
RTI Connext DDS
Core Libraries
Getting Started Guide

Addendum for Embedded Systems

Version 6.1.2

© 2023 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
September 2023.Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Work-
ing as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All
other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished solely under and subject to
RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance with your
License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to
the extent otherwise accepted in writing by a corporate officer of RTI.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Notice

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding
maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is deprec-
ated in a release, RTI hereby provides customer notice that RTI reserves the right after one year from the
date of such release and, with or without further notice, to immediately terminate maintenance (including
without limitation, providing updates and upgrades) for the item, and no longer support the item, in a
future release.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive, Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

https://www.rti.com/terms
http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Addendum for Embedded Platforms 1
Chapter 2 Getting Started on QNX Embedded Systems

2.1 Building and Running a Hello World Example 2
2.2 Configuring Automatic Discovery 4

Chapter 3 Getting Started on INTEGRITY Systems

3.1 Building the Kernel 5
3.2 Building and Running a Hello World Example 6

3.2.1 Generate Example Code and Project File with rtiddsgen 7
3.2.2 Build the Publish and Subscribe Applications 8
3.2.3 Connect to the INTEGRITY Target from MULTI 8
3.2.4 Load the Application on the Target 8
3.2.5 Run the Application and View the Output 9

Chapter 4 Getting Started on VxWorks Systems

4.1 Building the VSB 11
4.2 Building the Kernel 13
4.3 Building and Running a Hello World Example 18

4.3.1 Generate Example Code and Makefile with rtiddsgen 18
4.3.2 Building and Running an Application as a Kernel Task 19
4.3.3 Building and Running an Application as a Real-Time Process 29

4.4 Using DDS Ping and Spy 34

iii

Chapter 1 Addendum for Embedded
Platforms

In addition to enterprise-class platforms like Microsoft Windows and Linux, RTI® Connext® DDS
supports a wide range of embedded platforms. This document is especially for users of those plat-
forms. It describes how to configure some of the most popular embedded systems for use with Con-
next DDS and to get up and running as quickly as possible. The code examples covered in this
document can be generated for your platform(s) using RTI Code Generator (rtiddsgen), which
accompanies Connext DDS.

This document assumes at least minimal knowledge with the platforms it describes and is not a sub-
stitute for the documentation from the vendors of those platforms. For further instruction on the gen-
eral operation of your embedded system, please consult the product documentation for your board
and operating system.

1

Chapter 2 Getting Started on QNX
Embedded Systems

This document provides instructions on building and running Connext DDS applications on embed-
ded systems such as QNX® systems. It will guide you through the process of generating, com-
piling, and running a Hello World application on an embedded QNX system by expanding on
Hands-On 1 of Introduction to Publish/Subscribe, in the RTI Connext DDS Getting Started
Guide. Please read the following alongside that section.

In the following steps:

l All commands must be executed in a command shell that has all the required environment
variables. For details, see Set Up Environment Variables (rtisetenv), in "Hands-On 1" of
Introduction to Publish/Subscribe, in the RTI Connext DDS Getting Started Guide.

l You need to know the name of your target architecture (look in your NDDSHOME/lib dir-
ectory). Use it in place of <architecture> in the example commands. For example, your archi-
tecture might be ‘armv8QNX7.1qcc_cpp8.3.0’.

l We assume that you havemake installed. If you havemake, you can use the generated
makefile to compile. If you do not havemake, use your normal compilation process. (Note:
the generated makefile assumes the correct version of the compiler is already in your path
and that NDDSHOME is set.)

2.1 Building and Running a Hello World Example

This section describes the basic steps for building and running an rtiddsgen-generated example on
an embedded target such as QNX.

1. Create a directory to work in. In this example, we use a directory called myhello.

2. In themyhello directory, create a file called HelloWorld.idl that contains a user-defined data
type:

2

2.1 Building and Running a Hello World Example

3

struct HelloWorld {
string<128> msg;

};

3. Use the rtiddsgen utility to generate sample code and a makefile as shown below.

For C++:
rtiddsgen -language C++ -example <architecture> HelloWorld.idl

For Java:
rtiddsgen -language Java -example <architecture> HelloWorld.idl

Edit the example code to add the line sprintf(instance->msg, "Hello World! (%d)", count); as fol-
lows:
for (count=0; (sample_count == 0) || (count < sample_count); ++count) {

printf("Writing HelloWorld, count %d\n", count);

/* Modify the data to be written here */
sprintf(instance->msg, "Hello World! (%d)", count);

/* Write data */
retcode = HelloWorldDataWriter_write(

HelloWorld_writer, instance, &instance_handle);
if (retcode != DDS_RETCODE_OK) {

fprintf(stderr, "write error %d\n", retcode);
}

NDDS_Utility_sleep(&send_period);

}

4. With the NDDSHOME environment variable set, build the Publisher and Subscriber modules using
the generated makefile.

make -f makefile_HelloWorld_<architecture>

For details on setting up the NDDSHOME environment variable, see Set Up Environment Vari-
ables (rtisetenv), in "Hands-On 1" of Introduction to Publish/Subscribe, in the RTI Connext DDS
Getting Started Guide.

After compiling, you will find the application executables in myhello/objs/<architecture>.
5. Connect to the QNX target (using ssh, for example) and start the subscriber application, Hel-

loWorld_subscriber.

2.2 Configuring Automatic Discovery

HelloWorld_subscriber

In this shell, you should see that the subscriber is waking up every 4 seconds to print a message.
Here is a C++ example:

No data after 1 second
No data after 1 second
No data after 1 second

6. Connect to the QNX target and start the publisher application, HelloWorld_publisher.

HelloWorld_publisher

In this second (publishing) shell, you should see:

Writing HelloWorld, count 0
Writing HelloWorld, count 1
Writing HelloWorld, count 2

7. Look back in the first (subscribing) shell. You should see that the subscriber is now receiving mes-
sages from the publisher.

For example, in C++:
Received data

msg: "Hello World! (0)"
Received data

msg: "Hello World! (1)"
Received data

msg: "Hello World! (2)"

2.2 Configuring Automatic Discovery

In most cases, multiple applications—whether on the same host or different hosts—will discover each
other and begin communicating automatically. However, in some cases you must configure the discovery
service manually. For example, on LynxOS systems, multicast is not used for discovery by default; you
will need to configure the addresses it will use. See information about setting discovery peers in the
"Troubleshooting" section of Introduction to Publish/Subscribe, in the RTI Connext DDS Getting Started
Guide.

4

Chapter 3 Getting Started on INTEGRITY
Systems

This section provides simple instructions on configuring a kernel and running Connext DDS applic-
ations on an INTEGRITY system. These instructions assume that the application module will be
dynamically downloaded. Please refer to the documentation provided by Green Hills Systems for
more information about this operating system.

For more information on using Connext DDS on an INTEGRITY system, please see the
INTEGRITY section of the RTI Connext DDS Core Libraries Platform Notes.

The first section describes 3.1 Building the Kernel below.

The next section guides you through the steps to build and run an rtiddsgen-generated example
application on an INTEGRITY target: 3.2 Building and Running a Hello World Example on the
next page.

Before you start, make sure that you know how to:

1. Boot/reboot your INTEGRITY target.

2. Get the serial port output of your target (using telnet, minicom or hyperterminal).

3.1 Building the Kernel

Before you start, you should be familiar with running a kernel on your target.

1. Launch MULTI.

2. Select File, Create new project.

3. Choose the INTEGRITY Operating System and make sure the path to your INTEGRITY
distribution is correct.

4. Choose a processor family and board name.

5

3.2 Building and Running a Hello World Example

6

5. Click Next.

6. Choose Language: C/C++.

7. Project type: INTEGRITY Kernel.

8. Choose a project directory and name.

9. Click Next.

10. In Kernel Options, choose at least: 'TCP/IP stack'. Everything else can be left to default.

11. In the Project Builder, you should see the following file:

<name of your project>_default.ld (under src/resource.gpj).
12. Right-click the file and edit it; the parameters of interest are the following:

CONSTANTS
{

INTEGRITY_DebugBufferSize = 0x10000
INTEGRITY_HeapSize = 0x100000
INTEGRITY_StackSize = 0x4000
INTEGRITY_DownloadSize = 0x400000
INTEGRITY_MaxCoreSize = 0x200000

}

Note that most Connext DDS applications will require the StackSize and HeapSize para-
meters to be increased from their default value. The values shown above are adequate to run
the examples presented in this document.

13. Once you have changed the desired values, right-click the top-level project and select Build.

14. Run the new kernel on your target.

3.2 Building and Running a Hello World Example

This section describes the basic steps for building and running an rtiddsgen-generated example on an
INTEGRITY target:

l 3.2.1 Generate Example Code and Project File with rtiddsgen on the next page

l 3.2.2 Build the Publish and Subscribe Applications on page 8

l 3.2.3 Connect to the INTEGRITY Target fromMULTI on page 8

l 3.2.4 Load the Application on the Target on page 8

l 3.2.5 Run the Application and View the Output on page 9

3.2.1 Generate Example Code and Project File with rtiddsgen

3.2.1 Generate Example Code and Project File with rtiddsgen

To create the example applications:

1. Create a directory to work in. In this example, we use a directory called myhello.

2. In themyhello directory, create a file called HelloWorld.idl that contains a user-defined data type:

struct HelloWorld
{

string<128> msg;
};

3. Use the rtiddsgen utility to generate sample code and a project file. Choose either C or C++.

For C:
rtiddsgen -language C -example <architecture> HelloWorld.idl

For C++:
rtiddsgen -language C++ -example <architecture> HelloWorld.idl

In yourmyhello directory, you will see that rtiddsgen has created a number of source code files
(described in Generated Files, in the RTI Code Generator User's Manual), additional support files
(not listed here), and a project file:HelloWorld_default.gpj.

4. For C only, edit the example code (to add the line sprintf(instance->msg, "Hello World! (%d)",
count);) as follows:

for (count=0; (sample_count == 0) || (count < sample_count); ++count) {

printf("Writing HelloWorld, count %d\n", count);

/* Modify the data to be written here */
sprintf(instance->msg, "Hello World! (%d)", count);

/* Write data */
retcode = HelloWorldDataWriter_write(

HelloWorld_writer, instance, &instance_handle);
if (retcode != DDS_RETCODE_OK) {

fprintf(stderr, "write error %d\n", retcode);
}

NDDS_Utility_sleep(&send_period);

}

You do not need to edit the C++ code, rtiddsgen has added sprintf(instance->msg, "Hello World!
(%d)", count); for C++ already.

7

3.2.2 Build the Publish and Subscribe Applications

8

3.2.2 Build the Publish and Subscribe Applications

1. In a plain text editor, edit the top-level project file that was generated by rtiddsgen, HelloWorld_
default.gpj, so that it points to the path to your INTEGRITY distribution:

Setmacro __OS_DIR=<path to your INTEGRITY distribution>

2. Save your changes.

3. Launch MULTI.

4. Open the top-level project file, HelloWorld_default.gpj, in MULTI:

Select Components, Open Project Manager, then open the project file from there.

5. Right-click on the top-level project and build the project.

3.2.3 Connect to the INTEGRITY Target from MULTI

1. From the MULTI Launcher, click the Connection button and open the Connect option. Your mode
should be Download (Download and debug application).

2. Create a custom connection with the following line:

For targets that only support the older INDRT connection mechanism:
rtserv -port udp@<ip address of your INTEGRITY target>

For targets that support the newer INDRT2 connection mechanism:
rtserv2 -port udp@<ip address of your INTEGRITY target>

(You might be able to see the IP address of your target on the output of its boot sequence.)

You only have to create your connection once, MULTI will remember it.
3. Make sure your target has booted; then select Connect. You should see a new window with the Ker-

nel Tasks running on your target.

3.2.4 Load the Application on the Target

1. In the task window, select Target, Load module.

2. Browse for your executables; there should be 3 of them in your project directory:

l HelloWorld_publisherdd

l HelloWorld_subscriberdd

l posix_shm_manager

3. Load the posix_shm_manager first, it will appear in the Tasks window as a separate address space
and start running by itself once loaded. It will allow you to use the shared memory transport on your
target.

3.2.5 Run the Application and View the Output

Note: The default rtiddsgen-generated code tries to use shared memory, so unless you have manu-
ally disabled it, your application will crash if you do not load the shared memory manager before
running the application.

4. Load the publisher, subscriber, or both. They should appear in separate address spaces in the Tasks
window.

3.2.5 Run the Application and View the Output

1. Select the task called "Initial" in your application's address space in the Tasks window; you can
either click the play button to run it, or click the debug button to debug it.

Note that with some versions of INTEGRITY, it is difficult to pass arguments to applications. Argu-
ments can always be hard-coded in your application before compiling it. To quickly experiment
with multiple runs of the application with different arguments, one option is to run your application
within the debugger. Then you can set a breakpoint before the arguments are used and change them
at that point.

2. From the Tasks window, select Target, Show Target Windows. This will show you the standard
output of your target.

Some errors messages may still go through the serial port, so you should leave your serial port con-
nection open and monitor it as well.

To reboot the target:

Go to your serial port connection monitor and type 'rset'.

9

Chapter 4 Getting Started on VxWorks
Systems

This section provides simple instructions to configure a kernel and run Connext DDS applications
on systems based on VxWorks 7, including VxWorks 21.11. Please refer to the documentation
provided by Wind River Systems for more information on this operating system.

This chapter will guide you through the process of generating, compiling, and running a Hello
World application on VxWorks 7 systems by expanding on the VxWorks section of the RTI Con-
next DDS Core Libraries Platform Notes; please read the following alongside that section.

This chapter uses VxWorks 7 as an example. The steps for VxWorks 21.11 should be similar,
since it is based on VxWorks 7.

The first two sections describe how to build a VxWorks Source Build (VSB) and the kernel:

l 4.1 Building the VSB on the next page

l 4.2 Building the Kernel on page 13

The next section guides you through the steps to generate, modify, build, and run the provided
example HelloWorld application on a VxWorks target:

l 4.3 Building and Running a Hello World Example on page 18

For tips on using RTI DDS Ping and Spy, see 4.4 Using DDS Ping and Spy on page 34.

10

4.1 Building the VSB

11

4.1 Building the VSB

This section explains how to build a VxWorks Source Build (VSB), which is required in order to build
your own kernels and applications with VxWorks 7.

The following steps use the VSB defaults. For further information and special customizations, please refer
to Wind River’s documentation:
https://docs.windriver.com/bundle/Configuration_and_Build_Guide_Edition_9_1/page/1597954.html

Before you start, you should be familiar with your hardware, as you will need to select a BSP and other
hardware-specific settings. This document uses an Intel BSP as an example.

1. Launch Workbench.

2. Select File, New, Wind River Workbench Project.

3. For the Build type, select Source Build.

https://docs.windriver.com/bundle/Configuration_and_Build_Guide_Edition_9_1/page/1597954.html

4.1 Building the VSB

4. Set your project name and click Next.

5. Configure your VSB. Set your BSP, the CPU, addressing mode, compiler, SMP, etc., according to
your platform. When you are done, click Finish.

6. After you finish, build the VSB as you would any other project.

12

4.2 Building the Kernel

13

4.2 Building the Kernel

This section explains how to build a kernel capable of loading Connext DDS libraries. Connext DDS lib-
raries require that certain components are added to the default list in the VxWorks kernel, as outlined in the
following steps.

Before you start, you should be familiar with building and deploying a default working kernel on your tar-
get.

Note: The following steps might vary slightly depending on your chosen version of VxWorks.

1. Launch Workbench.

2. Select File, New, Wind River Workbench Project.

3. Select the desired Target operating system; click Next.

4. When prompted to choose a Build type, select System Image (this may be Kernel Image or
VxWorks Image depending on your version of VxWorks); click Next.

4.2 Building the Kernel

5. Give your project a name; click Next.

14

4.2 Building the Kernel

15

6. In Project Setup, for the Based on field, choose a source build project. For the Project, choose the
VSB you created and built in the previous section. The BSP, SMP support and other options will be
correctly populated from the VSB configuration.

For the Tool chain option, selectGNU; click Next.

7. In Options, select SMP support in kernel if your BSP supports it and you want to enable sym-
metric multi-processing capability in the kernel.

Select IPv6 enabled kernel libraries if your architecture supports IPv6 (See the VxWorks section
of the RTI Connext DDS Core Libraries Platform Notes to check if your architecture supports
IPv6); click Next.

4.2 Building the Kernel

8. Optionally, select a configuration profile from the drop-down menu.

16

4.2 Building the Kernel

17

9. Leave everything else at its default setting. Click Finish.

Your project will be created at this time.
10. From the Project Explorer, open Kernel Configuration.

11. Add Operating System Components, Kernel Components, _thread variables support.

12. Make sure you have the following components enabled: INCLUDE_TIMESTAMP, INCLUDE_
SHARED_DATA, INCLUDE_TLS.

Note: If you are unwilling or unable to build shared-memory support into your kernel, see the
VxWorks section of the RTI Connext DDS Core Libraries Platform Notes.

4.3 Building and Running a Hello World Example

13. If you plan to use any Connext DDS C++ API, you will need to include the FOLDER_CPLUS sec-
tion in your kernel (the underlying kernel components may vary depending on the VxWorks ver-
sion). This includes Traditional and Modern C++ APIs and Request/Reply C++ APIs.

14. If you want support for RTP shared libraries, you need to add the component INCLUDE_SHL.
Note that shared libraries are not supported in all VxWorks architectures.

15. If you plan on accessing your target via the network, you may need the following modules:

l Telnet Server (under Network Components, Applications, Telnet Components)

This will allow you to telnet into the target.
l NFS client all (under Operating System Components, IO System Components, NFS com-
ponents)

This will allow you to see networked file systems from the target (contact your system admin-
istrator to find out if you have them set up).

16. If you are running applications in RTP mode, you may increase Operating System components,
Real Time Processes components, Number of entries in an RTP fd table from the default value
of 20 to a higher value such as 256. This will enable you to open more sockets from an RTP applic-
ation.

17. Compile the Kernel by right-clicking the project and selecting Build Project.

The Kernel and associated symbol file will be found in <your project directory>/default/.

4.3 Building and Running a Hello World Example

This section will guide you through the steps required to successfully run an rtiddsgen-generated example
application on a VxWorks 6.x/7 target using kernel mode or RTP mode.

4.3.1 Generate Example Code and Makefile with rtiddsgen

To create the example applications:

1. Set up the environment on your development machine: set the NDDSHOME environment variable
and update your PATH as described in Set Up Environment Variables (rtisetenv), in "Hands-On 1"
of Introduction to Publish/Subscribe, in the RTI Connext DDS Getting Started Guide.

2. Create a directory to work in. In this example, we use a directory called myhello.

3. In themyhello directory, create a file called HelloWorld.idl that contains a user-defined data type:

struct HelloWorld
{

string<128> msg;
};

18

4.3.2 Building and Running an Application as a Kernel Task

19

4. Use RTI Code Generator (rtiddsgen) to generate sample code and a makefile. Choose either C or
C++.

Note: The architecture names for Kernel Mode and RTP Mode are different.

For C:
rtiddsgen -language C -example <architecture> HelloWorld.idl

For C++:
rtiddsgen -language C++ -example <architecture> HelloWorld.idl

Edit the generated example code as described in Hands-On 1 of Introduction to Publish/Subscribe,
in the RTI Connext DDS Getting Started Guide.

4.3.2 Building and Running an Application as a Kernel Task

There are two ways to build and run your Connext DDS application:

l 4.3.2.1 Using the Command Line below

l 4.3.2.2 Using Workbench on the next page

4.3.2.1 Using the Command Line

1. Set up your environment with the wrenv.sh script or wrenv.bat batch file in the VxWorks base dir-
ectory. Execute the script with the -p parameter set to the correct version of VxWorks. For example:

wrenv.sh -p vxworks-6.9

2. Set the NDDSHOME environment variable as described in Set Up Environment Variables (rtis-
etenv), in "Hands-On 1" of Introduction to Publish/Subscribe, in the RTI Connext DDS Getting
Started Guide.

3. Build the Publisher and Subscriber modules using the generated makefile. You may have to modify
the HOST_TYPE, compiler and linker paths to match your development setup.

4. To use dynamic linking, remove the Connext DDS libraries from the link objects in the generated
makefile.

(Note: steps 5-7 can be replaced by establishing a telnet connection to the VxWorks target. In that case,
Workbench does not need to be used and both the Host Shell and Target Console will be redirected to the
telnet connection. Once in the C interpreter (you will see the prompt '->' in the shell) you can type cmd
and then help for more information on how to load and run applications on your target.)

4.3.2 Building and Running an Application as a Kernel Task

5. Launch Workbench.

6. Make sure your target is running VxWorks and is added to the Remote Systems panel. (To add a
new target, click the New Connection button on the Remote System panel, selectWind River
VxWorks 6.x Target Server Connection, click Next, enter the Target name or address, and click
Finish).

7. Connect to the target and open a host shell by right-clicking the connected target in the Target
Tools sub-menu.

8. In the shell:

If you are using static linking: Load the .so file produced by the build:
>cd "directory"
>ld 0 < HelloWorld_subscriber.so

(Where ‘directory’ refers to the location of the generated object files.) If you are using dynamic link-
ing: load the libraries first, in this order: libnddscore.so, libnddsc.so, libnddscpp.so; then load the
.so file produced by the build.

Note: If you are statically linking, and you try to load both the publisher and subscriber into the ker-
nel, you will run into duplication of symbols due to the Connext DDS libraries being statically
linked in both modules. To overcome that situation, see the "Notes for VxWorks 7 Platforms" sec-
tion in the RTI Connext DDS Core Libraries Platform Notes, for an explanation about how to create
a single Downloadable Kernel Module (DKM) containing both applications.

9. Run the run_subscriber_application or run_publisher_application function. For example:

>taskSpawn "sub", 255, <floating_point_option>, 150000, run_subscriber_application, 38,
10

Where <floating_point_option> is a numeric value that varies depending on the hardware. See
Enabling Floating Point Coprocessor in Kernel Tasks, in the VxWorks chapter of the RTI Connext
DDS Core Libraries Platform Notes.

In this example, 38 is the domain ID and 10 is the number of samples.

4.3.2.2 Using Workbench

Note: The following steps might vary slightly depending on your chosen version of VxWorks.

1. Start Workbench.

2. Select File, New, Wind River Workbench Project.

20

4.3.2 Building and Running an Application as a Kernel Task

21

3. Select the desired Target operating system; click Next.

4. When prompted to choose a Build type, select Downloadable Kernel Module; click Next.

4.3.2 Building and Running an Application as a Kernel Task

5. Give your project a name; click Next.

22

4.3.2 Building and Running an Application as a Kernel Task

23

6. Leave everything else at its default setting; click Finish.

Your project will be created at this time.

7. Copy the source and header files generated by rtiddsgen in 4.3.1 Generate Example Code and
Makefile with rtiddsgen on page 18 into the project directory.

8. View the added files by right-clicking on the project in Project Explorer, then selecting Refresh to
see the files.

4.3.2 Building and Running an Application as a Kernel Task

9. Open the project Properties by right-clicking on the project in Project Explorer and selecting Prop-
erties.

10. In the dialog box that appears, select Build Properties in the navigation pane on the left.

11. In the Build Support and Specs tab, select the desired build spec from the Active build spec drop-
down menu; click Apply to save the changes.

24

4.3.2 Building and Running an Application as a Kernel Task

25

12. In the Build Macros or Defines tab, add -DRTI_VXWORKS to DEFINES in the Build macro
definitions; click Apply to save the changes.

4.3.2 Building and Running an Application as a Kernel Task

13. In the Variables tab, add to LIBPATH:

-L/(NDDSHOME)/lib/<architecture>

If you are using static linking, add to LIBS:

-lnddscppz -lnddscz -lnddscorez (in that order)

If you are using dynamic linking, add to LIBS:

-lnddscpp -lnddsc -lnddscore (in that order)

Click Apply to save the changes.

26

4.3.2 Building and Running an Application as a Kernel Task

27

14. In the Build Paths or Paths tab, add both of these:

-I$(NDDSHOME)/include

-I$(NDDSHOME)/include/ndds

Click Apply to save the changes.

4.3.2 Building and Running an Application as a Kernel Task

15. Click OK to exit the Properties menu.

16. Build the project by right-clicking on the project in Project Explorer, then selecting Build Project.

28

4.3.3 Building and Running an Application as a Real-Time Process

29

17. Run the application as described starting in Step 5 in the 'Using the Command Line' section, except
load HelloWorld.out instead ofHelloWorld_subscriber.so when you get to Step 8.

4.3.3 Building and Running an Application as a Real-Time Process

There are two ways to build and run your Connext DDS RTP application:

l 4.3.3.1 Using the Command Line below

l 4.3.3.2 Using Workbench on page 31

4.3.3.1 Using the Command Line

1. Generate the source files and the makefile with RTI Code Generator (rtiddsgen).

Note: The architecture names for Kernel Mode and RTP Mode are different.

Please refer to the RTI Code Generator User’s Manual for more information on how to use rtidds-
gen.

4.3.3 Building and Running an Application as a Real-Time Process

2. Set up your environment with the wrenv.sh script or the wrenv.bat batch file in the VxWorks base
directory. Execute the script with the -p parameter set to the correct version of VxWorks. For
example:

wrenv.sh -p vxworks-6.9

3. Set the NDDSHOME environment variable as described in Set Up Environment Variables (rtis-
etenv), in "Hands-On 1" of Introduction to Publish/Subscribe, in the RTI Connext DDS Getting
Started Guide.

4. Build the Publisher and Subscriber modules using the generated makefile. You may need to modify
the HOST_TYPE, compiler and linker paths to match your development setup.

Notes:
l Steps 5-12 can be replaced by establishing a telnet connection to the VxWorks target.
In that case, Workbench does not need to be used and both the Host Shell and Target
Console will be redirected to the telnet connection. Once in the C interpreter (you will
see a prompt '->' in the shell) you can type cmd and then help for more information on
how to load and run applications on your target.)

Using rtpSp:
telnet raytheon-guy
cd " <PROJECT ROOT FOLDER>"
rtpSp "objs/<arch>/Foo_subscriber.vxe -domainId XX"

Or using rtp exec:
telnet raytheon-guy
cd " <PROJECT ROOT FOLDER>"
rtp exec objs/<arch>/Foo_subscriber.vxe – -domainId XX

l If you want to dynamically link your RTP to the RTI libraries, make the following
modifications the generated makefile:

LIBS = -L$(NDDSHOME)/lib/<architecture> -non-static -lnddscpp \-lnddsc -
lnddscore $(syslibs_<architecture>)

5. Add to the LD_LIBRARY_PATH environment variable the path to your RTI libraries as well as
the path to libc.so.1 of your VxWorks installation to launch your RTP successfully.

6. Launch Workbench.

7. Make sure your target is running VxWorks.

8. Connect to the target with the target manager and open a host shell and a Target Console Tool to
look at the output. Both are found by right-clicking the connected target in the Target Tools sub-
menu.

9. Right-click on your target in the Target Manager window, then select Run, Run RTP on Target.

30

4.3.3 Building and Running an Application as a Real-Time Process

31

10. Set the Exec Path on Target to the HelloWorld_subscriber.vxe or the HelloWorld_pub-
lisher.vxe file created by the build.

11. Set the arguments (domain ID and number of samples, using -d <domain ID> and -s <number of
samples>).

A Stack size of 0x100000 should be sufficient. If your application doesn't run, try increasing this
value.

12. Click Run.

4.3.3.2 Using Workbench

Note: The following steps might vary slightly depending on your chosen version of VxWorks.

1. Start Workbench.

2. Select File, New, Wind River Workbench Project.

3. Select the desired Target Operating System; click Next.

4.3.3 Building and Running an Application as a Real-Time Process

4. When prompted to choose a Build Type, select Real Time Process Application; click Next.

5. Give your project a name; click Next.

6. Leave everything else at its default setting; click Finish.

Your project will be created at this time.
7. Copy the source and header files generated by rtiddsgen in 4.3.1 Generate Example Code and

Makefile with rtiddsgen on page 18 into the project directory. There can only be onemain() in your
project, so you must choose either a subscriber or a publisher. If you want to run both, you will need
to create two separate projects.

8. View the added files by right-clicking on the project in Project Explorer, then selecting Refresh to
see the files.

9. Open the project Properties by right-clicking on the project in Project Explorer and selecting Prop-
erties.

10. In the dialog box that appears, select Build Properties in the navigation pane on the left.

11. In the Build Support and Specs tab, select the desired build spec from the Active build spec drop-
down menu; click Apply to save the changes.

12. In the Build Macros or Defines tab, add the following to DEFINES in the Build macro definitions:

-DRTI_VXWORKS

32

4.3.3 Building and Running an Application as a Real-Time Process

33

-DRTI_STATIC

-DRTI_RTP

13. In the Variables tab, add to LIBPATH:

-L/(NDDSHOME)/lib/<architecture>

If you are using static linking, add to LIBS:

-lnddscppz -lnddscz -lnddscorez (in that order)

If you are using dynamic linking, add to LIBS:

-lnddscpp -lnddsc -lnddscore (in that order)

Click Apply to save the changes.
14. In the Build Paths or Paths tab, add:

-I$(NDDSHOME)/include

-I$(NDDSHOME)/include/ndds

Click Apply to save the changes.

4.4 Using DDS Ping and Spy

15. Click OK to exit the Properties menu.

16. Build the project by right-clicking on the project in Project Explorer, then selecting Build Project.

17. Run the application as described starting in Step 5 in the Command Line section above.

4.4 Using DDS Ping and Spy

This section describes special usage notes when running the RTI DDS Ping and Spy command-line utilities
on VxWorks systems. For complete details on using both utilities, see the API Reference
HTML documentation (under Modules, Programming Tools).

RTI DDS Ping (rtiddsping) tests the connectivity of your system. It uses RTI Connext DDS to send and
receive "Ping" messages to other rtiddsping applications running on the same or different computers.

RTI DDS Spy (rtiddsspy) shows you what is being published and subscribed to.

When running these utilities on VxWorks systems in RTP mode (as Real-Time processes):

l The utilities must be executed in a command prompt (running the "cmd" command in the C-shell)

l The utilities are statically linked so they don't require any LD_LIBRARY_PATH setup.

34

4.4 Using DDS Ping and Spy

35

l The name of the utilities are suffixed with a "z" to indicate that they are statically linked (i.e. DDS
Ping is called rtiddspingz.vxe).

l Each executable can be run as in any Linux OS (e.g., rtiddspingz.vxe -help).

When running these utilities on VxWorks systems in kernel mode (as DKMs):

l The modules libnddscore.so, libnddsc.so, and libnddscpp.so must first be loaded.

l After loading the Connext DDS modules, the utility module must be loaded in order to run it (i.e.,
rtiddsping.so).

l All the command-line options must be passed embedded in a single string (see examples below).

l The command must be typed in the VxWorks shell (either an rlogin shell, a target-server shell, or the
serial line prompt).

The examples below illustrate how to run the utilities in Kernel mode. The string "vxworks prompt>" rep-
resents the prompt that the shell prints and is not part of the command that must be typed.

Ping:
vxworks prompt> rtiddsping "-domainId 3 -publisher -numSamples 100"
vxworks prompt> rtiddsping "-domainId 5 -subscriber -timeout 20"
vxworks prompt> rtiddsping "-help"

Spy:
vxworks prompt> rtiddsspy "-domainId 3 -topicRegex Alarm*"
vxworks prompt> rtiddsspy "-help"

Or if the stack of the shell is not large enough, use "taskSpawn" to avoid overflowing the stack (each util-
ity requires ~25 kB of stack).

Ping:
vxworks prompt> taskSpawn "rtiddsping", 100, <floating_point_option>, 50000, rtiddsping, \

"-domainId 3 -publisher -numSamples 100"
vxworks prompt> taskSpawn "rtiddsping", 100, <floating_point_option>, 50000, rtiddsping, \
"-domainId 5 -subscriber -timeout 20"

vxworks prompt> taskSpawn "rtiddsping", 100, <floating_point_option>, 50000, rtiddsping, "-
help"

Spy:
vxworks prompt> taskSpawn "rtiddsspy", 100, <floating_point_option>, 50000, rtiddsspy, \
"-domainId 3 -topicRegex Alarm*"

vxworks prompt> taskSpawn "rtiddsspy", 100, <floating_point_option>, 50000, rtiddsspy, "-help"

Where <floating_point_option> is a numeric value that varies depending on the hardware. See Enabling
Floating Point Coprocessor in Kernel Tasks, in the VxWorks chapter of the RTI Connext DDS Core
Libraries Platform Notes.

	Chapter 1 Addendum for Embedded Platforms
	Chapter 2 Getting Started on QNX Embedded Systems
	2.1 Building and Running a Hello World Example
	2.2 Configuring Automatic Discovery

	Chapter 3 Getting Started on INTEGRITY Systems
	3.1 Building the Kernel
	3.2 Building and Running a Hello World Example
	3.2.1 Generate Example Code and Project File with rtiddsgen
	3.2.2 Build the Publish and Subscribe Applications
	3.2.3 Connect to the INTEGRITY Target from MULTI
	3.2.4 Load the Application on the Target
	3.2.5 Run the Application and View the Output

	Chapter 4 Getting Started on VxWorks Systems
	4.1 Building the VSB
	4.2 Building the Kernel
	4.3 Building and Running a Hello World Example
	4.3.1 Generate Example Code and Makefile with rtiddsgen
	4.3.2 Building and Running an Application as a Kernel Task
	4.3.3 Building and Running an Application as a Real-Time Process

	4.4 Using DDS Ping and Spy

