_route.entity_monitoring.enabled=false

14. To enable it again, enter:

update MyRoutingService DomainRoute::Session::Squares \
topic_route.entity_monitoring.enabled=true

15. If you are no longer interested in monitoring this service, you can completely disable it with the following
command:

update MyRoutingService routing_service.monitoring.enabled=false

Now you won’t receive any more status samples.

16. You can enable it again any time by entering:

update MyRoutingService routing_service.monitoring.enabled=true

17. Stop rtiddsspy by pressing Ctrl-c.

18. Stop the shell:

exit

19. Stop Routing Service by pressing Ctrl-c.

14.10 Example: WAN Connectivity using the TCP transport

This example shows how to use Routing Service to bridge data between different LANs over the WAN using
TCP. See Traversing Wide Area Networks for a guided and detailed explanation to understand the configuration
for this example.

Figure 3.10 shows the example scenario. There are two instances of Routing Service acting as WAN gateways.
GatewaySiteA is theRouting Service that connects the databus for domain 0 in thesite ALAN. Similarly,
GatewaySiteB is the Routing Service that connects the databus for domain 2 in the site B LAN. Note
that GatewaySiteA runs in a host behind a NAT/Firewall, with a public address and forwarded public port
to that host. Hence this information is required in the TCP configuration of GatewaySiteA.

This example uses XML configuration variables in order to reuse the same participant QoS and service config-
uration. You will need to set to appropriate values (if different than default) when you run Routing Service for
each site. For the steps shown in this example, the following values are chosen:

14.10. Example: WAN Connectivity using the TCP transport 239

RTI Routing Service User's Manual, Version 7.3.0

Figure 14.1: Example using the TCP transport to traverse WAN

Table 14.1: Values for configuration variables in this example
Variable GatewaySiteA GatewaySiteB

PUBLIC_AD-
DRESS

10.10.1.140 10.10.1.150

RE-
MOTE_RS_PEER

tcpv4_wan://10.10.1.150:8400tcpv4_wan://10.10.1.140:7400

BIND_PORT 7400 8400
LAN_DO-
MAIN_ID

0 2

Create an XML file named rti_rs_example_tcp_wan.xml in your local directory with the following contents:

<?xml version="1.0"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../../resource/schema/rti_routing_
→˓service.xsd">

<!--
Default values of the XML configuration variables. Set to the␣

→˓example
default values for site A.

-->
<configuration_variables>

<element>
<name>PUBLIC_ADDRESS</name>
<value>10.10.1.140</value>

</element>
<element>

<name>BIND_PORT</name>
<value>7400</value>

</element>
<element>

<name>REMOTE_RS_PEER</name>
<value>10.10.1.150</value>

</element>
<element>

<name>LAN_DOMAIN_ID</name>
<value>0</value>

</element>
</configuration_variables>

<qos_library name="QosLib">
<qos_profile name="TcpWanProfile">

<!--
We define here the common properties to configure the TCP␣

→˓transport,
which includes mostly the loading of the transport␣

→˓implementation library.
Specific values for public address and port are set␣

→˓appropriate on each
RS.

(continues on next page)

14.10. Example: WAN Connectivity using the TCP transport 240

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
-->
<domain_participant_qos>

<transport_builtin>
<mask>MASK_NONE</mask>

</transport_builtin>
<property>

<value>
<element>

<name>dds.transport.load_plugins</name>
<value>dds.transport.TCPv4.tcp1</value>

</element>
<element>

<name>dds.transport.TCPv4.tcp1.library</name>
<value>nddstransporttcp</value>

</element>
<element>

<name>dds.transport.TCPv4.tcp1.create_function
→˓</name>

<value>NDDS_Transport_TCPv4_create</value>
</element>
<element>

<name>dds.transport.TCPv4.tcp1.parent.classid
→˓</name>

<value>NDDS_TRANSPORT_CLASSID_TCPV4_WAN</
→˓value>

</element>
<element>

<name>dds.transport.TCPv4.tcp1.public_address
→˓</name>

<value>$(PUBLIC_ADDRESS)</value>
</element>
<element>

<name>dds.transport.TCPv4.tcp1.server_bind_
→˓port</name>

<value>$(BIND_PORT)</value>
</element>
<element>

<name>dds.transport.TCPv4.tcp1.disable_nagle</
→˓name>

<value>1</value>
</element>

</value>
</property>
<discovery>

<initial_peers>
<element>$(REMOTE_RS_PEER)</element>

</initial_peers>
</discovery>

</domain_participant_qos>
</qos_profile>

</qos_library>

(continues on next page)

14.10. Example: WAN Connectivity using the TCP transport 241

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<routing_service name="WanGateway">

<annotation>
<documentation>

<![CDATA[
Routes bidirectionally the all topics betwen a LAN domain
to a WAN domain through the RTI TCP transport]]>

</documentation>
</annotation>

<domain_route name="DR_UDPLAN_TCPWAN">
<!--

With default participant QoS, which uses UDP LAN and␣
→˓Shared memory

as trasnports. Uses the configuration variable LAN_DOMAIN_
→˓ID to

customize the ID for the LAN domain.
-->
<participant name="DomainLAN">

<domain_id>$(LAN_DOMAIN_ID)</domain_id>
</participant>

<participant name="DomainWAN">
<domain_id>1</domain_id>
<!--

With participant QoS configured to use the TCP␣
→˓transport. Requires

setting the variableS PUBLIC_ADDRESS AND BIND_PORT to␣
→˓the actual

values used in to route the traffic to this RS.
-->
<domain_participant_qos base_name="QosLib::TcpWanProfile"/

→˓>
</participant>

<session name="Session">
<auto_topic_route name="FromLANtoWAN">

<input participant="DomainLAN">
<deny_topic_name_filter>rti/*</deny_topic_name_

→˓filter>
</input>
<output participant="DomainWAN">

<deny_topic_name_filter>rti/*</deny_topic_name_
→˓filter>

</output>
</auto_topic_route>

<auto_topic_route name="FromWANtoLAN">
<input participant="DomainWAN">

<deny_topic_name_filter>rti/*</deny_topic_name_
→˓filter>

</input>
<output participant="DomainLAN">

(continues on next page)

14.10. Example: WAN Connectivity using the TCP transport 242

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<deny_topic_name_filter>rti/*</deny_topic_name_

→˓filter>
</output>

</auto_topic_route>
</session>

</domain_route>

</routing_service>
</dds>

• On GatewaySiteA host (behind a NAT/firewall with a public IP):

1. In the Site A network, configure the firewall to forward the TCP ports used by Routing
Service.

In this example, we will use port 7400 (for both private and public). You do not need
to configure your firewall for every single Connext application in your LAN; doing it
just once for Routing Service will allow other applications to communicate through the
firewall.

Note: You can use tools like Netcat or Ncat, depending on your platform, to verify that the
port forwarding has been enabled before moving on with the next steps. For instance, you
can run a simple client/server test between the machines running GatewaySiteA (server)
and GatewaySiteB (client).

1. Start Routing Service with the GatewaySiteA configuration

To run with the default values for the XML variables:

cd <NDDSHOME>
bin/rtiroutingservice

-cfgFile rti_rs_example_tcp_wan.xml \
-cfgName WanGateway \
-appName GatewaySiteA

You can set the values for the XML configuration variables in the environment:

Linux/macOS

$ export PUBLIC_ADDRESS=<Host Site A public IP>:<Host␣
→˓Site A public Port>
$ export BIND_PORT=<RS TCP bind port>
$ export REMOTE_RS_PEER=<discovery peer for␣
→˓GatewaySiteB>
$ export LAN_DOMAIN_ID=<ID for the LAN domain in site A>

Windows

14.10. Example: WAN Connectivity using the TCP transport 243

RTI Routing Service User's Manual, Version 7.3.0

> set PUBLIC_ADDRESS=<Host Site A public IP>:<Host Site␣
→˓A public Port>
> set BIND_PORT=<RS TCP bind port>
> set REMOTE_RS_PEER=<discovery peer for GatewaySiteB>
> set LAN_DOMAIN_ID=<ID for the LAN domain in site A>

Now run the Routing Service instance:

cd <NDDSHOME>
bin/rtiroutingservice

-cfgFile rti_rs_example_tcp_wan.xml \
-cfgName WanGateway \
-appName GatewaySiteA

For example:

cd <NDDSHOME>
export PUBLIC_ADDRESS=10.10.1.140:7400
export BIND_PORT=7400
export REMOTE_RS_PEER=tcpv4_wan://10.10.1.150:8400
export LAN_DOMAIN_ID=0

bin/rtiroutingservice
-cfgFile rti_rs_example_tcp_wan.xml \
-cfgName WanGateway \
-appName GatewaySiteA

2. On any computer in Site A LAN, start Shapes Demo on domain 0 and publish Squares.

If the computer running Shapes Demo is different than the host running Gate-
waySiteA, you may need to set the initial peers to the address of that host. You can do
this by setting the NDDS_DISCOVERY_PEERS environment variable before starting
Shapes Demo.

• On the Second Peer (a machine in any other LAN):

1. In the Site A network, configure the firewall to forward the TCP ports used by Routing Service.

In this example, we will use port 7400 (for both private and public). You do not need to configure
your firewall for every singleConnext application in your LAN; doing it just once forRouting Service
will allow other applications to communicate through the firewall.

2. Start Routing Service with the GatewaySiteB configuration

To run with the default values for the XML variables:

cd <NDDSHOME>
bin/rtiroutingservice

-cfgFile rti_rs_example_tcp_wan.xml \
-cfgName WanGateway \
-appName GatewaySiteB

You can set the values for the XML configuration variables in the environment:

14.10. Example: WAN Connectivity using the TCP transport 244

RTI Routing Service User's Manual, Version 7.3.0

Linux/macOS

$ export PUBLIC_ADDRESS=<Host Site B public IP>:<Host Site B␣
→˓public Port>
$ export BIND_PORT=<RS TCP bind port>
$ export REMOTE_RS_PEER=<discovery peer for GatewaySiteA>
$ export LAN_DOMAIN_ID=<ID for the LAN domain in site B>

Windows

> set PUBLIC_ADDRESS=<Host Site B public IP>:<Host Site B␣
→˓public Port>
> set BIND_PORT=<RS TCP bind port>
> set REMOTE_RS_PEER=<discovery peer for GatewaySiteA>
> set LAN_DOMAIN_ID=<ID for the LAN domain in site B>

Now run the Routing Service instance:

cd <NDDSHOME>
bin/rtiroutingservice

-cfgFile rti_rs_example_tcp_wan.xml \
-cfgName WanGateway \
-appName GatewaySiteB

For example:

cd <NDDSHOME>
export PUBLIC_ADDRESS=10.10.1.150:8400
export BIND_PORT=8400
export REMOTE_RS_PEER=tcpv4_wan://10.10.1.140:7400
export LAN_DOMAIN_ID=2

bin/rtiroutingservice
-cfgFile rti_rs_example_tcp_wan.xml \
-cfgName WanGateway \
-appName GatewaySiteB

3. On any computer in Site B LAN, start Shapes Demo on domain 2 and subscribe to Squares.

If the computer running Shapes Demo is different than the host runningGatewaySiteB, youmay
need to set the initial peers to the address of that host. You can do this by setting the NDDS_DIS-
COVERY_PEERS environment variable before starting Shapes Demo.

14.10. Example: WAN Connectivity using the TCP transport 245

RTI Routing Service User's Manual, Version 7.3.0

14.10.1 Important Considerations

• Using Two Computers in the Same LAN

If both machines are in the same LAN, run both Routing Service with the configuration file tcp_trans-
port_lan.xml. You will also need to set the peer prefix to tcpv4_lan:// when setting the discovery peer
in the RS_REMOTE_PEER configuration variable.

For example, suppose the first peer is 192.168.1.3, the second peer is 192.168.1.4, and you want to use
port 7400. On the first peer set NDDS_DISCOVERY_PEERS to tcpv4_lan:// 192.168.1.4:7400 and
on the second peer set it to tcpv4_lan://192.168.1.3:7400. You don’t need to specify an IP address in
the configuration file.

• Using a Secure Connection over WAN

To run the example using a secure connection between the two Routing Service instances, use the con-
figuration file tcp_transport_tls.xml. You will also need to set the peer prefix to tlsv4_wan:// when
setting the discovery peer in the RS_REMOTE_PEER configuration variable.

The tcp_transport_tls.xml file is based on tcp_transport.xml and uses a WAN configuration to estab-
lish communication. Because TLS is enabled, youmust ensure that theRTI TLS Support and OpenSSL
libraries are present in your library path before starting the applications.

Note: To run this example, you need the RTI TCP Transport, which is shipped with RTI Connext DDS.
Additionally, you will need to install the optional packages RTI TLS support and OpenSSL.

• Using a Secure Connection over LAN

Similar to the previous point, but instead you will use the file tcp_transport_tls_lan.xml and prefix
tlsv4_lan://.

14.11 Example: Using a File Adapter

The previous examples showed how to use Routing Service with Connext. In this one you will learn how to use
RTI Routing Service Adapter SDK to create an adapter that writes and reads data from files. Routing Service
allows you to bridge data from different data domains with a pluggable adapter interface.

You can find the full example in the RTI Community Examples Repository. To learn how to implement your
own adapter, you can follow this example and the explanations from Integrating a File-Based Domain.

14.11. Example: Using a File Adapter 246

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_professional/transports/tls_support/installation_guide/RTI_TLS_Support_InstallationGuide.pdf
https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples/routing_service/file_adapter

RTI Routing Service User's Manual, Version 7.3.0

14.12 Example: Using a Shapes Processor

This example shows how to implement a custom Processor plug-in, build it into a shared library and load it
with Routing Service.

This example illustrates the realization of two common enterprise patterns: aggregation and splitting. There
is a single plug-in implementation, ShapesProcessor that is a factory of two types of Processor, one for each
pattern implementation:

• ShapesAggregator: Processor implementation that performs the aggregation of two ShapeType objects
into a single ShapeType object.

• ShapesSplitter: Processor implementation that performs the separation of a single ShapeType object into
two ShapeType objects.

In the example, these processors are instantiated as part of a TopicRoute, in which all its inputs and outputs
represent instantiations of the Connext DDS Adapter StreamReader and StreamWriter, respectively.

You can find the full example in the RTI Community Examples Repository.

14.12. Example: Using a Shapes Processor 247

https://github.com/rticommunity/rticonnextdds-examples/tree/release/7.3.0/examples/routing_service/shapes_processor

Chapter 15

Release Notes

15.1 Supported Platforms

See Supported Platforms, in the RTI Connext Core Libraries Release Notes.

Routing Service can also be deployed as a C library linked into your application.

15.2 Compatibility

For backward compatibility information between the current and previous versions of Routing Service, please
see the Migration Guide on the RTI Community portal.

Routing Service can be used to forward and transform data between applications built with Connext, as well as
RTI Data Distribution Service 4.5[b-e], 4.4d, 4.3e, and 4.2e except as noted below.

• Routing Service is not compatible with applications built with RTI Data Distribution Service 4.5e and ear-
lier releases when communicating over shared memory. For more information, please see the Transport
Compatibility section in the Migration Guide on the RTI Community portal.

• Starting in Connext 5.1.0, the default message_size_max for the UDPv4, UDPv6, TCP, and
shared-memory transports changed to provide better out-of-the-box performance. Routing Service also
uses the new value for message_size_max. Consequently, Routing Service is not out-of-the-box
compatible with applications running older versions of Connext. Please see the RTI Connext DDS Core
Libraries Release Notes for instructions on how to resolve this compatibility issue with older Connext
applications.

• The types of the remote administration and monitoring topics in 5.1.0 are not compatible with 5.0.0.
Therefore:

– The 5.0.0 RTI Routing Service shell, RTI Admin Console 5.0.0, and RTI Connext DDS 5.0.0 user
applications performing monitoring/administration are not compatible with RTI Routing Service
5.1.0.

– The 5.1.0 RTI Routing Service shell, RTI Admin Console 5.1.0, and RTI Connext DDS 5.1.0 user
applications performing monitoring/administration are not compatible with RTI Routing Service

248

https://community.rti.com/Documentation/
https://community.rti.com/Documentation/

RTI Routing Service User's Manual, Version 7.3.0

5.0.0.

15.3 What’s New in 7.3.0 LTS

Connext 7.3.0 LTS is a long-term support release that is built upon and combines all of the features in releases
7.0.0, 7.1.0, and 7.2.0 (see Previous Releases). See the Connext Releases page on the RTI website for more
information on RTI’s software release model.

15.3.1 Routes that cross two instances of Routing Service now work by default

The <route_types> XML configuration tag is now true by default for Routes and Topic Routes. As a
result, routes now provide the required type when discovered by the input or the output and passes it to the
other side. In previous Connext versions, <route_types> was false by default, which made chaining
Routing Services more difficult because it required providing types via XML for the routes connecting two
Routing Service instances.

15.3.2 Support for RTI FlatData and Zero Copy Transfer Over Shared Memory with
Discovered Types

Previously, enabling Routing Service to function with RTI FlatData language binding and Zero Copy transfer
over shared memory required manual type definition in the XML configuration, including proper annotations.
Also, the type had to be registered manually in each DomainParticipant.

Routing Service can now use FlatData and Zero Copy without manual configuration, even if the types are
dynamically discovered. Therefore, there’s no need to know the types in advance.

For more information, see Support for RTI FlatData and Zero Copy Transfer Over Shared Memory.

15.3.3 C++ API class rti::apputils::LogConfig deprecated

The Routing Service C++ API class rti::apputils::LogConfig has been deprecated.

Any existing code using that class must be updated to use the class rti::routing::log::LogConfig
instead.

15.4 What’s Fixed in 7.3.0 LTS

This section describes bugs fixed in Routing Service 7.3.0 LTS. These are fixes applied since 7.2.0.

For information on what was fixed in releases 7.0.0, 7.1.0, and 7.2.0, which are also part of 7.3.0 LTS, see
Previous Releases.

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

15.3. What’s New in 7.3.0 LTS 249

https://www.rti.com/products/connext-releases

RTI Routing Service User's Manual, Version 7.3.0

15.5 Crashes

15.5.1 [Critical] Segmentation fault when shutting down a Routing Service using
<reuse_monitoring_participant> tag

When running an instance of Routing Service that used the <reuse_monitoring_participant> tag,
available within the <administration> tag, a segmentation fault occurred on shutting down the service.

[RTI Issue ID ROUTING-1126]

15.5.2 [Critical] Routing Service could crash when an Auto-topic Route’s or Input’s
content filter expression was updated remotely

When running a Routing Service configuration that did not provide an initial content filter for an Auto-Topic
Route or Input, updating the content filter remotely for that entity could have caused Routing Service to crash.

To update a content filter properly, the Auto-Topic Route or Input should be disabled first, then the content
filter can be provided via remote administration. Once the entity is re-enabled, the content filter can be updated
remotely without a problem.

Routing Service will no longer crash, and content filter updates will result in a no-op.

[RTI Issue ID ROUTING-1104]

15.5.3 [Critical] Possible race condition and crash in Routing Service when access-
ing the XML DOM

Routing Service may have crashed when running with a configuration containing Auto Topic Routes and with
remote administration enabled. If, while sending remote commands to update an Auto Topic Route, there were
discovery events happening and triggering the creation of Topic Routes out of the Auto Topic Route, Routing
Service could have crashed and displayed messages similar to the following:

ROUTERCfgFileParser_getEntityQos:entity with name=datawriter_qos not
found ROUTERCfgFileStreamPort_getAndConfigureQos:get QoS from profile
ROUTERCfgFileAutoTopicRoute_createTopicRouteConfiguration:add topic
route configuration ROUTERAutoTopicRoute_matchStream:!create route Pro-
cess 1249320 (rtiroutingserviceapp) terminated SIGSEGV code=1 fltno=11

[RTI Issue ID ROUTING-1095]

15.5. Crashes 250

RTI Routing Service User's Manual, Version 7.3.0

15.5.4 [Critical] Segmentation fault when using Routing Service and Distributed
Logger

Previous releases encountered a segmentation fault when using the Routing Service library. This issue oc-
curred when attempting to use the Distributed Logger after deleting an RTI_RoutingService object.
The problem occurred because the call to the RTI_RoutingService_delete() operation was deleting
the Distributed Logger instance.

If the user application creates the Distributed Logger instance instead of relying on its creation through the
<distributed_logger> XML tag used by Routing Service, deleting the Routing Service instance will no longer
attempt to delete the Distributed Logger instance.

[RTI Issue ID ROUTING-1079]

15.6 Data Corruption

15.6.1 [Critical] Routing Service did not flag incompatible types when using XML
types in the configuration

Routing Service did not flag when using incompatible (non-equivalent) types in the XML configuration of Topic
Routes and Routes, with or without transformations. Consider the following XML configuration of a Route:

<route name="Route_TypeCompat">
<dds_input participant="domain1">

<creation_mode>IMMEDIATE</creation_mode>
<registered_type_name>TypeA</registered_type_name>

</dds_input>
<dds_output participant="domain2">

<creation_mode>IMMEDIATE</creation_mode>
<registered_type_name>TypeB</registered_type_name>

</dds_output>
</route>

If TypeA and TypeB were not equivalent, it could result in potential data corruption or undefined behavior
if there were no custom Processors defined. Routing Service did not perform any static checking on the types
while parsing the XML configuration.

Now, when types are defined through XML, Routing Service will perform type-checking for Routes or Topic
Routes if they do not include a custom Processor. This extends to the use of Transformations, both on the
Inputs and the Outputs.

[RTI Issue ID ROUTING-1161]

15.6. Data Corruption 251

RTI Routing Service User's Manual, Version 7.3.0

15.6.2 [Critical] Routing Service failed to forward samples or published samples
with wrong data representation

Routing Service may have failed to forward samples or forwarded samples with the wrong data representation
when any of the representations of the input DataReader in a route differed from the representation of the
output DataWriter.

For example, you may have configured the input DataReader using the DataRepresentationQosPolicy to ac-
cept XCDR and the output DataWriter to publish XCDR2. When the DataWriter published samples with the
wrong representation, you may have seen deserialization errors on the application’s DataReaders receiving the
samples. These errors occurred only when the topic type on the application’s DataReaders limited the number
of supported representations using the allowed_data_representation annotation. For example:

@allowed_data_representation(XCDR2)
struct MyType {
 long my_member;
};

If the application DataReaders were from a different DDS vendor, you may have seen deserialization errors
regardless of the allowed_data_representation annotation.

When the DataWriter failed to forward samples, you may have seen errors in DynamicData indicating failures
in allocating buffers. For example:

Could not reserve buffer of XYZ bytes

[RTI Issue ID ROUTING-1145]

15.6.3 [Major] Assignment Transformation did not work with derived types

The Assignment Transformation shipped with Routing Service did not work properly with Extensible types.
The transformation may not have found fields of a derived type (though it worked fine with fields from the base
type).

[RTI Issue ID ROUTING-1141]

15.7 Other

15.7.1 [Critical] Routing Service became non-responsive

Routing Service could have become non-responsive in a domain route. This issue occurred when one of the
domain route’s Participants was used both as an input and an output in a route-enabling filter propagation.
As a result, the affected domain route’s Participant was not able to send participant announcements to other
Participants, leading to liveliness loss with the user application Participants.

[RTI Issue ID ROUTING-1100]

15.7. Other 252

RTI Routing Service User's Manual, Version 7.3.0

15.7.2 [Critical] Concurrent access to XML DOM from Routing Service Library APIs
may have caused corruption or invalid results

The following public APIs in the Routing Service Library accessed the XML configuration DOM without any
shared access protection mechanism:

• RTI_RoutingService_lookup_processor()

• RTI_RoutingService_lookup_xml_entity()

The lack of shared access protection could have caused a corrupted Document Object Module (DOM) or
returned invalid results.

Access is now protected with a mutex. This protection ensures that no concurrent access or modification of the
XML DOM can occur. This protection does not protect the XML entities obtained from these API calls from
being deleted afterwards (for example, via Remote Administration) and, consequently, their pointers becoming
obsolete.

[RTI Issue ID ROUTING-1102]

15.7.3 [Critical] Samples not received from Routing Service when route’s output
configured to use compression and XCDR2 encapsulation

In previous releases, using XCDR2 encapsulation and compression to configure the DataWriter QoS of a
(auto)topic_route’s output did not work. For example, using the following configuration could have led to
DataReaders in the system not receiving samples from the DataWriter associated with the (auto)topic_route:

<auto_topic_route name="RouteAll">
<input participant="domain1">

<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*</allow_registered_type_name_filter>

</input>
<output participant="domain2">

<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*</allow_registered_type_name_filter>
<datawriter_qos>
<representation>

<value>
<element>XCDR2_DATA_REPRESENTATION</element>

</value>
<compression_settings>

<compression_ids>LZ4</compression_ids>
</compression_settings>

</representation>
</datawriter_qos>

</output>
</auto_topic_route>

For DataReaders in the system using ContentFilteredTopic or TopicQueries, you may have seen the following
errors in Routing Service.

15.7. Other 253

RTI Routing Service User's Manual, Version 7.3.0

DDS_SqlFilter_evaluateOnSerialized:deserialization error: sample"

For DataReaders in the system that do not use ContentFilteredTopic or TopicQueries, you may have observed
the following deserialization error in their applications:

PRESCstReaderCollator_storeSampleData:deserialize sample error in topic
→˓'MyTopic' with type 'MyType'

[RTI Issue ID ROUTING-1129]

15.7.4 [Major] Routing Service Shell did not print complete product version

Routing Service Shell printed an incomplete and incorrect version:

~$ rtirssh -help
RTI Routing Service Shell 7.2
Usage: rtirssh [options]...

[RTI Issue ID ROUTING-1135]

15.7.5 [Major] Routing Service Socket Adapter example did not properly resolve
hostname

The Routing Service Socket Adapter example incorrectly handled the result of the RTIOs-
apiSocket_getHostByName function. This could have resulted in hostname resolution errors.

[RTI Issue ID ROUTING-1137]

15.7.6 [Minor] <configuration_variables> ignored when used in <types> and
<qos_library>

Routing Service failed to start when you used a configuration variable defined in <configuration_variables>
within the <types> or <qos_library> sections of the XML configuration. For example:

<?xml version="1.0"?>
<dds>

<configuration_variables>
<value>

<element>
<name>RWT_PUBLIC_ADDRESS</name>
<value>192.168.1.2</value>

</element>
</value>

</configuration_variables>

<qos_library name="RoutingLibrary">
<qos_profile name="RoutingWANProfile">

(continues on next page)

15.7. Other 254

RTI Routing Service User's Manual, Version 7.3.0

(continued from previous page)
<base_name>

<element>BuiltinQosSnippetLib::Transport.UDP.WAN</element>
</base_name>
<domain_participant_qos>

<transport_builtin>
<udpv4_wan>

<public_address>$(RWT_PUBLIC_ADDRESS)</public_address>
</udpv4_wan>

</transport_builtin>
</domain_participant_qos>

</qos_profile>
</qos_library>

<routing_service>
...

</routing_service>
</dds>

If you provided the previous XML to Routing Service, you would have seen an error similar to the following:

ERROR [/routing_services/default|CREATE] RTIXMLHelper_
→˓expandEnvironmentVariables:Undefined environment variable RWT_PUBLIC_ADDRESS
ERROR [/routing_services/default|CREATE] RTIXMLParser_onEndTag:Internal error␣
→˓while parsing line 60: error expanding environment variable
ERROR [/routing_services/default|CREATE] RTIXMLParser_parseFromString_
→˓ex:error parsing XML string
ERROR [/routing_services/default|CREATE] ROUTERCfgFileParser_
→˓generateNativeExtensionObject:!parse QoS configuration
ERROR [/routing_services/default|CREATE] ROUTERCfgFileParser_
→˓initializeExtensionsI:!generate QoS
ERROR [/routing_services/default|CREATE] ROUTERCfgFileParser_processDom:!init␣
→˓parser extensions
ERROR [/routing_services/default|CREATE] ROUTERCfgFileParser_loadUrlGroup:!
→˓process DOM
ERROR [/routing_services/default|CREATE] ROUTERCfgFileParser_
→˓loadDefaultFiles:Parse error in file '/Users/fernando/RTI/develop/
→˓connextdds/installs/Dynamic_Debug/rti_connext_dds-7.3.0/resource/xml/RTI_
→˓ROUTING_SERVICE.xml'

[RTI Issue ID ROUTING-1157]

15.8 Previous Releases

15.8.1 What’s New in 7.2.0

Support for dynamic certificate renewal

A running Routing Service instance can use the new authentication.
identity_certificate_file_poll_period.millisec property in Securıty Plugıns

15.8. Previous Releases 255

RTI Routing Service User's Manual, Version 7.3.0

to renew its identity certificate without the need to restart the service. The authentication.
identity_certificate_file_poll_period.millisec property must have a value greater
than zero for the participant to periodically poll its identity certificate file for changes. (In release 7.3, the
authentication.identity_certificate_file_poll_period.millisec property is
replaced by a new files_poll_interval property.)

For more information, see the Configuration section in this manual and the Advanced Authentication Concepts
section in the RTI Security Plugins User’s Manual.

Support for dynamic certificate revocation

A running Routing Service instance can use the authentication.crl and the new authentication.
crl_file_poll_period.millisec properties in Securıty Plugıns to specify certificate revoca-
tions without the need to restart the service. The authentication.crl_file_poll_period.
millisec property must have a value greater than zero for the DomainParticipant to periodically poll the
provided CRL file for changes. (In release 7.3, the authentication.crl_file_poll_period.
millisec property is replaced by a new files_poll_interval property.)

For more information, see Support for Security Plugins in this manual and Advanced Authentication Concepts
in the RTI Security Plugins User’s Manual.

Support for Monitoring Library 2.0

RTI Routing Service now supports enabling the new RTI Monitoring Library 2.0 to send monitoring information
and metrics about the DDS entities it creates.

To enableMonitoring Library 2.0 when using the Routing Service application, include the following code in the
appropriate XML profile:

<qos_profile name="RoutingServiceProfile" is_default_participant_factory_
→˓profile="true">
<participant_factory_qos>

<monitoring>
<enable>true</enable>
<application_name>Routing Service</application_name>

</monitoring>
</participant_factory_qos>

</qos_profile>

When using Routing Service as a library, Monitoring Library 2.0 can be enabled programmatically using the
RTI_Monitoring_enable_with_property and RTI_Monitoring_disable methods.

15.8. Previous Releases 256

https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#advanced-authentication-concepts
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/connext_dds_secure/users_manual/p2_core/authentication.html#advanced-authentication-concepts

RTI Routing Service User's Manual, Version 7.3.0

Third-party software changes

The following third-party software used by Routing Service has been upgraded:

Table 15.1: Third-Party Software Changes
Third-Party Software Previous Version Current Version
libxml2 2.9.4 2.11.4
libxslt 1.1.35 1.1.38

For information on third-party software used by Connext products, see the “3rdPartySoftware” documents in
your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_3rdparty.

15.8.2 What’s Fixed in 7.2.0

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

[Critical] Possible race condition when propagating content filters

When several applications using different content filters were started simultaneously and discovered by one or
more instances of Routing Service, it was possible that filter propagation did not propagate all filters properly
upon route startup, resulting in an inconsistent state that may have led to data loss. This issue has been resolved.

[RTI Issue ID ROUTING-1055]

[Major] Entity Listener API sometimes fired the STARTED event twice

There was a race condition in the Routing Service Entity Listener API where, in certain conditions, a STARTED
event may have been fired twice for the same Topic Route. This issue has been resolved.

[RTI Issue ID ROUTING-892]

[Major] Overflows caused issues in period calculations

Routing Service had issues calculating period metrics due to overflows. This issue is resolved; in
ServiceCommon.idl, the StatisticMetrics field’s period_ms value was changed to uint64.

[RTI Issue ID ROUTING-1068]

15.8. Previous Releases 257

RTI Routing Service User's Manual, Version 7.3.0

15.8.3 What’s New in 7.1.0

There are no changes to Routing Service in this release. The most recent changes are documented in What’s
New in 7.0.0.

15.8.4 What’s Fixed in 7.1.0

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

[Critical] Routing Service Crashed if -maxObjectsPerThread Set Too Small

Routing Service crashed if the command-line option -maxObjectsPerThread had a value less than 1024.
This issue, which also affected Recording Service, has been resolved. Now instead of crashing, the service will
log the following warning and the default value will be used.

Max objects per thread can't be lower than 1024. Setting MaxObjectsPerThread␣
→˓to 1024.

[RTI Issue ID ROUTING-1024]

15.8.5 What’s New in 7.0.0

Third-party software changes

The following third-party software used by Routing Service has been upgraded:

Table 15.2: Third-Party Software Changes
Third-Party Software Previous Version Current Version
libxml2 2.9.12 2.9.14
libxslt 1.1.34 1.1.35

For information on third-party software used by Connext products, see the “3rdPartySoftware”
documents in your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/
release_notes_3rdparty.

15.8. Previous Releases 258

RTI Routing Service User's Manual, Version 7.3.0

15.8.6 What’s Fixed in 7.0.0

[Critical]: System-stopping issue, such as a crash or data loss. [Major]: Significant issue with no easy
workaround. [Minor]: Issue that usually has a workaround. [Trivial]: Small issue, such as a typo in a log.

[Critical] Routing Service stream query propagation did not work when using more than
one session

When propagating stream query result samples, Routing Service may have sent corrupted data if the configura-
tion used more than one session and both sessions were writing stream query samples at the same time. This
issue has been resolved.

[RTI Issue ID ROUTING-997]

[Major] Samples published out of order from the same virtual GUID were dropped

If Routing Service received samples for a given virtual GUID with sequence numbers out of order, it dropped
samples with sequence numbers lower than the highest received sequence number. This issue has been resolved.

[RTI Issue ID ROUTING-928]

[Minor] Schema files not compliant with DDS-XML specification

The schema file rti_service_common_definitions.xsd, and its included files, have been changed
as follows to make them compliant with the DDS-XML specification (https://www.omg.org/spec/DDS-XML/
1.0/PDF):

• <participant_qos> has been renamed to <domain_participant_qos>.

The old tag is still accepted by the Connext XML parser and the XSD schema to maintain backward compati-
bility.

[RTI Issue ID ROUTING-814]

[Trivial] Fourth digit of product version not logged by Routing Service at startup

The Routing Service executable did not log the fourth digit (revision) of the product version when the service
started. This problem has been resolved.

[RTI Issue ID ROUTING-975]

15.8. Previous Releases 259

https://www.omg.org/spec/DDS-XML/1.0/PDF
https://www.omg.org/spec/DDS-XML/1.0/PDF

RTI Routing Service User's Manual, Version 7.3.0

15.9 Known Issues

Note: For an updated list of critical known issues, see the Critical Issues List on the RTI Customer Portal at
https://support.rti.com/.

15.9.1 Attempting to route builtin Security Logging topic causes Routing Service
crash

Routing the Security Logging builtin topic (DDS:Security:LogTopic) causes a crash if any of the partic-
ipants involved in the route have security logging enabled (i.e., the property com.rti.serv.secure.
logging.distribute.enabled is set to true).

Note that you can enable security logging on participants that talk to Routing Service and even route the Security
Logging builtin topic that they use. This problem occurs only if theRouting Service participant itself has security
logging enabled.

[RTI Issue ID ROUTING-727]

15.9.2 Some tags in the XML configuration must be grouped in a strict order

The XML validator tools Routing Service uses to validate XML configuration files adhere to the XML 1.0
specification, which doesn’t offer a way of defining collections of unordered tags that are both bounded and
unbounded in occurrences.

This limitation is no longer present in XML 1.1. However, there are no C or C++ validators compliant with
the XML 1.1 specification at the time of writing.

[RTI Issue ID CORE-14178]

15.9.3 Routing Service Adapters built using Java fail on Windows machines when
using OpenJDK

A Routing Service configuration that loads Adapters built using Java, fails on Windows machines when using
OpenJDK as the JVM (Java Virtual Machine). As a workaround, install the latest Visual C++ Redistributable
Package for Visual Studio 2015.

[RTI Issue ID ROUTING-1183]

15.9. Known Issues 260

https://support.rti.com/

Index

A
Adapter, 53
AutoTopicRoute, 25

C
Configuration name, 198
Configuration variable, 198

D
Data Integration, 53
Data Stream, 36
Discovery Peer, 25
DomainRoute, 25
DynamicData, 36

E
Entity Configuration Name, 24
Entry Point, 36

F
Forwarding Process, 24

I
Info Object, 53
Input, 25

L
Library API, 198
Loaned samples, 53

O
Output, 25

P
Periodic action, 36
Processor, 36
Publication Side, 24

R
Resource model, 24

S
Sample, 53
Session, 25
Shared Library or Module, 36

Shipped executable, 198
Stream Discovery, 53
Stream Processing Patterns, 36
StreamInfo, 53
Subscription Side, 24

T
TopicRoute, 25
Transformation, 37
Transport, 25

X
XML document, 198

261

	1 Copyrights and Notices
	2 Introduction
	2.1 How To Read This Manual
	2.2 Paths Mentioned in Documentation
	2.3 Files Mentioned in Documentation

	3 Routing Data: Connecting and Scaling Systems
	3.1 Routing a Topic between two different domains
	3.1.1 Define the service configuration element
	3.1.2 Specify which domains to join
	3.1.3 Define a processing context
	3.1.4 Define the data flow

	3.2 Routing a group of Topics
	3.3 Using custom QoS Profiles
	3.3.1 Defining a QoS Library
	3.3.2 Specifying QoS for DDS entities
	3.3.3 Applying topic filters to DDS Inputs and Outputs

	3.4 Traversing Wide Area Networks
	3.4.1 Define a QoS profile that configures the RTI TCP transport
	3.4.2 Specify the domains to join and which transport to use
	3.4.3 Specify the Topics to be routed

	3.5 Key Terms

	4 Controlling Data: Processing Data Streams
	4.1 DynamicData as a Data Representation Model
	4.2 Aggregating Data From Different Topics
	4.2.1 Develop a Custom Processor
	4.2.2 Create a Shared Library
	4.2.3 Define a Configuration with the Aggregating TopicRoute
	Configure a plugin library
	Configure a Routing Service with the custom routing paths

	4.3 Splitting Data From a single Topic
	4.3.1 Custom Processor implementation
	4.3.2 Define a Configuration with the Splitting TopicRoute

	4.4 Periodic and Delayed Action
	4.5 Simple data transformation: introduction to Transformation
	4.5.1 Transformations vs Processors

	4.6 What stream processing patterns can I perform?
	4.7 Key Terms

	5 Data Integration: Combining Different Data Domains
	5.1 Unified Data Representation
	5.2 Integrating a File-Based Domain
	5.2.1 Develop a Custom Adapter
	Implement a StreamReader for Reading Data
	StreamReader Creation
	Read Operation
	Read vs. Take

	Implement a StreamWriter for Writing Data
	StreamWriter Creation
	Write Implementation

	5.2.2 Create a Shared Library
	5.2.3 Define a Configuration that Integrates DDS with the File Adapter
	Configure a Plugin Library
	Define a Connection Linked to the Adapter
	Define the Data Flows that Read and Write from Your Adapter
	Routing from a File Stream to a DDS Topic
	Routing from a DDS Topic to a File Stream
	Routing from a File Stream to Another File Stream

	5.3 Discovery Capabilities
	5.3.1 Discovery in a File-Based Domain

	5.4 Key Terms

	6 Remote Administration
	6.1 Overview
	6.1.1 Enabling Remote Administration
	6.1.2 Available Service Resources
	Example

	6.1.3 Resource Object Representations

	6.2 API Reference
	6.2.1 Remote API Overview
	6.2.2 Service
	6.2.3 DomainRoute
	6.2.4 Connection
	6.2.5 Session
	6.2.6 AutoRoute
	6.2.7 Route
	6.2.8 Input/Output

	6.3 Example: Configuration Reference
	6.4 The Remote Administration Shell
	6.4.1 Remote Shell Commands
	6.4.2 Command: add_peer
	6.4.3 Command: create
	6.4.4 Command: delete
	6.4.5 Command: disable
	6.4.6 Command: enable
	6.4.7 Command: get
	6.4.8 Command: load
	6.4.9 Command: pause
	6.4.10 Command: resume
	6.4.11 Command: save
	6.4.12 Command: shutdown
	6.4.13 Command: unload
	6.4.14 Command: update

	7 Monitoring
	7.1 Overview
	7.1.1 Enabling Service Monitoring
	7.1.2 Monitoring Types

	7.2 Monitoring Metrics Reference
	7.2.1 Service
	7.2.2 DomainRoute
	7.2.3 Session
	7.2.4 AutoRoute
	7.2.5 Route
	7.2.6 Input/Output

	8 Usage
	8.1 Command-Line Executable
	8.1.1 Starting Routing Service
	8.1.2 Stopping Routing Service
	8.1.3 Routing Service Command-Line Parameters

	8.2 Routing Service Library
	8.2.1 Example

	8.3 Operating System Daemon

	9 Configuration
	9.1 Configuring Routing Service
	9.2 XML Tags for Configuring RTI Routing Service
	9.2.1 Routing Service Tag
	Example: Specifying a configuration in XML

	9.2.2 Administration
	9.2.3 Monitoring
	Monitoring Configuration Inheritance
	Example: Overriding Publication Period

	9.2.4 Domain Route
	Example: Mapping between Two DDS Domains
	Example: Mapping between a DDS Domain and raw Sockets

	9.2.5 Session
	9.2.6 Route
	9.2.7 Input/Output
	Creation Modes
	Example: Route Starts as Soon as a User DataWriter is Publishing on 1st Domain
	Example: Route Starts when Both User DataWriter Appears in 1st Domain and User DataReader Appears in 2nd Domain

	Specifying Types
	Defining Types in the Configuration File
	Example: Type Registration in XML

	Discovering Types
	Example: Route Creation with Type Obtained from Discovery

	Data Transformation

	9.2.8 Auto Route
	9.2.9 Plugins

	9.3 Enabling Distributed Logger
	9.4 Support for Extensible Types
	9.4.1 Example: Samples Published by Two Writers of Type A and B, Respectively

	9.5 Support for RTI FlatData and Zero Copy Transfer Over Shared Memory
	9.5.1 Example: Configuration to enable both FlatData and Zero Copy transfer over shared memory
	9.5.2 Support for Security Plugins (RTI Security Plugins)
	9.5.3 Example: Configuring a Routing Service Instance using Security
	9.5.4 Example: Configuring Routing Service to use a Certificate Revocation List (CRL)
	9.5.5 Example: Configuring Routing Service for Dynamic Certificate Renewal

	9.6 Support for Application Acknowledgment

	10 Software Development Kit
	11 Core Concepts
	11.1 Resource Model
	11.1.1 Directory
	11.1.2 Service
	Plugin Interaction
	Service States

	11.1.3 DomainRoute
	DomainRoute States

	11.1.4 Connection
	Plugin Interaction
	Connection States
	Type Registration

	11.1.5 Session
	Plugin Interaction
	Session States

	11.1.6 Route
	Plugin Interaction
	Route States

	11.1.7 AutoRoute
	AutoRoute States

	11.1.8 Input
	Plugin Interaction
	Input States

	11.1.9 Output
	Plugin Interaction
	Output States

	11.2 Builtin plugins
	11.2.1 DDS Adapter
	DDS AdapterPlugin
	DDS Connection
	DDS Session
	DDS StreamReader
	DDS StreamWriter

	11.2.2 Forwarding Processor

	12 Advanced Use Cases
	12.1 Propagating Content Filters
	12.1.1 Enabling Filter Propagation
	12.1.2 Filter Propagation Behavior
	12.1.3 Filter Propagation Events
	12.1.4 Restrictions

	12.2 Topic Query Support
	12.2.1 Dispatch Mode
	12.2.2 Propagation Mode
	12.2.3 Restrictions

	13 Common Infrastructure
	13.1 Configuring RTI Services
	13.1.1 How to Load and Select an XML Configuration
	Loading from Files
	Loading from In-Memory Strings
	Selecting which Configuration to Run
	Default Files
	XML Syntax and Validation
	Listing Available Configurations
	Configuration Variables

	13.1.2 How to Load Default QoS Profiles
	13.1.3 How to Set Logging Properties
	Command-Line Options
	Library API
	XML Configuration

	13.1.4 How to Run as an Operating System Daemon
	Linux and macOS Systems
	Windows Systems

	13.1.5 How to use a License File with RTI Services
	13.1.6 Key Terms

	13.2 Application Resource Model
	13.2.1 Example: Simple Resource Model of a Connext Application
	13.2.2 Resource Identifiers
	Escaped Identifiers
	Example: Resource Identifiers of a Generic Connext Application
	Example: Resource Identifiers Generated from XML Entity Model

	13.3 Remote Administration Platform
	13.3.1 Remote Interface
	Standard Methods
	Custom Methods
	Example: Database Rollover

	13.3.2 Communication
	Reply Sequence
	Example: Controlling services remotely from a Connext Application

	13.3.3 Common Operations
	Create Resource
	Get Resource
	Update Resource
	Set Resource State
	Get Resource State
	Delete Resource

	13.4 Monitoring Distribution Platform
	13.4.1 Distribution Topic Definition
	Example: Monitoring of Generic Application

	13.4.2 DDS Entities
	13.4.3 Monitoring Metrics Publication
	Configuration Distribution Topic
	Event Distribution Topic
	Periodic Distribution Topic
	Calculation
	Publication

	13.4.4 Monitoring Metrics Reference
	Statistic Variable
	Host Metrics
	Process Metrics
	Base Entity Resource Metrics
	Network Performance Metrics
	Thread Metrics

	13.5 Plugin Management
	13.5.1 Shared Library
	Configuration

	13.5.2 Library API

	14 Tutorials
	14.1 Starting Shapes Demo
	14.2 Example: Routing a single specific Topic
	14.3 Example: Routing All Data from One Domain to Another
	14.4 Example: Changing Data to a Different Topic of Same Type
	14.5 Example: Changing Some Values in Data
	14.6 Example: Transforming the Data’s Type and Topic with an Assignment Transformation
	14.7 Example: Transforming the Data with a Custom Transformation
	14.8 Example: Using Remote Administration
	14.9 Example: Monitoring
	14.10 Example: WAN Connectivity using the TCP transport
	14.10.1 Important Considerations

	14.11 Example: Using a File Adapter
	14.12 Example: Using a Shapes Processor

	15 Release Notes
	15.1 Supported Platforms
	15.2 Compatibility
	15.3 What’s New in 7.3.0 LTS
	15.3.1 Routes that cross two instances of Routing Service now work by default
	15.3.2 Support for RTI FlatData and Zero Copy Transfer Over Shared Memory with Discovered Types
	15.3.3 C++ API class rti::apputils::LogConfig deprecated

	15.4 What’s Fixed in 7.3.0 LTS
	15.5 Crashes
	15.5.1 [Critical] Segmentation fault when shutting down a Routing Service using <reuse_monitoring_participant> tag
	15.5.2 [Critical] Routing Service could crash when an Auto-topic Route’s or Input’s content filter expression was updated remotely
	15.5.3 [Critical] Possible race condition and crash in Routing Service when accessing the XML DOM
	15.5.4 [Critical] Segmentation fault when using Routing Service and Distributed Logger

	15.6 Data Corruption
	15.6.1 [Critical] Routing Service did not flag incompatible types when using XML types in the configuration
	15.6.2 [Critical] Routing Service failed to forward samples or published samples with wrong data representation
	15.6.3 [Major] Assignment Transformation did not work with derived types

	15.7 Other
	15.7.1 [Critical] Routing Service became non-responsive
	15.7.2 [Critical] Concurrent access to XML DOM from Routing Service Library APIs may have caused corruption or invalid results
	15.7.3 [Critical] Samples not received from Routing Service when route’s output configured to use compression and XCDR2 encapsulation
	15.7.4 [Major] Routing Service Shell did not print complete product version
	15.7.5 [Major] Routing Service Socket Adapter example did not properly resolve hostname
	15.7.6 [Minor] <configuration_variables> ignored when used in <types> and <qos_library>

	15.8 Previous Releases
	15.8.1 What’s New in 7.2.0
	Support for dynamic certificate renewal
	Support for dynamic certificate revocation
	Support for Monitoring Library 2.0
	Third-party software changes

	15.8.2 What’s Fixed in 7.2.0
	[Critical] Possible race condition when propagating content filters
	[Major] Entity Listener API sometimes fired the STARTED event twice
	[Major] Overflows caused issues in period calculations

	15.8.3 What’s New in 7.1.0
	15.8.4 What’s Fixed in 7.1.0
	[Critical] Routing Service Crashed if -maxObjectsPerThread Set Too Small

	15.8.5 What’s New in 7.0.0
	Third-party software changes

	15.8.6 What’s Fixed in 7.0.0
	[Critical] Routing Service stream query propagation did not work when using more than one session
	[Major] Samples published out of order from the same virtual GUID were dropped
	[Minor] Schema files not compliant with DDS-XML specification
	[Trivial] Fourth digit of product version not logged by Routing Service at startup

	15.9 Known Issues
	15.9.1 Attempting to route builtin Security Logging topic causes Routing Service crash
	15.9.2 Some tags in the XML configuration must be grouped in a strict order
	15.9.3 Routing Service Adapters built using Java fail on Windows machines when using OpenJDK

	Index

