
RTI Connext DDS

Core Libraries
Release Notes

Version 6.1.2

© 2023 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
September 2023.Trademarks

RTI, Real-Time Innovations, Connext, NDDS, the RTI logo, 1RTI and the phrase, “Your Systems. Work-
ing as one.” are registered trademarks, trademarks or service marks of Real-Time Innovations, Inc. All
other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished solely under and subject to
RTI's standard terms and conditions available at https://www.rti.com/terms and in accordance with your
License Acknowledgement Certificate (LAC) and Maintenance and Support Certificate (MSC), except to
the extent otherwise accepted in writing by a corporate officer of RTI.

This is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved
by, Microsoft Corporation.

The security features of this product include software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Notice

Any deprecations or removals noted in this document serve as notice under the Real-Time Innovations,
Inc. Maintenance Policy #4220 and/or any other agreements by and between RTI and customer regarding
maintenance and support of RTI’s software.

Deprecated means that the item is still supported in the release, but will be removed in a future release.
Removed means that the item is discontinued or no longer supported. By specifying that an item is deprec-
ated in a release, RTI hereby provides customer notice that RTI reserves the right after one year from the
date of such release and, with or without further notice, to immediately terminate maintenance (including
without limitation, providing updates and upgrades) for the item, and no longer support the item, in a
future release.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive, Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

https://www.rti.com/terms
http://www.openssl.org/
mailto:support@rti.com
https://support.rti.com/

Contents
Chapter 1 Introduction 1
Chapter 2 System Requirements

2.1 Supported Operating Systems 3
2.2 Requirements when Using Microsoft Visual Studio 5
2.3 Disk and Memory Usage 6

Chapter 3 Compatibility

3.1 Wire Protocol Compatibility 7
3.2 Code and Configuration Compatibility 8
3.3 Extensible Types Compatibility 8
3.4 ODBC Database Compatibility 8

Chapter 4 What's Fixed in 6.1.2

4.1 Fixes Related to Callbacks and Waitsets 10
4.1.1 Failure calling DDS_Subscriber::get_datareaders in DDS_SubscriberListener::on_data_on_

readers callback implementation 10
4.1.2 DDS_SubscriberListener::on_data_on_readers on a DomainParticipant or Subscriber not

called when Listener installed after entity enabled 11
4.1.3 Unsafe combinations of masks and listeners may have led to segmentation fault in C API 11

4.2 Fixes Related to Serialization and Deserialization 11
4.2.1 Serialization of samples failed or produced a segmentation fault for types with max seri-

alized size larger than 2GB 11
4.3 Fixes Related to Usability and Debuggability 12

4.3.1 Unexpected memory growth when DataReader could not be matched with DataWriter due
to unexpected error condition 12

4.3.2 Unbounded memory growth in Spy when discovering multiple endpoints with the same Top-
ics and types 12

4.3.3 Hang when using best-effort DataWriters and asynchronous publishing, if RTIEventJobDis-
patcher_retrieveJobInfo failed 13

4.3.4 No more than 100 asynchronous publisher threads could be created 13

iii

iv

4.4 Fixes Related to Transports 13
4.4.1 Unnecessary sockets created during initialization of library 13
4.4.2 Possible data loss after Connext DDS application lost its multicast interfaces or gained its first mul-

ticast interface 13
4.4.3 Unnecessary discovery traffic related to IP mobility events on interfaces irrelevant to the transport 14
4.4.4 DomainParticipant with non-default metatraffic_transport_priority QoS did not complete discovery 14
4.4.5 Pushed samples may not have been received by reliable DataReader when DataWriter published type

that supports Zero Copy transfer over shared memory 14
4.4.6 Race condition could cause unbounded memory growth in TCP Transport Plugin 15

4.5 Fixes Related to Reliability Protocol and Wire Representation 15
4.5.1 Various issues with RtpsReliableWriterProtocol_t::nack_suppression_duration 15
4.5.2 Samples not delivered to Required Subscription DataReaders when DataWriter used durable writer

history and DataReaders disabled positive ACKs 16
4.5.3 DataReader may not have received samples that were sent as gapped samples to another DataReader

over multicast 16
4.6 Fixes Related to Content Filters and Query Conditions 16

4.6.1 Unnecessary sample filtering on a DataReader for samples already filtered by a DataWriter 16
4.6.2 Creation of ContentFilteredTopic or reception of TopicQuery samples may have taken long time for

complex types 17
4.6.3 Incorrect results for Unions when using DynamicData or Content Filters 17
4.6.4 Connext DDS application using filtering feature may have crashed after running out of memory 18

4.7 Fixes Related to TopicQueries 18
4.7.1 Continuous creation of TopicQueries may have led to unnecessary memory fragmentation in OS

memory allocator 18
4.7.2 Unnecessary repair traffic for DataWriters using TopicQueries and asynchronous publishing 18

4.8 Fixes Related to Coherent Sets 19
4.8.1 Application may stop receiving samples from DataReaders using GROUP_PRESENTATION_QOS 19
4.8.2 Application may not have received samples of coherent set when using GROUP access scope and

TRANSIENT_LOCAL durability 19
4.9 Fixes Related to Dynamic Data 20

4.9.1 Types Containing Typedefs were sent without the typedefs in discovery when using DynamicData 20
4.10 Fixes Related to APIs 20

4.10.1 Possible wrong results when adding Time or Duration objects that used very large numbers 20
4.10.2 Java API did not support RtpsReliableReaderProtocol_t.receive_window_size 20
4.10.3 Java API leaked some objects in certain DomainParticipantFactory operations 21
4.10.4 Possible unbounded memory growth when creating many Requesters 21
4.10.5 Memory leak in Java Request-Reply API 21
4.10.6 Possible data race using Sample and WriteSample classes in Traditional C++ Request-Reply API 21

4.11 Fixes Related to Modern C++ API 22
4.11.1 Corruption of LoanedDynamicData object when moved in some situations 22
4.11.2 rti::topic::find_registered_content_filters led to infinite recursion 22

4.12 Fixes Related to C# API 22
4.12.1 NullReferenceException when using unbounded sequences of complex types 22
4.12.2 Possible error message printed during entity deletion 23

4.13 Fixes Related to XML Configuration 23
4.13.1 Parsing error loading XML configuration file containing const whose expression refers to enu-

merator 23
4.13.2 Parsing error loading XML configuration file with enum type containing enumerator whose value

was an expression referring to a const 23
4.13.3 Parsing error loading an XML configuration file with enum type containing enumerator whose

value was an expression 24
4.13.4 Parsing error loading an XML configuration file with an enum type containing an enumerator

whose value was an expression referring to another enumerator 24
4.13.5 Memory leak after an error parsing XML file with <include> tag 25
4.13.6 Failed to parse XML configuration file containing type member with useVector attribute 25

4.14 Fixes Related to Remote Procedure Calls (RPC) 25
4.14.1 RPC interface evolution did not work 25
4.14.2 Exceptions sending result of remote operation may have crashed server application 26

4.15 Fixes Related to Vulnerabilities 27
4.15.1 Fixes related to Connext DDS 27
4.15.2 Fixes related to third-party dependencies 27

4.16 Fixes Related to Crashes 29
4.16.1 Simultaneous deletion of an entity by multiple threads caused a crash when using Java 29
4.16.2 Segmentation fault when having multicast and unicast DataReaders for same Topic in a participant 29
4.16.3 Possible crash upon discovery of applications with unreachable locators 29
4.16.4 Rare segmentation fault when deleting DomainParticipant or Publisher containing DataWriters

using durable writer history 30
4.16.5 DataReader C++ application crashed if it received tampered sample with unsupported encapsulation

ID 30
4.16.6 Segmentation fault after calling DomainParticipant::register_durable_subscription with a group con-

taining a long role_name 30
4.16.7 Segmentation fault when application using MultiChannel ran out of memory 30
4.16.8 Application crashed when capturing traffic for a DomainParticipant created before enabling net-

work capture 31
4.16.9 Rare circumstances outside application's control caused crash when writing sample 31
4.16.10 Using certain callbacks at DomainParticipant or Publisher level may have led to segmentation

fault 31

v

vi

4.16.11 Segmentation fault when creation of DomainParticipant failed due to lack of resources 32
4.16.12 Potential crash during type registration if system ran out of memory 32
4.16.13 Segmentation fault when using GROUP_PRESENTATION_QOS or HIGHEST_OFFERED_

PRESENTATION_QOS and setting filter_redundant_samples to FALSE on DataReader 32
4.16.14 Segmentation fault after calling DomainParticipant::delete_durable_subscription with a group con-

taining a long role_name 33
4.16.15 Potential hang upon SIGSEGV signal from a Connext DDS application 33
4.16.16 Potential crash or memory corruption if user application using thread-specific storage 33
4.16.17 Creating DynamicDataTypePlugin with TypeCode from discovery and using content filtering

caused segmentation fault 34
4.16.18 Crash with NULL listeners and non-none status masks in C applications that mixed types with

and without Zero Copy 34
4.16.19 Memory was read after it was freed by deleting a Topic with local logging level enabled 35
4.16.20 Possible segmentation fault when disabling loopback interface 35
4.16.21 Application using Monitoring Libraries may have produced segmentation fault during DataReader

creation 35
4.17 Other Fixes 35

4.17.1 Error sending batch when batch size exceeded transport MTU 35
4.17.2 Potential Valgrind invalid read when logging a message or enabling heap monitoring 35
4.17.3 Runtime error when using debug libraries for QNX x86 platform 36
4.17.4 Broken communication when DataWriter with transport priority discovered DataReader with mul-

ticast receive address 36
4.17.5 Dependency on invalid symbol when building Linux FACE™ GP profiles 36
4.17.6 Samples could be lost using group order access or collaborative DataWriters 37
4.17.7 Added back support for ARMv8 Linux architecture 37
4.17.8 Added back support for ARMv8 and x64 processors, cxx and gpp compilers, for QNX platform 37
4.17.9 Custom OpenSSL installation wasn't correctly searched for 37
4.17.10 CONNEXTDDS_ARCH environment variable was not picked up correctly 38
4.17.11 New library dependencies accidentally added in Core Libraries for Android 38
4.17.12 Possible compiler warnings for VxWorks 7 Arm v8 platforms 38

Chapter 5 Previous Releases

5.1 What's Fixed in 6.1.1 39
5.1.1 Fixes Related to Discovery 39
5.1.2 Fixes Related to Serialization and Deserialization 39
5.1.3 Fixes Related to Usability and Debuggability 42
5.1.4 Fixes Related to Transports 47
5.1.5 Fixes Related to Content Filters and Query Conditions 49
5.1.6 Fixes Related to Coherent Sets 52

5.1.7 Fixes Related to Dynamic Data 53
5.1.8 Fixes Related to DDS API 53
5.1.9 Fixes Related to Modern C++ API 54
5.1.10 Fixes Related to XML Configuration 56
5.1.11 Fixes Related to Vulnerabilities 59
5.1.12 Other Fixes 61

5.2 What's Fixed in 6.1.0 62
5.2.1 Fixes Related to Discovery 62
5.2.2 Fixes Related to Usability and Debuggability 65
5.2.3 Fixes Related to Transports 73
5.2.4 Fixes Related to Reliability Protocol and Wire Representation 77
5.2.5 Fixes Related to Content Filters and Query Conditions 80
5.2.6 Fixes Related to TopicQueries 82
5.2.7 Fixes Related to Coherent Sets 84
5.2.8 Fixes Related to Dynamic Data and FlatData 85
5.2.9 Fixes Related to DDS API 86
5.2.10 Fixes Related to Modern C++ API 88
5.2.11 Fixes Related to XML Configuration 91
5.2.12 Fixes Related to OMG Specification Compliance 93
5.2.13 Fixes Related to Entities 97
5.2.14 Fixes Related to Vulnerabilities 98
5.2.15 Other Fixes 98

Chapter 6 Known Issues

6.1 Known Issues with Usability 110
6.1.1 Cannot open USER_QOS_PROFILES.xml in rti_workspace/examples from Visual Studio 110
6.1.2 DataWriter's Listener callback on_application_acknowledgment() not triggered by late-joining

DataReaders 110
6.1.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communication failure when writ-

ing small samples 111
6.1.4 Memory leak if Foo:initialize() called twice 111
6.1.5 Wrong error code after timeout on write() from Asynchronous Publisher 111
6.1.6 Type Consistency enforcement disabled for structs with more than 10000 members 111
6.1.7 Escaping special characters in regular/filter expressions not supported in some cases 112

6.2 Known Issues with Code Generation 112
6.3 Known Issues with Instance Lifecycle 112

6.3.1 Instance does not transition to ALIVE when "live" DataWriter detected 112
6.3.2 Persistence Service DataReaders ignore serialized key propagated with dispose updates 113

vii

viii

6.4 Known Issues with Reliability 113
6.4.1 DataReaders with different reliability kinds under Subscriber with GROUP_PRESENTATION_QOS

may cause communication failure 113
6.5 Known Issues with Content Filters and Query Conditions 113

6.5.1 Writer-side filtering may cause missed deadline 113
6.5.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated correctly 113

6.6 Known Issues with TopicQueries 114
6.6.1 TopicQueries not supported with DataWriters configured to use batching or Durable Writer History 114

6.7 Known Issues with Transports 114
6.7.1 AppAck messages cannot be greater than underlying transport message size 114
6.7.2 DataReader cannot persist AppAck messages greater than 32767 bytes 115
6.7.3 Discovery with Connext DDS Micro fails when shared memory transport enabled 115
6.7.4 Communication may not be reestablished in some IP mobility scenarios 115
6.7.5 Corrupted samples may be forwarded through Routing Service when using Zero-Copy transfer over

shared memory 116
6.7.6 Network Capture does not support frames larger than 65535 bytes 116

6.8 Known Issues with FlatData 117
6.8.1 FlatData language bindings do not support automatic initialization of arrays of primitive values to

non-zero default values 117
6.8.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined behavior 117
6.8.3 FlatData in combination with payload encryption in RTI Security Plugins and/or compression will

not save copies 117
6.9 Known Issues with Coherent Sets 118

6.9.1 Some coherent sets may be lost or reported as incomplete with batching configurations 118
6.9.2 Copy of SampleInfo::coherent_set_info field is not supported 118
6.9.3 Other known issues with coherent sets 118

6.10 Known Issues with Dynamic Data 118
6.10.1 Conversion of data by member-access primitives limited when converting to types that are not sup-

ported on all platforms 118
6.10.2 Types that contain bit fields not supported 119

6.11 Known Issues in RTI Monitoring Library 119
6.11.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Participant Sends Mon-

itoring Data 119
6.11.2 Participant’s CPU and memory statistics are per application 119
6.11.3 XML-based entity creation nominally incompatible with static monitoring library 119
6.11.4 ResourceLimit channel_seq_max_length must not be changed 120

6.12 Known Issues with Installers 120
6.12.1 RTI Connext DDS Micro 3.0.3 installation package currently compatible only with Connext 6.0.1 120

installer

6.13 Other Known Issues 120
6.13.1 Possible Valgrind still-reachable leaks when loading dynamic libraries 120
6.13.2 'Incorrect arguments to mysqld_stmt_execute' errors when using MySQL ODBC driver 121
6.13.3 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) supported only in Java, no

other languages 121
Chapter 7 Experimental Features 123

ix

Chapter 1 Introduction
RTI® Connext® DDS 6.1.2 LTS is a long-term support release. See the Connext LTS page on the
RTI website for more information about long-term support releases.

This document includes the following:

l System Requirements (Chapter 2 on page 3)

l Compatibility (Chapter 3 on page 7)

l What's Fixed in 6.1.2 (Chapter 4 on page 10)

l Previous Releases (Chapter 5 on page 39)

l Known Issues (Chapter 6 on page 110)

l Experimental Features (Chapter 7 on page 123)

For an overview of new features in 6.1.2, see RTI Connext DDS Core Libraries What's New in
6.1.2.

Many readers will also want to look at additional documentation available online. In particular,
RTI recommends the following:

l Use the RTI Customer Portal (https://support.rti.com) to download RTI software and con-
tact RTI Support. The RTI Customer Portal requires a username and password. You will
receive this in the email confirming your purchase. If you do not have this email, please con-
tact license@rti.com. Resetting your login password can be done directly at the RTI Cus-
tomer Portal.

l The RTI Community Forum (https://community.rti.com) provides a wealth of knowledge
to help you use Connext DDS, including:

l Documentation, at https://community.rti.com/documentation

l Best Practices,

1

https://www.rti.com/products/connext-lts
https://support.rti.com/
https://community.rti.com/
https://community.rti.com/documentation

Chapter 1 Introduction

2

l Example code for specific features, as well as more complete use-case examples,

l Solutions to common questions,

l A glossary,

l Downloads of experimental software,

l And more.

l Whitepapers and other articles are available from http://www.rti.com/resources.

l Performance benchmark results for Connext are published online at
http://www.rti.com/products/dds/benchmarks.html. Updated results for new releases are typically
published within two months after general availability of that release.

http://www.rti.com/resources
http://www.rti.com/products/dds/benchmarks.html

Chapter 2 System Requirements
2.1 Supported Operating Systems

Connext DDS requires a multi-threaded operating system. This section describes the supported host
and target systems.

In this context, a host is the computer on which you will be developing a Connext DDS applic-
ation. A target is the computer on which the completed application will run. A host installation
provides the RTI Code Generator tool (rtiddsgen), examples and documentation, as well as the
header files required to build a Connext DDS application for any architecture. You will also need a
target installation, which provides the libraries required to build a Connext DDS application for that
particular target architecture.

Connext DDS is available for the platforms in the following table.

Operating System Version and CPU

Android™

(target only)
Android 9.0 on Armv7 and v8

INTEGRITY®

(target only)

INTEGRITY 11.0.4 on p4080

INTEGRITY 11.4.4 on x64

Linux®on Arm®CPUs

(target only)

NI™ Linux 3 on Armv7

Ubuntu®18.04 LTS on Armv7 and Armv8

Ubuntu 22.04 LTS on Armv8

Table 2.1 Supported Platforms

3

2.1 Supported Operating Systems

4

Operating System Version and CPU

Linux on Intel®CPUs

(host and target)

CentOS™ 7.0 on x64

Red Hat®Enterprise Linux 7.0, 7.3, 7.5, 7.6, 8.0 on x64

SUSE®Linux Enterprise Server 12 SP2 on x64

Ubuntu 18.04 LTS, 20.04 LTS, 22.04 LTS on x64

POSIX-compliant platforms, made available with RTI Connext TSS:

CentOS 7.0 on x64

Red Hat Enterprise Linux 7, 7.3, 7.5, 7.6, 8 on x64

Ubuntu 18.04 LTS, 20.04 LTS on x64

macOS on ArmCPUs

(target only)

macOS 11 on Armv8

(RequiresRosetta® 2 during installation, not required during runtime.)

macOS®on Intel CPUs

(host and target)
macOS 10.13 - 10.15, 11, 12 on x64

QNX®

(target only)

QNX Neutrino®6.4.1 on x86

QNX Neutrino 6.5 on x86

QNX Neutrino 6.5 SP1 on Armv7

QNX Neutrino 7.0.4 on x64 and Armv8

QNX Neutrino 7.1 on x64 and Armv8

VxWorks®

(target only)

VxWorks 7.0 SR0510 on x64

VxWorks 7.0 SR0630 on x64

VxWorks 21.11 on x64

Windows®

(host and target)

Windows 10 [a] and 11 on x64, when using Visual Studio®2017, 2019, or 2022

Windows Server 2012 R2, Server 2016 on x64, when using Visual Studio 2015

Table 2.1 Supported Platforms

See the RTI Connext DDS Core Libraries Platform Notes for more information on each platform.

The following table lists additional target libraries for which RTI offers custom support. If you are inter-
ested in using one of these platforms, please contact your local RTI sales representative or email sales@rti.-
com.

Operating System Version and CPU

AIX®

(host and target)
AIX 7.2 on POWER9™

Table 2.2 Custom Supported Platforms

aPer Microsoft, this should be compatible with Windows 10 IoT Enterprise with Windows native app.

2.2 Requirements when Using Microsoft Visual Studio

Operating System Version and CPU

Linux on ArmCPUs

(target only)

TI®Linux 8.2.0.3 on Armv8

Yocto Project®2.5 on Armv8

Linux®on Intel CPUs

(target only)
RedHawk™ Linux 8.2.1 on x64

QNX®

(target only)

QNX Neutrino 6.5 on PPCe500v2

QNX Neutrino 6.6 on Armv7 and x86

QNX Neutrino 7.0.4 on Armv7

VxWorks VxWorks 7.0 SR0660 on Armv8

Table 2.2 Custom Supported Platforms

2.2 Requirements when Using Microsoft Visual Studio

Note: Debug versions of applications and the various Visual C++ DLLs are not redistributable. Therefore,
if you want to run debug versions, you must have the compiler installed.

When Using Visual Studio 2015 — Update 3 Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2015 Update 3 installed on the machine
where you are running an application linked with dynamic libraries. This includes C/C++ dynamically
linked and all .NET and Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2015 Update 3 from this Microsoft
website: https://www.microsoft.com/en-us/download/details.aspx?id=53840.

When Using Visual Studio 2017 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2017 installed on the machine where you
are running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all
.NET and Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2017 from this Microsoft website:
https://visualstudio.microsoft.com/vs/older-downloads/. Then look in this section: "Redistributables and
Build Tools" for "Microsoft Visual C++ Redistributable for Visual Studio 2017".

When Using Visual Studio 2019 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2019 installed on the machine where you
are running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all
.NET and Java applications.

5

https://www.microsoft.com/en-us/download/details.aspx?id=53840
https://visualstudio.microsoft.com/vs/older-downloads/

2.3 Disk and Memory Usage

6

You can download the Visual C++ Redistributable for Visual Studio 2019 from this Microsoft website:
https://www.visualstudio.com/downloads/. Then look in this section: "Other Tools and Frameworks" for
"Microsoft Visual C++ Redistributable for Visual Studio 2019".

When Using Visual Studio 2022 version 17 — Redistributable Package Requirement

You must have the Visual C++ Redistributable for Visual Studio 2022 installed on the machine where you
are running an application linked with dynamic libraries. This includes C/C++ dynamically linked and all
.NET and Java applications.

You can download the Visual C++ Redistributable for Visual Studio 2022 from this Microsoft website:
https://www.visualstudio.com/downloads/. Then look in this section: "Other Tools and Frameworks" for
"Microsoft Visual C++ Redistributable for Visual Studio 2022".

2.3 Disk and Memory Usage

Disk usage for a typical host-only installation is approximately 802 MB on Linux systems and 821 MB on
Windows systems. Each additional architecture (host or target) requires an additional 498 MB on Linux
systems and 609 MB on Windows systems.

We recommend that you have at least 256 MB RAM installed on your host development system. The tar-
get requirements are significantly smaller and they depend on the complexity of your application and hard-
ware architecture.

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

Chapter 3 Compatibility
Below is basic compatibility information for this release.

Note: For backward compatibility information between 6.1.2 and previous releases, see the
Migration Guide on the RTI Community Portal (https://community.rti.com/documentation).

3.1 Wire Protocol Compatibility

Connext DDS communicates over the wire using the formal Real-Time Publish-Subscribe (RTPS)
protocol. RTPS has been developed from the ground up with performance, interoperability and
extensibility in mind. The RTPS protocol is an international standard managed by the OMG. The
RTPS protocol has built-in extensibility mechanisms that enable new revisions to introduce new
message types, extend the existing messages, or extend the Quality of Service settings in the
product—without breaking interoperability.

RTPS 1.0 was introduced in 2001. The currently supported version is OMG Real-Time Publish-
Subscribe (RTPS) specification, version 2.5, although some features are not supported. Unsup-
ported features currently are RTPS HeaderExtension, FilteredCountFlag in GAP Submessage,
HeartbeatFrag Submessage, Checksum, and ALIVE_FILTERED instance state. RTI plans to
maintain interoperability between middleware versions based on RTPS 2.1. For more details, see
Table 3.1 RTPS Versions.

Table 3.1 RTPS Versions shows RTPS versions supported for each Connext DDS release. In gen-
eral, RTPS 2.1 and higher versions are interoperable, unless noted otherwise. RTPS 2.0 and RTPS
1.2 are incompatible with current (4.2e and later) versions of Connext DDS.

Although RTPS 2.1 and higher versions are generally interoperable, there may be specific wire pro-
tocol interoperability issues between Connext DDS releases. These issues are documented in the
"Wire Protocol" section for your release, in theMigration Guide on the RTI Community Portal
(https://community.rti.com/documentation). Wire protocol issues between 5.3.1 and previous
releases are documented in the RTI Connext DDS Core Libraries Release Notes for release 5.3.1.

7

https://community.rti.com/documentation
https://www.omg.org/spec/DDSI-RTPS/2.5/
https://www.omg.org/spec/DDSI-RTPS/2.5/
https://community.rti.com/documentation

3.2 Code and Configuration Compatibility

8

Table 3.1 RTPS Versions

Connext DDS Release RTPS Standard Version (a) RTPS Protocol Version (b)

Connext 6 and above 2.5 (partial support) 2.3

Connext DDS 5.2 and 5.3 2.2 2.2

Connext DDS 4.5f - 5.1 2.1 2.1

Data Distribution Service 4.2e - 4.5e 2.1 2.1

Data Distribution Service 4.2c 2.0 2.0

Data Distribution Service 4.2b and lower 1.2 1.2

(a) Version number of the RTPS standards document, OMG Real-Time Publish-Subscribe (RTPS) specification, version 2.5.

(b) RTPS wire protocol version number that Connext DDS announces in messages it puts on the wire.

3.2 Code and Configuration Compatibility

The Connext DDS core uses an API that is an extension of the OMG Data Distribution Service (DDS)
standard API, version 1.4. RTI strives to maintain API compatibility between versions, but will conform to
changes in the OMG DDS standard.

The Connext DDS core primarily consists of a library and a set of header files. In most cases, upgrading
simply requires you to recompile your source using the new header files and link the new libraries. In
some cases, minor modifications to your application code might be required; any such changes are noted in
theMigration Guide on the RTI Community Portal (https://community.rti.com/documentation). TheMigra-
tion Guide also indicates whether and how to regenerate code.

3.3 Extensible Types Compatibility

This release of Connext DDS includes partial support for the OMG 'Extensible and Dynamic Topic Types
for DDS' specification, version 1.3 (DDS-XTypes) from the Object Management Group (OMG). This sup-
port allows systems to define data types in a more flexible way, and to evolve data types over time without
giving up portability, interoperability, or the expressiveness of the DDS type system.

For information related to compatibility issues associated with the Extensible Types support, see theMigra-
tion Guide on the RTI Community Portal (https://community.rti.com/documentation). See also the RTI
Connext DDS Core Libraries Extensible Types Guide for a full list of the supported and unsupported
extensible types features.

3.4 ODBC Database Compatibility

To use the Durable Writer History and Durable Reader State features, you must install a relational data-
base such as MySQL.

https://www.omg.org/spec/DDSI-RTPS/2.5/
https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS/1.4
https://community.rti.com/documentation
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3
https://community.rti.com/documentation

3.4 ODBC Database Compatibility

To see if a specific architecture has been tested with the Durable Writer History and Durable Reader State
features, see the RTI Connext DDS Core Libraries Platform Notes. To see what databases are supported,
see RTI Connext DDS Core Libraries Database Setup.

9

Chapter 4 What's Fixed in 6.1.2
This section describes bugs fixed in Connext DDS 6.1.2. These fixes have been made since 6.1.1
was released.

4.1 Fixes Related to Callbacks and Waitsets

4.1.1 Failure calling DDS_Subscriber::get_datareaders in DDS_
SubscriberListener::on_data_on_readers callback
implementation

You may have seen the following errors when invoking DDS_Subscriber::get_datareaders()
within the implementation of the DDS_SubscriberListener::on_data_on_readers() callback:
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS]
REDACursor_modifyReadWriteArea:!freeze read write area
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS]
PRESPsReaderGroup_getEA:!modify pres psReaderGroup
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS]
PRESPsReaderGroup_lock:!take semaphore
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS]
PRESPsReaderGroup_beginGetPsReaders:!get PRESPsReaderGroup_lock
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS] DDS_
Subscriber_begin_get_datareadersI:ERROR: Failed to get PRESPsReaderGroup_
beginGetPsReaders
ERROR [0x01011B2D,0x8A450DE1,0xBAE5A2A0:0x80000009|SET GROUP LISTENER|GET READERS] DDS_
Subscriber_get_datareaders:ERROR: Failed to get DDS_Subscriber_begin_get_datareadersI

In addition, when using the Traditional C++ API and the legacy .NET API, the application gen-
erated a segmentation fault after printing the error.

The problem occurred only when:

l You installed a listener on the Subscriber using the API DDS_Subscriber::set_listener()
after the Subscriber was enabled.

10

4.1.2 DDS_SubscriberListener::on_data_on_readers on a DomainParticipant or Subscriber not called

11

l Or you installed a listener on the DomainParticipant using the API DDS_Participant::set_listener
() after the DomainParticipant was enabled.

This problem has been resolved.

[RTI Issue ID CORE-12316]

4.1.2 DDS_SubscriberListener::on_data_on_readers on a DomainParticipant
or Subscriber not called when Listener installed after entity enabled

The callback DDS_SubscriberListener::on_data_on_readers was not invoked when there was data
available, if these two conditions were met:

l The listener callback on_data_on_readers was installed after the Subscriber/DomainParticipant
implementing it was enabled.

l The callback on_data_available was not installed at any level (DomainPar-
ticipant/Publisher/DataReader).

This problem has been resolved.

[RTI Issue ID CORE-12338]

4.1.3 Unsafe combinations of masks and listeners may have led to
segmentation fault in C API

When entities are created, a listener may be provided by the user to receive calls when specified events
occur. The events of interest are set using a StatusKind mask. If an event set in the StatusKind mask
occurs, but no callback function has been assigned by the user, a null pointer dereference will occur.

Connext DDS checks for many of these errors and prevents the creation of entities when this error is
present. However, some of these cases were not checked, allowing unsafe combinations of masks and
listeners to be used.

This problem has been corrected. The new, stricter checking may cause entity creation errors when no
errors were detected before.

[RTI Issue ID CORE-12610]

4.2 Fixes Related to Serialization and Deserialization

4.2.1 Serialization of samples failed or produced a segmentation fault for
types with max serialized size larger than 2GB

A DataWriter may have failed to send a sample due to serialization errors when the sample’s type had a
max serialized size with a value larger than 2GB.

4.3 Fixes Related to Usability and Debuggability

For example:
@nested

struct MyNestedStruct2 {
sequence<octet, 1500000000> m1;

};

@nested
struct MyNestedStruct {

sequence<octet, 1000000000> m1;
MyNestedStruct2 m2;

};

struct MyStruct {
MyNestedStruct m1;

};

In this example, the serialize operation failed with an error like this:
[0x0101C50B,0x0D4E0B41,0xBBFA04AC:0x80000003{E=DW,T=Example MyStruct,C=MyStruct,D=56}|WRITE]
PRESWriterHistoryDriver_serializeSample:serialize sample error in topic 'Example MyStruct' with
type 'MyStruct' and encapsulationId 1

For 32-bit platforms, the application may have produced a segmentation fault instead of failing to serialize.

This problem has been fixed.

[RTI Issue ID CORE-12687]

4.3 Fixes Related to Usability and Debuggability

4.3.1 Unexpected memory growth when DataReader could not be matched
with DataWriter due to unexpected error condition

Failing to match a DataReader with a DataWriter because of unexpected error conditions may have led to
unexpected memory growth, because Connext DDS may not have cleaned up the resources associated
with the remote match completely. This problem has been resolved.

[RTI Issue ID CORE-8257]

4.3.2 Unbounded memory growth in Spy when discovering multiple
endpoints with the same Topics and types

Each time DDS Spy discovered an endpoint, it unnecessarily made a copy of the TypeCode that was asso-
ciated with the endpoint's Topic, leading to unbounded memory growth. This issue has been fixed.

[RTI Issue ID CORE-12136]

12

4.3.3 Hang when using best-effort DataWriters and asynchronous publishing, if RTIEventJobDispatcher_

13

4.3.3 Hang when using best-effort DataWriters and asynchronous publishing,
if RTIEventJobDispatcher_retrieveJobInfo failed

Due to an internal error, an application hanged when using a best-effort DataWriter and asynchronous pub-
lishing, if the RTIEventJobDispatcher_retrieveJobInfo function also failed. Before the hang, the fol-
lowing error message was printed:
COMMENDBeWriterService_write:!retrieveJob

This problem is now fixed.

[RTI Issue ID CORE-12562]

4.3.4 No more than 100 asynchronous publisher threads could be created

A change to the thread naming convention inadvertently limited the number of asynchronous publisher
threads to 100. The limit is now 65,536. These limits also apply to receive threads, asynchronous waitset
threads, and persistence service threads.

[RTI Issue ID CORE-12874]

4.4 Fixes Related to Transports

4.4.1 Unnecessary sockets created during initialization of library

The initialization of the Connext DDS libraries always created a socket to obtain the IP address of the first
valid interface of the machine. This IP address is used to generate identifiers when DDS_DomainPar-
ticipantQos::wire_protocol::rtps_auto_id_kind is DDS_RTPS_AUTO_ID_FROM_IP, which is not
the default value. Therefore, the creation of this socket was unnecessary in most cases. This problem has
been solved, and now the socket is only created when it is needed.

[RTI Issue ID CORE-12587]

4.4.2 Possible data loss after Connext DDS application lost its multicast
interfaces or gained its first multicast interface

The IP mobility feature detects when the interfaces of an application change, then propagates these
changes. If an IP mobility event causes either the loss of the last interface that supported multicast or the
gain of the first interface that supports multicast, the way other applications communicate with the applic-
ation that experienced the IP mobility event changes.

Previously, that transition did not happen properly and may have led to data losses. This problem has been
fixed. Now, communication is not affected by these interface changes.

[RTI Issue ID CORE-12609]

4.4.3 Unnecessary discovery traffic related to IP mobility events on interfaces irrelevant to the transport

4.4.3 Unnecessary discovery traffic related to IP mobility events on interfaces
irrelevant to the transport

When there is a change on a network interface (an IP mobility event), a Connext DDS application will
update and resend its discovery information to include these changes. The transport can consider a change
on an interface irrelevant (for example, changes on interfaces in the deny_interfaces_list of the transport).
In this case, the new discovery messages are exactly the same as announced before, generating unne-
cessary discovery traffic that could affect the performance of the application.

This problem has been fixed. Now Connext DDS only updates and resends its discovery information if
there was a change on an interface relevant to the transport.

[RTI Issue ID CORE-12664]

4.4.4 DomainParticipant with non-default metatraffic_transport_priority QoS
did not complete discovery

A DomainParticipant that had a non-defaultmetatraffic_transport_priority in the DISCOVERY QoS
Policy was not able to complete endpoint discovery due to a unicast metatraffic channel that was not cre-
ated correctly. (The channel is used by the participant to send Data(R) and Data(W).)

This issue was introduced in 6.1.0. This issue has been resolved.

[RTI Issue ID CORE-12739]

4.4.5 Pushed samples may not have been received by reliable DataReader
when DataWriter published type that supports Zero Copy transfer over
shared memory

A reliable DataReader may not have received pushed samples from a DataWriter publishing a Topic on a
type configured with Zero Copy transfer over shared memory (@transfer_mode(SHMEM_REF)). This
may have led to significant performance degradation because the DataReader has to continuously NACK
the missing samples. This problem only occurred when the following three conditions were true:

1) The DataWriter ran in a different host, or the DataReader did not have the built-in SHMEM trans-
port enabled.

2) The DataReader used a ContentFilteredTopic, and the DataWriter did writer-side filtering, or the
DataReader created TopicQueries.

3) The DataWriter was not configured to use an asynchronous publisher.

This problem has been resolved.

[RTI Issue ID CORE-12775]

14

4.4.6 Race condition could cause unbounded memory growth in TCP Transport Plugin

15

4.4.6 Race condition could cause unbounded memory growth in TCP
Transport Plugin

Due to a race condition, the TCP Transport Plugin may have leaked memory when creating a new con-
nection if the creation happened at the same time the DomainParticipant was being destroyed. The cause
of the leak was the TCP Transport Plugin reallocating memory that was already released by the
DomainParticipant.

The race condition was unlikely to happen. However, in a system that frequently creates and destroys entit-
ies (and, therefore, TCP connections) and that runs for long enough, it may have led to unbounded
memory growth.

The issue has been resolved.

[RTI Issue ID COREPLG-618]

4.5 Fixes Related to Reliability Protocol and Wire Representation

4.5.1 Various issues with RtpsReliableWriterProtocol_t::nack_suppression_
duration

There were various issues with the RtpsReliableWriterProtocol_t::nack_suppression_duration QoS:

l NACKs were being incorrectly suppressed with asynchronous publishing or non-zero min/max_
nack_response_delay if two NACK messages were received within the nack_suppression_dur-
ation window, even if they were NACKing for different sets of sequence numbers. The nack_sup-
pression_duration is only meant to suppress NACKs with the same leading sequence number that
are received within the nack_suppression_duration window. If two consecutive NACKs have dif-
ferent leading sequence numbers, this indicates that the DataReader is making progress and the
second one should not be suppressed, regardless of the nack_suppression_duration. Incorrect sup-
pression of NACKs was not an issue ifmin/max_nack_response_delay = 0 and
SYNCHRONOUS_PUBLISH_MODE_QOS PublishModeQosPolicy.kind.

l If a NACK was received and suppressed due to the nack_suppression_duration before the pre-
vious NACK was responded to, then the NACK that had not been responded to yet, along with all
NACKs for the duration of the nack_suppression_duration, were incorrectly suppressed. This
problem did not occur ifmin/max_nack_response_delay = 0 and SYNCHRONOUS_PUBLISH_
MODE_QOS PublishModeQosPolicy.kind.

l When PublishModeQosPolicy.kind was ASYNCHRONOUS_PUBLISH_MODE_QOS and
there were no GAP messages sent in response to a NACK, then the nack_suppression_duration
had no effect and NACKs were never suppressed. (GAP messages are sent to a DataReader to
indicate that a sample or set of samples are not meant for that DataReader. This can happen, for
example, because the DataWriter has applied writer-side filtering or no longer has those samples in
its queue.)

4.5.2 Samples not delivered to Required Subscription DataReaders when DataWriter used durable writer

These issues have been resolved.

[RTI Issue ID CORE-12603]

4.5.2 Samples not delivered to Required Subscription DataReaders when
DataWriter used durable writer history and DataReaders disabled
positive ACKs

A sample may not have been delivered to a Required Subscription DataReader if the DataWriter was
using durable writer history and there were matching DataReaders configured with reader_qos.-
protocol.disable_positive_acks. This behavior violated the required subscription contract. This problem
has been resolved.

[RTI Issue ID CORE-12825]

4.5.3 DataReader may not have received samples that were sent as gapped
samples to another DataReader over multicast

A DataReader may not have received samples that were sent as gapped samples to another DataReader
over multicast. A GAP tells a DataReader that it should not expect to receive the samples that are listed in
the GAP message. In some cases, when a DataWriter was responding to a DataReader’s NACK mes-
sage, the response contained a GAP which identified samples that should not have been gapped for any
other DataReader aside from the DataReader whose NACK was being responded to. This was a problem
if the NACK response was sent over multicast and was received by other DataReaders, because those
DataReaders would incorrectly assume those gapped samples were irrelevant and would never receive
them.

This issue has been resolved.

[RTI Issue ID CORE-13104]

4.6 Fixes Related to Content Filters and Query Conditions

4.6.1 Unnecessary sample filtering on a DataReader for samples already
filtered by a DataWriter

When doing writer-side filtering, a late-joining DataReader using a ContentFilteredTopic may have spent
unnecessary CPU cycles evaluating samples that pass the ContentFilteredTopic's expression. When using
writer-side filtering, the filter evaluation is done by the DataWriter and it should not be necessary for the
DataReader to do it again on samples that pass the filter expression.

This problem only occurred for late-joining DataReaders. This problem has been fixed.

[RTI Issue ID CORE-11084]

16

4.6.2 Creation of ContentFilteredTopic or reception of TopicQuery samples may have taken long time for

17

4.6.2 Creation of ContentFilteredTopic or reception of TopicQuery samples
may have taken long time for complex types

The creation of a ContentFilteredTopic or reception of TopicQuery samples may have taken a long time
for complex types. This issue has been resolved.

[RTI Issue ID CORE-12179]

4.6.3 Incorrect results for Unions when using DynamicData or Content Filters

When using a DynamicDataReader, samples containing a union may have had incorrect or invalid data
after deserialization if:

l the DataReader's type contained members that were not present in the DataWriter's type, and

l those members had non-zero default values.

When using content filters, the filter results may have been incorrect if:

l the type contained a union, and

l the filter expression filtered on fields within the union that were present in the DataReader's type but
not present in the DataWriter's type, and

l those members had non-zero default values.

For example, consider this DataWriterType:
struct innerStructPub {

short shortMember;
};
@mutable
union ComplexUnionTypePub switch(long) {

case 0:
long longMember;

case 1:
innerStructPub structMember;

};

and this DataReaderType:
struct innerStructSub {

short shortMember;
@default(5) long longMemberWithDefault;

};
@mutable
union ComplexUnionTypeSub switch(long) {

case 0:
long longMember;

case 1:
innerStructSub structMember;

4.6.4 Connext DDS application using filtering feature may have crashed after running out of memory

};

In the above types, the member longMemberWithDefault is only present in the DataReader's type and
has a default value of 5, so any sample that is received from the DataWriter should have this value set to 5
when read from the DataReader's queue. Instead, the value was incorrectly 0 when using DynamicData.

In addition, if this member was used as part of a content filter expression, a DataReader always used the
value of 0 instead of 5 when evaluating a sample from a DataWriter using the DataWriterType. This could
lead to incorrect filter results.

These issues have been fixed.

[RTI Issue ID CORE-12517]

4.6.4 Connext DDS application using filtering feature may have crashed after
running out of memory

In release 6.1.1.2, a Connext DDS application using filtering features (that is, ContentFilteredTopic,
QueryConditions, or TopicQuery) may have crashed after running out of memory. This problem has been
resolved.

[RTI Issue ID CORE-12661]

4.7 Fixes Related to TopicQueries

4.7.1 Continuous creation of TopicQueries may have led to unnecessary
memory fragmentation in OS memory allocator

In releases 6.0.x and 6.1.x, the continuous creation of TopicQueries may have led to unnecessary memory
fragmentation in the OS memory allocator of the applications that receive the TopicQuery requests and dis-
patch responses. This issue may have resulted in an unexpected increase of the resident set size (RSS)
memory of the application receiving and dispatching the TopicQueries compared to previous Connext
DDS releases. This problem has been fixed.

[RTI Issue ID CORE-12352]

4.7.2 Unnecessary repair traffic for DataWriters using TopicQueries and
asynchronous publishing

Samples that are sent in response to a TopicQuery are directed to the DataReader that created that Top-
icQuery. This means that those samples are only sent to the DataReader that made the request and have
that DataReader's GUID attached to each sample in the sample's metadata. All other DataReaders receive
GAP protocol messages, indicating to them that a given sequence number or set of sequence numbers is
not meant for them.

Due to a defect, when a DataReader sent a NACK message requesting some TopicQuery samples to be
repaired, if the requested sequence numbers included samples that were meant for a different DataReader,

18

4.8 Fixes Related to Coherent Sets

19

the DataWriter did not filter these samples and resend a GAP message. Instead, the DataWriter sent the
DataReader samples that were not meant for it and the DataReader had to filter these samples out itself.
As a result, the DataReaders may have received samples that should have been filtered out on the
DataWriter side, leading to an increase in network traffic.

The problem only affected repair traffic. When a sample was filtered out by the DataWriter because it was
directed to a different DataReader, the DataWriter sent a GAP protocol message to the DataReader. If the
GAP message was lost, the DataReader NACKed for the sample; instead of sending a new GAP mes-
sage, the DataWriter sent the sample.

This problem has been resolved.

[RTI Issue ID CORE-12589]

4.8 Fixes Related to Coherent Sets

4.8.1 Application may stop receiving samples from DataReaders using
GROUP_PRESENTATION_QOS

An application may have stopped receiving samples from DataReaders that were part of a Subscriber
using GROUP_PRESENTATION_QOS under the following conditions:

l The Publisher's group contained at least one keyed DataWriter and one unkeyed DataWriter.

l The Subscriber's group contained only keyed DataReaders or unkeyed DataReaders, but not both.

This problem has been resolved.

[RTI Issue ID CORE-12161]

4.8.2 Application may not have received samples of coherent set when using
GROUP access scope and TRANSIENT_LOCAL durability

An application using GROUP access scope and TRANSIENT_LOCAL (or higher) durability may not
have received the samples for some coherent sets, or it may have received the samples with delay.

For example, assume a coherent set 'CS1' published by a set of DataWriters that are part of the same
group. This coherent set was not provided to the application if all the following conditions were true:

l The DataReaders receiving 'CS1' matched with the DataWriters publishing 'CS1' after the coherent
set was published.

l 'CS1' did not contain samples for some of the DataWriters in the group, or the samples were
removed after applying the LIFESPAN QoS Policy. If 'CS1' contained at least one sample per
DataWriter in the group, this problem did not occur.

4.9 Fixes Related to Dynamic Data

l The application did not publish a new coherent set after 'CS1' or, if it did, the new coherent set did
not contain samples from at least one of the DataWriters that were missing samples from 'CS1'.

If the third condition was not met, then the delivery of the coherent set would be delayed instead of the
coherent set not being provided.

[RTI Issue ID CORE-12350]

4.9 Fixes Related to Dynamic Data

4.9.1 Types Containing Typedefs were sent without the typedefs in discovery
when using DynamicData

When an application was using a DynamicDataReader or DynamicDataWriter and a type that contained a
typedef, the type that was sent during endpoint discovery for that endpoint did not contain the typedef.
While this did not cause any mismatches or communication failure, it did cause a number of issues that
may have been noticeable depending on what other products you may have also been using. See 4.3.2
Unbounded memory growth in Spy when discovering multiple endpoints with the same Topics and types
on page 12 (CORE-12136) and "Type Containing Typedefs Caused INFO-Level Log Message about Dif-
ferent Type Definitions" (ROUTING-971) in the "Release Notes" section of the RTI Routing Service doc-
umentation for more details about specific issues that you may have encountered.

This issue has been resolved, meaning that the exact type definition that is registered with the DomainPar-
ticipant and that contains typedefs is sent during discovery. This is a change in behavior from 6.0.0-based
applications, which sent the type definitions without the typedef information.

[RTI Issue ID CORE-12107]

4.10 Fixes Related to APIs

4.10.1 Possible wrong results when adding Time or Duration objects that
used very large numbers

Adding Time or Duration objects could have previously produced wrong results when using very large
numbers. Necessary checks are now in place to ensure that wrong results do not occur.

[RTI Issue ID CORE-12413]

4.10.2 Java API did not support RtpsReliableReaderProtocol_t.receive_
window_size

This QoS setting was ignored by the Java API, and DataReaders were always created with the default
value (256). This problem has been resolved.

[RTI Issue ID CORE-12451]

20

4.10.3 Java API leaked some objects in certain DomainParticipantFactory operations

21

4.10.3 Java API leaked some objects in certain DomainParticipantFactory
operations

The Java API created and pinned a number of objects as a result of calling most methods in the
DomainParticipantFactory, including the creation of DomainParticipants. While these objects did not con-
sume significant amounts of memory, certain JVMs could have exhausted the maximum number of
allowed global references, causing applications to fail. This problem has been resolved.

[RTI Issue ID CORE-12838]

4.10.4 Possible unbounded memory growth when creating many Requesters

When a Requester is created, a ContentFilteredTopic is internally created on the Requester's DomainPar-
ticipant. This ContentFilteredTopic is exclusively created for each Requester and was never deleted until
the DomainParticipant was deleted.

This may have caused applications that continuously create and delete Requesters on the same DomainPar-
ticipant to see an unbounded memory growth.

This problem has been resolved in all language APIs. The Requester destructor or deletion function now
deletes its ContentFilteredTopic.

[RTI Issue ID REQREPLY-35]

4.10.5 Memory leak in Java Request-Reply API

The Java Request-Reply API leaked a small amount of native heap memory every time a Requester was
created. The leak was caused by a few internal WaitSet objects, which did not have a finalizer and were
not explicitly deleted either.

[RTI Issue ID REQREPLY-94]

4.10.6 Possible data race using Sample and WriteSample classes in
Traditional C++ Request-Reply API

The Sample and WriteSample classes are wrapper classes in the Traditional C++ Request-Reply API that
used to initialize the underlying user data lazily: the data was initialized the first time it was accessed with
the data()member function.

This approach made the access to the data unsafe. A data race could occur when two or more threads com-
peted to access the same sample object for the first time.

This problem has been resolved. The lazy approach has been reversed, and the data is now initialized in
the constructor.

[RTI Issue ID REQREPLY-95]

4.11 Fixes Related to Modern C++ API

4.11 Fixes Related to Modern C++ API

In addition to 4.10 Fixes Related to APIs on page 20, this release includes the following fixes, which are
specific to the Modern C++ API.

4.11.1 Corruption of LoanedDynamicData object when moved in some
situations

Given a DynamicData sample, accessing a nested member within another nested member via loan_value()
and then moving the latter may have corrupted the former. For example, given a sample such that "my_
sample.a.b" is a member of a constructed type (struct or union):
DynamicData my_sample(my_dynamic_type);
LoanedDynamicData loan1 = my_sample.loan_value("a");
LoanedDynamicData loan2 = loan1.get().loan_value("b");
// The following corrupts loan2
LoanedDynamicData loan1_moved = std::move(loan1);

This may have affected applications that explicitly move-constructed a double-nested LoanedDy-
namicData or that otherwise indirectly called the move constructor in this situation (for example, by res-
izing a std::vector of LoanedDynamicData elements).

The LoanedDynamicData's move constructor and move-assignment operators have been fixed.

[RTI Issue ID CORE-12272]

4.11.2 rti::topic::find_registered_content_filters led to infinite recursion

The function rti::topic::find_registered_content_filters was incorrectly implemented and would lead to
infinite recursion and stack overflow in any application that called it.

This problem has been resolved. This function returns the names of previously registered custom content
filters. It is a little-used feature and doesn't affect the commonly used SQL content filter.

[RTI Issue ID CORE-12512]

4.12 Fixes Related to C# API

The following fixes were made to the new C# API released in 6.1.0.

4.12.1 NullReferenceException when using unbounded sequences of
complex types

This issue was fixed in release 6.1.1, but not documented at that time.

A NullReferenceException may have occurred in the C# API when unbounded sequences of types that
require memory allocation (e.g., arrays) were used. It occurred when growing a sequence past its previous

22

4.12.2 Possible error message printed during entity deletion

23

maximum size. Note that the exception only occurred if -unboundedSupport was supplied during code
generation.

[RTI Issue ID CORE-12570]

4.12.2 Possible error message printed during entity deletion

Upon the deletion of an entity, an error message from a callback associated with an event may have been
printed.

An excerpt of what the error may have looked like is shown here:
ERROR [0x01013D3F,0x79453D76,0xA3558BB2:0x00000000|REMOVE REMOTE DR
0x01013D3F,0x79453D76,0xA3558BB2:0x80000007] OnReliableReaderActivityChangedCallback:An
exception was thrown: Omg.Dds.Core.DdsException: DDS operation failed:
at Rti.Dds.NativeInterface.Helpers.ReturnCode.CheckResult(IntPtr result)
...

The deletion of entities has now been modified to ensure this error does not happen.

[RTI Issue ID CORE-12641]

4.13 Fixes Related to XML Configuration

4.13.1 Parsing error loading XML configuration file containing const whose
expression refers to enumerator

Connext DDS failed to load an XML configuration file containing a const whose expression referred to an
enumerator. For example:
<enum name="Enum1">

<enumerator name="Enumerator1” value=”1”/>
</enum>

<const name="Const1" type="int32" value="Enumerator1+1"/>

Loading this XML failed with an error similar to this:
DDS_XMLConst_initialize:Parse error at line 10: type 'Enum1' is not typedef

This problem has been fixed.

[RTI Issue ID CORE-5553]

4.13.2 Parsing error loading XML configuration file with enum type containing
enumerator whose value was an expression referring to a const

Connext DDS failed to load an XML configuration file with an enum type containing an enumerator
whose value was an expression referring to a const. For example:

4.13.3 Parsing error loading an XML configuration file with enum type containing enumerator whose

<const name="Const1" type="int32" value="10"/>

<enum name="Enum1">
<enumerator name="Enumerator1” value=”Const1”/>

</enum>

Loading this XML failed with an error similar to this:
DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

[RTI Issue ID CORE-10060]

4.13.3 Parsing error loading an XML configuration file with enum type
containing enumerator whose value was an expression

Connext DDS failed to load an XML configuration file with an enum type containing an enumerator
whose value was an expression. For example:
<enum name="Enum1">

<enumerator name="Enumerator1” value=”1 + 1”/>
</enum>

Loading this XML failed with an error similar to this:
DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

[RTI Issue ID CORE-10269]

4.13.4 Parsing error loading an XML configuration file with an enum type
containing an enumerator whose value was an expression referring to
another enumerator

Connext DDS failed to load an XML configuration file with an enum type containing an enumerator
whose value was an expression using another enumerator. For example:
<enum name="Enum1">

<enumerator name="Enumerator1” value=”0”/>
</enum>

<enum name="Enum2">
<enumerator name="Enumerator2” value=”Enumerator1”/>

</enum>

Loading this XML would have failed with an error similar to this:
DDS_XMLEnum_on_start_tag:Parse error at line xy: integer expected

This problem has been fixed.

24

4.13.5 Memory leak after an error parsing XML file with <include> tag

25

[RTI Issue ID CORE-12781]

4.13.5 Memory leak after an error parsing XML file with <include> tag

If the user’s application failed to parse an XML file containing an <include> tag, this caused a memory
leak. For example:
<types>
<include file=""myFile.xml"">

<struct name=""MyStruct"">
<member name=""m1"" type=""unknownType"" />

</struct>

</types>

This file cannot be parsed becausem1 refers to an unknown type. When the application finished, running
a memory profiling tool such as ValgrindTM showed there was a memory leak. This problem has been
resolved.

[RTI Issue ID CORE-12831]

4.13.6 Failed to parse XML configuration file containing type member with
useVector attribute

Connext DDS libraries failed to parse XML files containing a type member with the attribute useVector,
although this is a legal attribute.

For example:
<types>

<struct name= "MyType">
<member name="m1" sequenceMaxLength="100" useVector="true" type="int32"/>

</struct>
</types>

Parsing this file failed with the following error:
RTIXMLParser_validateOnStartTag:Parse error at line xxx: Unexpected attribute 'useVector'

This problem has been fixed.

[RTI Issue ID CORE-12949]

4.14 Fixes Related to Remote Procedure Calls (RPC)

4.14.1 RPC interface evolution did not work

Remote Procedure Call (RPC) interfaces were designed to be extensible. A service and a client can com-
municate even when they have a different number of interfaces. For example:

4.14.2 Exceptions sending result of remote operation may have crashed server application

A base service definition in IDL could be as follows:
@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
float get_speed();

};

If you add new operations to the service interface, such as the following:
@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
float get_speed();
float get_position();

};

Or remove operations from the service interface, such as the following:
@service
interface RobotControl {

Coordinates walk_to(Coordinates destination, float speed);
};

They should remain interoperable.

However, in the previous release, the service and the client wouldn't communicate in any case.

This problem has been resolved. A client can now invoke an operation in a service with more or fewer
operations. If the operation exists in the service, it will receive a valid response. If the operation doesn't
exist in the service, the service will respond accordingly and the client will throw the standard exception
dds::rpc::RemoteUnknownOperationError.

[RTI Issue ID REQREPLY-105]

4.14.2 Exceptions sending result of remote operation may have crashed
server application

In an RPC server-side application, the user implements the functional interface. The Server uses a thread
pool to call those functions with the input sent from the client (Request) and obtain the result. The result is
then sent to the client (Reply). The Reply is automatically written using a DDS DataWriter. If the write()
operation failed, the resulting exception would crash the current thread in the thread pool and possibly
crash the entire server-side application (a typical write() exception is a Timeout). Since the Reply is sent
by the server from a separate thread, the user application has no way of catching the exception or sending
the Reply again.

This problem has been resolved. If an exception occurs, it is caught and logged. The Reply is never sent.
User applications have two ways to react to this event:

26

4.15 Fixes Related to Vulnerabilities

27

l The server application can install a rti::config::Logger::output_handler to monitor errors.

l The client application will see a timeout in the function call. The application can then react accord-
ingly (e.g., calling the function again later).

[RTI Issue ID REQREPLY-111]

4.15 Fixes Related to Vulnerabilities

4.15.1 Fixes related to Connext DDS

This release fixes some potential vulnerabilities, including RTI Issue ID CORE-12510 and CORE-12752.
Other fixed vulnerabilities are described below.

4.15.1.1 Out-of-bounds write while parsing malicious RTPS message

A vulnerability in the Connext DDS application could have resulted in the following:

l Out of bounds write while parsing a malicious RTPS message.

l Remotely exploitable.

l Potential impact on integrity of Connext DDS application.

l CVSS Base Score: 8.2 HIGH

l CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H

This vulnerability has been fixed.

[RTI Issue ID CORE-13150]

4.15.2 Fixes related to third-party dependencies

This release fixes some potential vulnerabilities related to third-party dependencies, described below.

4.15.2.1 Potential crash or leak of sensitive information in Core Libraries XML parser due to
vulnerabilities in Expat

The Core Libraries XML parser had a third-party dependency on Expat version 2.4.4, which is known to
be affected by a number of publicly disclosed vulnerabilities.

These vulnerabilities have been fixed by upgrading Expat to the latest stable version, 2.4.8. See "Third-
Party Software Upgrades" in RTI Connext DDS Core Libraries What's New in 6.1.2.

The impact on Connext DDS applications of using the previous version varied depending on your Connext
DDS application configuration:

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H&version=3.1

4.15.2 Fixes related to third-party dependencies

l With Connext Secure (enabling RTPS protection):

l Exploitable through a compromised local file system containing malicious XML/DTD files.

l Could lead to arbitrary code execution.

l CVSS v3.1 Score: 8.4 HIGH

l CVSS v3.1 Vector: AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

l Without Connext Secure:

l Exploitable through a compromised local file system containing malicious XML/DTD files.

l Remotely exploitable through malicious RTPS messages.

l Could lead to arbitrary code execution.

l CVSS v3.1 Score: 9.8 CRITICAL

l CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

[RTI Issue ID CORE-12872]

4.15.2.2 Potential memory corruption when using Zlib compression due to vulnerability in
Zlib

The user-data compression feature in the Core Libraries had a third-party dependency on Zlib version
1.2.11, which is known to be affected by a publicly disclosed vulnerability.

This vulnerability has been fixed by upgrading Zlib to the latest stable version, 1.2.12. See "Third-Party
Software Upgrades" in RTI Connext DDS Core Libraries What's New in 6.1.2.

The impacts on Connext DDS applications of using the previous version were as follows:

l Exploitable by triggering the compression of a sample containing a malicious payload.

l The application could crash.

l CVSS v3.1 Score: 7.5 HIGH

l CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

[RTI Issue ID CORE-12877]

28

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H&version=3.1

4.16 Fixes Related to Crashes

29

4.16 Fixes Related to Crashes

4.16.1 Simultaneous deletion of an entity by multiple threads caused a crash
when using Java

When two threads deleted an entity at the same time, in Java, this may have caused a crash with the fol-
lowing backtrace:
#7 0x00007f7c630dad3b in REDAWeakReference_getReferent (reference=0x78, slNode=0x7f7c4407f988,
frOut=0x0, tableWithStartedCursor=0x7f7c6452c000) at WeakReference.c:144
#8 0x00007f7c630d2ff3 in REDACursor_gotoWeakReference (c=0x7f7c4407f950, fr=0x0, wr=0x78) at
Cursor.c:230
#9 0x00007f7c62d5ed46 in PRESPsService_destroyLocalEndpoint (me=0x7f7c64367cc0,
failReason=0x7f7cb0136fc0, group=0x7f7c64dbb340, endpoint=0x7f7c644f0e88,
worker=0x7f7c44015f70) at PsService.c:2130
#10 0x00007f7c62b6fc26 in PRESParticipant_destroyLocalEndpoint (me=0x7f7c64368a00,
failReason=0x7f7cb0136fc0, group=0x7f7c64dbb340, endpoint=0x7f7c644f0e88,
worker=0x7f7c44015f70) at Participant.c:5882
#11 0x00007f7c636fcc32 in DDS_DataReader_deleteI (reader=0x7f7c644f1070) at DataReader.c:4250
#12 0x00007f7c6372667e in DDS_Subscriber_delete_datareader (self=0x7f7c64dbb620,
reader=0x7f7c644f1070) at Subscriber.c:1159
#13 0x00007f7c63daf24b in Java_com_rti_dds_subscription_SubscriberImpl_DDS_1Subscriber_1delete_
1datareader (env=0x7f7c781061f8, self_class=0x7f7cb0137148, self=140172244792864,
readerL=140172235575408) at SubscriberImpl.c:790

This issue has been resolved. Now one thread will remove the entity and the other thread will throw an
exception with the com.rti.dds.infrastructure.RETCODE_ALREADY_DELETED error
code.

[RTI Issue ID CORE-10768]

4.16.2 Segmentation fault when having multicast and unicast DataReaders
for same Topic in a participant

This issue was fixed in release 6.1.0, but not documented at that time.

A publishing DomainParticipantmay have produced a segmentation fault when one of its DataWriters
matched with two DataReaders on a subscribing participant, one using multicast and the other using uni-
cast, and there was an IP mobility event in the subscribing participant. This problem has been fixed.

[RTI Issue ID CORE-11483]

4.16.3 Possible crash upon discovery of applications with unreachable
locators

If an application used DDS_STATUS_MASK_ALL for a DomainParticipant or Publisher listener and
an unreachable locator was discovered, the application enabling the listener may have crashed.

4.16.4 Rare segmentation fault when deleting DomainParticipant or Publisher containing DataWriters

An unreachable locator occurs most commonly when a subscribing application uses a transport that the
publishing application does not use. For example, the publishing application could use UDPv4 and the sub-
scribing application could use both UDPv4 and UDPv6.

More rarely, a crash may have occurred when a pre-5.2.0 subscribing application used the shared memory
transport and a 5.2.0+ publishing application was not using the UDPv6 transport. A log message was gen-
erated if both participants were running on the same machine and this condition occurred. This condition
was caused by a change to the way that transports are identified starting in version 5.2.0.

[RTI Issue ID CORE-11818]

4.16.4 Rare segmentation fault when deleting DomainParticipant or
Publisher containing DataWriters using durable writer history

A Connext DDS application may have crashed after deleting a DomainParticipant or Publisher containing
DataWriters using durable writer history. This issue has been fixed.

[RTI Issue ID CORE-12297]

4.16.5 DataReader C++ application crashed if it received tampered sample
with unsupported encapsulation ID

If a C++ application with a DataReader received a sample with a tampered or malformed encapsulation
kind, a segmentation fault occurred when the DataReader attempted to deserialize the sample, leading to
an application crash. This problem has been fixed.

[RTI Issue ID CORE-12356]

4.16.6 Segmentation fault after calling DomainParticipant::register_durable_
subscription with a group containing a long role_name

An application using the API DomainParticipant::register_durable_subscription may have exper-
ienced a segmentation fault if the role_name of the input group was NULL or had a length greater than
512 bytes. This problem has been fixed.

[RTI Issue ID CORE-12460]

4.16.7 Segmentation fault when application using MultiChannel ran out of
memory

A Connext DDS application using MultiChannel might have produced a segmentation fault if the system
ran out of memory. This problem has been fixed.

[RTI Issue ID CORE-12493]

30

4.16.8 Application crashed when capturing traffic for a DomainParticipant created before enabling

31

4.16.8 Application crashed when capturing traffic for a DomainParticipant
created before enabling network capture

To capture network traffic, you must enable this feature before creating the DomainParticipants that will
capture the traffic. Applications not satisfying this requirement crashed when starting, pausing, or resuming
the capture.

This problem has been fixed. Connext DDS will no longer crash in this situation, but will fail and log mes-
sages such as the following:
ERROR NDDS_Utility_start_network_capture_w_params_for_participant:!get network capture manager
for DomainParticipant. Network capture must be enabled before creating the DomainParticipant

ERROR NDDS_Utility_start_network_capture_for_participant:!network capture could not be started
for the participant

ERROR NDDS_Utility_run_network_capture_operation_for_all_participants:!failed to run network
capture operation for participant

ERROR NDDS_Utility_start_network_capture_w_params:!error starting network capture for all
participants

ERROR NDDS_Utility_start_network_capture:!start network capture for all participants. There was
at least one participant that could not be started

[RTI Issue ID CORE-12511]

4.16.9 Rare circumstances outside application's control caused crash when
writing sample

Under certain (rare) circumstances outside the control of the application, the DataWriter::write operation
could crash using either a best-effort or reliable DataWriter. Before the crash, you may have seen an error
message from either of these functions:

l COMMENDBeWriterService_write

l COMMENDSrWriterService_write

This problem is now fixed.

[RTI Issue ID CORE-12561]

4.16.10 Using certain callbacks at DomainParticipant or Publisher level may
have led to segmentation fault

Handlers were not correctly implemented for the on_instance_replaced, on_sample_removed, on_
application_acknowledgment, or on_service_request_accepted callbacks at the DomainParticipant
and Publisher levels. This could have led to segmentation faults when the corresponding events were
enabled. This problem has been fixed.

4.16.11 Segmentation fault when creation of DomainParticipant failed due to lack of resources

[RTI Issue ID CORE-12647]

4.16.11 Segmentation fault when creation of DomainParticipant failed due to
lack of resources

An application may have produced a segmentation fault using the release libraries if the creation of a
DomainParticipant failed because participant_factory_qos.resource_limits.max_objects_per_thread
was exceeded.

With debug libraries, you may have seen a precondition error such as this:
FATAL U000000011d1a15c0_ \[CREATE
DP|LC:DISC]Mx06:/connextdds/event.1.0/srcC/activeDatabase/ActiveDatabase.c:275:RTI0x2000027:\!
precondition

This problem could be solved by increasing the participant_factory_qos.resource_limits.max_objects_
per_thread value. This problem has been fixed such that when participant_factory_qos.resource_lim-
its.max_objects_per_thread is too low, DomainParticipant failure is handled gracefully.

[RTI Issue ID CORE-12654]

4.16.12 Potential crash during type registration if system ran out of memory

A crash may have occurred during type registration if the application ran out of memory. This problem has
been resolved.

[RTI Issue ID CORE-12734]

4.16.13 Segmentation fault when using GROUP_PRESENTATION_QOS or
HIGHEST_OFFERED_PRESENTATION_QOS and setting filter_
redundant_samples to FALSE on DataReader

An application generated a segmentation fault if it created a DataReader with the following valid con-
figuration:

l subscriber_qos.presentation.access_scope = DDS_GROUP_PRESENTATION_QOS or DDS_
HIGHEST_OFFERED_PRESENTATION_QOS

l datareader_qos.availability.max_data_availability_waiting_time = DDS_DURATION_ZERO

l datareader_qos.availability.max_endpoint_availability_waiting_time = DDS_DURATION_
ZERO

l datareader_qos.property contains dds.data_reader.state.filter_redundant_samples with value
“false”

This problem has been resolved by allowing the DataReader to be created.

32

4.16.14 Segmentation fault after calling DomainParticipant::delete_durable_subscription with a group

33

[RTI Issue ID CORE-12771]

4.16.14 Segmentation fault after calling DomainParticipant::delete_durable_
subscription with a group containing a long role_name

An application using the API DomainParticipant::register_durable_subscription may have exper-
ienced a segmentation fault if the role_name of the input group was NULL or had a length greater than
512 bytes. This problem has been fixed.

[RTI Issue ID CORE-12787]

4.16.15 Potential hang upon SIGSEGV signal from a Connext DDS
application

For debuggability purposes, Connext DDS applications log a backtrace when a SIGSEGV signal is
triggered.

In previous releases, this feature may have triggered a hang during the logging of the backtrace. In this
release, we address this issue by disabling the logging of the backtrace by default in release libraries (but
still keeping it enabled for debug libraries).

This default behavior can be modified by setting the new DomainParticipant-level property dds.-
participant.enable_backtrace_upon_sigsegv. See “New property to manually enable or disable logging
backtrace upon SIGSEGV signal from a Connext application” in RTI Connext DDS Core Libraries
What's New in 6.1.2.

[RTI Issue ID CORE-12794]

4.16.16 Potential crash or memory corruption if user application using thread-
specific storage

Starting with release 6.1.0, there was an issue that could lead to a potential crash or memory corruption if
the user application was using thread-specific storage.

In particular, when using Activity Context or Heap Monitoring, a race condition could have been triggered
upon creating a thread with the ThreadFactory at the same time the DomainParticipantFactory instance
was initialized or finalized. When this race condition was triggered, Connext DDS might have overwritten
the user application's thread-specific storage, leading to memory corruption or crashes.

This issue is now fixed. If the race condition that led to the issue happens in an application, the following
benign warning will be logged:
Unexpected RTIOsapiContextSupport_g_tssKey value. This could mean that this thread was
created at the same time you are destroying the DDSDomainParticipantFactory.

If that is the case, Activity Context and Heap Monitoring won’t be available for that thread.

4.16.17 Creating DynamicDataTypePlugin with TypeCode from discovery and using content filtering

[RTI Issue ID CORE-12966]

4.16.17 Creating DynamicDataTypePlugin with TypeCode from discovery
and using content filtering caused segmentation fault

If the TypeCode that is received from endpoint discovery data (PublicationBuiltinTopicData.type_code
or SubscriptionBuiltinTopicData.type_code) is used to create a DynamicDataTypeSupport in an applic-
ation that is also using ContentFilteredTopics and setting ResourceLimitsQosPolicy.type_code_max_
serialized_length to a non-zero value, the application issued a segmentation fault.

ResourceLimitsQosPolicy.type_code_max_serialized_length is 0 by default, so the underlying rep-
resentation of PublicationBuiltinTopicData.type_code and SubscriptionBuitlinTopicData.type_code
is stored in a deserialized format that is retrieved from the TypeObject and that will not cause a seg-
mentation fault.

When ResourceLimitsQosPolicy.type_code_max_serialized_length is non-zero, the underlying rep-
resentation of PublicationBuiltinTopicData.type_code and SubscriptionBuitlinTopicData.type_code
is stored in a serialized format from the wire, which causes the segmentation fault in the Con-
tentFilteredTopic implementation.

[RTI Issue ID CORE-12992]

4.16.18 Crash with NULL listeners and non-none status masks in C
applications that mixed types with and without Zero Copy

In a C application, a crash occurred when the following was true:

l Types with and without Zero Copy transfer over shared memory were mixed inside the same
DomainParticipantFactory instance.

l A DataReader or DataWriter of the non-Zero Copy types had a NULL listener and a DDS_
StatusMask different than DDS_STATUS_MASK_NONE.

The crash occurred because Connext DDS invoked a NULL listener callback for the statuses enabled in
the endpoints' DDS_StatusMask.

When there is a Zero Copy type inside an application, some extra pre-processing related to Zero Copy is
done before creating the endpoints and setting the listeners. In that extra pre-processing, for non-Zero
Copy types, the NULL listener was incorrectly replaced with a non-null listener object with all its call-
backs set to NULL. Then, Connext DDS was not checking if the callbacks were NULL before calling
them (the listener consistency is checked before the incorrect replacement; therefore, at that point, it was
assumed the listener object was consistent).

This issue is fixed. The listener is no longer replaced with an invalid listener object, and Connext DDS will
always check if the callbacks are NULL before calling them.

34

4.16.19 Memory was read after it was freed by deleting a Topic with local logging level enabled

35

[RTI Issue ID CORE-13151]

4.16.19 Memory was read after it was freed by deleting a Topic with local
logging level enabled

If the local logging level was enabled while deleting a topic, Connext DDS would use recently freed
memory from the deleted Topic to print a log message. Using the recently freed memory could cause a
crash if local logging was enabled. A log message is now printed immediately before the Topic is deleted,
so the possibility of using freed memory is eliminated.

[RTI Issue ID CORE-13226]

4.16.20 Possible segmentation fault when disabling loopback interface

When a previously enabled loopback interface on a host computer was disabled, a segmentation fault
could occur. The handling of loopback interfaces has been redesigned to remove this possibility.

[RTI Issue ID CORE-13228]

4.16.21 Application using Monitoring Libraries may have produced
segmentation fault during DataReader creation

In 6.0.x releases and above, an application using the Monitoring Library may have produced a seg-
mentation fault during DataReader creation. The issue was very rare and only occurred if a DataReader
received a sample immediately after being enabled. This issue has been fixed.

[RTI Issue ID MONITOR-429]

4.17 Other Fixes

4.17.1 Error sending batch when batch size exceeded transport MTU

A DataWriter configured to use batching may have failed to send a batch to the destination addresses asso-
ciated with a transport (e.g, UDPv4) if the batch size exceeded themessage_size_max (MTU) of the trans-
port.

This problem has been resolved. Now, the batch is automatically flushed when exceeding the minimum
message_size_max across all installed transports.

[RTI Issue ID CORE-2639]

4.17.2 Potential Valgrind invalid read when logging a message or enabling
heap monitoring

When activity context was enabled in logging, or when heap monitoring was enabled, a Valgrind invalid
read similar to the following one may have been reported:

4.17.3 Runtime error when using debug libraries for QNX x86 platform

==1344490== Invalid read of size 4
==1344490== at 0x4A3FA0A: RTIOsapiActivityContext_skipResourceGuid (ActivityContext.c:246)
==1344490== by 0x4A417B3: RTIOsapiActivityContext_getString (ActivityContext.c:820)

This issue has been resolved. The Valgrind invalid read error no longer appears.

[RTI Issue ID CORE-12537]

4.17.3 Runtime error when using debug libraries for QNX x86 platform

When using the i86QNX6.6qcc_cpp4.7.3 debug libraries, your application may have had a runtime error
and hung. This is because the debug libraries included the symbol for a math function (“isinff”) that was
discontinued in QNX 6.3.

This problem has been resolved. The debug libraries now include “isinf” instead, which is supported.

A full list of the math functions that were discontinued in QNX 6.3 can be found here: http://www.qnx.-
com/developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html.

[RTI Issue ID CORE-12695]

4.17.4 Broken communication when DataWriter with transport priority
discovered DataReader with multicast receive address

If a DataWriter that had a non-default DataWriterQos.transport_priority value set discovered a
DataReader with a multicast receive address, the DataWriter and any other DataWriters within the same
participant were not able to send any traffic over unicast. This could cause communication failures in a
number of different scenarios, including a broken reliability protocol due to the inability to send heartbeats
over unicast or the inability to communicate with other DataReaders that have not been configured to use
a multicast receive address.

This issue was introduced in 6.1.0. This issue has been resolved.

[RTI Issue ID CORE-12772]

4.17.5 Dependency on invalid symbol when building Linux FACE™ GP
profiles

The Connext DDS Linux libraries for FACE GP architectures (x64Linux3gcc4.8.2FACE_GP and
x64Linux4gcc7.3.0FACE_GP) contained a symbol (printf_chk) that is not allowed by the FACE Gen-
eralPurpose profile. This problem has been resolved.

For these two architectures, for all four modes (static, dynamic, release, and debug), there is one more com-
piler flag that should be used: -D_FORTIFY_SOURCE=0. This is true for both of these tables in the RTI
Connext DDS Core Libraries Platform Notes:

36

http://www.qnx.com/developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html
http://www.qnx.com/developers/docs/6.6.0.update/index.html#com.qnx.doc.neutrino.lib_ref/topic/whats_new_630.html

4.17.6 Samples could be lost using group order access or collaborative DataWriters

37

l Building Instructions for Linux Architectures

l Library-Creation Details forLinux Architectures

[RTI Issue ID CORE-12888]

4.17.6 Samples could be lost using group order access or collaborative
DataWriters

There was a possibility of DataReader queue corruption, when using group order access or collaborative
DataWriters, that may have provoked the DataReader to stop receiving samples. The possibility was very
small and may have occurred randomly since it was caused by an uninitialized flag.

[RTI Issue ID CORE-13153]

4.17.7 Added back support for ARMv8 Linux architecture

In 6.1.0, support for Linux ARMv8 was unintentionally removed from FindRTIConnextDDS.cmake. As
a result, when you tried to cross-compile, an error appeared:
"<architecture> architecture is unsupported by this module"

Support for Linux ARMv8 has been recovered.

[RTI Issue ID INSTALL-675]

4.17.8 Added back support for ARMv8 and x64 processors, cxx and gpp
compilers, for QNX platform

In 6.1.0, support for QNX ARMv8 and x64 was unintentionally removed from FindRTICon-
nextDDS.cmake. As a result, when you tried to cross-compile, an error appeared:
"<architecture> architecture is unsupported by this module"

Support for QNX ARMv8 and QNX x64 has been recovered for the libraries cxx and gpp.

[RTI Issue ID INSTALL-677]

4.17.9 Custom OpenSSL installation wasn't correctly searched for

Now when you call the FindRTIConnextDDS CMake script, it relies on the OPENSSL_ROOT_DIR
CMake variable to search the OpenSSL installation selected with the CONNEXTDDS_OPENSSL_DIR
variable.

[RTI Issue ID INSTALL-680]

4.17.10 CONNEXTDDS_ARCH environment variable was not picked up correctly

4.17.10 CONNEXTDDS_ARCH environment variable was not picked up
correctly

Previously, only the CONNEXTDDS_ARCH CMake variable could be used to define the Connext DDS
official architecture to use. Now, the environment variable with the same name can be used, too.

[RTI Issue ID INSTALL-691]

4.17.11 New library dependencies accidentally added in Core Libraries for
Android

The following issue was fixed in release 6.1.1, but not documented at that time.

In version 6.1.0, RTI wrongly introduced the following library dependencies for the Core Libraries, for
Android™:

l libandroid.so

l 3libEGL.so

l 4libGLESv1_CM.so

These libraries are not required. In 6.1.1, RTI removed these unnecessary dependencies.

[RTI Issue ID PLATFORMS-2644]

4.17.12 Possible compiler warnings for VxWorks 7 Arm v8 platforms

In release 6.1.1.1, the makefiles generated by rtiddsgen for VxWorks 7 Arm v8 platforms (arm-
v8Vx7SR0660 llvm10.0.1.cortex-a53[_rtp]) did not include the compiler define for RTI_VXWORKS_
CLANG. This omission may have caused compiler warnings in some cases. This issue is resolved in
6.1.1.4 and in this release (the change is only in the example makefile generated by rtiddsgen).

There is a related change to the Building Instructions and Library-Creation Details tables in the VxWorks
chapter of the Platform Notes. The compiler flags -DRTI_VXWORKSand-DRTI_VXWORKS_
CLANG are required for these platforms: VxWorks 7 SR0660 on Arm v8 and VxWorks 21.11 on x64.

[RTI Issue ID PLATFORMS-3165]

38

Chapter 5 Previous Releases
5.1 What's Fixed in 6.1.1

This section describes bugs fixed in Connext DDS 6.1.1. These fixes have been made since 6.1.0
was released.

5.1.1 Fixes Related to Discovery

5.1.1.1 Large memory allocation on DataReaders due to tampered discovery
messages

Corrupted or tampered samples could entail large memory allocations up to a maximum of 2Gb of
memory dynamically allocated. This was an issue because, even if security could be used to protect
some channels, there were others that discovery depends upon that could not be protected.

This issue has been fixed. Now, corrupted or tampered samples do not entail large memory alloc-
ations.

[RTI Issue ID CORE-11319]

5.1.2 Fixes Related to Serialization and Deserialization

5.1.2.1 Serialization of string members did not check for null-terminated strings in C,
traditional C++, and modern C++

The code executed by a DataWriter that serializes string members in a Topic type did not check
that the strings were null-terminated. This may have led to undefined behavior, because the seri-
alization code calls strlen.

This problem has been fixed. The serialization code now checks for null-terminated strings with
the maximum allowed length and reports the following error if the string is not well-formed:

39

5.1.2 Fixes Related to Serialization and Deserialization

40

RTIXCdrInterpreter_serializeString:StrStruct:member2 serialization error. String length (at
least 6) is larger than maximum 5

[RTI Issue ID CORE-11164]

5.1.2.2 Error serializing samples containing strings with NULL character in the middle, in
modern C++

Samples containing string members with a NULL character in the middle were not serialized correctly.
This may have led to subscribing applications not receiving the sample data.

This issue only affected modern C++, where std::string and std::wstring can have a NULL character in
the middle. With the fix, the string is now truncated up to the first NULL character.

[RTI Issue ID CORE-11308]

5.1.2.3 Invalid key deserialization for mutable derived types with key members

In 6.1.0 and 6.0.1.x releases, the key deserialization for mutable derived types with key members when the
base does not contain keys was invalid. For example:
@mutable
struct Base1 {

long m1;
};

@mutable
struct Derived1 : Base1 {

@key long m2;
};

This issue affected the following functionality:

l Calling the APIs DataWriter::get_key_value and DataReader::get_key_value returned an
invalid value.

l When writer_qos.protocol.serialize_key_with_dispose was set to TRUE (not the default value)
and writer_qos.protocol.disable_inline_keyhash was set to TRUE (not the default value), the key-
hash calculated on the DataReader for a dispose sample sent by a DataWriter was invalid. This led
to a situation in which a disposed instance was not reported as such on the DataReader side.

This issue affected all language bindings except Java and the legacy .NET API. It also affected Dynam-
icData.

This problem has been resolved.

[RTI Issue ID CORE-11378]

5.1.2 Fixes Related to Serialization and Deserialization

5.1.2.4 Deserialization of tampered/corrupted samples may have unexpectedly succeeded

A DataReader may not have detected that a truncated sample due to corruption or tampering was invalid.
As a result, the application may have received samples with invalid content.

This issue has been resolved. Now, the deserialization of corrupted samples fails, and they are not
provided to the application.

[RTI Issue ID CORE-11494]

5.1.2.5 Potential segmentation fault during batch sample serialization

Configuring batching with an unlimited value formax_data_bytes and a finite value formax_samples in
the BATCH QoS Policy, in combination with setting the dds.data_writer.history.memory_man-
ager.fast_pool.pool_buffer_max_size resource limit to 0, could have triggered a segmentation fault dur-
ing batch sample serialization. Prior to the crash, the following message was logged:
!error serializing batch sample

This problem has been resolved. Connext DDS no longer issues a segmentation fault or logs an error mes-
sage during batch sample serialization when using the configuration described above.

[RTI Issue ID CORE-11537]

5.1.2.6 Invalid serialization of samples with types containing nested structures with primitive
members that require padding

In Connext DDS 6.0.1.20 and 6.1.0, the serialization of samples with a type containing one or more levels
of nested complex types, where the nested types only had primitive members, may have failed. This means
that a DataReader may have received an invalid value for a sample. For example:
struct MyType2 {

long m21;
long m22;
double m23;

};

struct MyType {
long m1;
MyType2 m2;

};

This issue only applied when all of these conditions applied:

l You used XCDR1 data representation.

l The top-level type (MyType above) and the nested type containing only primitive members
(MyType2 above) were appendable or final.

41

5.1.3 Fixes Related to Usability and Debuggability

42

l There was a padding in the equivalent C/C++ type between the nested type member (m2 above) and
the previous member (m1 above). In the above example, there is a 4-byte padding between m1 and
m2 in MyType.

This problem affected DynamicData and the generated code for the following languages: C, C++, C++03,
and C++11.

For generated code, a potential workaround to this problem was to generate code with a value of 1 or 0 for
the -optimization parameter, but this may have had performance implications.

This problem has been resolved.

[RTI Issue ID CORE-11604]

5.1.2.7 When a sample in a batch could not be deserialized, it was not reported as lost

When a sample in a batch could not be deserialized, it was not reported as lost. This issue has been solved.
Now, the DDS_SampleLostStatus is updated properly for deserialization issues.

[RTI Issue ID CORE-11923]

5.1.2.8 Deserialization failure when Java DataReader received compressed batch

A Java application running a DataReader that received a compressed batch ignored the batch com-
pression, and the DataReader attempted to deserialize the compressed data, resulting in corrupted data or a
deserialization error with the following log message:
"Exception caused by: not enough space available in the CDR buffer"

This problem has been fixed.

[RTI Issue ID CORE-12291]

5.1.2.9 Deserialization failure when DataReader received compressed sample with XCRD2
representation from Java DataWriter

A DataReader failed to deserialize samples if they were published by a Java DataWriter using com-
pression and XCDR2 data representation.

This problem has been fixed.

[RTI Issue ID CORE-12357]

5.1.3 Fixes Related to Usability and Debuggability

5.1.3.1 Incompatible offered QoS in rtiddspy due to DDS_DataRepresentationQosPolicy

When using rtiddspy, you may have seen the following message:

5.1.3 Fixes Related to Usability and Debuggability

Incompatible offered QoS on DataWriter associated with topic: "..."

This problem could be related to the QoS DDS_DataRepresentationQosPolicy, because rtiddspy was
only using DDS_XCDR_DATA_REPRESENTATION. Now, however, rtiddsspy uses both XCDR and
XCDR2 representations:
<representation>

<value>
<element>XCDR_DATA_REPRESENTATION</element>
<element>XCDR2_DATA_REPRESENTATION</element>

</value>
</representation>

The warning message will no longer appear, and rtiddsspy will no longer report an XCDR incompatibility.

[RTI Issue ID CORE-9372]

5.1.3.2 Failure enabling Heap Monitoring on VxWorks 6.6+

It was not possible to enable Heap Monitoring and create a DomainParticipant on VxWorks 6.6+. The fol-
lowing error messages were logged:
RTIOsapiThread_createTssFactory:TSS Factory can be created only once
DDS_DomainParticipantGlobals_initializeI:!create thread-specific storage factory
DDS_DomainParticipantFactory_newI:!create participant globals
DDSDomainParticipantFactory::create_instanceI:!create participant factory infrastructure
DDSDomainParticipantFactory::get_instance:!create participant factory

This issue has been resolved. Now you can enable Heap Monitoring and create DomainParticipants on
VxWorks 6.6+.

[RTI Issue ID CORE-9674]

5.1.3.3 Instances resource leak in DataReader queue when instances were unregistered

If a DataReader received a message for an instance indicating that it was unregistered by a matching,
remote DataWriter, and that instance was not already registered with the DataReader, the DataReader
allocated an instance resource and never freed it. In order for an instance to be registered with a
DataReader, it must have received a valid sample or dispose messages for that instance and must not have
purged the instance based on the autopurge_disposed_instances_delay setting or due to automatic pur-
ging of empty instances in the NOT_ALIVE_NO_WRITERS instance state.

This issue caused the resource configured with max_instances to be consumed. If the value ofmax_
instances was UNLIMITED, this issue caused an unbounded memory growth. If the value ofmax_
instances was set to a finite value, then the limit may have been hit with no way to recover and reuse any
of the used-up resources.

This issue has been resolved. Receiving an unregister message before any other sample for an instance no
longer causes a resource to be consumed indefinitely.

[RTI Issue ID CORE-10762]

43

5.1.3 Fixes Related to Usability and Debuggability

44

5.1.3.4 Large memory allocation on DataReaders due to tampered data samples

Corrupted or tampered data samples entailed large memory allocations up to a maximum of 2Gb of
memory dynamically allocated. For example, this problem occurred when the length of an unbounded
sequence or string was tampered with and set to a large number.

This problem has been fixed. Tampered samples will fail to be deserialized and they will not lead to large
memory allocations.

[RTI Issue ID CORE-11344]

5.1.3.5 Waitset with the status SUBSCRIPTION_MATCHED did not work with Zero Copy
transfer over shared memory

If you were using Zero Copy transfer over shared memory and a waitset with the status
SUBSCRIPTION_MATCHED, the waitset was not triggered when there was a change in the status.

This issue has been fixed. Now the waitset works fine in combination with Zero Copy transfer over shared
memory.

[RTI Issue ID CORE-11349]

5.1.3.6 "opening profiles group files" error

If you set several QoS files using the environment variable NDDS_QOS_PROFILES or the QoS setting
factory_qos.profile.url_profile, the application sometimes failed with the following errors, even if the
files existed:
export NDDS_QOS_PROFILES="file://file1.xml | file://file2.xml"

DDS_QosProvider_load_profiles_from_url_groupI:ERROR: opening profiles group files
'file://file1.xml | file://file2.xml'
[CREATE Participant] DDS_QosProvider_load_profiles_from_url_listI:ERROR: loading profiles
[CREATE Participant] DDS_QosProvider_load_profiles_from_env_varI:ERROR: loading profiles
[CREATE Participant] DDS_QosProvider_load_profilesI:ERROR: loading profiles
[CREATE Participant] DDS_DomainParticipantFactory_load_profilesI:!load profiles
[CREATE Participant] DDS_DomainParticipantFactory_create_participant_disabledI:ERROR: loading
profiles

These errors were caused by extra spaces or quotes in the list of file names.

Now, extra spaces or quotes will no longer cause these errors.

[RTI Issue ID CORE-11373]

5.1.3.7 Samples may have been lost if multiple readers were created in the same locator
and push_on_write was set to false

If push_on_write was set to false in a DataWriter's DATA_WRITER_PROTOCOL QoS Policy, and
multiple DataReaders were created in the same locator (same participant, same port), samples may have

5.1.3 Fixes Related to Usability and Debuggability

been lost.

This potential loss may have occurred when the second or subsequent DataReader was created. When the
DataWriter detected the new DataReader, it sent an RTPS gap message, which may have gapped unsent
samples. This was only an issue if push_on_write was set to false.

This problem has been resolved.

[RTI Issue ID CORE-11515]

5.1.3.8 DataWriter's send window did not behave correctly if min_send_window_size and
max_send_window_size were not equal

A variable sized send window (configured by setting DDS_RtpsReliableWriterProtocol_t::min_send_
window_size and DDS_RtpsReliableWriterProtocol_t::max_send_window_size to different values)
had some issues.

On system startup, DDS_DataWriterProtocolStatus::send_window_size incorrectly returned the max-
imum size of the send window, when in fact the minimum was used. This was only an issue until the first
send_window_update_period had elapsed, after which the correct value was reported.

If the send window was growing (i.e., the DataWriter had not received any NACK messages in the cur-
rent send_window_update_period), the DataWriter would block based on the previous size of the send
window.

The number of piggyback heartbeats sent with a sample was also incorrect, with the heartbeats never being
sent in some cases.

These problems are resolved. The DataWriter now blocks based on the current send window size. The
rate at which piggyback heartbeats are sent is calculated correctly. A piggyback heartbeat is now always
sent when the send window size grows, avoiding the situation where the sending of the heartbeat was
delayed due to a send window growing very fast.

[RTI Issue ID CORE-11529]

5.1.3.9 Potential DataWriter crash during remote DataReader reactivation

There was an issue that may have triggered a crash in a DataWriter using application-level acknow-
ledgments. In particular, this issue may have triggered when a DataWriter transitioned a remote
DataReader from inactive to active, which could have happened if the DataReader was temporarily unre-
sponsive or too slow processing samples.

This problem has been resolved: a DataWriter no longer crashes when transitioning a remote DataReader
from inactive to active.

[RTI Issue ID CORE-11802]

45

5.1.3 Fixes Related to Usability and Debuggability

46

5.1.3.10 Possible decompression failure after receiving a compressed batch of an unkeyed
data type

If a DataReader received a compressed batch where the type of the samples on the batch was unkeyed,
the reader history kind was set to KEEP_LAST, and the reader resource limitmax_samples was anything
other than unlimited, a decompression failure was triggered with the following log message:
RTIOsapi_Zlib_uncompress:The input data was corrupted
RTICdrStream_uncompress:!uncompress sample
PRESPsReaderQueue_storeSampleToEntry:!uncompress stream
PRESPsReaderQueue_newData:!get entries

This issue has been solved. Now a valid compressed batch will not trigger this error.

[RTI Issue ID CORE-11830]

5.1.3.11 Potential unbounded memory growth during remote participant removal

A race condition issue may have prevented a DomainParticipant from completely removing remote par-
ticipant resources.

When this issue triggered, the affected participant logged the following error:
PRESInterParticipant_removeRemoteParticipant:
[LDP=0x99843755,0x09333301,0x34442207,RE=0x09843755,0x99222201,0xED662207:0] Could not remove
remote endpoint

This problem is now resolved: the participant no longer logs errors nor leaks memory during remote par-
ticipant removal.

[RTI Issue ID CORE-11842]

5.1.3.12 Unexpected exported symbols in Windows static libraries

In Connext DDS 6.1.0, static libraries wrongly exported symbols related to logging functions. In some
scenarios, this could lead to linker errors (e.g., LNK2005) that were not present when trying to build
against previous versions of Connext DDS.

This issue has been resolved.

[RTI Issue ID CORE-12008]

5.1.3.13 DomainParticipant memory usage increased significantly

The memory consumption of a DomainParticipant increased in release 6.1.0 by 512Kb or 1Mb if security
was enabled. This issue has been resolved.

[RTI Issue ID CORE-12092]

5.1.4 Fixes Related to Transports

5.1.3.14 Crash when enabling or disabling Network Capture

Your application may have crashed while enabling or disabling Network Capture. The crash may have
occurred if other threads were concurrently initializing or finalizing either the TypeCodeFactory, the
DomainParticipantFactory, or Network Capture. Instead of crashing, the previously mentioned actions
may have failed or caused a memory leak. This issue has been resolved.

[RTI Issue ID CORE-12173]

5.1.3.15 Potential segmentation fault while logging a message on QNX systems (on
PowerPC and Arm CPUs) and on INTEGRITY systems (on P4080 CPUs)

There was a potential segmentation fault while Connext DDS was logging a message. This problem was
more likely to happen when another thread was concurrently unregistering a logging device. This problem
affected Connext DDS 6.0.0 and above, as well as versions between 5.3.1.16 and 5.3.1.38 and versions
4.5d.rev41 and 4.5d.rev42. This problem affected QNX systems (only on PowerPC and Arm CPUs) and
INTEGRITY systems (only on P4080 CPUs). This problem has been fixed.

[RTI Issue ID CORE-12214]

5.1.4 Fixes Related to Transports

5.1.4.1 Source code bundle missing critical piece of code related to UDP multicast support

In 6.1.0, the source code bundle was missing a critical piece of code related to UDP multicast. This issue
has been resolved. The source code bundle is no longer missing code for UDP multicast support.

[RTI Issue ID CORE-11590]

5.1.4.2 Possible segmentation fault during TCP transport shutdown when using dynamic
linking

If using dynamic linking, there may have been a segmentation fault when shutting down the TCP trans-
port.

The stack trace of the thread crashing was the following:
#1 0x00007ffff6606c4f in RTIEventActiveGeneratorThread_loop (param=0xa159a0) at
/rti/jenkins/workspace/connextdds/6.1.0.0/x64Linux4gcc7.3.0/src/event.1.0/srcC/activeGenerator
/ActiveGenerator.c:397
#2 0x00007ffff6577dea in RTIOsapiThreadFactory_onSpawned (param=0xa19a70) at
/rti/jenkins/workspace/connextdds/6.1.0.0/x64Linux4gcc7.3.0/src/osapi.1.0/srcC/threadFactory/T
hreadFactory.c:211
#3 0x00007ffff65736d6 in RTIOsapiThreadChild_onSpawned (param=0xa19ab0) at
/rti/jenkins/workspace/connextdds/6.1.0.0/x64Linux4gcc7.3.0/src/osapi.1.0/srcC/thread/Thread.c
:1908
#4 0x00007ffff57c36db in start_thread (arg=0x7fffeeaa4700) at pthread_create.c:463
#5 0x00007ffff5afc71f in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:95

This problem has been resolved; the thread will no longer crash when closing the TCP transport.

47

5.1.4 Fixes Related to Transports

48

[RTI Issue ID CORE-11625]

5.1.4.3 allow_interfaces_list and deny_interfaces_list could not have white spaces

Setting the properties allow_interfaces_list or deny_interfaces_list with white spaces did not work:
DDSPropertyQosPolicyHelper::add_property(dpQos.property,
"dds.transport.UDPv4.builtin.parent.allow_interfaces_list", "lo ", DDS_BOOLEAN_FALSE);

You would see an error similar to the following:
WARNING [0x0101FFE7,0x84C0B3AA,0x1F749265:0x000001C1{D=0}|CREATE DP|ENABLE|LC:DISC]DDS_
DomainParticipant_enableI:There are no valid locators for use by this participant. Please
validate that a valid transport is available for use by the participant and check your DDS_
TransportUnicastQosPolicy and DDS_TransportMulticastQosPolicy settings.
ERROR [0x0101FFE7,0x84C0B3AA,0x1F749265:0x000001C1{D=0}|CREATE DP|ENABLE|LC:DISC]DDS_
DomainParticipant_enableI:Automatic participant index failed to initialize. PLEASE VERIFY
CONSISTENT TRANSPORT / DISCOVERY CONFIGURATION.
[NOTE: If the participant is running on a machine where the network interfaces can change, you
should manually set wire protocol's participant id]
ERROR [0x0101FFE7,0x84C0B3AA,0x1F749265:0x000001C1{D=0}|CREATE DP] DDS_
DomainParticipantFactory_create_participant:ERROR: Failed to auto-enable entity

This issue has been resolved. Now, specifying a list of allowed or denied interfaces will work, even with
white spaces in the property names.

[RTI Issue ID CORE-11770]

5.1.4.4 VxWorks kernel-mode shared memory didn't work after restarting an application

Starting with release 6.0.0, applications running in VxWorks kernel-mode could have problems dis-
covering and communicating with other DomainParticipants if the original task that created the participant
had exited, and the applications were re-started. These problems were due to some state that wouldn't be
cleared when deleting the DomainParticipantFactory. This state is now being cleared.

[RTI Issue ID CORE-11933]

5.1.4.5 Applications using shared memory in VxWorks kernel-mode re-used a segment
already in use

If an application in VxWorks used the shared memory transport, the Connext DDS libraries sometimes
incorrectly assessed that a shared memory segment was stale and could be re-claimed, when in fact it was
not stale. This situation caused problems with communication between DomainParticipants, since inform-
ation could be sent to a shared memory segment that did not get dequeued by the intended recipient. This
problem only occurred in VxWorks kernel-mode architectures. This problem has been fixed.

[RTI Issue ID CORE-11952]

5.1.5 Fixes Related to Content Filters and Query Conditions

5.1.4.6 Possible crash on Windows during UDP transport creation or update

In some cases, a Connext DDS application running on Windows could crash during the creation or update
of a UDP transport if the logging verbosity was set to NDDS_CONFIG_LOG_VERBOSITY_
STATUS_ALL for the NDDS_CONFIG_LOG_CATEGORY_COMMUNICATION category. This
problem has been resolved.

[RTI Issue ID CORE-12037]

5.1.4.7 Valgrind issue when using allow or deny interfaces, UDPv6, and interface names

ValgrindTM reported uses of uninitialized values when setting any of the following properties to an inter-
face name without wildcards:

l dds.transport.UDPv6.builtin.parent.deny_interfaces

l dds.transport.UDPv6.builtin.parent.deny_multicast_interfaces_list

l dds.transport.UDPv6.builtin.parent.allow_interfaces

l dds.transport.UDPv6.builtin.parent.allow_multicast_interfaces_list

This issue is now fixed. This Valgrind issue did not affect correctness and did not have an impact on func-
tionality.

[RTI Issue ID CORE-12075]

5.1.5 Fixes Related to Content Filters and Query Conditions

5.1.5.1 Deletion of not-enabled ContentFilteredTopic failed with debug libraries

Trying to delete a ContentFilteredTopic that had been created in the disabled state incorrectly failed with a
precondition error, unless the ContentFilteredTopic was enabled first. This problem only happened with
the debug libraries, which checked an incorrect invariant condition.

This problem has been resolved.

[RTI Issue ID CORE-7232]

5.1.5.2 Unnecessary buffer allocation when using a QueryCondition

This issue was fixed in 6.1.0, but not documented at that time.

When using QueryConditions, an unnecessary buffer was allocated during the evaluation of a sample
against the QueryCondition. This issue would have been noticeable in particular when themax_seri-
alized_size of the data being evaluated was large or unbounded because the unnecessary buffer was being
allocated to themax_serialized_size of the sample.

49

5.1.5 Fixes Related to Content Filters and Query Conditions

50

This issue only happened if the property dds.data_reader.history.memory_manager.fast_pool.pool_
buffer_max_size was not set to a finite value and when using one of the DynamicData, Java, .Net or Tra-
ditional C++ APIs.

This behavior has been corrected and QueryCondition evaluation only allocates a buffer when necessary.

[RTI Issue ID CORE-8875]

5.1.5.3 DataReader may not have received expected samples from MultiChannel
DataWriter

A DataReader using a ContentFilteredTopic may not have received expected samples from a MultiChan-
nel DataWriter.

This issue occurred when the ContentFilteredTopic's expression on the DataReader and the channel
expressions on the DataWriter used a MATCH operator on the same field and when any of the MATCH
expression(s) contained negated intervals ([!]) . For example:

DataReader expression: myField MATCH AP1

DataWriter channel expression: myField MATCH *P[!2]

In this case, the DataReader should have received all samples published on the DataWriter channel, but
this was not the case.

The issue has been resolved.

[RTI Issue ID CORE-11592]

5.1.5.4 Custom content filters unusable in certain cases

Custom content filters did not work in the following situations:

l In Modern C++, for any IDL type except when the code was generated with the now-removed -leg-
acyPlugin option.

l In Traditional C++, for any IDL struct using inheritance.

Other language APIs were not affected.

This problem has been resolved.

[RTI Issue ID CORE-11622]

5.1.5.5 Significant performance degradation when using MultiChannel DataWriters

In release 6.1.0, you may have observed a significant performance degradation compared to previous
releases when using MultiChannel DataWriters.

5.1.5 Fixes Related to Content Filters and Query Conditions

Release 6.1.0 introduced a regression in which a DataReader ended up subscribing to all the multicast
addresses associated with a DataWriter's channels instead of subscribing to only the multicast addresses
that can provide samples that pass the DataReader ContentFilteredTopic.

Note that this issue did not affect correctness, because the DataReader ended up filtering locally the
samples that did not pass its ContentFilteredTopic expression.

This problem has been resolved.

[RTI Issue ID CORE-11742]

5.1.5.6 IP mobility event or interface disconnection may have led to increase in volume of
repair traffic for DataReaders using ContentFilteredTopics

An IP mobility (change of IP address) or interface disconnection event on a subscribing application may
have led to writer-side filtering being disabled for the DataReaders using ContentFilteredTopics in the sub-
scribing application.

As a result, the DataReaders may have received samples that should have been filtered out on the
DataWriter side, leading to an increase in network traffic.

The problem only affected repair traffic. When a sample was filtered out by the DataWriter, the
DataWriter sent a GAP protocol message to the DataReader. If the GAP message was lost, the
DataReader NACKed the sample; instead of sending a new GAP message the DataWriter sent the
sample.

This problem has been resolved.

[RTI Issue ID CORE-11774]

5.1.5.7 Subscribing application may have hung and consumed 100% CPU when publishing
application used MultiChannel

A subscribing application may have hung and consumed 100% CPU when a matching publishing applic-
ation used MultiChannel.

This problem only occurred when the filter expressions on the DataReader and one of the DataWriters'
channels contained two overlapping intervals. For example:

DataReader: myField MATCH *[a-b]

DataWriter: myField MATCH P[a-c]

This problem has been fixed.

[RTI Issue ID CORE-11887]

51

5.1.6 Fixes Related to Coherent Sets

52

5.1.5.8 ReadCondition may have incorrectly stayed enabled after a sample in the READ
sample state was removed from the DataReader's queue

There were certain scenarios that caused a ReadCondition that was enabled when samples were in the
READ_SAMPLE_STATE or ANY_SAMPLE_STATE to stay enabled forever. This would happen if a
sample that had previously been read by the application was removed from the DataReader's queue, for
example, due to KEEP_LAST history replacement.

This issue would cause any Waitset to which the ReadCondition was attached to immediately return suc-
cessfully even though there were not actually any samples available in the DataReader's queue that
matched the ReadCondition.

This issue only affected keyed data types. This issue has been fixed, and the ReadConditions will correctly
be disabled once there are no more samples in the DataReader's queue that match its configured sample,
view, and instance states.

[RTI Issue ID CORE-12168]

5.1.6 Fixes Related to Coherent Sets

5.1.6.1 Group coherent sets incorrectly reported as incomplete

In 6.1.0, a group coherent set for which all the samples were received may have been erroneously reported
as incomplete (SampleInfo.coherent_set_info.incomplete_coherent_set was set to true). This issue only
occurred when batching was used in any of the group's DataWriters. This problem has been fixed.

[RTI Issue ID CORE-11870]

5.1.6.2 Rejected reason and count may have been incorrect when sample was rejected
using batching and coherent set

The rejected reason and count may have been incorrect when a sample was part of a batch or coherent set.
The problem occurred only if the number of samples in the batch was greater than the maximum number
of samples per remote DataWriter.

This issue have been resolved. Now the rejected reason and count are updated properly for samples in
batches or coherent sets.

[RTI Issue ID CORE-12033]

5.1.6.3 Segmentation fault when coherent set finalized while using destination order by
source timestamp

A DataWriter in a publishing application may have experienced a segmentation fault when all these con-
ditions were true:

5.1.7 Fixes Related to Dynamic Data

l The DataWriter was configured with destination_order.kind set to BY_SOURCE_
TIMESTAMP_DESTINATIONORDER_QOS.

l The DataWriter was configured with destination_order.scope set to INSTANCE_SCOPE_
DESTINATIONORDER_QOS.

l The DataWriter tried to publish a coherent set.

The segmentation fault occurred when the coherent set was finalized.

This problem has been fixed.

[RTI Issue ID CORE-12197]

5.1.7 Fixes Related to Dynamic Data

5.1.7.1 Binding to an unset member of a union in a DynamicData object and unbinding
without setting a value led to a crash or error messages

When using the DynamicData API, in order to set and access nested members of a DynamicData object,
you must first bind1 to the nested members. If the type being used by a DynamicData object contained a
union, the binding to an unset member of the union, and then unbinding without setting a value, led to a
crash or error messages similar to the following:
RTI0x2000027:!precondition: "memManager == ((void *)0)"

This issue has been fixed. Now it is safe to bind and unbind to any member in a union without setting a
value for that member.

[RTI Issue ID CORE-11662]

5.1.8 Fixes Related to DDS API

5.1.8.1 Could not create a QosProvider with custom QosProviderParams

Previous releases didn't provide a way to create a QosProvider with custom QosProviderParams. This
option, which allows disabling the loading of QoS profiles from certain default locations, was only
provided to configure the Default QosProvider (QosProvider::Default). A new standalone extension func-
tion, rti::core::create_qos_provider_ex, allows creating a QosProvider with custom QosProviderParams.

[RTI Issue ID CORE-7232]

5.1.8.2 Missing SampleInfo.ReceptionTimestamp property (C# API only)

The new Connext C# API introduced in 6.1.0 did not provide the SampleInfo.ReceptionTimestamp
extension property. This property has been added and is now available.

1In some language APIs, such as Modern C++, binding is referred to as loaning.

53

5.1.9 Fixes Related to Modern C++ API

54

[RTI Issue ID CORE-11908]

5.1.8.3 Possible memory corruption when batching and compression enabled in Java
application

A DataWriter running in a Java application with compression and batching enabled could cause memory
corruption with undefined behavior in the publishing application.

This problem has been fixed.

[RTI Issue ID CORE-12436]

5.1.8.4 DDS_Int8 incorrectly mapped to unsigned value on QNX systems (on PowerPC and
Arm CPUs) and on INTEGRITY systems (on P4080 CPUs)

DDS_Int8 was incorrectly mapped to an unsigned value on QNX systems (only on PowerPC™ and Arm
CPUs) and on INTEGRITY systems (only on P4080 CPUs). This problem has been fixed. DDS_Int8 is
now mapped to a signed value on all platforms.

[RTI Issue ID CODEGENII-1639]

5.1.9 Fixes Related to Modern C++ API

In addition to 5.1.8 Fixes Related to DDS API on the previous page, this release includes the following
fixes, which are specific to the Modern C++ API.

5.1.9.1 find_datawriters, find_readers, and find_topics did not work for XML-defined
DynamicData entities

When a DataReader, DataWriter, or Topic was created from its XML definition (via QosPro-
vider::create_participant_from_config), any lookup function that returned AnyDataReader,
AnyDataWriter, or AnyTopic failed. It was required to use a lookup function returning the typed entity
(DataReader<T>, DataWriter<T>, Topic<T>).

This problem has been partially fixed in this release. When the type T is DynamicData, it is now possible
to use the functions returning the "Any" entities.

Note that this problem only affected entities created from XML, not entities created using their respective
constructors.

[RTI Issue ID CORE-10940]

5.1.9.2 Missing DataReader constructor

The previous release added constructors that receive listeners as shared_ptr's. However, a constructor
receiving both a ContentFilteredTopic and a shared_ptr to the listener was not added.

5.1.9 Fixes Related to Modern C++ API

This missing constructor has been added now.

[RTI Issue ID CORE-11594]

5.1.9.3 Missing symbols for DataReaderResourceLimitsInstanceReplacementSettings on
Windows

In 6.1.0, the symbols for DataReaderResourceLimitsInstanceReplacementSettings were missing in the
Modern C++ libraries on Windows systems. This caused errors building applications that linked against
them. This issue has been resolved and now the symbols are properly exported.

[RTI Issue ID CORE-11646]

5.1.9.4 Missing forward declarations in some header files

The Modern C++ API contains a number of "<namespace>fwd.hpp" headers that provide forward declar-
ations for all its types. Some types (Publisher, LoanedSamples, QosProvider) were not forward-declared.
This problem has been resolved.

[RTI Issue ID CORE-11651]

5.1.9.5 Compilation errors when VxWorks application used Boost and Modern C++ API in
same source file

The Modern C++ API internally uses a subset of Boost 1.61. All the Boost symbols have been renamed to
avoid collisions with user applications that also include Boost. However some standard functions that are
missing from VxWorks are defined in Boost headers as inline functions (symlink, readlink, times, trun-
cate). Source files that include Boost and the Connext DDSModern C++ API may have failed to compile
due to duplicate symbols, because these functions are defined both in the Boost headers used by the
Modern C++ API and the user-included headers.

To avoid these errors, you will need to perform one of the following options:

l Make sure the Boost headers are included before any RTI header. For example:

#include <boost/shared_ptr.hpp> // FIRST
...
#include <dds/domain/DomainParticipant.hpp> // SECOND
...

The RTI Boost headers will detect that another Boost installation has been included, and will
exclude the conflicting symbols.

l Compile the source files that use Boost with the option -DRTI_USE_BOOST. The RTI Boost
headers will recognize this preprocessor definition and exclude the conflicting symbols.

[RTI Issue ID CORE-11656]

55

5.1.10 Fixes Related to XML Configuration

56

5.1.9.6 Possible race condition between WaitSet::dispatch and detach_condition

When a thread called dispatch() at the same time that another thread called detach_condition() on the
sameWaitSet object, in the Modern C++ API only, there was a possibility of a race condition leading to
undefined behavior (likely a crash due to null dereference).

This problem has been resolved. It's now safe to call detach_condition() while that condition is being dis-
patched.

[RTI Issue ID CORE-11800]

5.1.9.7 Possible segmentation fault when receiving samples containing wstrings

In releases 6.0.1.22 and higher and in release 6.1.0.3, a subscribing application may have crashed when
receiving samples containing wstrings. This issue occurred when the following three conditions were all
true:

l The language binding was modern C++.

l The size of wchar_t was 4-byte.

l The length of a wstring member in the sample was equal to the maximum allowed. For example:

struct MyType {
wstring<5> m1;

};

For this type, the deserialization of a sample with the following value for m1 would lead to a segmentation
fault: L"Hello".

This issue has been fixed.

[RTI Issue ID CORE-11896]

5.1.10 Fixes Related to XML Configuration

5.1.10.1 XSD schema enforced strict ordering for elements in <publisher> and <subscriber>
tags

The XSD schema rti_dds_profiles_definitions.xsd enforced a strict ordering of elements in the <pub-
lisher> and <subscriber> tags. Because of this, the XSD validation showed an error when the <data_
writer> or <data_reader> element was set after the <publisher_qos> or <subscriber_qos> element, respect-
ively. This problem has now been resolved. The ordering of elements under <publisher> and <subscriber>
tags no longer matters for XSD validation.

[RTI Issue ID CORE-9374]

5.1.10 Fixes Related to XML Configuration

5.1.10.2 rtiddsping RTIDDSPING_QOS_PROFILES.example.xml file had wrong Durability
QOS

The rtiddsping RTIDDSPING_QOS_PROFILES.example.xml file had the wrong DataWriter-
/DataReader Durability QoS. It contained:
<durability>

<kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>
</durability>

It should have been:
<durability>

<kind>VOLATILE_DURABILITY_QOS</kind>
</durability>

This issue has been fixed, and now it shows the correct durability.

[RTI Issue ID CORE-11253]

5.1.10.3 XML parsing failed for DataReaderResourceLimitsInstanceReplacementSettings

The XSD for the DataReaderResourceLimitsInstanceReplacementSettings correctly indicated that the
valid values for the alive_instance_replacement, disposed_instance_replacement, and no_writers_
instance_replacement fields are as follows:

l NO_INSTANCE_REMOVAL

l EMPTY_INSTANCE_REMOVAL

l FULLY_PROCESSED_INSTANCE_REMOVAL

l ANY_INSTANCE_REMOVAL

However, if any of these values was used, the XML parser would fail to parse it because the parser was
expecting it to be prefixed with 'DDS_'. An error similar to the following was shown:
DDS_DataReaderInstanceRemovalKind_parse:!parse 'EMPTY_INSTANCE_REMOVAL'
DDS_XMLQos_onEndDataReaderResourceLimitsElement:Parse error at line 83: The value associated to
the tag 'alive_instance_removal' is not valid

This issue has been fixed. Now the values listed above are correctly parsed. The same values prefixed with
'DDS_' are also still accepted by the XML parser, but are not considered valid according to the XSD
schema and therefore will no longer show up as valid options when using autocomplete in an IDE.

[RTI Issue ID CORE-11535]

5.1.10.4 Property validation failed when setting custom alias for builtin transport

According to "Installing Additional Builtin Transport Plugins with PropertyQosPolicy" in the
RTI Connext DDS Core Libraries User's Manual, it is possible to set up, through XML, custom aliases for

57

5.1.10 Fixes Related to XML Configuration

58

the builtin transports:
<domain_participant_qos>

<transport_builtin>
<mask>MASK_NONE</mask>

</transport_builtin>
<property>

<value>
<element>

<name>dds.transport.load_plugins</name>
<value>dds.transport.UDPv4.mytransport</value>

</element>
<element>

<name>dds.transport.UDPv4.mytransport.aliases</name>
<value>CustomUDP</value>

</element>
</value>

</property>
</domain_participant_qos>

However, the property validation didn't recognize the "aliases" property. When using the property aliases
for a builtin transport, the property validation failed:
[0x0101816F,0x6C2511A0,0x0CBF3229:0x000001C1{N=helloworldParticipant,D=0}|CREATE DP|ENABLE]
DDS_PropertyQosPolicy_validate_plugin_property_suffixes:Unexpected property:
dds.transport.UDPv4.mytransport.aliases. Closest valid property:
dds.transport.UDPv4.mytransport.multicast_ttl. If you wish to proceed with this property name
anyway, change 'dds.transport.UDPv4.mytransport.property_validation_action' to 'VALIDATION_
ACTION_SKIP' or 'VALIDATION_ACTION_WARNING'.

This problem has been resolved. Now you can use the "aliases" property.

[RTI Issue ID CORE-11581]

5.1.10.5 XML parser crashed from infinite recursion when XML QoS configuration contained
inheritance loop

An inheritance loop was formed when a <qos_profile> inherited from itself or when any <xxx_qos> inher-
ited from itself or its encapsulating <qos_profile>. Inheritance can be performed by using the base_name
attribute or <base_name> tag.

In the previous release, the XML parser would crash when the XML QoS configuration contained an
inheritance loop. This problem has been resolved. If the parser detects an inheritance loop, it now throws
an error.

[RTI Issue ID CORE-11731]

5.1.11 Fixes Related to Vulnerabilities

5.1.11 Fixes Related to Vulnerabilities

5.1.11.1 Fixes related to Connext DDS

This release fixes some potential vulnerabilities, including RTI Issue IDs CORE-11599, CORE-11649,
CORE-11712, CORE-11749, CORE-11750, CORE-11751, CORE-11773, CORE-11882, CORE-
11885, CORE-12380, COREPLG-568, and COREPLG-571.

5.1.11.2 Fixes related to third-party dependencies

This release fixes some potential vulnerabilities related to third-party dependencies, described below.

5.1.11.3 Potential arbitrary code execution in Connext DDS application upon parsing of
ContentFilteredTopics, QueryConditions, or TopicQuery filters due to vulnerabilities
in Flex

The Core Libraries filter parser had a third-party dependency on Flex version 2.5.31. That version of Flex
is known to be affected by a number of publicly disclosed vulnerabilities.

These vulnerabilities have been fixed by upgrading to the latest stable version of Flex, 2.6.4. See "Third-
Party Software Upgrades" in RTI Connext DDS Core Libraries What's New in 6.1.2.

The impact on Connext DDS applications of using the previous version varied depending on your Connext
DDS application configuration:

l With Connext Secure (enabling RTPS protection):

l Exploitable through a compromised local file system containing an XML configuration file
with a malicious filter.

l Application could crash or leak sensitive information. An attacker could execute code with
Connext DDS application privileges.

l CVSS v3.1 Score: 8.4 HIGH

l CVSS v3.1 Vector: AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

l Without Connext Secure:

l Exploitable through a compromised local file system containing an XML configuration file
with a malicious filter.

l Remotely exploitable through malicious RTPS messages.

l Application could crash or leak sensitive information. An attacker could execute code with
Connext DDS application privileges.

l CVSS v3.1 Score: 9.8 CRITICAL

l CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

59

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1

5.1.11 Fixes Related to Vulnerabilities

60

[RTI Issue ID CORE-12336]

5.1.11.4 Potential crash or leak of sensitive information in Core Libraries XML parser due to
vulnerabilities in Expat

The Core Libraries XML parser had a third-party dependency on Expat version 2.2.5. That version of
Expat is known to be affected by a number of publicly disclosed vulnerabilities.

These vulnerabilities have been fixed by upgrading to the latest stable version of Expat, 2.4.4. See "Third-
Party Software Upgrades" in RTI Connext DDS Core Libraries What's New in 6.1.2.

The impact on Connext DDS applications of using the previous version varied depending on your Connext
DDS application configuration:

l With Connext Secure (enabling RTPS protection):

l Exploitable through a compromised local file system containing malicious XML/DTD files.

l Application could crash or leak sensitive information.

l CVSS v3.1 Score: 6.8 MEDIUM

l CVSS v3.1 Vector: AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:H

l Without Connext Secure:

l Exploitable through a compromised local file system containing malicious XML/DTD files.

l Remotely exploitable through malicious RTPS messages.

l Application could crash or leak sensitive information.

l CVSS v3.1 Score: 8.2 HIGH

l CVSS v3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:H

[RTI Issue ID CORE-12340]

5.1.11.5 Vulnerability assessments

Some Connext DDS components, including the Modern C++ API, use the following boost 1.61 modules
only: align/ config/ core/ exception/ functional/ mpl/ predef/ preprocessor/ smart_ptr/ type_traits/ typeof/
utility/.

These modules are not currently affected by publicly disclosed vulnerabilities.

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:H&version=3.1

5.1.12 Other Fixes

5.1.12 Other Fixes

5.1.12.1 Negative duration passed to Waitset.wait

If you passed Waitset.wait a negative duration, undefined behavior occurred. Now, when you pass a neg-
ative duration, BAD_PARAMETER is thrown.

[RTI Issue ID CORE-8236]

5.1.12.2 Malformed samples with invalid strings not dropped by DataReader in C, traditional
C++, and modern C++

A DataReader may have provided the application a malformed sample containing an invalid value (not
null-terminated) for a string member. The string member may not have been null-terminated, resulting in
undefined behavior if the application tried to access it.

This issue has been addressed. The DataReader will fail to deserialize the sample, and the sample will not
be provided to the application.

[RTI Issue ID CORE-11203]

5.1.12.3 Float and double ranges may not have been enforced correctly

Float and double ranges may not have been enforced correctly. Float and double member values that
should not have passed the check ended up passing it.

This issue only occurred under any of the following conditions:

l For "float":

l In all languages but Java, when @min was set to -3.4E38 for a member, a value smaller than
@min passed the check when it should not have.

l In all languages but Java, when @max was set to 3.4E38 for a member, a value greater than
@max passed the check when it should not have.

l For "double":

l In all languages but Java, when @min was set to -1.7E+308 for a member, a value smaller
than @min passed the check when it should not have.

l In all languages but Java, when @max was set to 1.7E+308 for a member, a value greater
than @max passed the check when it should not have.

l For "float" and "double":

l In all languages but Java, when the member value was set to INFINITY, samples passed the
range check when they should not have.

61

5.2 What's Fixed in 6.1.0

62

l In all languages, when the member value was set to NaN, samples passed the range check
when they should not have.

This problem has been resolved.

[RTI Issue ID CORE-11358]

5.1.12.4 Linking static Linux or QNX libraries with object files built with -fPIC failed

In 6.1.0, RTI no longer built Linux or QNX static libraries with the -fPIC flag (whereas previously RTI
did build with this flag). Therefore, you could not link Linux or QNX static libraries in 6.1.0 with object
files built with the -fPIC flag. You likely ran into this problem if you used the static Linux or QNX library
in 6.1.0 while building a shared library.

This problem has been fixed. RTI now builds these libraries with the -fPIC flag again.

[RTI Issue ID PLATFORMS-2519]

5.2 What's Fixed in 6.1.0

Release 6.1.0 is a general access release based on the maintenance release 6.0.1. This section describes
bugs fixed in 6.1.0. These fixes have been made since 6.0.1.

5.2.1 Fixes Related to Discovery

5.2.1.1 DataReader DDS_LIVELINESS_CHANGED_STATUS may not have worked
properly

Connext DDS may have reported an incorrect DDS_LIVELINESS_CHANGED_STATUS for a
DataReader in the following scenarios:

Multiple DataReaders

Consider a DomainParticipant with several DataReaders all matching a DataWriter. If DataWriter live-
liness was lost for one of the DataReaders, the DataReader callback on_liveliness_changed was not
called.

MultiChannel or TopicQuery

Consider a DataWriter and a DataReader using MultiChannel or TopicQueries. If the DataWriter live-
liness changed (it was either lost or recovered) for the DataReader, the callback on_liveliness_changed
was called, but it may have provided an incorrect last_publication_handle.

Both of these scenarios have been fixed. Now the callback on_liveliness_changed is called when expec-
ted, and it matches the correct DataWriter'slast_publication_handle.

[RTI Issue ID CORE-7626]

5.2.1 Fixes Related to Discovery

5.2.1.2 Potentially wrong deserialization of vendor-specific BuiltinTopicData fields

In the Simple Endpoint Discovery process:

l During serialization: the vendorId was set after some vendor-specific BuiltinTopicData fields were
set.

l During deserialization: the vendorId was initialized to RTI_Vendor (0x0101) until it was deseri-
alized.

This behavior could lead to issues:

l If the remote non-RTI implementation sent other vendor-specific fields before it sent the vendorId,
Connext DDS processed those fields as RTI fields. But those fields, sent from another vendor, might
have a different meaning.

l Likewise, if the other vendor used a logic similar to RTI’s (serializing and deserializing vendor-spe-
cific fields based on the vendorId), then this vendor would also process the vendor-specific fields
incorrectly when receiving them from Connext DDS.

This issue has been resolved.

l For serialization: Connext DDS now serializes the vendorId before any other vendor-specific fields.

l For deserialization: Connext DDS now derives the vendorId from the RTPS header if it has not
parsed the vendorId yet.

[RTI Issue ID CORE-9755]

5.2.1.3 Discovery issues when reusing shared memory segments

Connext DDS tries to reuse shared memory segments that were already allocated if the process that owned
them is not running anymore. This is normal behavior.

Reusing a shared memory segment, however, sometimes led to discovery issues if the shared memory
host_id of the application was different than the one stored in the segment. (The shared memory host_id is
computed based on the values of the wire_protocol rtps_auto_id_kind and rtps_host_id.)

This problem has been fixed. This issue was a regression introduced in Connext DDS 6.0.0. It affected
only 6.0.x releases.

[RTI Issue ID CORE-10065]

63

5.2.1 Fixes Related to Discovery

64

5.2.1.4 DomainParticipant announcement lost after IP mobility event

In some operating systems Connext DDS can detect a new network interface before a socket can send a
packet through it. This situation leads to the loss of the DomainParticipant announcement related to this IP
mobility event and delays the notification to other DomainParticipants in this new network until the next
periodic announcement.

To prevent this problem, a new property has been added: dds.domain_participant.network_interface_
event_notification_delay. This property takes an integer value between 0 and 60000 and delays the
DomainParticipant announcements that include a new interface for that amount of milliseconds.

The default value of dds.domain_participant.network_interface_event_notification_delay is 0 (no
delay is applied). The value required to solve the issue will depend on the operating system and network
devices involved. A value too small may not prevent the issue. A value too large may not improve the per-
formance.

[RTI Issue ID CORE-10402]

5.2.1.5 Unexpected errors when IP mobility event triggered during DomainParticipant
enabling

There was a rare race condition that may have triggered unexpected errors during DomainParticipant
enabling or deletion. In particular, this issue may have been triggered if there was a change in the local
host network interfaces at the same time the DomainParticipant was being enabled.

When this issue was triggered, the DomainParticipantmay have shown errors during its enabling. The
errors shown were similar to the following:
[0X10146B6,0X25F8B60B,0X33EC3594:0|UPDATING WAN INTERFACE ADDRESSES]
Participant.c:1895:PRESParticipant_compareImmutableProperty:!equal property: builtin endpoint
mask
[0X10146B6,0X25F8B60B,0X33EC3594:0|UPDATING WAN INTERFACE ADDRESSES]
DomainParticipantPresentation.c:2249:DDS_DomainParticipantPresentation_update_participant_
locatorsI:ERROR: Failed to set participant QoS
[0X10146B6,0X25F8B60B,0X33EC3594:0|UPDATING WAN INTERFACE ADDRESSES]
DomainParticipant.c:16246:DDS_DomainParticipant_update_participant_locatorsI:Failed to update
locators: participant locators
[0X10146B6,0X25F8B60B,0X33EC3594:0|UPDATING WAN INTERFACE ADDRESSES]
DomainParticipant.c:16707:DDS_DomainParticipant_onNetworkInterfaceChanged:Failed to update
locators: update participant locators

Another consequence of this issue was the DomainParticipant showing errors during its deletion. The
errors shown were similar to the following:
[DELETE Participant] Receiver.c:1839:RTINetioReceiver_preShutdownWakeup:unremoved EP

This issue has been fixed. The DomainParticipant will no longer show unexpected errors if there is a net-
work interface change at the same time the DomainParticipant is being enabled.

[RTI Issue ID CORE-10637]

5.2.2 Fixes Related to Usability and Debuggability

5.2.1.6 Incorrect start time for event that checks for remote participant liveliness

The start time for the event that checks for remote participant liveliness was not the one configured by
DDS_DiscoveryConfigQosPolicy::max_liveliness_loss_detection_period. (Themax_liveliness_loss_
detection_period is the maximum amount of time between when a remote entity stops maintaining its live-
liness and when the matched local entity realizes that fact. You can find out that a remote participant has
lost liveliness by listening to the Participant Built-in discovery data.)

The start time for this event is now correct.

[RTI Issue ID CORE-10732]

5.2.2 Fixes Related to Usability and Debuggability

5.2.2.1 DDS_DataWriter::get_matched_subscription_data returned data that had not been
applied yet

Information about DataReaders is communicated using the SubscriptionBuiltinTopicData builtin dis-
covery channel. Changing certain properties of a DataReader causes new subscription data to be propag-
ated to matching DataWriters via this channel (e.g., content filter, partition, or deadline changes).
Applications can retrieve this subscription data with the DataWriter::get_matched_subscription_data
API. In previous releases, this API may have returned data that had not yet taken effect in the DataWriter.
This meant that it was not possible to make any decisions in the application based on the returned data.

For example, some applications may have waited for a content filter expression to be updated before begin-
ning to publish data that matched the DataReader's most up-to-data filter expression. Before this issue was
fixed, it was possible to see the DataReader's updated filter expression before the DataWriter started to
use it for writer-side filtering. Therefore, any samples that were written based on the filter expression in the
returned subscription data before the filter was applied to the DataWriter may have been filtered out by the
DataWriter.

This issue has been resolved when the API is called outside of a listener callback. This API has been
updated to block until the most recent changes known to the DataWriter have been applied. The
DataWriter::get_matched_subscription_data will no longer return data that has not yet taken effect in
the DataWriter. When called inside of a listener callback, it is still possible for the aforementioned issue to
occur. The recommended pattern for usage of this API then is to wait for subscription data to be received
either through polling this API or by installing a listener on the SubscriptionBuiltinTopicData builtin
DataReader. When a new sample is received by the builtin DataReader, the DataWriter::get_matched_
subscription_data may be called in a separate thread and will return the expected matched subscription
data once it has been applied to the DataWriter.

Because the DataWriter::get_matched_subscription_data API blocks, it is possible for this API to time
out while waiting for the changes to be applied. A timeout may happen if the DataReader's subscription
data is changing rapidly, preventing the DataWriter from returning valid information before newer data
has been received, or if an application is performing a task in a listener callback, thereby preventing the
middleware's threads from executing events in a timely manner.

65

5.2.2 Fixes Related to Usability and Debuggability

66

[RTI Issue ID CORE-5821]

5.2.2.2 last_reason field in DDS_SampleLostStatus contained invalid value if sample lost
using Best Effort

If a sample was lost using DDS_BEST_EFFORT_RELIABILITY_QOS, the field last_reason in DDS_
SampleLostStatus may have contained an invalid value, and you would have seen the following error mes-
sage:
DDS_SampleLostStatus_from_presentation_status:ERROR:Fail to get SampleLostStatus (unknown kind)

This problem has been resolved. Now every time a sample is lost using DDS_BEST_EFFORT_
RELIABILITY_QOS, the field last_reason will be correct.

[RTI Issue ID CORE-7281]

5.2.2.3 Eventual consistency not guaranteed when using DestinationOrderQosPolicy kind
BY_SOURCE_TIMESTAMP and original writer sample identities

Systems that require an eventual consistency guarantee must use the DestinationOrderQosPolicyKind
BY_SOURCE_TIMESTAMP. However, in cases where original writer sample identities were being
used, eventual consistency was not guaranteed.

Original writer sample identities are used by Routing Service and Persistence Service to write samples on
behalf of other DataWriters. Samples coming from these services include information about the service's
physical DataWriter as well as the original DataWriter for the sample. In a situation in which one
DataReader was receiving samples from the original DataWriter, and another DataReader was receiving
samples from either the Routing Service or Persistence Service, it was possible that the two DataReaders
would end up with different final values. This could happen because when two samples have the same
source timestamp, the DataWriter's GUID is used to determine which of the samples to keep in the
DataReader. The DataReader that was receiving samples directly from the original DataWriter would
keep both samples while the DataReader that was receiving the samples through a service would drop the
second sample if the service DataWriter's GUID had a lower value than the original DataWriter's GUID.

To fix this, the original DataWriter's GUID is now used to break ties when two consecutive source
timestamps are equal, as opposed to the physical DataWriter's GUID.

[RTI Issue ID CORE-9792]

5.2.2.4 Piggyback heartbeats may not have been sent with batching

A DataWriter using batching may not have sent piggyback heartbeats, or it may have sent them at the
wrong rate ifmax_send_window_size was set to UNLIMITED and max_batches was set to a finite
value.

This problem has been resolved.

5.2.2 Fixes Related to Usability and Debuggability

[RTI Issue ID CORE-9801]

5.2.2.5 Two crashing threads prevent the backtrace from being printed

When several threads crashed at the same time, the backtrace was not logged because the second crash
exited the application before the first thread could print the backtrace.

This problem is resolved. Now when several threads crash at the same time, the backtrace of each of them
is logged.

[RTI Issue ID CORE-9895]

5.2.2.6 DNS Tracker thread name not logged properly

The thread name logged for the DNS Tracker when enabling the NDDS_Config_LogPrintFormat
NDDS_CONFIG_LOG_PRINT_FORMAT_VERBOSE print format was not correct.

Now, the correct name is always logged for the DNS Tracker logging messages.

[RTI Issue ID CORE-9899]

5.2.2.7 Backtrace not available when using library that was linked dynamically

If a crash occurred in a library that was linked dynamically, the backtrace did not provide useful inform-
ation. For example:
Backtrace:

#1 ?? ??:0 [0x7EB8347D]
#2 ?? ??:0 [0x7F2E75D0]
#3 ?? ??:0 [0x7CA5BA56]
#4 ?? ??:0 [0x7CA793C8]
#5 ?? ??:0 [0x7CA7B8A3]

#6 ?? ??:0 [0x7E056B45]
#7 ?? ??:0 [0x7E226E74]
#8 ?? ??:0 [0x7E22983E]
#9 ?? ??:0 [0x7EB84FB3]
#10 ?? ??:0 [0x7F2DF5F0]
#11 ?? ??:0 [0x7FF4C84D]

Segmentation fault (core dumped)

This problem has been fixed. Now the backtrace provides all the available information when the crash is in
a library linked dynamically.

[RTI Issue ID CORE-9939]

5.2.2.8 Heap monitoring logging error "inconsistent free/alloc" could lead to unexpected
behavior

The following log message was not formed correctly.

67

5.2.2 Fixes Related to Usability and Debuggability

68

RTIOsapiHeap_freeMemoryInternal: inconsistent free/alloc: block id %#X being freed with %s and
was allocated with %s

It was missing one of the variadic arguments needed for the format specifiers of the format. The missing
argument could lead to a segmentation fault on certain architectures.

For example, on the architecture x64Darwin15clang7.0, heap monitoring reported the following error:
thread #1: tid = 0x2882084, 0x00007fff86852d32 libsystem_c.dylib`strlen + 18, queue =
'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0x185fbfbf30)
* frame #0: 0x00007fff86852d32 libsystem_c.dylib`strlen + 18
frame #1: 0x00007fff868986e8 libsystem_c.dylib`__vfprintf + 5713
frame #2: 0x00007fff868c135d libsystem_c.dylib`__v2printf + 669
frame #3: 0x00007fff868a55a9 libsystem_c.dylib`_vsnprintf + 596
frame #4: 0x00007fff868a565e libsystem_c.dylib`vsnprintf + 80
frame #5: 0x000000010198d19f libnddscored.dylib`RTILog_vsnprintf(str="inconsistent free/alloc:
block id 0X106651E being freed with \"RTIOsapiHeap_unknownFunction _ , size=999,
format="inconsistent free/alloc: block id %#X being freed w
ith \"%s\" and was allocated with \"%s\"\n", args=0x00007fff5fbfbed0) + 111 at Log.c:109

This problem has been resolved.

[RTI Issue ID CORE-10120]

5.2.2.9 Incorrect number of lost samples reported when using Best Effort and batching

When a batch of samples was lost using DDS_BEST_EFFORT_RELIABILITY_QOS, the counters of
DDS_SampleLostStatus were not updated correctly. They incremented the number of batches lost and not
the number of samples.

This has been resolved. Now when a batch is lost, the number of samples in the batch is updated properly
in DDS_SampleLostStatus.

[RTI Issue ID CORE-10151]

5.2.2.10 Unexpected log message when calling DataWriter::get_matched_subscription_data
or DataReader::get_matched_publication_data on unmatched endpoints

The DataWriter::get_matched_subscription_data and DataReader::get_matched_publication_data
APIs return RETCODE_PRECONDITION_NOT_MET when called using subscription or publication
handles of endpoints that do not match with the calling endpoint. This is normal operation for the API and
should not produce any logging messages at the exception log level; however, starting in release 6.0.0, an
exception was printed in this case. This issue has been fixed. The log message is now printed at the warn-
ing log level, as was the case in releases previous to 6.0.0.

[RTI Issue ID CORE-10163]

5.2.2 Fixes Related to Usability and Debuggability

5.2.2.11 Number of bytes reported in protocol statistics did not represent RTPS protocol
bytes sent on wire

Previously, some of the protocol statistics that were measured in bytes (such as sent_heartbeat_bytes) rep-
resented the number of RTPS protocol message bytes sent on the wire, while other protocol statistics (such
as received_sample_bytes) represented the size of the payload. Now all protocol statistics report the num-
ber of bytes in the RTPS protocol messages sent on the wire.

[RTI Issue ID CORE-10215]

5.2.2.12 last_instance_handle in DDS_SampleRejectedStatus, for keyed data in batches,
may not have been correct

Previously when using batching and keyed data, if samples were rejected, the last_instance_handle field in
DDS_SampleRejectedStatus may not have been correct. This problem has been resolved. Now every time
there are rejected samples, the value of last_instance_handle in DDS_SampleRejectedStatus is correct.

[RTI Issue ID CORE-10405]

5.2.2.13 Unexpected property: com.rti.serv.secure.internal_plugin_context (error message)

The following error message may have been triggered when running RTI Security Plugins using an eval-
uation license:
DDS_PropertyQosPolicy_validate_plugin_property_suffixes:Unexpected property:
com.rti.serv.secure.internal_plugin_context. Closest valid property:
com.rti.serv.secure.openssl_engine
RTI_Security_PluginSuite_create:Inconsistent QoS property: com.rti.serv.secure.
DDS_DomainParticipantTrustPlugins_initialize:!create security plugin
DDS_DomainParticipant_createI:!create builtin trust plugins support
DDS_DomainParticipantFactory_create_participant_disabledI:!create participant

This issue has been resolved. Now the Security Plugin will be created and the error message will not
appear.

[RTI Issue ID CORE-10472]

5.2.2.14 DDS_DataWriterProtocolStatus.pushed_sample_count for a DataWriter may have
been incorrect when data was sent to multiple locators

If a DataWriter was sending data to multiple locators and data fragmentation was not used, the pushed_
sample_count and pushed_sample_bytes statistics may have been incorrect. These fields within the
DDS_DataWriterProtocolStatus may have shown that only a single sample had been sent, even though
multiple RTPS packets had been put on the wire. This problem has been resolved.

[RTI Issue ID CORE-10490]

69

5.2.2 Fixes Related to Usability and Debuggability

70

5.2.2.15 Unexpected property: com.rti.serv.secure.openssl_engine.[engineName].
[cmdName]

The following error message may have been triggered when running RTI Security Plugins.
DDS_PropertyQosPolicy_validate_plugin_property_suffixes:Unexpected property:
com.rti.serv.secure.openssl_engine.[engineName].[cmdName]. Closest valid property:
com.rti.serv.secure.openssl_engine
RTI_Security_PluginSuite_create:Inconsistent QoS property: com.rti.serv.secure.
DDS_DomainParticipantTrustPlugins_initialize:!create security plugin
DDS_DomainParticipant_createI:!create builtin trust plugins support
DDS_DomainParticipantFactory_create_participant_disabledI:!create participant

This issue has been resolved. Now the Security Plugin will be created and the error message will not
appear.

[RTI Issue ID CORE-10535]

5.2.2.16 Potential deadlock in rare error conditions

There were a few error conditions when enabling a DomainParticipant or asserting a remote DomainPar-
ticipant that resulted in a deadlock. These conditions were unexpected and were accompanied by excep-
tion log messages.

This issue has been resolved. If any of these conditions are hit, error messages are printed, but there is no
longer risk of a deadlock.

[RTI Issue ID CORE-10556]

5.2.2.17 Samples not replaced when using Keep Last, Best Effort, finite max_samples,
keyed data, and batching

Consider a scenario using DDS_BEST_EFFORT_RELIABILITY_QOS, DDS_KEEP_LAST_
HISTORY_QOS, max_samples, keyed data, and batching. When using KEEP_LAST, a batch should
never be dropped as long as it doesn't contain more samples than max_samples/max_samples_per_
remote_writer. Connext DDS should replace samples that are currently in the queue with the samples in
the batch.

However, when using DDS_BEST_EFFORT_RELIABILITY_QOS, Connext DDS rejected a batch
when max_samples was hit instead of making space in the queue, due to DDS_KEEP_LAST_
HISTORY_QOS replacement.

This scenario is now fixed. When a batch hitsmax_samples, Connext DDS makes space in the queue due
to DDS_KEEP_LAST_HISTORY_QOS replacement.

[RTI Issue ID CORE-10580]

5.2.2 Fixes Related to Usability and Debuggability

5.2.2.18 NOT_ALIVE_DISPOSED instances not transitioning to NOT_ALIVE_NO_
WRITERS when using propagate_unregister_of_disposed_instances

When using propagate_unregister_of_disposed_instances, instances in the DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE did not transition to DDS_NOT_ALIVE_NO_WRITERS_
INSTANCE_STATE if the transition was triggered by a DataWriter losing liveliness or being destroyed.
This error has been fixed. Now instances transition to DDS_NOT_ALIVE_NO_WRITERS_
INSTANCE_STATE in these cases.

[RTI Issue ID CORE-10663]

5.2.2.19 Unexpected errors while removing an instance from a DataWriter

A DataWriter in which the on_instance_replaced callback is installed may have generated the following
errors when trying to remove an instance:
PRESWriterHistoryDriver_onReplaceInstance:!onInstanceReplaced
PRESPsService_writerHistoryDriverListenerOnInstanceReplaced:!modify pres psWriter
WriterHistoryMemoryPlugin_dropFullyAckedDisposedInstances:!on replace instance
WriterHistoryMemoryPlugin_applyFiniteAutopurgeDelay:!auto purge instance

These errors stopped the instance from being removed.

Now, the instance will be removed even if the errors appear.

[RTI Issue ID CORE-10696]

5.2.2.20 Loading Dbghelp.dll and NtDll.dll may have caused warnings

When the libraries Dbghelp.dll and NtDll.dll were loaded, the following warnings may have been logged:
RTIOsapiLibrary_getFullSharedLibraryName:library Dbghelp.dll, extension specified by user.
Consider removing extension to prevent library mismatches (release vs. debug)
RTIOsapiLibrary_getFullSharedLibraryName:library NtDll.dll, extension specified by user.
Consider removing extension to prevent library mismatches (release vs. debug)

These warnings are not logged anymore.

[RTI Issue ID CORE-10704]

5.2.2.21 Re-registering an instance did not restore correct state

Consider an instance that was disposed, then unregistered, and now you want to re-register it. Re-regis-
tering in this case transitioned the instance state to alive instead of disposed. This problem has been
resolved. Re-registering a previously unregistered instance now restores the instance state to what it was
before the unregister operation.

[RTI Issue ID CORE-10763]

71

5.2.2 Fixes Related to Usability and Debuggability

72

5.2.2.22 Logging APIs did not configure verbosity of some Core Libraries log messages

Changing the logging verbosity did not affect the logging of some messages related to XML parsing,
ODBC Dynamic Library Driver, and Property QoS policies. This issue has been resolved.

[RTI Issue ID CORE-10980]

5.2.2.23 Incorrect heap snapshot Information in some cases

When using the Heap Monitoring utility, some of the reported allocations were incorrectly categorized
with an incorrect activity PRESPsReaderQueue_newAnonData.

If you were using the Heap Monitoring utility in previous versions and see allocations with this activity,
these lines must be ignored in any analysis.

In this release, this issue has been fixed. Any allocations with that activity are now correct and should not
be ignored.

[RTI Issue ID CORE-11094]

5.2.2.24 Memory leak and 'Inconsistent free/alloc and realloc/alloc' errors when using Heap
Monitoring

When using Heap Monitoring, the following errors appeared:
heap.c:1011:inconsistent free/alloc: block id 0X37B1C10 being freed with "RTIOsapiHeap_
freeBufferNotAligned" and was allocated with "RTIOsapiHeap_allocateString"
RTIOsapiHeap_realloc:inconsistent realloc/alloc: block id 0XE22BE20 being realloced with
"RTIOsapiHeap_malloc" and was allocated with "RTIOsapiHeap_allocateString

When these errors occurred, Connext DDS leaked memory. These leaks happened only when Heap Mon-
itoring was enabled.

In this release, Connext DDS no longer checks for inconsistency between realloc/alloc/free signatures
when using Heap Monitoring. Now when you use Heap Monitoring, you will neither see these error mes-
sages nor experience memory leaks previously associated with them.

[RTI Issue ID CORE-11210]

5.2.2.25 RTI DDS Ping and RTI DDS Spy did not report error if QoS profile not found

If you passed an incorrect QoS profile name as an argument to RTI DDS Ping (rtiddsping) or
RTI DDS Spy (rtiddsspy), these utilities did not report the problem and used the default QoS profile.

This problem has been resolved. Now an error will be logged that the QoS profile was not found and the
default QoS profile will be used. For example, if you misspelled "Default" as "Defult", you may see a mes-
sage such as this:
rtiddsping -qosFile TEST_QOS_PROFILE.xml -qosProfile myApp_Library::Defult_Profile
QoS profile 'myApp_Library::Defult_Profile' was not found.

5.2.3 Fixes Related to Transports

Using default configuration.

[RTI Issue ID CORE-1145]

5.2.2.26 Memory leak in RTI DDS Ping and RTI Prototyper

There was a memory leak in RTI DDS Ping (rtiddsping) and RTI Prototyper (rtiddsprototyper):
==28275== 32 bytes in 1 blocks are still reachable in loss record 1 of 2
==28275== at 0x4C2E216: operator new(unsigned long) (vg_replace_malloc.c:334)
==28275== by 0x4F88E49: NDDSConfigLogger::get_instance() (Logger.cxx:52)
==28275== by 0x40E7D8: NddsAgent::execute(char const*) (Agent.cxx:1166)
==28275== by 0x40E78E: NddsAgent::execute(int, char const**) (Agent.cxx:1141)

This memory leak has been fixed.

[RTI Issue ID CORE-11151]

5.2.3 Fixes Related to Transports

5.2.3.1 Unexpected "MIGGenerator_addData:serialize buffer too small" error message

This issue was resolved in 6.0.1, but not documented at that time.

A DataWriter may have printed the following unexpected error message when the transports in the
DataWriter's Participant were not configured with the samemessage_size_max:
MIGGenerator_addData:serialize

This problem only occurred when the DataWriter was sending data to best-effort DataReaders and may
have caused samples to not be sent.

This problem has been resolved.

[RTI Issue ID CORE-2803]

5.2.3.2 Hostname resolution error messages printed regularly

Connext DDS printed error messages when trying to resolve a hostname that was unknown to the DNS
Service. If the DNS Tracker was enabled, the result was that the error messages were printed regularly
every time the DNS Tracker checked that hostname. This issue has been fixed. Now warning messages
are printed instead of errors. Connext DDS prints an error message only if not being able to resolve a host-
name results in a later error.

[RTI Issue ID CORE-9840]

73

5.2.3 Fixes Related to Transports

74

5.2.3.3 Network interface change not applied if change occurred while enabling
DomainParticipant

If a change on the network interfaces happened while the DomainParticipant was being enabled, the
change may have been discarded. This resulted in the DomainParticipant announcing incorrect locators
until another change on the network interfaces happened. This issue has been fixed. Now the locators are
updated properly.

[RTI Issue ID CORE-9922]

5.2.3.4 Still reachable memory leaks: TransportMulticastMapping libraries were never
unloaded

If you specified any mapping functions and their libraries in the TransportMulticast QosPolicy, those lib-
raries were loaded but never unloaded. This problem has been fixed by unloading the libraries after they
are used during DomainParticipant creation and DataReader creation.

Note: You may still see "still reachable" memory leaks in "dlopen" and "dlclose". These leaks are a
result of a bug in ValgrindTM (https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352).

[RTI Issue ID CORE-9941]

5.2.3.5 Deserialization error with BEST_EFFORT multicast readers when type was
annotated for Zero Copy transfer over shared memory

Multicast DataReaders using a type annotated for Zero Copy transfer over shared memory did not receive
samples due to a deserialization error with BEST_EFFORT reliability. This issue has been fixed.

[RTI Issue ID CORE-10083]

5.2.3.6 Possible bus error with shared memory transport on QNX or LynxOS platforms

When using the shared memory transport and rapidly creating and deleting DomainParticipants, it was
extremely rare but possible for a separate DomainParticipant to encounter a bus error in the function
RTIOsapiSharedMemorySegment_attach_os() while trying to send packets to those DomainPar-
ticipants. This problem, which only affected QNX and LynxOS platforms, has been fixed.

[RTI Issue ID CORE-10348]

5.2.3.7 Unexpected property: dds.transport.lbrtps.parent.domain_participant_ptr

If you were creating a DomainParticipant using the LBRTPS transport, you may have received the fol-
lowing error:
DDS_DomainParticipantConfigurator_setup_custom_transports:!create custom transport plugin
DDS_DomainParticipantConfigurator_enable:!install transport plugin aliases = custom transports
DDS_DomainParticipant_enableI:!enable transport configurator
DDS_DomainParticipantFactory_create_participant:ERROR: Failed to auto-enable entity

https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352

5.2.3 Fixes Related to Transports

This problem has been fixed. Now you can create a participant using the LBRTPS transport, and the error
message will not be logged.

[RTI Issue ID CORE-10409]

5.2.3.8 Precondition error when UDP debugging enabled in shared memory

If using debug libraries and enable_udp_debugging was set to "true", then the following error would
occur in the internal function NDDS_Transport_UDP_send when sending an RTPS message with many
repair samples:
!precondition: "self == ((void *)0) || buffer_in == ((void *)0) || buffer_count_in <= 0 ||
buffer_count_in > self->property->gather_send_buffer_count_max || worker == ((void *)0) ||
sendresource_in == ((void *)0) || *sendresource_in == ((void *)0)"

If this error occurred, the message would still be sent over shared memory, but it wouldn't be sent over
UDP for debugging purposes. This problem has been fixed. The error and the UDP send failure no longer
occur. If enable_udp_debugging is set to "true", then the number of shared memory transport gather buf-
fers is now equal to the value of parent.gather_send_buffer_count_max or 16, whichever is smaller.

[RTI Issue ID CORE-10589]

5.2.3.9 Communication may have stopped working after an increase in the number of
interfaces available in a host

Communication may have stopped working for a DomainParticipant that was running in a host for which
the number of available interfaces increased. Specifically, if the number of available interfaces in a host
increased, and if all of the new interfaces were malfunctioning, communication may have stopped even if
the already existing available interfaces were still working fine.

This problem has been resolved: an increase in the interfaces available on a host should not result in com-
munication issues.

[RTI Issue ID CORE-10611]

5.2.3.10 UDP properties_bitmap now supports string constant

Previously, the properties dds.transport.UDPv4.builtin.properties_bitmap and dds.trans-
port.UDPv6.builtin.properties_bitmap only accepted numeric values.

This limitation has been resolved, and now those properties accept string constants too. dds.trans-
port.UDPv4.builtin.properties_bitmap, dds.transport.UDPv4_WAN.builtin.properties_bitmap, and
dds.transport.UDPv6.builtin.properties_bitmap support:
"1",
"2",
"TRANSPORT_PROPERTY_BIT_BUFFER_ALWAYS_LOANED",
"NDDS_TRANSPORT_PROPERTY_BIT_BUFFER_ALWAYS_LOANED",
"TRANSPORT_PROPERTY_BITMAP_DEFAULT",

75

5.2.3 Fixes Related to Transports

76

"NDDS_TRANSPORT_PROPERTIES_BITMAP_DEFAULT"

[RTI Issue ID CORE-10989]

5.2.3.11 TCP transport could not parse gather_send_buffer_count_max property

The TCP transport plugin was unable to parse the property dds.transport.TCPv4.tcp1.parent.gather_
send_buffer_count_max. Therefore you could not improve the performance of the write operation by
optimizing the number of buffers that Connext DDS can pass to the send()method of a transport plugin.
This problem has been resolved.

[RTI Issue ID COREPLG-544]

5.2.3.12 Memory leak in debug logging for TCP transport

The combination of debug libraries and the verbosity RTI_LOG_BIT_OTHER in TCP Transport had a
memory leak:
==5542==
==5542== HEAP SUMMARY:
==5542== in use at exit: 56 bytes in 1 blocks
==5542== total heap usage: 1,030 allocs, 1,029 frees, 3,158,200 bytes allocated
==5542==
==5542== 56 bytes in 1 blocks are still reachable in loss record 1 of 1
==5542== at 0x4C2FB55: calloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==5542== by 0xD7C6C8: RTIOsapiHeap_reallocateMemoryInternal (heap.c:771)
==5542== by 0xD7405D: RTISystemClock_new (SystemClock.c:392)
==5542== by 0x446183: NDDS_Transport_TCPv4_logDebug (Tcpv4.c:984)
==5542== by 0x46A2C4: NDDS_Transport_TCPv4_new (Tcpv4.c:12559)
==5542== by 0x42DD14: NDDS_Transport_TCPv4Tester_testLoggingVerbosityWithParams
(Tcpv4Tester.c:4257)
==5542== by 0x42E374: NDDS_Transport_TCPv4Tester_testLoggingVerbosity (Tcpv4Tester.c:4341)
==5542== by 0x47E86B: RTITestSetting_runTestsExt (Setting.c:893)
==5542== by 0x47F81B: RTITestSetting_runTests (Setting.c:1089)
==5542== by 0x42E560: NDDS_Transport_TCPv4Tester_run (Tcpv4Tester.c:4421)
==5542== by 0x47E86B: RTITestSetting_runTestsExt (Setting.c:893)
==5542== by 0x47F81B: RTITestSetting_runTests (Setting.c:1089)
==5542==
==5542== LEAK SUMMARY:
==5542== definitely lost: 0 bytes in 0 blocks
==5542== indirectly lost: 0 bytes in 0 blocks
==5542== possibly lost: 0 bytes in 0 blocks
==5542== still reachable: 56 bytes in 1 blocks
==5542== suppressed: 0 bytes in 0 blocks
==5542==
==5542== For counts of detected and suppressed errors, rerun with: -v
==5542== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

This problem has been resolved by cleaning the memory in the destructor of the TCP Transport plugin.

[RTI Issue ID COREPLG-520]

5.2.4 Fixes Related to Reliability Protocol and Wire Representation

5.2.3.13 TCP Transport did not close sockets upon shutdown

An issue may have provoked the TCP Transport to not properly close one or more sockets. The issue may
have been triggered during TCP Transport shutdown. When it happened, the following unexpected mes-
sage was logged at the EXCEPTION log level:
NDDS_Transport_TCPv4_delete_cEA:unexpected situation: got already destroyed connection

This issue is resolved. Now the TCP Transport should not log the unexpected message nor leak any
socket.

[RTI Issue ID COREPLG-545]

5.2.4 Fixes Related to Reliability Protocol and Wire Representation

5.2.4.1 Memory leak when failing to create a reliable DataWriter due to port collision

A reliable DataWriter requires a port for receiving ACKNACKs from reliable DataReaders. The
DataWriter's TransportUnicast QosPolicy determines the port number. If the port is already in use, the
DataWriter creation will fail. This failure scenario resulted in a memory leak in the function
COMMENDSrWriterService_createWriter. This memory leak has been fixed.

[RTI Issue ID CORE-9775]

5.2.4.2 Unnecessary periodic heartbeats sent when writer had never written any samples

A DataWriter that had never written any samples still sent periodic heartbeat messages announcing the
empty queue and generating unnecessary network traffic.

This issue has been resolved. A writer will not start sending periodic heartbeats until it has written its first
sample.

[RTI Issue ID CORE-9795]

5.2.4.3 Excess samples NACKed by DataReaders in rare situations

In rare situations, a DataReader may have NACKed more samples than could fit in its queue, causing
rejection and further NACKing to occur. This situation could happen when the DataReader was matched
with two DataWriters with identical virtual identities (e.g., a system with redundant Routing Services). If
the DataReader application was run with debug libraries, the following precondition error was printed in
this situation:
MIGRtpsBitmap_truncateToZeroCount:!precondition: me == ((void *)0) || startSn == 0 ||
totalZeros < 0

This issue has been resolved.

[RTI Issue ID CORE-9864]

77

5.2.4 Fixes Related to Reliability Protocol and Wire Representation

78

5.2.4.4 Unexpected "WriterHistoryMemoryPlugin_removeRemoteReader:!change app ack
state" error when using AppAck on a DataReader whose participant lost liveliness

When a DataReader was configured to use application-level acknowledgement, and its DomainPar-
ticipant lost liveliness, you may have seen the following error in the DataWriter's application:
"WriterHistoryMemoryPlugin_removeRemoteReader:!change app ack state"

The error occurred if:

l The DataWriter's application was installing the on_sample_removed callback.

l The DataReader received the samples from the DataWriter using Zero Copy transfer over shared
memory. Also, in this scenario, the DataWriter may eventually not have been able to continue writ-
ing samples.

This problem has been resolved.

[RTI Issue ID CORE-9985]

5.2.4.5 Wrong memory allocation when deserializing an unbounded (w)string with a wrong
length

If the serialized length of an unbounded string or wstring was corrupted over the network, then the
receiver may have incorrectly attempted to allocate an amount of memory equal to this corrupted length. If
the corrupted length was large enough, certain architectures may have crashed during this attempt. This
problem has been fixed by checking the size against the remaining length of the DATA submessage
before allocating memory.

[RTI Issue ID CORE-10059]

5.2.4.6 Protocol status by locator may have been wrong with reliable multicast
communications

Calling DataWriter::get_matched_subscription_datawriter_protocol_status_by_locator for a reliable
DataWriter matching with a reliable DataReader that configures multicast may have returned incorrect res-
ults if the DataWriter sent repair data to the DataReader using the DataReader's unicast locators.

In this case, the DataWriter updated the repair traffic protocol statistics for the multicast locator instead of
the unicast locator.

This problem has been resolved.

[RTI Issue ID CORE-10221]

5.2.4 Fixes Related to Reliability Protocol and Wire Representation

5.2.4.7 max_bytes_per_nack_response not used correctly with ASYNCHRONOUS_
PUBLISH_MODE_QOS

When a reliable DataWriter resends DDS samples, the maximum size of a NACK repair packet is limited
to themax_bytes_per_nack_response value. To improve bandwidth utilization and response latency, a
DataWriter tries to use the wholemax_bytes_per_nack_response if possible.

For example, if a DataReader NACKs 4 samples with serialized sizes 4, 10, 10, 10 and max_bytes_per_
nack_response is 30, the DataWriter will send the first 3 samples into the repair packet. Sending the
fourth sample would exceed max_bytes_per_nack_response.

Previously, when the DataWriter was configured to use ASYNCHRONOUS_PUBLISH_MODE_QOS,
the DataWriter may not have utilized the fullmax_bytes_per_nack_response and the repair packet may
have been smaller than expected. (Using the example here, the NACK response may have included only
the first sample with size 4 instead of the first 3 samples.) This problem occurred only when the NACK
response was being sent to multiple locators.

This problem has been resolved.

[RTI Issue ID CORE-10459]

5.2.4.8 Inefficient delivery of samples with reliable asynchronous publisher

DataWriters using asynchronous publishing may have sent samples inefficiently when live samples and
repair samples were being sent at the same time by the asynchronous publishing thread. In some cases, live
samples may have been inadvertently directed to only a single DataReader rather than to all matching
DataReaders. The effect of this was that the other DataReaders had to NACK for those live samples and
get them repaired separately, increasing latency and bandwidth usage.

This issue has been resolved.

[RTI Issue ID CORE-10495]

5.2.4.9 Samples may not have been automatically acknowledged on a DataWriter when a
DataReader using application-level acknowledgment was deleted or lost liveliness

Some samples may not have been automatically acknowledged on a DataWriter when a DataReader
using application-level acknowledgement was deleted or lost liveliness. As a result, these samples may
have never been removed from the DataWriter queue, leading to potential resource exhaustion.

This issue occurred only for DataReaders that did not acknowledge any samples implicitly (by reading or
taking samples from the reader queue) or explicitly (by using the DataReader::acknowledge APIs)
before they were deleted.

This problem has been resolved.

[RTI Issue ID CORE-10682]

79

5.2.5 Fixes Related to Content Filters and Query Conditions

80

5.2.5 Fixes Related to Content Filters and Query Conditions

5.2.5.1 Duplicate samples sent unnecessarily to DataReaders within the same
DomainParticipant when using ContentFilteredTopics

A DataWriter sent a sample to each DataReader within a DomainParticipant for which the sample passed
the content filter. However, sending a single copy of the sample was sufficient because the DataReaders
all processed the sample the first time it was received and dropped the subsequent copies. This issue has
been fixed. Now when a sample should be delivered to multiple DataReaders within a
DomainParticipant, it is sent only a single time.

[RTI Issue ID CORE-8993]

5.2.5.2 ContentFilteredTopic performance improvement

An unnecessary buffer initialization in the code that filters data samples for a ContentFilteredTopic or a
QueryCondition has been removed and will result in faster filtering, especially for large data samples.

[RTI Issue ID CORE-10116]

5.2.5.3 Reader-side filtering did not work with Zero Copy transfer over shared memory

Performing content filtering (via a ContentFilteredTopic) on the DataReader side was not possible when
using Zero Copy transfer over shared memory. (See the section "5.4.2 Where Filtering is Applied---Pub-
lishing vs. Subscribing Side," in the RTI Connext DDS Core Libraries User's Manual. See also "23.6
Zero Copy Transfer Over Shared Memory.")

For DataReader-side filtering, Connext DDS filters samples at reception time, but for Zero Copy samples,
the DataWriter sends an associated reference to the actual sample, so the DataReader could not filter this
reference.

This problem has been fixed. Now, for Zero Copy samples, the filtering operation is delayed until the
DataReader has access to the shared memory sample. As a result, samples sent via Zero Copy transfer
over shared memory are now properly filtered on the DataReader side. (This problem only occurred when
filtering was performed by the DataReader.)

[RTI Issue ID CORE-10118]

5.2.5.4 ContentFilteredTopic::append/remove_from_expression_parameter crashed when
bad index was passed

These functions crashed when a negative index or an index equal to the parameter length was passed. This
problem has been fixed. The operation now fails with DDS_RETCODE_BAD_PARAMETER (or the
equivalent exception).

5.2.5 Fixes Related to Content Filters and Query Conditions

[RTI Issue ID CORE-10298]

5.2.5.5 DDS_DomainParticipant_create_contentfilteredtopic_w_filter: possible crash with
string-match filter

The function DDS_DomainParticipant_create_contentfilteredtopic_w_filter()may have crashed under
the following conditions:

l The filter name was DDS_STRINGMATCHFILTER_NAME, and

l A nonempty sequence of parameters that were NOT allocated with a DDS_String_* function was
used.

This function violated its contract and could modify (reallocate) the strings in the input parameter
sequence.

The default filter (DDS_SQLFILTER_NAME) was not affected by this problem.

This problem has been resolved. Now this function never modifies its input parameters.

[RTI Issue ID CORE-10299]

5.2.5.6 GAPs from ContentFilteredTopic were counted incorrectly in max_bytes_per_nack_
response

When a reliable DataWriter resends DDS samples, the repair packet size is limited to themax_bytes_per_
nack_response value. Previously, when computing max_bytes_per_nack_response, samples that were
filtered out were counted according to their serialized size, rather than to their corresponding GAP size.
This problem was not observed while using asynchronous DataWriters.

This problem has been resolved. Now samples that are filtered out are counted according to their GAP
size.

[RTI Issue ID CORE-10335]

5.2.5.7 WaitSet with QueryCondition/ReadCondition may not have woken up when entities
changed to not compatible or were removed

In a scenario with multiple local DataReaders matching a remote DataWriter, where one of the following
two events occurs:

l The remote writer was no longer compatible with the local readers.

l The remote writer was removed.

If you were using a WaitSet with QueryCondition or ReadCondition, you may not have been notified by
the QueryCondition/ReadCondition because the WaitSet may not have woken up. So you may not have

81

5.2.6 Fixes Related to TopicQueries

82

received an invalid sample with the instance_state: DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_
STATE.

This issue has been resolved. Now the WaitSet will wake up in the above described scenarios.

[RTI Issue ID CORE-10365]

5.2.5.8 Invalid QueryCondition and ReadCondition results for samples that expired due to
Lifespan QoS while loaned

QueryCondition or ReadCondition results may have been invalid if an application held a loan on a sample
that expired due to lifespan during the time that the sample was loaned. This could have led to situations
where WaitSets returned indicating that there were active conditions when there were not, or one of the
read/take_w_condition APIs returned indicating that there was data available when there was not.

This issue has been resolved. When a sample's lifespan expires while it is loaned, it is correctly removed
from all existing QueryConditions and ReadConditions as soon as the outstanding loan is returned.

[RTI Issue ID CORE-10746]

5.2.6 Fixes Related to TopicQueries

5.2.6.1 MultiChannel and TopicQuery did not work with large data

A DataReader was sometimes not able to receive large data (samples bigger than the transportmessage_
size_max) from a MultiChannel DataWriter, of which a TopicQuery dispatcher is an example. This prob-
lem occurred because the original identity of a sample was not preserved when sending multi-channel
large data. This issue and CORE-8422, which was incorrectly marked as fixed in 5.3.1, are now resolved.

[RTI Issue ID CORE-9335]

5.2.6.2 create_topic_query hanged when setting service_request_writer_data_lifecycle

Setting the DiscoveryConfig QosPolicy's service_request_writer_data_lifecycle to have a finite value
for autopurge_unregistered_instances_delay or autopurge_disposed_instances_delay resulted in
incorrect behavior when repeatedly creating and deleting topic queries. With release libraries, DDS_
DataReader_create_topic_query would hang. With debug libraries, you would see the following errors
every time the ServiceRequest DataWriter sent a heartbeat:
REDACursor_start:!precondition: !(((c)!=((void *)0)) && !(((c)->_state) & 0x02))
PRESPsService_writerHistoryDriverListenerOnInstanceReplaced:!start pres psWriter
PRESWriterHistoryDriver_onReplaceInstance:!onInstanceReplaced

This precondition error occurred for any DataWriter that instrumented the on_instance_replaced listener
callback and set a finite value for a WriterDataLifecycle QosPolicy duration. This problem has been fixed.

[RTI Issue ID CORE-10046]

5.2.6 Fixes Related to TopicQueries

5.2.6.3 Historical TopicQueries and ContentFilteredTopics may have been out of synch

Some use cases require that a DataReader requests all historical data matching a given filter expression in
addition to subscribing to all live data matching this filter expression. The historical data can be requested
using an historical TopicQuery and the live data can be filtered using a ContentFilteredTopic expression.
Doing so allows the DataReader a continuous view of a data stream from past to present.

There was an issue, however, that may have caused a gap in the data in between the historical and live
data streams. This would happen when the TopicQuery was received by the DataWriter before the match-
ing ContentFilteredTopic filter expression update was received.

This issue has been resolved. TopicQueries and ContentFilteredTopic filter expression updates are now
synchronized on the DataWriter. That said, as a matter of best practice, you should use continuous Top-
icQueries instead of using both historical TopicQueries and ContentFilteredTopics in order to address the
use case described here.

[RTI Issue ID CORE-10146]

5.2.6.4 Unregistered samples for TopicQueries may have been delivered even after using
"@instance_state = ALIVE" in filter expression

The "@instance_state = ALIVE" modifier to filter expressions in TopicQueries only considered disposed
samples. Unregistered samples were still sent by the DataWriter. This problem has been fixed.

[RTI Issue ID CORE-10604]

5.2.6.5 Unexpected "topic query does not exist" messages at warning level

While using TopicQueries, you may have seen the following log message at a warning level:
PRESPsService_removeRemoteTopicQuery:topic query does not exist

These messages are expected when TopicQuery requests are received out of order; they should not be
reported at a warning verbosity level.

This issue has been fixed.

[RTI Issue ID CORE-10605]

5.2.6.6 Crash when TopicQuery could not be enabled

If a TopicQuery failed to be enabled, the application that was trying to create the TopicQuery would crash.

TopicQueries are enabled in the context of the DataReader::create_topic_query() call if the DataReader
is enabled; otherwise, they are enabled at a later point during the call to enable the DataReader.

If a TopicQuery failed to be enabled, the following (or similar) errors would be printed:
DDS_DataReader_enable_topic_queryI:!announce TopicQuery
PRESPsService_enableTopicQueryWithCursor:!enable listener notification

83

5.2.7 Fixes Related to Coherent Sets

84

PRESTopicQuery_enable:!enable topic query
DDS_TopicQuery_enable:!enable TopicQuery
DDS_DataReader_create_topic_queryI:!enable TopicQuery

This issue has been resolved. Now, if a TopicQuery cannot be enabled, there will still be errors printed
indicating that there was an error, but no crash.

[RTI Issue ID CORE-11295]

5.2.7 Fixes Related to Coherent Sets

5.2.7.1 Unhandled exception when copying SampleInfo and accessing
SampleInfo.coherent_set_info field

In release 6.0.0.6, copying a SampleInfo object where the field coherent_set_info is set and accessing the
coherent_set_info field in the copied object may have thrown an unhandled exception.

This issue has been resolved.

Note: This issue affected only releases 6.0.0.6 and 6.0.0.11 because it affected a feature that is not part
of the 6.0.0 and 6.0.1 releases.

[RTI Issue ID CORE-10408]

5.2.7.2 Unexpected DDS_RETCODE_ERROR when writing a sample with durable writer
history

The DataWriter::write() operation may have failed with DDS_RETCODE_ERROR, entering a non-
recoverable state. This was due to a corruption in a sample metadata list maintained in the DataWriter,
when the Publisher called end_coherent_changes() with a previously published coherent set in the
DataWriter history. This could also have led to the DataReader's losing samples. This error typically
occurred with the following configuration:

l Communication was reliable.

l Durable writer history was set (see the "Durable Writer History Properties" table in the RTI Connext
DDS Core Libraries User's Manual), with the property dds.data_writer.history.odbc_plugin.in_
memory_state set to true.

l Coherent sets of samples were published.

l The DataWriter setmax_samples to a finite value.

This issue has been resolved.

[RTI Issue ID CORE-10498]

5.2.8 Fixes Related to Dynamic Data and FlatData

5.2.7.3 SampleInfo.equals in Java may have returned false negatives

Calling SampleInfo.equals may have returned false when comparing two SampleInfos that were equal.

This issue occurred only when the coherent_set_info field was set. This problem has been resolved.

[RTI Issue ID CORE-10600]

5.2.7.4 Segmentation fault when using coherent sets on keyed Topics

A subscribing application linking with the Connext DDS release libraries may have experienced a seg-
mentation fault when receiving a coherent set containing samples from multiple instances. The issue only
occurred when an instance contained more than one sample in the coherent set.

If the application was linked with the debug libraries, you would have observed the following precondition
error in an infinite loop:
!precondition: "instanceEntry == ((void*)0)"

This problem has been resolved.

[RTI Issue ID CORE-11225]

5.2.7.5 Coherent set may not have been delivered atomically

It was possible that a coherent set was not delivered atomically to the subscribing application. This meant
that you could get some samples of the coherent set first and later on the rest. This problem only occurred
when max_samples_per_instance was set to a finite number on the DataReader QoS.

This problem has been resolved.

[RTI Issue ID CORE-11227]

5.2.8 Fixes Related to Dynamic Data and FlatData

5.2.8.1 FlatData: plain_cast may have incorrectly allowed access to memory that was not
properly aligned in some situations

The function rti::flat::plain_cast() allowed casting sequences and arrays of fixed-size structs from their
FlatData representation to a C++ array even though the memory alignment wasn't C++-compatible.

This problem has been resolved. plain_cast will now fail in these situations instead of providing a pointer
to a misaligned array.

[RTI Issue ID CORE-10093]

85

5.2.9 Fixes Related to DDS API

86

5.2.8.2 Using DynamicData::get_complex_member or DynamicData::set_complex_member
on a type that contains sequences of strings or wide strings could have led to
sample corruption or segmentation fault

Using the DynamicData::get_complex_member or DynamicData::set_complex_member APIs to get
or set a member with a type that contained a sequence of strings or a sequence of wide strings could have
led to sample corruption or a segmentation fault.

This issue has been fixed.

[RTI Issue ID CORE-11187]

5.2.9 Fixes Related to DDS API

5.2.9.1 DataReader::get_matched_publications may not have returned all the matched
DataWriter handles when using MultiChannel

In previous releases, there was an issue with the DataReader::get_matched_publications API when
using MultiChannel that may have resulted in the API returning an incomplete set of matched DataWriter
handles. This problem only occurred when the DataReader changed its filter expression and that change
resulted in matching a different set of channels for a given DataWriter.

This problem is now resolved: DataReader::get_matched_publications will always return the correct set
of matched DataWriter handles.

[RTI Issue ID CORE-6944]

5.2.9.2 Wrong return code or exception for DDS_DataWriter_get_matched_subscription_
data and DDS_DataReader_get_matched_publication_data

DDS_DataWriter_get_matched_subscription_data and DDS_DataReader_get_matched_pub-
lication_data incorrectly returned DDS_RETCODE_PRECONDITION_NOT_MET instead of DDS_
RETCODE_BAD_PARAMETER when the instance handle did not correspond to any matched end-
point. This problem also affected APIs that use exceptions instead of return codes (Modern C++, Java, and
.NET). This problem has been fixed.

[RTI Issue ID CORE-10103]

5.2.9.3 Unexpected log message when calling DataWriter::get_matched_subscription_data
or DataReader::get_matched_publication_data on unmatched endpoints

The DataWriter::get_matched_subscription_data and DataReader::get_matched_publication_data
APIs return RETCODE_PRECONDITION_NOT_MET when called using subscription or publication
handles of endpoints that do not match with the calling endpoint. This is normal operation for the API and
should not produce any logging messages at the exception log level; however, starting in release 6.0.0, an
exception was printed in this case. This issue has been fixed. The log message is now printed at the warn-
ing log level, as was the case in releases previous to 6.0.0.

5.2.9 Fixes Related to DDS API

[RTI Issue ID CORE-10163]

5.2.9.4 FooDataReader::get_key_value() may have returned wrong key value

Calling FooDataReader::get_key_value()may have returned a wrong key value. This occurred for types
containing mutable non-primitive key members and only if the non-primitive type of a key member did not
contain any key itself. For example:
@mutable
struct Identifier {

int32 x;
int32 y;

};
@mutable
struct Entity {

@key Identifier ID;
int32 other;

};

This problem has been resolved.

[RTI Issue ID CORE-10884]

5.2.9.5 DDS_WaitSetProperty::max_event_count incorrectly declared as long (C and
Traditional C++ APIs only)

Themax_event_count field of the type DDS_WaitSetProperty was incorrectly declared as long (or int32)
in the C and Traditional C++ APIs. This field was always intended to be a 32-bit integer, but C's int32
type size is not standard. Depending on the architecture, int32 can be a 32-bit or a 64-bit integer.

This problem has been resolved, and max_event_count's type is now DDS_Long (which is always a 32-
bit integer).

[RTI Issue ID CORE-10965]

5.2.9.6 Crash when calling NDDSConfigLogger::finalize_instance() twice

When calling NDDSConfigLogger::finalize_instance() twice, there was a crash with the following stack
trace:
#0 0x00007f6249b9f01a in NDDSConfigLogger::set_output_device (this=0x0, device=0x0)
at Logger.cxx:138
#1 0x00007f6249b9ee19 in NDDSConfigLogger::finalize_instance () at Logger.cxx:59

This issue has been fixed. Now you can call NDDSConfigLogger::finalize_instance()more than once.

[RTI Issue ID CORE-11134]

87

5.2.10 Fixes Related to Modern C++ API

88

5.2.10 Fixes Related to Modern C++ API

In addition to 5.2.9 Fixes Related to DDS API on page 86, this release includes the following fixes,
which are specific to the Modern C++ API.

5.2.10.1 Incorrect call to write method with TopicInstance types

Using TopicInstance iterators to write resulted in a compilation error. Now, the way TopicInstance types
are handled in the corresponding call has been fixed to perform the write operation correctly.

[RTI Issue ID CORE-9988]

5.2.10.2 Non-uniform naming for data_tag

Some parts of the module referred to data_tag as data_tags, making them sometimes incompatible. Refer-
ences are now uniform across the API.

[RTI Issue ID CORE-9991]

5.2.10.3 Some types had copy constructor but no explicit assignment operator

Some types, such as Time, all the Exception types, and InstanceHandle had a copy constructor but no
explicit assignment operator. This may have caused some static-code-analysis tools to report errors.

In all cases, the compiler-defined operator was correct, so this problem didn't have any functional effect.

In cases where the copy constructor wasn't necessary (the compiler-defined one was appropriate), the con-
structor has been removed; in the rest of cases, a copy-assignment operator has been added.

[RTI Issue ID CORE-10000]

5.2.10.4 Some headers were included recursively

Some headers were included recursively, which may have caused static-code-analysis tools to report an
error. This problem didn't have any effect on the compilation or API functionality. This problem has been
fixed.

[RTI Issue ID CORE-10001]

5.2.10.5 For DynamicData DataWriters, the {{create_data()}} member function didn't
compile

Given a writer of type dds::pub::DataWriter<dds::core::xtypes::DynamicData>, the following didn't
compile:
dds::core::xtypes::DynamicData sample = writer.extensions().create_data();

This problem didn't affect IDL-generated types.

5.2.10 Fixes Related to Modern C++ API

The problem has been resolved. The above expression now compiles and creates a DynamicData sample
for the DynamicType of the DataWriter's Topic.

[RTI Issue ID CORE-10025]

5.2.10.6 Function to get type definition of a registered type was missing

The following function, available in the other language APIs, was not available in the Modern C++ API. It
has now been added to the rti::domain namespace:
dds::core::xtypes::DynamicType& find_type(
const dds::domain::DomainParticipant& participant,
const std::string& type_name);

[RTI Issue ID CORE-10044]

5.2.10.7 Time::from_millisecs and Time::from_microsecs could produce incorrect results

These two methods could return an incorrect result when the input couldn't be represented as a 32-bit
integer. This problem has been resolved. Now these functions return the right Time for all possible inputs.

[RTI Issue ID CORE-10100]

5.2.10.8 New method to configure the default QosProvider

The function to set the default QosProvider parameters, which configure among other things which QoS
profile files are loaded by default, was not directly accessible without instantiating QosProvider::Default
() first. This could have undesired side effects.

A new, standalone function, rti::core::default_qos_provider_params(), has replaced the previous one.
This function can be called before QosProvider::Default() is first accessed.

[RTI Issue ID CORE-10132]

5.2.10.9 Applications that used a StatusCondition from an XML-loaded DDS entity may have
crashed in some situations

Applications that loaded an XML-defined DDS system (via QosProvider::create_participant_from_
config) may have crashed if they used the StatusCondition::entity() getter to get the entity related to a
StatusCondition. The StatusCondition did not retain the reference to the entity, and in some situations the
entity may have been destroyed, causing StatusCondition::entity() to return a dangling reference.

This problem has been resolved.

[RTI Issue ID CORE-10248]

89

5.2.10 Fixes Related to Modern C++ API

90

5.2.10.10 Some DynamicData value setters and the member_info function may have
incorrectly thrown an exception

Some DynamicData value setters (value() or set_values() for certain member types) may have incorrectly
thrown an exception when accessing a member or element in the following situations:

l For a union type, when the member of interest wasn't currently selected by the discriminator. The
expected behavior in this case is to automatically update the union discriminator, instead of failing.

l For a sequence type, when the element index was greater than the sequence length (but smaller than
the maximum length). The expected behavior in this case is to automatically grow the sequence.

l When the member of interest is optional and currently unset. In this case, the expected behavior is to
select the member.

In the case of DynamicData::member_info(), the expected behavior in the above scenarios is to return a
DynamicDataMemberInfo with member_exists set to false, not to throw an exception.

This problem has been resolved. All the scenarios described above produce the expected behavior and no
longer trigger an exception. These functions still throw an exception if the member doesn't exist in the type
definition or if, in the case of sequences, the index is greater than the maximum length.

[RTI Issue ID CORE-10286]

5.2.10.11 Reference type had copy constructor but no explicit assignment operator

This problem may have caused some static-code-analysis tools to report errors. However, the compiler-
defined operator is correct, so this problem didn't have any functional effect.

The explicit definition of the copy constructor wasn't necessary and has been removed, resolving this
issue.

[RTI Issue ID CORE-10339]

5.2.10.12 Function rti::topic::find_topics not exported on Windows

Visual Studio applications using the function rti::topic::find_topics failed to link because that function
wasn't correctly dll-exported.

This problem has been resolved.

[RTI Issue ID CORE-10636]

5.2.10.13 Some reference types didn't provide move constructors or move-assignment
operators

Standard reference types such as DomainParticipant unnecessarily defined empty destructors, which dis-
abled the default move constructor and move-assignment operators. The underlying shared_ptr in these

5.2.11 Fixes Related to XML Configuration

types was therefore copied in situations where it could be moved, which could have been less efficient.

This problem has been resolved. Reference types are now nothrow move constructible and nothrow move
assignable.

[RTI Issue ID CORE-10822]

5.2.11 Fixes Related to XML Configuration

5.2.11.1 Default QosProvider failed to apply certain Qos settings as defined in XML

A problem in the way the Default QosProvider loaded the XML Qos definitions caused a number of set-
tings to not be applied, namely:

l The <participant_factory_qos> set in a <qos_profile> marked with the attribute is_default_par-
ticipant_factory_profile="true" in a file other than USER_QOS_PROFILES.xml was not
applied. For example, a profile changing the logging policy to write to a file would not be applied,
and the application loading that profile would still print log messages on the console.

l When creating DDS Entities from an XML file (via QosProvider::create_participant_from_con-
fig()), those entities did not automatically get the Qos configuration from a profile marked with is_
default_qos=true in that same file.

These problems are now resolved.

Note: This fix resolves a known issue in previous releases, "DomainParticipantFactoryQos in XML may
not be Loaded."

[RTI Issue ID CORE-6846]

5.2.11.2 DomainParticipantFactory and QosProvider did not pick up the default XML QoS
profile marked with is_default_qos

Previously, if an XML QoS profile had the is_default_qos=true attribute set, the DomainPar-
ticipantFactory or the QosProvider didn't update its default profile accordingly. This meant that the
DomainParticipantFactory and QosProvider operations that expect a profile name as an argument didn't
take into account the default one in the XML file when no profile argument was provided.

For example, given a file "my_profiles.xml" defining the following profile:
<dds>

<qos_library name="test_library">
<qos_profile name="test_profile" is_default_qos="true">

<datareader_qos>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datareader_qos>

91

5.2.11 Fixes Related to XML Configuration

92

</qos_profile>
</qos_library>

</dds>

The following C++ code didn't work as expected:
using namespace dds::all;
QosProvider qos_provider("my_profiles.xml");
auto qos = qos_provider.datareader_qos();
std::cout << (reader_qos.policy<Reliability>().kind() == ReliabilityKind::RELIABLE); //
expected true, but it's false
qos = qos_provider.datareader_qos("test_library::test_profile");
std::cout << (reader_qos.policy<Reliability>().kind() == ReliabilityKind::RELIABLE); // true

This problem has been resolved. Now in that example, the returned reader QoS has Reli-
abilityKind::RELIABLE in both cases.

[RTI Issue ID CORE-9497]

5.2.11.3 Could not configure force_interface_poll_detection and join_multicast_group_
timeout using XML

The properties force_interface_poll_detection and join_multicast_group_timeout were not con-
figurable in an XML QoS profile. This issue has been resolved. Now, these properties can be configured
using the <udpv4> or <udpv6> tags in <transport_builtin>.

[RTI Issue ID CORE-9901]

5.2.11.4 Segmentation fault when loading invalid XML with invalid unions

Connext DDS may have produced a segmentation fault after trying to load an invalid XML file containing
a malformed <union>. For example:
<union name="MyStruct">
<discriminator type="int32"/>
<case>

<caseDiscriminator value="1"/>
<member name="a" type="int32" />
<member name="b" type="int64" />
<member name="c" type="char" />

</case>
</union>

In the above XML snippet, a union has multiple members for a discriminator value, which is incorrect.

This problem has been resolved.

[RTI Issue ID CORE-10204]

5.2.12 Fixes Related to OMG Specification Compliance

5.2.11.5 XML fields ignore_enum_literal_names and initialize_writer_loaned_sample were
not inherited

Starting in release 6.0.0, the fields DataReaderQos::type_consistency::ignore_enum_literal_names
and DataWriterQos::writer_resource_limits::initialize_writer_loaned_sample were not inherited prop-
erly. This problem has been resolved.

[RTI Issue ID CORE-10214]

5.2.11.6 XSD validation failed if flags used a combination of values

The XSD validation of an XML application file failed if there was a UDPv4 configuration using a com-
bination of values for the flags element. For example, using the following snippet in MAG reported the fol-
lowing error:
<transport_builtin>

<udpv4>
<interface_table>

<element>
<flags>UDP_INTERFACE_INTERFACE_UP_FLAG|UDP_INTERFACE_INTERFACE_MULTICAST_FLAG</flags>

</element>
</interface_table>

</udpv4>
</transport_builtin>

ERROR com.rti.micro.appgen.MicroAppGen - cvc-pattern-valid: Value 'UDP_INTERFACE_INTERFACE_UP_
FLAG|UDP_INTERFACE_INTERFACE_MULTICAST_FLAG' is not facet-valid with respect to pattern '(UDP_
INTERFACE_INTERFACE_UP_FLAG|UDP_INTERFACE_INTERFACE_MULTICAST_FLAG)' for type
'udpInterfaceFlagMask'.

This problem has been fixed. Now combinations are allowed.

[RTI Issue ID CORE-10314]

5.2.12 Fixes Related to OMG Specification Compliance

5.2.12.1 Connext DDS may have received wrong Simple Endpoint Discovery information
when interoperating with other vendors

When a Connext DDSDomainParticipant received Simple Endpoint Discovery information from a dif-
ferent vendor participant, the received discovery information could be wrong. The issue may have
occurred when the remote non-RTI participant did not serialize the vendorId field (which was an RTI-
extension for Simple Endpoint Discovery) as part of the Simple Endpoint Discovery.

This issue has been resolved. If the vendorId is not in the Publication/SubscriptionBuiltinTopicData, it is
now derived from the RTPS header.

This fix is part of the new functionality described in "Connext DDS now supports receiving implicit dis-
covery information from the RTPS header" in RTI Connext DDS Core Libraries What's New in 6.1.2.

93

5.2.12 Fixes Related to OMG Specification Compliance

94

[RTI Issue ID CORE-9265]

5.2.12.2 Wrong default values in TypeConsistencyEnforcementQosPolicy

The TYPE_CONSISTENCY_ENFORCEMENT QosPolicy had wrong default values for two of its
boolean members: ignore_sequence_bounds and ignore_string_bounds. This problem has been fixed.
To comply with the "Extensible and Dynamic Topic Types for DDS" specification from the Object Man-
agement Group (OMG), the default values have changed from false to true.

As a result of this change, out of the box in 6.1.0, a DataWriter publishing a Topic with a type that con-
tains a sequence member with a maximum bound 'A' will match with a DataReader subscribing to the
same Topic using a type where the same sequence member has a smaller maximum bound.

Samples received by the DataReader will fail to be deserialized and be dropped if the number of elements
in the sequence is larger than the maximum allowed by the DataReader type.

For example:
struct MyType1 {

sequence<int32, 100> m1;
}

struct MyType2 {
sequence<int32, 50> m1;

}

In earlier releases, a DataWriter publishingMyType1 and a DataReader subscribing toMyType2 did not
match out of the box. In 6.1.0, the entities will match.

If the DataReader receives a sample wherem1 has more than 50 elements, it will log a deserialization
error and the sample will be reported as lost with the reason DDS_LOST_BY_DESERIALIZATION_
FAILURE.

[RTI Issue ID CORE-9338]

5.2.12.3 APIs that provide information about remote entities were not compliant with
specification

Previously, the DDS_DataWriter_get_matched_subscriptions and DDS_DataReader_get_matched_
publications APIs only returned instance handles for remote entities that were alive. This was not com-
pliant with the OMG Data Distribution Service (DDS) standard API, version 1.4. Now, these APIs return
the instance handles for any matching remote entities, including those that are not alive.

Additionally, the DDS_DataWriter_get_matched_subscription_data and DDS_DataReader_get_
matched_publication_data APIs used to accept any valid instance handle. This was not compliant with
the OMG Data Distribution Service (DDS) standard API, version 1.4. Now the instance handles these
APIs accept must correspond to a matching entity. In other words, the only valid inputs to these APIs are

https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS/1.4

5.2.12 Fixes Related to OMG Specification Compliance

the handles returned by the aforementioned DDS_DataWriter_get_matched_subscriptions and DDS_
DataReader_get_matched_publications APIs.

[RTI Issue ID CORE-9366]

5.2.12.4 Type used by <group_data>, <user_data>, and <topic_data> in XSD schema not
compliant with DDS-XML specification

Release 6.1.0 updated the type used by <group_data>, <user_data>, and <topic_data>. The new rep-
resentation is an xs:hexBinary value. The old format, in which the content is provided as a set of comma-
separated decimal or hexadecimal elements values, will still be accepted by the Connext XML parser,
except when the value contains a single byte in non-hexadecimal (0x) notation.

If a value is a single byte, the XML parser cannot tell whether the value uses the old format or the new one
xs:hexBinary. To distinguish between them, a new Processing Instruction, <?rti-baseformat HEX|DEC?>,
has been added. This Processing Instruction indicates whether the format is hexadecimal or decimal, and it
is only needed when the value is a single byte in non-hexadecimal notation.

As a result of this change, an XML file that was valid in 6.0.1 may not be valid in 6.1.0. You may get an
error similar to the following:
DDS_XMLQos_onEndOctetSequenceElement:Parse error at line XXX: processing instruction
<?rti-baseformat HEX|DEC?> missing

In particular, Infrastructure Services use XSD validation to verify the correctness of the input configuration
file, and they will fail to load an XML configuration using the old format.

Pre-6.1.0 XML files that use a single byte value for <group_data>, <user_data>, and <topic_data> will
need to be updated by adding the new Processing Instruction.

For more details, see theMigration Guide on the RTI Community Portal (https://-
community.rti.com/documentation).

[RTI Issue ID CORE-9636]

5.2.12.5 Schema files were not compliant with DDS-XML spec

The following changes have been made to the schema files (rti_dds_profiles.xsd and rti_dds_qos_pro-
files.xsd and their included files) to make them compliant with the DDS-XML specification
(https://www.omg.org/spec/DDS-XML/1.0/PDF):

l Renamed <participant_qos> to <domain_participant_qos>.

l Renamed <filter> to <content_filter>.

l Renamed <parameter_list> in <filter> to <expression_parameters> in <content_filter>.

l Renamed <value> in <parameter_list> to <element> in <expression_parameters>.

95

https://community.rti.com/documentation
https://community.rti.com/documentation
https://www.omg.org/spec/DDS-XML/1.0/PDF

5.2.12 Fixes Related to OMG Specification Compliance

96

The old tags are still accepted by the Connext XML parser and the XSD schema to maintain backward
compatibility.

The type of a union discriminator was also updated from a string with the pattern (([a-zA-Z_]|::)
([a-zA-Z_0-9]|::)*) to an enumeration. This change was made to make the schema compliant
with the latest DDS-XML specification (https://www.omg.org/spec/DDS-XML/1.0/PDF).

For example, the following XML snippet was compliant with the previous schema; it was valid because
"myType" was compliant with the pattern:
<union ...>

<discriminator type="myType"/>
</union>

Now, only the values defined in the "discriminatorTypeKind" enumerator type are valid:
<xs:simpleType name="discriminatorTypeKind">

<xs:restriction base="xs:string">
<xs:enumeration value="boolean"/>
<xs:enumeration value="byte"/>
<xs:enumeration value="int8"/>
<xs:enumeration value="uint8"/>
<xs:enumeration value="char8"/>
<xs:enumeration value="char16"/>
<xs:enumeration value="int16"/>
<xs:enumeration value="uint16"/>
<xs:enumeration value="int32"/>
<xs:enumeration value="uint32"/>
<xs:enumeration value="int64"/>
<xs:enumeration value="uint64"/>
<!-- Some other type -->
<xs:enumeration value="nonBasic"/>
...
</xs:enumeration>

</xs:restriction>
</xs:simpleType>

See the schema files in <installdir>/resource/schema.

[RTI Issue ID CORE-9734]

5.2.12.6 Wrong GUID serialization for PID_DIRECTED_WRITE inline QoS parameter

The OMG RTPS 2.3 specification defines the GUID in a PID_DIRECTED_WRITE inline QoS para-
meter as a GUID_t. Previous releases incorrectly serialized the GUID as four integers in native endi-
anness, as opposed to an array of 16 bytes. To conform with the specification, Connext DDS now
serializes the GUID as an array of 16 bytes..

The specification also states that the PID_DIRECTED_WRITE inline QoS parameter should be ignored
when interacting with protocol versions earlier than 2.4. Since Connext DDS announces an RTPS version
of 2.3, other vendors should ignore this inline QoS parameter, and interoperability should not be affected.

https://www.omg.org/spec/DDS-XML/1.0/PDF

5.2.13 Fixes Related to Entities

To avoid breaking backward compatibility with previous releases, the GUID is still serialized natively
when the remote DomainParticipant has an older Connext DDS product version.

[RTI Issue ID CORE-10122]

5.2.13 Fixes Related to Entities

5.2.13.1 Different value for reader_property_string_max_length/writer_property_string_
max_length before and after creation of DomainParticipant

For the following QoS settings:

l DDS_DomainParticipantResourceLimitsQosPolicy::reader_property_string_max_length

l DDS_DomainParticipantResourceLimitsQosPolicy::writer_property_string_max_length

Connext DDS did not guarantee that the value of those settings before the creation of the DomainPar-
ticipant was the same as the value after calling DDS_DomainParticipant_get_qos.

For instance, the default value of those settings is 1024; however, after the creation of the DomainPar-
ticipant, if you called DDS_DomainParticipant_get_qos, the value returned was 1070.

This issue has been resolved. Now the value returned when calling DDS_DomainParticipant_get_qos is
the same value that you specified in the creation of the DomainParticipant.

[RTI Issue ID CORE-10493]

5.2.13.2 Possible issues with communication and enabling DomainParticipant on Windows
systems if network interface has multiple IP addresses

On Windows platforms, when a network interface has assigned more than one IP address, Connext DDS
only detected the one with the lowest IP address. DomainParticipants running on a Windows host with
this network configuration could not be discovered through the other IP addresses, causing communication
issues.

Besides the communication issues, the DomainParticipant could not be enabled if the allow/deny_inter-
faces_list properties of the transport restricted the available IP addresses for Connext DDS to the ones not
reported and there was no other transport enabled on that DomainParticipant.

This regression was introduced in 6.0.1 and is now fixed. Now, all the IP addresses of a network interface
are detected and they will work as expected.

[RTI Issue ID CORE-11232]

97

5.2.14 Fixes Related to Vulnerabilities

98

5.2.14 Fixes Related to Vulnerabilities

This release fixes some potential vulnerabilities, including RTI Issue IDs CORE-10880 and CORE-
10883.

5.2.15 Other Fixes

5.2.15.1 Some status fields not populated in Java callbacks

The following status fields were not populated by the Java language binding callbacks. Because of that,
their values were incorrect:

l SubscriptionMatchedStatus.current_count_peak

l PublicationMatchedStatus.current_count_peak

This problem has been resolved.

[RTI Issue ID CORE-3095]

5.2.15.2 Unbounded memory growth when creating/deleting participants

The continuous creation/deletion of DomainParticipants could have led to unbounded memory growth,
due to the fact that the deletion of a DomainParticipant left a small amount of memory behind.

This memory growth was not detected by memory profilers such as Valgrind because the leaked memory
was reclaimed when deleting the DomainParticipantFactory before the application was closed.

This problem has been resolved.

[RTI Issue ID CORE-7881]

5.2.15.3 Possible unbounded memory growth when using Durable Writer History

In previous releases, the deletion of a DataWriter using durable writer history did not free all the memory
associated with the DataWriter. This may have led to unbounded memory growth if you continuously cre-
ated/deleted durable DataWriters.

Note that this memory growth was not reported as a memory leak by memory profilers such as Valgrind
because all the memory was reclaimed when the process creating/deleting the DataWriters was shut down.

The problem has been resolved.

[RTI Issue ID CORE-8028]

5.2.15.4 Topic/Type regex typo in rtiddsspy summary display

There was a typo in the rtiddsspy summary window:

5.2.15 Other Fixes

topic regex............: *
topic regex............: *

It is now corrected as follows:
topic regex............: *
type regex............: *

[RTI Issue ID CORE-8930]

5.2.15.5 Potential unbounded memory growth if DataWriter failed to publish data
asynchronously

If a DataWriter failed to publish a sample asynchronously, the memory for that sample may not have been
released until the DataWriter was deleted, leading to unbounded memory growth if the DataWriter failed
to asynchronously publish an unbounded number of samples. Although it is unclear how the conditions for
failure can occur in practice, the unbounded memory growth problem has been fixed. The sample can now
be removed from the writer queue, and its memory can be released.

[RTI Issue ID CORE-9275]

5.2.15.6 RTI Admin Console showed wrong maximum annotation for uint64

Previously, if you used a uint64 (unsigned long long) in your type:
struct foo{

uint64 u64;
};

RTI Admin Console would display the following IDL:
struct foo {

@max(-1)
uint64 u64; //@ID 0

};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

The maximum annotation was not correct in this display. This issue affected only the IDL display in
Admin Console.

This issue has been fixed, and now the IDL of this type will look as follows:
struct foo {

uint64 u64; //@ID 0
};
//@Extensibility EXTENSIBLE_EXTENSIBILITY

[RTI Issue ID CORE-9846]

99

5.2.15 Other Fixes

100

5.2.15.7 Potential application crash when receiving a sample on the service request channel

The reception of a sample over the service request channel (for instance, a TopicQuery request) may have
caused an application to crash. The crash may have happened using non-C libraries if the related
DomainParticipant had installed a listener that set the onDataOnReaders status on its mask. This issue
has been fixed. Now the service request sample is processed properly.

This fix resolves a known issue in previous releases.

[RTI Issue ID CORE-9891]

5.2.15.8 Still reachable memory leaks: TransportMulticastMapping libraries were never
unloaded

If you specified any mapping functions and their libraries in the TransportMulticast QosPolicy, those lib-
raries were loaded but never unloaded. This problem has been fixed by unloading the libraries after they
are used during DomainParticipant creation and DataReader creation.

Note: You may still see "still reachable" memory leaks in "dlopen" and "dlclose". These leaks are a
result of a bug in Valgrind (https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352).

[RTI Issue ID CORE-9941]

5.2.15.9 Unused parameters in generated code

The functions RTICdrStream_skipNonPrimitiveArray and RTICdrStream_skipNonPrim-
itiveSequence, which appear in code generated by Code Generator, had an unused parameter. This para-
meter has been removed.

[RTI Issue ID CORE-10027]

5.2.15.10 Failure to allocate memory larger than 2 GB

Connext DDS failed to allocate heap memory larger than 2 GB. For example, if the DataWriterQos's
resource_limits.initial_samples was large enough to cause a preallocation of more than 2 GB but less
than the available heap memory, then DataWriter creation incorrectly failed. This problem has been fixed.

[RTI Issue ID CORE-10057]

5.2.15.11 [Java] checkPrimitiveRange failure using a type with float or double

In the Java API, when using a type with a float or a double, you may have seen the following error:

https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352

5.2.15 Other Fixes

RTIXCdrInterpreter_checkPrimitiveRange:<type>:<field> deserialization error. Primitive value
<value> outside valid range [0,000000,
1797693134862315708145274237317043567980705675258449965989174768031572607800285387605895586327
6687817154045895351438246423432132688946418276846754670353751698604991057655128207624549009038
9328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919
299881250404026184124858368,000000]

This failure occurred because the @min and @max default annotations for float and double in the Java
API were not correct.

This problem has been resolved.

[RTI Issue ID CORE-10096]

5.2.15.12 Possible segmentation fault during DomainParticipant deletion

There was a rare race condition in which a segmentation fault occurred during DomainParticipant dele-
tion. The segmentation fault occurred while the internal Connext DDS Event thread was calling the func-
tion PRESInterParticipantWriter_write(). This problem has been resolved.

[RTI Issue ID CORE-10099]

5.2.15.13 Typecodes with IDL representation greater than 1KB could not be printed using
DDS_TypeCode_to_string APIs on Windows systems

TypeCodes whose IDL representation had a size greater than 1024 bytes could not be printed using the
DDS_TypeCode_to_string() or DDS_TypeCode_print_IDL() APIs. This issue, which only affected
Windows systems, has been resolved.

[RTI Issue ID CORE-10107]

5.2.15.14 XCDR2 serialization of a sample for a type with an optional primitive member may
have been wrong in some cases

The XCDR2 serialization of a sample for a type with the following properties was incorrect:

l The type had a primitive member 'Pn' (it could be external but not optional) following another prim-
itive member 'Pn-1' that was marked as optional

l The required alignment for 'Pn' was less than or equal to the required alignment for 'Pn-1'

l The optional member was set to NULL in the sample

This issue only affected the following language bindings: C, C++ (traditional and modern), and Dynam-
icData in all languages.

It also affected all languages if using ContentFilteredTopics.

For example, the samples for the following types would not have been serialized correctly when the
optional member was set to NULL:

101

5.2.15 Other Fixes

102

struct MyType_1 {
@optional int32 m1; /* alignment for int32 is 4 */
int32 m2; /* alignment for int32 is 4 */

};

struct MyType_1 {
@optional int32 m1; /* alignment for int32 is 4 */
double m2; /* alignment for double is 4 */

};

struct MyType_1 {
@optional int32 m1; /* alignment for int32 is 4 */
@external double m2; /* alignment for double is 4 */

};

On x86 platforms, this issue only resulted in interoperability problems with other DDS vendors. For
example, a sample serialized with Connext DDS would not have been deserialized correctly by other DDS
implementations from different vendors.

On other platforms, such as Arm CPUs, this issue led to a bus error when deserializing.

This problem has been fixed.

[RTI Issue IDs CORE-10254 and CODEGENII-1302]

5.2.15.15 Memory leak using heap monitoring

When using heap monitoring, you may have had the following memory leak:
valgrind issue

==23698== Address 0x779a345 is 21 bytes inside a block of size 31 alloc'd
==23698== at 0x4C2FB55: calloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==23698== by 0x47D6FB: RTIOsapiHeap_reallocateMemoryInternal (heap.c:771)
==23698== by 0x466847: REDAString_duplicate (String.c:1592)
==23698== by 0x440136: REDAFastBufferPool_parseTypeName (fastBuffer.c:552)
==23698== by 0x406215: REDAFastBufferTester_testParseTypeName (fastBufferTester.c:964)

This problem has been resolved.

[RTI Issue ID CORE-10284]

5.2.15.16 Several functions may have crashed when the "self" parameter was NULL (C API
only)

Functions such as DDS_DataReader_set_qos may have crashed when the first argument ("self", the
DataReader) was NULL.

This problem has been resolved and these functions now return DDS_RETCODE_BAD_PARAMETER
in this situation.

[RTI Issue ID CORE-10353]

5.2.15 Other Fixes

5.2.15.17 Samples not replaced when using Keep Last, Best Effort, finite max_samples,
keyed data, and batching

Consider a scenario using BEST_EFFORT (in the RELIABILITY QosPolicy), KEEP_LAST (in the
HISTORY QosPolicy), max_samples, keyed data, and batching. When using KEEP_LAST, a batch
should never be dropped as long as it doesn't contain more samples than max_samples/max_samples_
per_remote_writer. Connext DDS should replace samples that are currently in the queue with the
samples in the batch.

However, when using BEST_EFFORT reliability, Connext DDS rejected a batch when max_samples
was hit instead of making space in the queue, due to KEEP_LAST history replacement.

This scenario is now fixed. When a batch hitsmax_samples, Connext DDS makes space in the queue due
to KEEP_LAST replacement.

[RTI Issue ID CORE-10580]

5.2.15.18 Memory leak when Skiplist function runs out of memory

If the internal function REDASkiplist_newDefaultAllocator ran out of memory, then entity creation
would fail with a memory leak. Here is one example set of error messages, along with a valgrind result:
REDAFastBufferPool_growEmptyPoolEA: !allocate buffer of 48 bytes REDAFastBufferPool_
newWithParams:!create fast buffer pool buffers REDASkiplist_newDefaultAllocator:!create fast
buffer pool

==20092== 696 (256 direct, 440 indirect) bytes in 1 blocks are definitely lost in loss record 5
of 5
==20092== at 0x4C2B975: calloc (vg_replace_malloc.c:711)
==20092== by 0x1353974: RTIOsapiHeap_reallocateMemoryInternal (heap.c:793)
==20092== by 0x131D8C8: REDASkiplist_newDefaultAllocator (SkiplistDefaultAllocator.c:287)

This problem has been fixed. Entity creation will now fail without a memory leak.

[RTI Issue ID CORE-10639]

5.2.15.19 Unexpected behavior in AsyncWaitSet operation if an invalid property was passed
for its construction

Creating an AsyncWaitSet with an invalid property resulted in unexpected behavior. For example, calling
AsyncWaitSet::start() could lead to a hang. This problem has been resolved.

[RTI Issue ID CORE-10657]

5.2.15.20 Segmentation fault when registering a type if error in operation

An application calling DomainParticipant::register_type()may have produced a segmentation fault if
there was an error in this operation.

103

5.2.15 Other Fixes

104

For example, this problem could have occurred when the type being registered was too big. In this case,
you would have seen a set of error messages followed by a segmentation fault.
[0x0101D29C,0xBE497AA7,0x5553D2A0:0x000001C1{N=MyTypeParticipant,D=56}|REGISTER TYPE MyType]
RTIXCdrInterpreter_generateTypePluginProgram:failure generating serialize program for type
MyType: too many primitive values
[0x0101D29C,0xBE497AA7,0x5553D2A0:0x000001C1{N=MyTypeParticipant,D=56}|REGISTER TYPE MyType]
RTIXCdrInterpreterPrograms_generate:failure generating serialize program for type MyType
[0x0101D29C,0xBE497AA7,0x5553D2A0:0x000001C1{N=MyTypeParticipant,D=56}|REGISTER TYPE MyType]
RTIXCdrInterpreterPrograms_generateTopLevelPrograms:failure generating programs for type MyType
[0x0101D29C,0xBE497AA7,0x5553D2A0:0x000001C1{N=MyTypeParticipant,D=56}|REGISTER TYPE MyType]
RTIXCdrInterpreterPrograms_initializeWithParams:failure generating programs for type MyType
[0x0101D29C,0xBE497AA7,0x5553D2A0:0x000001C1{N=MyTypeParticipant,D=56}|REGISTER TYPE MyType]
DDS_TypeCodeFactory_assert_programs_w_parameters:ERROR: Failed to initialize resultPrograms
[0x0101D29C,0xBE497AA7,0x5553D2A0:0x000001C1{N=MyTypeParticipant,D=56}|REGISTER TYPE MyType]
DDS_TypeCodeFactory_assert_programs_in_global_list:!assert_programs

This issue has been fixed.

[RTI Issue ID CORE-10742]

5.2.15.21 Memory leak when Skiplist function ran out of memory, when using RTI Heap
Monitoring

If the internal function REDASkiplist_newDefaultAllocator ran out of memory and you were using RTI
Heap Monitoring, then entity creation failed with a memory leak. Here is an example set of error mes-
sages, along with a Valgrind result:
==12569== 57 bytes in 1 blocks are definitely lost in loss record 1 of 4
==12569== at 0x4C2FB55: calloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==12569== by 0x499AB7: RTIOsapiHeap_reallocateMemoryInternal (heap.c:797)
==12569== by 0x48158C: REDAString_duplicate (String.c:1563)
==12569== by 0x4579D7: REDAFastBufferPool_parseTypeName (fastBuffer.c:535)
==12569== by 0x457FBD: REDAFastBufferPool_newWithParams (fastBuffer.c:650)
==12569== by 0x465639: REDASkiplist_newDefaultAllocator (SkiplistDefaultAllocator.c:301)

This problem has been fixed. Entity creation will now fail without a memory leak.

[RTI Issue ID CORE-10790]

5.2.15.22 Invalid serialization of samples with types containing nested structures with
primitive members that require padding

In 6.0.1 and earlier, the serialization of samples with a type containing two or more levels of nested com-
plex types, where the nested types have primitive members that require padding, may have failed. This
means that a DataReader may have received an invalid value for a sample.

Example:
// Level-2 Nested type
struct Struct1 {

uint8 m1;

5.2.15 Other Fixes

uint8 m2;
int32 m3;

};
// Level-1 Nested type
struct Struct2 {

int32 m1;
int32 m2;
uint8 m3;
uint8 m4;
Struct1 m5;

};
struct Struct3 {

Struct2 m1;
};

In the above example, Struct2 and Struct1 are nested, and there is padding between Struct1::m2 (1-byte
aligned) and Struct1::m3 (4-byte aligned) of 2 bytes.

This issue only applied to nested types that are appendable or final for XCDR1 data representation or final
for XCDR2 data representation.

This problem affected DynamicData and the generated code for the following languages: C, C++, C++03,
and C++11.

For generated code, a potential workaround to this problem was to generate code with a value of 1 or 0 for
the -optimization, but this may have had performance implications.

This problem has been resolved.

[RTI Issue IDs CORE-10820 and CODEGENII-1486]

5.2.15.23 java.lang.ClassCastException on a DataReader subscribing to a Topic of the
String builtin type

A DataReader subscribing to a Topic associated with the String builtin type may have thrown a
`java.lang.ClassCastException` after receiving samples or creating a QueryCondition if:

1. The DataReader set the dds.data_reader.history.memory_manager.fast_pool.pool_buffer_
max_size to a value greater than or equal to 0.

2. And, the DataReader was a ContentFilteredTopic or was creating QueryConditions.

This problem has been resolved.

[RTI Issue ID CORE-10796]

5.2.15.24 Segmentation fault when deserializing a large sequence of locator filters

If the sequence of locator filters had a length longer than the maximum value of a 32-bit signed integer
(2147483647), then deserialization did not behave correctly. As a result, the internal function

105

5.2.15 Other Fixes

106

PRESLocatorFilterQosProperty_copy() would crash due to attempting to dereference a NULL pointer.
This problem has been resolved.

[RTI Issue ID CORE-10958]

5.2.15.25 Segmentation fault when large numbers of resources were being allocated

There was an issue in an underlying data structure in the Connext DDS libraries which could cause cor-
ruption and lead to a crash when allocating large pieces of memory. This could happen, for example, if
your application was writing or storing thousands of samples or instances. This issue has been resolved.

[RTI Issue ID CORE-11035]

5.2.15.26 Crash printing a typeCode in Java

There was a crash in Java when printing a data type, which had been propagated through discovery using
TypeCode, with the following exception:
ava.lang.NullPointerException: Cannot invoke
"com.rti.dds.typecode.AnnotationParameterValue.discriminator()" because the return value of
"com.rti.dds.typecode.Annotations.default_annotation()" is null

at com.rti.dds.typecode.TypeCode.print_default_literal_annotations(TypeCode.java:1848)
at com.rti.dds.typecode.TypeCode.print_IDL(TypeCode.java:2675)
at com.rti.dds.typecode.TypeCode.print_complete_IDL(TypeCode.java:2500)
at msgSubscriber$BuiltinPublicationListener.on_data_available(Unknown Source)
at com.rti.dds.subscription.DataReaderListenerImpl.on_data_available

(DataReaderListenerImpl.java:158)

The exception occurred when the type contained an enum.

This issue has been fixed, and now the TypeCode can be printed.

[RTI Issue ID CORE-11071]

5.2.15.27 min and max annotations (@min and @max) incorrectly displayed for float and
double types when IDL was viewed in Admin Console

The default minimum and maximum annotations (@min and @max) are no longer printed when an IDL
representation of a type is viewed in RTI Admin Console.

[RTI Issue ID CORE-11101]

5.2.15.28 Possible segmentation fault on some architectures in release mode while writing
an unbounded string type

When using the release libraries for some architectures, writing a sample of a type that contains an unboun-
ded string may have led to a segmentation fault in the internal function RTIXCdrInterpreter_getSer-
SampleSize(). This problem, which only affected Connext DDS 6.0.0 and above, has been fixed.

5.2.15 Other Fixes

[RTI Issue ID CORE-11141]

5.2.15.29 Application may not have received samples published by more than two
DataWriters working as Collaborative DataWriters

An application may not have received samples published by multiple DataWriters working as Col-
laborative DataWriters.

This issue occurred only when the following two conditions were met:

l The DataReader configured availability.max_data_availability_waiting_time or avail-
ability.max_endpoint_availability_waiting_time with a value greater than zero.

l The DataWriters did not send virtual heartbeats

For example, assume that two DataWriters were configured with the same virtual GUID, and they pub-
lished two samples with sequence numbers 1 and 3. Sequence number 2 is missing. In this example, a
DataReader would have received the sample with sequence number 1 but would have never received the
sample with sequence number 3.

This issue could also affect infrastructure services that run in collaborative mode, such as RTI Routing Ser-
vice and RTI Persistence Service. For example, the two DataWriters in this example could correspond to
the DataWriters of two Routing Services that run in redundant mode. In the case of Persistence Service,
the two DataWriters could have been the original DataWriter and the Persistence Service DataWriter.

This issue has been resolved.

[RTI Issue ID CORE-11200]

5.2.15.30 Potential crash upon receiving a corrupted RTPS CRC32 submessage

In previous releases, receiving a corrupted RTPS CRC32 submessage (for example, as a consequence of
network corruption) may have triggered a crash. This problem has been resolved, and receiving a cor-
rupted RTPS CRC32 submessage should no longer trigger a crash.

[RTI Issue ID CORE-11286]

5.2.15.31 Segmentation fault while deleting participant when monitoring enabled in separate
domain ID

The deletion of a DomainParticipant in which monitoring was enabled in a separate domain ID (through
the property rti.monitor.config.new_participant_domain_id) may have led to a segmentation fault.

This problem has been resolved.

[RTI Issue ID MONITOR-291]

107

5.2.15 Other Fixes

108

5.2.15.32 Requester may have received spurious replies when replier was deleted

A requester waiting for a reply to a particular request may have been unblocked due to the reception of a
not-alive-no-writers message after a replier was deleted or lost liveliness. This unexpected behavior forced
application code to wait in a loop to ignore these messages.

This problem has been resolved in all Request-Reply APIs (C, Traditional C++, Modern C++, Java, and
.NET). The not-alive-no-writers message is now purged in Requesters and Repliers, and will no longer be
received or unblock a Requester waiting for replies.

[RTI Issue ID REQREPLY-63]

5.2.15.33 Interoperability issue between Java/NET/DynamicData and C/C++/modern C++
applications when using keyed types and XCDRv1 encapsulation

In 6.0.0 and 6.0.1, the instance keyhash for a keyed type using XCDR (Extensible CDR version 1) encap-
sulation was calculated differently in the Java, .NET, and DynamicData languages when the code for the
keyed type was generated using the -optimization 0 option and the keyed type contained one key member
whose type was a typedef of a struct/valuetype type in which only some of the members were marked as
@key fields.

For example:
struct SimpleKeyedType
{

@key octet m1;
octet m2;

};
typedef SimpleKeyedType SimpleKeyedTypeAlias;
struct KeyedType
{

@key SimpleKeyedTypeAlias m1;
};

The right calculation was done in Java.

As a result, the subscribing application might have observed some unexpected behavior related to
instances. Specifically, the call to DataReader::lookup_instance()might have failed and returned
HANDLE NIL even if the instance was received.

This also affected compatibility with the languages C, C++, and Modern C++ in 5.3.1 or earlier releases.

This problem has been resolved.

[RTI Issue IDs CORE-11290 and CODEGENII-1485]

5.2.15.34 Samples lost on DataReader because max_instances was exceeded were not
AppAcked

This issue was resolved in 6.0.1, but not documented at that time.

5.2.15 Other Fixes

In previous releases where application-level acknowledgment was used, samples dropped from the
DataReader becausemax_instances was exceeded were not automatically AppAcked. This may have
lead to scenarios in which samples were never removed from a DataWriter's sample queue.

[RTI Issue ID CORE-11082]

109

Chapter 6 Known Issues
6.1 Known Issues with Usability

6.1.1 Cannot open USER_QOS_PROFILES.xml in rti_
workspace/examples from Visual Studio

When trying to open the USER_QOS_PROFILES.xml file from the resource folder of one of the
provided examples, you may see the following error:
Could not find file : C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\connext_
dds\c\<example>\win32\USER_QOS_PROFILES.xml

The problem is that the Visual Studio project is looking for the file in a wrong location (win32
folder).

You can open the file manually from here:

C:\Users\<user>\Documents\rti_workspace\5.3.0\examples\connext_
dds\c\<example>\USER_QOS_PROFILES.xml

This issue does not affect the functionality of the example.

[RTI Issue ID CODEGENII-743]

6.1.2 DataWriter's Listener callback on_application_acknowledgment()
not triggered by late-joining DataReaders

The DataWriter's listener callback on_application_acknowledgment()may not be triggered by
late-joining DataReaders for a sample after the sample has been application-level acknowledged
by all live DataReaders (no late-joiners).

If your application requires acknowledgment of message receipt by late-joiners, use the
Request/Reply communication pattern with an Acknowledgment type (see the chapter "Intro-
duction to the Request-Reply Communication Pattern," in the RTI Connext DDS Core Libraries
User's Manual).

110

6.1.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communication failure when

111

[RTI Issue ID CORE-5181]

6.1.3 HighThroughput and AutoTuning built-in QoS Profiles may cause
communication failure when writing small samples

If you inherit from either the BuiltinQosLibExp::Generic.StrictReliable.HighThroughput or the Built-
inQosLibExp::Generic.AutoTuning built-in QoS profiles, your DataWriters and DataReaders will fail
to communicate if you are writing small samples.

In Connext DDS 5.1.0, if you wrote samples that were smaller than 384 bytes, you would run into this
problem. In version 5.2.0 onward, you might experience this problem when writing samples that are smal-
ler than 120 bytes.

This communication failure is due to an interaction between the batching QoS settings in the Gen-
eric.HighThroughput profile and the DataReader'smax_samples resource limit, set in the Built-
inQosLibExp::Generic.StrictReliable profile. The size of the batches that the DataWriter writes are
limited to 30,720 bytes (see max_data_bytes). This means that if you are writing samples that are smaller
than 30,720/max_samples bytes, each batch will have more than max_samples samples in it. The
DataReader cannot handle a batch with more than max_samples samples and the batch will be dropped.

There are a number of ways to fix this problem, the most straightforward of which is to overwrite the
DataReader'smax_samples resource limit. In your own QoS profile, use a higher value that accom-
modates the number of samples that will be sent in each batch. (Simply divide 30,720 by the size of your
samples).

[RTI Issue ID CORE-6411]

6.1.4 Memory leak if Foo:initialize() called twice

Calling Foo:initialize() more than once will cause a memory leak.

[RTI Issue ID CORE-7678]

6.1.5 Wrong error code after timeout on write() from Asynchronous Publisher

When using an asynchronous publisher, if write() times out, it will mistakenly return DDS_RETCODE_
ERROR instead of the correct code, DDS_RETCODE_TIMEOUT.

[RTI Issue ID CORE-2016, Bug # 11362]

6.1.6 Type Consistency enforcement disabled for structs with more than
10000 members

TypeObjects cannot be created from structs with more than 10000 members. Applications that publish or
subscribe to such types may see errors like the following:

6.1.7 Escaping special characters in regular/filter expressions not supported in some cases

RTICdrStream_serializeNonPrimitiveSequence:sequence length (10005) exceeds maximum (10000)
RTICdrTypeObjectTypeLibraryElement_getTypeId:serialization error: Type
RTICdrTypeObject_fillType:!get TypeId
RTICdrTypeObject_assertTypeFromTypeCode:!create Structure Type
RTICdrTypeObject_createFromTypeCode:!create TypeObject

When the TypeObject can't be serialized, the type compatibility check between a reader and a writer falls
back to exact type-name matching.

See the section "Verifying Type Consistency: Type Assignability" in the RTI Connext DDS Core Librar-
ies Extensible Types Guide for more information.

[RTI Issue ID CORE-8158]

6.1.7 Escaping special characters in regular/filter expressions not supported
in some cases

Escaping special characters is not supported in expressions when using the following features:

l Partitions

l MultiChannel

Every occurrence of a backslash ('\') will be considered its own character and not a way to escape the char-
acter that follows. For example: 'A\?' does not match 'A?' because the first expression is considered an
expression with three characters.

[RTI Issue ID CORE-11858]

6.2 Known Issues with Code Generation

See the "Known Issues" section of the RTI Code Generator Release Notes.

6.3 Known Issues with Instance Lifecycle

6.3.1 Instance does not transition to ALIVE when "live" DataWriter detected

The "Data Distribution Service for Real-time Systems" specification allows transitioning an instance from
the NO_WRITERS state to the ALIVE state when a "live" DataWriter writing the instance is detected.
Currently, this state transition is not supported in Connext DDS. The only way to transition an instance
from NO_WRITERS to ALIVE state is by receiving a sample for the instance from one of the
DataWriters publishing it.

Example:

1. A DataWriter writes a particular instance. The DataReader receives the sample. The DataWriter
loses liveliness with the DataReader, making the instance transition from ALIVE to NO_

112

6.3.2 Persistence Service DataReaders ignore serialized key propagated with dispose updates

113

WRITERS. The writer later becomes alive again, but it doesn't resume writing samples of the
instance. In this case, the instance will stay in a NO_WRITERS state.

2. The DataWriter publishes a new sample for the instance. Only then does the instance state change
on the DataReader from NO_WRITERS to ALIVE.

[RTI Issue ID CORE-3018]

6.3.2 Persistence Service DataReaders ignore serialized key propagated
with dispose updates

Persistence Service DataReaders ignore the serialized key propagated with dispose updates. Persistence
Service DataWriters cannot propagate the serialized key with dispose, and therefore ignore the serialize_
key_with_dispose setting on the DataWriter QoS.

[RTI Issue ID PERSISTENCE-221]

6.4 Known Issues with Reliability

6.4.1 DataReaders with different reliability kinds under Subscriber with
GROUP_PRESENTATION_QOS may cause communication failure

Creating a Subscriber with PresentationQosPolicy.access_scope GROUP_PRESENTATION_QOS
and then creating DataReaders with different ReliabilityQosPolicy.kind values creates the potential for
situations in which those DataReaders will not receive any data.

One such situation is when the DataReaders are discovered as late-joiners. In this case, samples are never
delivered to the DataReaders. A workaround for this issue is to set the AvailabilityQosPolicy.max_data_
availabilty_waiting_time to a finite value for each DataReader.

[RTI Issue ID CORE-7284]

6.5 Known Issues with Content Filters and Query Conditions

6.5.1 Writer-side filtering may cause missed deadline

If you are using a ContentFilteredTopic and you set the Deadline QosPolicy, the deadline may be missed
due to filtering by a DataWriter.

[RTI Issue ID CORE-1634, Bug # 10765]

6.5.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated
correctly

The filter_sample_* statistics in the DDS_DataWriterProtocolStatus are not updated correctly. The val-
ues that you get after calling the following APIs may be smaller than the actual values:

6.6 Known Issues with TopicQueries

l DDS_DataWriter::get_datawriter_protocol_status

l DDS_DataWriter::get_matched_subscription_datawriter_protocol_status

l DDS_DataWriter::get_matched_subscription_datawriter_protocol_status_by_locator

[RTI Issue ID CORE-5157]

6.6 Known Issues with TopicQueries

6.6.1 TopicQueries not supported with DataWriters configured to use
batching or Durable Writer History

Getting TopicQuery data from a DataWriter configured to use batching or Durable Writer History is not
supported.

[RTI Issue IDs CORE-7405, CORE-7406]

6.7 Known Issues with Transports

6.7.1 AppAck messages cannot be greater than underlying transport
message size

A DataReader with acknowledgment_kind (in the ReliabilityQosPolicy) set to DDS_APPLICATION_
AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_EXPLICIT_
ACKNOWLEDGMENT_MODE cannot send AppAck messages greater than the underlying transport
message size.

If a DataReader tries to send an AppAck message greater than the transport message size, Connext DDS
will print the following error message:
COMMENDFacade_sendAppAck:!add APP_ACK to MIG
COMMENDSrReaderService_sendAppAck:!send APP_ACK
PRESPsService_onReaderAppAckSendEvent:!send acknowledgment

To recover from the above error, the DataReader must acknowledge samples until the size of the AppAck
message goes below the transport message size threshold.

Why does an AppAck message increase its size? An AppAck message contains a list of sequence number
intervals where each interval represents a set of consecutive sequence numbers that have been already
acknowledged. As long as samples are acknowledged in order, the AppAck message will always have a
single interval. However, when samples are acknowledged out of order, the number of intervals and the
size of the AppAck will increase.

For more information, see the "Application Acknowledgment" section in the RTI Connext DDS Core
Libraries User's Manual.

[RTI Issue ID CORE-5329]

114

6.7.2 DataReader cannot persist AppAck messages greater than 32767 bytes

115

6.7.2 DataReader cannot persist AppAck messages greater than 32767
bytes

A DataReader using durable reader state, whose acknowledgment_kind (in the ReliabilityQosPolicy) is
set to DDS_APPLICATION_AUTO_ACKNOWLEDGMENT_MODE or DDS_APPLICATION_
EXPLICIT_ACKNOWLEDGMENT_MODE, cannot persist an AppAck message greater than 32767
bytes.

To recover from the previous error, the DataReader must acknowledge samples until the size of the
AppAck message goes below the transport message size threshold.

For more information, see the section "Durable Reader State," in the RTI Connext DDS Core Libraries
User's Manual.

[RTI Issue ID CORE-5360]

6.7.3 Discovery with Connext DDS Micro fails when shared memory transport
enabled

Given a Connext DDS application with the shared memory transport enabled, a Connext DDS Micro 2.4.x
application will fail to discover it. This is due to a bug in Connext DDS Micro that prevents a received par-
ticipant discovery message from being correctly processed. This bug will be fixed in a future release of
Connext DDS Micro. As a workaround, you can disable the shared memory transport in the Connext DDS
application and use UDPv4 instead.

[RTI Issue ID EDDY-1615]

6.7.4 Communication may not be reestablished in some IP mobility
scenarios

If you have two Connext DDS applications in different nodes and they change their IP address at the same
time, they may not reestablish communication. This situation may happen in the following scenario:

l The applications see each other only from one single network.

l The IP address change happens at the same time in the network interface cards (NICs) that are in the
network that is in common for both applications.

l The IP address change on one of the nodes happens before the arrival of the DDS discovery mes-
sage propagating the address change from the other side.

[RTI Issue ID CORE-8260]

6.7.5 Corrupted samples may be forwarded through Routing Service when using Zero-Copy transfer over

6.7.5 Corrupted samples may be forwarded through Routing Service when
using Zero-Copy transfer over shared memory

When using Zero Copy transfer over shared memory together with RTI Routing Service, Routing Service
avoids an additional copy of the data by passing a reference to the sample from the input to the output of a
route. If the sample is reused and rewritten by the original application DataWriter during the time between
when the sample was received on the route input and copied into the route output buffer, the forwarded
sample will contain the updated, and now invalid, values for the original sample.

This situation can be avoided in a few different ways, with various tradeoffs.

6.7.5.1 Use automatic application acknowledgment

Using automatic application acknowledgment (acknowledgment_mode = APPLICATION_AUTO_
ACKNOWLEDGMENT in the Reliability QoS Policy) between the Routing Service input DataReader
and its matching DataWriters will avoid the issue.

When using Zero Copy transfer over shared memory, DataWriters must loan samples using the get_loan
API. Only samples that have been fully acknowledged will be returned by the get_loan API. This means
that if automatic application acknowledgment is turned on, that only samples that the Routing Service has
already copied and written to the route output will be available for reuse by the original DataWriter,
because Routing Service does not return the loan on a sample until after it is forwarded to the route out-
puts.

The drawback to this approach is that it requires RELIABLE Reliability. In addition, application-level
acknowledgments are not supported in Connext DDS Micro, so this approach will not work if Connext
DDS Micro is the source of the Zero Copy samples.

6.7.5.2 Ensure that the number of available samples accounts for Routing Service
processing time

Regardless of whether you are using Routing Service, it is important when using Zero Copy transfer over
shared memory to size your resources so that your application can continue to write at the desired rate
while the receiving applications receive and process the samples. If you are using Routing Service and can-
not, or do not wish to, use automatic application acknowledgments, you must take into account the amount
of time it will take to receive and forward a sample when setting writer_loaned_sample_allocation in the
DATA_WRITER_RESOURCE_LIMITS QoS Policy and managing the samples in your application.

[RTI Issue ID CORE-10782]

6.7.6 Network Capture does not support frames larger than 65535 bytes

Network capture does not support frames larger than 65535 bytes. This limitation affects the TCP transport
protocol if themessage_size_max property is set to a value larger than the default one.

[RTI Issue ID CORE-11083]

116

6.8 Known Issues with FlatData

117

6.8 Known Issues with FlatData

6.8.1 FlatData language bindings do not support automatic initialization of
arrays of primitive values to non-zero default values

RTI FlatData™ language bindings do not support the automatic initialization of arrays of primitive values
to non-zero default values, unless the primitive is an enumeration. It is possible to declare an alias to a prim-
itive member with a default value using the @default annotation, and then to declare an array of that alias.
For example:
@default(10)
typedef int32 myLongAlias;

struct MyType {
myLongAlias myLongArray[25];

};

The default values of each member of the array in this case should be 10, but in FlatData they will all be
set to 0.

[RTI Issue ID CORE-9176]

6.8.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined
behavior

The function rti::flat::plain_cast is allowed on FlatData samples containing int64_t members, but those
members are not guaranteed to have an 8-byte alignment (a 4-byte alignment is guaranteed). Memory
checkers such as Valgrind may report errors when accessing such members from the pointer returned by
plain_cast.

[RTI Issue ID CORE-10092]

6.8.3 FlatData in combination with payload encryption in RTI Security
Plugins and/or compression will not save copies

RTI FlatData™ language binding offers a reduced number of end-to-end copies when sending a sample
(from four to two), providing improved latency for large data samples. (See the "FlatData Language Bind-
ing" section in the RTI Connext DDS Core Libraries User's Manual.) When used with payload encryption
and/or payload compression, however, there are no savings in the number of copies. (See the section "Inter-
actions with RTI Security Plugins and Compression" in the "Using FlatData Language Binding" section of
the RTI Connext DDS Core Libraries User's Manual). In future releases, other copies currently being
made can potentially be optimized out in order to reduce the number of copies when using FlatData in com-
bination with security and compression.

[RTI Issue ID CORE-11262]

6.9 Known Issues with Coherent Sets

6.9 Known Issues with Coherent Sets

6.9.1 Some coherent sets may be lost or reported as incomplete with
batching configurations

If Connext DDS 6.1.0 receives coherent sets from Connext DDS 6.0.0 or lower using batching, coherent
sets that are fully received and complete may be lost or marked as incomplete. (If the QoS subscriber_
qos.presentation.drop_incomplete_coherent_set is set to FALSE, then the samples marked as incom-
plete won't be dropped.)

[RTI Issue ID CORE-9691]

6.9.2 Copy of SampleInfo::coherent_set_info field is not supported

SampleInfo::coherent_set_info is not available when using take/read operations that do not loan the
samples. The SampleInfo::coherent_set_info is always set to NULL when you call the take/read oper-
ations that do not loan the samples. To get the coherent_set_info value, make sure you use the read/take
operations that loan the data.

In addition, the copy constructor and assignment operator in the Traditional C++ and Modern C++ APIs
do not copy the SampleInfo::coherent_set_info field. It is always set to NULL. It is your responsibility
to make the copy and handle memory allocation and deletion for this field.

[RTI Issue ID CORE-11215]

6.9.3 Other known issues with coherent sets

Coherent sets are not propagated through RTI Routing Service [RTI Issue ID ROUTING-657].

Group coherent sets are not supported with ODBC writer history [RTI Issue ID CORE-9746].

Group coherent sets are not persisted by RTI Persistence Service [RTI Issue ID PERSISTENCE-191].

Group coherent sets cannot be stored or replayed with RTI Recording Service [RTI Issue ID RECORD-
1083].

6.10 Known Issues with Dynamic Data

6.10.1 Conversion of data by member-access primitives limited when
converting to types that are not supported on all platforms

The conversion of data by member-access primitives (get_X() operations) is limited when converting to
types that are not supported on all platforms. This limitation applies when converting to a 64-bit int64 type
(get_longlong() and get_ulonglong() operations) and a 128-bit long double type (get_longdouble()).
These methods will always work for data members that are actually of the correct type, but will only sup-
port conversion from values that are stored as smaller types on a subset of platforms. Conversion to 64-bit

118

6.10.2 Types that contain bit fields not supported

119

int64s from a 32-bit or smaller integer type is supported on all Windows and Linux architectures, and any
additional 64-bit architectures. Conversion to 128-bit long doubles from a float or double is not supported.

[RTI Issue ID CORE-2986]

6.10.2 Types that contain bit fields not supported

Types that contain bit fields are not supported by DynamicData. Therefore, when rtiddsspy discovers any
type that contains a bit field, rtiddsspy will print this message:
DDS_DynamicDataTypeSupport_initialize:type not supported (bitfield member)

[RTI Issue ID CORE-3949]

6.11 Known Issues in RTI Monitoring Library

6.11.1 Problems with NDDS_Transport_Support_set_builtin_transport_
property() if Participant Sends Monitoring Data

If a Connext DDS application uses the NDDS_Transport_Support_set_builtin_transport_property()
API (instead of the PropertyQosPolicy) to set built-in transport properties, it will not work with Monitoring
Library if the user participant is used for sending all the monitoring data (the default settings). As a work-
around, you can configure Monitoring Library to use another participant to publish monitoring data (using
the property name rti.monitor.config.new_participant_domain_id in the PropertyQosPolicy).

[RTI Issue ID MONITOR-222]

6.11.2 Participant’s CPU and memory statistics are per application

The CPU and memory usage statistics published in the DomainParticipant entity statistics topic are per
application instead of per DomainParticipant.

[RTI Issue ID CORE-7972]

6.11.3 XML-based entity creation nominally incompatible with static
monitoring library

If setting the DomainParticipant QoS programmatically in the application is not possible (i.e., when using
XML-based Application Creation), the monitoring create function pointer may still be provided via an
XML profile by using the environment variable expansion functionality. The monitoring property within
the DomainParticipant QoS profile in XML must be set as follows:
<domain_participant_qos>

<property>
<value>

<element>
<name>rti.monitor.library</name>
<value>timonitoring</value>

6.11.4 ResourceLimit channel_seq_max_length must not be changed

</element>
<element>

<name>rti.monitor.create_function_ptr</name>
<value>$(MONITORFUNC)</value>

</element>
</value>

</property>
</domain_participant_qos>

Then in the application, before retrieving the DomainParticipantFactory, the environment variable must be
set programmatically as follows:
...
sprintf(varString, "MONITORFUNC=%p", RTIDefaultMonitor_create);
int retVal = putenv(varString);
...
//DomainParticipantFactory must be created after env. variable setting

[RTI Issue ID CORE-5540]

6.11.4 ResourceLimit channel_seq_max_length must not be changed

The default value of DDS_DomainParticipantResourceLimitsQosPolicy::channel_seq_max_length
can't be modified if a DomainParticipant is being monitored. If this QoS value is modified from its default
value of 32, the monitoring library will fail.

[RTI Issue ID MONITOR-220]

6.12 Known Issues with Installers

6.12.1 RTI Connext DDS Micro 3.0.3 installation package currently
compatible only with Connext 6.0.1 installer

Connext DDSMicro 3.0.3 must be installed with Connext DDSProfessional release 6.0.1. It cannot be
installed with release 6.1.0. Connext DDSMicro 3.0.3 can communicate with either release. Customers
licensing Connext DDSMicro will be notified when a Connext DDSMicro release that is compatible with
the 6.1.0 installer is available.

6.13 Other Known Issues

6.13.1 Possible Valgrind still-reachable leaks when loading dynamic
libraries

If you load any dynamic libraries, you may see "still reachable" memory leaks in "dlopen" and "dlclose".
These leaks are a result of a bug in Valgrind (https://bug-
s.launchpad.net/ubuntu/+source/valgrind/+bug/1160352).

This issue affects the Core Libraries, Security Plugins, Secure WAN, and TLS Support.

120

https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352
https://bugs.launchpad.net/ubuntu/+source/valgrind/+bug/1160352

6.13.2 'Incorrect arguments to mysqld_stmt_execute' errors when using MySQL ODBC driver

121

[RTI Issue IDs CORE-9941, SEC-1026, and COREPLG-510]

6.13.2 'Incorrect arguments to mysqld_stmt_execute' errors when using
MySQL ODBC driver

Some versions of the MySQL ODBC driver may not work out-of-the-box and produce ODBC errors that
include the following message:
Incorrect arguments to mysqld_stmt_execute.

In this case, you will need to enable the "Prepare statements on the client" option in the
DSN configuration. You will find that option under Details, Misc, Prepare statements on the client
when adding or configuring a DSN. This behavior has been observed with MySQL ODBC driver version
8.0.23, but other versions may also be affected.

6.13.3 64-bit discriminator values greater than (2^31-1) or smaller than (-
2^31) supported only in Java, no other languages

Unions with a 64-bit integer discriminator type containing discriminator values that cannot fit in a 32-bit
value are not supported when using the following language bindings:

6.13.3 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) supported only in Java, no

l C

l Traditional C++

l Modern C++

l New. NET

l DynamicData (regardless of the language)

They are also not supported with ContentFilteredTopics, regardless of the language binding.

Using label values greater than 32-bit may lead to receiving samples with invalid content or to filtering
samples incorrectly.

For example, this is not supported:
union union_uint64 switch (uint64) {

case 0x100000000:
char m_char;

case 0x200000000:
int32 m_int32;

case 0x300000000:
string<5> m_string;

};

This is supported:
union union_uint64 switch (uint64) {

case 1:
char m_char;

case 2:
int32 m_int32;

case 3:
string<5> m_string;

};

[RTI Issue ID CORE-11437]

122

Chapter 7 Experimental Features
This software may contain experimental features. These are used to evaluate potential new features
and obtain customer feedback. They are not guaranteed to be consistent or supported and they
should not be used in production.

In the API Reference HTML documentation, experimental APIs are marked with <<exper-
imental>>.

The APIs for experimental features use the suffix _exp to distinguish them from other APIs. For
example:
const DDS::TypeCode * DDS_DomainParticipant::get_typecode_exp(

const char * type_name);

Experimental features are also clearly noted as such in the User’s Manual or Getting Started Guide
for the component in which they are included.

Disclaimers:

l Experimental feature APIs may be only available in a subset of the supported languages and
for a subset of the supported platforms.

l The names of experimental feature APIs will change if they become officially supported. At
the very least, the suffix, _exp, will be removed.

l Experimental features may or may not appear in future product releases.

l Experimental features should not be used in production.

Please submit your comments and suggestions about experimental features to support@rti.com or
via the RTI Customer Portal (https://support.rti.com/). Although the RTI Support team does not
provide support for experimental features, you may be able to get help with experimental features
from the RTI Community forum: https://community.rti.com/.

123

https://support.rti.com/
https://community.rti.com/

	Chapter 1 Introduction
	Chapter 2 System Requirements
	2.1 Supported Operating Systems
	2.2 Requirements when Using Microsoft Visual Studio
	2.3 Disk and Memory Usage

	Chapter 3 Compatibility
	3.1 Wire Protocol Compatibility
	3.2 Code and Configuration Compatibility
	3.3 Extensible Types Compatibility
	3.4 ODBC Database Compatibility

	Chapter 4 What's Fixed in 6.1.2
	4.1 Fixes Related to Callbacks and Waitsets
	4.1.1 Failure calling DDS_Subscriber::get_datareaders in DDS_SubscriberListener::on_data_on_readers callback implementation
	4.1.2 DDS_SubscriberListener::on_data_on_readers on a DomainParticipant or Subscriber not called when Listener installed after entity enabled
	4.1.3 Unsafe combinations of masks and listeners may have led to segmentation fault in C API

	4.2 Fixes Related to Serialization and Deserialization
	4.2.1 Serialization of samples failed or produced a segmentation fault for types with max serialized size larger than 2GB

	4.3 Fixes Related to Usability and Debuggability
	4.3.1 Unexpected memory growth when DataReader could not be matched with DataWriter due to unexpected error condition
	4.3.2 Unbounded memory growth in Spy when discovering multiple endpoints with the same Topics and types
	4.3.3 Hang when using best-effort DataWriters and asynchronous publishing, if RTIEventJobDispatcher_retrieveJobInfo failed
	4.3.4 No more than 100 asynchronous publisher threads could be created

	4.4 Fixes Related to Transports
	4.4.1 Unnecessary sockets created during initialization of library
	4.4.2 Possible data loss after Connext DDS application lost its multicast interfaces or gained its first multicast interface
	4.4.3 Unnecessary discovery traffic related to IP mobility events on interfaces irrelevant to the transport
	4.4.4 DomainParticipant with non-default metatraffic_transport_priority QoS did not complete discovery
	4.4.5 Pushed samples may not have been received by reliable DataReader when DataWriter published type that supports Zero Copy transfer over shared memory
	4.4.6 Race condition could cause unbounded memory growth in TCP Transport Plugin

	4.5 Fixes Related to Reliability Protocol and Wire Representation
	4.5.1 Various issues with RtpsReliableWriterProtocol_t::nack_suppression_duration
	4.5.2 Samples not delivered to Required Subscription DataReaders when DataWriter used durable writer history and DataReaders disabled positive ACKs
	4.5.3 DataReader may not have received samples that were sent as gapped samples to another DataReader over multicast

	4.6 Fixes Related to Content Filters and Query Conditions
	4.6.1 Unnecessary sample filtering on a DataReader for samples already filtered by a DataWriter
	4.6.2 Creation of ContentFilteredTopic or reception of TopicQuery samples may have taken long time for complex types
	4.6.3 Incorrect results for Unions when using DynamicData or Content Filters
	4.6.4 Connext DDS application using filtering feature may have crashed after running out of memory

	4.7 Fixes Related to TopicQueries
	4.7.1 Continuous creation of TopicQueries may have led to unnecessary memory fragmentation in OS memory allocator
	4.7.2 Unnecessary repair traffic for DataWriters using TopicQueries and asynchronous publishing

	4.8 Fixes Related to Coherent Sets
	4.8.1 Application may stop receiving samples from DataReaders using GROUP_PRESENTATION_QOS
	4.8.2 Application may not have received samples of coherent set when using GROUP access scope and TRANSIENT_LOCAL durability

	4.9 Fixes Related to Dynamic Data
	4.9.1 Types Containing Typedefs were sent without the typedefs in discovery when using DynamicData

	4.10 Fixes Related to APIs
	4.10.1 Possible wrong results when adding Time or Duration objects that used very large numbers
	4.10.2 Java API did not support RtpsReliableReaderProtocol_t.receive_window_size
	4.10.3 Java API leaked some objects in certain DomainParticipantFactory operations
	4.10.4 Possible unbounded memory growth when creating many Requesters
	4.10.5 Memory leak in Java Request-Reply API
	4.10.6 Possible data race using Sample and WriteSample classes in Traditional C++ Request-Reply API

	4.11 Fixes Related to Modern C++ API
	4.11.1 Corruption of LoanedDynamicData object when moved in some situations
	4.11.2 rti::topic::find_registered_content_filters led to infinite recursion

	4.12 Fixes Related to C# API
	4.12.1 NullReferenceException when using unbounded sequences of complex types
	4.12.2 Possible error message printed during entity deletion

	4.13 Fixes Related to XML Configuration
	4.13.1 Parsing error loading XML configuration file containing const whose expression refers to enumerator
	4.13.2 Parsing error loading XML configuration file with enum type containing enumerator whose value was an expression referring to a const
	4.13.3 Parsing error loading an XML configuration file with enum type containing enumerator whose value was an expression
	4.13.4 Parsing error loading an XML configuration file with an enum type containing an enumerator whose value was an expression referring to another enumerator
	4.13.5 Memory leak after an error parsing XML file with <include> tag
	4.13.6 Failed to parse XML configuration file containing type member with useVector attribute

	4.14 Fixes Related to Remote Procedure Calls (RPC)
	4.14.1 RPC interface evolution did not work
	4.14.2 Exceptions sending result of remote operation may have crashed server application

	4.15 Fixes Related to Vulnerabilities
	4.15.1 Fixes related to Connext DDS
	4.15.2 Fixes related to third-party dependencies

	4.16 Fixes Related to Crashes
	4.16.1 Simultaneous deletion of an entity by multiple threads caused a crash when using Java
	4.16.2 Segmentation fault when having multicast and unicast DataReaders for same Topic in a participant
	4.16.3 Possible crash upon discovery of applications with unreachable locators
	4.16.4 Rare segmentation fault when deleting DomainParticipant or Publisher containing DataWriters using durable writer history
	4.16.5 DataReader C++ application crashed if it received tampered sample with unsupported encapsulation ID
	4.16.6 Segmentation fault after calling DomainParticipant::register_durable_subscription with a group containing a long role_name
	4.16.7 Segmentation fault when application using MultiChannel ran out of memory
	4.16.8 Application crashed when capturing traffic for a DomainParticipant created before enabling network capture
	4.16.9 Rare circumstances outside application's control caused crash when writing sample
	4.16.10 Using certain callbacks at DomainParticipant or Publisher level may have led to segmentation fault
	4.16.11 Segmentation fault when creation of DomainParticipant failed due to lack of resources
	4.16.12 Potential crash during type registration if system ran out of memory
	4.16.13 Segmentation fault when using GROUP_PRESENTATION_QOS or HIGHEST_OFFERED_PRESENTATION_QOS and setting filter_redundant_samples to FALSE on DataReader
	4.16.14 Segmentation fault after calling DomainParticipant::delete_durable_subscription with a group containing a long role_name
	4.16.15 Potential hang upon SIGSEGV signal from a Connext DDS application
	4.16.16 Potential crash or memory corruption if user application using thread-specific storage
	4.16.17 Creating DynamicDataTypePlugin with TypeCode from discovery and using content filtering caused segmentation fault
	4.16.18 Crash with NULL listeners and non-none status masks in C applications that mixed types with and without Zero Copy
	4.16.19 Memory was read after it was freed by deleting a Topic with local logging level enabled
	4.16.20 Possible segmentation fault when disabling loopback interface
	4.16.21 Application using Monitoring Libraries may have produced segmentation fault during DataReader creation

	4.17 Other Fixes
	4.17.1 Error sending batch when batch size exceeded transport MTU
	4.17.2 Potential Valgrind invalid read when logging a message or enabling heap monitoring
	4.17.3 Runtime error when using debug libraries for QNX x86 platform
	4.17.4 Broken communication when DataWriter with transport priority discovered DataReader with multicast receive address
	4.17.5 Dependency on invalid symbol when building Linux FACE™ GP profiles
	4.17.6 Samples could be lost using group order access or collaborative DataWriters
	4.17.7 Added back support for ARMv8 Linux architecture
	4.17.8 Added back support for ARMv8 and x64 processors, cxx and gpp compilers, for QNX platform
	4.17.9 Custom OpenSSL installation wasn't correctly searched for
	4.17.10 CONNEXTDDS_ARCH environment variable was not picked up correctly
	4.17.11 New library dependencies accidentally added in Core Libraries for Android
	4.17.12 Possible compiler warnings for VxWorks 7 Arm v8 platforms

	Chapter 5 Previous Releases
	5.1 What's Fixed in 6.1.1
	5.1.1 Fixes Related to Discovery
	5.1.2 Fixes Related to Serialization and Deserialization
	5.1.3 Fixes Related to Usability and Debuggability
	5.1.4 Fixes Related to Transports
	5.1.5 Fixes Related to Content Filters and Query Conditions
	5.1.6 Fixes Related to Coherent Sets
	5.1.7 Fixes Related to Dynamic Data
	5.1.8 Fixes Related to DDS API
	5.1.9 Fixes Related to Modern C++ API
	5.1.10 Fixes Related to XML Configuration
	5.1.11 Fixes Related to Vulnerabilities
	5.1.12 Other Fixes

	5.2 What's Fixed in 6.1.0
	5.2.1 Fixes Related to Discovery
	5.2.2 Fixes Related to Usability and Debuggability
	5.2.3 Fixes Related to Transports
	5.2.4 Fixes Related to Reliability Protocol and Wire Representation
	5.2.5 Fixes Related to Content Filters and Query Conditions
	5.2.6 Fixes Related to TopicQueries
	5.2.7 Fixes Related to Coherent Sets
	5.2.8 Fixes Related to Dynamic Data and FlatData
	5.2.9 Fixes Related to DDS API
	5.2.10 Fixes Related to Modern C++ API
	5.2.11 Fixes Related to XML Configuration
	5.2.12 Fixes Related to OMG Specification Compliance
	5.2.13 Fixes Related to Entities
	5.2.14 Fixes Related to Vulnerabilities
	5.2.15 Other Fixes

	Chapter 6 Known Issues
	6.1 Known Issues with Usability
	6.1.1 Cannot open USER_QOS_PROFILES.xml in rti_workspace/examples from Visual Studio
	6.1.2 DataWriter's Listener callback on_application_acknowledgment() not triggered by late-joining DataReaders
	6.1.3 HighThroughput and AutoTuning built-in QoS Profiles may cause communication failure when writing small samples
	6.1.4 Memory leak if Foo:initialize() called twice
	6.1.5 Wrong error code after timeout on write() from Asynchronous Publisher
	6.1.6 Type Consistency enforcement disabled for structs with more than 10000 members
	6.1.7 Escaping special characters in regular/filter expressions not supported in some cases

	6.2 Known Issues with Code Generation
	6.3 Known Issues with Instance Lifecycle
	6.3.1 Instance does not transition to ALIVE when live DataWriter detected
	6.3.2 Persistence Service DataReaders ignore serialized key propagated with dispose updates

	6.4 Known Issues with Reliability
	6.4.1 DataReaders with different reliability kinds under Subscriber with GROUP_PRESENTATION_QOS may cause communication failure

	6.5 Known Issues with Content Filters and Query Conditions
	6.5.1 Writer-side filtering may cause missed deadline
	6.5.2 filter_sample_* statistics in DDS_DataWriterProtocolStatus not updated correctly

	6.6 Known Issues with TopicQueries
	6.6.1 TopicQueries not supported with DataWriters configured to use batching or Durable Writer History

	6.7 Known Issues with Transports
	6.7.1 AppAck messages cannot be greater than underlying transport message size
	6.7.2 DataReader cannot persist AppAck messages greater than 32767 bytes
	6.7.3 Discovery with Connext DDS Micro fails when shared memory transport enabled
	6.7.4 Communication may not be reestablished in some IP mobility scenarios
	6.7.5 Corrupted samples may be forwarded through Routing Service when using Zero-Copy transfer over shared memory
	6.7.6 Network Capture does not support frames larger than 65535 bytes

	6.8 Known Issues with FlatData
	6.8.1 FlatData language bindings do not support automatic initialization of arrays of primitive values to non-zero default values
	6.8.2 Flat Data: plain_cast on types with 64-bit integers may cause undefined behavior
	6.8.3 FlatData in combination with payload encryption in RTI Security Plugins and/or compression will not save copies

	6.9 Known Issues with Coherent Sets
	6.9.1 Some coherent sets may be lost or reported as incomplete with batching configurations
	6.9.2 Copy of SampleInfo::coherent_set_info field is not supported
	6.9.3 Other known issues with coherent sets

	6.10 Known Issues with Dynamic Data
	6.10.1 Conversion of data by member-access primitives limited when converting to types that are not supported on all platforms
	6.10.2 Types that contain bit fields not supported

	6.11 Known Issues in RTI Monitoring Library
	6.11.1 Problems with NDDS_Transport_Support_set_builtin_transport_property() if Participant Sends Monitoring Data
	6.11.2 Participant’s CPU and memory statistics are per application
	6.11.3 XML-based entity creation nominally incompatible with static monitoring library
	6.11.4 ResourceLimit channel_seq_max_length must not be changed

	6.12 Known Issues with Installers
	6.12.1 RTI Connext DDS Micro 3.0.3 installation package currently compatible only with Connext 6.0.1 installer

	6.13 Other Known Issues
	6.13.1 Possible Valgrind still-reachable leaks when loading dynamic libraries
	6.13.2 'Incorrect arguments to mysqld_stmt_execute' errors when using MySQL ODBC driver
	6.13.3 64-bit discriminator values greater than (2^31-1) or smaller than (-2^31) supported only in Java, no other languages

	Chapter 7 Experimental Features

