
RTI Shapes Demo
A Demonstration of RTI Connext

User’s Manual

Version 7.3.0



© 2006-2024 Real-Time Innovations, Inc.
All rights reserved.

April 2024.

Trademarks

RTI, Real-Time Innovations, Connext, Connext Drive, NDDS, the RTI logo, 1RTI and the phrase,
“Your Systems. Working as one.” are registered trademarks, trademarks or service marks of Real-Time
Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of
Real-Time Innovations, Inc. The software described in this document is furnished solely under and sub-
ject to RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance
with your License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate
(MSC), except to the extent otherwise accepted in writing by a corporate officer of RTI.

Third-Party Software

RTI software may contain independent, third-party software or code that are subject to third-party
license terms and conditions, including open source license terms and conditions. Copies of applicable
third-party licenses and notices are located at community.rti.com/documentation. IT IS YOUR
RESPONSIBILITY TO ENSURE THAT YOUR USE OF THIRD-PARTY SOFTWARE COMPLIES
WITH THE CORRESPONDING THIRD-PARTY LICENSE TERMS AND CONDITIONS.

Notices

Deprecations and Removals

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regard-
ing maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is
deprecated in a release, RTI hereby provides customer notice that RTI reserves the right after one year
from the date of such release and, with or without further notice, to immediately terminate maintenance
(including without limitation, providing updates and upgrades) for the item, and no longer support the
item, in a future release.

https://www.rti.com/terms
https://community.rti.com/documentation


Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/


Contents
Chapter 1 Introduction

1.1 Guide to this Document 2
1.2 Goals of the Demonstration 2

Chapter 2 Release Notes

2.1 What's New in 7.3.0 LTS 4
2.1.1 Create all available shapes at once 4
2.1.2 Support for the Lightweight Security Plugins 4
2.1.3 Support for ignore_participant and banish_ignored_participants APIs 4
2.1.4 Third-party software changes 5

2.2 What's Fixed in 7.3.0 LTS 5
2.2.1 [Major] Shapes Demo may have crashed on resizing the application window while publishing a

shape 6
2.3 What's New in 7.2.0 6

2.3.1 Third-party software changes 6
2.4 What's New in 7.1.0 6

2.4.1 Support for the new Observability Library 6
2.4.2 Notification when DomainParticipant's Identity Certificate or Identity CA is about to expire 7
2.4.3 Upgraded OpenSSL to version 3.0.8 8

2.5 What's New in 7.0.0 8
2.5.1 Ability to configure Domain Tag 8
2.5.2 Ability to configure Partitions at DomainParticipant level 10

Chapter 3 Background Information

3.1 Communication Models in Distributed Systems 12
3.2 Connext Overview 13

3.2.1 Quality of Service 14
3.3 Publish-Subscribe Simple Analogy 15

iv



v

3.4 Publish-Subscribe Complex Analogy 15
3.5 Publish-Subscribe Example Application 16

Chapter 4 Installing and Using Shapes Demo

4.1 Installation 17
4.2 Running Shapes Demo 17

4.2.1 If You Cannot use Multicast 19
4.3 Publish and Subscribe Task Panes 20

4.3.1 Color 20
4.3.2 Initial Size 21
4.3.3 Partitions 21
4.3.4 Extended Attributes 22
4.3.5 Applying QoS from a Profile 22
4.3.6 Setting QoS Values 25
4.3.7 Using a Content Filtered Topic 29
4.3.8 Controlling the Read Method 30

4.4 Other Controls 30
4.4.1 Delete All 30
4.4.2 Pause Publishing 30
4.4.3 Show/Hide History 30
4.4.4 Configuration 31
4.4.5 Output and Legend Tabs 34

4.5 Shapes Demo’s Workspace 35
4.6 Using Monitoring 36
4.7 Using RTI Distributed Logger 37
4.8 Using Security 37
4.9 Choosing a Domain Tag 38
4.10 Using RTI Monitoring Library 2.0 39

Chapter 5 Examples

5.1 Publish-Subscribe Example 41
5.2 Multiple Instances Example 43
5.3 Ownership Example 46
5.4 Failure Detection Example 49
5.5 Failover Example 51
5.6 Extensible Types Examples 53

5.6.1 Introduction to the Shape Extended Type 54
5.6.2 Publishing Extended Type, Subscribing to Basic Type 55



5.6.3 Publishing Original and Extended Types, Subscribing to Extended Type 56
5.7 Security Examples 57

5.7.1 Subscribing to Data from an Application not using Security Plugins 59
5.7.2 Access Control and Authentication 65
5.7.3 Data Integrity 71
5.7.4 Maximum RTPS Message Protection 73
5.7.5 Key Regeneration 76
5.7.6 Pre-Shared Key Protection 82

Chapter 6 More Experiments

6.1 Content-Filtered Topics Example 86
6.2 Lifespan Example 87
6.3 Reliability and Durability Example 89
6.4 Time-based Filtering Example 90

Appendix A Running from the Command Line 92
Appendix B Troubleshooting

B.1 No Communication between Shapes Demos on Different Computers 94
B.2 Windows Security Alert 94
B.3 Running without an Active Network Interface 95
B.4 Error Dialog 95
B.5 Log Messages are not Logged to My Log File 96
B.6 Publishing is slower than expected on macOS Systems 96

Appendix C Known Issues

C.1 Shapes Demo not Scaled Properly in Some Cases 98

vi



Chapter 1 Introduction
Welcome to RTI® Shapes Demo! This demonstration application is a self-contained intro-
duction to the elegance and power of publish-subscribe networking. It goes beyond simple pub-
lishing and subscribing, however. This demo will also give you a glimpse of the goals and
capabilities of RTI Connext®. As you will see, Connext offers flexibility, performance, and reli-
ability well beyond other networking technologies while addressing the challenge of extremely
high-performance distributed networking.

1



1.1 Guide to this Document

2

Connext offers flexible and fine-grained control over Quality of Service (QoS) parameters. No one
application can showcase all the supported QoS parameters. Shapes Demo is intended to provide you
with an abbreviated introduction to Connextconcepts; it covers a small subset of the many QoS para-
meters available in Connext.

Shapes Demo publishes and subscribes to (writes and reads) colored moving shapes, which are dis-
played in the demo’s window. Each copy of Shapes Demo can simultaneously publish and subscribe to
many topics (shapes).

Shapes Demo also demonstrates the concepts of Extensible types. Shapes Demo can publish and sub-
scribe to two different data types: the "Shape” type or the "Shape Extended" type. In a production scen-
ario, your deployed applications are communicating using some existing data type. However, after
deployment, you may find it necessary to modify the deployed data model. For instance, you may need
to add new attributes. Connext’s Extensible Types feature is designed to make your data type flexible
and allow it to evolve over time.

Note that this demonstration application is not designed (or licensed) to be used as part of your applic-
ation.

1.1 Guide to this Document

This document will guide you through the demonstration and the underlying principles.

l 1.2 Goals of the Demonstration below outlines the concepts and goals of this demonstration.
l Chapter 3 Background Information on page 12 provides an overview of publish-subscribe and
other communication paradigms. It also provides an overview of Connext and its key concepts.

l Chapter 4 Installing and Using Shapes Demo on page 17 details the features of the demonstration
application.

l Chapter 5 Examples on page 41 jumps right into using the application and playing with
examples. Feel free to start here if you are familiar with publish-subscribe networking.

l Appendix A Running from the Command Line on page 92 explains how to run from the com-
mand line.

l Appendix B Troubleshooting on page 94 contains a few troubleshooting hints.

1.2 Goals of the Demonstration

There is no teacher like experience. Playing with this demonstration will give you a first-hand intro-
duction to key Connext concepts. These include:



1.2 Goals of the Demonstration

l Anonymous publish-subscribe

Applications communicating over publish subscribe networks do not need to know the source or
destination of the data. This loosely coupled design simplifies (or eliminates) configuration, eases
fault tolerance, and boosts performance.

l Dynamic discovery

With publish subscribe, applications simply ask for the information they need and provide the
information they have. The middleware does the hard task of finding the information and deliv-
ering it where it needs to go. There is no (or minimal) configuration; each node can simply join
or leave the network at any time.

l Failover

Connext supports the concept of "ownership"; a publisher can own the responsibility for provid-
ing data to the network. Ownership makes failover simple; if the owner fails, a backup owner can
instantly take over responsibility

l Failure notification

Connext is designed for the real world. In the case of failure, e.g., the violation of a deadline or
the termination of service, interested applications are immediately notified.

l Extensible Types

Connext supports the OMG 'Extensible and Dynamic Topic Types for DDS' specification, ver-
sion 1.3. (See Connext documentation for details and limitations.) Using Extensible Types, exist-
ing applications that are designed to publish and subscribe data with a particular data model will
be able to communicate with newer applications that use an extended/compatible data model—
without any changes or recompilation.

l Advanced concepts

If you are interested in exploring the demo more extensively, this document also briefly illus-
trates additional use cases such as content-filtered topics, reliability, durability and time-based fil-
tering.

3

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3


Chapter 2 Release Notes
2.1 What's New in 7.3.0 LTS

Connext 7.3.0 LTS is a long-term support release that is built upon and combines all of the fea-
tures in releases 7.0.0, 7.1.0, and 7.2.0 (see notes for previous releases below). See the Connext
Releases page on the RTI website for more information on RTI's software release model.

2.1.1 Create all available shapes at once

Shapes Demo includes a new option to create all shapes at once. Select the <<ALL>> option
when creating a new Publisher to create all shapes with the same configuraiton.

2.1.2 Support for the Lightweight Security Plugins

Shapes Demo includes a new profile, Security::LightweightSecurity, that demonstrates how to
use basic-level protection employing the Pre-Shared Key Protection feature included in the
Lightweight Security Plugins. For usage details, see the new Pre-Shared Key Protection example
in the Shapes Demo User’s Manual.

2.1.3 Support for ignore_participant and banish_ignored_participants
APIs

Shapes Demo now supports the ignore_participant and banish_ignored_par-
ticipants API methods. To access, right-click a publishing Shape in the Legend View:

4

https://www.rti.com/products/connext-releases
https://www.rti.com/products/connext-releases


2.1.4 Third-party software changes

5

Three new profiles – Security::KeyRegenerationBase, Security::KeyRegenerationSub1, and Secur-
ity::KeyRegenerationSub2 – have been added to support this new functionality. For usage details, see
the new Key Regeneration example in the Shapes Demo User’s Manual.

2.1.4 Third-party software changes

The following third-party software used by Shapes Demo has been upgraded:

Third-party Tool Old Version New Version

Open SSL 3.0.9 3.0.12

In addition to the upgrade, the OpenSSL target packages for Android, Linux, and Windows now
include the FIPS module configuration file and provider library (the packages were built using the
enable-fips option and make install_fips command described in this OpenSSL README
file). You can use the fipsmodule.cnf and fips_3_0.so (Android), fips.so (Linux), or
fips.dll (Windows) files to validate that Shapes Demo works with the FIPS provider. Keep in mind
that, according to openssl.org, the latest FIPS-validated OpenSSL version is 3.0.8.

For information on third-party software used by Connext products, see the “3rdPartySoftware” doc-
uments in your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_3rd-
party.

2.2 What's Fixed in 7.3.0 LTS

This section describes bugs fixed in Shapes Demo 7.3.0 LTS. These are fixes applied since 7.2.0. For
information on what was fixed in releases 7.0.0, 7.1.0, and 7.2.0, which are also part of 7.3.0 LTS, see
notes for previous releases below.

[Critical]: System-stopping issue, such as a crash or data loss.

[Major]: Significant issue with no easy workaround.

[Minor]: Issue that usually has a workaround.

[Trivial]: Small issue, such as a typo in a log.

https://github.com/openssl/openssl/blob/openssl-3.0.12/README-FIPS.md
https://github.com/openssl/openssl/blob/openssl-3.0.12/README-FIPS.md
https://www.openssl.org/source


2.2.1 [Major] Shapes Demo may have crashed on resizing the application window while publishing a

2.2.1 [Major] Shapes Demo may have crashed on resizing the application
window while publishing a shape

Resizing the Shapes Demo window while publishing a shape may have caused a crash if the canvas
area was smaller than the published shape. Shapes Demo now has a minimum window size beyond
which it cannot be reduced.

[RTI Issue ID SHAPES-258]

2.3 What's New in 7.2.0

2.3.1 Third-party software changes

The following third-party software used by Shapes Demo has been upgraded:

Third-party Tool Old Version New Version

Open SSL 3.0.8 3.0.9

For information on third-party software used by Connext products, see the “3rdPartySoftware” doc-
uments in your installation: <NDDSHOME>/doc/manuals/connext_dds_professional/release_notes_3rd-
party.

2.4 What's New in 7.1.0

2.4.1 Support for the new Observability Library

The Configuration dialog has a new checkbox to enable the new RTI Observability Library. This new
feature is described in 4.10 Using RTI Monitoring Library 2.0 on page 39.

Note: In 7.2.0, the library name has changed to RTI Monitoring Library 2.0.

6



2.4.2 Notification when DomainParticipant's Identity Certificate or Identity CA is about to expire

7

2.4.2 Notification when DomainParticipant's Identity Certificate or Identity CA is
about to expire

Shapes Demo will log a message in the Output View when the DomainParticipant's Identity Certificate
or Identity CA is about to expire.



2.4.3 Upgraded OpenSSL to version 3.0.8

2.4.3 Upgraded OpenSSL to version 3.0.8

The following third-party software, used by Shapes Demo, has been upgraded:

Third-party Tool Old Version New Version

OpenSSL 1.1.1n 3.0.8

2.5 What's New in 7.0.0

2.5.1 Ability to configure Domain Tag

The Configuration dialog has a new field where you can configure a Domain Tag.

In the Configuration dialog, if you select a Profile that has defined the property, dds.domain_par-
ticipant.domain_tag, that property's value in the profile will be used as the default for the Domain Tag
field in the dialog.

For example, the Configuration dialog will automatically update the Domain Tag field to ENG. DEPT
if you select the following profile:

8



2.5.1 Ability to configure Domain Tag

9

<qos_library name="User_RTI_Shapes_Lib">
<qos_profile name="User_Domain_Tag">

<domain_participant_qos>
<property>

<value>
<element>

<name>dds.domain_participant.domain_tag</name>
<value>ENG. DEPT</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>
...



2.5.2 Ability to configure Partitions at DomainParticipant level

2.5.2 Ability to configure Partitions at DomainParticipant level

The Configuration dialog has a new field where you can configure the Partition QoS for the
DomainParticipant used by Shapes Demo.

In the Configuration dialog, if you select a Profile that has defined the Partition QoS, the Partition
names from the Profile’s Partition QoS will be used as the default for the Partitions field in the dialog.

For example, the Configuration dialog will automatically update the Partition QoS field to A, B, and C
if you select the following profile:
<qos_library name="User_RTI_Shapes_Lib">

<qos_profile name="User_Domain_Participant">
<domain_participant_qos>

<partition>
<name>

<element>A</element>
<element>B</element>
<element>C</element>

</name>
</partition>

</domain_participant_qos>
</qos_profile>

...

10



2.5.2 Ability to configure Partitions at DomainParticipant level

11



Chapter 3 Background Information
This section provides an overview of existing middleware communication paradigms, including
publish-subscribe, along with basic concepts of Connext.

If you are already familiar with this information, you can go directly to Chapter 4 Installing and
Using Shapes Demo on page 17.

3.1 Communication Models in Distributed Systems

Software applications are becoming increasingly distributed. A node in a distributed application
must find the right data, know where to send it, and deliver it to the right place at the right time.
Simplifying access to this data would enable a whole new class of distributed applications. The
challenge, especially in embedded and real-time networks, is to quickly find and disseminate
information to many nodes.

Three major communication paradigms have emerged to meet this need: client-server, message
passing, and publish-subscribe.

Client-server is fundamentally a many-to-one design that works well for systems with cent-
ralized information, such as databases, transaction processing systems, and central file servers.
However, if multiple nodes generate information, client-server architectures require that all the
information be sent to the server for later redistribution to the clients, resulting in inefficient cli-
ent-to-client communication. The central server is a potential bottleneck and single-point of fail-
ure. It also adds an unknown delay (and therefore indeterminism) to the system, because the
receiving client does not know when it has a message waiting.

Message-passing architectures work by implementing queues of messages. Processes can create
queues, send messages, and service messages that arrive. This extends the many-to-one client-
server design to a more distributed topology. Message passing allows direct peer-to-peer con-
nection; it is much easier to exchange information between many nodes in the system with a
simple messaging design. However, the message-passing architecture does not support a data-
centric model. Applications have to find data indirectly by targeting specific sources (e.g., by
process ID or "channel" or queue name) on specific nodes. So, this architecture doesn't address

12



3.2 Connext Overview

13

how applications know where a process/channel is, what happens if that process/channel doesn't exist,
etc. The application must determine where to get data, where to send it, and when to perform the trans-
action. In the message-passing architecture, there is a model of the means to transfer data but no real
model of the data itself.

Publish-subscribe adds a data model to messaging. Publish-subscribe nodes simply "publish" inform-
ation they have and "subscribe" to data they need. Messages logically pass directly between the com-
municating nodes. The fundamental communications model implies both discovery (i.e. what data
should be sent) and delivery (i.e. when and where to send the data). This design mirrors time-critical
information delivery systems in everyday life (e.g. television, radio, magazines and newspapers). Pub-
lish-subscribe systems are good at distributing large quantities of time-critical information quickly,
even in the presence of unreliable delivery mechanisms.

Publish-subscribe architectures map well to the real-time communications challenge. Finding the right
data is straight forward; nodes just declare their interest once and the system delivers it. Sending the
data at the right time is also natural; publishers send data when the data is available. Publish-subscribe
can be efficient because the data flows directly from source to destination without requiring inter-
mediate servers. Multiple sources and destinations are easily defined within the model, making redund-
ancy and fault tolerance natural. Finally, the intent declaration process provides an opportunity to
specify per-data-stream Quality of Service (QoS), requirements. Properly implemented, publish-sub-
scribe delivers the right data to the right place at the right time.

In summary, client-server middleware is best for centralized data designs and for systems that are nat-
urally service oriented, such as file servers and transaction systems. Client-server middleware is not the
best choice in systems that entail many, often-poorly-defined data paths. Message passing, with "send
that there" semantics, map well to systems with clear, simple dataflow needs. Message passing mid-
dleware is better than client-server middleware at free-form data sharing, but still require the applic-
ation to discover where data resides. Publish-subscribe, by providing both discovery and messaging,
implements a data centric information distribution system. Nodes communicate simply by sending the
data they have and asking for the data they need.

3.2 Connext Overview

Connext presents a publish-subscribe connectivity framework that connects anonymous information pro-
ducers (publishers) with information consumers (subscribers). The overall distributed application is
composed of processes called "participants," each running in a separate address space, possibly on dif-
ferent computers. A participant may simultaneously publish and subscribe to typed data-streams iden-
tified by names called "Topics." The Application Programming Interface (API) offered by Connext
complies with the Object Management Group (OMG) Data Distribution Service (DDS) standard. It is
the first comprehensive specification available for "publish-subscribe" data-centric designs.

Connext defines a communications relationship between publishers and subscribers. The com-
munications are decoupled in space (nodes can be anywhere), time (delivery may be immediately after
publication or later), and flow (delivery may be reliably made at controlled bandwidth). To increase



3.2.1 Quality of Service

scalability, topics may contain multiple independent data channels identified by "keys." This allows
nodes to subscribe to many, possibly thousands, of similar data streams with a single subscription.
When the data arrives, Connext can sort it by the key and deliver it for efficient processing.

Connext is fundamentally designed to work over unreliable transports, such as UDP or wireless net-
works. No facilities require central servers or special nodes. Efficient, direct, peer-to-peer com-
munications, or even multicasting, can implement every part of the model.

3.2.1 Quality of Service

Fine control over Quality of Service (QoS) is perhaps the most important feature of Connext. Each pub-
lisher-subscriber pair can establish independent QoS agreements. Thus, Connext designs can support
extremely complex, flexible data-flow requirements.

QoS parameters control virtually every aspect of the Connext model and the underlying com-
munications mechanisms. Many QoS parameters are implemented as "contracts" between publishers
and subscribers; publishers offer and subscribers request levels of service. Connext is responsible for
determining if the offer can satisfy the request, thereby establishing the communication or indicating an
incompatibility error. Ensuring that participants meet the level-of-service contracts guarantees pre-
dictable operation. More information about some important QoS parameters is presented below.

l Deadline: Periodic publishers can indicate the speed at which they can publish by offering guar-
anteed update deadlines. By setting a deadline, a compliant publisher promises to send a new
update at a minimum rate. Subscribers may then request data at that or any slower rate.

l Reliability: Publishers may offer levels of reliability, parameterized by the number of past issues
they can store for the purpose of retrying transmissions. Subscribers may then request differing
levels of reliable delivery, ranging from fast-but-unreliable "best effort" to highly reliable in-
order delivery. This provides per-data-stream reliability control.

l Strength: Connext can automatically arbitrate between multiple publishers of the same topic
with a parameter called "strength." Subscribers receive from the strongest active publisher. This
provides automatic failover; if a strong publisher fails, all subscribers immediately receive
updates from the backup (weaker) publisher.

l Durability: Publishers can declare "durability," a parameter that determines how long previously
published data is saved. Late-joining subscribers to durable publications can then be updated with
past values.

Other QoS parameters control when Connext detects nodes that have failed, suggest latency budgets,
set delivery order, attach user data, prioritize messages, set resource utilization limits, partition the sys-
tem into namespaces, and more. Connext QoS facilities offer unprecedented flexibility and com-
munications control.

14



3.3 Publish-Subscribe Simple Analogy

15

3.3 Publish-Subscribe Simple Analogy

The publish-subscribe communications model is analogous to that of magazine or newspaper pub-
lications and subscriptions. Think of a publication as a newspaper such as New York Times®. The
Topic is the name of the periodical ("New York Times"). The type specifies the format of the inform-
ation (weekly printed magazine or daily newspaper). The user data is the contents (text and graphics) of
each sample (weekly or daily issues). The middleware is the distribution service (US Postal service or a
paper delivery service) that delivers the reading material from where it is created (a printing house) to
the individual subscribers (people's homes). This analogy is illustrated in Figure 3.1: Publish-Subscribe
Example below.

Note that by subscribing to a publication, subscribers are requesting current and future samples of that
publication, so that as new samples are published, they are delivered without having to submit another
request for data.
Figure 3.1: Publish-Subscribe Example

The publish-subscribe model is analogous to publishing magazines or newspapers. The Publisher sends samples of a par-
ticular Topic to all Subscribers of that Topic. With the New York Times®, the Topic would be "New York Times." The

sample consists of the data (articles and pictures) sent to all Subscribers daily or weekly. Connext is the distribution chan-
nel: all of the planes, trucks, and people who distribute issues to the Subscribers.

In this example, Quality of Service (QoS) parameters can be linked to delivery requirements; deliver
only the Sunday edition, the paper must be delivered by 7:00am; the paper must be in the mailbox or
on the porch, etc. QoS parameters specify where, how, and when the data is to be delivered, controlling
not only transport-level delivery properties, but also application-level concepts of fault tolerance, order-
ing, and reliability.

3.4 Publish-Subscribe Complex Analogy

Above, we drew an analogy between publish-subscribe and a newspaper delivery system. That is, of
course, an oversimplification. Complex systems have complex data-delivery requirements. Connext is



3.5 Publish-Subscribe Example Application

perhaps more like a picture-in-picture-in-picture super-television system, with each super-TV set cap-
able of displaying dozens or even thousands of simultaneous channels. Super-TV sets can optionally be
broadcast stations; each can publish hundreds of channels from locally mounted cameras to all other
interested sets. Any set can add new pictures by subscribing to any channel at any time.

Each of these sets can also be outfitted with cameras and act as a transmitting station. TV sets publish
many channels, and may add new outgoing channels at any time. Each communications channel, indeed
each publisher-subscriber pair, can agree on reliability, bandwidth, and history-storage parameters, so
the pictures may update at different rates and record outgoing streams to accommodate new sub-
scribers.

These super-TV sets can also join or leave the network, intentionally or not, at any time. If and when
they leave or fail, backup TV set-transmitters will take over their picture streams so no channels ever
go blank.

That would be quite a system! It is only an analogy, but we hope this gives you some idea of the enorm-
ity of the real-time communications challenge. It also outlines the power of publish-subscribe: as you
will see, Connext provides simple parameters to permit all these scenarios with a remarkably simple
and intuitive model.

3.5 Publish-Subscribe Example Application

An air traffic control system provides a more realistic example application. An air traffic control system
monitors and directs all flights over an entire continent. The data distributed in such a system is in the
form of aircraft tracks, which provides positional information (e.g., course, speed, etc.) about an air-
plane. Components of an air traffic control system would include radar systems, airplanes and air traffic
control centers that provide current flight status information through real-time displays.

Managing correct distribution of data in such a system is complex. Each radar system can track many
different airplanes, and each airplane may be tracked by more than one radar system. Real-time access
to this information is needed for displays at air-traffic control centers so that air traffic controllers can
make informed decisions. Air traffic controllers in the north-east may only want aircraft track inform-
ation in their area, so only a subset of data needs to be provided to them. Based on current local con-
ditions (e.g. air traffic, weather, etc.) air traffic controllers may issue flight plan updates back to
airplanes in order to rout around inclement weather and other airplanes. Though airplanes do not need
flight plans from all other air planes, it would be useful to have information about planes in the imme-
diate vicinity.

Defining the air traffic control system in terms of publishers, subscribers and QoS parameters reveals
that Connext is a natural fit to address this data distribution problem. Each radar system can be thought
of as a publisher that publishes the "tracks" topic which describes an airplane's positional information.
Each airplane that the radar system is tracking can be thought of as an "instance" of the "track" topic.
The real-time controller displays are both subscribers that subscriber to the "tracks" topic and pub-
lishers that publish "flight plan" topic updates back to the specific airplane. QoS parameters can be
used to manage and control deterministic behaviors and fault tolerance capabilities of the system.

16



Chapter 4 Installing and Using Shapes
Demo

4.1 Installation

Note: If you have Connext installed, you may already have Shapes Demo installed. In this case,
you do not need to install Shapes Demo separately.

l On Linux® systems:

The distribution is packaged in a .run file. Run the downloaded file. For example:
> rti_shapes_demo-<version>-<architecture>.run

l On Windows® systems:

The distribution is packaged in a .exe file. Simply double-click the file to run the installer.
l On macOS® systems:

The distribution is packaged in a .dmg file. Double-click the file, this will open a folder
that contains another file—double-click that file to run the installer.

The resulting installation directory will be named rti_shapes_demo-<version>.

4.2 Running Shapes Demo

You can run Shapes Demo on a single computer or on multiple workstations connected via Eth-
ernet. Mac, Linux, and Windows operating systems are supported.

You can start multiple copies of the demo on as many computers as you would like (see below).
By default, the demo discovers other instances using multicast, loopback, or shared memory.
The discovery mechanism is fully configurable.

17



4.2 Running Shapes Demo

18

Note: Shapes Demo is not compatible with applications built with RTI Data Distribution Service 4.5e
and earlier releases when communicating over shared memory. For more information, please see the
Transport Compatibility section in the RTI Connext Core Libraries Release Notes for release 5.3.1 or
earlier.

There are two ways to start Shapes Demo:

l From a command prompt:

<Shapes Demo installation directory>/bin/rtishapesdemo

For details on running from the command-line, see Appendix A Running from the Command
Line on page 92.

Note: If Shapes Demo was installed as part of a Connext bundle: the <Shapes Demo installation
directory> mentioned in this document is the same as the <NDDSHOME> location mentioned in
the RTI Connext Getting Started Guide and RTI Connext Core Libraries User's Manual (rti_con-
next_dds-<version>).

l From RTI Launcher’s Learn tab, select Shapes Demo. (RTI Launcher is provided with RTI Con-
next.)

Running a Second Instance of Shapes Demo

l Once you have an instance of Shapes Demo running, you can start additional ones by using the
above options, or in Shapes Demo, select File, New Shapes Demo. The new instance of Shapes
Demo will be completely independent from the first one.



4.2.1 If You Cannot use Multicast

When Shapes Demo starts, you will see a window like that in Figure 4.1: Shapes Demo—Initial View
below.
Figure 4.1: Shapes Demo—Initial View

4.3 Publish and Subscribe Task Panes on the next page

4.4 Other Controls on page 30

4.4.5 Output and Legend Tabs on page 34

4.2.1 If You Cannot use Multicast

If you want to run Shapes Demo on multiple computers that do not support multicast, or on a network
that doesn't support multicast, you need to explicitly give Shapes Demo a list of all of the hosts that
need to discover each other; we call this the discovery peers list. The list can contain hostnames and/or
IP addresses. In its simplest format, each entry should be: builtin.udpv4://<hostname|IP>. The list can
contain multiple, comma-separated entries.

To set your discovery peers list, either:

l Set the NDDS_DISCOVERY_PEERS environment variable:

l On Windows systems: For example:

set NDDS_DISCOVERY_PEERS=builtin.udpv4://mypeerhost1,builtin.udpv4://mypeerhost2

l On Linux and macOS systems: For example:

export NDDS_DISCOVERY_
PEERS=builtin.udpv4://mypeerhost1,builtin.udpv4://mypeerhost2

l Edit the User_Shapes_Default_Profile profile in <rti_workspace>/version/user_config/USER_
RTI_SHAPES_DEMO_QOS_PROFILES.xml. (See 4.5 Shapes Demo’s Workspace on
page 35.) For example, if the other machine has an IP address of 10.30.42.8, add a <domain_par-
ticipant_qos> section like this:

19



4.3 Publish and Subscribe Task Panes

20

<qos_profile name="User_Shapes_Default_Profile">
<domain_participant_qos>

<discovery>
<initial_peers>

<element>builtin.udpv4://10.30.42.8</element>
</initial_peers>
<multicast_receive_addresses/>

</discovery>
</domain_participant_qos>
...

</qos_profile>

4.3 Publish and Subscribe Task Panes

Connext applications publish (write) and subscribe to (read) Topics. A Topic has
a name and a type; the type defines the structure of the data.

Shapes Demo can publish and subscribe to three Topics: Square, Circle, and Tri-
angle. Clicking any of these options will open a dialog that allows you to set the
QoS for the publisher/subscriber:

4.3.1 Color

Color is selectable only when creating a publisher. Each color represents a different instance of the
same topic (shape).



4.3.2 Initial Size

A shape's color is used as a key—simply a way to distinguish between data for multiple instances of the
same shape (topic). Data that belongs to the same instance in the topic (shape) will have the same key
(color).

To create all colors at one time using the same configuration, select the <<ALL>> option.

The Color (key) area is grayed out for subscribers. The subscriber of a topic will receive all data sent
on all instances of the topic.

4.3.2 Initial Size

The Initial Size field allows you to control how big the shape is.

4.3.3 Partitions

You can use partitions to dynamically isolate and group publishers and subscribers. If a publisher has a
partition, then only subscribers with that same partition will receive data from that publisher.

The demo supports four partitions: A, B, C, and D. Partitions support regular expressions, so a pub-
lisher with a wildcard (*) partition will match subscribers with partitions A, B, C, and D.

A publisher with no partition (the default case) will not be matched with a subscriber that does have a
partition. That is, "no partition" is not the same thing as a wild card (*) partition.

21



4.3.4 Extended Attributes

22

4.3.4 Extended Attributes

This section is enabled when you are using the “Shape Exten-
ded” Data Type in the Configuration dialog (see 4.4.4 Con-
figuration on page 31), this is the default case. The extended
attributes only apply to Publishers. (You will see it in the dialog
for Subscribers, but it cannot be enabled.) You can choose a fill
pattern and rotation speed for the shape.

These attributes illustrate a feature known as Extensible Types,
which are described in the RTI Connext Core Libraries Extens-
ible Types Guide.

4.3.5 Applying QoS from a Profile

The Configuration dialog enables you to choose a QoS profile
from a pre-loaded XML file. Go to Controls > Configuration, then open the Choose the profile list
box.

If the list box contains only
Default::Default, it means you
haven’t specified an XML file via
the Configuration dialog (see
4.4.4 Configuration on page 31).
In this case, Default::Default
will result in all default QoS set-
tings, as described in the Connext
API reference HTML doc-
umentation.

A profile contains the QoS values
that will be used for the objects
created by the demo. All QoS val-
ues not specified in the selected
profile will use default values
noted in the Connext API ref-
erence HTML documentation.
Any QoS settings that you make
in the Create New Pub-
lisher/Subscriber dialog take pre-
cedence over the values in the
selected profile. (See 4.3.6 Set-
ting QoS Values on page 25.)

../../extensible_types_guide/RTI_ConnextDDS_CoreLibraries_ExtensibleTypes_Guide.pdf
../../extensible_types_guide/RTI_ConnextDDS_CoreLibraries_ExtensibleTypes_Guide.pdf


4.3.5 Applying QoS from a Profile

Shapes Demo includes an XML file, RTI_SHAPES_DEMO_QOS_PROFILES.xml, that includes pro-
files for configuring, monitoring, and securing your topics (shapes).

Configuration Profiles

l Default::Default—This profile means you want to use whichever profile in the XML file is
marked as the default (with <qos_profile name="x" is_default_qos="true">). In RTI_SHAPES_
DEMO_QOS_PROFILE.xml, the default profile is RTI_Shapes_Lib::Shapes_Default_
Profile.

l RTI_Shapes_Lib::Shapes_Default_Profile—Sets the data writer’s autodispose_unregistered_
instances1 to false and the data reader’s History depth to keep the last 6 samples.

l RTI_Shapes_Lib::Batching—Enables best-effort communication in the data writer and keeps
the last 10 samples. It also enables batching with a maximum flush delay of 1 second and allows
an unlimited number of bytes to be batched for up to 10 samples.

l RTI_Shapes_Lib::History_KeepLast20—Sets the data reader’s History QoS to keep the last 20
samples.

l RTI_Shapes_Lib::Ownership_Shared—Sets Ownership to SHARED and Durability to
TRANSIENT with direct communication to true for both the data reader and data writer. Both
the reader’s and writer’s Liveliness is set to AUTOMATIC with a lease duration of 1 second.
The reader has a History depth is 100 samples and uses RELIABLE reliability.

l RTI_Shapes_Lib::Ownership_Exclusive—Sets Ownership to EXCLUSIVE for both the data
reader and data writer. The writer’s Ownership Strength is set to 4.

l RTI_Shapes_Lib::Durability_Volatile—Sets Ownership to VOLATILE and History of 100
samples for both the data reader and data writer. The reader uses RELIABLE Reliability.

l RTI_Shapes_Lib::Durability_Transient—Sets Ownership to TRANSIENT for both the data
reader and data writer.

l RTI_Shapes_Lib::Durability_Persistent—Sets Ownership to PERSISTENT for both the data
reader and data writer.

l RTI_Shapes_Lib::Udpv4Only—Baseline profile that configures Shapes Demo to use UDPv4.
l RTI_Shapes_Lib::ReaderMulticast—Enable multicast in the data reader. This profile applies to
a data reader.

l RTI_Shapes_Lib::WriterTainter—Simulates a man-in-the-middle tainting data while it's in
flight. This profile applies to a data writer.

Monitoring Profiles

[0]
1See Dispose vs. Unregister: on page 35.

23



4.3.5 Applying QoS from a Profile

24

l MonitorDemoLibrary::Default—Enables monitoring. See 4.6 Using Monitoring on page 36.
l MonitorDemoLibrary::SamplesRejectedScenario andMon-
itorDemoLibrary::FixedSamplesRejectedScenario—Profiles used in the tutorial for RTI Mon-
itor. See 4.6 Using Monitoring on page 36.

Security Profiles

l Security::LightweightSecurity—Protects RTPS messages with a pre-shared key using the Light-
weight Builtin Security Plugins. Note that the Lightweight Builtin Security Plugins do not offer
protection at the topic level.

l Security::SecureAllowAll—Security enabled, subscribing and publishing to all topics is
allowed.

l Security::SecureMinimal—Minimal security profile: does not protect outgoing data from being
tainted, does not check that incoming data hasn't been tainted, and unencrypted topics will be
communicated with Multicast (no security) participants.

l Security::SecurePresharedKey—Encrypts RTPS messages with a secure pre-shared key using
the Builtin Security Plugins.

l This profile protects all topics except Circles; when using the Circles topic, this profile
interoperates with the Security::LightweightSecurity profile.

l When using this profile, Triangles are signed, not encrypted.

l Security::SecureRtpsEncryptWithOriginAuthentication—Maximum security for RTPS
messages. Protects outgoing messages from being tainted or viewed, and protects outgoing mes-
sages from being replayed by a subscriber masquerading as a publisher.

l Security::SecureDenyPubCircles—Circles published by this participant will be accepted by
secure participants because they have enable_write_access_control set to false for Circle.

l Security::SecureDenySubSquares—Prevents this participant from subscribing to Squares.
l Security::Imposter (adversarial)—Enables security. Tries to impersonate another peer by using
its certificate.

l Security::KeyRegenerationBase—Enables security and key revisions using the ecdsa01Peer-
01Cert identity certificate. This profile also configures Shapes Demo to:

l use UDPv4
l use the same multicast receive address, 239.255.0.2, for any reader with this profile
l use TRANSIENT_LOCAL as the Durability QoS kind, and use RELIABLE as the Reli-
ability QoS kind

l Security::KeyRegenerationSub1—Same as the Security::KeyRegenerationBase profile, but
uses ecdsa01Peer02Cert as the identity certificate.



4.3.6 Setting QoS Values

l Security::KeyRegenerationSub2—Same as the Security::KeyRegenerationBase profile, but
uses ecdsa01Peer03Cert as the identity certificate.

Note: . For most security profiles, the Triangle and Square topics are encrypted, but Circles
remain unencrypted. The only exceptions are the Security::LightweightSecurity and
Security::SecurePresharedKey profiles.

RTI_SHAPES_DEMO_QOS_PROFILES.xml is in <Shapes Demo installation dir-
ectory>/resource/xml. If you open this file, you will see that these profiles have the property base_
name, which points to another profile. The profile uses all the QoS settings of the profile pointed to by
base_name plus the QoS settings that are explicitly specified. If a property is specified in both the base
profile and the current profile, the property in the current one is used.

USER_RTI_SHAPES_DEMO_QOS_PROFILES.xml is in the Shapes Demo workspace directory
(see 4.5 Shapes Demo’s Workspace on page 35). You can use this file as a template to create your own
QoS profiles. Shapes Demo automatically loads the profiles from this file and the profiles in RTI_
SHAPES_DEMO_QOS_PROFILES.xml.

By default, USER_RTI_SHAPES_DEMO_QOS_PROFILES.xml contains two profiles:

l User_Shapes_Default_Profile—Same configuration as RTI_Shapes_Lib::Shapes_Default_Pro-
file. Sets the data writer’s autodispose_unregistered_instances to false and the data reader’s His-
tory depth to keep the last 6 samples. It can also be used to configure the initial_peers and
multicast_receive_addresses.

<qos_profile name="User_Shapes_Default_Profile" is_default_qos="true">
<!-- Add your initial peers and multicast receive address here, e.g:
<domain_participant_qos>

<discovery>
<initial_peers>

<element>239.255.0.1</element>
<element>builtin.udpv4://10.30.42.8</element>
<element>builtin.shmem://</element>

</initial_peers>
<multicast_receive_addresses>

<element>239.255.0.1</element>
</multicast_receive_addresses>

</discovery>
</domain_participant_qos> -->

l Asymmetric_TCP_Cloud_Client— Configures Shapes Demo to use TCP over WAN. The ini-
tial peers value needs to be updated with the value of the machine you want to contact.

4.3.6 Setting QoS Values

There are two ways to control the QoS values for the publisher and subscriber:

25



4.3.6 Setting QoS Values

26

1. You can modify the QoS values in a profile and apply that profile as described in 4.3.5 Applying
QoS from a Profile on page 22.

2. You can explicitly set some QoS values directly in the Create
New Publisher/Subscriber dialog, as seen in this screenshot
and described below. Values set in the dialog override values
in the profile.

4.3.6.1 Exclusive Ownership and Strength

Ownership determines whether or not the instance (specified by
color) of the Topic is exclusively owned by one publisher—that is, if
multiple publishers of Red Squares can send data to this instance at
the same time or not.

If the Exclusive check box is selected for a publisher, the Strength box will become available for
input. The publisher with the highest Ownership Strength number is the only publisher that can write
data to this instance.

If the Exclusive check box is selected for a subscriber, it means that the subscriber only wants data
from one publisher—the one with the highest ownership strength.

The publisher and subscriber must use the same setting, so either check this box for both, or leave it
unchecked for both. Otherwise, their QoS are incompatible and the publisher and subscriber will not
communicate.

4.3.6.2 Durability

Durability controls whether the publisher will store the data that it sends, so that it can be sent to new
subscribers that join the system later. The possible settings for this QoS are:

l VOLATILE (Default) Data samples are not stored.
l TRANSIENT Connext will attempt to store samples in memory. The data will survive the data
writer.

l TRANSIENT_LOCAL Connext will attempt to store samples in memory. The data will not sur-
vive the data writer.

l PERSISTENT Connext will store previously published samples in permanent storage, like a
disk. The data will survive the data writer.

How many samples are stored by the publisher depends on theWriter depth field and other QoS such
as ResourceLimits.

If Durability is selected for a subscriber, the subscriber will ask the publisher to send previously written
data. TheWriter depth field controls how much data is sent from the publisher's history queue.



4.3.6 Setting QoS Values

The publisher and subscriber must use compatible settings, as described in Table 4.1 Valid Com-
binations of Durability.

Subscriber

VOLATILE TRANSIENT_
LOCAL TRANSIENT PERSISTENT

Publisher

VOLATILE yes incompatible incompatible incompatible

TRANSIENT_
LOCAL yes yes incompatible incompatible

TRANSIENT yes yes yes incompatible

PERSISTENT yes yes yes yes

Table 4.1 Valid Combinations of Durability

Note: If you select Durability, you must also select Reliability (this applies to the publisher and sub-
scriber).

4.3.6.3 Writer Depth

TheWriter depth field is only available when creating a publisher and Durability is selected (that is,
not set to VOLATILE). It configures how many data samples are stored, so they can be sent to new sub-
scribers.

Valid settings range from 1 up to the value for History (4.3.6.7 History on page 29). The default is
AUTO. When set to AUTO, this value will be the same as the value for History (whose default is 1).

4.3.6.4 Time-Based Filter

The Time-Based Filter field is only available when creating a subscriber. It is the minimum separation
time (in milliseconds) that the subscriber wants between data updates. Any data arriving within this
time interval will be discarded. Where possible, the publisher will not "publish" the data. Valid settings
range from 0 to 31,536,000,000 ms (1 year).

The Time-Based Filter value must be less than the Deadline value (4.3.6.8 Deadline on page 29).

4.3.6.5 Reliability

The Reliability QoS can be RELIABLE or BEST_EFFORT. Selecting the Reliability check box sets
Reliability to RELIABLE. If the check box is not selected, Reliability is set to BEST_EFFORT.

27



4.3.6 Setting QoS Values

28

For publishers:

l The default is RELIABLE.
l If Reliability is RELIABLE (check box is selected), the publisher will attempt to deliver all the
data that has been sent. If data is not received by the subscriber due to a communication error,
Connext will retransmit the data.

l If Reliability is BEST_EFFORT (check box is not selected), the publisher will use best-effort
communication and will not retransmit any missing data.

For subscribers:

l The default is BEST_EFFORT.
l If Reliability is RELIABLE (check box is selected), the subscriber expects to receive all data
updates reliably. The subscriber listens for "heartbeats" from the publisher and responds with
either a positive acknowledgement to indicate data receipt or a negative acknowledgement to ini-
tiate retransmission of missing data.

l If Reliability is BEST_EFFORT (check box is not selected), the subscriber will not expect lost
data to be resent.

The publisher and subscriber must use compatible settings, as described in Table 4.2 Valid Com-
binations of Reliability.

Subscriber

Reliability not selected (default) (BEST_
EFFORT)

Reliability selected
(RELIABLE)

Publisher

Reliability not selected (default) (BEST_
EFFORT) yes incompatible

Reliability selected (RELIABLE) yes yes

Table 4.2 Valid Combinations of Reliability

4.3.6.6 Liveliness and Lease Duration

Liveliness is used to detect the state of the publisher even when it is not actively sending data. For a
publisher, the Liveliness Lease Duration value is the maximum time interval within which a publisher
will signal that it is active. For a subscriber, the Liveliness Lease Duration value is the maximum time
interval within which a subscriber expects to be notified that the publisher is alive.



4.3.7 Using a Content Filtered Topic

A subscriber’s Liveliness Lease Duration must be greater than or equal to the publisher’s Liveliness
Lease Duration. Valid settings range from 0 to 31,536,000,000 ms (1 year), or “INF” for infinity (the
default).

4.3.6.7 History

History controls the amount of data that is kept in the send queue. This is normally used in connection
with Durability and/or Reliability. This controls how many samples are kept in case they need to be
resent to a subscriber. Valid settings range from 0 to 100,000,000. The default is 1.

4.3.6.8 Deadline

For a publisher, the Deadline value is the time interval within which the publisher commits to updating
data at least once, if not more frequently.

For a subscriber, the Deadline value is the maximum time interval between data updates that the sub-
scriber expects from the publisher.

If a publisher fails to send a data update within the subscriber’s requested Deadline interval, the sub-
scriber will get a "deadline missed" notification.

Valid settings range from 1 ms to 1 year, or “INF” for infinity (the default).

A subscriber's Deadline must be >= the publisher's.

A subscriber’s Deadline must also be >= its Time-based filter (see 4.3.6.4 Time-Based Filter on
page 27).

4.3.6.9 Lifespan

The Lifespan QoS can be used to prevent delivering "stale" data. The Lifespan QoS is only set for pub-
lishers.

Connext adds timestamps to data when it is first sent by a publisher and when it is received by a sub-
scriber. Data is stored in the "outbox" or send queue of the publisher as well as in the "inbox" or
receive queue of the subscriber. If the Lifespan field is set to a value other than INF (for infinite), Con-
next will automatically remove the data after the time specified by Lifespan has passed since it was
added to the queue (sent or received).

Valid settings range from 1 ms to 1 year, or “INF” for infinity (the default, meaning the data will never
expire).

4.3.7 Using a Content Filtered Topic

The Use filter check box is only available when creating a subscriber. If selected, a filter is created for
data updates to a topic based on the content of the data. Only data that satisfies the filter will be made
available to the subscriber.

29



4.3.8 Controlling the Read Method

30

4.3.8 Controlling the Read Method

When creating a subscriber, you can choose whether it will use read() or take().

With read() (the default), Connext will continue to store the data in the data reader’s receive queue.
The same data may be read again until it is taken in subsequent take() calls. Graphically, a “new”
sample is shown with a thicker border.

With take(), Connext will remove the data from the data reader’s receive queue. The data returned by
Connext is no longer stored by Connext.

4.4 Other Controls

The Controls sub-panel includes various commands that you can use to control the demo.

4.4.1 Delete All

This command deletes all the publishers and subscribers that have been created in the demo application.
All objects moving in the application window will disappear and no data will be sent or received.
(NOTE: Delete All removes all the entities but it does not destroy the participant. The quick reset is to
select Configuration, Stop, Start). If you have started multiple copies of Shapes Demo, you will need
to click Delete All in each copy to delete their respective publishers and subscribers.

4.4.2 Pause Publishing

The Pause Publishing command is only effective on publishers. It pauses the sending of coordinate
data for the shape until you click Resume Publishing. When Pause Publishing is clicked, the label
changes to Resume Publishing.

The Pause/Resume Publishing commands are also available when you right-click an entity (if it is a
publisher) in the Legend tab. In this way you can individually pause each single publisher.

When publishing is paused, you will still see published topics (colored shapes) moving in the publisher
demo window, but corresponding topics in a subscriber window will stop moving. That’s because what
you see in the publisher window is the data being generated (not necessarily sent); what you see in the
subscriber window is data being received. When you pause publishing, the subscriber stops receiving
updates to the topic (that is, the shape’s coordinates).

4.4.3 Show/Hide History

The Show History and Hide History commands tells the demo to start/stop drawing the shapes from
all the packets that are in the subscriber’s history queue.

This command has no effect on subscribers that use the take() method of accessing data. It is only for
subscribers that use read(). It also has no effect on publishers.



4.4.4 Configuration

If you set History greater than 1, by default all the packets in the history queue are displayed, showing
the historical path of the shapes on the subscriber’s canvas. If History is 1 (the default), no historical
samples appear because there is only room for one sample in the queue.

By default, historical samples are shown; that is, Show History is the default setting and you will see
the Hide History command in the Controls panel.

When you select Show History, the samples stay in the data reader’s queue, so you can see the shadow
trail of the historical samples (up to the number set in the History field).

4.4.4 Configuration

Note: To make changes with this dialog, first click Stop. Then make the desired changes and click
Start.

The Configuration dialog is where you can change the Domain ID, Domain tag, DomainParticipant-
level Partitions, manage QoS profiles, and start/stop. Using the Stop and Start buttons is the equivalent
of a Reset button, short of quitting and restarting the application.

The dialog also lets you choose between two data types: Shape and Shape Extended (the default). Use
Shape Extended if you want to select the shape’s fill pattern or rotation speed when you create a pub-
lisher (see 4.3.4 Extended Attributes on page 22).

Use the Choose the profile listbox to select a profile from one of the loaded XML files. If this listbox
only contains Default::Default, this means no XML files have been loaded.

31



4.4.4 Configuration

32

The Enable distributed Logger checkbox is described in 4.7 Using RTI Distributed Logger on
page 37.

The Enable Monitoring Library 2.0 checkbox is described in 4.10 Using RTI Monitoring Library 2.0
on page 39.

To load an XML QoS Profiles file:

1. Click Stop. (Any Publishers/Subscribers will be deleted
when you do this.)

2. ClickManage QoS.

3. In the resulting dialog box, click Add; then browse to
select an XML QoS profiles file.

You can use your own file, or the following files, which
are provided with Shapes Demo:

l RTI_SHAPES_DEMO_QOS_PROFILES.xml, in <Shapes Demo installation
directory>/resource/xml. For information on the contents of this file, see 4.3.5 Applying
QoS from a Profile on page 22.

l USER_SHAPES_DEMO_QOS_PROFILES.xml in Shapes Demo’s workspace. You can
edit this file to include your own profiles.

If you specify multiple XML files, the Up and Down buttons change the order in which they are
loaded. If you load files that contain profiles with is_default_qos=”true”, the last profile loaded is
used. This information is saved in the workspace (see 4.5 Shapes Demo’s Workspace on
page 35).

To unload an XML QoS Profiles file:

l Select Configuration, then Stop.
l ClickManage QoS.
l In the resulting dialog box, clear the check box next to the file, or select the file and click
Remove.

If the XML QoS Profile file has errors:

If you add an XML QoS Profile file that has errors and you click Ok, Shapes Demo will try detect
the error and will show a popup that indicates with file has been detected to be wrong. Once you
click OK, the Load/Unload QoS profile files window will automatically uncheck all the incor-
rectly formatted files.



4.4.4 Configuration

At this point you can either press Ok and proceed without loading those files or edit them by press-
ing the Edit button: the default XML editor will open, allowing you to correct the file and correct
the error.

To change the DomainParticipant-level Partitions:

You can use Partitions to dynamically isolate and group DomainParticipants. If a DomainPar-
ticipant has a Partition, then only DomainParticipants with that same Partition will communicate
with each other.

To set the Partitions, use the Partition text field in the Configuration dialog. The Partition can be
changed after creating the DomainParticipant, after clicking on the Start button. In order to update
its value, use the Update button below the Partition text field.

Note: The Update button is disabled while not running (after pressing Stop).

The Partition text field will automatically use the Partition QoS from the selected Profile if it has
defined the Partition QoS. For example, Shapes Demo will automatically update the Partition QoS
field to A, B, and C if we load the following Profile:
<qos_library name="User_RTI_Shapes_Lib">

<qos_profile name="User_Domain_Participant">
<domain_participant_qos>

<partition>
<name>

<element>A</element>
<element>B</element>

33



4.4.5 Output and Legend Tabs

34

<element>C</element>
</name>

</partition>
</domain_participant_qos>

</qos_profile>
...

4.4.5 Output and Legend Tabs

There are two tabs at the bottom of the demo application window.

l The Legend tab shows you the Publishers and Subscribers created for the demo and their QoS
settings.



4.5 Shapes Demo’s Workspace

Right-click on a Publisher entity in the Legend tab to access these commands:
l Pause/resume publishing (see 4.4.2 Pause Publishing on page 30)
l Dispose data and delete the DataWriter
l Unregister data and delete the DataWriter
l Ignore selected remote DomainParticipants
l Banish ignored remote DomainParticipants to prevent them from receiving local
DomainParticipant traffic

Right-click on a Subscriber in the Legend tab to access a command to delete the DataReader.

Another way to delete a Publisher or Subscriber is to click on it in the Legend tab and press the
Delete button on your keyboard.1

Dispose vs. Unregister:

When data is disposed, all DataReaders are informed that, as far as the DataWriter knows, the
data instance no longer exists and can be considered “not alive.” When data is unregistered, this
only indicates that a particular DataWriter no longer wants to modify an instance—an important
distinction if there are multiple writers for the same instance.

l The Output tab shows statuses, events and other information from Shapes Demo.

If Distributed Logger is disabled, the Output tab also displays log messages generated by Con-
next. (Note: Distributed Logger is enabled by default, in which case you will only see messages
from Shapes Demo.) For more information on Distributed Logger, see 4.7 Using RTI Distributed
Logger on page 37.

4.5 Shapes Demo’s Workspace

The workspace directory for Shapes Demo is here:

[0]
1When you press Delete, the current setting for the WriterDataLifecycle QoS policy’s autodispose_unregistered_instances field determines if the writer’s data is dis-

posed before it is unregistered. If autodispose_unregistered_instances has not been changed via a QoS profile, the default setting will cause the data to be disposed
and unregistered.

35



4.6 Using Monitoring

36

l On Mac systems: 
/Users/your user name/rti_workspace/version/user_config/shapes_demo

l On Linux systems: 
/home/your user name/rti_workspace/version/user_config/shapes_demo

l On Windows systems: 
<your home directory>\rti_workspace\version\user_config/shapes_demo

Shapes Demo uses the concept of a workspace, which is an XML file that contains the last settings used
by Shapes Demo. This allows you to start Shapes Demo with well-known settings each time. For
example, it contains the list of QoS XML profile files loaded through the Load/Unload QoS profile
files window and whether or not the files should be loaded. Another useful piece of information saved
in the workspace is the last domain ID specified by the Configuration window. (If you start Shapes
Demo with the -domainId option, that domain ID setting is not saved in the workspace.)

If the workspace directory contains RTI_SHAPES_DEMO.xml, this file is used as the workspace file.
You can specify a different workspace file by starting Shapes Demo with the -workspaceFile <file-
name> command-line option. If the file specified with this option cannot be found, it will be created. If
you do not use the -workspaceFile <filename> option and RTI_SHAPES_DEMO.xml is not in the
workspace directory, Shapes Demo will automatically create RTI_SHAPES_DEMO.xml in the work-
space directory.

The workspace directory also contains an XML file called USER_RTI_SHAPES_DEMO_QOS_
PROFILES.xml which can be edited to add your own profiles, or as a template to create your own pro-
files. By default, it contains two different profiles (see 4.3.5 Applying QoS from a Profile on page 22).

The workspace also has a folder named logs, where Shapes Demo stores the logs generated by Connext.
The filenames for these logs have this format: shapes-demo-log followed by the date and time.

l shapes-demo-log-YYYY-MM-DD_hh_mm_ss.txt.

Note. These log files will not be created if the verbosity level is set to 0.

4.6 Using Monitoring

To enable monitoring in Shapes Demo, select theMonitorDemoLibrary::Default QoS profile
described in 4.3.5 Applying QoS from a Profile on page 22.

This is useful if you want to use RTI Monitor, a graphical tool that displays monitoring data from Con-
next applications in which monitoring is enabled.

For more information on monitoring, please see the RTI Monitor Getting Started Guide and RTI Mon-
itor User’s Manual.



4.7 Using RTI Distributed Logger

4.7 Using RTI Distributed Logger

Shapes Demo provides integrated support for RTI Distributed Logger and is enabled by default.

When you enable Distributed Logger, Shapes Demo will publish its log messages to Connext in the
same domain that Shapes Demo is using. Then you can use RTI Monitor or RTI Admin Console1 to see
the log message data. Since the data is provided in a DDS Topic, you can also use rtiddsspy2 or even
write your own visualization tool.

If you want Shapes Demo to print the log messages to a file, you must disable Distributed Logger. If it
is not disabled, the log messages will be printed by Distributed Logger and not in the log file. You can
only use Distributed Logger or a log file, not both.

To disable/enable Distributed Logger, use the checkbox in the Configuration dialog under the Controls
menu.

4.8 Using Security

Shapes Demo supports the RTI Security Plugins and the RTI Lightweight Security Plugins, which both
provide security features such as authentication, access control, and encryption. These features can be

[0]
1RTI Monitor and RTI Admin Console are separate tools that can run on the same host as your application or on a different host.

[0]
2rtiddsspy is provided with Connext.

37



4.9 Choosing a Domain Tag

38

tested by selecting the corresponding QoS profile within the Security QoS library as described in 4.3.5
Applying QoS from a Profile on page 22 and following the example in 5.7 Security Examples on
page 57. For more information on security, please see the RTI Security Plugins Release Notes and RTI
Security Plugins Getting Started Guide.

4.9 Choosing a Domain Tag

The Domain tag is an intuitive way of subdividing Domains. It consists of a string value (with a max-
imum of 255 characters). The Domain tag is immutable: it cannot be changed after creating the
DomainParticipant (that is, while Shapes Demo is running).

Note: The DomainParticipant only exists while Shapes Demo is running (after you've pressed Start).
Once you press Stop, that DomainParticipant is deleted.

To set the Domain tag, use the Domain Tag text field in the Configuration dialog under the Controls
menu.

Note: The Domain Tag field is disabled while the application is running, so first click Stop in the Con-
figuration dialog to make a change to the Domain tag.

The Domain Tag text field will automatically use the Domain tag from the selected Profile if it has
defined the DomainParticipant property, dds.domain_participant.domain_tag.

For example, Shapes Demo will automatically update the Domain Tag field to ENG. DEPT if you load
the following profile:

../../../connext_dds_secure/release_notes/RTI_SecurityPlugins_ReleaseNotes.pdf
../../../connext_dds_secure/getting_started/RTI_Security_Plugins_GettingStarted.pdf
../../../connext_dds_secure/getting_started/RTI_Security_Plugins_GettingStarted.pdf


4.10 Using RTI Monitoring Library 2.0

<qos_library name="User_RTI_Shapes_Lib">
<qos_profile name="User_Domain_Tag">

<domain_participant_qos>
<property>

<value>
<element>

<name>dds.domain_participant.domain_tag</name>
<value>ENG. DEPT</value>

</element>
</value>

</property>
</domain_participant_qos>

</qos_profile>

For more information on Domain tags, please see Choosing a Domain Tag in the RTI Connext Core
Libraries User's Manual.

4.10 Using RTI Monitoring Library 2.0

Shapes Demo provides integrated support for RTI Monitoring Library 2.0.

When you enable RTI Monitoring Library 2.0, Shapes Demo will emit telemetry data and accept
remote commands to change the set of emitted telemetry data at runtime. For more information, see the
RTI Connext Observability Framework User's Manual.

39

../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
../../../connext_dds_professional/users_manual/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
https://community.rti.com/static/documentation/connext-dds/7.3.0/doc/manuals/addon_products/observability/RTI_Observability_UsersManual.pdf


4.10 Using RTI Monitoring Library 2.0

40

To enable/disable RTI Monitoring Library 2.0, use the checkbox in the Configuration dialog under the
Controls menu.



Chapter 5 Examples
Important: Unless otherwise noted, these examples assume you are using the default Shapes
Demo settings—meaning the RTI_SHAPES_DEMO_QOS_PROFILES.xml file is loaded.
This file tells Connext to load the profile called Shapes_Default_Profile from the RTI_
Shapes_Lib library and use it as the default settings. For more information about profiles, see
4.3.5 Applying QoS from a Profile on page 22.

5.1 Publish-Subscribe Example

This example showcases the publish-subscribe concept. It uses best-effort communication and
shows the decoupling between the publisher and the subscriber; i.e., the publisher can send data
without knowing where/what the subscriber(s) are, and the subscriber can receive data without
knowing where/what the publisher(s) are. In this example, you will be asked to start two copies
of Shapes Demo. There is no need to configure a discovery service or provide any a priori
information about where the demo applications are being run.

41



5.1 Publish-Subscribe Example

42

1. Create a red circle publisher:

a. Start Shapes Demo. We will
refer to this instance of the
application as Publisher1.

b. Under Publish, click on
Circle.

c. In the Create New Publisher
window:

l Select RED for Color.
l Click OK.

You will see a red circle mov-
ing on the Publisher canvas. If
there were any subscribers, the
publisher would start sending
data (the coordinates of the red
circle).

2. Create a subscriber for circles:

a. Select File, New Shapes
Demo to start a second Shapes
Demo. We will refer to this
instance of the application as
Subscriber1.

b. Under Subscribe, click on
Circle.

c. In the Create New Subscriber
window:

l Click OK. (Use all the
defaults.)

You will see 6 red circles with blue
borders on the Subscriber canvas, mir-
roring the movements of the circle in
the Publisher canvas. The leading
circle indicates the current position of
the published circle. The other circles are the historical samples kept by Connext. You can see
the difference between historical data and new data looking at the thickness of the border. (You
can also hide historical data by selecting Hide History from the Controls menu.)



5.2 Multiple Instances Example

Your windows should look similar to Figure 5.1: Publisher and Subscriber Displays below.
Figure 5.1: Publisher and Subscriber Displays

3. Test real-time data delivery:

To show that the subscriber is receiving real-time data, move the cursor over the Publisher's red
circle and click the mouse button. This will stop the red circle in the publisher canvas. Drag the
cursor and move it around while holding down the mouse button. The red circles on the sub-
scriber canvas should exactly mirror your mouse movements.

Congratulations, you have just finished the first exercise, which illustrates basic publish-subscribe func-
tionality!

If you plan to continue with the next exercise, leave the two demo windows running. The next exer-
cise will use the red circles.

5.2 Multiple Instances Example

Instances are useful when you are dealing with data that is unpredictable in terms of its creation and
deletion—e.g., aircraft/airplane flight tracks and shipment tracking. Flights and shipments can come
and go. The application has no way of knowing when or how many flights/shipments show up. Connext
provides rich semantics that can be used to track, monitor, and check the state (new, deleted, no writers,
etc.) of individual instances. Some of the possible notifications are displayed in the Output tab.

43



5.2 Multiple Instances Example

44

Publishers and subscribers are associated with a topic. If you create a new topic every time a new flight
is detected, you would need to create a matching subscriber and publisher pair. This is obviously not
scalable, since you can have many different aircraft flight plans.

Instances give you the ability to scale a topic. Unique instances of a topic are defined by unique key val-
ues. A subscriber of a topic will get all the data sent on all the instances of this topic. Take the example
of flight track data: the key could be the flight ID, pilot name or mission code. Regardless of how many
new flights there are, you would only need one subscriber to get the data, because the topic is the same.

In this example, the topic is the shape of the object (Square, Circle or Triangle) and the key is its color.
So different colors of an object give you different instances of the topic. For example, a red circle is a
different instance from a green circle, yet they are all instances of the Circle topic.

At this point, you should have two copies of Shapes Demo running, which will be referred to as Pub-
lisher1 and Subscriber1. In this example, you will be asked to start additional copies of Shapes Demo.

Tip: If you make a mistake during the following steps and need to delete a single publisher or sub-
scriber, select the item in the Legend tab and press the Delete key on your keyboard.

1. This exercise picks up where the previous one left off. So you should have two demo windows
running: one is publishing red circles (Publisher1) and the other is subscribing to circles (Sub-
scriber1).

2. In Subscriber1, choose Delete All from the Controls Menu.

3. Create a circle subscriber with History = 1:

a. In Subscriber1, under Subscribe, click on Circle.

b. In the Create New Subscriber window:

l Change the History field from 6 to 1.
l Click OK.

You should now see one red circle moving in each instance of Shapes Demo.
4. Create a green circle publisher:

a. In Publisher1 under Publish, click on Circle.

b. In the Create New Publisher window:

l Select GREEN for Color.
l Click OK.

You should see two circles moving on each canvas—one red and one green.



5.2 Multiple Instances Example

Figure 5.2: Publisher and Subscriber Displays for Multiple Instances

Notice that we did not have to do anything in Subscriber1 to start receiving the green
circle’s data. That’s because the subscriber of a topic (Circle, in this case) gets all data sent
for all instances of the topic. The green circle was just another instance of the topic Circle,
so the subscriber received this new data automatically.

5. Create another red circle publisher in a new window:

a. Start a third Shapes Demo. We will refer to this copy of the application as Publisher2.

b. Under Publish, click on Circle.

c. In the Create New Publisher window:

l Select RED for Color
l Click OK.

We now have multiple publishers updating the same instance (Red) of the topic Circle, as in Fig-
ure 5.3: Two Publishers and One Subscriber on the next page. You'll see that the red circle on
Subscriber1's canvas flickers between different locations. This happens because the subscriber is
receiving position data from both of the publishers and is trying to display them at the same time.
Details on how to handle such a situation will be discussed in the next section.

6. Click Delete All in the Controls sub-panel of each of the three demo windows.

Note: A Subscriber shape may appear with an X or a ? symbol on it:

45



5.3 Ownership Example

46

l X means the instance has been disposed by the DataWriter (DDS_NOT_ALIVE_DISPOSED_
INSTANCE_STATE).

l ? means none of the DataWriters that are currently alive are writing the instance (DDS_NOT_
ALIVE_NO_WRITERS_INSTANCE_STATE).

l For more information on these states, please see the RTI Connext Core Libraries User’s Manual
or API reference HTML documentation.

Figure 5.3: Two Publishers and One Subscriber

5.3 Ownership Example

As you saw in the previous example, it's possible for multiple publishers to simultaneously send data to
the same instance of a topic. You may or may not want this behavior. For certain types of data such as
commands, you may want to receive updates from just one publisher at a time in order to be ensure con-
sistency. Exclusive ownership is a way to ensure that only one publisher's data for a specific instance
can get through to a subscriber. With multiple publishers, the one with the highest ownership strength
wins.



5.3 Ownership Example

At this point, you should have three copies of Shapes Demo running, which will be referred to as Pub-
lisher1, Publisher2 and Subscriber1. If you have not already done so, click Delete All on each one, so
they are not publishing or subscribing to any shapes.

Tip: If you make a mistake during the following steps and need to delete a single publisher or sub-
scriber, select the item in the Legend tab and press the Delete key on your keyboard.

1. In Publisher1, create an orange tri-
angle publisher, with Exclusive own-
ership, Strength = 1:

a. Under Publish, click on Tri-
angle.

b. In the Create New Publisher
window:

l Select ORANGE.
l Check Exclusive.
l Set Strength to 1.
l Click OK.

You should see a floating orange tri-
angle on the canvas. We created a
publisher with exclusive ownership
and a strength of 1.

2. In one of the other Shapes Demo win-
dows, create a triangle subscriber
with Exclusive ownership. We will
call this window Subscriber1.

a. Under Subscribe, click on Tri-
angle.

b. In the Create New Subscriber
window:

l Check Exclusive.
l Click OK.

You should see 6 orange triangles
with blue borders moving around on
the Subscriber1 canvas. So far, this is

47



5.3 Ownership Example

48

similar to the publisher-subscriber exercise.

3. In the third window, create an orange triangle publisher with Exclusive ownership and Strength
= 3. We will call this window Publisher2.

a. Under Publish, click on Tri-
angle.

b. In the Create New Publisher
window:

l Select ORANGE.
l Check Exclusive.
l Set Strength to 3.
l Click OK.

You should see an orange triangle on
Publisher2's canvas, as in Figure 5.4:
Different Ownership Strengths on the
next page.

4. Use your mouse in Publisher2 to
drag the triangle around the canvas.
The triangle in Subscriber1 should
exactly mirror your mouse movements, because Publisher2 has a higher strength than Publisher1.

5. Click Delete All in the Controls sub-panel of each of the three demo windows.



5.4 Failure Detection Example

Figure 5.4: Different Ownership Strengths

5.4 Failure Detection Example

You may want to detect when the publisher or the network is behaving abnormally and the subscriber
hasn't seen updates for an instance within a specified period of time. The Deadline QoS offers a way to
do this.

Deadline is a contract between the publisher and the subscriber based on the data rate. The publisher
offers to send data at least once in its specified deadline period and the subscriber requests to receive
data within its deadline period. If either the subscriber or the publisher misses their deadline, an event
callback for "deadline missed" occurs.

At this point, you should have three copies of Shapes Demo running, though you will only use two of
them for this example. The two copies will be referred to as Publisher1 and Subscriber1. If you haven't
already done so, click Delete All in each one.

Tip: If you make a mistake during the following steps and need to delete a single publisher or sub-
scriber, select the item in the Legend tab and press the Delete key on your keyboard.

49



5.4 Failure Detection Example

50

1. In Publisher1, create a cyan square
publisher,
Deadline = 200 ms.:

a. Under Publish, click on
Square.

b. In the Create New Publisher
window:

l Select CYAN.
l Set Deadline to 200 ms.
l Click OK.

2. Create a square subscriber in Subscriber1 with Deadline = 4000 ms:

a. Under Subscribe, click on Square.

b. In the Create New Subscriber
window:

l Set Deadline to 4000
ms.

l Click OK.

You'll see six cyan squares moving
around Subscriber1's canvas. This set
of squares mirrors the movement of
the cyan square on Publisher1's can-
vas, along with 5 historical samples.

Note: The subscriber's deadline must
be greater than or equal to the pub-
lisher's deadline. If not, an "Incom-
patible QoS (Deadline) on Square"
error message will be displayed in
the Output tab of the Subscriber demo application.

3. In Publisher1’s Controls sub-panel, click Pause Publishing.



5.5 Failover Example

The cyan square on Subscriber1's canvas should freeze. Note that now all the samples' borders
have the same thickness: this indicates that all of them are historical data.

In Subscriber1, select the Output tab to see messages notifying the application that the promised
deadline of 4000 ms has been missed, as seen in Figure 5.5: Missed Deadline below.

4. Click Resume Publishing.

The cyan squares in Subscriber1's canvas will start moving again, mirroring the movement on
Publisher1's canvas.

5. Click Delete All in the Controls sub-panel of each demo window.

Figure 5.5: Missed Deadline

5.5 Failover Example

In most mission-critical systems, there are failover mechanisms to handle unexpected behaviors. In this
exercise, we combine the previous two exercises to illustrate hot-failover behavior where the "primary"
publisher goes down and the subscriber immediately detects the loss and starts taking data from the
"secondary" publisher.

At this point, you should have three copies of Shapes Demo running, referred to as Publisher1, Pub-
lisher2 and Subscriber1. If you have not already done so, click Delete All in each one.

Tip: If you make a mistake during the following steps and need to delete a single publisher or sub-
scriber, select the item in the Legend tab and press the Delete key on your keyboard.

51



5.5 Failover Example

52

1. In Publisher1, create a red circle publisher with
Exclusive Ownership, Strength = 1, Deadline =
400 ms:

a. In Publisher1, under Publish, click on Circle.

b. In the Create New Publisher window:

l Select RED for Color.
l Check Exclusive.
l Set Strength to 1.
l Set Deadline to 400 ms.
l Click OK.

2. In Publisher2, create a red circle publisher with
Exclusive Ownership, Strength = 3, Deadline =
400 ms:

a. Under Publish, click on Circle.

b. In the Create New Publisher window:

l Select RED for Color.
l Check Exclusive.
l Set Strength to 3.
l Set Deadline to 400 ms.
l Click OK.



5.6 Extensible Types Examples

3. In Subscriber1, create a circle subscriber, Exclusive
selected, Deadline = 2000 ms.

a. Under Subscribe, click on Circle.

b. In the Create New Subscriber window:

l Check Exclusive.
l Set Deadline to 2000 ms.
l Click OK.

On the subscriber canvas, you should see red circles
that mirror the movement of the one in Publisher2.
This happens because Publisher2's circle has a
higher strength that Publisher1's. The deadline set-
ting for the subscriber is the time at which the subscriber application will "fail-over" to the lower
strength publisher application.

4. In Publisher2, click on Pause Publishing.

After 2000 ms, Subscriber1 will show a "requested deadline missed" message in its Output tab
and at the same time, fail over to display the movements of the red circle in Publisher1.

Publisher2 initially had exclusive ownership of the red circle instance because it had a higher
strength. However, this ownership was lost to the lower-strength Publisher1 when the subscriber
missed a deadline. This is especially useful if a publisher is unable to gracefully shutdown and
relinquish its ownership.

5. In Publisher2, click on Resume Publishing.

Subscriber1's red circle should immediately switch to tracking the movements of Publisher2.
6. Click Delete All in the Controls sub-panel of each demo window.

5.6 Extensible Types Examples

Data models often need to evolve. In a deployed system, you might want to deploy new applications
that can handle additional attributes in the data model, yet maintain compatibility with already deployed
applications—without making any changes. The Extensible Types feature is designed to handle these
situations: applications using different but compatible data-types can still communicate. The Shapes
Demo application uses two different data types to demonstrate this scenario. Shapes Demo can publish
and subscribe to either a “Shapes Extended” data type (the default) or a more basic “Shape” data type.
The difference between these types is that the Shapes Extended type includes two more pieces of
information: a fill-pattern and a rotation speed.

In addition to the QoS settings that you will experiment with in these exercises, there is another QoS
specific to Extensible Types (TypeConsistencyEnforcementQosPolicy) that can further customize the

53



5.6.1 Introduction to the Shape Extended Type

54

behavior of applications when using Extensible Types. For details, see the RTI Connext Core Libraries
Extensible Types Guide.

At this point, you should have three copies of Shapes Demo running, referred to as Publisher1, Pub-
lisher2 and Subscriber1. All are using the Shape Extended data type by default.

5.6.1 Introduction to the Shape Extended Type

At this point, you should have three copies of Shapes Demo running, though you will only use two of
them for this example. The two copies will be referred to as Publisher1 and Subscriber1. If you haven't
already done so, click Delete All in each one.

1. Publish a Square in Publisher1. In the publish screen, choose the horizontal hatch pattern and set
the rotation speed to middle setting.

2. Subscribe to Squares in Subscriber1. In the subscriber, you
will see the shape with the selected pattern, rotating at the
selected speed.

../../extensible_types_guide/RTI_ConnextDDS_CoreLibraries_ExtensibleTypes_Guide.pdf
../../extensible_types_guide/RTI_ConnextDDS_CoreLibraries_ExtensibleTypes_Guide.pdf


5.6.2 Publishing Extended Type, Subscribing to Basic Type

3. Feel free to repeat with other shapes, fill patterns, and speeds.

4. Select Delete All in each instance of Shapes Demo.

5.6.2 Publishing Extended Type, Subscribing to Basic Type

This scenario simulates the situation where new applications are publishing data with extra information
using an extended data model, but there are existing applications that only need to subscribe to the ori-
ginal, basic data model (and in fact, don’t even have the logic to deal with extra attributes in the newer,
extended model).

At this point, you should have three copies of Shapes Demo running, though you will only use two of
them for this example. The two copies will be referred to as Publisher1 and Subscriber1. If you haven't
already done so, click Delete All in each one.

1. In Publisher1 (which uses the Shape Extended type by default), publish a blue square. Select the
horizontal hatch fill-pattern and a medium rotation speed.

2. In Subscriber1’s Configuration dialog, press Stop, select the “Shape” data type, press Start.

3. In Subscriber1, subscribe to squares.

4. In Publisher1, you should see a square with the selected pattern, rotating at the selected speed. In
Subscriber1, you should see a blue square that does not have the pattern and is not rotating.

5. Select Delete All in both instances of Shapes Demo.

55



5.6.3 Publishing Original and Extended Types, Subscribing to Extended Type

56

5.6.3 Publishing Original and Extended Types, Subscribing to Extended Type

This scenario simulates the situation where deployed applications are publishing data using the old
model and new applications are receiving data of both the original and extended data types.

1. In Publisher1’s Configuration dialog, press Stop, select the “Shape” data type, press Start.

2. In Publisher 1, publish a blue square.

3. In Publisher2 (using the Shape Extended type by default), publish a red square with the hori-
zontal hatch fill-pattern and a medium rotation speed.

4. In the previous exercise, we changed Subscriber1 to use the Shape type. Change it back to use
Shape Extended.

5. In Subscriber1, subscribe to squares. You should see that Subscriber1 is receiving both types of
squares, as seen below.



5.7 Security Examples

5.7 Security Examples

The RTI Security Plugins introduce a robust set of security capabilities, including authentication,
encryption, access control, and logging. Secure multicast support enables efficient and scalable dis-
tribution of data to many subscribers. Performance is also optimized by fine-grain control over the level
of security applied to each data flow, such as whether data confidentiality or just data integrity is
required.

RTI Shapes Demo is configured to run Security examples out of the box, with no configuration from
your side other than selecting the correct profile.

Shapes Demo installation directory>/resource/xml includes the following files, which are used by
Shapes Demo to configure/enable security:

l RTI_SHAPES_DEMO_GOVERNANCE_MAX.xml
l RTI_SHAPES_DEMO_GOVERNANCE_MIN.xml
l RTI_SHAPES_DEMO_GOVERNANCE_RTPS_ENCRYPT_WITH_ORIGIN_
AUTHENTICATION.xml

l RTI_SHAPES_DEMO_PERMISSIONS.xml
l signed/RTI_SHAPES_DEMO_GOVERNANCE_MAX.p7s
l signed/RTI_SHAPES_DEMO_GOVERNANCE_MIN.p7s
l signed/RTI_SHAPES_DEMO_GOVERNANCE_RTPS_ENCRYPT_WITH_ORIGIN_
AUTHENTICATION.p7s

l signed/RTI_SHAPES_DEMO_PERMISSIONS.p7s

Note: Make sure to run every instance of Shapes Demo using domain ID 0, since that's what the gov-
ernance files use:
<domain_access_rules>

<domain_rule>
<domains>

<id_range>
<min>0</min>

</id_range>
</domains>

</domain_rule>
...

57



5.7 Security Examples

58

The following sections refer to these profiles (which are in RTI_SHAPES_DEMO_QOS_
PROFILES.xml):

l RTI_Shapes_Lib::Udpv4Only—Baseline profile that configures Shapes Demo to use UDPv4.
l RTI_Shapes_Lib::ReaderMulticast—Enable multicast in the data reader. This profile applies to
a data reader.

l RTI_Shapes_Lib::WriterTainter (adversarial)—Simulates a man-in-the-middle tainting data
while it's in flight. This profile applies to a data writer.

l Security::LightweightSecurity—Lightweight Security enabled, subscribing and publishing to all
topics is allowed.

l Security::SecureAllowAll—Security enabled, subscribing and publishing to all topics is
allowed.

l Security::SecureMinimal—Minimal security profile: does not protect outgoing data from being
tainted, does not check that incoming data hasn't been tainted, and unencrypted topics will be
communicated with Multicast (no security) participants.

l Security::SecureRtpsEncryptWithOriginAuthentication—Maximum security for RTPS
messages. Protects outgoing messages from being tainted or viewed, and protects outgoing mes-
sages from being replayed by a subscriber masquerading as a publisher.

l Security::SecureDenyPubCircles—Circles published by this participant will be accepted by
secure participants because they have enable_write_access_control set to false for Circle.

l Security::SecureDenySubSquares—Prevents this participant from subscribing to Squares.
l Security::Imposter (adversarial)—Enables security. Tries to impersonate another peer by using
its certificate.

l Security::KeyRegenerationBase—Enables security and key revisions using the ecdsa01Peer-
01Cert identity certificate. This profile also configures Shapes Demo to:

l use UDPv4
l use the same multicast receive address, 239.255.0.2, for any reader with this profile
l use TRANSIENT_LOCAL as the Durability QoS kind, and use RELIABLE as the Reli-
ability QoS kind

l Security::KeyRegenerationSub1—Same as the Security::KeyRegenerationBase profile, but
uses ecdsa01Peer02Cert as the identity certificate.

l Security::KeyRegenerationSub2—Same as the Security::KeyRegenerationBase profile, but
uses ecdsa01Peer03Cert as the identity certificate.

Note: In all the Security profiles except Security::LightweightSecurity, the Triangle and Square top-
ics are encrypted. Circles remain unencrypted.



5.7.1 Subscribing to Data from an Application not using Security Plugins

5.7.1 Subscribing to Data from an Application not using Security Plugins

This scenario simulates the situation where we have an application using the security plugins that wants
to subscribe to a topic published by an application that is not using the security plugins.

Notes:

l Make sure to run every instance of Shapes Demo using domain 0.
l Use the default profile when publishing/subscribing unless otherwise noted.

1. Start Shapes Demo and choose the RTI_Shapes_Lib::Udpv4Only profile (described in 4.3.5
Applying QoS from a Profile on page 22. We'll call this instance Publisher1.

59



5.7.1 Subscribing to Data from an Application not using Security Plugins

60

Publish blue circles and squares.

2. Start a second instance of Shapes Demo using the Security::SecureAllowAll profile. We'll call
this instance Participant1.

Tip: To start another instance of Shapes Demo, select File, New Shapes Demo.

Subscribe to circles and squares. Notice that no shapes appear in Participant1:



5.7.1 Subscribing to Data from an Application not using Security Plugins

Let’s see a snippet of the RTI_SHAPES_DEMO_GOVERNANCE_MAX.xml file used by the
Security::SecureAllowAll profile to see why this is happening:
<domain_access_rules>

<domain_rule>
...
<allow_unauthenticated_participants>false</allow_unauthenticated_participants>
<enable_join_access_control>true</enable_join_access_control>
<discovery_protection_kind>ENCRYPT</discovery_protection_kind>
<liveliness_protection_kind>ENCRYPT</liveliness_protection_kind>
<rtps_protection_kind>SIGN</rtps_protection_kind>
...

</domain_rule>
</domain_access_rules>

Discovery is configured to be encrypted in the Security::SecureAllowAll profile used by Par-
ticipant1 (the subscriber), but not in the RTI_Shapes_Lib::Udpv4Only profile used by Pub-
lisher1. These two profiles are not compatible with each other and therefore will not interoperate.

3. Start a third instance of Shapes Demo using the Security::SecureMinimal profile. We'll call this
instance Subscriber1.

Subscribe to circles and squares using the RTI_Shapes_Lib::ReaderMulticast profile.

Notice that only blue circles appear in Subscriber1:

61



5.7.1 Subscribing to Data from an Application not using Security Plugins

62

Let’s take a look at a snippet of RTI_SHAPES_DEMO_GOVERNANCE_MIN.p7s, which is
used by the Security::SecureMinimal profile, to see why only circles are being displayed:

<domain_access_rules>
<domain_rule>

...
<allow_unauthenticated_participants>true</allow_unauthenticated_participants>
<enable_join_access_control>false</enable_join_access_control>
<discovery_protection_kind>NONE</discovery_protection_kind>
<liveliness_protection_kind>NONE</liveliness_protection_kind>
<rtps_protection_kind>NONE</rtps_protection_kind>
<topic_access_rules>

<topic_rule>
<topic_expression>Circle*</topic_expression>
<enable_discovery_protection>false</enable_discovery_protection>
<enable_liveliness_protection>false</enable_liveliness_protection>
<enable_read_access_control>false</enable_read_access_control>
<enable_write_access_control>false</enable_write_access_control>
<metadata_protection_kind>NONE</metadata_protection_kind>
<data_protection_kind>NONE</data_protection_kind>

</topic_rule>
<topic_rule>

<topic_expression>*</topic_expression>
<enable_discovery_protection>true</enable_discovery_protection>
<enable_liveliness_protection>true</enable_liveliness_protection>
<enable_read_access_control>true</enable_read_access_control>
<enable_write_access_control>true</enable_write_access_control>



5.7.1 Subscribing to Data from an Application not using Security Plugins

<metadata_protection_kind>ENCRYPT</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_protection_kind>

</topic_rule>
</topic_access_rules>

</domain_rule>
</domain_access_rules>

The reader cannot process squares because both the data and metadata for the “Squares” topic are
configured to be encrypted. This is accomplished by setting metadata_protection_kind =
ENCRYPT and data_protection_kind = ENCRYPT in the Governance file seen above.

When defining a topic_rule, order matters. The first rule will be used to try to match with the
DataWriter/DataReader topic that has been published/subscribed to. If the topic doesn’t match the
first rule, the second one will be used, etc. This process continues until it finds a match.

4. Using Participant1, publish green circles and squares.

Subscriber1 won’t display either shape from Participant1 because the rtps_protection_kind
settings in Security::SecureAllowAll and Security::SecureMinimal are incompatible.

63



5.7.1 Subscribing to Data from an Application not using Security Plugins

64

Participant1 (using Security:SecureAllowAll) rejects messages from Subscriber1 (using
Security:SecureMinimal) because it is configured to reject RTPS messages that have not
been signed (rtps_protection_kind = SIGN). This prevents discovery from succeeding at
the participant level. Let’s see their rtps_protection_kind settings in these snippets:

RTI_SHAPES_DEMO_GOVERNANCE_MIN.xml (used by Security::SecureMinimal,
Subscriber1):
...
<rtps_protection_kind>NONE</rtps_protection_kind>
...

RTI_SHAPES_DEMO_GOVERNANCE_MAX.xml (used by
Security:SecureAllowAll, Participant1):
...
<rtps_protection_kind>SIGN</rtps_protection_kind>
...

5. Start a fourth instance of Shapes Demo using the Security::SecureAllowAll profile. We'll call
this instance Subscriber2.

Subscribe to circles and squares using the RTI_Shapes_Lib:ReaderMulticast profile.



5.7.2 Access Control and Authentication

In Subscriber2, you will see the green circle and square published by Participant1, because these
Participants use compatible security profiles.

5.7.2 Access Control and Authentication

This scenario simulates the situation where we have various applications using the security plugins and
we want to prevent receiving certain topics while using authentication.

Notes:

l Make sure to run every instance of Shapes Demo using domain 0.
l Use the default profile when publishing/subscribing unless otherwise noted.

65



5.7.2 Access Control and Authentication

66

1. Start an instance of Shapes Demo using the Security::SecureAllowAll profile as explained in
4.3.5 Applying QoS from a Profile on page 22. We'll call this instance Shapes1.

Publish green squares, circles, and triangles.

Subscribe to squares, circles, and triangles.

2. Start a second instance of Shapes Demo using the Security::SecureDenyPubCircles profile.
We'll call this instance Shapes2.



5.7.2 Access Control and Authentication

Tip: To start another instance of Shapes Demo, select File, New Shapes Demo.

Publish cyan squares, circles, and triangles.

Subscribe to squares, circles, and triangles.

3. Start a third instance of Shapes Demo using the Security::SecureDenySubSquares profile. We'll
call this instance Shapes3.

Publish magenta squares, circles, and triangles.

Subscribe to squares, circles, and triangles.

Notice that subscribing to squares causes an error:

67



5.7.2 Access Control and Authentication

68

This error is because the profile will not allow you to create DataReaders for the topic ‘Square’.
We can see this in the <deny_rule> section of the profile:

<deny_rule>
<domains>

<id>0</id>
</domains>
<subscribe>

<topics>
<topic>Square*</topic>

</topics>
</subscribe>

</deny_rule>

Click OK on the error and continue to subscribe to circles and triangles.



5.7.2 Access Control and Authentication

Now the first three instances should look like this:

To recap: 
l Shapes1 displays all the shapes that are being published, because Secur-
ity::SecureAllowAll is configured to allow subscribing to all Topics.

l Shapes2 also displays all the shapes, because Security::SecureDenyPubCircles is con-
figured to allow subscribing to all Topics. Circles published will be accepted by secure par-
ticipants because enable_write_access_control is set to false for circles.

l Shapes3 displays all the shapes except squares, because Secur-
ity::SecureDenySubSquares prevents subscribing to squares.

4. Start a fourth instance of Shapes Demo using the Security::SecureMinimal profile. We'll call
this instance Subscriber1.

Subscribe to squares, circles, and triangles.

Subscriber1 won’t display any shapes, because Security::SecureMinimal is not configured to
use authentication.

5. Start a fifth instance of Shapes Demo using the Security::Imposter profile. We'll call this
instance ShapesImposter.

Publish orange squares, circles, and triangles.

Subscribe to squares, circles, and triangles.

69



5.7.2 Access Control and Authentication

70

This instance will only receive its own shapes. The other instances will not communicate with it.
Authentication is failing because ShapesImposter is using (impersonating) a wrong combination
of private key and public certificates. Let’s take a look at the Security::Imposter profile in the
RTI_SHAPES_DEMO_QOS_PROFILES.xml file to see why:

<qos_profile name="Imposter" base_name="SecureAllowAll">
<domain_participant_qos>

<property>
<value>

<element>
<name>dds.sec.auth.identity_certificate</name>
<value>

file:$(NDDSHOME)/resource/cert/ecdsa01/identities/ecdsa01Peer02Cert.pem
</value>

</element>
<element>

<name>dds.sec.auth.private_key</name>
<value>

file:$(NDDSHOME)/resource/cert/ecdsa01/identities/ecdsa01Peer03Key.pem
</value>

</element>
<element>

<name>dds.sec.auth.password</name>
<value>SnVsaWFuRTEx</value>

</element>
</value>

</property>
</domain_participant_qos>



5.7.3 Data Integrity

</qos_profile>

5.7.3 Data Integrity

This scenario simulates the situation where there is a "man in the middle" tainting data while it’s in
flight.

Notes:

l Make sure to run every instance of Shapes Demo using domain 0.
l Use the default profile when publishing/subscribing unless otherwise noted.

1. Start an instance of Shapes Demo using the RTI_Shapes_
Lib::Udpv4Only profile as explained in 4.3.5 Applying QoS
from a Profile on page 22. We'll call this instance Publisher1.

Publish a blue square.

Publish a blue triangle using the RTI_Shapes_
Lib::WriterTainter profile.

2. Start a second instance of Shapes Demo using the RTI_
Shapes_Lib::Udpv4Only profile. We'll call this instance
Subscriber1.

Tip: To start another instance of Shapes Demo, select File,
New Shapes Demo.

Subscribe to squares.

You will see the blue squares.

Now subscribe to triangles.

You will see that the blue triangles are corrupted. The shape does not match the triangle that is
published in Publisher1. In fact, the shape may be so big that it takes up the whole area, as seen
here:

71



5.7.3 Data Integrity

72

Let’s take a look at theWriterTainter profile to see why the triangle is being corrupted:

<qos_profile name="WriterTainter">
<datawriter_qos>

<property>
<value>

<element>
<name>dds.data_writer.cryptography.taint_data</name>
<value>true</value>

</element>
</value>

</property>
</datawriter_qos>

</qos_profile>

The DataWriter is using a property dds.data_writer.cryptography.taint_data, which is used to
simulate tainted data. This means the data will be modified after Security Plugins generates the
GMAC for the data.

3. Start a third instance of Shapes Demo using the Security:SecureMinimal profile. We'll call this
instance Publisher2.

Publish red squares.

Publish red triangles using the RTI_Shapes_Lib::WriterTainter profile.



5.7.4 Maximum RTPS Message Protection

4. Start a fourth instance of Shapes Demo using the Security::SecureMinimal profile. We'll call
this instance Subscriber2.

Subscribe to squares and triangles.

Only the red square will appear because the triangle has been tainted. Subscriber2 will detect that
the data has been modified after the data was signed on origin, so it will drop it.

5.7.4 Maximum RTPS Message Protection

This scenario illustrates the contents of RTPS packets when using maximum protection for RTPS mes-
sages.

1. Start an instance of Shapes Demo using any domain and the Secur-
ity::SecureRtpsEncryptWithOriginAuthentication profile as explained in 4.3.5 Applying QoS
from a Profile on page 22. We'll call this instance Publisher.

2. Publish a blue square.

73



5.7.4 Maximum RTPS Message Protection

74

3. Start two more instances of Shapes Demo using the same domain as Publisher and the Secur-
ity::SecureRtpsEncryptWithOriginAuthentication profile. We'll call these instances Sub-
scriber1 and Subscriber2.

Tip: To start another instance of Shapes Demo, select File, New Shapes Demo. You will still
need to stop and restart via Controls, Configuration with the correct profile.

4. Subscribe to squares in both instances. You will see the blue squares:

5. Run Wireshark on the loopback interface with the display filter, rtps.domain_id == <your
domain>. Observe the packets.



5.7.4 Maximum RTPS Message Protection

The only submessages in each packet are SRTPS_PREFIX, SEC_BODY and SRTPS_POSTFIX.
If <rtps_protection_kind> was SIGN, then you would also see INFO_TS even if <metadata_pro-
tection_kind> was ENCRYPT. Now, even the INFO_TS is encrypted.

75



5.7.5 Key Regeneration

76

Within the SRTPS_POSTFIX, the value “00 00 00 02” indicates that there are two receiver-spe-
cific GMACs in the postfix. Each GMAC is 20 bytes long: 4 bytes for a key ID and 16 bytes for
the GMAC tag that Publisher computed over the encrypted SEC_BODY using the key asso-
ciated with the key ID. In this example, Publisher sent the key with ID “49 45 b0 2d” to only
Subscriber1, and Publisher sent the key with ID “f8 5b f4 e4” to only Subscriber2. When Sub-
scriber1 receives this message, it looks for “49 45 b0 2d” and verifies the associated GMAC tag.
This step verifies that Subscriber1 received the message from Publisher and not from Sub-
scriber2.

Without receiver-specific GMACs, Subscriber1 can only verify the common GMAC tag, which
is contained in the 16 bytes preceding “00 00 00 02”. Publisher computed this common GMAC
tag using the shared key that Publisher sent to both Subscriber1 and Subscriber2. Since all
parties have this key, verifying this tag only tells Subscriber1 that Publisher or Subscriber2
sent the message. Subscriber1 cannot verify that Subscriber2 didn’t masquerade as Publisher.

5.7.5 Key Regeneration

This example demonstrates how to ignore a remote DomainParticipant, then prevent the ignored Par-
ticipant from receiving local DomainParticipant traffic. In this example, you will start three instances of
Shapes Demo; be sure to run each instance using the same domain.

1. Start an instance of Shapes Demo using the Security::KeyRegenerationBase profile. We'll call
this instance Publisher1.

a. Open a new instance of Shapes Demo using any domain.

b. Go to Controls > Configuration, then select Stop.



5.7.5 Key Regeneration

c. In Choose the profile, select Security::KeyRegenerationBase, then click Start.

See 4.3.5 Applying QoS from a Profile on page 22 for additional information about starting
Shapes Demo using a specific QoS profile.

2. In Publisher1, publish a blue triangle using the Security::KeyRegenerationBase profile.

77



5.7.5 Key Regeneration

78

a. Go to Publish > Triangle.

b. In Choose the profile, select Security::KeyRegenerationBase, then click OK.

3. Start a second instance of Shapes Demo using the Security::KeyRegenerationSub1 profile.
We'll call this instance Subscriber1.

Tip: To start another instance of Shapes Demo, select File > New Shapes Demo.

4. In Subscriber1, subscribe to blue triangles using the Security::KeyRegenerationSub1 profile.
a. Go to Subscribe > Triangle.

b. In Choose the profile, select Security::KeyRegenerationSub1, then click OK.

The blue triangle published by Publisher1 is displayed in Subscriber1.



5.7.5 Key Regeneration

5. Start a third instance of Shapes Demo using the Security::KeyRegenerationSub2 profile. We'll
call this instance Subscriber2.

6. In Subscriber2, subscribe to blue triangles using the Security::KeyRegenerationSub2 profile.
a. Go to Subscribe > Triangle.

b. In Choose the profile, select Security::KeyRegenerationSub2, then click OK.

The blue triangle published by Publisher1 is displayed in Subscriber2.

7. In the Publisher1 Legend tab, right-click the Publisher named Triangle and select Ignore Par-
ticipants.

79



5.7.5 Key Regeneration

80

The Ignore Participants dialog is displayed, listing all discovered participants (in this example,
Subscriber1 and Subscriber2).

8. Select the checkbox next to the first Subscriber in the list, then click Ignore Participants.

Subscriber1 is now ignored. However, both Subscribers will continue to receive data from Pub-
lisher1. To understand why, let's check a snippet of the Security::RegenerationBase profile:
<datareader_qos>

<multicast>
<value>

<element>



5.7.5 Key Regeneration

<receive_address>239.255.0.2</receive_address>
</element>

</value>
</multicast>

Note that both Subscribers use the same multicast address, 239.255.0.2; as a result, though Sub-
scriber1 is ignored, it will still receive data from that multicast address. We need to banish the
ignored participant to prevent it from receiving data.

9. In the Publisher1 Legend tab, right-click the Publisher named Triangle and select Banish
Ignored Participants.

Subscriber1 will stop receiving data from Publisher1, indicated by the motionless triangle in the
Subscriber1 instance.

Notice that no message is displayed in the Output tab indicating that Publisher1 was deleted; the
banishment is seamless, so there's no need to delete and recreate the Publisher in order to regen-
erate and redistribute Key Material. For more information on how Key Material is used to
remove Participants from the system, see Limiting the Usage of Specific Key Material in the RTI
Security Plugins User's Manual.

After banishing a DomainParticipant, the following error messages are printed. If Shapes Demo
was started using a script, the messages are printed to the Terminal window. If Shapes Demo was
run from Launcher, the messages are saved to the log file log-rtishapesdemo-*.out located in
the rti_workspace/version/user_config/launcher/logs directory.

DL Error: : {"DDS:Security:LogTopicV2":{"f":"10","s":"2","t":
{"s":"1695829017","n":"870424998"},"h":"RTISP-10062","i":"0.0.0.0","a":"RTI Shapes
Demo","p":"527656","k":"33554496","x":[{"DDS":[{"domain_id":"0"},
{"guid":"FAB7F532.0F987AB2.4200FE3B.000001C1"},{"plugin_class":"DDS:Crypto:AES-GCM-
GMAC"},{"plugin_method":"RTI_Security_Cryptography_decode_rtps_
message"}]}],"m":"getDecryptCryptoState"}}
DL Error: : ERROR [0xFAB7F532,0x0F987AB2,0x4200FE3B:0x000001C1{Domain=0}|DECODE RTPS
message from 0xDFCD91E1,0x6868107C,0x28F6DD64:0x000001C1|LC:Security]RTI_Security_
Cryptography_decode_rtps_message:
DL Error: : {"DDS:Security:LogTopicV2":{"f":"10","s":"2","t":
{"s":"1695829017","n":"920297998"},"h":"RTISP-10062","i":"0.0.0.0","a":"RTI Shapes
Demo","p":"527656","k":"33554496","x":[{"DDS":[{"domain_id":"0"},
{"guid":"FAB7F532.0F987AB2.4200FE3B.000001C1"},{"plugin_class":"DDS:Crypto:AES-GCM-
GMAC"},{"plugin_method":"RTI_Security_Cryptography_decode_rtps_
message"}]}],"m":"getDecryptCryptoState"}}

81

https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p2_core/cryptography.html#limiting-the-usage-of-specific-key-material


5.7.6 Pre-Shared Key Protection

82

5.7.6 Pre-Shared Key Protection

This example demonstrates how to use Pre-Shared Key (PSK) Protection to apply entry-level security.
The Pre-Shared Key secures all the traffic from the start-up of a DDS Entity and restricts the com-
munication only to Entities holding the correct pre-shared key seed. For more information, see Pre-
Shared Key Protection in the RTI Security Plugins User's Manual.

In this example, you will start three instances of Shapes Demo; be sure to run each instance using the
same domain.

1. Start an instance of Shapes Demo using the Security::LightweightSecurity profile. We'll call
this instance Publisher1.

a. Open a new instance of Shapes Demo using any domain.

b. Go to Controls > Configuration, then select Stop.

c. In Choose the profile, select Security::LightweightSecurity, then click Start.

See 4.3.5 Applying QoS from a Profile on page 22 for additional information about starting
Shapes Demo using a specific QoS profile.

https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p3_advanced/pre-shared_key.html
https://community.rti.com/static/documentation/connext-dds/7.2.0/doc/manuals/connext_dds_secure/users_manual/p3_advanced/pre-shared_key.html


5.7.6 Pre-Shared Key Protection

2. In Publisher1, publish a blue square.

3. Start a second instance of Shapes Demo using the same profile, Security::LightweightSecurity.
We'll call this instance Subscriber1.

Tip: To start another instance of Shapes Demo, select File > New Shapes Demo.

4. In Subscriber1, subscribe to squares.

83



5.7.6 Pre-Shared Key Protection

84

The blue square published by Publisher1 is displayed in Subscriber1.

5. Start a third instance of Shapes Demo; do not apply a QoS profile. We'll call this instance Sub-
scriber2.

6. In Subscriber2, subscribe to squares.

The blue square published by Publisher1 does not appear in Suscriber2. That's because Pub-



5.7.6 Pre-Shared Key Protection

lisher1 is configured to use Pre-Shared Key Protection, but Susbscriber2 is not.

To further understand why Subscriber2 is not receiving data from Publisher1, let's check a snippet of
the Security::LightweightSecurity profile.

<property>
<value>

<element>
<name>dds.sec.crypto.rtps_psk_secret_passphrase</name>

<value>str:1:dW5kZXIgY2hlc3Qgcm91bmQgZ2FpbiByZWxpZWYgbGlmdCBkZW55IGJpbmQdG9nZXRoZXIgYXdlc29Z
SBtaXh0dXJlIGV0ZXJuYWwga
GFyZCBiYW5uZXIgdXJiYW4=</value>

</element>
</value>

</property>

The dds.sec.crypto.rtps_psk_secret_passphrase property sets the value of the pre-shared key seed
and enables Pre-Shared Key Protection. In the above example, this property is not included in Sub-
scriber2 because we did not apply the Security::LightweightSecurity profile in that instance.

85



Chapter 6 More Experiments
Please feel free to experiment and run tests using the other QoS options in the Create New Sub-
scriber and Create New Publisher windows. Described below are a few other interesting beha-
viors to test.

6.1 Content-Filtered Topics Example

A content-filtered topic is a very useful feature if you want to filter data received by the Sub-
scriber. It also helps to control network and CPU usage on the subscriber side because only data
that is of interest to the subscriber is sent.

For example, assume your application is a radar monitor that draws flights detected within a 20-
mile radius. The application can subscribe to the track data with a content filtered topic for a 20-
mile radius on the coordinates of all flights. With the filter, only coordinates that are within the
20-mile radius will be sent to the application.

1. Start two copies of Shapes Demo, which we will call Publisher1 and Subscriber1. If you
are reusing demo windows from a previous section, delete any existing publishers and sub-
scribers (under Controls, click Delete All.)

2. In Publisher1, create a circle publisher (any color):

a. Under Publish, click on Circle.

b. In the Create New Publisher window, click OK.

86



6.2 Lifespan Example

87

3. In Subscriber1, create a circle subscriber
with a content filtered topic:

a. Under Subscribe, click on Circle.

b. In the Create New Subscriber win-
dow:

l Check Use filter.
l Click OK.

You will see a shaded rectangle
appear in the subscriber canvas. This
is the filter for the coordinates of the
Circle topic.

The subscriber will receive position
data for the Circle only when it is
with the area defined by the content filter.

4. To see the effect of dynamic filters, use your mouse to move and resize the shaded area in Sub-
scriber1.

6.2 Lifespan Example

The Lifespan QoS controls how long data samples are considered valid. You can use it to prevent send-
ing data that is considered too old to be valid. The default setting is an infinite duration, meaning the
data will never ‘expire.’



6.2 Lifespan Example

1. Start two copies of Shapes Demo, which we will call Publisher1 and Subscriber1. If you are
reusing demo windows from a previous section, delete any existing publishers and subscribers
(under Controls, click Delete All.)

2. In Publisher1, create a circle publisher (any color) with History = 100, Lifespan = 1000 ms.:

a. Under Publish, click on Circle.

b. Set History to 100 and Lifespan to 1000 ms.

c. Click OK.

3. In Subscriber1, create a circle subscriber with History = 100:

a. Under Subscribe, click on Circle.

b. Set History to 100.

c. Click OK.

4. Drag the shape around on Publisher1’s canvas.

On Subscriber1’s canvas, you will see a "shadow" of objects printed out in a continuous pattern.
The shadow is caused by the subscriber showing the last 20 data samples from the publisher’s his-
tory queue. The subscriber does not display more than 20 data samples due to the configuration.
Shapes Demo sends data every 50ms; because the Lifespan is configured at 1000ms, when the
publisher sends the 21st sample the first sample has expired and is no longer in the subscriber
cache.

5. In Publisher1, click Pause Publishing.

6. In Subscriber1, notice that the samples disappear as they time out. Experiment by increasing the
Lifespan setting for the publisher. The longer the Lifespan, the longer it takes for the samples to
disappear when you pause publishing.

88



6.3 Reliability and Durability Example

89

6.3 Reliability and Durability Example

In a dynamic system, you may want late-joining nodes to get the data that was sent before the nodes
connected to the network. For example, suppose you need to initialize the state of these late-joining
nodes and don't want to be continually sending the state just in case some node joins late. The Dur-
ability QoS provides late-joining nodes with the ability to get previously sent data.

1. Start two copies of Shapes Demo, which we will call Publisher1 and Subscriber1. If you are
reusing demo windows from a previous section, delete any existing publishers and subscribers
(under Controls, click Delete All.)

2. In Publisher 1, create a circle publisher (any color) with Transient Local Durability, Reliability,
and History = 200.

a. Under Publish, click on Circle.

b. In the Create New Publisher window:

l Use the drop-down list box to change Durability to Transient Local.
l Set History to 200.
l Click OK.

3. Wait for a bit.

4. In Subscriber1, create a circle subscriber with Transient-Local Durability, Reliability and History
= 200.

a. Under Subscribe, click on Circle.

b. In the Create New Subscriber window:

l Use the drop-down list box to change Durability to Transient Local.
l Check Reliability.
l Set History to 200.
l Click OK.

5. Watch the Subscriber canvas. You will see a "shadow" of objects printed out in a continuous pat-
tern. The shadow results from the subscriber showing the last 200 samples from the publisher’s
history queue.



6.4 Time-based Filtering Example

6. To stop showing the shadow trail of samples in Subscriber1, click on Hide History.

6.4 Time-based Filtering Example

Sometimes subscribers are located on slower or more remote systems that cannot handle the amount of
data that the publisher is capable of sending. For example, consider a system where a central command
center is publishing high-resolution aerial photos of a geographic area once every 30 seconds and a sol-
dier with a handheld computer is trying to subscribe to the data. In this case, the handheld computer
does not have the bandwidth to handle the command center's send rate. With time-based filtering, the
handheld computer can "throttle" the data so that it only receives data once every 5 minutes.

1. Start two copies of Shapes Demo, which we will call Publisher1 and Subscriber1. If you are
reusing demo windows from the previous section, delete any existing publishers and subscribers
(under Controls, click Delete All.)

2. In Publisher1, create a circle publisher (any color).

a. Under Publish, click on Circle.

b. In the Create New Publisher window, click OK.

3. In Subscriber1, create a circle subscriber, History = 1, Time Based Filter = 1000 ms.

a. Under Subscribe, click on Circle.

b. In the Create New Subscriber window:

l Set History to 1
l Set Time Based Filter to 1000.
l Click OK.

90



6.4 Time-based Filtering Example

91

You will see the circle jump once every second, instead of a fluid movement. In this case, the
publisher is only sending data to the subscriber once a second, according to the subscriber's time-
based filtering.



Appendix A Running from the Command
Line

In some cases you may want to run Shapes Demo from the command line.

Open a command prompt and navigate to the folder where Shapes Demo is installed.

Enter the following command:
> bin/rtishapesdemo <command-line options>

Table A.1 Command-line Options describes the command-line options. These options take pre-
cedence over conflicting settings in the configuration file (if any). (For example, if the con-
figuration file specifies domain ID 1 and you enter -domainId 2, then domain ID 2 will be
used.)

Option Description

-compact Starts Shapes Demo using a compact view

-configure Opens the configuration dialog at start up, even if -dataType is set.

-dataType
<Shape|ShapeExtended> Sets the default value for the type.

-domainId <ID>

For different copies of Shapes Demo to communicate with each other, they must use the same domain ID.

The default domain ID is 0; if you need to use a different domain ID, you must use the same value for all copies of
Shapes Demo that need to communicate with each other.

The ID is an integer value, 0 or higher.

-domainTag <string>

For different copies of Shapes Demo to communicate with each other, they must use the same Domain tag.

The default value is empty ("", zero-length string).

The Domain tag is a string with a maximum of 255 characters.

-help Lists the command-line options.

Table A.1 Command-line Options

92



Appendix A Running from the Command Line

93

Option Description

-posX <integer>

-posY <integer>

Sets the X and Y positions where the Shapes Demo window will be displayed on your screen.

The valid range for <integer> depends on your screen's resolution.

Using (-1, -1) for the X and Y positions results in a default position chosen by either the windowing system or wxWid-
gets, depending on platform.

-pubInterval <integer>
Specifies how often the publisher should send data (in ms).

Default: 50 ms

-subInterval <integer>
Specifies how often the subscriber should look for data (in ms).

Default: 50 ms

-verbosity <0..5>

Controls the verbosity of messages from Shapes Demo.

0 = SILENT No further output will be logged. (Default)

1 = ERROR Only error messages will be logged.

2 = WARNING Both errors and warnings will be logged.

3 = LOCAL Errors, warnings, and verbose information about the lifecycles of local Connext objects will be logged.

4 = REMOTE Errors, warnings, and verbose information about the lifecycles of remote Connext objects will be
logged.

5 = ALL Errors, warnings, verbose information about the lifecycles of local and remote Connext objects, and peri-
odic information about Connext threads will be logged.

-workspaceFile <file>
Specifies an XML configuration file.

Default: See 4.5 Shapes Demo’s Workspace on page 35.

Table A.1 Command-line Options



Appendix B Troubleshooting
B.1 No Communication between Shapes Demos on Different

Computers

If you are running Shapes Demo on different computers but they are not communicating with
each other, it might be because your network or computers don’t support multicast. To fix this
problem, give Shapes Demo a list of all the hosts that need to discover each other (see 4.2.1 If
You Cannot use Multicast on page 19).

B.2 Windows Security Alert

When you run the demo, you may encounter a "Windows Security Alert" dialog. Simply click
Allow Access.

94



B.3 Running without an Active Network Interface

95

B.3 Running without an Active Network Interface

If you run Shapes Demo on a system that does not have an active network interface, you may see this
warning:

Participant creation failed because, by default, Shapes Demo uses UDPv4, which is not available if
there is no active network interface.

After you select OK, Shapes Demo will create a participant using shared memory instead of UDPv4.

B.4 Error Dialog

If an error occurs while trying to create a DomainParticipant or any other DDS Entity, an error dialog
will appear like the following:

For more information, open the log file in the location specified in the error message.

Note: The log file might appear empty if Shapes Demo is still running. If that’s the case, close Shapes
Demo, then open the log file.



B.5 Log Messages are not Logged to My Log File

B.5 Log Messages are not Logged to My Log File

If you configured Shapes Demo to print the log messages to a file, such as:
<qos_profile name="..." is_default_qos="true">

<participant_factory_qos>
<logging>

<output_file>/path/to/log/file/log.txt</output_file>
</logging>

</participant_factory_qos>
...

You need to disable Distributed Logger first, otherwise the log messages will be printed by Distributed
Logger and not in the log file.

To disable Distributed Logger, click on Controls, Configuration and uncheck the box for Enable Dis-
tributed Logger:

B.6 Publishing is slower than expected on macOS Systems

Starting with macOS® 10.9 (OS X Mavericks), Apple® introduced some power-saving features that
may affect the publication rate of Shapes Demo. One of these features is App Nap, which puts applic-
ations that you can’t see into a special low-power state that regulates their CPU usage, as well as
network and disk I/O.

To see if Shapes Demo is in App Nap mode, launch the Activity Monitor app and click on the Energy
tab:

96



B.6 Publishing is slower than expected on macOS Systems

97

To disable this feature, run the following command in a terminal window:
defaults write com.rti.RTI-ShapesDemo NSAppSleepDisabled -bool YES

Where com.rti.RTI-ShapesDemo is Shapes Demo’s Bundle Identifier.



Appendix C Known Issues
Note: For an updated list of critical known issues, see the Critical Issues List on the RTI Cus-
tomer Portal at https://support.rti.com.

C.1 Shapes Demo not Scaled Properly in Some Cases

Shapes Demo is not scaled properly when using a scaling factor other than the default (100%),
on high-DPI displays on Windows 7, 8, and 8.1.

[RTI Issue ID SHAPES-173]

98

https://support.rti.com/

	Chapter 1 Introduction
	1.1 Guide to this Document
	1.2 Goals of the Demonstration

	Chapter 2 Release Notes
	2.1 What's New in 7.3.0 LTS
	2.1.1 Create all available shapes at once
	2.1.2 Support for the Lightweight Security Plugins
	2.1.3 Support for ignore_participant and banish_ignored_participants APIs
	2.1.4 Third-party software changes

	2.2 What's Fixed in 7.3.0 LTS
	2.2.1 [Major] Shapes Demo may have crashed on resizing the application window while publishing a shape

	2.3 What's New in 7.2.0
	2.3.1 Third-party software changes

	2.4 What's New in 7.1.0
	2.4.1 Support for the new Observability Library
	2.4.2 Notification when DomainParticipant's Identity Certificate or Identity CA is about to expire
	2.4.3 Upgraded OpenSSL to version 3.0.8

	2.5 What's New in 7.0.0
	2.5.1 Ability to configure Domain Tag
	2.5.2 Ability to configure Partitions at DomainParticipant level


	Chapter 3 Background Information
	3.1 Communication Models in Distributed Systems
	3.2 Connext Overview
	3.2.1 Quality of Service

	3.3 Publish-Subscribe Simple Analogy
	3.4 Publish-Subscribe Complex Analogy
	3.5 Publish-Subscribe Example Application

	Chapter 4 Installing and Using Shapes Demo
	4.1 Installation
	4.2 Running Shapes Demo
	4.2.1 If You Cannot use Multicast

	4.3 Publish and Subscribe Task Panes
	4.3.1 Color
	4.3.2 Initial Size
	4.3.3 Partitions
	4.3.4 Extended Attributes
	4.3.5 Applying QoS from a Profile
	4.3.6 Setting QoS Values
	4.3.7 Using a Content Filtered Topic
	4.3.8 Controlling the Read Method

	4.4 Other Controls
	4.4.1 Delete All
	4.4.2 Pause Publishing
	4.4.3 Show/Hide History
	4.4.4 Configuration
	4.4.5 Output and Legend Tabs

	4.5 Shapes Demo’s Workspace
	4.6 Using Monitoring
	4.7 Using RTI Distributed Logger
	4.8 Using Security
	4.9 Choosing a Domain Tag
	4.10 Using RTI Monitoring Library 2.0

	Chapter 5 Examples
	5.1 Publish-Subscribe Example
	5.2 Multiple Instances Example
	5.3 Ownership Example
	5.4 Failure Detection Example
	5.5 Failover Example
	5.6 Extensible Types Examples
	5.6.1 Introduction to the Shape Extended Type
	5.6.2 Publishing Extended Type, Subscribing to Basic Type
	5.6.3 Publishing Original and Extended Types, Subscribing to Extended Type

	5.7 Security Examples
	5.7.1 Subscribing to Data from an Application not using Security Plugins
	5.7.2 Access Control and Authentication
	5.7.3 Data Integrity
	5.7.4 Maximum RTPS Message Protection
	5.7.5 Key Regeneration
	5.7.6 Pre-Shared Key Protection


	Chapter 6 More Experiments
	6.1 Content-Filtered Topics Example
	6.2 Lifespan Example
	6.3 Reliability and Durability Example
	6.4 Time-based Filtering Example

	Appendix A Running from the Command Line
	Appendix B Troubleshooting
	B.1 No Communication between Shapes Demos on Different Computers
	B.2 Windows Security Alert
	B.3 Running without an Active Network Interface
	B.4 Error Dialog
	B.5 Log Messages are not Logged to My Log File
	B.6 Publishing is slower than expected on macOS Systems

	Appendix C Known Issues
	C.1 Shapes Demo not Scaled Properly in Some Cases


